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Whittaker vectors for the discrete series

representations of SL2pRq

Abstract

In the Harmonic analysis of real semisimple Lie groups, Whittaker vectors play
an important role in the Whittaker-Plancherel decomposition. These elements con-
sist of generalised vectors that transform by a character under a certain nilpotent
subgroup of G. In the group SL2pRq, we will see that they are the main building
blocks of certain type of matrix coefficients of the principal series representations,
that can be identified with special functions satisfying the classical Whittaker dif-
ferential equation. In recent work of E. van den Ban, a new inversion formula for
the so-called Whittaker-Fourier transform on a semisimple group has been derived.
In SL2pRq, the residues of this inversion transform appear in terms of the previously
mentioned principal series representations matrix coefficients; and they turn out to
be Whittaker functions associated with representations of the discrete series. In
this thesis, we will introduce the notion of Whittaker vector and Whittaker matrix
coefficient for both the discrete and the principal series represetations of SL2pRq.
We will make explicit the connection with the Whittaker differential equation and
analyse the nature of the aforementioned residues for the Lie group SL2pRq.
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Introduction

In 1982, Harish-Chandra announced he had a proof of the Whittaker-Plancherel for-
mula for the case of connected real semisimple Lie groups. Unfortunately, because of
his passing this work remained unpublished for a long time only having been com-
municated by private correspondence. Independent tretaments of the Whittaker-
Plancherel formula have appeared throughout these years, see [15]. In 2018, this
work is made published in [2]. However there is a step in Harish-Chandra’s proof
that appears to be missing. This is addressed in recently announced work of E. van
den Ban, relying on a new inversion formula for the Fourier-Whittaker transform
for a real connected semisimple Lie group. The motivation behind this thesis is to
understand the nature of the residues that this formula produces in the case of the
group SL2pRq. We will profit from the rich structure of this group as it will make
the theory simpler. We will see that the theory of Whittaker vectors for this group
is intimately related to the classical theory of Whittaker functions.

Structure of this monograph

Let us outline the structure of this thesis. This monograph is divided into three
chapters and an appendix. In the first half of this chapter, we will introduce some
prior knowledge and notation that will be used throughout the text. The other half
of the chapter will be dedicated to the study of the principal series representations
and the discrete series representations. The main reference for this chapter is [13].

The second chapter is the core of this thesis. Whittaker vectors were firstly
introduced by Jacquet in [3]. We will study the concept of Whittaker vector for
both the principal and discrete series representations of SL2pRq. For the latter, we
specifically outline the construction of an example of a Whittaker vector provided by
E. van den Ban. Further on in the chapter we introduce the standard intertwining
operator. It will serve us to subsequently study the Harish-Chandra cn-functions.
This will be of relevance in the study of the residues previously mentioned. Most of
this theory has been studied from [9]; except for the cn-functions, for which [15] has
been followed.

In the final chapter, we will see that Whittaker matrix coefficients are associated
to special functions that solve the Classical Whittaker equation for SL2pRq. In
the end we will introduce the aforementioned Fourier-Whittaker transform in the
case of SL2pRq and compute the residues for the inversion formula, establlishing the
connection with the discrete series representations.
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Chapter 1

Preliminaries

This chapter will be devoted to the development of a few tools regarding the repre-
sentation theory on real connected semisimple Lie groups that will be used through
the coming chapters. The reader should be acquainted with some Lie theory basics
to make the most of the subsequent sections. Should it not be the case, the reader
is always invited to check [11]. The chapter is clearly differentiated in two parts.
In the first one we will learn about two important tools in representation theory;
namely, the Iwasawa decomposition and induced representations. Most of the proofs
will be omitted, referring to [13, Ch. 15-22] for a detailed account of the first part
of this chapter. Secondly, we treat the principal and discrete series representations
due to its relevance for the theory that will thereafter be presented; along with its
construction for SL2pRq. Lastly, we discuss how discrete series representations may
be seen as subrepresentations of the principal series representations.

1.1 The Iwasawa decomposition

In this section, we will be concerned with finding an appropriate decomposition of
a general connected semisimple Lie group and describing it specifically for SL2pRq.
We will derive such decomposition starting at the Lie algebra level.

Let g be a real semisimple1 Lie algebra. An involution of g is defined to be an
automorphism of g that squared equals the identity. If g has such an involution,
observe that ˘1 are the only possible eigenvalues of the involution and therefore we
may write

g “ g` ‘ g´,

where g˘ denote the plus and minus one eigenspaces, respectively. These eigenspaces
are orthogonal with respect to the Killing form associated to g because this is in-
variant under automorphisms. Furthermore, since automorphisms are in particular
Lie algebra homomorphisms, g` is a Lie subalgebra.

Definition 1.1.1 (Cartan involution). An involution for which the Killing form is
negative definite on g` and positive definite on g´ is called Cartan involution.

Remark. We shall denote g˘ by t and p, respectively and Cartan involutions by θ.
We see that t is compact2 in g as the Killing form is negative definite on t.

1A semisimple algebra is a direct sum of simple algebras. A Lie algebra is said to be simple if
it is non-abelian and it has no proper ideals

2Meaning, it is isomorphic to the Lie algebra of a compact Lie group
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CHAPTER 1. PRELIMINARIES

Lemma 1.1.1 (Existence of Cartan involutions). [13, Proposition 15.4] Any real
semisimple Lie algebra has a Cartan involution. Furthermore, Cartan involutions
are unique up to conjugation by interior automorphisms of the Lie algebra.

Having the Killing form B and a fixed Cartan involution θ at hand, the following
expression defines an inner product on g:

xX, Y y :“ ´BpX, θY q for X, Y P g. (1.1)

This map is readily seen to be bilinear. Both symmetry and invariance under
automorphisms of the Killing form make x¨, ¨y symmetric. Let X “ Xt `Xp P t‘ p.
Then

xX,Xy “ xXt `Xp, Xt `Xpy “ BpXp, Xpq ´BpXt, Xtq

The expression on the right side is positive definite as a consequence of the definition
of Cartan involution. This means that expression (1.1) defines indeed, an inner
product on g. With such inner product, the previous direct sum decomposition
stays orthogonal because so it is with respect to the Killing form.

Lemma 1.1.2. adptq and adppq are respectively contained in the spaces of antisym-
metric and symmetric endomorphisms of g.

Proof. For X, Y, Z P g

xadpXqY, Zy “ ´BpadpXqY, θZq “ BpY, adpXqθZq “ ´xY, adpθXqZy.

Thus adpXqt “ ´adpθXq and the result follows.

By Lemma 1.1.2, we observe that adppq consists of real symmetric maps, all these
automatically diagonalisable with real eigenvalues. Let a Ă p be a maximal abelian
subalgebra of p. Since p is finite-dimensional, such subalgebras always exist. For
λ P a˚, we define the λ-weight space

gλ “ tX P g | rH,Xs “ λpHqX, @H P au.

Definition 1.1.2 (Root system). We say that α P a˚zt0u is a root if gα ‰ 0. The
set of roots is called root system and it is denoted by Σpa, gq.

We shall write Σ instead Σpa, gq when the dependence on a and g is clear. With
the previous definition, we have the following root space decomposition.

Lemma 1.1.3 (Root space decomposition). [13, Lemma 16.4; Corollary 16.10].
The set Σ is finite and

g “ g0 ‘

˜

à

αPΣ

gα

¸

.

Moreover, this root decomposition is orthogonal with respect to the Cartan inner
product 1.1.

Remark. We have that a Ă g0Xp. For any X P g0, a`RX is abelian. In consequence,
X P a by maximality. This implies that a “ g0 X p.

8



1.1. THE IWASAWA DECOMPOSITION

In the same spirit, denote by m the centraliser of a in t; that is to say, m “ tXg0.
It is easy to verify that g0 “ m‘ a orthogonally, since the Cartan involution leaves
a invariant. Let Σ` Ă Σ denote a choice of positive roots. We may consider the
following subalgebras

n :“
à

αPΣ`

gα, n :“
à

αP´Σ`

gα

These two subalgebras are related by means of the Cartan involution; via θpnq “ n.
We may rewrite the root space decomposition as follows:

g “ n‘m‘ a‘ n

in which the summands are mutually orthogonal by Lemma 1.1.3. We have all the
ingredients to introduce the infinitesimal Iwasawa decomposition, that is at the Lie
algebra level.

Theorem 1.1.1 (Infinitesimal Iwasawa decomposition). [13, Lemma 17.3]. As lin-
ear spaces,

g “ t‘ a‘ n.

Remark. Observe that the infinitesimal Iwasawa decomposition highly depends on
the choice of positive roots. As θpnq “ n, we have

t‘ a‘ n
θ
» t‘ a‘ n.

We see that the right-hand side corresponds to taking ´Σ` as a preferred choice of
positive roots.

A decomposition at the group level shall become handy for our purpose. Assume
that G is a connected semisimple real Lie group with associated Lie algebra g. Recall
that we can endow g with a Cartan involution θ. In this setup, we have the following
decomposition of G.

Theorem 1.1.2 (Cartan decomposition). [13, Theorem 15.12]. Let K Ă G be the
analytic subgroup with Lie algebra t. Then K is closed in G and the map

ϕ : K ˆ pÑ G, pk,Xq ÞÑ k expX

is a diffeomorphism.

The Cartan decomposition of G allows us to define a unique involution at the
group level that is compatible with the Cartan involution given in g. Such an
involution will be called the Cartan involution ofG. This is expressed in the following
lemmas, which correspond to [13, Lemmas 15.13 & 15.14].

Lemma 1.1.4 (Cartan involution of G). There exists a unique involution Θ on G
such that dΘpeq “ θ. The involution Θ is given by the following expression:

Θpk expXq “ k expp´Xq

Lemma 1.1.5. K is the subgroup of fixed points under Θ. Moreover, K is compact
if and only if G has finite centre.

9
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For a as in Theorem 1.1.1, let A to be its associated analytic subgroup. Then we
can write A “ exp a as a is abelian. We can also regard a as the closed submanifold
teuˆa inside Kˆp. It follows by Theorem 1.1.2 that exp : aÑ A is a diffeomorphism
with A closed. In fact, because a is abelian, the exponential map is an isomorphism
of Lie groups between pa,`, 0q and A. Denote the inverse of this isomorphism by
log :“ exp´1. For fixed λ P a˚C

3, we can define the following character on A,

p ¨ q
λ : AÑ p0,8q, aλ “ eλplog aq. (1.2)

Lemma 1.1.6. [13, Lemma 17.5] Adpaq|gα “ aαIgα for a P A and α P Σ Y t0u. In
particular Adpaq preserves the root space decomposition and the subalgebra n.

Proof. Adpaq|gα “ AdpexpHq|gα “ eadpHq|gα “ eαpHqIgα “ eαplog aqIgα “ aαIgα .

It will be useful to consider both the associated analytic subgroups N and N
with Lie algebras n and n respectively. With this framework, we are in the position
to define the global Iwasawa decomposition.

Theorem 1.1.3 (Global Iwasawa decomposition). [13, Theorem 17.6] The map

ϕ : K ˆ AˆN ÝÑ G
pk, a, nq ÞÝÑ kan

is a diffeomorphism.

Analogously to the group A, we may prove that N is closed in G except that in
this case we make use of the global Iwasawa decomposition instead of the Cartan
decomposition. A more involved argument proves that N “ exp n and that the
exponential on n is a diffeomorphism. For details, we refer to [13, Lemma 17.13].

Remark. Similarly to the infinitesimal Iwasawa decomposition, if we prefer to work
with the opposite choice of positive roots, the previous discussion yields G » K ˆ

AˆN , with N “ exp n. Since

ΘpNq “ Θpexp nq “ exp dΘpeqpnq “ exp θpnq “ exp n “ N,

it follows that
K ˆ AˆN

Θ
» K ˆ AˆN.

Define M as the centraliser of A of K. With such definition, it is readily seen that
MA is a subgroup of G. It also shows that M is a closed subgroup of G contained in
the compact K, hence compact itself. We introduce the minimal parabolic subgroup
P of G to be

P “MAN.

By Theorem 1.1.3, we see that G “ KP . We can apply the Iwasawa decomposition
to the minimal parabolic subgroup itself, yielding the following results. Proof of
these facts are to be found in [13, Section 19]

Lemma 1.1.7. P is a closed subgroup of G. The Iwasawa decomposition restricts
to a diffeomorphism between M ˆ AˆN and P “MAN .

3This notation stands for the complexification of the Lie algebra a. For a real linear space V ,
we define its complexification VC to be the linear space V bR C.

10



1.1. THE IWASAWA DECOMPOSITION

Lemma 1.1.8. The group MA normalises N and N is a normal subgroup of P .

Lemma 1.1.9. The inclusion iK : K Ñ G induces a diffeomorphism

iK : K{M Ñ G{P.

Remark. One may also talk about the opposite minimal parbolic that corresponds
to P “ MAN . In fact, we shall mostly consider this one in accordance with the
notation used by Harish-Chandra.

It will be useful to take into account the projections onto the different com-
ponents of the Iwasawa decomposition. Let ϕ as in Theorem 1.1.3 in the KAN -
decomposition. For g P G, we put

kpgq “ pprK ˝ ϕ
´1
qpgq, apgq “ pprA ˝ ϕ

´1
qpgq npgq “ pprN ˝ ϕ

´1
qpgq;

where prK , prA and prN are the smooth projections of KˆAˆN onto the respective
components K,A and N . One ought to be aware that these projection maps depend
on the form of the Iwasawa decomposition considered. The reader should keep in
mind that throughout the text other forms of the Iwasawa decomposition may be
more convenient to work with, for instance the NAK- or KAN -decompositions.

1.1.1 Iwasawa decomposition of SL2pRq
This subsection will be dedicated to work out the theory that has bee previously
laid out, for the group SL2pRq. In the rest of this subsection we set G “ SL2pRq.

Recall that G is the (connected) semisimple Lie group of 2-dimensional square
matrices with determinant 1. Its associated Lie algebra g consists of the traceless 2-
dimensional square matrices. The following elements form the so-called g-standard
triple:

H “

ˆ

1 0
0 ´1

˙

, X “

ˆ

0 1
0 0

˙

, Y “

ˆ

0 0
1 0

˙

.

These satisfy the relations

rH,Xs “ 2X, rH,Y s “ ´2Y, rX, Y s “ H. (1.3)

The standard Cartan involution on g is defined by θpXq “ ´X t. We choose
a “ RH. By the previous relations, one gets Σ “ tα,´αu Ă a˚ determined by
αpHq “ 2. Folowing the definitions we have that

t “ t2ˆ 2 antisymmetric matricesu “ RpY ´Xq
p “ t2ˆ 2 traceless symmetric matricesu “ RH ‘ RpY `Xq
a “ g0 “ RH
m “ g0 X t “ 0
n “ gα “ RX
n “ g´α “ RY

11
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At the level of G we get the following list

K “ expRpY ´Xq “
"

kϕ “

ˆ

cosϕ ´ sinϕ
sinϕ cosϕ

˙
ˇ

ˇ

ˇ

ˇ

ϕ P r0, 2πq

*

“ SOp2q » S1

M “ t˘Iu

A “ expRH “

"

at “

ˆ

et 0
0 e´t

˙ ˇ

ˇ

ˇ

ˇ

t P R`
*

» R`

N “ expRX “

"

nx “

ˆ

1 x
0 1

˙
ˇ

ˇ

ˇ

ˇ

x P R
*

» R

N “ expRY “
"

ny “

ˆ

1 0
y 1

˙
ˇ

ˇ

ˇ

ˇ

y P R
*

» R

P “MAN “

"ˆ

t x
0 t´1

˙
ˇ

ˇ

ˇ

ˇ

x P R, t P Rzt0u
*

P “MAN “

"ˆ

t 0
x t´1

˙
ˇ

ˇ

ˇ

ˇ

x P R, t P Rzt0u
*

Lemma 1.1.10 (Iwasawa projections for SL2pRq). For g P G it holds that

g “

ˆ

a b
c d

˙

“
1

?
a2 ` c2

ˆ

a ´c
c a

˙ˆ ?
a2 ` c2 0

0 p
?
a2 ` c2q´1

˙ˆ

1 ab`cd
a2`c2

0 1

˙

.

Furthermore, in the KAN decomposition

g “

ˆ

a b
c d

˙

“
1

?
b2 ` d2

ˆ

d b
´b d

˙ˆ

p
?
b2 ` d2q´1 0

0
?
b2 ` d2

˙ˆ

1 0
ab`cd
b2`d2 1

˙

.

Proof. The proof is by computation and it is left to the reader.

The Iwasawa decomposition of G is intimately related to the geometry of the
upper half plane. In Section 1.4.1 we shall exploit that connection in order to
construct a model for the discrete series representations of G.

We recall that the upper-half plane H` consists of all complex numbers with
strictly positive imaginary part. This subset carries a complex structure of an open
subset of the Riemann sphere pC. The group G acts smoothly and transitively on pC
by fractional linear transformations; that is

g ¨ z “ Tgpzq “
az ` b

cz ` d
for g “

ˆ

a b
c d

˙

P G and z P H`

The reader may prove that there are three orbits, namely, G ¨ i “ H`, pR “ G ¨ 0 and
G ¨ p´iq “ H´. The stabiliser4 of i in G coincides with K and the stabiliser of 0 in G
is P . By the Orbit-Stabiliser theorem, the map j determined by g ÞÑ g ¨ i induces a
diffeomorphism from G{K » NA onto H`. Furthermore, the complex structure on
H` may be transferred so that this diffeomorphism becomes a biholomorphic map.
More specifically, this map is given by

j : NA ÝÑ H`
nxat ÞÝÑ x` ie2t

j´1 : H` ÝÑ NA
x` iy ÞÝÑ nxalog

?
y

4We use the notation Ga to indicate the stabiliser of the element a in the group G.

12



1.1. THE IWASAWA DECOMPOSITION

In the remaining part, set GC “ SL2pCq. The group GC consists of all 2-
dimensional complex matrices with determinant one. This a complexification5 of
the group G. In the following we compile a list with all complexifications that we
shall use throughout the text.

