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Whittaker vectors for the discrete series
representations of SLa(R)

Abstract

In the Harmonic analysis of real semisimple Lie groups, Whittaker vectors play
an important role in the Whittaker-Plancherel decomposition. These elements con-
sist of generalised vectors that transform by a character under a certain nilpotent
subgroup of G. In the group SLy(R), we will see that they are the main building
blocks of certain type of matrix coefficients of the principal series representations,
that can be identified with special functions satisfying the classical Whittaker dif-
ferential equation. In recent work of E. van den Ban, a new inversion formula for
the so-called Whittaker-Fourier transform on a semisimple group has been derived.
In SLy(R), the residues of this inversion transform appear in terms of the previously
mentioned principal series representations matrix coefficients; and they turn out to
be Whittaker functions associated with representations of the discrete series. In
this thesis, we will introduce the notion of Whittaker vector and Whittaker matrix
coefficient for both the discrete and the principal series represetations of SLy(R).
We will make explicit the connection with the Whittaker differential equation and
analyse the nature of the aforementioned residues for the Lie group SLy(R).
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Introduction

In 1982, Harish-Chandra announced he had a proof of the Whittaker-Plancherel for-
mula for the case of connected real semisimple Lie groups. Unfortunately, because of
his passing this work remained unpublished for a long time only having been com-
municated by private correspondence. Independent tretaments of the Whittaker-
Plancherel formula have appeared throughout these years, see [15]. In 2018, this
work is made published in [2]. However there is a step in Harish-Chandra’s proof
that appears to be missing. This is addressed in recently announced work of E. van
den Ban, relying on a new inversion formula for the Fourier-Whittaker transform
for a real connected semisimple Lie group. The motivation behind this thesis is to
understand the nature of the residues that this formula produces in the case of the
group SLy(R). We will profit from the rich structure of this group as it will make
the theory simpler. We will see that the theory of Whittaker vectors for this group
is intimately related to the classical theory of Whittaker functions.

Structure of this monograph

Let us outline the structure of this thesis. This monograph is divided into three
chapters and an appendix. In the first half of this chapter, we will introduce some
prior knowledge and notation that will be used throughout the text. The other half
of the chapter will be dedicated to the study of the principal series representations
and the discrete series representations. The main reference for this chapter is [13].

The second chapter is the core of this thesis. Whittaker vectors were firstly
introduced by Jacquet in [3]. We will study the concept of Whittaker vector for
both the principal and discrete series representations of SLy(R). For the latter, we
specifically outline the construction of an example of a Whittaker vector provided by
E. van den Ban. Further on in the chapter we introduce the standard intertwining
operator. It will serve us to subsequently study the Harish-Chandra c,-functions.
This will be of relevance in the study of the residues previously mentioned. Most of
this theory has been studied from [9]; except for the ¢,-functions, for which [15] has
been followed.

In the final chapter, we will see that Whittaker matrix coefficients are associated
to special functions that solve the Classical Whittaker equation for SLy(R). In
the end we will introduce the aforementioned Fourier-Whittaker transform in the
case of SLy(R) and compute the residues for the inversion formula, establlishing the
connection with the discrete series representations.
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Chapter 1

Preliminaries

This chapter will be devoted to the development of a few tools regarding the repre-
sentation theory on real connected semisimple Lie groups that will be used through
the coming chapters. The reader should be acquainted with some Lie theory basics
to make the most of the subsequent sections. Should it not be the case, the reader
is always invited to check [11]. The chapter is clearly differentiated in two parts.
In the first one we will learn about two important tools in representation theory;
namely, the Iwasawa decomposition and induced representations. Most of the proofs
will be omitted, referring to [13, Ch. 15-22] for a detailed account of the first part
of this chapter. Secondly, we treat the principal and discrete series representations
due to its relevance for the theory that will thereafter be presented; along with its
construction for SLy(R). Lastly, we discuss how discrete series representations may
be seen as subrepresentations of the principal series representations.

1.1 The Iwasawa decomposition

In this section, we will be concerned with finding an appropriate decomposition of
a general connected semisimple Lie group and describing it specifically for SLy(R).
We will derive such decomposition starting at the Lie algebra level.

Let g be a real semisimple! Lie algebra. An involution of g is defined to be an
automorphism of g that squared equals the identity. If g has such an involution,
observe that +1 are the only possible eigenvalues of the involution and therefore we
may write

g=0+ @ g-,
where g+ denote the plus and minus one eigenspaces, respectively. These eigenspaces
are orthogonal with respect to the Killing form associated to g because this is in-
variant under automorphisms. Furthermore, since automorphisms are in particular
Lie algebra homomorphisms, g, is a Lie subalgebra.

Definition 1.1.1 (Cartan involution). An involution for which the Killing form is
negative definite on g, and positive definite on g_ is called Cartan involution.

Remark. We shall denote g4 by t and p, respectively and Cartan involutions by 6.
We see that t is compact? in g as the Killing form is negative definite on t.

LA semisimple algebra is a direct sum of simple algebras. A Lie algebra is said to be simple if
it is non-abelian and it has no proper ideals
2Meaning, it is isomorphic to the Lie algebra of a compact Lie group

7



CHAPTER 1. PRELIMINARIES

Lemma 1.1.1 (Existence of Cartan involutions). [13, Proposition 15.4] Any real
semisimple Lie algebra has a Cartan involution. Furthermore, Cartan involutions
are unique up to conjugation by interior automorphisms of the Lie algebra.

Having the Killing form B and a fixed Cartan involution 6 at hand, the following
expression defines an inner product on g:

(X,YY:=—B(X,0Y) for X,Y eg. (1.1)

This map is readily seen to be bilinear. Both symmetry and invariance under
automorphisms of the Killing form make (-, -) symmetric. Let X = X+ X, € t®p.
Then

(X, X) = (X + Xy, X + X,) = B(X,, X,) — B(X, X))

The expression on the right side is positive definite as a consequence of the definition
of Cartan involution. This means that expression (1.1) defines indeed, an inner
product on g. With such inner product, the previous direct sum decomposition
stays orthogonal because so it is with respect to the Killing form.

Lemma 1.1.2. ad(t) and ad(p) are respectively contained in the spaces of antisym-
metric and symmetric endomorphisms of g.

Proof. For X,Y,Z e g
(d(X)Y, Z) = —B(ad(X)Y,07) = B(Y,ad(X)07) = —(Y,ad(§X)2).
Thus ad(X)"! = —ad(6X) and the result follows. O

By Lemma 1.1.2, we observe that ad(p) consists of real symmetric maps, all these
automatically diagonalisable with real eigenvalues. Let a < p be a maximal abelian
subalgebra of p. Since p is finite-dimensional, such subalgebras always exist. For
A € a*, we define the \-weight space

gy = (X eg|[H X] = \H)X, VH € a}.

Definition 1.1.2 (Root system). We say that a € a*\{0} is a root if g, # 0. The
set of roots is called root system and it is denoted by ¥(a, g).

We shall write ¥ instead X(a, g) when the dependence on a and g is clear. With
the previous definition, we have the following root space decomposition.

Lemma 1.1.3 (Root space decomposition). [13, Lemma 16.4; Corollary 16.10].

The set X is finite and
g=00® ((—D ga> :
aey

Moreover, this root decomposition is orthogonal with respect to the Cartan inner
product 1.1.

Remark. We have that a < ggnp. For any X € go, a+RX is abelian. In consequence,
X € a by maximality. This implies that a = go N p.

8



1.1. THE IWASAWA DECOMPOSITION

In the same spirit, denote by m the centraliser of a in t; that is to say, m = tn go.
It is easy to verify that go = m @ a orthogonally, since the Cartan involution leaves
a invariant. Let T < X denote a choice of positive roots. We may consider the

following subalgebras
n=P g, W= P 0
aext ae—%+t

These two subalgebras are related by means of the Cartan involution; via §(n) = 1.
We may rewrite the root space decomposition as follows:

g=n@mPad®n

in which the summands are mutually orthogonal by Lemma 1.1.3. We have all the
ingredients to introduce the infinitesimal [wasawa decomposition, that is at the Lie
algebra level.

Theorem 1.1.1 (Infinitesimal Iwasawa decomposition). [13, Lemma 17.3]. As lin-
ear spaces,

g=tDadn.

Remark. Observe that the infinitesimal [wasawa decomposition highly depends on
the choice of positive roots. As #(n) = n, we have

t@adnLt@ad.

We see that the right-hand side corresponds to taking —Y* as a preferred choice of
positive roots.

A decomposition at the group level shall become handy for our purpose. Assume
that G is a connected semisimple real Lie group with associated Lie algebra g. Recall
that we can endow g with a Cartan involution 6. In this setup, we have the following
decomposition of G.

Theorem 1.1.2 (Cartan decomposition). [13, Theorem 15.12]. Let K < G be the
analytic subgroup with Lie algebra t. Then K is closed in G and the map

o:Kxp—>G,(k,X)—>kexpX
is a diffeomorphism.

The Cartan decomposition of G allows us to define a unique involution at the
group level that is compatible with the Cartan involution given in g. Such an
involution will be called the Cartan involution of G. This is expressed in the following
lemmas, which correspond to [13, Lemmas 15.13 & 15.14].

Lemma 1.1.4 (Cartan involution of G). There exists a unique involution © on G
such that dO(e) = 0. The involution © is given by the following expression:

O(kexp X) = kexp(—X)

Lemma 1.1.5. K is the subgroup of fized points under ©. Moreover, K is compact
if and only if G has finite centre.
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For a as in Theorem 1.1.1, let A to be its associated analytic subgroup. Then we
can write A = expa as a is abelian. We can also regard a as the closed submanifold
{e} xainside K xp. It follows by Theorem 1.1.2 that exp : a — A is a diffeomorphism
with A closed. In fact, because a is abelian, the exponential map is an isomorphism
of Lie groups between (a, +,0) and A. Denote the inverse of this isomorphism by
log := exp~!. For fixed A € a3, we can define the following character on A,

()P A—(0,0), a*=eoed) (1.2)

Lemma 1.1.6. [13, Lemma 17.5] Ad(a)|, = a®l,, forae A and a € X v {0}. In
particular Ad(a) preserves the root space decomposition and the subalgebra n.

Proof. Ad(a)|, = Ad(exp H)|, = e Mlga = eoli)laa = ealloga)] = go] O

a G-

It will be useful to consider both the associated analytic subgroups N and N
with Lie algebras n and n respectively. With this framework, we are in the position
to define the global Twasawa decomposition.

Theorem 1.1.3 (Global Iwasawa decomposition). [13, Theorem 17.6] The map

p: KxAxN — G
(k,a,n) — kan

s a diffeomorphism.

Analogously to the group A, we may prove that N is closed in G except that in
this case we make use of the global Iwasawa decomposition instead of the Cartan
decomposition. A more involved argument proves that N = expn and that the
exponential on n is a diffeomorphism. For details, we refer to [13, Lemma 17.13].

Remark. Similarly to the infinitesimal Iwasawa decomposition, if we prefer to work
with the opposite choice of positive roots, the previous discussion yields G ~ K x
A x N, with N = expn. Since

O(N) = Oexpn) = expdO(e)(n) = expf(n) = expnn = N,

it follows that o
KxAxN=~KxAxN.

Define M as the centraliser of A of K. With such definition, it is readily seen that
M A is a subgroup of GG. It also shows that M is a closed subgroup of G contained in
the compact K, hence compact itself. We introduce the minimal parabolic subgroup
P of G to be
P = MAN.

By Theorem 1.1.3, we see that G = K P. We can apply the Iwasawa decomposition
to the minimal parabolic subgroup itself, yielding the following results. Proof of
these facts are to be found in [13, Section 19

Lemma 1.1.7. P is a closed subgroup of G. The Iwasawa decomposition restricts
to a diffeomorphism between M x A x N and P = MAN.

3This notation stands for the complexification of the Lie algebra a. For a real linear space V,
we define its complexification V¢ to be the linear space V ®g C.

10



1.1. THE IWASAWA DECOMPOSITION

Lemma 1.1.8. The group M A normalises N and N is a normal subgroup of P.

Lemma 1.1.9. The inclusion ix : K — G induces a diffeomorphism
ix : K/M — G/P.

Remark:. One_ may also talk about the opposite minimal parbolic that corresponds
to P = MAN. In fact, we shall mostly consider this one in accordance with the
notation used by Harish-Chandra.

It will be useful to take into account the projections onto the different com-
ponents of the Iwasawa decomposition. Let ¢ as in Theorem 1.1.3 in the K AN-
decomposition. For g € G, we put

k(g) = (prg oo™ ")(9), alg) = (prace ")(9) nlg) = (pryoe )(9);

where pry, pr, and pry are the smooth projections of K x A x N onto the respective
components K, A and N. One ought to be aware that these projection maps depend
on the form of the Iwasawa decomposition considered. The reader should keep in
mind that throughout the text other forms of the Iwasawa decomposition may be
more convenient to work with, for instance the NAK- or K AN-decompositions.

1.1.1 Iwasawa decomposition of SIL,(R)

This subsection will be dedicated to work out the theory that has bee previously
laid out, for the group SLy(R). In the rest of this subsection we set G = SLy(R).
Recall that G is the (connected) semisimple Lie group of 2-dimensional square
matrices with determinant 1. Its associated Lie algebra g consists of the traceless 2-
dimensional square matrices. The following elements form the so-called g-standard

triple:
1 0 01 0 0
o= b)) x=(as) = (Va)

These satisfy the relations

[H,X]=2X, [HY]=-2Y, [X,Y]=H. (1.3)

The standard Cartan involution on g is defined by 6(X) = —X*. We choose
a = RH. By the previous relations, one gets ¥ = {a, —a} < a* determined by
a(H) = 2. Folowing the definitions we have that

t = {2 x 2 antisymmetric matrices} = R(Y — X)
p = {2 x 2traceless symmetric matrices} = RH @ R(Y + X)

Clzg():RH
m=gont=0
n=g,=RX
n=g ,=RY

11



CHAPTER 1. PRELIMINARIES

At the level of G we get the following list

K =expR(Y — X) = {/% - ( Zﬁz —Czlsnf ) ‘ pe [o,zﬂ)} =S0(2) ~ !
M = {+I}

A—eprH:{at ( Ot>‘t€R+}:R+

L0 e

1 =z
NZeXpRXz{nxz(o 1) xeR}:R

— _ 10
NzeprYz{ny=<y 1) ‘yeR}:R
P = MAN = étxl) reR, t e R\{0}
P = MAN = ;t&) xeR,teR\{O}}

Lemma 1.1.10 (Iwasawa projections for SLy(R)). For g € G it holds that

_(a b _ 1 a —c va? + c? 0 1 Z’;—ii‘j
9=\ ¢ d T Vae+2\c oa 0 (Va?+c2)! 0 1 ’

Furthermore, in the KAN decomposition

(a b 1 d b (V2 + d?)? 0 1 0
" \ed) Ui\ b d 0 Vs d )\ g1 )

Proof. The proof is by computation and it is left to the reader. m

The Iwasawa decomposition of G is intimately related to the geometry of the
upper half plane. In Section 1.4.1 we shall exploit that connection in order to
construct a model for the discrete series representations of G.

We recall that the upper-half plane H" consists of all complex numbers with
strictly positive imaginary part. This subset carries a complex structure of an open
subset of the Riemann sphere C. The group G acts smoothly and transitively on C
by fractional linear transformations; that is

az +b
cz+d

forg=<i Z)eGandzeH+

The reader may prove that there are three orbits, namely, G -i = HT, R=G-0and
G- (—i) = H~. The stabiliser" of i in G coincides with K and the stabiliser of 0 in G
is P. By the Orbit-Stabiliser theorem, the map j determined by g — ¢ - i induces a
diffeomorphism from G/K ~ N A onto H*. Furthermore, the complex structure on
‘H* may be transferred so that this diffeomorphism becomes a biholomorphic map.
More specifically, this map is given by

j: NA —  H* il Mt — NA

nga; —— T+ ie? Ty o Nelieg sy

4We use the notation G, to indicate the stabiliser of the element a in the group G.

12



1.1. THE IWASAWA DECOMPOSITION

In the remaining part, set G¢ = SLy(C). The group G¢ consists of all 2-
dimensional complex matrices with determinant one. This a complexification® of
the group G. In the following we compile a list with all complexifications that we
shall use throughout the text.

02+52=1,c,se(C}

AczeXpCHz{azz<fg ei) ze(C\{O}}
NC:eXpCXz{nwz((l) lf) weC
Nc—expcyz{ﬁwz(; (1)) we(C}
PC:ACNC:{<5) 291> ‘we@,ze@\{O}}:(Gc)g

In particular, we see that Pgc is connected, as M < Ac. Mimicking the previous
discussion, the assignation g — g - for g € G¢ induces again a biholomorphic map
between G¢/Bc and C. We also note that G//K is open in G¢/Bge by the following
commutative diagram

G/K —— H
b
Ge/B —= C
Next lemma shall be convenient in in Section 1.4.1.
Lemma 1.1.11. There exists an element gy € G¢ such that
1. go-0=1.
2. Kc=go Ac gy -
3. Bg is diffeomorphic to Kc x go N¢ gg .

Proof. Note that for any element ¢ € G¢ such that ¢-0 = i, we have that Be =
(Ge)i = c(Geloe™ = ¢Pec™t = cAcNece™! ~ cAcc™! x ¢ Nee ', From this
we also observe that B¢ is connected as Pc is connected. That is to say, Bc is
generated by its associated Lie algebra be. Furthermore, be = Ad(c)Lie(Pc). We
shall impose the condition that Ad(c)H € C(Y — X) = t¢. If we diagonalise the
matrix Y — X, we observe that there exists gy orthogonal matrix with determinant
1, such that Y — X = go (iH) g;'. This implies that K¢ = go Ac gy . Computing,

we see that
1 1 4
D=\ i1

and that gy - 0 = 4. O

°For a definition, see [5, Page 437]

13



CHAPTER 1. PRELIMINARIES

1.2 Induced representations

Given a general continuous representation of a Lie group, any closed subgroup in-
duces a continuous representation of itself, just by restriction of the representation.
The other way around, there is a method to construct a representation of a given
Lie group G by means of a representation of a Lie subgroup. This resultant rep-
resentation is called induced representation. In this text we will give an explicit
construction. We will study different realisations of the induced representation in
terms of function spaces that shall be useful throughout the theory. The reader is
referred to [13, Section 19]

Assume that we are given a continuous finite dimensional representation (&, V)
of a closed subgroup H of a Lie group G(The reader should note that this is the
only generality needed for the development of the subsequent theory). Then H acts
naturally from the right on the space G' x V¢ by means t

(g,v) b= (gh,&(h™v)  (geG,he H,veV) (1.4)

This action is free and proper®. This allows us to endow G xpy Vg := (G x Vg)/H
with a unique C'*-structure for which the quotient map mgx,v : G x Ve — G xg
Ve is a smooth submersion. Analogously, we observe that H acts on G by right
multiplication and that this action is again free and proper. Hence G/H may also
be endowed with a C'* structure making its associated quotient map mg/y : G —
G/H become a smooth submersion as well. These quotient maps, along with the
projection onto the first component of G x Vg, prg : G x Ve — G induce a new
smooth map p : G x gy Ve — G/H such that the following diagram commutes,

TGx Ve

GX‘/E—>GXH‘/§

o I

We observe that each fibre p™*(¢H) < G xpy V¢ can be endowed with a linear
structure such that the map ¢4(v) = 7ax v, (9,v) becomes a linear isomorphim.
In fact, this shows that p : G xy Ve — G/H has a unique vector bundle structure
making the map mgy v, a vector bundle morphism. Furthermore, the natural action
of G on G x V¢ given by left multiplication in the first component induces a smooth
action of G on G xy V turning it into a G-equivariant vector bundle over G/H.
With such structure we can consider the space of continuous sections I'(G x g V)
of G x g Vg, endowed with the usual Fréchet topology”, on which we can define a
Fréchet representation = of GG given by

E(g)(s)(zH) = g-s(g 'zH)

6 We say that a smooth right action of a Lie group G on a manifold M is proper if the map
Y:MxG— M x M defined by (h,m) = (m,m - g) is proper in the topological sense; that is,
the preimage of a compact set is compact.

TA total trivialisation of G x g V; that is a local trivialisation (U;,7;) of G x g Ve which is also
a chart for G/H, induces a linear a linear isomorphism ¢; : I'(E |, ) — C%®(7;(U;))" for some
r € Nog. Given an index (¢, K') where ¢ corresponds to the i — th total trivialisation of G x p V¢
and K < 7;(U;) compact, we define the seminorm on I'(G xj, Vg) to be ||s]| ;) = [@i( 8|y, ) ]oo, i -

14



1.2. INDUCED REPRESENTATIONS

This representation is called the induced representation of G from the represen-
tation & of H. This particular realisation is called the vector bundle picture and it
is customary to denote = by ind%(€). Define

C(G:H:€) = (€ C(G.Ve) | Ruf = €)' f. ¥ h e H)

This space is a closed subspace of the space C(G, Vg) endowed with the usual Fréchet
topology; hence a Fréchet space itself. Moreover, since the functions in this space
only involve behaviour from the right, C'(G : H : £) can be regarded as a Fréchet
G-module with the left regular representation.

Lemma 1.2.1 (Induced picture). /13, Lemma 19.3]. (ind%(€),T(G xu V;)) ~
(C(G: H:€&),L) as representations. This equivalence is given by the map

o: I'(GxpgVe) — C(G:H:¢)
5 e B(s)(2) = 2 - s(mym(e)

Let (m, V') be a locally convex complex G-module.

Definition 1.2.1 (Conjugate adjoint of w). We define the conjugate adjoint repre-
sentation of G to be the pair (7*,V*)® defined by

™(x) = w(z1)* forze G.
It is straightforward that 7* = x if and only if 7 is unitary.

In general it would be convenient that if we start with some Hilbert structure on
Ve, this is preserved by the induction process. Unfortunately, the unitarity of the
representation is not generally preserved when inducing. Then we have to performed
what is called normalised induction. Consider a finite dimensional Hilbert H-module
(&,Ve). We define C.(G : H : &) as the subset of functions ¢ of C(G : H : ) such
that 7g/(supp @) is compact. May the reader observe that C.(G : H : §) is a G-
invariant subspace with the left regular representation. Therefore, it is a G-module
on its own.

The square root of the modular function A2 9 defines a one-dimensional rep-
resentation of H that we may tensor with the H-module V;. The tensor product
representation is isometrically realised in V¢ endowed with the representation

(€@ AV (h)w = AV2(h)é(h)v forve Ve, he H.
The inner product in Vg induces the following sesquilinear map
(0 C(GH:EQAY?) x Cu(G - H : E*@AY?) — C.(G: H : A).

given by (@, ¥)e(x) = {p(z),¥(x))e. Then for w e A"“P(g/h)*; that is, a top order
differential form on g/h we can define the following compactly supported H-invariant

map
()¢, w(@) = (o, )e() (L) *|w]) (@), (1.5)

8For V a complex topological vector space, we shall henceforth . denote by V* the topological
antilinear dual and by V' the topological linear dual. Hence V* = V/
9See appendix for a concrete treatment of the modular function.
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where [, means left multiplication by the element x € G. This descends to a com-
pactly supported density on G/H with which we define the following G-equivariant
sesquilinear map

(o) = jG/H«o,wg,w (1.6)

Lemma 1.2.2. [13, lemma 19.12]. If £ is a unitary representation, the pairing (1.6)
defines a pre-Hilbert structure on C,(G : H : £ ® AY?) for which the representation
ind$ (¢ ® AY?) extends to a unitary map in the Hilbert completion L*(G : H :
ER@AY?).

Remark. In the rest of the text, we write Ind$(¢) = ind% (¢ ® AY?). Note the change
to capital letters.

1.2.1 K-finite vectors and ('“-vectors of a representation

In the rest of the theory we will work with two type of vectors: K-finite and C'*-
vectors. In the present subsection, we give a brief description of what they consist
of. Define K to be the set of equivalence classes of irreducible finite-dimensional
continuous representations of K.

Definition 1.2.2 (K -finite vector). Let K be a compact group and (m, V') a locally
convex K-module. We say that a vector v € V' is K-finite if Span 7(K)v is a finite
dimensional vector space. The space of all such vectors shall be denoted by V.

Let V[d] denote the isotypic component of type & € IA(; that is, the space of
vectors v € V for which Span 7(K)v is equivalent as a representation to V&™) for
some natural number m(d). Clearly V[§] < V.

Lemma 1.2.3 (Decomposition in K-types). [13, Proposition 3.5]. Let (7w, V') be a
continuous locally convex representation of K on V. The following statements are
true:

1. For each§ € K, (Vs®@Hompg (Vs, V), 6®1) ~ (V[(S], 7r|v[5]) as representations.

2. We have the K-type decomposition

Vi = @ VI[d].

sek

It is well-known in Lie theory that any continuous finite dimensional represen-
tation is smooth. This is basically because any continuous homomorphism between
Lie groups is automatically a Lie group homomorphism. However, we are interested
in considering infinite dimensional G-modules. This is where the notion of smooth
vector of a representation comes in.

Definition 1.2.3 (C®-vector of a representation). Let (7, V) be a continuous Fréchet
G-module. We say that v € V is a C® vector if the function ¢,(g) := 7(g)v belongs
to C*(G, V). We shall denote the space of smooth vectors of (m, V') by V=.
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The first that we observe is that the space V* is a G-invariant subspace of V.
Let r, denote the right multiplication map by the element x € GG. Then

Ur(ay(9) = m(gz)v = (r7w)(9),
meaning that 7(z)v is a smooth vector for every z € G if and only if v is also a
smooth vector. Then V* becomes a G-module by restriction of 7 to V*. Denote
this representation by 7. The following shows that VV* may also be endowed with
a natural g-module structure.

Lemma 1.2.4. [13, lemma 21.4 and lemma 21.5]. Let (7,V') be a G-module. The
map
d
Ty 1 g — End(V®), m.(X)v= i m(exptX)v
t=0

15 a Lie algebra representation of g. Moreover, the following holds
7(z) o me(X) = e (Ad(2) X) o w(x) Ve G,VX € g.

We observe that we have endowed the space V* with two module structures,
namely, the g-module structure from Lemma 1.2.4 and the G-module structure 7*
earlier defined. If we restrict the latter to the associated maximal compact subgroup
K, we get what is commonly known in Lie theory as the underlying (g, K)-module of
V. This notion was introduced by Harish-Chandra in a more general way as follows

Definition 1.2.4 ((g, K')-module). A C-linear space V' is said to be a (g, K')-module
if it has both structures of g-module and K-module such that

1. V = Vk, endowed with coarsest topology that makes the K-intertwining em-
beddings Vs < Vi continuous for all § € K.

2. The identity 7(k) o X = Ad(k)X o w(k) must be satisfied for all k € K and
Xeg.

3. The action of X € t on v € V follows the rule:

Xv m(exptX)v.

~ dtli-o
Lemma 1.2.5. [4, Lemmas 8.1, 8.5] K-finite vectors of a unitary irreducible repre-
sentation of a connected semisimple Lie group are smooth vectors.