KC :“ SOp2qC “ expCpY ´Xq “
"ˆ

c ´s
s c

˙
ˇ

ˇ

ˇ

ˇ

c2 ` s2 “ 1, c, s P C
*

AC “ expCH “

"

az “

ˆ

ez 0
0 e´z

˙
ˇ

ˇ

ˇ

ˇ

z P Czt0u
*

NC “ expCX “

"

nw “

ˆ

1 w
0 1

˙ ˇ

ˇ

ˇ

ˇ

w P C
*

NC “ expCY “
"

nw “

ˆ

1 0
w 1

˙
ˇ

ˇ

ˇ

ˇ

w P C
*

PC “ ACNC “

"ˆ

z 0
w z´1

˙ ˇ

ˇ

ˇ

ˇ

w P C, z P Czt0u
*

“ pGCq0

BC “ pGCqi

In particular, we see that PC is connected, as M Ă AC. Mimicking the previous
discussion, the assignation g ÞÑ g ¨ i for g P GC induces again a biholomorphic map
between GC{BC and pC. We also note that G{K is open in GC{BC by the following
commutative diagram

G{K H

GC{B pC

»

i

»

Next lemma shall be convenient in in Section 1.4.1.

Lemma 1.1.11. There exists an element g0 P GC such that

1. g0 ¨ 0 “ i.

2. KC “ g0 AC g
´1
0 .

3. BC is diffeomorphic to KC ˆ g0 NC g
´1
0 .

Proof. Note that for any element c P GC such that c ¨ 0 “ i, we have that BC “

pGCqi “ c pGCq0 c
´1 “ c PC c

´1 “ cACNC c
´1 » cAC c

´1 ˆ cNC c
´1. From this

we also observe that BC is connected as PC is connected. That is to say, BC is
generated by its associated Lie algebra bC. Furthermore, bC “ AdpcqLiepPCq. We
shall impose the condition that AdpcqH P CpY ´ Xq “ tC. If we diagonalise the
matrix Y ´X, we observe that there exists g0 orthogonal matrix with determinant
1, such that Y ´X “ g0 piHq g

´1
0 . This implies that KC “ g0AC g

´1
0 . Computing,

we see that

g0 “
1
?

2

ˆ

1 i
´i 1

˙

and that g0 ¨ 0 “ i.

5For a definition, see [5, Page 437]
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1.2 Induced representations

Given a general continuous representation of a Lie group, any closed subgroup in-
duces a continuous representation of itself, just by restriction of the representation.
The other way around, there is a method to construct a representation of a given
Lie group G by means of a representation of a Lie subgroup. This resultant rep-
resentation is called induced representation. In this text we will give an explicit
construction. We will study different realisations of the induced representation in
terms of function spaces that shall be useful throughout the theory. The reader is
referred to [13, Section 19]

Assume that we are given a continuous finite dimensional representation pξ, Vξq
of a closed subgroup H of a Lie group G(The reader should note that this is the
only generality needed for the development of the subsequent theory). Then H acts
naturally from the right on the space Gˆ Vξ by means t

pg, vq ¨ h “ pgh, ξph´1
qvq pg P G, h P H, v P Vξq (1.4)

This action is free and proper6.This allows us to endow G ˆH Vξ :“ pG ˆ Vξq{H
with a unique C8-structure for which the quotient map πGˆHV : G ˆ Vξ Ñ G ˆH
Vξ is a smooth submersion. Analogously, we observe that H acts on G by right
multiplication and that this action is again free and proper. Hence G{H may also
be endowed with a C8 structure making its associated quotient map πG{H : G Ñ

G{H become a smooth submersion as well. These quotient maps, along with the
projection onto the first component of G ˆ Vξ, prG : G ˆ Vξ Ñ G induce a new
smooth map p : GˆH Vξ Ñ G{H such that the following diagram commutes,

Gˆ Vξ GˆH Vξ

G G{H

πGˆHVξ

prG p

πG{H

We observe that each fibre p´1pgHq Ă G ˆH Vξ can be endowed with a linear
structure such that the map φgpvq “ πGˆHVξpg, vq becomes a linear isomorphim.
In fact, this shows that p : G ˆH Vξ Ñ G{H has a unique vector bundle structure
making the map πGˆHVξ a vector bundle morphism. Furthermore, the natural action
of G on GˆVξ given by left multiplication in the first component induces a smooth
action of G on G ˆH V turning it into a G-equivariant vector bundle over G{H.
With such structure we can consider the space of continuous sections ΓpG ˆH Vξq
of G ˆH Vξ, endowed with the usual Fréchet topology7, on which we can define a
Fréchet representation Ξ of G given by

ΞpgqpsqpxHq “ g ¨ spg´1xHq

6 We say that a smooth right action of a Lie group G on a manifold M is proper if the map
ψ : M ˆ G Ñ M ˆM defined by ψph,mq “ pm,m ¨ gq is proper in the topological sense; that is,
the preimage of a compact set is compact.

7A total trivialisation of GˆH V ; that is a local trivialisation pUi, τiq of GˆH Vξ which is also
a chart for G{H, induces a linear a linear isomorphism φi : ΓpE |Ui

q Ñ C8pτipUiqq
r for some

r P Ną0. Given an index pi,Kq where i corresponds to the i ´ th total trivialisation of G ˆH Vξ
and K Ă τipUiq compact, we define the seminorm on ΓpGˆh Vξq to be }s}pi,Kq “ }φips|Ui

q}8,K .
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1.2. INDUCED REPRESENTATIONS

This representation is called the induced representation of G from the represen-
tation ξ of H. This particular realisation is called the vector bundle picture and it
is customary to denote Ξ by indGHpξq. Define

CpG : H : ξq “ tf P CpG, Vξq | Rhf “ ξphq´1f, @ h P Hu

This space is a closed subspace of the space CpG, Vξq endowed with the usual Fréchet
topology; hence a Fréchet space itself. Moreover, since the functions in this space
only involve behaviour from the right, CpG : H : ξq can be regarded as a Fréchet
G-module with the left regular representation.

Lemma 1.2.1 (Induced picture). [13, Lemma 19.3]. pindGHpξq,ΓpG ˆH Vξqq »
pCpG : H : ξq, Lq as representations. This equivalence is given by the map

Φ : ΓpGˆH Vξq ÝÑ CpG : H : ξq
s ÞÝÑ Φpsqpxq “ x´1 ¨ spπG{Hpxqq

Let pπ, V q be a locally convex complex G-module.

Definition 1.2.1 (Conjugate adjoint of π). We define the conjugate adjoint repre-
sentation of G to be the pair pπ˚, V ˚q8 defined by

π˚pxq “ πpx´1
q
˚ forx P G.

It is straightforward that π˚ “ π if and only if π is unitary.

In general it would be convenient that if we start with some Hilbert structure on
Vξ, this is preserved by the induction process. Unfortunately, the unitarity of the
representation is not generally preserved when inducing. Then we have to performed
what is called normalised induction. Consider a finite dimensional Hilbert H-module
pξ, Vξq. We define CcpG : H : ξq as the subset of functions ϕ of CpG : H : ξq such
that πG{Hpsupp ϕq is compact. May the reader observe that CcpG : H : ξq is a G-
invariant subspace with the left regular representation. Therefore, it is a G-module
on its own.

The square root of the modular function ∆1{2 9 defines a one-dimensional rep-
resentation of H that we may tensor with the H-module Vξ. The tensor product
representation is isometrically realised in Vξ endowed with the representation

pξ b∆1{2
qphqv “ ∆1{2

phqξphqv for v P Vξ, h P H.

The inner product in Vξ induces the following sesquilinear map

x¨, ¨yξ : CcpG : H : ξ b∆1{2
q ˆ CcpG : H : ξ˚ b∆1{2

q ÝÑ CcpG : H : ∆q.

given by xϕ, ψyξpxq “ xϕpxq, ψpxqyξ. Then for ω P
Źtop

pg{hq˚; that is, a top order
differential form on g{h we can define the following compactly supported H-invariant
map

xϕ, ψyξ, ωpxq “ xϕ, ψyξpxqpplx´1q
˚
|ω|qpxq, (1.5)

8For V a complex topological vector space, we shall henceforth denote by V ˚ the topological
antilinear dual and by V 1 the topological linear dual. Hence V ˚ “ V 1

9See appendix for a concrete treatment of the modular function.
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where lx means left multiplication by the element x P G. This descends to a com-
pactly supported density on G{H with which we define the following G-equivariant
sesquilinear map

xϕ, ψy “

ż

G{H

xϕ, ψyξ, ω (1.6)

Lemma 1.2.2. [13, lemma 19.12]. If ξ is a unitary representation, the pairing (1.6)
defines a pre-Hilbert structure on CcpG : H : ξ b∆1{2q for which the representation
indG

Hpξ b ∆1{2q extends to a unitary map in the Hilbert completion L2pG : H :
ξ b∆1{2q.

Remark. In the rest of the text, we write IndGHpξq “ indGHpξ b∆1{2q. Note the change
to capital letters.

1.2.1 K-finite vectors and C8-vectors of a representation

In the rest of the theory we will work with two type of vectors: K-finite and C8-
vectors. In the present subsection, we give a brief description of what they consist
of. Define pK to be the set of equivalence classes of irreducible finite-dimensional
continuous representations of K.

Definition 1.2.2 (K -finite vector). Let K be a compact group and pπ, V q a locally
convex K-module. We say that a vector v P V is K-finite if Span πpKqv is a finite
dimensional vector space. The space of all such vectors shall be denoted by VK .

Let V rδs denote the isotypic component of type δ P pK; that is, the space of
vectors v P V for which Span πpKqv is equivalent as a representation to V ‘ mpδq for
some natural number mpδq. Clearly V rδs Ă VK .

Lemma 1.2.3 (Decomposition in K-types). [13, Proposition 3.5]. Let pπ, V q be a
continuous locally convex representation of K on V . The following statements are
true:

1. For each δ P pK, pVδbHomKpVδ, V q, δb1q »
´

V rδs, π|V rδs

¯

as representations.

2. We have the K-type decomposition

VK “
à

δP pK

V rδs.

It is well-known in Lie theory that any continuous finite dimensional represen-
tation is smooth. This is basically because any continuous homomorphism between
Lie groups is automatically a Lie group homomorphism. However, we are interested
in considering infinite dimensional G-modules. This is where the notion of smooth
vector of a representation comes in.

Definition 1.2.3 (C8-vector of a representation). Let pπ, V q be a continuous Fréchet
G-module. We say that v P V is a C8 vector if the function ψvpgq :“ πpgqv belongs
to C8pG, V q. We shall denote the space of smooth vectors of pπ, V q by V 8.
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1.2. INDUCED REPRESENTATIONS

The first that we observe is that the space V 8 is a G-invariant subspace of V .
Let rx denote the right multiplication map by the element x P G. Then

ψπpxqvpgq “ πpgxqv “ pr˚xψvqpgq,

meaning that πpxqv is a smooth vector for every x P G if and only if v is also a
smooth vector. Then V 8 becomes a G-module by restriction of π to V 8. Denote
this representation by π8. The following shows that V 8 may also be endowed with
a natural g-module structure.

Lemma 1.2.4. [13, lemma 21.4 and lemma 21.5]. Let pπ, V q be a G-module. The
map

π˚ : g ÝÑ EndpV 8q, π˚pXqv “
d

dt

ˇ

ˇ

ˇ

t“0
πpexp tXqv

is a Lie algebra representation of g. Moreover, the following holds

πpxq ˝ π˚pXq “ π˚pAdpxqXq ˝ πpxq @x P G, @X P g.

We observe that we have endowed the space V 8 with two module structures,
namely, the g-module structure from Lemma 1.2.4 and the G-module structure π8

earlier defined. If we restrict the latter to the associated maximal compact subgroup
K, we get what is commonly known in Lie theory as the underlying pg, Kq-module of
V . This notion was introduced by Harish-Chandra in a more general way as follows

Definition 1.2.4 (pg, Kq-module). A C-linear space V is said to be a pg, Kq-module
if it has both structures of g-module and K-module such that

1. V “ VK , endowed with coarsest topology that makes the K-intertwining em-
beddings Vδ ãÑ VK continuous for all δ P pK.

2. The identity πpkq ˝ X “ AdpkqX ˝ πpkq must be satisfied for all k P K and
X P g.

3. The action of X P t on v P V follows the rule:

Xv “
d

dt

ˇ

ˇ

ˇ

t“0
πpexp tXqv.

Lemma 1.2.5. [4, Lemmas 8.1, 8.5] K-finite vectors of a unitary irreducible repre-
sentation of a connected semisimple Lie group are smooth vectors.

It is convenient to work with the space of smooth vectors of a G-module because
it sits densely inside the G-module. An account of this fact can be found in [13,
Lemma 21.8]. We can apply the previous discussion to the induced representations.
Let pξ, Vξq be a continuous finite dimensional Hilbert representation of a closed
subgroup H of a Lie group G. The G-equivariant map Φ in Lemma 1.2.1 restricts
to a G-equivariant map Φ̃ in the respective spaces of smooth vectors such that the
following diagram commutes

pindGHpξq,ΓpGˆH Vξqq pL,CpG : H : ξqq

pindGHpξq
8,Γ8pGˆH Vξqq pL,C8pG : H : ξqq

Φ

rΦ

and where Γ8 is the space of smooth sections of the bundleGˆHV and C8pG : H : ξq
is the subspace of smooth functions in CpG : H : ξq.
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1.3 The principal series

With the Iwasawa decomposition and the induction process we are ready to define
one of the main objects in this thesis: the principal series representations. Roughly
speaking, these are normalised parabolic induced representations with respect to
certain characters that we will hereunder describe. At a later stage, we shall be
interested in certain matrix coefficients of the principal series (see Definition 2.3.1)
that will satisfy certain ODE, yet to be specified. In this section we shall be working
with the following representations:

• A unitary representation ξ of M on a finite dimensional Hilbert space Vξ.

• The representation induced by constant unitary character 1 on N .

• The representation induced by the character p¨qλ on A, for λ P aC, which is
given by the expression (1.2).

In view of lemma 1.1.8, we can consider the tensor product representation of the
three of them as a representation of P on Vξ b Cλ b C1, which can be naturally
realised on Vξ as

pξ b λb 1qpmanqv “ aλξpmqv for v P Vξ.

The next definition is in order.

Definition 1.3.1 (Principal series representation). The G-module IndGP pξ b λb 1q
is called the normalised principal series representation of G with parameters ξ and
λ, where ξ P xM is irreducible and unitary and λ P a˚C. In particular, if ξ “ 1 we
speak about the spherical induced representations.

Remark. We point out to the reader the use of capital letters in IndGP pξ b λ b 1q
since we are considering normalised induction.

We consider

ρP pHq “
1

2
tr
´

adpHq|n

¯

“
1

2

ÿ

αPΣ`

dim gα αpHq pforH P aCq

Lemma 1.3.1. [13, Lemma 20.3]. The modular function of P, as defined in the
previous section, is given by

∆ppq “ ∆pmppqappqnppqq “ a2ρP

Accordingly, pξ b λb 1q b∆1{2 “ ξ b pλ` ρP q b 1. Consequently,

πP,ξ,λ :“ IndGP pξ b λb 1q “ indGP pξ b pλ` ρP q b 1q.

By Lemma 1.2.1, we can consider the induced realisation of the principal series that
looks like

CpG : P : ξ b λb 1q “ tf P CpG, Vξq | Rpf “ ξpmppqq´1appq´λ´ρP f, @ p P P u

equipped with the left regular representation. In order that the text does not become
notationally very heavy, we shall as of now denote the previous space by CpP : ξ : λq
and the left regular representation by πP,ξ,λ.
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We observe by a simple computation that pξbλb1q˚ “ ξ˚b´λb1 “ ξb´λb1, as
we have assumed that ξ is unitary. In particular, the one dimensional representation
defined by ξ b λ b 1 is unitary if and only if λ P ia˚. Since G{P is compact,
CcpP : ξ : λq “ CpP : ξ : λq and the bilinear form given in equation (1.6) provides
the principal series representation with a non-degenerate sesquilinear G-equivariant
pairing with respect to the representations πP,ξ,λ and πP,ξ,´λ. According to Lemma
1.2.2, the pairing defines a pre-Hilbert structure on CpP : ξ : λq extending πP,ξ,λ to
a unitary representation on L2pP : ξ : λq. However, the structure presented by the
Iwasawa decomposition, simplifies the pairing to integration over K, in the following
sense.

Theorem 1.3.1. [13, Theorem 20.5]. Let dk be the normalised Haar measure on
K. Then the form ω P

Źtop
pg{hq defined in formula (1.6) can be normalised so that

for ϕ P CpP : ξ : λq and ψ P CpP : ξ : ´λq

xϕ, ψy “

ż

G{P

xϕ, ψ, yξ,ω “

ż

K

xϕpkq, ψpkqyξ dk

Another realisation of the principal series plays an important role. This is the
compact picture. Observe that M is a closed subgroup of K, hence we can make
sense of indKMpξq for ξ P xM . Since K is compact, ∆K ” 1 and therefore indKMpξq “
IndKMpξq. By Lemma 1.2.1, we can realise it as

CpK : M : ξq “ tf P CpK,Vξq | Rmf “ ξ´1
pmqf, @m PMu

with the restriction to K of the left regular representation.

Lemma 1.3.2. [13, Lemma 20.6]. The map rKpλq : CpP : ξ : λq Ñ CpK : M : ξq,
defined as the restriction to K, is a K-equivariant topological linear isomorphism.

Via the linear isomorphism, rKpλq we endow CpK : M : ξq with the structure of
G-module making this linear isomorphism G-equivariant. This realisation is called
the compact picture and we shall denote it by pπP,ξ, CpK : M : ξqq. By means of
the Iwasawa decomposition as in Theorem 1.1.3, an easy computation shows that if
f P CpK : M : ξq, it follows that

pπP,ξpxqfqpk̃q “ prKpλq
´1fqpx´1k̃q “ apx´1k̃q´λ´ρP fpkpx´1k̃qq

for f P CpK : M : ξq and all x P G and k̃ P K.

Remark. We will see further on that the advantage in considering the compact
picture realisation is that the dependence on λ is removed from the representation
space. This will allow to perform analytic continuation in certain functions to be
regarded in the next chapter.