It is convenient to work with the space of smooth vectors of a G-module because
it sits densely inside the G-module. An account of this fact can be found in [13,
Lemma 21.8]. We can apply the previous discussion to the induced representations.
Let (£, Ve) be a continuous finite dimensional Hilbert representation of a closed
subgroup H of a Lie group G. The G-equivariant map ® in Lemma 1.2.1 restricts
to a G-equivariant map @ in the respective spaces of smooth vectors such that the
following diagram commutes

(ind%(£),T(G xy Vg)) —=— (L,C(G : H : €))

| !

(ind(6), T(G %1 Vo) —— (L, C*(G+ H : €))

and where I'* is the space of smooth sections of the bundle Gx gV and C*(G : H : §)
is the subspace of smooth functions in C'(G : H : §).
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1.3 The principal series

With the Iwasawa decomposition and the induction process we are ready to define
one of the main objects in this thesis: the principal series representations. Roughly
speaking, these are normalised parabolic induced representations with respect to
certain characters that we will hereunder describe. At a later stage, we shall be
interested in certain matrix coefficients of the principal series (see Definition 2.3.1)
that will satisfy certain ODE, yet to be specified. In this section we shall be working
with the following representations:

e A unitary representation £ of M on a finite dimensional Hilbert space V.
e The representation induced by constant unitary character 1 on N.

e The representation induced by the character (-)* on A, for X € ac, which is
given by the expression (1.2).

In view of lemma 1.1.8, we can consider the tensor product representation of the
three of them as a representation of P on Vi ® C) ® C;, which can be naturally
realised on V as

(E®@A®1)(man)v = a*¢(m)v  for v e V.
The next definition is in order.

Definition 1.3.1 (Principal series representation). The G-module Ind$(é ® A® 1)
is called the normalised principal series representation of G with parameters £ and
A, where £ € M is irreducible and unitary and A € af. In particular, if £ = 1 we
speak about the spherical induced representations.

Remark. We point out to the reader the use of capital letters in Ind%(£ ® A ® 1)
since we are considering normalised induction.

We consider

pp(H) = 1tr (ad(H)|n> = % Z dimg, a(H) (for H € ac)

2
aext

Lemma 1.3.1. [13, Lemma 20.3]. The modular function of P, as defined in the
previous section, is given by

A(p) = A(m(p)a(p)n(p)) = a**
Accordingly, (E@A® 1)@ AY?2 = £® (A + pp) ® 1. Consequently,
Trea = dS(E@A® 1) = ind%(E @ (A + pp) ® 1).

By Lemma 1.2.1, we can consider the induced realisation of the principal series that
looks like

C(G:P:£@AQ1) ={f e C(G,Ve) | Rpf = &(m(p) talp) " f, Vpe P}

equipped with the left regular representation. In order that the text does not become
notationally very heavy, we shall as of now denote the previous space by C(P : £ : \)
and the left regular representation by mpg .
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We observe by a simple computation that (EQA®1)* = £*@—A®1 = EQ—A®1, as
we have assumed that £ is unitary. In particular, the one dimensional representation
defined by £ ® A ® 1 is unitary if and only if A € ia*. Since G/P is compact,
Co(P:&: X)) =C(P:¢&: X and the bilinear form given in equation (1.6) provides
the principal series representation with a non-degenerate sesquilinear G-equivariant
pairing with respect to the representations 7p¢y and mp, 5. According to Lemma
1.2.2, the pairing defines a pre-Hilbert structure on C'(P : £ : \) extending mpg ) to
a unitary representation on L*(P : £ : \). However, the structure presented by the
Iwasawa decomposition, simplifies the pairing to integration over K, in the following
sense.

Theorem 1.3.1. [13, Theorem 20.5]. Let dk be the normalised Haar measure on
K. Then the form we A" (g/h) defined in formula (1.6) can be normalised so that
foroe C(P:&: ) andyp e C(P:&:—=)\)

(or ) = L/P«o, B dew = JK@(@, b(k)e d

Another realisation of the principal series plays an important role. This is the
compact picture. Observe that M is a closed subgroup of K, hence we can make
sense of ind%, (€) for € € M. Since K is compact, Ax = 1 and therefore indf; (&) =
Ind}; (€). By Lemma 1.2.1, we can realise it as

C(K : M:€) = {f € C(K,Ve) | Ruf = €7 (m)f, Ym € M)
with the restriction to K of the left regular representation.

Lemma 1.3.2. [13, Lemma 20.6]. The map rx(\) : C(P:£:)\) - C(K : M : ¢€),

defined as the restriction to K, is a K-equivariant topological linear isomorphism.

Via the linear isomorphism, rx(\) we endow C(K : M : £) with the structure of
G-module making this linear isomorphism G-equivariant. This realisation is called
the compact picture and we shall denote it by (mpe, C(K : M : £)). By means of
the Iwasawa decomposition as in Theorem 1.1.3, an easy computation shows that if
feC(K:M:¢), it follows that

(mpe(2) F)(K) = (reN) 7' ) (@™ k) = a(@™ k)7 f(k(2™"k)
for fe C(K:M:€¢) andall ze Gand ke K.

Remark. We will see further on that the advantage in considering the compact
picture realisation is that the dependence on A is removed from the representation
space. This will allow to perform analytic continuation in certain functions to be
regarded in the next chapter.

1.3.1 Generalised section

In this subsection, we describe what generalised sectionsof the principal series are.
This will be central to define Whittaker vectors in the next chapter. For a more
general definition, we refer to [12].
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Definition 1.3.2 (Generalised vectors for the principal series). The space of gen-
eralised vectors for the principal series representation is defined to be the antilinear
topological dual space of C*(P : ¢ : —)) equipped with the strong topology, we
denote it by

CP(P:&:N):i=CP(P:¢&:—N\)*

Remark. In general, generalised sections are defined as some topological dual of
compactly supported sections. However, we have seen before that CX (P : £ : \) =

CP(P:&:N).

The sesquilinear pairing given in (1.6) provides a linear continuous embedding
C(P:&:X)— C (P :&:A). The space of generalised vectors has a G-module
structure that can be described in the following manner: mpea(9)n = nomp, _x(97")
for ge Gandne C~®(P : £ : A). This representation extends the one in C*(P, &, \)
justifying the slight abuse of notation.

The G-equivariant topological linear isomorphism in Lemma 1.3.2 induces a G-
equivariant topological linear isomorphism by dualising between C~®(P : £ : \) —
C~(K : M : &) where C~*(K : M : €) is defined in the same manner as for the
principal series and it is endowed with the strong topology, as well. In the next
lemma, we see that the behaviour that the functions of the induced picture of the
principal series representation have can be extended to the space of the generalised
sections of the principal series representation.

Lemma 1.3.3. /9, Lemma 1.42]. The embedding C*(P : £ : \) — C%®(G, V)
extends uniquely to an embedding C~*(P : £ : \) — I'"®(G x V), which is G-
equivariant when I'=*(G, Vg) in equipped with the left reqular representation. Fur-
thermore, the image of this embedding sits in

{ne C™(G, V) | Ryn = &(m(p))'a(p) """, Vp e P}

1.4 The discrete series

The discrete series representation is the second main character of our story. In the
last chapter we will see that residues in the Fourier-Whittaker inversion formula for
SL2(R) (see Section 3.3) appear as matrix coefficients of this sort of representations.
This means that there is a contribution of the discrete series in the Whittaker-
Plancherel formula for SLy(R). In this section we start by defining the concept of
matrix coefficient and discrete series representation. We shall see that in the case
of SLy(R), we will be inducing from certain unitary characters of SO(2) in order
to construct the discrete series representations. We will study a particular model
in which to realise the discrete series representations of SLy(IR). We shall begin by
introducing the concept of matriz coefficient map of a representation.

Definition 1.4.1 (Matrix coefficient map). Let (7, V) be a G-module. The matriz
coefficient map is the G- equivariant map m : (V@ V* 7 ® 1*) — (C(G),L x R)
given by m(v®mn) = (r(g~')v,n). Whenever, v®n eV ® V* is fixed we speak of a
matrix coefficient.

We are now in place to define what a discrete series representation is.
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Definition 1.4.2 (Discrete series representation of G). We say that an irreducible

unitary representation 7 of GG is of the discrete series if some non-zero K-finite matrix
coefficient is in L*(G).

The following is criteria to check whether a representation is of the discrete series
can be found in [4, Proposition 9.6]. This is

Lemma 1.4.1. The following statements are equivalent for an irreducible unitary
representation © of G.

1. 7 is of the discrete series.
2. All matriz coefficients of m are square integrable.

3. If w is a irreducible subrepresentation of L*(G) endowed with the left reqular
representation.

1.4.1 Holomorphic discrete series representation for SLo(RR)

Once familiarised with the concept of discrete series representations, we shall study
a model for the discrete series representations for SLy(R). The result corresponding
[4, Theorem 12.21] guarantees that the model we are about to construct is unique
up to equivalence. This model is based on the upper-half plane, so we retain the
same framework as in subsection 1.1.1.

Firstly, we recall which form the K-types have. Since K is compact and abelian,
all K-types are continuous one-dimensional representations, hence they are given
by continuous characters on K. Again, compactness of K implies that each one of
these characters is unitary, meaning, 7(k,) = 4 O& =% Since 7(ky) has to be
equal to 7(ka,), d7(0)(Y — X) is an integer. Thence

K={n:K—C| Ta(ky) = €™, n e Z}.

Let gy be as in Lemma 1.1.11. The K-types can be extended to characters on B¢
given by
7o (exp 2i(Y — X)(expwAd(gp)Y)) = e™*

for z,w € C. We henceforward denote by C,, the one-dimensional Bc-module in-
duced by the character 7,,. The discrete series representation for G will arise from
a holomorphic induction procedure. Specifically, the holomorphic structure will be
derived from the holomorphic line bundle £, = Gc x5, C,.

Unfortunately, if we desire to proceed and induce like in the previous section, it
might be that the space of global holomorphic sections is trivial. Hence, we must
induce locally. Let Uy be an open set in G¢/Be and U the preimage of Uy under
the quotient map 7 5. : Gc — Gc/Be. The space of local holomorphic sections

over Uy of the bundle £,, say I'®(Uy, £,,), can be identified with the space
O(U : Be : 1) :={f € OU) | Ryf =7,(b)""f, Vbe Bc}

where O(U) means the space of holomorphic complex valued functions on U. Clearly,
with the left regular representation, this becomes a G-module if Uy is G-invariant.
Now we apply the discussion of the previous paragraph to Uy = G/K ~ NA. Then
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U in our case corresponds to [NV AEC,_Which equals GB¢ because K G n Be. By
right invariance, functions in O(U : Bc : 7,,) are determined if we know their value
at NA. That is to say, if f € O(U : B¢ : 7,,), then

f(gb) = f(nakb) = 7,,(b) ‘7, (k)" f(na) (fornak e NAK,be Bc)
Lemma 1.4.2. The function o, : NA — C given by
on(na) =a "

defines a nowhere vanishing function in O(U : Be : 7,) for n € Z. Furthermore,

O(U : B¢ : 1,) = O(NA)o,

Proof. We treat the case n = 1 in the first place. Consider the natural representation
of G¢ on C? given by matrix multiplication. Define the standard pairing 3 : C? x
C? — C given by

W

Bz, w) = 2'w = ( = zg)(““).

The bilinear map 3 induces a linear isomorphism between C? and (C?)’. Our aim is
to find vectors u, v € C? such that k-u = 7 (k)'u for all k € K and S(n'v,-) = (v, )
for all n € N. One can easily prove that u = e; +1e5 and v = —iey do the job. Then
we consider the matrix coefficient of the G- module C? given by

M _iey.e1ties (M) = B(—ieg, na - (e + iez)) = B(—ies,a- (e1 + iez)) = a”*.

The representation of G¢ on C? is holomorphic, since G¢ has a structure of
complex Lie group and any finite dimensional representation of G¢ is holomorphic.
Therefore, the previous matrix coefficient is holomorphic. By holomorphic continu-
ation, we can extend to k € K¢

k- (eg +iey) = (k) (er + iey)

We also see that g gy - (€1 + ies) = (e +iey) for me N¢, as g;' - e2 = e + iey
Then it follows that

b- (e +iey) =1 (b) '(ie; +e3) (Vbe B)

Hence m_je, e1+ie, € O(U Bc : 7). For general o, we observe that o, = (01)",
thus nowhere vanishing and ¢, € O(U : B¢ : 7,). It is also rather clear that
O(NA)o, € O(U : B¢ : 7,). To prove the other inclusion, we observe that if
feOWU:Bc¢:t,) then fo,' e O(G: K : 1p) = O(NA). O

Recall that the exponential map defines diffeomorphisms a — A and n — N. As
finite-dimensional vector spaces, we can consider dt and dx the respective Lebesgue
measures on a and n. We now may define da,dn to be the left Haar measures
on A and N, respectively; such that exp*da = dt and exp*dn = dx. Let X,
be the subspace of functions f belonging to O(U : B¢ : 7,) such that fo; ! is
L*(NA,a ?dadn). One can show that the inner product in L?*(NA,a *Pdadn)
defines a pre-Hilbert structure on X,,. By means of the upper-half plane realisation,
we will see that it is actually a Hilbert space and that the left regular representation
is unitary, for n < 2.
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Definition 1.4.3 (Holomorphic discrete series representation of SLy(R)). We call
the G-module (X _,,, L) for n = 2 the holomorphic discrete series representation.

Remark. The reader should be aware that we have not proven yet that the previously
defined representation is of the discrete series. This comes later on.