1.3.1 Generalised section

In this subsection, we describe what generalised sectionsof the principal series are.
This will be central to define Whittaker vectors in the next chapter. For a more
general definition, we refer to [12].
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Definition 1.3.2 (Generalised vectors for the principal series). The space of gen-
eralised vectors for the principal series representation is defined to be the antilinear
topological dual space of C8pP : ξ : ´λq equipped with the strong topology, we
denote it by

C´8pP : ξ : λq :“ C8pP : ξ : ´λq˚

Remark. In general, generalised sections are defined as some topological dual of
compactly supported sections. However, we have seen before that C8c pP : ξ : λq “
C8pP : ξ : λq.

The sesquilinear pairing given in (1.6) provides a linear continuous embedding
CpP : ξ : λq ãÑ C´8pP : ξ : λq. The space of generalised vectors has a G-module
structure that can be described in the following manner: πP,ξ,λpgqη “ η˝πP,ξ,´λpg

´1q

for g P G and η P C´8pP : ξ : λq. This representation extends the one in C8pP, ξ, λq
justifying the slight abuse of notation.

The G-equivariant topological linear isomorphism in Lemma 1.3.2 induces a G-
equivariant topological linear isomorphism by dualising between C´8pP : ξ : λq Ñ
C´8pK : M : ξq where C´8pK : M : ξq is defined in the same manner as for the
principal series and it is endowed with the strong topology, as well. In the next
lemma, we see that the behaviour that the functions of the induced picture of the
principal series representation have can be extended to the space of the generalised
sections of the principal series representation.

Lemma 1.3.3. [9, Lemma 1.42]. The embedding C8pP : ξ : λq ãÑ C8pG, Vξq
extends uniquely to an embedding C´8pP : ξ : λq ãÑ Γ´8pG ˆ Vξq, which is G-
equivariant when Γ´8pG, Vξq in equipped with the left regular representation. Fur-
thermore, the image of this embedding sits in

 

η P C´8pG, Vξq | Rpη “ ξpmppqq´1appq´λ´ρP η, @p P P
(

1.4 The discrete series

The discrete series representation is the second main character of our story. In the
last chapter we will see that residues in the Fourier-Whittaker inversion formula for
SL2pRq (see Section 3.3) appear as matrix coefficients of this sort of representations.
This means that there is a contribution of the discrete series in the Whittaker-
Plancherel formula for SL2pRq. In this section we start by defining the concept of
matrix coefficient and discrete series representation. We shall see that in the case
of SL2pRq, we will be inducing from certain unitary characters of SOp2q in order
to construct the discrete series representations. We will study a particular model
in which to realise the discrete series representations of SL2pRq. We shall begin by
introducing the concept of matrix coefficient map of a representation.

Definition 1.4.1 (Matrix coefficient map). Let pπ, V q be a G-module. The matrix
coefficient map is the G- equivariant map m : pV b V ˚, π b π˚q Ñ pCpGq, L ˆ Rq
given by mpv b ηq “ xπpg´1qv, ηy. Whenever, v b η P V b V ˚ is fixed we speak of a
matrix coefficient.

We are now in place to define what a discrete series representation is.
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Definition 1.4.2 (Discrete series representation of G). We say that an irreducible
unitary representation π of G is of the discrete series if some non-zero K-finite matrix
coefficient is in L2pGq.

The following is criteria to check whether a representation is of the discrete series
can be found in [4, Proposition 9.6]. This is

Lemma 1.4.1. The following statements are equivalent for an irreducible unitary
representation π of G.

1. π is of the discrete series.

2. All matrix coefficients of π are square integrable.

3. If π is a irreducible subrepresentation of L2pGq endowed with the left regular
representation.

1.4.1 Holomorphic discrete series representation for SL2pRq
Once familiarised with the concept of discrete series representations, we shall study
a model for the discrete series representations for SL2pRq. The result corresponding
[4, Theorem 12.21] guarantees that the model we are about to construct is unique
up to equivalence. This model is based on the upper-half plane, so we retain the
same framework as in subsection 1.1.1.

Firstly, we recall which form the K-types have. Since K is compact and abelian,
all K-types are continuous one-dimensional representations, hence they are given
by continuous characters on K. Again, compactness of K implies that each one of
these characters is unitary, meaning, τpkϕq “ eiϕ dτp0qpY´Xq. Since τpk0q has to be
equal to τpk2πq, dτp0qpY ´Xq is an integer. Thence

pK “ tτn : K Ñ C | τnpkϕq “ einϕ, n P Zu.

Let g0 be as in Lemma 1.1.11. The K-types can be extended to characters on BC
given by

τn pexp zipY ´XqpexpwAdpg0qY qq “ enz

for z, w P C. We henceforward denote by Cn the one-dimensional BC-module in-
duced by the character τn. The discrete series representation for G will arise from
a holomorphic induction procedure. Specifically, the holomorphic structure will be
derived from the holomorphic line bundle Ln “ GC ˆBC

Cn.
Unfortunately, if we desire to proceed and induce like in the previous section, it

might be that the space of global holomorphic sections is trivial. Hence, we must
induce locally. Let U0 be an open set in GC{BC and U the preimage of U0 under
the quotient map πGC{BC

: GC Ñ GC{BC. The space of local holomorphic sections

over U0 of the bundle Ln, say ΓCpU0,Lnq, can be identified with the space

OpU : BC : τnq :“
 

f P OpUq | Rbf “ τnpbq
´1f, @ b P BC

(

whereOpUqmeans the space of holomorphic complex valued functions on U . Clearly,
with the left regular representation, this becomes a G-module if U0 is G-invariant.
Now we apply the discussion of the previous paragraph to U0 “ G{K » NA. Then
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U in our case corresponds to NABC, which equals GBC because K Ă GX BC. By
right invariance, functions in OpU : BC : τnq are determined if we know their value
at NA. That is to say, if f P OpU : BC : τnq, then

fpgbq “ fpnakbq “ τnpbq
´1τnpkq

´nfpnaq pfornak P NAK, b P BCq

Lemma 1.4.2. The function σn : NAÑ C given by

σnpnaq “ a´nρ

defines a nowhere vanishing function in OpU : BC : τnq for n P Z. Furthermore,
OpU : BC : τnq “ OpNAqσn

Proof. We treat the case n “ 1 in the first place. Consider the natural representation
of GC on C2 given by matrix multiplication. Define the standard pairing β : C2 ˆ

C2 Ñ C given by

βpz, wq “ ztw “
`

z1 z2

˘

ˆ

w1

w2

˙

.

The bilinear map β induces a linear isomorphism between C2 and pC2q1. Our aim is
to find vectors u, v P C2 such that k¨u “ τ1pkq

´1u for all k P K and βpntv, ¨q “ βpv, ¨q
for all n P N . One can easily prove that u “ e1` ie2 and v “ ´ie2 do the job. Then
we consider the matrix coefficient of the GC- module C2 given by

m´ie2,e1`ie2pnaq “ βp´ie2, na ¨ pe1 ` ie2qq “ βp´ie2, a ¨ pe1 ` ie2qq “ a´ρ.

The representation of GC on C2 is holomorphic, since GC has a structure of
complex Lie group and any finite dimensional representation of GC is holomorphic.
Therefore, the previous matrix coefficient is holomorphic. By holomorphic continu-
ation, we can extend to k P KC

k ¨ pe1 ` ie2q “ τ1pkq
´1
pe1 ` ie2q

We also see that g0 n g
´1
0 ¨ pe1 ` ie2q “ pe1 ` ie2q for n P NC, as g´1

0 ¨ e2 “ e1 ` ie2

Then it follows that

b ¨ pe1 ` ie2q “ τ1pbq
´1
pie1 ` e2q p@ b P Bq

Hence m´ie2,e1`ie2 P OpU : BC : τ1q. For general σn, we observe that σn “ pσ1q
n,

thus nowhere vanishing and σn P OpU : BC : τnq. It is also rather clear that
OpNAqσn Ă OpU : BC : τnq. To prove the other inclusion, we observe that if
f P OpU : BC : τnq then fσ´1

n P OpG : K : τ0q “ OpNAq.

Recall that the exponential map defines diffeomorphisms aÑ A and nÑ N . As
finite-dimensional vector spaces, we can consider dt and dx the respective Lebesgue
measures on a and n. We now may define da, dn to be the left Haar measures
on A and N , respectively; such that exp˚ da “ dt and exp˚ dn “ dx. Let Xn

be the subspace of functions f belonging to OpU : BC : τnq such that fσ´1
n is

L2pNA, a´2ρdadnq. One can show that the inner product in L2pNA, a´2ρP dadnq
defines a pre-Hilbert structure on Xn. By means of the upper-half plane realisation,
we will see that it is actually a Hilbert space and that the left regular representation
is unitary, for n ď 2.
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Definition 1.4.3 (Holomorphic discrete series representation of SL2pRq). We call
the G-module pX´n, Lq for n ě 2 the holomorphic discrete series representation.

Remark. The reader should be aware that we have not proven yet that the previously
defined representation is of the discrete series. This comes later on.

The holomorphic discrete series representation can be realised on the upper-
half plane, as well. Consider the following G-module: for n ě 2 and f P H`

n “

OpH`q X L2pH`, yn´2dxdyq, define

D`n pgqfpzq “ pa´ czq
´nfpg´1zq for g “

ˆ

a b
c d

˙

P G

with the following pairing

x¨, ¨y : H`
n ˆH

`
n ÝÑ C, xϕ, ψy “

ż

H
ϕpx` iyqψpx` iyq yn´2dxdy

In addition, one can show by the Cauchy integral formula, that the space H`
n is

closed. This means that H`
n is already complete with the L2-norm, hence a Hilbert

space itself. Moreover, it is readily seen that the D`n is unitary with respect to this
inner product. The following facts will be useful in the theory to come. They can
be proven by computation so the proofs are left to the reader.

Lemma 1.4.3.

Impg ¨ zq “
Impzq det g

|cz ` d|2
for g “

ˆ

a b
c d

˙

P GL2pRq.

Lemma 1.4.4. Let j : NAÑ H be the map as in Section 1.1.1. For f P X´n with
n ě 2, we have that

fpg´1j´1
pzqq “

ˆ

a´ cz

|a´ cz|

˙´n

fpj´1
pg´1

¨ zqq for g “

ˆ

a b
c d

˙

P G and z P C

We are now ready to establish the equivalence between the two realisations of
the holomorphic discrete series previously defined.

Lemma 1.4.5. pX´n, Lq » pH
`
n , D

`
n q as representations of G.

Proof. In order to prove the statement, we define the following linear map

T : pX´n, Lq Ñ pH`
n , D

`
n q, f ÞÑ T pfq “

1
?

2
fσn|NA ˝ j

´1.

We prove first that T is well-defined. Since f P OpΩ : BC : τ´nq “ OpNAqσ´n.
Then fσn P OpNAq, hence T pfq P OpHq. We can rewrite T pfq for f P X´n in the
following form

?
2T pfqpzq “fσnpj

´1
pzqq “ fpj´1

px` iyqqσnpj
´1
px` iyqq

“fpj´1
px` iyqqσnpnxalog

?
yq “ fpj´1

px` iyqqy´n{2

“fpj´1
pzqqImpzq´n{2
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Computing the L2-norm

2}T pfq}2
H`n
“

ż 8

´8

ż 8

0

ppj´1
q
˚
|f |2qpx` iyqy´nyn´2 dydx “

ż

NA

|f |2j˚
ˆ

dxdy

y2

˙

The last equality holds by change of variables under for the diffeomorphism j´1. By
computing, we get that

j˚
ˆ

dxdy

y2

˙

“ 2a´4ρa2ρdnda “ 2a´2ρdnda

Hence }T pfq}H`n “ }f}X´n ă 8. This shows that T is well-defined and that it is
a linear isometry. One can readily show that T is bijective with inverse T´1pfq “
pf ˝ jqσ´n. Only G-equivariance of T remains to be shown. One may observe that
this is equivalent to showing that, for f P X´n, g P G and z P H,

fpg´1j´1
pzqqImpzq´n{2 “ pa´ czq´nImpg1

¨ zqfpj´1
pg´1

¨ zqq

The previous expression clearly holds as a consequence of Lemmas 1.4.3 and 1.4.4
combined.

The conjugate dual with respect the H`
n -pairing of the holomorphic discrete

series representation plays a crucial role in this theory . These will be denoted by
pH´

n , D
´
n q, which under the previous pairing, it can be described as

D´n pgqfpzq “ pcz ` aq
´nfpg´1zq for f P H´

n “ OpHq X L2pH, yn´2dxdyq

This is usually called the antiholomorphic discrete series representation.

Lemma 1.4.6. [4, Proposition 2.7]. The discrete series representations D`n are
irreducible.

Lemma 1.4.7. D˘n for n ě 2 are of the discrete series.

Proof. According to Definition 1.4.2, we only need to find a K-finite square inte-
grable matrix coefficient. Define the function fpzq “ pz ` iq´n on H. It is clearly
holomorphic and its L2-norm is finite, therefore f P H`

n . Consider mf,f the matrix
coefficient of the discrete series D`n . In [4, Proposition 5.28] can be found the com-
putation showing that its L2 norm is finite. This is based on another realisation of
the discrete series. Analogously, D´n is also a discrete series representation of G.

It will be useful to consider the underlying pg, Kq-module of the discrete series
representation of G. Consider the functions on H`

n given by

ψn,kpzq “
pz ´ iqk

pz ` iqn`k

It is easily shown by computation thatD`n pkϕqψn,k “ eipn`2kqϕψn,k, meaning that ψn,k
lies in the isotypic component of type τn`2k. Performing the K-type decomposition
in Lemma 1.2.3, we find that

pH`
n qK “

à

kPN
Cψn,k.

24



1.4. THE DISCRETE SERIES

By Lemma 1.2.5, Spantψn,k | k P Nu Ă pH`
n q
8. We may also compute the associated

g-module. Assume f P pH`
n q
8, it follows that

ppD`n q˚pHqfqpzq “
d

dt

ˇ

ˇ

ˇ

ˇ

t“0

e´tnfpe´2tzq “ ´nfpzq ´ 2zf 1pzq

ppD`n q˚pXqfqpzq “
d

dt

ˇ

ˇ

ˇ

ˇ

t“0

fpz ´ tq “ ´f 1pzq

ppD`n q˚pY qfqpzq “
d

dt

ˇ

ˇ

ˇ

ˇ

t“0

p1´ tzq´nf

ˆ

1

1´ tz

˙

“ nzfpzq ` f 1pzqz2

Remark. From this, we observe that if f P pH`
n q
8, then f 1, zf 1 are also smooth

vectors for the representation. Hence, by induction, zkf pmq is also a smooth vector
for 1 ď k ď m. This will be important at a latter stage.

1.4.2 Discrete series vs Principal series in SL2pRq
In this section, we will compare the discrete series representation with the principal
series representation of SL2pRq. The former can be embedded in the latter for the
appropriate choice of characters. This discussion will be helpful to understand theory
to come further on. In order to establish this embedding we will use Casselman’s
subrepresentation theorem.

Theorem 1.4.1 (Casselman’s subrepresentation Theorem). [4, Theorem 8.37] Let

pV, πq be an irreducible admissible pg, Kq-module. Then there exists ξ P xM , λ P a˚C
for which there exists pg, Kq-equivariant linear embedding

VK ãÑ IndG
P
pξ b λb 1qK

Definition 1.4.4. A G-module is said admissible if all its isotypic components are
finite dimensional.

Remark. It can be shown that all irreducible unitary representations and the prin-
cipal series representations are admissible. This corresponds to [4, Theorem 8.1 &
8.4], respectively.

In the rest of this section we let G “ SL2pRq and recover all notation in Section
1.1.1. The following result is a consequence of Lemma 1.4.6, the previous remark
and the unitarity of the discrete series representations.

Corollary 1.4.1.1. Let n ě 2. Then pH`
n qK ãÑ IndG

P
pξ b λ b 1qK for some ξ P xM

and λ P a˚C.

The aim for the rest of the section is to compute for which λ P a˚C and ξ P xM
we have such embedding. First we observe that the holomorphic discrete series has
the same behaviour on M as the principal series. Indeed, in the construction of
the holomorphic discrete series we require the functions to have τn behaviour in the
same manner as in the principal series. Recall that the M -types of G are just the
K-types of G restricted to M . Since M “ t˘Iu, we have that τn|M “ 1 if n is
even and τn|M “ ε if n is odd, where ε denotes the sign function. This means that
xM “ t1, εu.
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In order to determine which λ P a˚C corresponds to H`
n , we shall make use of the

Casimir operator10. Let the g-standard triple be as in Section 1.1.1. This basis is
not normalised with respect to the Killing form. In this basis, the Killing form B is
given by the following matrix

B “

H X Y
¨

˝

8 0 0
0 0 4
0 0 4

˛

‚

H
X
Y.

Then the Casimir operator has the following form

Ω “
1

8
H2
`

1

4
pXY ` Y Xq.

Nevertheless, after appropriately rescaling the Killing form B, we shall make all
computations with the following rescaled Casimir operator

Ω “ H2
` 2pXY ` Y Xq.

Lemma 1.4.8. The Casimir operator Ω acts on OpU : BC : τnq by the scalar n2´2n.
Furthermore, it acts on IndG

P
pξ b λb 1q by the scalar pλ` ρP qpHq

2` 2pλ` ρP qpHq.

Proof. We start with the first statement. Let Ω denote the Casimir operator in G
and let g0 P GC as in Lemma 1.1.11. By Lemma A.2.5, we know that

Ω “ Adpg0qΩ “ Adpg0qH
2
` 2Adpg0qpXY ` Y Xq “ H̃2

` 2X̃Ỹ ` Ỹ X̃

where H̃, X̃, Ỹ mean the respective images of H,X, Y under the map Adpg0q. We
firstly observe that if f P OpU : BC : τnq then

RỸ fpgq “
d

dt

ˇ

ˇ

ˇ

ˇ

t“0

fpg exp tAdpg0qY q “
d

dt

ˇ

ˇ

ˇ

ˇ

t“0

fpgq “ 0.

Secondly, note that the Casimir operator can be rewritten as

Ω “ H̃2
` 2pX̃Ỹ ` Ỹ X̃q “ H̃2

´ 2H̃ ` 4X̃Ỹ .

These observations together with Lemma A.2.6 yield

LΩf “ RΩf “ RΩf “ R2
H̃
f ´ 2RH̃f ` 4RX̃RỸ f “ R2

H̃
f ´ 2RH̃f.

Now, we only need to compute the RH̃f , for f P OpU : BC : τnq. One can see that
H̃ “ Adpg0qH “ ´ipY ´Xq and therefore

RH̃fpgq “
d

dt

ˇ

ˇ

ˇ

ˇ

t“0

fpg exp´itpY ´Xqq “
d

dt

ˇ

ˇ

ˇ

ˇ

t“0

entfpgq “ n.

Consequently,
LΩf “ R2

H̃
f ´ 2RH̃f “ pn

2
´ 2nqf.

10For a general overview of the Casimir operator we refer to appendix A.2.2
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We prove the second assertion in the same spirit. For f P C8pP : ξ : λq we have

RY fpgq “
d

dt

ˇ

ˇ

ˇ

ˇ

t“0

fpgntq “
d

dt

ˇ

ˇ

ˇ

ˇ

t“0

fpgq “ 0.

RHfpgq “
d

dt

ˇ

ˇ

ˇ

ˇ

t“0

fpgaetq “
d

dt

ˇ

ˇ

ˇ

ˇ

t“0

e´tpλ`ρP qpHqfpgq “ ´pλ` ρP qpHqfpgq.

We have again then

LΩf “ RΩf “ pRHq
2f ´ 2RHf “ ppλ` ρP qpHq

2
` 2pλ` ρP qpHqqf.

Since two irreducible equivalent g-modules need to have the same infinitesimal
character (See [13, Corollary 13.18]), we can equate both actions of the Casimir
elements of the previous lemma, yielding

n2
´ 2n “ ppλ` ρP qpHq

2
` 2pλ` ρP qpHqq ðñ pn´ 1q2 “ pλ` ρP ` 1qpHq2

Using that ρP pHq “ ´1 in G, we have that λpHq “ ˘pn ´ 1q. The Langland’s
classification will allow us to exclude one of the previous values. This states that if
xReλ, αy ą 0 for all α P Σ` then IndGP pξ b λb 1q has a unique irreducible quotient.
By dualising we get that if xReλ, αy ă 0 for all α P Σ` then IndGP pξ b λ b 1q
has a unique irreducible subrepresentation. For a more detailed exposition of the
Langlands decomposition and its proof, we refer to [10, Theorem 5.1]. This means
that IndG

P
pξbλb 1q has a unique irreducible subrepresentation if xReλ, αy ą 0. By

the general theory, one can show that the finite dimensional representation of highest
weight´pn´2qρP is embedded in the induced representation IndP pξb´pn´1qρPb1q.
Since ´pn ´ 1qρP pHq “ n ´ 1 ą 0, the principal series IndG

P
pξ b ´pn ´ 1qρP b 1q

cannot have any more subrepresentations, meaning that pH`
n qk cannot be embedded

in IndG
P
pξ b´pn´ 1qρP b 1qK . Hence

pH`
n qK ãÑ IndG

P
pξ b pn´ 1qρP b 1qK .
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Chapter 2

Whittaker matrix coefficients

Whittaker matrix coefficients wiil be the core of this thesis. In short, these are con-
tinuous linear functionals with certain character behaviour on the group N resulting
from the Iwasawa decomposition. We motivate them by studying the Whittaker
vectors for the principal series representations. Next, we introduce the standard in-
tertwining operator for SL2pRq, which will allow us to study the asymptoticts of the
so-called Whittaker matrix coefficients. This will be a particular matrix coefficient
of great interest for the following chapter. When performing the aforementioned
asymptotics we shall be left with a particular family of functions: the c-functions.
In the sequel of this chapter we shall study their poles, which will be of considerable
importance. We wil finish this chapter with a construction of Whittaker vectors for
the discrete series representations. Most of this chapter concentrates on the group
SL2pRq.

2.1 Whittaker vectors for the principal series

In the section we motivate the concept of Whittaker vector in generality by con-
structing the space of Whittaker vectors of the principal series representations.
These are generalised sections of the principal series representations with certain
character behaviour with respect to N .

Let G be a connected semisimple real Lie group. Consider χ : N Ñ S1 be
a continuous character on the N Ă G from the Iwasawa decomposition. As we
have seen before, a unitary character induces a continuous unitary one-dimensional
representation. For such a unitary character it always holds that dχpeqpnq P iR.

Definition 2.1.1 (Regular character). We say that the continuous character χ :
N Ñ S1 is regular if dχpeqgα ‰ 0 for all α simple root1.

As for now, retain the notation as in Section 1.1.1. According to Definition
2.1.1, regularity in this case is equivalent to requiring that rχ :“ ´i dχp0q ‰ 0 as
g has only one simple root (namely αpHq “ 2). Take the following G-module into
consideration,

C8pG{N ;χq “ tf P C8pGq | Rnf “ χpnqf, @n P Nu

1We say that α P Σ` is simple if it cannot be written as the sum of two other positive roots.
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endowed with the left-regular representation. By Lemma 1.2.3, we may decompose
the space C8pG{N ;χq as a direct sum of K-types, that is

C8pG{N ;χqK “
à

nPZ
C8pG{N ;χqrτns

By application of Lemma 1.2.3 again, observe that the τn-isotypic component is
isomorphic as a K-representation to the space

C8pτ´n; G{N ; χq :“ tf P C8pG{N ;χq | Lkf “ τnpkqf, @ k P Ku pforn P Zq

Hence, we can write

C8pG{N ;χqK “
à

nPZ
C8pτn; G{N ; χq.

Remark. By the Iwasawa decomposition as in Theorem 1.1.3, the restriction to KA
induces a topological linear isomorphism rA between C8pG{N ;χq and C8pKAq, by
the Iwasawa decomposition. Analogously, the restriction to A provides a topological
linear isomorphism between C8pτn;G{N ;χq and C8pAq.

According to Definition 1.4.1, the matrix coefficient map for the principal series
πP ,ξ,λ corresponds to the map

m : C8pP : ξ : λq b C´8pP : ξ : ´λq Ñ C8pGq

given by mpϕ b ηqpgq “ xπP ,ξ,λpg
´1qϕ, ηy. Our goal is to find conditions on ϕ b η

so that it belongs to m´1pC8pτn; G{N ; χqq. Let ϕb η P m´1pC8pτn;G{N ;χqq and
let k P K and g P G. On the one hand it holds that

Lkmpϕb ηqpgq “ xπP ,ξ,λpg
´1kqϕ, ηy “ mpπP ,ξ,λpkqϕb ηqpgq

Whereas on the other hand, we see that

τnpkq
´1mpϕb ηqpgq “ mpτnpkq

´1ϕb ηqpgq

Equating both sides we get that

mppπP ,ξ,λpkqϕ´ τnpk
´1
qϕq b ηq “ 0 p@ k P Kq.

Therefore, imposing πP ,ξ,λpkqϕ “ τnpk
´1qϕ for all k P K, we find that ϕ is of the

form
ϕpgq “ ϕpkanq “ τnpkqϕpanq “ τnpkqa

´λ´ρP

since ϕ P C8pP : ξ : λq. In consequence, we observe that ϕ must be the extension,
up to a scalar, of τn to C8pP : ξ : λq. Analogously, we also must have

Rnmpϕb ηq “ mpϕb πP ,ξ,´λpnqηq p@n P Nq

In order that mpϕb ηq belongs to C8pτn;G{N ;χq, it must happen that

mpϕb πP ,ξ,´λpnqηq “ χpnqmpϕb ηq “ mpϕb χpnq´1ηq.

If in this case we require the condition πP ,ξ,´λpnqη “ χpnq´1η, we say that such an

η is a Whittaker vector for the principal series representation C8pP : ξ : λq. Then
we define

WhχpP : ξ : λq “
 

η P C´8pP : ξ : λq | πP ,ξ,λpnqη “ χpnq´1η, @ n P N
(
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Remark. The reader should note that the space that it has been defined above is a
subspace of the generalised sections of the principal series, whereas the discussion
outlined prior to the definition concerns functions in the induced picture.

The previous definition motivates the following generalisation

Definition 2.1.2. Let pV, πq a G-module and let χ be a character on N . We define
the space of Whittaker vectors as

WhχpV q “
 

λ P V 1 : λ ˝ πpnq´1
“ χpnqλ, @n P N

(

.

Remark. In the previous definition, we have used the topological linear dual instead
of the toplogical antilinear dual. This is done in accordance with the notation that
Wallach uses. Nevertheless, we stick to the notation previously defined for the
principal series representation. The relation between both notations is as follows

WhχpP : ξ : λq “ Whχ
`

IndG
P
pξ b´λb 1q

˘8

In [3], Hervé Jacquet proved the following result in 1967.

Theorem 2.1.1. The space of Whittaker vectors of the principal series is one di-
mensional.

2.2 Standard intertwining operator

The standard intertwinning opearator is an important tool in the study of principal
series representations. Among its many applications, we shall be concerned with its
relation with Whittaker matrix coefficients. More concretely, we will see in the next
section that standard intertwining operators are closely related to the asymptotics of
the aforementioned Whittaker vectors. In this section, we shall give a construction
of such intertwining operators and study some of its properties in the context of
SL2pRq.

We recall from the first chapter that N coming from the Iwasawa decomposition
is a closed subgroup, hence a Lie subgroup of G. This means that there exists a
choice of left Haar measure dn. According to lemma A.1.4, N is unimodular as it
is nilpotent (more concretely abelian). This means that dn is also right invariant.
Recall the setup of Sections 1.3 and 1.1.1. Consider the following function: for
f P C8pP : ξ : λq, define

AP,ξ,λ f : GÑ C, pAP,ξ,λ fqpxq “

ż

N

pL˚x´1fqpnq dn,

whenever it makes sense.

Lemma 2.2.1 (Absolute convergence of AP,ξ,λ for SL2pRq). The previous integral
converges if xReλ, αy ą 0.

Proof. Without loss of generality, we only need to prove that the integral

ż

N

|fpnq| dn ă 8
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for every f P C8pP : ξ : λq. This is because the general statement will also be valid
for the functions L˚x´1f P C8pP : ξ : λq and x P G, once proven the previous. The
estimate goes as follows
ż

N

|fpnq| dn “

ż

N

|fpkpnqapnqnpnqq| dn “

ż

N

|fpkpnqq|apnqReλ´ρP dn

ď }f}8,K

ż

N

apnq´Reλ´ρP dn “ }f}8,K

ż 8

0

p1` x2
q
´ 1

2
pReλ`ρP qpHq dx.

The last integral is convergent if and only if 1
2
pReλ ` ρP qpHq ą

1
2
. This is, if and

only if xReλ, αy ą 0

Accordingly, we have that if f P C8pP : ξ : λq and xReλ, αy ą 0, then AP,ξ,λ f
is a complex valued function on G. In fact, AP,ξ,λ f P C

8pGq because f is smooth
and absolutely convergent. The following lemma shows that AP,ξ,λ defines an inter-
twining operator that is called the standard intertwining operator.

Lemma 2.2.2 (Standard intertwining operator). If xReλ, αy ą 0, the map

ApP : P : ξ : λq :“ AP,ξ,λ : C8pP : ξ : λq Ñ C8pP : ξ : λq

defines a linear G-intertwining operator called standard intertwining operator. Fur-
thermore, this map is continuous with respect to the supremum norm } ¨ }8,K .

Proof. By Lemma 2.2.1 it is clear that AP,ξ,λ is well-defined. We have to check that
its image lies in C8pP : ξ : λq. We will show this, by showing how it behaves
separately in MA, and in N . Denote by Cx : G Ñ G the ’conjugation by x’ map
for x P G. We notice that for ma PMA,

pCmaq
˚dn “ |det Adpmaq|n| dn “ ∆P pmaq

´1dn “ a2ρP dn.

Therefore, we have that

pAP,ξ,λfqpxmaq “ ξpmq´1a´λ´ρP
ż

N

pCmaq
˚fpxnqdn

“ ξpmq´1a´λ´ρP
ż

N

fpxnqpCa´1m´1q
˚ dn

“ ξpmq´1a´λ´ρP pAPP,ξ,λfqpxq.

This proves the correct behaviour in MA. The behaviour in N follows by left
invariance of dn. Altogether,

pAP,ξ,λfqpxmanq “ ξpmq´1a´λ´ρP pAPP,ξ,λfqpxq

Hence AP,ξ,λf P C
8pP : ξ : λq if f P C8pP : ξ : λq. It is clear that this operator

intertwines the left regular representations as

ApP : P : ξ : λqLgfpxq “

ż

N

pLx´1gfqpnq dn

“ ApP : P : ξ : λqfpg´1xq

“ pLg ˝ApP : P : ξ : λqfqpxq
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for every g, x P G and for every f P C8pP : ξ : λq. By the equivariance of the map
and the estimate in proof of Lemma 2.2.1

ˇ

ˇApP : P : ξ : λqfpkq
ˇ

ˇ “

ż

N

|Lk´1fpnq| dn ď C}Lk´1}8,K ď C}f}8,K ;

from where the continuity of ApP : P : ξ : λq follows.

The standard intertwining operator can be realised in the space C8pK : M : ξq
satisfying the following commutative diagram

C8pP : ξ : λq C8pP : ξ : λq

C8pK : M : ξq C8pK : M : ξq

ApP :P :ξ:λq

rKpλq
P rKpλq

P

AλpP :P q

where rKpλq
P and rKpλq

P are the G-equivariant linear isomorphisms given in 1.3.2
for P and P respectively. It will be of importance to us to give a formula for
AλpP : P q for λ P a˚C. Let f P C8pK : M : ξq.

AλpP : P qfpkq “rPλ ˝ApP : P : λ : ξq ˝ prPλ q
´1fpkq “

ż

N

prPλ q
´1fpknq dn

“

ż

N

fpkkpnqqapnq´λ´ρP dn

It is of considerate importance that Aλ acts on a space that does not depend on the
parameter λ. This was not the case of ApP : P : ξ : λq. The two following lemmas
can be found in [14] and they are related to the holomorphicity of the assignation
λÑ Aλ.

Lemma 2.2.3. The map tλ P a˚C | xReλ, αy ą 0, @α P Σ`u Ñ EndGpC
8pK : M :

ξqq given by λ ÞÑ Aλ is holomorphic.

Theorem 2.2.1 (Vogan-Wallach). The map in Lemma 2.2.3 can be meromorphi-
cally extended to a˚C.

Remark. In this section, we have studied the standard intertwining operator for
the very specific case of SL2pRq. Moreover, we have developed the theory for the
standard intertwining ApP : P : ξ : λq from P to P . The reader should notice that
the analogous is also possible, namely, the standard intertwining operator from P
to P . In fact, the latter is the one that we will be henceforward considering. In a
more describing note, the standard intertwining operator on a general semisimple
Lie group G can also be treated and the different choices of parabolic subgroups
that G might have provides a wide range of standard intertwining operators. A
clear exposition of the standard intertwining operator can be found in [4, Chapter
7].

2.3 Whittaker matrix coefficient

In the discussion of Section 2.1, we have seen that η P WhχpP : ξ : λq must behave
according to the expression πP ,ξ,´λpnqη “ χpnq´1η for every n P N . However, we
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could aim for better and look for a function instead of a generalised section. Let f P
WhχpP : ξ : ´λq X C8pP : ξ : ´λq. Then clearly, fpnmanq “ χpnq´1ξpmq´1aλ´ρP ,
for nman P NP . We define the following function

ηP ,ξ,´λpxq “

"

χpnq´1ξpmq´1aλ´ρP if x “ nman P NP
0 otherwise

(2.1)

It is clear that this function has the appropriate character behaviour to lie in the
space WhχpP : ξ : ´λq X C8pP : ξ : ´λq. However, this function is not continuous
in general, for all choice of λ P a˚C.

Lemma 2.3.1. [9, Proposition 2.11]. The function ηP ,ξ,λ is continuous on G if and
only if λ P U “ tλ P a˚C | xReλ` ρP , αy ą 0, @α P Σ`u.

Lemma 2.3.1 implies that the map U Q λ ÞÝÑ ηP ,ξ,´λ has no antiholomorphic

extension from a˚C to CpP : ξ : ´λq in the usual way. Nonetheless, this map induces
another one, denoted by Ψ, in accordance with the following commutative diagram

U CpP : ξ : ´λq C´8pP : ξ : ´λq C´8pK : M : ξq

Ψ

»

that can be holomorphically extended to a˚C. Here we should clarify in what sense
we mean ”holomorphically”. We observe that C´8pK : M : ξq carries a natural
filtration given by C´8k pK : M : ξq :“ CkpK : M : ξq˚ for k P N and for which
the inductive limit topology coincides with the strong dual topology. The space
CkpK : M : ξq is a complex Banach space, since K is compact. Hence C´8k pK :
M : ξq as well. Let V be a complex linear space and O P V and open subset.
We say that f : O Ñ C8pK : M : ξq is holomorphic at z P O, if there exists an
open neighbourhood Oz of z and k P N such that f : U Ñ C´8k pK : M : ξq is a
holomorphic map of complex Banach spaces. The following theorem corresponds to
[9, Proposition 2.18]

Lemma 2.3.2 (Holomorphic extension of ηP ,ξ,´λ). Let χ be a regular character on
N . Then Ψ extends holomorphically to a˚C in the sense of the previous paragraph.

Definition 2.3.1 (Whittaker matrix coefficient). We call the following matrix co-
efficient of the principal series IndG

P
pξ b p´λq b 1q the n ´ th Whittaker matrix

coefficient :

WhnpP , λqpgq :“ mpτn,P ,´λ b ηP ,ξ,λqpgq “ xπP ,ξ,´λpgq
´1τn,P ,´λ, ηP ,ξ,λy

where τn,P ,´λpkanq “ τnpkqa
λ´ρP and ηP ,ξ,λ follows the expression in (2.1). In the

particular case of ξ “ 1, we say that Wh0pP , λq is the Spherical Whittaker matrix
coefficient.