The holomorphic discrete series representation can be realised on the upper-
half plane, as well. Consider the following G-module: for n > 2 and f € H,; =
O(H™) n LA2(H*, y"2dzdy), define

D} (g)f(2) = (a—c2) " f(g™12) forg = ( o ) e

with the following pairing
G HY X HE — €, (o= | pla+ )0+ i) v dudy
H

In addition, one can show by the Cauchy integral formula, that the space H, is
closed. This means that H is already complete with the L?-norm, hence a Hilbert
space itself. Moreover, it is readily seen that the D is unitary with respect to this
inner product. The following facts will be useful in the theory to come. They can
be proven by computation so the proofs are left to the reader.

Lemma 1.4.3.

Im(z) det g a b
Im(g . Z) = W fOTg = ( c d ) S GLQ(R)

Lemma 1.4.4. Let j : NA — H be the map as in Section 1.1.1. For f e X_,, with
n = 2, we have that

)nf(j_l(g_l'z)) forg = (Z 2) eGandzeC

a —cCcz

Fa e - (

la — cz|

We are now ready to establish the equivalence between the two realisations of
the holomorphic discrete series previously defined.

Lemma 1.4.5. (X_,, L) ~ (H}, D}) as representations of G.

Proof. In order to prove the statement, we define the following linear map

T (X_n L) > (HF, DY), foT(f) = % foulyaoi

We prove first that T is well-defined. Since f € O(Q : B¢ : 7,) = O(NA)o_,.
Then fo, € O(NA), hence T'(f) € O(H). We can rewrite T'(f) for f € X_,, in the
following form
V2T (f)(2) =fou(i71(2)) = F(G (@ + iy))an(i~ (@ + iy))
= (2 + i) on(natuog ) = f(7 (2 +iy))y ™"
=[G} (2))Im(z) "
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Computing the L2-norm

N « [ dzdy
2T(f H+—J J V1) +iy)y "y Qdychr:f 1% <y )

The last equality holds by change of variables under for the diffeomorphism j~!. By
computing, we get that

dxd
* ( ny) = 2a"*a*dnda = 2a"*’dnda
Yy

Hence ||T(f)| g+ = | f|x-» < . This shows that 7" is well-defined and that it is
a linear isometry. One can readily show that T is bijective with inverse T—!(f) =

(foj)o_,. Only G-equivariance of T remains to be shown. One may observe that
this is equivalent to showing that, for fe X_,,, g€ G and z € H,

Flg™t ™ (@) m(2) "2 = (a — ) "Im(g" - 2)f (77 (g™ - 2))

The previous expression clearly holds as a consequence of Lemmas 1.4.3 and 1.4.4
combined. O]

The conjugate dual with respect the H,-pairing of the holomorphic discrete
series representation plays a crucial role in this theory . These will be denoted by
(H, , D, ), which under the previous pairing, it can be described as

D (9)f(2) =(cz+a)"f(g'2) for fe H = O(H)n L2(H,y" 2dxdy)

This is usually called the antiholomorphic discrete series representation.

Lemma 1.4.6. [/, Proposition 2.7]. The discrete series representations D are
irreducible.

Lemma 1.4.7. D forn > 2 are of the discrete series.

Proof. According to Definition 1.4.2, we only need to find a K-finite square inte-
grable matrix coefficient. Define the function f(z) = (2 +4)™" on H. It is clearly
holomorphic and its L?-norm is finite, therefore f € H,". Consider m;; the matrix
coefficient of the discrete series D;". In [4, Proposition 5.28] can be found the com-
putation showing that its L? norm is finite. This is based on another realisation of

the discrete series. Analogously, D, is also a discrete series representation of G. [

It will be useful to consider the underlying (g, K')-module of the discrete series
representation of G. Consider the functions on H} given by

(= — i)t
(z +d)ntk

Ynk(2) =

It is easily shown by computation that D! (k, ), = €' F2M¢1), 1 meaning that 1,
lies in the isotypic component of type 7, 9;. Performing the K-type decomposition
in Lemma 1.2.3, we find that

(H:>K = @Cwn,k‘

keN
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By Lemma 1.2.5, Span{t,, | k € N} < (H,)*. We may also compute the associated
g-module. Assume f € (H)*, it follows that

(DDDNE) = G e f(e2) = nf(s) - 227
(DDCONE) = G| Fe= =1
(DN = 5| =ef (25 ) = nere)+ 712)2

Remark. From this, we observe that if f € (H)®, then f’,zf" are also smooth
vectors for the representation. Hence, by induction, z*f(™ is also a smooth vector
for 1 < k < m. This will be important at a latter stage.

1.4.2 Discrete series vs Principal series in SLy(R)

In this section, we will compare the discrete series representation with the principal
series representation of SLy(R). The former can be embedded in the latter for the
appropriate choice of characters. This discussion will be helpful to understand theory
to come further on. In order to establish this embedding we will use Casselman’s
subrepresentation theorem.

Theorem 1.4.1 (Casselman’s subrepresentation Theorem). [/, Theorem 8.37] Let

(V,7m) be an irreducible admissible (g, K)-module. Then there exists £ € M, X € af.
for which there exists (g, K)-equivariant linear embedding

Vie = Ind%(E@A®@ 1)k

Definition 1.4.4. A G-module is said admissible if all its isotypic components are
finite dimensional.

Remark. Tt can be shown that all irreducible unitary representations and the prin-
cipal series representations are admissible. This corresponds to [4, Theorem 8.1 &
8.4], respectively.

In the rest of this section we let G = SLy(R) and recover all notation in Section
1.1.1. The following result is a consequence of Lemma 1.4.6, the previous remark
and the unitarity of the discrete series representations.

Corollary 1.4.1.1. Let n > 2. Then (H})x — Ind%(E@A® 1) for some £ € M
and \ € af.

The aim for the rest of the section is to compute for which A € af and £ € M
we have such embedding. First we observe that the holomorphic discrete series has
the same behaviour on M as the principal series. Indeed, in the construction of
the holomorphic discrete series we require the functions to have 7,, behaviour in the
same manner as in the principal series. Recall that the M-types of G are just the
K-types of G restricted to M. Since M = {+I}, we have that 7,|,, = 1if n is
even and 7,|,, = ¢ if n is odd, where ¢ denotes the sign function. This means that

M = {1,e}.
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In order to determine which A € af corresponds to H,', we shall make use of the
Casimir operator'’. Let the g-standard triple be as in Section 1.1.1. This basis is
not normalised with respect to the Killing form. In this basis, the Killing form B is
given by the following matrix

H

oo o X
%H;O;.<

8 H
B=1|0 X
0 Y.

Then the Casimir operator has the following form

1 1
Q= gH? - Z(XY +YX).

Nevertheless, after appropriately rescaling the Killing form B, we shall make all
computations with the following rescaled Casimir operator

Q=H>+2(XY +YX).

Lemma 1.4.8. The Casimir operator 2 acts on O(U : B¢ : 7,,) by the scalar n?—2n.
Furthermore, it acts on Ind%( @ A®1) by the scalar (A + pp)(H)? + 2(\ + pp) (H).

Proof. We start with the first statement. Let 2 denote the Casimir operator in G
and let gy € G¢ as in Lemma 1.1.11. By Lemma A.2.5, we know that

Q = Ad(g0)Q = Ad(go)H? + 2Ad(go)(XY + Y X) = H*> +2XY + Y X

where H, X,Y mean the respective images of H, X, Y under the map Ad(gp). We
firstly observe that if f € O(U : B¢ : 7,,) then

Ryf(9) = —| flgexptAd(go)Y)

t=0

= Etzof(g) = 0.

Secondly, note that the Casimir operator can be rewritten as
O [2 42XV + VX) = 02— 2/ + 4XV.
These observations together with Lemma A.2.6 yield
Lof = Rof = Rof = R%f —2Rpf + 4R¢Ry f = R%f — 2Ry f.

Now, we only need to compute the Ry f, for f € O(U : Be : 7,). One can see that
H = Ad(go)H = —i(Y — X) and therefore

d

= Sl Hlgep ity ~X) = S i) =n.
t=0

R f(g) =@l

Consequently,
Lof = R4 f —2Rgf = (n* —2n)f.

10For a general overview of the Casimir operator we refer to appendix A.2.2
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We prove the second assertion in the same spirit. For f e C®(P : ¢ : \) we have

Reflg) = 4| fgm) =2 fg) =0
t=0 t=0

Ruflo) = & Floan)= S Om0f(g) = (A4 pp)(H)f(g).
t=0 t=0

We have again then
Lof = Raf = (Ru)*f = 2Ruf = (A + pp)(H)? + 2(X + pp)(H)) .
O

Since two irreducible equivalent g-modules need to have the same infinitesimal
character (See [13, Corollary 13.18]), we can equate both actions of the Casimir
elements of the previous lemma, yielding

n? = 2n = (A + pp)(H)? + 200+ pp) (H)) <= (n— 1) = (\+ pp + 1)(H)?

Using that pp(H) = —1 in G, we have that A\(H) = +(n — 1). The Langland’s
classification will allow us to exclude one of the previous values. This states that if
(Re X, ) > 0 for all @ € ©* then Ind5 (6 ® A® 1) has a unique irreducible quotient.
By dualising we get that if (Re),a) < 0 for all @ € ©* then Ind%(é ® A ® 1)
has a unique irreducible subrepresentation. For a more detailed exposition of the
Langlands decomposition and its proof, we refer to [10, Theorem 5.1]. This means
that Ind%(f’ ®A®1) has a unique irreducible subrepresentation if (Re A\, ) > 0. By
the general theory, one can show that the finite dimensional representation of highest
weight —(n—2)pp is embedded in the induced representation Inds(§®—(n—1)pp®1).
Since —(n — 1)pp(H) = n — 1 > 0, the principal series Ind%(¢ ® —(n — 1)pp ® 1)
cannot have any more subrepresentations, meaning that (H," ) cannot be embedded
in Indg(f ®—(n—1)pp®1)k. Hence

(HN gk — Ind% (6@ (n— 1)pp @ 1)k
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Chapter 2

Whittaker matrix coefficients

Whittaker matrix coefficients wiil be the core of this thesis. In short, these are con-
tinuous linear functionals with certain character behaviour on the group N resulting
from the Iwasawa decomposition. We motivate them by studying the Whittaker
vectors for the principal series representations. Next, we introduce the standard in-
tertwining operator for SLy(R), which will allow us to study the asymptoticts of the
so-called Whittaker matrix coefficients. This will be a particular matrix coefficient
of great interest for the following chapter. When performing the aforementioned
asymptotics we shall be left with a particular family of functions: the c-functions.
In the sequel of this chapter we shall study their poles, which will be of considerable
importance. We wil finish this chapter with a construction of Whittaker vectors for
the discrete series representations. Most of this chapter concentrates on the group

SLy(R).

2.1 Whittaker vectors for the principal series

In the section we motivate the concept of Whittaker vector in generality by con-
structing the space of Whittaker vectors of the principal series representations.
These are generalised sections of the principal series representations with certain
character behaviour with respect to N.

Let G be a connected semisimple real Lie group. Consider y : N — S! be
a continuous character on the N < G from the Iwasawa decomposition. As we
have seen before, a unitary character induces a continuous unitary one-dimensional
representation. For such a unitary character it always holds that dy(e)(n) € iR.

Definition 2.1.1 (Regular character). We say that the continuous character x :
N — St is regular if dx(e)g, # 0 for all a simple root’.

As for now, retain the notation as in Section 1.1.1. According to Definition
2.1.1, regularity in this case is equivalent to requiring that r, := —idx(0) # 0 as
g has only one simple root (namely a(H) = 2). Take the following G-module into
consideration,

C*(G/N;x) ={f € C(G) | Rf = x(n)f, Vn e N}

"'We say that a € £ is simple if it cannot be written as the sum of two other positive roots.
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endowed with the left-regular representation. By Lemma 1.2.3, we may decompose
the space C*(G/N;x) as a direct sum of K-types, that is

C*(G/N; X))k = P C*(G/N; x)[7n]

neZ

By application of Lemma 1.2.3 again, observe that the 7,-isotypic component is
isomorphic as a K-representation to the space

C*(1—p; G/N; x) :={f e C*(G/N;x) | Lpf = (k) f, Vke K} (forneZ)
Hence, we can write

C*(G/N;x)k = P C*(rn; G/N; x).

nez

Remark. By the Iwasawa decomposition as in Theorem 1.1.3, the restriction to KA
induces a topological linear isomorphism 74 between C*(G/N; x) and C* (K A), by
the Iwasawa decomposition. Analogously, the restriction to A provides a topological
linear isomorphism between C*(7,,; G/N; x) and C*(A).

According to Definition 1.4.1, the matrix coefficient map for the principal series
Tp ¢, corresponds to the map

m:CP(P:E: N)QC (P :&:-)) — C°(G)

given by m(e ® 1)(g) = (mp (97 "), n). Our goal is to find conditions on ¢ ®7
so that it belongs to m=Y(C®(r,,; G/N; x)). Let o®n e m~(C®(7,; G/N;x)) and
let ke K and g € G. On the one hand it holds that

Lim(e ®@n)(g) = mpenlg k), n) = m(np e, (k) ®n)(g)

Whereas on the other hand, we see that

Ta(k) " 'm(e @ n)(g9) = m(r. (k)" o ®@n)(9)
Equating both sides we get that

m((mper(k)p — (k™)) @n) =0 (Vke K).

Therefore, imposing 75 ¢ (k)¢ = T, (k™) for all k € K, we find that ¢ is of the
form

p(g9) = p(kan) = 7,(k)p(an) = 7 (k)a "7
since p € C*(P:£:)). In consequence, we observe that ¢ must be the extension,
up to a scalar, of 7, to C*(P : £ : \). Analogously, we also must have

Rym(p ®@n) = m(p®@mpe 5(n)n) (VYneN)
In order that m(¢ ® ) belongs to C*(7,; G/N; x), it must happen that

1

m(p @ mpe _x(n)n) = x(n)m(e®@n) =m(p® x(n)""n).