As we have seen in Section 2.1, WhnpP , λq P C8pτn, G{N,χq. As we have
remarked in Section 2.1, the restriction to A according to the Iwasawa decom-
position given by G “ KAN , induces a topological linear isomorphism between
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C8pτn, G{N,χq and C8pAq. That is to say, we only need to study WhnpP , λq
ˇ

ˇ

A
. In

the following, we shall be concerned with the asymptotic behaviour of the Whittaker
matrix coefficients. We will observe that the standard intertwining operator arises
in a natural manner leading to the so-called Harish-Chandra c-function. But first a
lemma on integration that corresponds to [9, Proposition 1.36]

Lemma 2.3.3. Assume that dg, da, dn, dn are normalised so that

dg “ a2ρP dndmdadn.

Then for every f P CpKq it follows that

ż

K

fpkq dk “

ż

N

ż

M

fpkpnqmqapnq´2ρP dmdn,

for kpnq and apnq Iwasawa projections in KAN .

Using Lemma 2.3.3 and the pairing given in 1.3.1, we may unravel the definition
of Whittaker matrix coefficient (restricted to A) in terms of an integral, yielding

WhnpP , λqpaq “

ż

K

xπP ,ξ,´λpaq
´1τn,P ,´λ, ηP ,ξ,λyξpkq dk

“

ż

K

xτn,P ,´λpkq, ηP ,ξ,λpa
´1kqyξ dk

“

ż

N

ż

M

xτnpkpnqmq, ηP ,ξ,λpa
´1kpnqmqyξ apnq

´2ρP dmdn

“

ż

N

τnpkpnqq ηP ,ξ,λpa
´1kpnqq apnq´2ρP dn;

where the last equality follows from the normalisation of dm. By means of the
Iwasawa decomposition, we may write kpnq “ nnpnq´1apnq´1 and therefore

WhnpP , λqpaq “

ż

N

τnpkpnqq ηP ,ξ,λpa
´1kpnqq apnq´2ρP dn

“

ż

N

τn,P ,´λpnnpnq
´1apnq´1

q ηP ,ξ,λpa
´1nnpnq´1apnq´1

qapnq´2ρP dn

“

ż

N

τn,P ,´λpnqapnq
´λ`ρP ηP ,ξ,λpa

´1nqapnqλ`ρP apnq´2ρP dn

“

ż

N

τn,P ,´λpnq ηP ,ξ,λpa
´1nq dn

“aλ`ρP
ż

N

τn,P ,´λpnqχpa
´1naq dn

Lemma 2.3.4. WhnpP , λq „ aλ`ρPApP : P : ξ : λqτn,P ,´λpeq when a
A`
Ñ 82.

Proof. According to the previous, it suffices to show that
ż

N

τn,P ,´λpnqχpa
´1naq dn ÝÑ ApP : P : ξ : λqτn,P ,´λpeq as a

A`
ÝÑ 8.

2This notation means that at Ñ8 if tÑ8.
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Computing the norm of the difference and taking the limit a
A`
Ñ 8, we have that

ˇ

ˇ

ˇ

ˇ

ż

N

τn,P ,´λpnqχpanaq dn´

ż

N

τn,P ,´λpnq dn

ˇ

ˇ

ˇ

ˇ

ď

ż

N

ˇ

ˇτn,P ,´λpnq
ˇ

ˇ

ˇ

ˇ1´ χpa´1naq
ˇ

ˇ dn

“

ż 8

´8

ˇ

ˇτn,P ,´λpnxq
ˇ

ˇ

ˇ

ˇ1´ χpa´1nxaq
ˇ

ˇ dx “

ż 8

´8

ˇ

ˇτn,P ,´λpnxq
ˇ

ˇ

ˇ

ˇ

ˇ
1´ eira

´αx
ˇ

ˇ

ˇ
dx ÝÑ 0.

2.3.1 c-functions

In the previous, we have defined what Whittaker matrix coefficients are and studied
their asymptotic behaviour. We have seen that WhnpP , λq behaves asymptotically
as aλ`ρPApP : P : ξ : λqτn,P ,´λpeq when a tends to infinity in the positive Weyl
chamber A`. We define the cn-function to be the function

cnpλq “ ApP : P : ξ : λqτn,P ,´λpeq “

ż

N

τn,P ,´λpkpnqapnqnpnqq dn

In [15], an explicit formula for the cn-function is given in the case of SL2pRq:

i´nπ1{2Γ
´

λpHq
2

¯

Γ
´

λpHq`1
2

¯

Γ
´

λpHq`n`1
2

¯

Γ
´

λpHq´n`1
2

¯ . (2.2)

However, we have not been able to understand how the factor i´n comes out in this
formula. Therefore, in the first part of this section we find some recurrence relations
between the cn-functions and check that the following formula satisfies them:

cnpλq “
π1{2Γ

´

λpHq
2

¯

Γ
´

λpHq`1
2

¯

Γ
´

λpHq`n`1
2

¯

Γ
´

λpHq´n`1
2

¯ . (2.3)

At the end of this section, we will study the poles of the cn-functions with the
formulas that we have derived as it will be useful in the next chapter. As it is clear
from the formula from above, we shall need several properties of the Γ-function. Let
us compile a list of facts that will be used throughout this section before we start
our exposition of the cn-function. The following can be found in [1].

Lemma 2.3.5. For Re z ą 0, Γpz ` 1q “ zΓpzq and Γp1q “ 1. Particularly,
Γpn` 1q “ n!. Γp1{2q “ π1{2

Lemma 2.3.6. Γ is holomorphic on Re z ą 0 and it can be analytically extended to
Re z ă 0, having simple poles in the non-positive integers and no zeroes.

Proof. Let us show the computation for the residue, as it will be of importance later
on.

lim
zÑ´n

pz ` nqΓpzq “ lim
zÑ´n

Γpz ` n` 1q
śn´1

k“0pz ` kq
“
p´1qn

n!
.
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We also introduce the β-function and its relation with the Γ-function.

Lemma 2.3.7. For x ą 0 and x ą 0 define

Bpx, yq :“ 2

ż π
2

0

pcosϕq2x´1
psinϕq2y´1 dϕ.

With the previous definition we have the following

Bpx, yq “
ΓpxqΓpyq

Γpx` yq
.

By definition of cn, it holds that

cnpλq “

ż

N

τn,P ,´λpkpnqapnqnpnqq dn “

ż 8

´8

τnpkpnxqqapnxq
λ´ρP dx.

Using Lemma 1.1.10, we continue integrating

cnpλq “

ż 8

´8

ein arctanp´xq
p1` x2

q
´ 1

2
pλ´ρP q dx “

ż π
2

´π
2

einϕp1` tan2 ϕq1´
1
2
pλ´ρP qpHq dϕ

“

ż π
2

´π
2

einϕpcosϕqpλ´ρP qpHq´2 dϕ.

One can easily check that cn “ c´n as the cosine is an even function (in particu-
lar, one may notice that Wallach’s formula for the cn-function cannot satisfy this
symmetry). Making use of the previous fact,

cnpλq “
cnpλq ` c´npλq

2
“

ż π
2

´π
2

einϕ ` e´inϕ

2
pcosϕqpλ´ρP qpHq´2 dϕ

“

ż π
2

´π
2

cosnϕ pcosϕqpλ´ρP qpHq´2 dϕ “ 2

ż π
2

0

cosnϕ pcosϕqpλ´ρP qpHq´2 dϕ

Note that ρP pHq “ ´1 Using the n-th Chebyshev polynomial, we may write

cosnϕ “

tn{2u
ÿ

k“0

p´1qk
ˆ

n
2k

˙

psinϕq2kpcosϕqn´2k

Substituting this in the previous integral, we get

cnpλq “2

tn{2u
ÿ

k“0

p´1qk
ˆ

n
2k

˙
ż π

2

0

psinϕq2kpcosϕqn´2k`pλ´ρP qpHq´2 dϕ

“

tn{2u
ÿ

k“0

p´1qk
ˆ

n
2k

˙

B

ˆ

k `
1

2
,
pλ´ ρP qpHq ` n´ 2k ´ 1

2

˙

Pluging ρP pHq “ ´1 in the equation, we have that

cnpλq “

tn{2u
ÿ

k“0

p´1qk
ˆ

n
2k

˙

B

ˆ

k `
1

2
,
λpHq ` n´ 2k

2

˙

(2.4)
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Nevertheless, there is a much simpler expression in order to study the poles of the
cn-function. The cn-functions can also be expressed in terms of a recurrence relation.
Using the fact that cospn` 1qϕ “ cosnϕ cosϕ´ sinnϕ sinϕ, we have that

cn`1pλq “ 2

ż π
2

´π
2

cospn` 1qϕpcosϕqpλ´ρP qpHq´2 dϕ

“ 2

ż π
2

0

cosnϕpcosϕqpλ´ρP qpHq´1 dϕ
looooooooooooooooooomooooooooooooooooooon

I1

´ 2

ż π
2

0

sinnϕ sinϕpcosϕqpλ´ρP qpHq´2 dϕ
loooooooooooooooooooooomoooooooooooooooooooooon

I2

From the definition we see that 2I1 “ cnpλ ´ ρP q and integrating by parts in I2

yields, if n ą 0

I2 “ ´ sinnϕ
pcosϕqpλ´ρP qpHq´1

pλ´ ρP qpHq ´ 1

ˇ

ˇ

ˇ

ˇ

π
2

0

`
n

pλ´ ρP qpHq ´ 1

ż π
2

0

cosnϕpcosϕqpλ´ρP qpHq´1 dϕ

“
n

pλ´ ρP qpHq ´ 1

cnpλ´ ρP q

2
.

Adding all up together with ρP pHq “ ´1, we get that

cn`1pλq “

ˆ

1´
n

λpHq

˙

cnpλ´ ρP q pn ą 0q. (2.5)

For n “ 0, according to formula 2.4, we have that
$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

c0pλq “ B

ˆ

1

2
,
pλ´ ρP qpHq ´ 1

2

˙

“

Γ
`

1
2

˘

Γ

ˆ

pλ´ρP qpHq´1

2

˙

Γ
´

pλ´ρP qpHq

2

¯

c1pλq “ B

ˆ

1

2
,
pλ´ ρP qpHq

2

˙

“

Γ
`

1
2

˘

Γ
´

pλ´ρP qpHq

2

¯

Γ
´

pλ´ρP qpHq`1

2

¯

(2.6)

using the expression of the Euler Beta function in terms of the Euler Gamma func-
tion. We may observe that c1pλq “ c0pλ ´ ρP q, satisfying the recurrence as well.
Hence it yields the following for n ě 0

cnpλq “

ˆ

1´
n´ 1

λpHq

˙

cn´1pλ´ ρP q with c0pλq “
Γ
`

1
2

˘

Γ
´

λpHq
2

¯

Γ
´

λpHq`1
2

¯ (2.7)

Lemma 2.3.8. The function defined by (2.3) is the unique solution satisfying the
recurrence relation with initial value c0 given in (2.7).

Proof. By repeatedly use of Lemma 2.3.5,

ˆ

1´
n´ 1

λpHq

˙

cn´1pλ´ ρP q “
pλpHq ´ n` 1q{2

λpHq{2

π1{2Γ
´

λpHq`1
2

¯

Γ
´

λpHq`2
2

¯

Γ
´

λpHq`n`1
2

¯

Γ
´

λpHq´n`3
2

¯

“

π1{2Γ
´

λpHq`1
2

¯

Γ
´

λpHq
2

¯

Γ
´

λpHq`n`1
2

¯

Γ
´

λpHq´n`1
2

¯ “ cnpλq
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Checking that the initial conditions are also satisfied in 2.3 is routine, so we leave
it to the reader. Uniqueness is trivial.

By induction, the reader may prove that the following is also valid as an expres-
sion for the cn-function.

cnpλq “ c0pλ´ nρP q
n
ź

j“1

ˆ

1´
n´ j

λpHq ` pj ´ 1q

˙

(2.8)

Using the initial condition of c0, we may write

cnpλq “
Γ
`

1
2

˘

Γ
´

λpHq`n
2

¯

Γ
´

λpHq`n`1
2

¯

n
ź

j“1

λpHq ` 2j ´ n´ 1

λpHq ` pj ´ 1q
. (2.9)

It will be of our interest to study the zeroes and poles of the cn-function and
their order. We recall that the Gamma function has no zeroes and has simple poles
in the non-positive integers making 1{Γ contributing with zeroes in the non-positive
integers and no poles to the cn-function. Thus, we may observe that in 2.9 the
factors

Γ

ˆ

λpHq ` n

2

˙

and λpHq ` pj ´ 1q for j P t1, . . . , n

contribute with simple poles to cn, that is to say, they contribute with order ´1 to
the expression; whereas the factors

Γ

ˆ

λpHq ` n` 1

2

˙

and λpHq ´ 1` n` 2j for j P t1, . . . , n

contribute with simple zeroes to the expression, meaning, with order `1. Nonethe-
less, it might occur that some of this poles cancel with some of the zeroes. Assume
firstly that n is odd positive, then

• Γ

ˆ

λpHq ` n

2

˙

contributes with simple poles at each odd integer ď ´n.

• Γ

ˆ

λpHq ` n` 1

2

˙

contributes with zeroes of order 1 at each even integer

ă ´n.

• ´pj ´ 1q for 1 ď j ď n contributes with simple poles at every negative integer
between ´n` 1 and 0.

• 1 ´ n ´ 2j for 1 ď j ď n contributes with simple zeroes at each even integer
between ´n` 1 and n´ 1 have order +1.

In summary, the cn-function with n odd has first order poles in the negative odd
integers and simple zeroes in the even integers that are smaller than n. Analogously,
we carry out the same argument for n even, yielding the opposite; namely, simple
poles in the even non-positive integers and simple zeroes in the odd integers strictly
smalller than n. In the following we attach two charts, when n is either odd positive
or even positive respectively, with the contributions of each of the terms in the
formula of the cn-function given by (2.3). In these charts, the reader has a more
visual account which is in accordance with the previous discussion.
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degree contributions when n odd
Factors z Z -n-1 -n -n+1 ¨ ¨ ¨ -2 -1 0 1 2 ¨ ¨ ¨ n-1 n

Γ

ˆ

λ0
2

˙

-1 -1 -1 -1

Γ

ˆ

λ0 ` 1

2

˙

-1 -1

Γ

ˆ

λ0 ` n` 1

2

˙

+1

Γ

ˆ

λ0 ´ n` 1

2

˙

+1 +1 +1 +1 +1 +1

Total +1 -1 0 ¨ ¨ ¨ 0 -1 0 0 +1 ¨ ¨ ¨ +1 0

degree contributions when n even
Factors z Z -n-1 -n -n+1 ¨ ¨ ¨ -2 -1 0 1 2 ¨ ¨ ¨ n-1 n

Γ

ˆ

λ0
2

˙

-1 -1 -1 -1

Γ

ˆ

λ0 ` 1

2

˙

-1 -1

Γ

ˆ

λ0 ` n` 1

2

˙

+1

Γ

ˆ

λ0 ´ n` 1

2

˙

+1 +1 0 +1 0 +1 0 +1

Total +1 -1 0 ¨ ¨ ¨ -1 0 -1 +1 0 ¨ ¨ ¨ +1 0

Remark. The reader may observe that all degrees at every point oscillate between
´1, 0 and 1. This means that all poles and zeroes are simple. This fact shall be
crucial in the theory to come.

2.4 Whittaker vectors for the discrete series

Using Definition 2.1.2, we can consider the Whitaker vectors for both the holomor-
phic and antiholomorphic discrete series representations. Firstly, we present a con-
struction of a Whittaker vectors for the holomorphic discrete series representation
based on the complex Fourier transform. We should mention that this construc-
tion has been provided by E. van den Ban to us. Afterwards, we shall relate this
construction to a result that can be found in [16].

To begin with, we need to construct certain seminorm. This is guaranteed by
the following lemma, that we state without proof.

Lemma 2.4.1. There exists C ą 0 such that for all f P H`
n , one has |fpzq| ď

C Impzq1´n}f}H`n .

Proof. Let z “ x ` iy P H` and define R1pzq “
1
4
y and R2pzq “

3
4
y. For r P
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rR1pzq, R2pzqs, we may write

fpzq “
1

2πi

ż

t}w´z}“ru

fpwq

z ´ w
dw “

1

2πi

ż 2π

0

fpz ` reiϕq

reiϕ
ireiϕ dϕ

“
1

2πipR2 ´R1q

ż R2

R1

ż 2π

0

fpz ` reiϕq

reiϕ
ireiϕ dϕdr

Defining Apzq “ tz ` re´ϕ | pr, ϕq P rR1pzq, R2pzqs ˆ p0, 2πqu, we get the following
estimate

|fpzq| ď
1

2πpR2 ´R1q

ĳ

Apzq

|fpu` ivq|

|u` iv ´ z|
dudv

ď
1

2πpR2 ´R1q

ĳ

Apzq

|fpu` ivq|

R1pzq
v2´nvn´2 dudv

ď
1

2πpR2 ´R1q

¨

˚

˝

ĳ

Apzq

|fpu` ivq|2vn´2 dudv

˛

‹

‚

1{2 ¨

˚

˝

ĳ

Apzq

1

R2
1pzq

v4´2nvn´2 dudv

˛

‹

‚

1{2

,

where the last inequality is obtained by the Cauchy-Schwartz inequality. If we
continue, we see that

|fpzq| ď
1

2π

2

y
}f}H`n AreapApzqq1{2

1

|R1pzq|
|Rpzq|2´n ď 41´n

?
2 y1´n

}f}H`n

“CImpzq1´n}f}H`n .

Lemma 2.4.2. There exists a continuous seminorm ν on pH`
n q
8 such that for all

f P pH`
n q
8,

|f2pzq| ď p1` |z|q´2Impzq1´nνpfq

Proof. By Lemma 2.4.1 and the last remark in Section 1.4.1, it follows that

|f2pzq| ď CImpzq1´n}f2}H`n & |z2f2pzq| ď CImpzq1´n}z2f2}H`n

Hence, by adding up, the result follows with νpfq “ }f2}H`n ` }z
2f2}H`n

For r P R, define the following functional on pH`
n q
8 by

ηypfq “

ż 8

´8

f2px` iyqe´irx dx pfor y ą 0q. (2.10)

Lemma 2.4.3 (Whittaker vector in the discrete series representation). For y ą
0 and χ a regular unitary character on N , the functional ηy as in (2.10) is in
WhχpH

`
n q.

Proof. The map ηy is clearly linear. To show continuity, we have the following
estimate:

|ηypfq| ď Cνpfq

ż 8

´8

y1´n

´

1`
a

x2 ` y2
¯2 dx ď 2Cy1´nνpfq

ż 8

0

1

1` x2
dx “ Cyνpfq.
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This shows that ηy is a continuous linear functional. Regarding its behaviour with
respect to χ, let nξ P N . It yields then

ηypD
`
n pn

´1
ξ qfq “

ż 8

´8

fpz ` ξq2e´irx dx “

ż 8

´8

f2pz ` ξqe´irx dx “ e`irξηypfq.

Observe that ηy “ erp1´yqη1. Indeed, for y ą 1,

eryηypfq “

ż 8

´8

f2px` iyqeirpx`iyq dx “

ż

R`iy
f2pzqe´irz dz.

We note that the integrand is holomorphic in the upper-half plane, thus by Cauchy’s
theorem, we know that the line integral over the border of the complex rectangle
r´R,Rsˆ r1, ys is zero. However the integral over the vertical edges of the rectangle
tend to 0 as R goes to infinity. Indeed,

ˇ

ˇ

ˇ

ˇ

ż y

1

f2pR ` itqe´irpR`itq idt

ˇ

ˇ

ˇ

ˇ

ď

ż y

1

t1´netr

1` |R ` it|
νpfq dt ď

erypy ´ 1qνpfq

1`R
ÝÑ
RÑ8

0.

The analogous result holds in in the other vertical edge of the rectangle. Hence
eryηy “ erη1 for y ą 1. Perform the same strategy for 0 ă y ă 1, and then the
equality holds for y ą 0. In particular, this means that if r ă 0 and by using the
estimate in the proof of Lemma 2.10, it yields

|η1pfq| ď 2C νpfq erpy´1qy1´n
Ñ 0 for y Ñ 8.

Therefore we have that for every f P pH`
n q
8,

0 “ η1pfq “ erp1´yqηypfq ùñ ηypfq “ 0 for f P pH`
n q
8

On the other hand, ηy ‰ 0 if r ą 0. To see this, we need to find a function
in pH`

n q
8 for which the functional is not 0. For a function ϕ P C8c pRq, define the

complex Fourier transform

Fϕpzq :“

ż

R
ϕptqe´izt dt “

ż

R
ϕptqeyte´ixt dt “ Fpϕeytqpxq if z “ x` iy

The following lemma will be necessary.

Lemma 2.4.4. Let ε ą 0 and ϕ P C8c p´8,´εq, then Fϕ|H` P pH`
n q
8.

Proof. Recall that

Fϕpx` iyq “
ż

R
ϕptqeyte´ixt dt

This function is holomorphic in the variable z because the integrand is of compact
support and it has holomorphic dependence on z given by the term e´izt. Now we
estimate its L2 norm on the space H`

n . We must first make the observation that
|Fϕpx` iyq| ď e´εy}ϕ}L1p´8,´εq and thus, for any N P N,

|px` iyqNFϕpx` iyq| ď |FϕpNqpx` iyq| ď e´εy}ϕpNq}L1p´8,´εq.
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Then it is readily seen that for N P N, |Fϕpx ` iyq| ď CNp1 ` |x ` iy|Nq´1e´εy.
Applying the last estimate, the following holds for N sufficiently large,

}Fϕ}2
H`n
“

ż 8

´8

ż 8

0

|Fϕpx` iyq|2yn´2 dydx

ďC2
N

ˆ
ż 8

´8

1

p1` |x|Nq2
dx

˙ˆ
ż 8

0

e´2εyyn´2 dy

˙

“C2
N

pn´ 2q!

p2εqn´1

ˆ
ż 8

´8

1

p1` |x|Nq2
dx

˙

ď 8.

This means that Fϕ P H`
n . It remains to show that pD`n q˚puqFϕ P H`

n , for every
u P Upgq. In Section 1.4.1, we computed the associated g-module of the holomorphic
discrete series representation for the g-standard triple. This was:

ppD`n q˚pHqfqpzq “ ´nfpzq ´ 2zf 1pzq ppD`n q˚pXqfqpzq “ ´f
1
pzq

ppD`n q˚pY qfqpzq “ nzfpzq ` f 1pzqz2.

By Theorem A.2.1, we may see that pD`n q˚puq is a differential operator that takes
the following form.

pD`n q˚puq “
l
ÿ

j“0

pjpzq
dj

dzj
“ P

ˆ

z,
d

dz

˙

.

By the properties of the Fourier trasform, we see that

pD`n q˚puqFϕ “ P

ˆ

z,
d

dz

˙

Fϕ “ F
ˆ

P

ˆ

t,´i
d

dt

˙

ϕ

˙

.

Since ϕ P C8c p´8,´εq, then P
`

t,´i d
dt

˘

ϕ is also in C8c p´8,´εq. This implies,
by the discussion in the first part of the proof that pD`n q˚puqF for every u P Upgq.
Hence Fϕ P pH`

n q
8.

Let now 0 ă ε ă r and pick any ϕ P C8c p´8,´εq with ϕp´rq ‰ 0, then by the
previous lemma,

ηypFϕq “
ż

R
pFϕq2px` iyqe´irx dx “

ż

R
Fp´t2eytφqpxqe´irx dx “ ´2πr2eryϕp´rq

In conclusion, we have found a Whittaker vector ηy (for y ą 0) in the holomorphic
discrete series representation, such that if r ă 0 it is zero and if r ą 0 is non-zero.
The following result corresponding to [16, Theorem 2] confirms that the distinction
between r ą 0 or r ă 0 must happen. The original proof of the theorem is attributed
to C. Moore, although Wallach provides another proof.

Theorem 2.4.1. For χ regular character on N . If rχ ą 0 then dim WhχpH`
n q “ 1

and dim WhχpH´
n q “ 0. If rχ ă 0, we have dim WhχpH`

n q “ 0 and dim WhχpH´
n q “

1.
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Chapter 3

Whittaker ODE for SL2pRq

The classical theory of Whittaker functions is very well-known. It can be found in
any standard book concerning the confluent hypergeometric function. We recom-
mend [18, Chapter 16] and [8] if the reader is curious about the topic. However,
let us briefly describe it for a motivational purpose. Whittaker functions are simply
solutions to the Whittaker ODE. In 1904, E. Whittaker introduced a new variation
of the hypergeometric ODE. In short, the hypergeometric ODE is a second order
differential equation with three regular singularities at 0, 1 and 8 on the Riemann
sphere. The Whittaker ODE is a modified version of the latter in which 1 and 8
have been forced to meet at an irregular singularity, whereas the other singularity
at 0 remains regular. The Whittaker differential equation takes the following form

d2W

dz2
`

ˆ

´
1

4
`
k

z
`

1
4
´m2

z2

˙

W “ 0, (3.1)

where k,m are parameters in the complex plane. In the following we devote ourselves
to develop what we call the Whittaker ODE for SL2pRq. In few words, this is a
differential equation derived from the action of the radial component of the Casimir
operator in SL2pRq. In particular, we will see that it results in a Whittaker ODE in
the classical sense for parameters yet to be specified. Afterwards, we will proceed to
define the Fourier-Whittaker transform and to state its inverse for the group SL2pRq.
AS a conclusion, we shall deal with the residues of this formula and relate them to
the discrete series representations of SL2pRq.

3.1 Derivation of the Whittaker ODE for SL2pRq
Let us return to the notation of Sections 1.1.1, 1.4.1 and 2.1. We recall that the
Casimir has the following form (up to rescaling) for the standard g-triple:

Ω “ H2
` 2pXY ` Y Xq “ H2

` 2H ` 4Y X.

One may observe that RΩ P EndpC8pτn, G{N,χqq. Indeed, by left invariance of RΩ

it yields that for f P C8pτn, G{N,χq

LkRΩf “ RΩLkf “ RΩpτnpkq
´1fq “ τnpkq

´1RΩf for k P K.

The behaviour with respect to χ follows from the fact that Ω is Ad-invariant. Letting
f P C8pτn, G{N,χq and n P N, it holds that

RnRΩf “ RAdpnqΩRnf “ RΩRnf “ RΩχpnqf “ χpnqRΩ.
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It is known from the previous chapter that the restriction to A (earlier denoted by
rA) induces a topological linear isomorphism from C8pτn, G{N,χq onto C8pAq, in
accordance with the Iwasawa decomposition described in Section 1.1.3. Thus it is
worth asking how the Casimir operator acts on C8pAq. This gives rise to the radial
component of Ω.

Definition 3.1.1 (Radial component of Ω). We define the radial component of Ω
to be the linear operator rad Ω P EndpC8pAqq satisfying the following commutative
diagram

C8pτn, G{N,χq C8pτn, G{N,χq

C8pAq C8pAq

RΩ

rA rA

rad Ω

where rA denotes the restriction to A in the Iwasawa decomposition G “ KAN .

In order to explicitly compute rad Ω we first need to know how the Casimir acts
on C8pτn, G{N,χq. As usual, it is only necessary to know the action of the elements
of the standard g-triple:

RHfpatq “
d

ds

ˇ

ˇ

ˇ

ˇ

s“0

fpat exp sHq “
B

Bs

ˇ

ˇ

ˇ

ˇ

s“0

fpexppt` sqHq “
d

dt
fpatq.

RXfpatq “
d

ds

ˇ

ˇ

ˇ

ˇ

s“0

fpat exp sXq “
d

ds

ˇ

ˇ

ˇ

ˇ

s“0

fpatqχpexp sXq “ irfpatq.

The right action of the Casimir of the element Y is a bit more involved. We see that

RY fpatq “ L´AdpatqY fpatq “ LAdpatq´1X´AdpatqY fpatq ´ LAdpatq´1Xfpatq “ L1 ` L2.

By Lemma 1.1.6, we may write Adpatq
´1X´AdpatqY “ a´αX´a´αY “ a´αpX´Y q.

Consequently, it follows that

L1 “a
´αLY´Xfpatq “ a´α

d

ds

ˇ

ˇ

ˇ

ˇ

s“0

fpexp spY ´Xqatq

“a´α
d

ds

ˇ

ˇ

ˇ

ˇ

s“0

τnpexppspY ´Xqqqfpatq “ ina´αfpatq.

In the case of L2,

L2 “LAdpatq´1Xfpatq “ R´Adpatq´2Xfpatq “ a´2α
t Rxfpatq “ a´2α

t irfpatq

Adding up L1 and L2 we obtain the right action of Y on C8pτn, G{N,χq,

RY fpatq “ pina
´α
t ` ira´2α

t qfpatq.

The radial component has finally the following expression for f P C8pτn, G{N,χq :

rad Ω pf |Aqpatq “pRΩfqpatq “ ppRHq
2f ` 2RHf ` 4RXRY fqqpatq

“

ˆ

d2

dt2
` 2

d

dt
` 4irpina´αt ` ira´2α

t q

˙

fpatq

“

ˆ

d2

dt2
` 2

d

dt
´ 4prna´αt ` r2a´2α

t q

˙

fpatq.
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To relate the last formula to the classical theory, define the change of variables
fpatq “ ψpxptqq where xptq “ 2ra´αt “ 2re´2t and t ą 0. A simple computation
shows that

d

dt
pψ ˝ xq “ ´2x

dψ

dx
and

d2

dt2
pψ ˝ xq “ 4x

dψ

dx
` 4x2d

2ψ

dx2
.

Applying this change to the radial operator we get the following expression

rad Ωpf |Aqpatq “

ˆ

4x2 d
2

dx2
´ x2

´ 2nx

˙

ψ.

Recall from Lemma 1.4.8 that the Casimir operator acts on the principal series
of G by a scalar. By definition of the radial component, it follows that the radial
component of the Casimir element will also act by the same scalar on the functions of
the principal series. Therefore, it will be useful to consider, as for now, the eigenvalue
problem for the radial component of Ω. It will be convenient, to reparametrise the
eigenvalue problem so that rad Ω “ pλ2´ 1qf with λ P C. The reader might observe
that this consideration traces back to the use of λpHq2 ´ 1, which is the scalar by
which the Casimir acts on the principal series of SL2pRq. Therefore the expression
in coordinates for the eigenvalue problem is

d2

dx2
ψ `

˜

p´nq{2

x
`

1{4´ pλ{2q2

x2
´

1

4

¸

ψ “ 0; (3.2)

which is a Whittaker ODE in the classical sense for k “ ´n
2

and m “
λpHq

2
. Equation

(3.2) will be called the Whittaker ODE for SL2pRq. One should note that the
classical Whittaker ODE has been defined for the complex variable, while in our
case we restrict to the positive real line. Nevertheless, considering the equation in
the complex plane will be advantageous to us. In the following lemma, we finally
learn why every element in Chapter 2 was named after ’Whittaker’.

Lemma 3.1.1. The Whittaker matrix coefficient WhnpP , λq as in Definition 2.3.1
satisfies the Whittaker ODE for SL2pRq (after the aforementioned changes of vari-
ables).

Proof. We only need to see how the Casimir operator acts on WhnpP , λq. The result
inmediately follows form the discussion above. Let Z P g and g P G, we see then
that

LZWhnpP , λqpgq “
d

dt

ˇ

ˇ

ˇ

ˇ

t“0

xπP ,ξ,´λpg
´1
qπP ,ξ,´λpexp tZqτn,P ,´λ, ηP ,ξ,λy

“

B

πP ,ξ,´λpg
´1
q
d

dt

ˇ

ˇ

ˇ

ˇ

t“0

πP ,ξ,´λpexp tZqτn,P ,´λ, ηP ,ξ,λ

F

“
@

πP ,ξ,´λpg
´1
qpπP ,ξ,´λq˚pZqτn,P ,´λ, ηP ,ξ,λ

D

.

Since the identity holds for any Z P g, apply it successively followed by Lemmas
1.4.8 and A.2.6 to find

LΩWhnpP , λqpgq “
@

πP ,ξ,´λpg
´1
qpπP ,ξ,´λq˚pΩqτn,P ,´λ, ηP ,ξ,λ

D

“pλpHq2 ´ 1qWhpP , λqpgq.
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Set λα “ λpHq{2 so that λ “ λαα. Consider the complex version of the Whit-
taker ODE for SL2pRq, derived from the standard one, just by multiplying by z2

z2 d
2

dz2
ψ `

ˆ

´
n

2
z ´

1

4
z2
`

1

4
´ λ2

α

˙

ψ “ 0. (3.3)

We shall proceed with examining whether there are solutions defined on a neigh-
bourhood around z “ 0, that is to say around the regular singularity of our equation.
The reader should know that the following is standard theory that can be found in
any comprehensive book on complex ODEs, for example in [17]. Nevertheless, we
have decided to include it for subsequent references. As an educated guess we try
out functions of the form ψpzq “ zsϕ where ϕ is a holomorphic function on an open
neighbourhood around 0; and s P C. We may assume without loss of generality that
ϕp0q “ 1. If we substitute our candidate in the equation, the following expression
holds:

z2ϕ2 ` 2szϕ1 `

ˆ

´
n

2
z ´

1

4
z2
` sps´ 1q `

1

4
´ λ2

α

˙

ϕ “ 0.

Since the equation holds for every value of z P C, in particular it must for z “ 0.
Evaluating at z “ 0 (recall that ϕp0q ‰ 0), we observe that

sps´ 1q `
1

4
´ λ2

α “ 0 meaning s˘ “ ¯λα `
1

2
“

1

2
p¯λ´ ρP qpHq.

From the general theory of 2nd order complex differential equations with a regular
singularity, it is known that if the difference between the exponents s` ´ s´ is
not an integer, the solutions form a fundamental system of the ODE. The reader
may find more details in [17, Chapter 5, Section 25]. In regards with our case,
tzs`ϕs` , z

s´ϕs´u form a fundamental system if and only if λpHq R Z. Assume for
the moment that λpHq “ 2λα is not an integer. In the case of ψs` “ zs`ϕs` we
have the following differential equation

z2ϕ2s` ` 2s`zϕ
1
s`
`

ˆ

´
n

2
z ´

1

4
z2

˙

ϕs` “ 0.

Since we have assumed that ϕs` is holomorphic around a neighbourhood of 0, it
must be given by a power series of the form

ϕs`pzq “
8
ÿ

j“0

Γ`j pλqz
j with Γ`0 “ 1

Substitute the series above in the previous equation to obtain recurrence relations
that determine the coefficients Γ`j ,

0 “z2
8
ÿ

j“0

jpj ´ 1qΓ`j z
j´2
` 2s`z

8
ÿ

j“0

jΓ`j z
j´1
´
n

2
z
8
ÿ

j“0

Γjz
j
´

1

4
z2

8
ÿ

j“0

Γ`j z
j

“

8
ÿ

j“0

jpj ´ 1qΓ`j z
j
`

8
ÿ

j“0

2s`jΓ
`
j z

j
´

8
ÿ

j“0

n

2
Γjz

j`1
´

8
ÿ

j“0

1

4
Γ`j z

j`2

“

8
ÿ

j“0

jpj ´ 1qΓ`j z
j
`

8
ÿ

j“0

2s`jΓ
`
j z

j
´

8
ÿ

j“1

n

2
Γj´1z

j
´

8
ÿ

j“2

1

4
Γ`j´2z

j

“0z0
`

´

2s`Γ`1 ´
n

2
Γ`0

¯

z `
8
ÿ

j“2

ˆ

jpj ´ 1qΓ`j ` 2s`jΓ
`
j ´

n

2
Γ`j´1 ´

1

4
Γ`j´2

˙

zj
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We get the following recurrences

$

’

’

’

&

’

’

’

%

Γ`0 pλq “ 1

Γ`1 pλq “
n

2p1´ λpHqq

Γ`j pλq “
1

jpj ´ λpHqq

ˆ

n

2
Γ`j´1pλq `

1

4
Γ`j´2pλq

˙

if j ě 2

In an analogous way, we may find the same recurrences for the solution ϕ´, just sub-
stituting in the previous s` by s´. By the theory of complex differential equations,
we observe that the power series that we have just computed can be holomorphi-
cally extended to the whole complex plane because the coefficients of the differential
equation are holomorphic everywhere except at 0 (for which there is a regular sin-
gularity). This last statement corresponds to [17, Theorem 3, Section 24].