If in this case we require the condition 75, _5(n)n = x(n)~'n, we say that such an

n is a Whittaker vector for the principal series representation C*(P : € : \). Then
we define

Wh, (P:&:)) = {17 eC ™ ®(P:&:N) | Wp@,\(n)n =x(n)"'n, Vne N}
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Remark. The reader should note that the space that it has been defined above is a
subspace of the generalised sections of the principal series, whereas the discussion
outlined prior to the definition concerns functions in the induced picture.

The previous definition motivates the following generalisation

Definition 2.1.2. Let (V, ) a G-module and let x be a character on N. We define
the space of Whittaker vectors as

Wh, (V) ={Xe V' : Xom(n)™" = x(n)A\, Vne N}.

Remark. In the previous definition, we have used the topological linear dual instead
of the toplogical antilinear dual. This is done in accordance with the notation that
Wallach uses. Nevertheless, we stick to the notation previously defined for the
principal series representation. The relation between both notations is as follows

Why(P:¢:)\) = Wh, (Ind$(e®@ -A®1))”
In [3], Hervé Jacquet proved the following result in 1967.

Theorem 2.1.1. The space of Whittaker vectors of the principal series is one di-
menstonal.

2.2 Standard intertwining operator

The standard intertwinning opearator is an important tool in the study of principal
series representations. Among its many applications, we shall be concerned with its
relation with Whittaker matrix coefficients. More concretely, we will see in the next
section that standard intertwining operators are closely related to the asymptotics of
the aforementioned Whittaker vectors. In this section, we shall give a construction
of such intertwining operators and study some of its properties in the context of
SLy(R).

We recall from the first chapter that N coming from the Iwasawa decomposition
is a closed subgroup, hence a Lie subgroup of G. This means that there exists a
choice of left Haar measure dnn. According to lemma A.1.4, N is unimodular as it
is nilpotent (more concretely abelian). This means that dn is also right invariant.
Recall the setup of Sections 1.3 and 1.1.1. Consider the following function: for
feC®(P:&: )\, define

Aperf:G—C, (Aperf)z) = J(Li—lf)(ﬁ) an,

N

whenever it makes sense.

Lemma 2.2.1 (Absolute convergence of Apg )\ for SLy(R)). The previous integral
converges if (Re A\, a) > 0.

Proof. Without loss of generality, we only need to prove that the integral
f |f(m)|dn <
N
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for every f e C®(P : ¢ : \). This is because the general statement will also be valid
for the functions L*_, f € C*(P : £ : X\) and = € G, once proven the previous. The
estimate goes as follows

[ isnan = [ 150 mlan = [ s atm) o an

< ek J a(m) A i = | f j (14 a2)-HEexeonaD g,
N 0
The last integral is convergent if and only if (ReX + pp)(H) > . This is, if and
only if (Re A\, a) > 0 =

Accordingly, we have that if f e C¥(P : £ : X) and (ReA, ) > 0, then Apg f
is a complex valued function on G. In fact, Ape ) f € C*(G) because f is smooth
and absolutely convergent. The following lemma shows that Apg » defines an inter-
twining operator that is called the standard intertwining operator.

Lemma 2.2.2 (Standard intertwining operator). If (Re A, a) > 0, the map
AP :P:E:X)i=Apey: CP(P:E:0) > CP(P: €N

defines a linear G-intertwining operator called standard intertwining operator. Fur-
thermore, this map is continuous with respect to the supremum norm | - | k-

Proof. By Lemma 2.2.1 it is clear that Apg , is well-defined. We have to check that
its image lies in C®(P : € : A\). We will show this, by showing how it behaves
separately in M A, and in N. Denote by C, : G — G the 'conjugation by 2’ map
for x € G. We notice that for ma e M A,

(Cima)*dn = |det Ad(ma)|,| dr = Ap(ma) = di = a®* d7.

Therefore, we have that

N

(Apeaf)(@ma) = E(m) a0 f (Cona)* f (aT)dm
_ t(m) g J F@A)(Cyryn)* dE

=&(m)” fa™r" %(Apgxf)( ).

This proves the correct behaviour in MA. The behaviour in N follows by left
invariance of dn. Altogether,

(Apeaf)(@man) = &(m) a7 (Ap \f)(x)

Hence Aperf € CP(P: & : N)if fe CF(P: & : \). It is clear that this operator
intertwines the left regular representations as

AP:P:€6:N)L,f(z) = JN(Lm1gf)(ﬁ) dn
=AP:P:&:N)f(g ')
=(Lyo A(P:P:£:0)f)()
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2.3. WHITTAKER MATRIX COEFFICIENT

for every g,z € G and for every f e C®(P : ¢ : \). By the equivariance of the map
and the estimate in proof of Lemma 2.2.1

AP P& N f(k)] = JN‘Lk—lf(ﬁ)‘ dn < Ol Ly, < Ol flloo.xc;

from where the continuity of A(P: P : ¢ : \) follows. O

The standard intertwining operator can be realised in the space C*(K : M : §)
satisfying the following commutative diagram

co(P g )P oo gy
lmm” HK(AF

Co(K - M ;&) M) oo (e s 0 g)

where 75 (M) and ri (M) are the G-equivariant linear isomorphisms given in 1.3.2

for P and P respectively. It will be of importance to us to give a formula for
A\(P: P)for Aeaf. Let fe C*(K : M :¢).

Ay(P: P)f(k) zrfoA(P P X: o (rd) T (k) = J (r) L f (k) dn

- | stk@yatm e an

It is of considerate importance that A, acts on 1 a space that does not depend on the
parameter A. This was not the case of A(P: P: ¢ : A). The two following lemmas
can be found in [14] and they are related to the holomorphicity of the assignation
A— A -

Lemma 2.2.3. The map {\ € af | (ReX,a) > 0, Va € ¥} — Endg(C*(K : M :
€)) given by X\ — Ay is holomorphic.

Theorem 2.2.1 (Vogan-Wallach). The map in Lemma 2.2.3 can be meromorphi-
cally extended to af.

Remark. In this section, we have studied the standard intertwining operator for
the very specific case of SLy(R). Moreover, we have developed the theory for the
standard intertwining A(P : P : ¢ : \) from P to P. The reader should notice that
the analogous is also possible, namely, the standard intertwining operator from P
to P. In fact, the latter is the one that we will be henceforward considering. In a
more describing note, the standard intertwining operator on a general semisimple
Lie group G can also be treated and the different choices of parabolic subgroups
that G might have provides a wide range of standard intertwining operators. A
clear exposition of the standard intertwining operator can be found in [4, Chapter

7).

2.3 Whittaker matrix coefficient

In the discussion of Section 2.1, we have seen that n € Wh, (P : £ : \) must behave
according to the expression 75, _x(n)n = x(n)~'n for every n € N. However, we
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could aim for better and look for a function instead of a generalised section. Let f €
Why(P:&:=X) nC®(P:¢: —X). Then clearly, f(nman) = x(n)~'&(m) 'a**r,

for nman € NP. We define the following function

%,57—X (21)

(z) = x(n)"*¢(m)tar PP if & =nmane NP
0 otherwise

It is clear that this function_ has the appropriate character behaviour to lie in the
space Why (P : £ : —=X\) n C*(P : £ : —\). However, this function is not continuous
in general, for all choice of A € af.

Lemma 2.3.1. [9, Proposition 2.11]. The function Npex s continuous on G if and
only if \e U = {\eaf |[(ReA+ pp,a) >0, Vo e L*}.

Lemma 2.3.1 implies that the map U 3 A — np, 5 has no antiholomorphic

extension from a% to C(P : & : —\) in the usual way. Nonetheless, this map induces
another one, denoted by V¥, in accordance with the following commutative diagram

U—=CP:€:-N) — C®P:&:-A) ——= C (K :M:¢)

\

that can be holomorphically extended to af. Here we should clarify in what sense
we mean ”holomorphically”. We observe that C~*(K : M : ) carries a natural
filtration given by C, (K : M : &) := C*(K : M : £)* for k € N and for which
the inductive limit topology coincides with the strong dual topology. The space
CH(K : M : €) is a complex Banach space, since K is compact. Hence C) “(K :
M : &) as well. Let V be a complex linear space and O € V and open subset.
We say that f: O — C®(K : M : &) is holomorphic at z € O, if there exists an
open neighbourhood O, of z and k € N such that f : U — C,*(K : M : §) is a
holomorphic map of complex Banach spaces. The following theorem corresponds to
[9, Proposition 2.18]

Lemma 2.3.2 (Holomorphic extension of Tm’&_x). Let x be a reqular character on
N. Then ¥ extends holomorphically to af. in the sense of the previous paragraph.

Definition 2.3.1 (Whittaker matrix coefficient). We call the following matrix co-
efficient of the principal series Ind%(ﬁ ® (=) ® 1) the n — th Whittaker matriz
coefficient:

Wh, (P, A)(9) := m(7, 5, ®@npex)(9) = Tpe A(9) ' Tub, 2 Mpes)

where 7, 5, (kan) = 7,(k)a*?7 and 15, 5 follows the expression in (2.1). In the
particular case of & = 1, we say that Who(P, )\) is the Spherical Whittaker matriz
coefficient.

As we have seen in Section 2.1, Wh,(P,\) € C®(r,,G/N,x). As we have
remarked in Section 2.1, the restriction to A according to the Iwasawa decom-
position given by G = KAN, induces a topological linear isomorphism between
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C* (10, G/N,x) and C*(A). That is to say, we only need to study Wh,,(P,))|,. In
the following, we shall be concerned with the asymptotic behaviour of the Whittaker
matrix coefficients. We will observe that the standard intertwining operator arises
in a natural manner leading to the so-called Harish-Chandra c-function. But first a
lemma on integration that corresponds to [9, Proposition 1.36]

Lemma 2.3.3. Assume that dg, da,dn,dn are normalised so that
dg = a*’Pdndmdadn.

Then for every f € C(K) it follows that

L fk) dk = JN JM f(k(n)m)a(n) =7 dmdn,

for k(n) and a(n) Iwasawa projections in K AN .

Using Lemma 2.3.3 and the pairing given in 1.3.1, we may unravel the definition
of Whittaker matrix coefficient (restricted to A) in terms of an integral, yielding

_ (
Wh, (P, A)(a) = JK<7Tﬁ,§,7>\(a)_17—n,ﬁ,—A7 Mpexe(k) dk

r

= | upak),npex(a™ k))e dk

JN

where the last equality follows from the normalisation of dm. By means of the
Iwasawa decomposition, we may write k(n) = nn(n)‘a(n)~! and therefore

r

Why (P A)(@) = | 7(k() Tzl k() a(n) 7 dn

Lemma 2.3.4. Wh,,(P,\) ~ a**PPA(P: P: ¢ N7, B._x(e) when a AT 02,

Proof. According to the previous, it suffices to show that

f Tn,ﬁ,—)\(n) X(a_lna) dn — A(F i /\)Tn,ﬁ—A(e) as a AL 0.
N

2This notation means that a; — o if t — o0.
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Computing the norm of the difference and taking the limit a 47 o0, we have that

J;%P’“mXﬁm@dnJ‘%p,ﬂmd”

N

< JN |7'n,?,7,\(”)‘ ‘1 - X(a_lna)‘ dn

o] e0]
[ rp = xa e do = [ frp a1 - e do— o
—o -0

2.3.1 c-functions

In the previous, we have defined what Whittaker matrix coefficients are and studied
their asymptotic behaviour. We have seen that Wh,,(P, A) behaves asymptotically
as aMPPA(P : P : & : N7, p_5(e) when a tends to infinity in the positive Weyl
chamber A*. We define the ¢,-function to be the function

en(A) =A(P:P:&: N1, p_,(e) = J Top._a(k(n)a(n)n(n)) dn

N

In [15], an explicit formula for the ¢,-function is given in the case of SLy(R):

i—nﬂ.l/ZF (A(H)> T (/\(H)JFl)

2 2

r <>\(H)+n+1> r <,\(H)—n+1> '

2 2

(2.2)

However, we have not been able to understand how the factor i~ comes out in this
formula. Therefore, in the first part of this section we find some recurrence relations
between the c¢,-functions and check that the following formula satisfies them:

127 (M) r (A(H)+1)
2

2

r ()\(H)+n+1> r ()\(H)fn+1> '

2 2

cn(A) = (2.3)

At the end of this section, we will study the poles of the c,-functions with the
formulas that we have derived as it will be useful in the next chapter. As it is clear
from the formula from above, we shall need several properties of the I'-function. Let
us compile a list of facts that will be used throughout this section before we start
our exposition of the ¢,-function. The following can be found in [1].

Lemma 2.3.5. For Rez > 0, I'(z + 1) = 2I'(2) and T'(1) = 1. Particularly,
D(n+1) =nl. I'(1/2) = x'/?

Lemma 2.3.6. I" is holomorphic on Re z > 0 and it can be analytically extended to
Rez < 0, having simple poles in the non-positive integers and no zeroes.

Proof. Let us show the computation for the residue, as it will be of importance later

on.
lim (z +n)['(z) = lim F(fj n+l) = (=1) .
z2—>—n z2—>—n Hk:O (Z + k) n!
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We also introduce the S-function and its relation with the I'-function.