Remark. It is worth mentioning that the coefficients Γ˘j for j P N are actually func-
tions of λ. It can be shown that Γ´j pλq “ Γ`j p´λq since s´pλq “ s`pλq. Furthermore,
it is the case that they are meromorphic in the variable λ. This will be of relevance
to us.

Put Wλpxq “ WhpP , λqpaq. As we have seen in Lemma 3.1.1, Wλ is a solution of
the Whittaker ODE for SL2pRq. We remind the reader that, we are in the case of
λpHq R Z fixed. Then there exist complex coefficients C`n pλq and C´n pλq such that

Wλpxq “ x´
1
2pλ`ρP qpHqC`n pλqϕs`pxq ` x

1
2pλ´ρP qpHqC´n pλqϕs´pxq,

as an identity of holomorphic functions on x. If we undo the change of variables
x “ 2ra´α, we have that

WhnpP , λqpaq “ aλ`ρP ĂC`n pλqΦλ`ρP
paq ` a´λ`ρP ĂC´n pλqΦ´λ`ρP paq

where ĂC`n pλq “ p2rq
1
2pλ`ρP qpHqC`n pλq and ĂC´n pλq “ p2rq

1
2pλ´ρP qpHqC´n pλq. Moreover,

we see that

ϕs`pxq “ Φλ`ρP
paq “

8
ÿ

j“0

p2rqjΓ`j pλqa
´jα, ϕs´pxq “ Φ´λ`ρP paq “

8
ÿ

j“0

p2rqjΓ´j pλqa
´jα.

Lemma 3.1.2. If xReλ, αy ą 0, then ĂC`n “ cn, for cn the cn-function as in formula
(2.3).

Proof. Firstly, we observe that the functions Φλ`ρP
paq,Φ´λ`ρP paq Ñ 1 and a´λ Ñ 0

as a
A`
Ñ 8. Since ϕs˘ are holomorphic about a neighbourhood of 0, ϕs˘pxq Ñ

ϕs˘p0q “ 1, when xÑ 0. By Lemma 2.3.4 we may write

aλ`ρP cnpλq „ aλ`ρP ĂC`n pλqΦλ`ρP
` a´λ`ρP ĂC´n pλqΦ´λ`ρP

This is equivalent to saying

1

cn

´

ĂC`n pλqΦλ`ρP
` a´2λ

ĂC´n pλqΦ´λ´ρP

¯

ÝÑ 1 as a
A`
ÝÑ 8

By the observations made at the beginning of the proof, the result follows.
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Remark. The coefficient ĂC´n can be determined using the classical theory of Whit-
taker functions. This coefficient will not be very important for the purpose of this
theory, therefore we omit its treatment in this text. The expression for the Whittaker
matrix coefficient is as follows

WhnpP , λqpaq “ aλ`ρP c`n pλqΦλ`ρP
paq ` a´λ`ρP c´n pλqΦ´λ`ρP paq (3.4)

Remark. In the case when λpHq P Z, the theory of complex ODEs allows us to state
the same equality as in 3.4, but in this case as an equality of meromorphic functions.

For the subsequent sections we need some properties of the power series coeffi-
cients of the function Φλ`ρP

.

Lemma 3.1.3. The following statements are true about the coefficcients tΓ`j pλqujPN.

1. On the region xReλ, αy ă 0, they have neither zeroes nor poles in the variable
λ.

2. For j ą k P N, λpHq “ j cannot be a pole of the coefficient Γ`k pλq.

3. All poles of Γ`j pλq are simple.

Proof.

1. We observe that Γ`1 has a pole at λpHq “ ´ρP pHq “ 1, thus it has no
negative poles. By induction, assume that the statement is true for j ď
n ´ 1. Then Γ`n has no negative poles because the term n

2
Γ`j´1 `

1
4
Γ`j´2 is

holomorphic on xReλ, αy by hypothesis; and the only candidate could be a
pole at λpHq ` ρP pHq “ pj ´ 1q. The latter is impossible since xReλ, αy ă 0.
The statement corresponding to the zeroes of Γ`j follows automatically by
induction as well and the fact that Γ`j are positive on the region xReλ, αy ă 0.

2. By induction, Γ`1 satisfies the hypothesis. Assume it true for every j ă k. If
we let j0 ą k be a pole of the coeffiecient Γ`k pλq, then it is immediate that
the factor n

2
Γ`k´1 `

1
4
Γ`k´2 would have a pole at j0. Hence, either Γ`k´1 or Γ`k´2

would have a pole at j0. This is a contradiction with the induction hypothesis.

3. we see that Γ`1 has a simple pole at λpHq “ 1. Assume that the hypothesis is
true for all j ă k. Assume that Γ`k has a pole of order m at λpHq “ λ0 ‰ j.
This means that the factor n

2
Γ`k´1`

1
4
Γ`k´2 has a pole of order m at λpHq “ λ0.

But this is impossible because the sum of two functions that have all its poles
simple cannot increase the order of the pole. In the case that the pole is at
λpHq “ k, one can see that it has to be simple by (2) in Lemma 3.1.3.

3.2 The Fourier-Whittaker transform

Let us retain the notation as in the previous section and let χ be a unitary regular
character on N . We shall consider the space L2pG{N,χq of measurable complex
valued functions f such that |f | P L2pG{Nq and Rnf “ χpnqf for all n P N . The
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reader may readily check that it is G-module with the left regular representation.
The decomposition in K-types as in Lemma 1.2.3 yields

L2
pG{N,χq “

à

nPZ
L2
pτn, G{N,χq

where L2pτn, G{N,χq “ tf P L
2pG{N,χq |Lkf “ τnpkq

´1f, @k P Ku.

Lemma 3.2.1. The space C8c pτn, G{N,χq is dense in C8pτn, G{N,χq. Further-
more, C8c pτn, G{N,χq ãÑ L2pτn, G{N,χq continuously.

Proof. These follow from [9, Propositions 3.4 & 3.5].

We have earlier remarked in Section 2.1 that the restriction to A map (denoted by
rA) in the Iwasawa decomposition KAN is a topological linear isomorphism between
C8pτn, G{N,χq and C8pAq. This implies the following commutative diagram

C8c pτn, G{N,χq L2pτn, G{N,χq

C8c pAq L2pA, a´2ρP daq

rA rA

In these terms, we may define the Fourier-Whittaker transform as follows

Definition 3.2.1 (Fourier-Whittaker transform). Let f P C8c pAq. We define the
following function in the variable λ P a˚C

FWh
n pfqpλq :“

ż

A

fpaqWhnpP ,´λqpaqa
´2ρP da

Remark. The reader may observe that the choice of conjugating λ in WhpP ,´λq
is not by chance. This is made so that the Fourier type transform defined above
becomes holomorphic in the parameter λ. This is seen in the coming lemma.

Lemma 3.2.2. We have that FWh
n : C8c pAq Ñ Opa˚Cq.

Proof. That f is a compactly supported function on A implies that the integral is
absolutely convergent for any λ P a˚C. This means that we may differentiate under
the integral sign with respect to λ. Since the integrand of FWh

n pfq depends on λ in
a holomorphic fashion, the result follows.

3.3 Residues of the Fourier-Whittaker inversion

formula

As it has been commented in the introduction to this thesis a new inversion formula
for the Fourier-Whittaker transform has been derived by E. van den Ban for a
connected semisimple real Lie groups. For this announcement can be found in [refer
to slides]. The result for the case of SL2pRq may be stated as follows.

Theorem 3.3.1 (Fourier-Whittaker inversion formula). There exists η P a˚ with
xη, αy ăă 0 and for which for all f P C8c pAq

fpaq “ 2

ż

ia˚`η

aλ`ρPΦλ`ρP
paq
FWh
n pfqpλq

c`n p´λq
dλ.
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As we may observe in the theorem the shift is made towards ´8. In the process
of shifting the domain, some poles in the negative real line will be collected. Our
task for the rest of the section is to investigate the following expression when µ P a˚

is such that µpHq ă:

Res
λ“µ

˜

aλ`ρPΦλ`ρP
paq
FWh
n pfqpλq

c`n p´λq

¸

. (3.5)

Remark. The reader ought to be wary that this expression should be understood as
taking the residue at λpHq “ µpHq. In other words, the map evH : a˚C Ñ C given
by evHpλq “ λpHq establishes a topological linear isomorphism, which implies that
we may transfer the notion of residue of functions defined on C to complex valued
functions on a˚C.

In the remainder of this section, we need to deal with the sets of zeroes of the

functions cnp´λq. In particular , we will be concern with

Zn “
!

λ P a`C
ˇ

ˇ xReλ, αy ă 0, cnp´λq “ 0
)

.

Then the following properties are readily seen by the discussion in Section 2.3.1.

• Since cn “ c´n, it follows that Zn “ Z´n “ Z|n|.

• If n is odd, Zn “ t´2,´4, . . . ,´|n| ` 1u ¨ α{2.

• If n is even, Zn “ t´1,´3, . . . ,´|n| ` 1u ¨ α{2.

By means of these properties together with the discussion in Section 2.3.1, we may
conclude that if n and µpHq ă 0 have the same parity, then

Res
λ“µ

´

c`n p´λq
¯´1

“ 0

Before proceeding with the next lemma, we shall be in need of two basic results
of complex analysis. They are as follows,

Lemma 3.3.1. [7, Section 18.7]. Let a P C, and denote by Drpaq, the open disk
in the complex plane of radius r around a. If g “ h{k with h, k P OpDrpaqq with
hpaq ‰ 0, kpaq “ 0 and k1paq ‰ 0; then Res

z“a
g “ hpaq{k1paq.

Lemma 3.3.2. In the framework of Lemma 3.3.1, if f P OpDrpaqq and g a complex
valued function with a simple pole at a, then Res

z“a
f ¨ g “ fpaqRes

z“a
g.

Proof. By definition of residue,

Res
z“a

f ¨ g “ lim
zÑa
pz ´ aqfpzqgpzq “ fpaqRes

z“a
g

Lemma 3.3.3. Let µ P Zn. Then

Res
λ“µ

´

c`n p´λq
¯´1

“

Γ
´

´µpHq`n`1
2

¯

π1{2Γ
´

´µpHq`n
2

¯

n´ 1´ µpHq

2

n
ź

j“1
µpHq‰2j´n´1

´µpHq ` j ´ 1

´µpHq ` 2j ´ n´ 1
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Proof. According to equation (2.9),

Res
λ“µ

´

c`n p´λq
¯´1

“ Res
λ“µ

¨

˚

˝

Γ
´

´λpHq`n`1
2

¯

π1{2Γ
´

´λpHq`n
2

¯

n
ź

j“1

´λpHq ` pj ´ 1q

´λpHq ` 2j ´ n´ 1

˛

‹

‚

.

First of all, since µ P Zn is neither a pole of Γ
´

´λpHq`n`1
2

¯

nor Γ
´

´λpHq`n
2

¯

, we

have that

Γ
´

´λpHq`n`1
2

¯

π1{2Γ
´

´λpHq`n
2

¯ “

Γ
´

´λpHq`n`1
2

¯

π1{2Γ
´

´λpHq`n
2

¯ .

Furthermore, we observe that this last expression is holomorphic in λpHq around a
neighbourhood of µpHq; hence it can be pulled out in the residue computation by
means of Lemma 3.3.2 yielding

Res
λ“µ

´

c`n p´λq
¯´1

“

Γ
´

´µpHq`n`1
2

¯

π1{2Γ
´

´µpHq`n
2

¯Res
λ“µ

˜

n
ź

j“1

´λpHq ` pj ´ 1q

´λpHq ` 2j ´ n´ 1

¸

.

Using Lemma 3.3.2, it is not difficult to see that we obtain the desired result.

Remark. As for now, we shall denote Res
λ“µ

´

c`n p´λq
¯´1

by Λn,µ.

Lemma 3.3.4. The function aλ`ρPΦλ`ρP
is holomorphic on xReλ, αy ă 0.

Proof. It is readily seen that the function aλ`ρP is holomorphic in λ. It remains to
be shown that Φλ`ρP

is holomorphic for xReλ, αy ă 0. To do so, it is sufficient to
study the poles of the coefficients tΓ`j pλqu

8
j“1. By Lemma 3.1.3, we see that they

have no poles in the variable λ in the aforementioned region, hence aλ`ρPΦλ`ρP
is

holomorphic on xReλ, αy ă 0.

By means of Lemmas 3.3.1, 3.2.2 and 3.3.4, we can now take a step forward in
the calculation of the residue defined in (3.5): if µpHq ă 0,

Res
λ“µ

˜

aλ`ρPΦλ`ρP
paq
FWh
n fpλq

c`n p´λq

¸

“Λn,µa
µ`ρPΦµ`ρP

paqFWh
n fpµq.

We observe that if µ R Zn, the whole expression vanishes. This will have its
consequences that we shall discuss further on. Assume that µ P Zn. Using the
definition of the Fourier-Whittaker transform, we get that

Res
λ“µ

˜

aλ`ρPΦλ`ρP
paq
FWh
n fpλq

c`n p´λq

¸

“ Λn,µ

ż

A

aµ`ρPΦµ`ρP
paqWhnpP ,´µqpbqb

´2ρP fpbqdb.

Lemma 3.3.5. There exists a possibly zero constant Cn,µ P C for µ P Zn such that
WhnpP ,´µqpbq “ Cn,µb

µ`ρPΦµpbq.
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Proof. We consider the map ϕpλ, aq :“ c`n p´λqa
´λ`ρPΦ´λpaq. As a function of λ, it

is holomorphic around µ. This is because we know that µ is a zero of c`n p´λq and
Φ´λ has at most simple poles by Lemma 3.1.3. We have earlier seen that the function
solves the eigenvalue problem if λpHq R Z. Since ϕ is holomorphic around µ, we can
apply holomorphic continuation concluding that ϕpµ, ¨q P En,µ. The function ϕpµ, ¨q
has the following description in power series.

ϕpµ, aq “ a´µ`ρP
ÿ

jě0

c`n p´λqΓ
`
j p´λq

ˇ

ˇ

λ“µ
a´jα

We note for instance that the independent coefficient of the power series is 0 as
Γ`1 p´µq “ 1. Moreover, this power series cannot be zero. The reason is that at
least, the power series has a non-zero coefficient; namely, c`n p´λqΓ´µpHqp´λq. This
coefficient is non-zero because the term Γ´µpHqp´λq has a simple pole at µ by Lemma
3.1.3 and cnp´λq has a simple zero at µ. Thus, let us take the smallest k P Nzt0u
for which c`n p´λqΓkp´λq|λ“µ is not zero. Since the smallest pole of Γjp´λq is at
λpHq “ ´j by Lemma 3.1.3, k must be ´µpHq. Then we may write,

ϕpµ, bq “ Cbµ`ρP
ÿ

jě0

djpλqa
´jα

with C a non-zero constant a d0 “ 1. In order to conclude, we observe that we have
the expression

WhpP ,´λqpaq “ ϕpλ, aq ` aλ`ρP c´n p´λqΦλpaq

and that the left hand side and the first term of the right hand side are holomorphic
maps around µ. This means that the expression c´n p´λqa

λ`ρPΦλpaq is also holomor-
phic at µ, hence c´n p´λq is holomorphic at µ by Lemma 3.3.4. Hence we may finish
writing that

WhpP ,´µqpbq “ ϕpµ, bq ` aµ`ρP c´n p´µqΦ´µpbq “ pC ` c
´
n p´µqqa

µ`ρPΦµ.

Lemma 3.3.6. Let µ P Zn. Then there exists a unique discrete series representation
π of G such that

• π8pΩq “ pµpHq2 ´ 1qI.

• τn is a K-type of π.

In fact, π “ D
εpnq
mpµq, where mpµq “ |µpHq| ` 1 and εpnq “ signpnq.

Proof. From the properties of Zn, we deduce that when µ P Zn, then 1 ď |µpHq| ď
|n| ´ 1 and µpHq and |n| ´ 1 have the same parity. Set mpµq :“ |µpHq| ` 1. This
means that 2 ď mpµq ď |n|, with mpµq and n having the same parity. If we want
the first condition to be fulfilled by a holomorphic discrete series representation of
parameter m, there is no other chance that that m “ ˘µpHq ` 1 due to lemma
1.4.8. In the case of n ą 0, this means that mpµq ď n. We also have seen that the
K-types for the holomorphic discrete series are mpµq ` 2k for k P N. Since mpµq
and n have the same parity, then n “ m` 2k0 for some k0 P N. Then τn appears as
K-type for D`mpµq. In the other case, the same argument can be carried out yielding
the antiholomorphic discrete series. Hence the representation of the discrete series
that we are looking for is D

εpnq
mpµq.
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Lemma 3.3.7. Let µ P Zn. Let χ be a regular character on N . If rχ and n have
opposite signs, then Cµ,n “ 0.

Proof. In Section 1.4.2, we have seen that D˘mpµq may be embedded into the principal
series representation corresponding to the parameters ξmpµq and µ. More specifically,
there exist embeddings of pg, Kq-modules

j˘ : pH˘
n qK ãÑ IndG

P
pξmpµq b µb 1qK .

Since the holomorphic and antiholomorphic discrete series are irreducible by Lemma
1.4.6, we may define the embedding

j “ j` ‘ j´ : H`
n ‘H

´
n Ñ IndG

P
pξmpµq b µb 1qK .

By the Casselman-Wallach globalization functor [15, Theorem 11.6.7 and Lemma
11.5.7], j has a unique extension to a continuous G-equivariant linear map

j : pH`

mpµqq
8
‘ pH´

mpµqq
8
ÝÑ C8pP : ξmpµq : µq.

Let ηP ,ξmpµq,´µ according to formula (2.1). Then

ηµ :“ x¨, ηP ,ξmpµq,´µy P WhχpC
8
pP : ξmpµq : µqq.

Set η˘µ :“ pj˘q˚ηµ P WhχppH
˘

mpµqq
8q and put ε “ signpnq. Let τn,µ P C

8pP : ξmpµq :

µq defined as in 2.3.1. Since K-types have multiplicity one in C8pP : ξmpµq : µq,

there exists a unique vn in the the τn-isotypical component of H
εpnq
n such that τn,µ “

jεpnqpvnq. It is immediate that

WhχpP ,´µqpaq “ ηµ
`

πP ,ξ,µpaq
´1jεpnqpvnq

˘

“ ηµ

´

jεpD
εpnq
mpµqvnq

¯

. (3.6)

By Theorem 2.4.1, if εpnq and rχ have opposite signs then Whχ

´´

H
εpnq
mpµq

¯8¯

“ 0.

This implies that if the n and rχ have opposite signs η
εpnq
µ “ 0. We see clearly in

equation 3.6 that this implies

WhχpP ,´µqpaq “ 0

if n and rχ have opposite signs.

Lemma 3.3.8. Let µ P Zn. If WhnpP ,´µq is a non-zero function in the variable a

then it is a Whittaker matrix coefficient of the discrete series representation D
εpnq
mpµq.

Proof. If WhnpP ,´µq is a non-zero function in the variable a, by Lemma 3.3.7, we
know that then n and rχ have the same sign. We immediately see that expression
3.6 has the form of a non-zero matrix coefficient of the discrete series representation
D
εpnq
mpµq.

Now we can conclude with the following theorem.

Theorem 3.3.2. Let µ P Zn and suppose that

Res
λ“µ

˜

aλ`ρPΦλ`ρP
paq
FWh
n fpλq

c`n p´λq

¸

(3.7)

is a non-zero function of the variable a. Then it is a Whittaker matrix coefficient of
the discrete series representation D

εpnq
mpµq.
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Proof. We have seen in this section that

Res
λ“µ

˜

aλ`ρPΦλ`ρP
paq
FWh
n fpλq

c`n p´λq

¸

“ Λn,µ

ż

A

aµ`ρPΦµ`ρP
paqWhnpP ,´µqpbqb

´2ρP fpbqdb.

By Lemma 3.3.5, we may write

Res
λ“µ

˜

aλ`ρPΦλ`ρP
paq
FWh
n fpλq

c`n p´λq

¸

“Λn,µ

ż

A

aµ`ρPΦµ`ρP
paqCn,µbµ`ρPΦµpbqb

´2ρP fpbqdb.

Since the residue is a non-zero function, we see that Cn,µ cannot be zero. Then, we
may rewrite the residue as follows:

Res
λ“µ

˜

aλ`ρPΦλ`ρP
paq
FWh
n fpλq

c`n p´λq

¸

“
Λn,µ

Cn,µ
WhnpP ,´µqpaqFWh

n pfqpµq.

In this last expression we see that the residue given by the expression 3.5 is a constant
multiple of a Whittaker matrix coefficient of the discrete series representation D

εpnq
mpµq.
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A

Appendix

The purpose of this appendix is to collect basic prior knowledge that has been
studied beforehand the making of this thesis or general constructions that are used
throughout the thesis without mentioning. In this appendix we will give an overview
about Haar measures and the Casimir operator.

A.1 Haar measures

Let G be a locally compact group and let µ be a Borel measure on G, denoting
by B the Borel σ-algebra of G. We say that the measure µ is left invariant if
l˚gµpAq “ µplgpAqq “ µpAq for every A P B and for all g P G. Analogously, we can
define right invariant measures via multiplication on the right. When the measure
is both right and left invariant, we speak of a bi-invariant measure.

Definition A.1.1 (Haar measure). A left Haar measure on G is a regular Borel left
invariant measure, that is finite on the compact subsets of G.

We are interested in the construction of a Haar measure on a Lie group G. We
assume the reader familiar with the basic theory of densities and their integration.
We shall denote by DpTGq, the vector bundle of densities over G, with fibre DpTpGq
at the point p P G. We denote the fibre at the identity by Dg. Recall, that the
space of densities of a complex vector space is always one-dimensional. Whenever
we want to refer to the positive densities, we write D`pTGq.

Lemma A.1.1 (Construction of a density on TG). Let ω0 P D`g. Then the element
ω given by

ωpxq “ pdlx´1pxqq˚ω0 for x P G

is a positive left-invariant smooth density on TG. Furthermore, positive left-invariant
densities are unique up to a positive scalar multiples.

Proof. We shall check in the first place that ω is indeed a density. So for fixed x P G
and A P EndpTxGq, we have that

A˚ωpxq “ A˚pdlx´1pxqq˚ω0 “ | det dlx´1pxq | | detA |ω0 “ | detA |ωpxq.

Thus ω is a density. It is clearly left-invariant as

pl˚gωqpxq “ pdlgpxqq
˚ωpgxq “ pdlgpxqq

˚
pdlx´1g´1pxqq˚ω0 “ pdlx´1pxqq˚ω0 “ ωpxq.
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Precisely as ωpxq “ | det dlx´1pxq | ω0, the density is positive for every x P G since
so is ω0. To prove the last assertion, suppose we have ω1, ω2 P ΓpD`TGq. Then
ω1peq, ω2peq P Dg, which is one dimensional. Then there exists C ą 0 such that
ω1peq “ Cω2peq. Hence, for x P G

ω1pxq “ pdlx´1pxqq˚ω1peq “ Cpdlx´1pxqq˚ω2peq “ Cω2pxq

In a Lie group, we benefit from the C8- structure by taking the density ω0 “ |Ăω0|

where Ăω0 P
Źtop g and apply A.1.1. The theory of integration over densities provides

us the following integral

Lemma A.1.2. The map I : CcpGq Ñ C given by Ipfq “
ş

G
fω is a positive

continuous complex linear functional such that Ipl˚gfq “ Ipfq for all f P CcpGq.

The Riesz representation theorem for positive complex linear functionals, applied
to the positive functional in Lemma A.1.2, yields the existence of a Haar measure
on G. This Haar measure will be denoted by dg.

Remark. If G is compact, then there exists a unique left Haar measure dg for which
ş

G
dg “ 1. Let dg̃ be a Haar measure for G. Then 0 ă C “

ş

G
dg̃ ă 8. Define

dg “ C´1dg̃. By left-invariance, if there where another left Haar measure ω such
that

ş

G
ω “ 1, then 1 “

ş

G
dg “

ş

G
c0ω “ c0

ş

G
ω “ c0 for some c0 ą 0. Thus dg “ ω

Now we explore the situation when our Haar measure is bi-invariant

Definition A.1.2 (Unimodular Lie group). We say that a Lie group is unimodular
if | det Adpgq | “ 1 for every g P G.

Lemma A.1.3. If G is unimodular, then every left invariant density is right in-
variant.

Proof. Let ω be a left invariant density, then for g P G

r˚gω “ r˚g l
˚
g´1ω “ pCg´1q

˚ω “ Adpg´1
q
˚ω “ | det Adpg´1

q |ω “ ω

Lemma A.1.4. [5, Corollary 8.31] A Lie group is unimodular if it is either abelian,
compact, semisimple or nilpotent.

A.1.1 Positive densities on homogeneous spaces

The goal is now to investigate the existence of positive invariant densities on G{H,
where G is a Lie group and H a closed subgroup. It is well-known, since left
multiplication on G defines a free and proper action, that there exists a unique
structure of C8 manifold making the projection map πG{H : G Ñ G{H a smooth
surjective submersion. By differentiating, dπG{Hpeq induces a linear isomorphism
between g{h and TepG{Hq. We observe that the maps Chpxq “ hxh´1 for x P G
and h P H, leave H invariant, meaning that Adphq|h : h Ñ h. Therefore the map
πg{h ˝ Adphq induces a linear automorphism of g{h that we shall denote by Aphq.
Now we identify DpTeHpG{Hqq with Dpg{hq. Then for ω P Dpg{hq, we see that

Aphq˚ω “ | detAphq |ω “
| det Adphq|h |

| det Adphq |
ω
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Definition A.1.3 (Modular function). We call ∆ : H Ñ Rą0 given by

∆phq “
| det Adphq|h |

| det Adphq |

the modular function. The modular function is a character.

Lemma A.1.5 (Existence of an invariant positive density on G{H). [11, Corollary
19.19]. Let G be a Lie group and H be a compact subgroup. Then G{H has a
H-invariant positive density that is unique up to positive scalar multiples.

A.2 The Casimir element

The Casimir element plays an important role in the theory developed. That is why,
it has been decided to include its construction in this appendix.We will begin by
giving a brief description of the universal enveloping algebra in terms of the the
tensor and symmetric algebras of a Lie algebra . To find a more detatiled account
of the tensor and symmetric algebras, we recommend to consult [13, Chapter 9] and
[6].

Let g be a complex finite dimensional Lie algebra. Consider the two-sided ideal
J Ă T pgq generated by all elements of the form XbY ´Y bX´rX, Y s for X, Y P g.

Definition A.2.1 (Universal enveloping algebra). The universal enveloping algebra
is the associative unital algebra given by the quotient Upgq “ T pgq{J .

Again, the canonical injective map j : g ãÑ T pgq induces a linear map ν :
g Ñ Upgq when composed with the quotient map T pgq Ñ Upgq. We have the
following universal property for the universal enveloping algebra that determines
it up to algebra isomorphism: let A be any associative unital algebra and ϕ :
g Ñ pA, r¨, ¨scomq a Lie algebra homomorphism. Then there exists a unique algebra
homomorphism ϕ̃ making the following diagram commmute

g pA, r¨, ¨scomq

Upgq

ϕ

ν
ϕ̃

The Poincaré-Birkhoff-Witt theorem gives an explicit basis for the universal envelop-
ing algebra once given a basis for the Lie algebra.

Theorem A.2.1 (Poincaré-Birkhoff-Witt Theorem). [5, Theorem 3.18] Let tXiu
n
i“1

be a basis of g. Then the products Xj1

1 ¨ ¨ ¨X
jn
n for ji ě 0 form a basis of Upgq.

Remark. The PBW theorem implies that the map ν is injective since it sends linearly
independent vectors to linearly independent vectors.

The motivation behind considering the universal enveloping algebra in represen-
tation theory is that we can extend any g-module to a Upgq-module by the universal
property. On the other hand, any Upgq-module can be restricted to a g-module.
Moreover, this establishes an isomorphism between the categories of g-modules and
Upgq-modules.
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One last tool that we need is the symmetrisation map. Its importance lies in
the fact that it is an effective attempt to parametrise an non-abelian algebra by an
abelian one. Details of the construction of this map can be found in [13, Chapter
10]

Lemma A.2.1 (Symmetrisation map). There exists a unique linear map s : Spgq Ñ
Upgq such that spXmq “ Xm for all X P g.

We are now prepared to make the construction of the Casimir element. Let g be
a complex semisimple Lie algebra, h a Cartan subalgebra1 of g and let R be a root
system with R` a choice of positive roots. Recall that B the Killing form on g. is
given by BpX, Y q “ TrpadpXqadpY qq. The Killing form is symmetric and invariant
under automorphisms and under the Lie bracket.

Lemma A.2.2. The following holds

1. For all λ, µ P h˚, if λ` µ ‰ 0. Then gλ K
B gµ.

2. There are elements Xα P gα and Yα P g´α such that BpXα, Yαq “ 1 for all root
α P R.

3. B|hR defines a positive definite inner product.

Proof.

1. Let X P gλ and Y P gµ. For H P h. Since BprH,Xs, Y q “ ´BpX, rH,Y sq, the
result follows.

2. Assume by contradiction that Xαgαzt0u there does not exist Y g suc that
BpXα, Y q “ 1. This means that for Xα P gα there does not exist Y P gα such
that BpXα, Y q ‰ 0. Thus BpXα, Y q “ 0 for all Y P g. Since g is semisimple,
B is non-degenerate. Hence Xα “ 0, which is a contradiction. By the root
decomposition 1.1.3 and the previous result Y “ Yα P g´α.

3. Let X P hR. Then BpX,Xq “ TrpadpXq2q. We observe that adpXq is anti-
symmetric, then adpXq2 is symmetric. Then it diagonalises in real positive
eigenvalue. Then BpX,Xq ě 0. And if BpX,Xq “ 0, the sum of all positive
eigenvalues are zero, hence all are zero. Then adpXq “ 0. Thus X “ 0 because
B is non-degenerate.

We proceed to construct the Casimir element. Let tHju
k
j“1 be a B-orthonormal

basis of hR. We complete the basis up to a basis for g with elements Xα P gα and
Yα P g´α as in Lemma A.2.2. Since each gα has dimension 1 for α P R. Then
tHj, Xα, Yαu

n
j“1, αPR` is a basis for g. Denote tHj, Xα, Y αunj“1, αPR` its associated

basis in g˚.

Lemma A.2.3. In the previous bases the Killing form can be written as

B “
k
ÿ

j“1

Hj
bHj

`
ÿ

αPR`

Xα
b Y α

` Y α
bXα.

1A Cartan subalgebra h is an abelian subalgebra which is maximal and for which adphq is
contained in the diagonalisible endomorphisms of g
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Proof. Write

X “

k
ÿ

j“1

hjH
j
`

ÿ

αPR`

xαXα ` yαYα X̃ “

k
ÿ

j“1

rhjH
j
`

ÿ

αPR`

ĂxαXα ` ryαYα

We compute

BpX, rXq “B

˜

k
ÿ

j“1

hjHj `
ÿ

αPR`

xαXα ` yαYα,
k
ÿ

j“1

rhjHj `
ÿ

αPR`

ĂxαXα ` ryαYα

¸

“

k
ÿ

j“1

hj rhjBpHj, Hjq `
ÿ

αPR`

xα ryαBpXα, Yαq ` yαĂxαBpYα, Xαq

“

k
ÿ

j“1

Hj
pXqHj

p rXq `
ÿ

αPR`

Xα
pXqY α

p rXq ` Y α
pXqXα

p rXq.

With the previous Lemma we can dualise the Killing form, which takes the form
of

B˚ “ B “
k
ÿ

j“1

Hj bHj `
ÿ

αPR`

Xα b Yα ` Yα bXα.

We consider now the the polynomial p P P pg˚q, given by ppξq “ B˚pξ, ξq. Thus,
seen in Spgq,

p “
k
ÿ

i“1

H2
j ` 2

ÿ

αPR`

XαYα. (A.1)

Definition A.2.2 (Casimir element). The Casimir element is the image under the
symmetrisation map of the polynomial given in (A.1).

Then the Casimir operator takes the following form

Ω “
k
ÿ

i“1

H2
j `

ÿ

αPR`

sp2XαYαq “
k
ÿ

i“1

H2
j ` 2

ÿ

αPR`

XαYα ` YαXα.

Lemma A.2.4. Ω is an element in the centre of the universal enveloping algebra.

Proof. We have to prove that Ω commutes with every element in the universal
enveloping algebra. Observe that it is enough to show that it commutes with the
elements of the basis tHj, Xα, Yαu. For all j “ 1, . . . , k, it follows

ΩHj “

k
ÿ

i“1

H3
j ` 2

ÿ

αPR`

XαYαHj ` YαXαHj

“

k
ÿ

i“1

H3
j ` 2

ÿ

αPR`

XαpHjYα ´ rHj, Yαsq ` YαpHjXα ´ rHj, Xαsq

“

k
ÿ

i“1

H3
j ` 2

ÿ

αPR`

HjXαYα `HjYαXα

“ HjΩ.

With the same techniques, one can show that ΩXα “ XαΩ and ΩYα “ yαΩ for all
α P R` and the result follows.
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Usually, Ω is also refered as the Casimir operator. Consider pC8pGq, Rq the
right regular representation of a Lie group G. Then its associated g-module can be
computed by means of the differential given by the following

R : g ÝÑ EndpC8pGqq, X ÞÝÑ pRXfqpgq “
d

dt

ˇ

ˇ

ˇ

ˇ

t“0

Rexp tXfpgq.

Then for every X P g, the map RX defines a first order linear differential operator.
Moreover, RX is G-equivariant with the left regular representation, which implies
that RX is left-invariant linear differential operator. Left invariant linear differential
operators form a Lie algebra with the commutator and it will be denoted by DpGq2.
By the universal property of the universal enveloping algebra, we can extend R :
Upgq Ñ DpGq (note the abuse of notation) satisfying the following commutative
diagram

g DpGq

Upgq

R

ν
R

This extension allows us to consider RΩ P DpGq, thence we can speak of the Casimir
operator. Analogously, the discussion equally applies to the construction of LΩ.

Lemma A.2.5. Let G be a connected semisimple Lie group, AdpxqΩ “ Ω for all
x P G.

Proof. Since G is a connected Lie group, it is enough to prove the statement for
x “ expX for some X P g. First of all, the universal property of the universal
enveloping algebra yields an extensension of the adjoint action on G in the following
way

g g Upgq

Upgq

Adpxq

ν

ν

Ãdpxq

Hence Adpxq is well-defined. Then AdpxqΩ “ AdpexpXqΩ “ eadpXqΩ “ Ω, since
adpXq|Zpgq “ 0.

Lemma A.2.6. In G, LΩ “ RΩ.

Proof. Let g P G, X P g and f P C8pGq

LXfpgq “
d

dt

ˇ

ˇ

ˇ

ˇ

t“0

fpexp´tX gq “
d

dt

ˇ

ˇ

ˇ

ˇ

t“0

fpgg´1
pexp´tXqgq

“
d

dt

ˇ

ˇ

ˇ

ˇ

t“0

fpg exp´tAdpg´1
qXq “ R´Adpgq´1Xfpgq.

With the Casimir operator of the form Ω “ H2 ` 2pXY ` Y Xq,

LΩfpgq “pLHLH ` 2pLXLY ` LYLXqqfpgq

“Rp´Adpg´1qHq2fpgq ` 2RAdpg´1qpXY`Y Xqfpgq “ RAdpg´1qΩfpgq “ RΩfpgq.

2See [13, Chapters 11 & 12] for a more detailed account on DpGq.
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