Lemma 2.3.7. For x > 0 and x > 0 define

us

B(z,y) :=2 JQ (cos ©)?*~(sin )2~ dop.
0

With the previous definition we have the following

_ P@)I'(y)
B(z,y) = Tty
By definition of ¢,, it holds that
o) = [ stkpat)dn = [ kot o7

Using Lemma 1.1.10, we continue integrating

Q0
cn(A) =J gimarctan(=x) (] | xz)_%()‘_pﬁ) dr = J2 e™?(1 4 tan? gp)l_%()‘_pﬁ)(m dp

—o0 —

INIE]

VB

= f e (cos gp)(A”’F)(H)’Q dop.

n
2

One can easily check that ¢, = ¢_, as the cosine is an even function (in particu-
lar, one may notice that Wallach’s formula for the c¢,-function cannot satisfy this
symmetry). Making use of the previous fact,

5 Ling e
() :cn(A) + c_n(N) _ em? + e
2

. (cos )X ~PP(=2 g

T
2
™ ™

2 2
:f cos ngp (cos ) A PPIN=2 4y = 2 f cos ng (cos ) PPID=2 g
_T 0
2
Note that pp(H) = —1 Using the n-th Chebyshev polynomial, we may write

/2]

n . .
CO8 TP = ;}(—1)’“ ( ok ) (sin p)** (cos )"~
Substituting this in the previous integral, we get
[n/2] n z
ea(A) =2 ) (-1 (sin )" (cos )" HOPPUD=2 g
= 2k ) J,

[n/2

= kz_:(—l)’“ ( o ) B (/H% ()‘_Pﬁ)(H);N—?k‘—l)

Pluging pp(H) = —1 in the equation, we have that

en(\) = l:Zij(—l)k ( " ) B (k: + % AH) rs 2’“) (2.4)
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Nevertheless, there is a much simpler expression in order to study the poles of the
c,-function. The ¢,-functions can also be expressed in terms of a recurrence relation.
Using the fact that cos(n + 1)@ = cos ng cos ¢ — sin ngsin ¢, we have that

Cn-i—l()\) =2 JQ COS(TL + ]-)QO(COS Sp)o‘_pﬁ)(H)_Q d(p

3
Jo

From the definition we see that 2I; = ¢,(A — pp) and integrating by parts in I
yields, if n > 0

wof

g
cos nep(cos go)(’\’pﬁ)(H)’l dp — 2J sin nep sin ¢(cos gp)(’\”’?)(h’)*2 dyp
0

11 12

J

z ™
2

(cos @) A—rpR)(H)-1 n 5

O —pp)(H) -1, +<A—pp><H>—1L
n ea(h — pp)

G- -1 2

Adding all up together with pp(H) = —1, we get that

I, = —sinny

cos nyp(cos ) AP =L g

n

Cni1(N) = (1 - m) cn(A = pp) (n > 0). (2.5)
For n = 0, according to formula 2.4, we have that

| ooy D@ (e
o) =B (5 B ) - ey )

o F(%)F (Afpg)(H)
c1(\) =B (%, (A p2 )(H)> = T <()\<pF;(H)+l)>

using the expression of the Euler Beta function in terms of the Euler Gamma func-
tion. We may observe that ¢;(\) = co(A — pp), satisfying the recurrence as well.
Hence it yields the following for n > 0

\

L)

AH)+1
r()

Lemma 2.3.8. The function defined by (2.3) is the unique solution satisfying the
recurrence relation with initial value ¢y given in (2.7).

cn(\) = (1 . Z(—;ID i (N — p5) with  co(N) = (2.7)

Proof. By repeatedly use of Lemma 2.3.5,

n- () —n+ )2 7T () T (5
(1 - TH;) Cn-1(A = pp) = )\(H)/; 1)/2 . (/\(H§+"+1> 2 ()\<(H)n+3>>

2

2 2
= = ca(A)
AH)+n+1 AH)—n+1
(e o ()

2
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Checking that the initial conditions are also satisfied in 2.3 is routine, so we leave
it to the reader. Uniqueness is trivial. O

By induction, the reader may prove that the following is also valid as an expres-
sion for the ¢, -function.

en(N) = co(A — npp) ﬁ (1 - (j - 1>) (2.8)

Jj=

Using the initial condition of ¢y, we may write

DT (A55) 0 )+ 9j—n— 1
cn(\) = r( +n+1> ]H Yer 3]_1) . (2.9)

It will be of our interest to study the zeroes and poles of the c,-function and
their order. We recall that the Gamma function has no zeroes and has simple poles
in the non-positive integers making 1/I" contributing with zeroes in the non-positive
integers and no poles to the c¢,-function. Thus, we may observe that in 2.9 the

factors N
r(%) and ANH)+(j—1) forje{l,...,n

contribute with simple poles to ¢,, that is to say, they contribute with order —1 to
the expression; whereas the factors

F(Mﬂd+n+1

5 ) and ANH)—-14+n+2j forje{l,...,n

contribute with simple zeroes to the expression, meaning, with order +1. Nonethe-
less, it might occur that some of this poles cancel with some of the zeroes. Assume
firstly that n is odd positive, then

ANH
o' <%) contributes with simple poles at each odd integer < —n.

MH)+n+1
'%f

> contributes with zeroes of order 1 at each even integer

< —nN.

e —(j—1) for 1 < j < n contributes with simple poles at every negative integer
between —n + 1 and 0.

e 1 —n—2j for 1 < j < n contributes with simple zeroes at each even integer
between —n + 1 and n — 1 have order +1.

In summary, the ¢,-function with n odd has first order poles in the negative odd
integers and simple zeroes in the even integers that are smaller than n. Analogously,
we carry out the same argument for n even, yielding the opposite; namely, simple
poles in the even non-positive integers and simple zeroes in the odd integers strictly
smalller than n. In the following we attach two charts, when n is either odd positive
or even positive respectively, with the contributions of each of the terms in the
formula of the ¢,-function given by (2.3). In these charts, the reader has a more
visual account which is in accordance with the previous discussion.
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degree contributions when n odd
Factors\Z |--1|-n|-n+1|---|[-2|-1| 0 |1] 2 |---|nl|n
I‘(&> -1 -1 -1 -1
2
Xo + 1
I‘( 0ot > -1 -1
2
1
p(lefntiy
2
Ao — 1
I‘(%) +1 +1 +1 +1 +1 +1
Total +1 | -1 0 o 0 |- 0O 4+1]--- | +11]0

degree contributions when n even
Factors \ Z n-l|{=n|-n41|---[-2]-1 /0|1 |2]---|nl|n

T (&> -1 -1 -1 -1
2
T ()\0-1—1) 1 1
2

F<A0+n+1) 1

2
ppa——

r(%) 41 41 ol+1]0]+1]0 41
Total A 0 [ a0 [al+tlol— %10

Remark. The reader may observe that all degrees at every point oscillate between
—1, 0 and 1. This means that all poles and zeroes are simple. This fact shall be
crucial in the theory to come.

2.4 Whittaker vectors for the discrete series

Using Definition 2.1.2, we can consider the Whitaker vectors for both the holomor-
phic and antiholomorphic discrete series representations. Firstly, we present a con-
struction of a Whittaker vectors for the holomorphic discrete series representation
based on the complex Fourier transform. We should mention that this construc-
tion has been provided by E. van den Ban to us. Afterwards, we shall relate this
construction to a result that can be found in [16].

To begin with, we need to construct certain seminorm. This is guaranteed by
the following lemma, that we state without proof.

Lemma 2.4.1. There exists C' > 0 such that for all f € H, one has |f(z)| <
C'Im(2) " f -

Proof. Let z = x + iy € H* and define Ri(z) = 1y and Rs(z) = 3y. For r €
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[R1(z), Ro(2)], we may write

1 f(w) L (™ f(z+7re®) |
. dw = o | R i
&) ~om {Hw denzow 2w reie 0

21
f(z + re® »
% deod
27TZ(R2 - Rl J J ret Zre par

Defining A(z) = {z + re % | (r,p) € [Ri(2), Ra(z)] x (0,27m)}, we get the following

estimate

|f(u+ iv)|
US RQ Ry) ff lu + v — 2| dudv

A(z)

(R R ff ‘f U + 1 |,U2—n,Un—2 dUCZU
2 = 1

A(z)

1/2 1/2
1
Jf |f(u + iv) 20" 2 dudv Jf %04_2%"_2 dudv ,
A(z) A(2)

where the last inequality is obtained by the Cauchy-Schwartz inequality. If we
continue, we see that

) <gm s ArealA(:)! s
~CIm(2)' | -

]

Lemma 2.4.2. There exists a continuous seminorm v on (H)* such that for all
fe(H)”,

[f () < (1+ [2) " Im(2) "v(f)
Proof. By Lemma 2.4.1 and the last remark in Section 1.4.1, it follows that

()] < Clm(2) "'l gz & [22f"(2)] < CIm(2)" "2 £
Hence, by adding up, the result follows with v(f) = | f”[ g+ + [ 2% f"| y+ O
For r € R, define the following functional on (H.F)* by

f) = JOO f"(x +iy)e " dx (fory > 0). (2.10)

Lemma 2.4.3 (Whittaker vector in the discrete series representation). For y >
0 and x a regular unitary character on N, the functional n, as in (2.10) is in

Why (H,).

Proof. The map 7, is clearly linear. To show continuity, we have the following
estimate:

() < cvis) | @ myz)?d‘“w |

x = Cyu(f).
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This shows that 7, is a continuous linear functional. Regarding its behaviour with
respect to x, let ng € N. It yields then

WD) = | S e = | e e dn = ().

Observe that 1, = "%y, Indeed, for y > 1,

a0
e"ny(f) = J (@ + iy)er @) gy = J f(2)e""* dz.
—o0 R+iy
We note that the integrand is holomorphic in the upper-half plane, thus by Cauchy’s
theorem, we know that the line integral over the border of the complex rectangle
[—R, R] x [1,y] is zero. However the integral over the vertical edges of the rectangle
tend to 0 as R goes to infinity. Indeed,

vt ey — (/)
<| ——m— dt < — 0.
L 1+|R+z’t\y(f) 1+ R R0

y . .
J\ f//(R + Z-t)e—zr(R-Ht) idt
1

The analogous result holds in in the other vertical edge of the rectangle. Hence
e"n, = e'm for y > 1. Perform the same strategy for 0 < y < 1, and then the
equality holds for y > 0. In particular, this means that if » < 0 and by using the
estimate in the proof of Lemma 2.10, it yields

()] <2Cv(f) ey -0 fory — .

Therefore we have that for every f e (H;)®,

n

=m(f) = (f) = n(f) =0 for fe (H)*

On the other hand, 7, # 0 if » > 0. To see this, we need to find a function
in (H)® for which the functional is not 0. For a function ¢ € C*(R), define the
complex Fourier transform

Fo(z) = JR o(t)e " dt = Lw(t)eyte_izt dt = F(pe¥)(z) ifz =+ iy

The following lemma will be necessary.
Lemma 2.4.4. Let ¢ > 0 and ¢ € CF (-0, —¢), then Fo|, € (HF)™.

Proof. Recall that
Folx +iy) = J o(t)ev e dt
R

This function is holomorphic in the variable z because the integrand is of compact
support and it has holomorphic dependence on z given by the term e~***. Now we
estimate its L? norm on the space H;. We must first make the observation that
|Fo(z + iy)| < e Y||¢| 11(—w,—e) and thus, for any N € N,

(& +iy) " Fo(a +iy)| < |Fe™ (@ + iy)| < e[| 110, —o).
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Then it is readily seen that for N € N, |Fo(z + iy)| < On(1 + |z + iy|N)te V.
Applying the last estimate, the following holds for N sufficiently large,

o0 o0
Folt = [ [ 1o+ Py g
—o0 JO

< ([ ) ([ )
o (n—=2)! [/ [* 1
s (|, e ) <=

This means that Fp € H. It remains to show that (D}).(u)Fe € H}, for every
ue U(g). In Section 1.4.1, we computed the associated g-module of the holomorphic
discrete series representation for the g-standard triple. This was:

(Dy)«(H)[)(2) = =nf(2) = 22f(2)  ((D;)«(X)f)(2) = =f'(2)

(D)« (V) )(2) = nzf(2) + f'(2)2".

By Theorem A.2.1, we may see that (D.).(u) is a differential operator that takes
the following form.

By the properties of the Fourier trasform, we see that

(D} )u() Fip = P ( di) Fo-F (P (t, —%) 90) .

Since ¢ € CX(—w,—¢), then P (t,—iL) ¢ is also in CX(—o0, —¢). This implies,
by the discussion in the first part of the proof that (D;!).(u)F for every u € U(g).
Hence Fp e (H)”. O

Let now 0 < ¢ < r and pick any ¢ € C (-0, —¢) with p(—r) # 0, then by the
previous lemma,

my(Fe) = J

R

(Fo)'(z +iy)e " dx = f F(—t*e¥¢)(x)e " do = —2mr2e ™ p(—r)
R

In conclusion, we have found a Whittaker vector n, (for y > 0) in the holomorphic
discrete series representation, such that if » < 0 it is zero and if » > 0 is non-zero.
The following result corresponding to [16, Theorem 2| confirms that the distinction
between r > 0 or r < 0 must happen. The original proof of the theorem is attributed
to C. Moore, although Wallach provides another proof.

Theorem 2.4.1. For x regular character on N. If r, > 0 then dim Wh, (H}) =1

and dim Wh, (H,;) = 0. Ifr, <0, we have dim Wh, (H;}) = 0 and dim Wh, (H,;) =
1.
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Chapter 3
Whittaker ODE for SLo(R)

The classical theory of Whittaker functions is very well-known. It can be found in
any standard book concerning the confluent hypergeometric function. We recom-
mend [18, Chapter 16] and [8] if the reader is curious about the topic. However,
let us briefly describe it for a motivational purpose. Whittaker functions are simply
solutions to the Whittaker ODE. In 1904, E. Whittaker introduced a new variation
of the hypergeometric ODE. In short, the hypergeometric ODE is a second order
differential equation with three regular singularities at 0,1 and o0 on the Riemann
sphere. The Whittaker ODE is a modified version of the latter in which 1 and oo
have been forced to meet at an irregular singularity, whereas the other singularity
at 0 remains regular. The Whittaker differential equation takes the following form

W 1k f-m?
+(——+—+4 m)VV:O, (3.1)

dz? 4 =z 22

where k, m are parameters in the complex plane. In the following we devote ourselves
to develop what we call the Whittaker ODE for SLy(R). In few words, this is a
differential equation derived from the action of the radial component of the Casimir
operator in SLy(R). In particular, we will see that it results in a Whittaker ODE in
the classical sense for parameters yet to be specified. Afterwards, we will proceed to
define the Fourier-Whittaker transform and to state its inverse for the group SLy(R).
AS a conclusion, we shall deal with the residues of this formula and relate them to
the discrete series representations of SLy(RR).

3.1 Derivation of the Whittaker ODE for SL;(R)

Let us return to the notation of Sections 1.1.1, 1.4.1 and 2.1. We recall that the
Casimir has the following form (up to rescaling) for the standard g-triple:

Q=H>+2(XY +YX)=H?+2H + 4Y X.

One may observe that Rg € End(C*(7,, G/N, x)). Indeed, by left invariance of Rgq
it yields that for f € C*(7,, G/N, )

LiRof = RoLyf = Ra(ra (k)" f) = 7(k) ' Raf forke K.

The behaviour with respect to x follows from the fact that {2 is Ad-invariant. Letting
feC®(1,,G/N,x) and n € N, it holds that

R.Rof = RaamyoRnf = RoR,f = Rox(n)f = x(n)Ra.

45
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It is known from the previous chapter that the restriction to A (earlier denoted by
r4) induces a topological linear isomorphism from C®(7,, G/N, x) onto C*(A), in
accordance with the Iwasawa decomposition described in Section 1.1.3. Thus it is
worth asking how the Casimir operator acts on C*(A). This gives rise to the radial
component of €.

Definition 3.1.1 (Radial component of €2). We define the radial component of
to be the linear operator rad {2 € End(C*(A)) satisfying the following commutative
diagram

Rq

(Tn(Th,(;/pJ%X) — CTD(7h7(;/JV7X)

ml lm

C7(4) —42— € (4)
where r4 denotes the restriction to A in the Iwasawa decomposition G = K AN.

In order to explicitly compute rad €2 we first need to know how the Casimir acts
on C*(7,, G/N, x). As usual, it is only necessary to know the action of the elements
of the standard g-triple:

0
Rufa) = | floexpsH) = £ flexp(t + 5)H) = % f(ar).
s=0 5=0
Rx f(a;) = dijls flazexpsX) = di flay)x(exp sX) =irf(ay).
s=0 5=0

The right action of the Casimir of the element Y is a bit more involved. We see that

Ry f(at) = L_pd(a)y f(ar) = Lad(ay) 1 x—ad(a)y f (@) = Laday-—1xf(ar) = Ly + Lo.
By Lemma 1.1.6, we may write Ad(a;) ' X —Ad(@)Y = a *X—a"Y = a *(X-Y).
Consequently, it follows that

Ly =a“Ly_xf(a;) =a™® di flexps(Y — X)ay)
Sls=0

S

e o | Tlexpls( — X)) () = ina” ).

In the case of Lo,
Ly =Lad(@)-1xf(a1) = R_adan-2xf(a) = a7 ** Ry f(ar) = a; **ir f(ay)
Adding up L; and Ly we obtain the right action of Y on C*(7,, G/N, x),
Ry f(a;) = (ina;® + ira; >) f(a,).
The radial component has finally the following expression for f € C*(r,, G/N,x) :
rad Q (f[4)(a:) =(Raf)(a:) = (Ru)’f + 2Ru f + 4Rx Ry f))(a:)

d2 d (s —« L —2a
=zt 2% + dir(ina; @ +ira; =) | f(ay)

— (d_2 + 21 — 4(rna; * + 7‘2at_2a)) flaz).
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To relate the last formula to the classical theory, define the change of variables
flay) = ¥(z(t)) where z(t) = 2ra;® = 2re™?" and t > 0. A simple computation
shows that

dip d? dip

4 (Yox)=—-2r— and (Yox)=4dr— + 4x2612—¢
dt - Tds dt? - da da?’

Applying this change to the radial operator we get the following expression

2
rad Q( f],4)(a) = (43: % —z% - 2n:1:'> .

Recall from Lemma 1.4.8 that the Casimir operator acts on the principal series
of G by a scalar. By definition of the radial component, it follows that the radial
component of the Casimir element will also act by the same scalar on the functions of
the principal series. Therefore, it will be useful to consider, as for now, the eigenvalue
problem for the radial component of (2. It will be convenient, to reparametrise the
eigenvalue problem so that rad 2 = (A — 1) f with A € C. The reader might observe
that this consideration traces back to the use of A\(H)? — 1, which is the scalar by
which the Casimir acts on the principal series of SLy(R). Therefore the expression
in coordinates for the eigenvalue problem is

d—gw N ((_Z)/z . 1/4 — (\/2)° _ 1) b = 0; (3.2)

dx? 2 4

which is a Whittaker ODE in the classical sense for k = —4 and m = A( Equatlon

(3.2) will be called the Whittaker ODE for SLa(R). One should note that the
classical Whittaker ODE has been defined for the complex variable, while in our
case we restrict to the positive real line. Nevertheless, considering the equation in
the complex plane will be advantageous to us. In the following lemma, we finally
learn why every element in Chapter 2 was named after "Whittaker’.

Lemma 3.1.1. The Whittaker matriz coefficient Wh,, (P, \) as in Definition 2.5.1
satisfies the Whittaker ODE for SLy(R) (after the aforementioned changes of vari-
ables).

Proof. We only need to see how the Casimir operator acts on Wh, (P, \). The result
inmediately follows form the discussion above. Let Z € g and g € GG, we see then
that

d

Ly Wh,(P,\)(g) = n
t=0

(TBe_x (9_1)7T?,g,—,\ (exptZ)T, B2 MPex)

. d
:<7TP,§7_>\(9 1)£ 7TP§ _alexptZ)T, N B >
t=

— (rpe 5 g s (2 o7 u>

Since the identity holds for any Z € g, apply it successively followed by Lemmas
1.4.8 and A.2.6 to find

LoWhy (P, A)(9) = {5 (97 ) (75 e 2)s( DT 52, 15 x)
:()\(H) — 1)Wh(P, N)(g).

47



CHAPTER 3. WHITTAKER ODE FOR SLy(R)

Set Ao = A(H)/2 so that A = A\,a. Consider the complex version of the Whit-
taker ODE for SLy(R), derived from the standard one, just by multiplying by 22

d? 1 1
ZQ@w + (—gz — 122 + 4_1 — )\i) w = 0. (33)

We shall proceed with examining whether there are solutions defined on a neigh-
bourhood around z = 0, that is to say around the regular singularity of our equation.
The reader should know that the following is standard theory that can be found in
any comprehensive book on complex ODEs, for example in [17]. Nevertheless, we
have decided to include it for subsequent references. As an educated guess we try
out functions of the form ¢ (z) = z%p where ¢ is a holomorphic function on an open
neighbourhood around 0; and s € C. We may assume without loss of generality that
©(0) = 1. If we substitute our candidate in the equation, the following expression
holds:

1 1
220" + 2s2¢ + L s(s—1)+=—=X)p=0.
2 4 4
Since the equation holds for every value of z € C, in particular it must for z = 0.

Evaluating at z = 0 (recall that ¢(0) # 0), we observe that

s(s—1)+ 411 — A2 =0 meaning si = FA, + % = %(1)\ —pp)(H).

From the general theory of 2nd order complex differential equations with a regular
singularity, it is known that if the difference between the exponents s, — s_ is
not an integer, the solutions form a fundamental system of the ODE. The reader
may find more details in [17, Chapter 5, Section 25|. In regards with our case,
{z°+ s, ,2° s} form a fundamental system if and only if A\(H) ¢ Z. Assume for
the moment that A\(H) = 2\, is not an integer. In the case of 15, = 2%t p,, we

have the following differential equation
n 1
z2g0;'+ + 25, 2¢,, + <—§z - 122) ¢s, = 0.

Since we have assumed that ¢, is holomorphic around a neighbourhood of 0, it
must be given by a power series of the form

05, (2 ZF* )2? with Tf =1

Substitute the series above in the previous equation to obtain recurrence relations
that determine the coefficients I”F,

=2z Z j—1F+232—|—23+z2jF+231——22Fz]—1z ZF+Z]

J=0 Jj=0 7=0 7=0
a0
= 2 J( =2 + Z 25, jT 127 — Z —T;20%" — Z F+23+2
C; 0 e} o0
= Z](] — I 2 + Z 25 g1 2 — Z —T' 4127 — Z Z—le_?zJ
Jj=0 j=0 j=1 j=2
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We get the following recurrences

Lo =1
T s ) 1
O <2r; )+ hrs 2()\)) it > 2

In an analogous way, we may find the same recurrences for the solution ¢_, just sub-
stituting in the previous s, by s_. By the theory of complex differential equations,
we observe that the power series that we have just computed can be holomorphi-
cally extended to the whole complex plane because the coefficients of the differential
equation are holomorphic everywhere except at 0 (for which there is a regular sin-
gularity). This last statement corresponds to [17, Theorem 3, Section 24].

Remark. Tt is worth mentioning that the coefficients F;L for j € N are actually func-
tions of A. It can be shown that I'; (X) = T'j (=) since s_(\) = 5, (\). Furthermore,
it is the case that they are meromorphic in the variable A. This will be of relevance
to us.

Put Wy(z) = Wh(P, \)(a). As we have seen in Lemma 3.1.1, W), is a solution of
the Whittaker ODE for SLy(R). We remind the reader that, we are in the case of
A(H) ¢ Z fixed. Then there exist complex coefficients C;F(A) and C;, () such that

1

Wi(z) = 220 )ID (Ao, () + 22 ) DO (V) g, (),

as an identity of holomorphic functions on z. If we undo the change of variables
r = 2ra~®, we have that

~

Wh,, (P, \)(a) = a**PCF

n

(Mg (@) + aPCr (NP _xip(a)

n

where é’}()\) (27“)%< >(H)C’,J{()\) and CE()\) (27“)%( pﬁ)(H)C’n*()\). Moreover,
we see that

o6} o0
0o, (1) = Pry,(a) Z (2r)TH(N)a™, o (x) = P_sip(a) Z (2r)’T; (A)a™".
Lemma 3.1.2. If(Re A, a) > 0, then 6'\;3 = ¢y, for ¢, the c,-function as in formula

(2.3).

Proof. Firstly, we observe that the functions ®x.,_(a), ®_x4, (a) = 1and a™* — 0

as a 5 oo, Since s, are holomorphic about a neighbourhood of 0, ¢, (z) —
¢s, (0) = 1, when 2 — 0. By Lemma 2.3.4 we may write

aPPe, (M) ~ a’”pﬁé\j(/\)@“pﬁ + a"”pfcf'vg(/\)@_,\ﬂ,ﬁ

This is equivalent to saying

1/~ ~
— <C’,f()\)<1)>\+pﬁ + a’z’\Cg()\)CD,,\,pﬁ> —1 asaS oo
Cn
By the observations made at the beginning of the proof, the result follows. O
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Remark. The coeflicient Cf} can be determined using the classical theory of Whit-
taker functions. This coefficient will not be very important for the purpose of this
theory, therefore we omit its treatment in this text. The expression for the Whittaker
matrix coefficient is as follows

Wh, (P, \)(a) = a’\”FcZ()\)CI),\JFpﬁ(a) + a_’\ﬂ’ﬁc; ()\)CID_)\erﬁ(a) (3.4)

Remark. In the case when \(H) € Z, the theory of complex ODEs allows us to state
the same equality as in 3.4, but in this case as an equality of meromorphic functions.

For the subsequent sections we need some properties of the power series coeffi-
cients of the function ®y,,_.

Lemma 3.1.3. The following statements are true about the coefficcients {T'} (X)} jen-

1. On the region (Re A\, ay < 0, they have neither zeroes nor poles in the variable
A.

2. Forj>keN, \(H) = j cannot be a pole of the coefficient I'; (\).
3. All poles of F;()\) are simple.
Proof.

1. We observe that I' has a pole at A(H) = —pp(H) = 1, thus it has no
negative poles. By induction, assume that the statement is true for j <
n — 1. Then T} has no negative poles because the term 5T/ | + }lF;F_Q is
holomorphic on (Re A, @) by hypothesis; and the only candidate could be a
pole at A(H) + pp(H) = (7 — 1). The latter is impossible since (Re A, a) < 0.
The statement corresponding to the zeroes of F;r follows automatically by

induction as well and the fact that F;“ are positive on the region (Re A\, ay < 0.

2. By induction, I'] satisfies the hypothesis. Assume it true for every j < k. If
we let jo > k be a pole of the coeffiecient '} (A), then it is immediate that
the factor T}, + }lF,j_Q would have a pole at jo. Hence, either T’} or I'} ,
would have a pole at jy. This is a contradiction with the induction hypothesis.

3. we see that I' has a simple pole at A(H) = 1. Assume that the hypothesis is
true for all j < k. Assume that I'} has a pole of order m at A(H) = \g # J.
This means that the factor %F;ﬁl + %;Fliz has a pole of order m at A(H) = A.
But this is impossible because the sum of two functions that have all its poles
simple cannot increase the order of the pole. In the case that the pole is at
A(H) = k, one can see that it has to be simple by (2) in Lemma 3.1.3.

]

3.2 The Fourier-Whittaker transform

Let us retain the notation as in the previous section and let y be a unitary regular
character on N. We shall consider the space L?*(G/N,x) of measurable complex
valued functions f such that |f| € L*(G/N) and R, f = x(n)f for all n € N. The
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reader may readily check that it is G-module with the left regular representation.
The decomposition in K-types as in Lemma 1.2.3 yields

L*(G/N,x) = @ L*(7.,G/N, x)

nez
where L?(7,, G/N,x) = {f € L*(G/N,x) | Lp.f = (k)" f, Vk € K}.
Lemma 3.2.1. The space C¥(7,,G/N,x) is dense in C*(t,,G/N,x). Further-
more, C*(1,,G/N,x) — L*(1,, G/N, x) continuously.
Proof. These follow from [9, Propositions 3.4 & 3.5]. O

We have earlier remarked in Section 2.1 that the restriction to A map (denoted by
r4) in the Iwasawa decomposition K AN is a topological linear isomorphism between
C* (7, G/N, x) and C*(A). This implies the following commutative diagram

Cgo(TnaG/N7X) DE— L2<TH7G/N7 X)

ml er

C*(A) ———— L*(A,a"*7da)
In these terms, we may define the Fourier-Whittaker transform as follows

Definition 3.2.1 (Fourier-Whittaker transform). Let f € C*(A). We define the
following function in the variable A € a¢

FV(F)() = f F(@)Wh (B, -2 (a)a=2*"da
A

Remark. The reader may observe that the choice of conjugating A in Wh(P, —\)
is not by chance. This is made so that the Fourier type transform defined above
becomes holomorphic in the parameter A. This is seen in the coming lemma.

Lemma 3.2.2. We have that F)'0 : CP(A) — O(ad).

Proof. That f is a compactly supported function on A implies that the integral is
absolutely convergent for any A € af. This means that we may differentiate under
the integral sign with respect to . Since the integrand of F2(f) depends on A in
a holomorphic fashion, the result follows. ]

3.3 Residues of the Fourier-Whittaker inversion
formula

As it has been commented in the introduction to this thesis a new inversion formula
for the Fourier-Whittaker transform has been derived by E. van den Ban for a
connected semisimple real Lie groups. For this announcement can be found in [refer
to slides|. The result for the case of SLy(R) may be stated as follows.

Theorem 3.3.1 (Fourier-Whittaker inversion formula). There ezists n € a* with
{n,ay << 0 and for which for all f € CF(A)

Fa ()
e (=X)

n

fla) =2 J P HEDy,, (a) dx.
ia¥4n
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CHAPTER 3. WHITTAKER ODE FOR SLy(R)

As we may observe in the theorem the shift is made towards —oo. In the process
of shifting the domain, some poles in the negative real line will be collected. Our
task for the rest of the section is to investigate the following expression when p € a*
is such that pu(H) <:

E{:es <a>‘+Pﬁ<I>Hpﬁ(a)w> : (3.5)

e (=A)

Remark. The reader ought to be wary that this expression should be understood as
taking the residue at A(H) = pu(H). In other words, the map evy : ai — C given
by evyg(A) = A(H) establishes a topological linear isomorphism, which implies that
we may transfer the notion of residue of functions defined on C to complex valued

functions on af.

In the remainder of this section, we need to deal with the sets of zeroes of the

functions ¢,(—A\). In particular , we will be concern with
Zy = {)\e al| (ReX, o) <0, en(—N) = 0}.
Then the following properties are readily seen by the discussion in Section 2.3.1.
e Since ¢, = c_y, it follows that Z,, = Z_,, = Z,,.
e Ifnisodd, Z, ={-2,—4,...,—|n| + 1} - /2.
e If niseven, Z, ={-1,-3,...,—|n| + 1} - /2.

By means of these properties together with the discussion in Section 2.3.1, we may
conclude that if n and pu(H) < 0 have the same parity, then

—\ -1
Res (c;g(—)\)) =0
A=p

Before proceeding with the next lemma, we shall be in need of two basic results

of complex analysis. They are as follows,

Lemma 3.3.1. [7, Section 18.7]. Let a € C, and denote by D,(a), the open disk
in the complex plane of radius r around a. If g = h/k with h,k € O(D,(a)) with
h(a) # 0, k(a) = 0 and k'(a) # 0; then Resg = h(a)/k'(a).

Lemma 3.3.2. In the framework of Lemma 3.3.1, if f € O(D,(a)) and g a complex
valued function with a simple pole at a, then Res f - g = f(a) Resg.

Proof. By definition of residue,

Res f-g = lim(z —a)f(2)g(z) = f(a)Res g

z—a zZ=a

Lemma 3.3.3. Let pe Z,. Then

F(M) n—1—pu(H) H —p(H)+j -1

12T (—u(121>+n> 2 L —u(H) +2j —n—1

Res (cj{(—X)) o

A=p
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Proof. According to equation (2.9),

First of all, since u € Z, is neither a pole of I’ (M> nor I’ (@), we

have that
“AH)+n+1 —\(H)+n+1
G M G )

771/2F< T‘;) ) B 12T (—/\(ZI)M)'

Furthermore, we observe that this last expression is holomorphic in A(H) around a
neighbourhood of u(H); hence it can be pulled out in the residue computation by
means of Lemma 3.3.2 yielding

B T —pu(H)+n+1 n )

—\ 1 - — —

Res (C+ - A)) _ ( 2 ) Res A+ -1
/2T (—H(;I)+n> Ap \G g —AH) +2j —n—1

Using Lemma 3.3.2, it is not difficult to see that we obtain the desired result. [

—\ -1
Remark. As for now, we shall denote Res (cj{(—A)) by Ay, -

A=p

Lemma 3.3.4. The function &AJFW@)\JF is holomorphic on (Re A\, a) < 0.

Proof. 1t is readily seen that the function a**#7 is holomorphic in A. It remains to
be shown that ®,,,_ is holomorphic for (Re A, a) < 0. To do so, it is sufficient to
study the poles of the coefficients {F;r (A)}jZ;- By Lemma 3.1.3, we see that they
have no poles in the variable A in the aforementioned region, hence a***7® App 18

holomorphic on (Re A, o) < 0. O

By means of Lemmas 3.3.1, 3.2.2 and 3.3.4, we can now take a step forward in
the calculation of the residue defined in (3.5): if u(H) <0,

Fatf(N)
e (=A)

R (““”%W ) =By ()

We observe that if u ¢ Z,, the whole expression vanishes. This will have its
consequences that we shall discuss further on. Assume that u € Z,. Using the
definition of the Fourier-Whittaker transform, we get that

Res (a’\+pF(I>,\+pF(a)m> = A,Wf a"* PP, (a)Why, (P, —u)(b)b~ %P f(b)db.
(N ’

Lemma 3.3.5. There exists a possibly zero constant C, , € C for p € Z,, such that
Why, (P, —p)(b) = Cp "7, (D).
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Proof. We consider the map ¢(\, a) := ¢ (=\)a=*"PP®_,(a). As a function of A, it
is holomorphic around p. This is because we know that p is a zero of ¢ (—\) and
®_, has at most simple poles by Lemma 3.1.3. We have earlier seen that the function
solves the eigenvalue problem if A\(H) ¢ Z. Since ¢ is holomorphic around p, we can
apply holomorphic continuation concluding that ¢(u,-) € £, ,. The function ¢p(u, -)
has the following description in power series.

p(p,a) = a P 3 (= NDF (=N)],_ a7

A=p
j=0

We note for instance that the independent coefficient of the power series is 0 as
I'f(—u) = 1. Moreover, this power series cannot be zero. The reason is that at
least, the power series has a non-zero coefficient; namely, ¢} (=A\)I'_ ) (=A). This
coefficient is non-zero because the term I'_ (=) has a simple pole at by Lemma
3.1.3 and ¢,(—A) has a simple zero at pu. Thus, let us take the smallest k& € N\{0}
for which ¢ (=A)['k(=A)[,_, is not zero. Since the smallest pole of I';(—A) is at
A H) = —j by Lemma 3.1.3, k must be —p(H). Then we may write,

(1, 0) = CH*oP ) dj(N)a

§=0

with C' a non-zero constant a dy = 1. In order to conclude, we observe that we have
the expression

Wh(P, —)\)(a) = (), a) + a**"Pc, (—\)®x(a)

and that the left hand side and the first term of the right hand side are holomorphic
maps around p. This means that the expression ¢, (—\)a* PP ®, (a) is also holomor-
phic at p, hence ¢, (=) is holomorphic at p by Lemma 3.3.4. Hence we may finish
writing that

Wh(P, —p)(b) = (1 b) + a"7Pc;, (—p)@_, (b) = (C + €, (—p))a 7,
]

Lemma 3.3.6. Let € Z,,. Then there exists a unique discrete series representation

m of G such that
o () = (uW(H)*>—-1)I.
e 7, is a K-type of .

In fact, T = Df:&z), where m(p) = |u(H)| + 1 and (n) = sign(n).

Proof. From the properties of Z,, we deduce that when p € Z,, then 1 < |u(H)| <
In| — 1 and p(H) and |n| — 1 have the same parity. Set m(u) := |u(H)| + 1. This
means that 2 < m(u) < |n|, with m(u) and n having the same parity. If we want
the first condition to be fulfilled by a holomorphic discrete series representation of
parameter m, there is no other chance that that m = +u(H) + 1 due to lemma
1.4.8. In the case of n > 0, this means that m(u) < n. We also have seen that the
K-types for the holomorphic discrete series are m(u) + 2k for k € N. Since m(pu)
and n have the same parity, then n = m + 2k for some kg € N. Then 7,, appears as
K-type for D;;(M). In the other case, the same argument can be carried out yielding
the antiholomorphic discrete series. Hence the representation of the discrete series
that we are looking for is D;EZ)L). ]
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Lemma 3.3.7. Let p e Z,. Let x be a reqular character on N. If r, and n have
opposite signs, then C,, = 0.

Proof. In Section 1.4.2, we have seen that Dfn(#) may be embedded into the principal
series representation corresponding to the parameters &,y and p. More specifically,
there exist embeddings of (g, K)-modules

55 (H )k = Ind (&mpy @ p @ 1) .

Since the holomorphic and antiholomorphic discrete series are irreducible by Lemma
1.4.6, we may define the embedding

j=it®j HI®H, - nd%(&.)@u® 1)k

By the Casselman-Wallach globalization functor [15, Theorem 11.6.7 and Lemma
11.5.7], 7 has a unique extension to a continuous G-equivariant linear map

J: (]—‘I;;(M))OO @ (Hyp)™ — CH (P &y  1)-
Let 71p¢,. ,),—u according to formula (2.1). Then
nﬂ = <.7 nﬁvfm(,u)v_u> € WhX(COO<? : gm(ﬂ) : Iu>)

Set nt = (j5)*n. € th((H;—;(M))OO) and put € = sign(n). Let 7,, GE'OO(? S
) defined as in 2.3.1. Since K-types have multiplicity one in C®(P : &y @ 1),

there exists a unique v,, in the the 7,,-isotypical component of ™

75 (v,). Tt is immediate that

Why(P, —p1)(a) = 1y (7p,(a) 7 (0n) = me (55D 0yen)) - (3.6)

such that 7, , =

0
By Theorem 2.4.1, if ¢(n) and r, have opposite signs then Wh,, ((H;f%) ) = 0.
(n)

This implies that if the n and r, have opposite signs 7
equation 3.6 that this implies

= 0. We see clearly in

Why(P, —1)(a) = 0
if n and r, have opposite signs. O

Lemma 3.3.8. Let pe Z,. If Wh,(P, —p) is a non-zero function in the variable a
e(n)

then it is a Whittaker matrixz coefficient of the discrete series representation Dm(#).

Proof. If Wh,, (P, —pu) is a non-zero function in the variable a, by Lemma 3.3.7, we
know that then n and r, have the same sign. We immediately see that expression

3.6( %as the form of a non-zero matrix coefficient of the discrete series representation
D" ]

m(p)”

Now we can conclude with the following theorem.

Theorem 3.3.2. Let u € Z, and suppose that

'Wh A
Res [ a*™7P®, ., (a) —]:—” f(_ )
(N
1s a non-zero function of the variable a. Then it is a Whittaker matriz coefficient of

the discrete series representation D;EZ)L).

(3.7)
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Proof. We have seen in this section that

Res a”pﬁq)“ﬁ(a)m :Awf a"*tPPd . (a)Why, (P, —u)(b)b~ 7 f(b)db.
e A CO A i

By Lemma 3.3.5, we may write

Res [ a*P (0] Y HIEQ Copu0 07 @, (b)b~27 f(b)db
)\EE a )\+Pﬁ(a') Y =Rnp Aa H+Pﬁ(a’) . 7P, (b) f(b)db.
- ot (=

Since the residue is a non-zero function, we see that C,, , cannot be zero. Then, we
may rewrite the residue as follows:

"Wh

In this last expression we see that the residue given by the expression 3.5 is a constant

multiple of a Whittaker matrix coefficient of the discrete series representation Di,(bzz).
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Appendix

The purpose of this appendix is to collect basic prior knowledge that has been
studied beforehand the making of this thesis or general constructions that are used
throughout the thesis without mentioning. In this appendix we will give an overview
about Haar measures and the Casimir operator.

A.1 Haar measures

Let G be a locally compact group and let u be a Borel measure on G, denoting
by 8 the Borel o-algebra of G. We say that the measure p is left invariant if
Ixu(A) = p(ly(A)) = u(A) for every A € B and for all g € G. Analogously, we can
define right invariant measures via multiplication on the right. When the measure
is both right and left invariant, we speak of a bi-invariant measure.

Definition A.1.1 (Haar measure). A left Haar measure on G is a regular Borel left
invariant measure, that is finite on the compact subsets of G.

We are interested in the construction of a Haar measure on a Lie group G. We
assume the reader familiar with the basic theory of densities and their integration.
We shall denote by D(T'G), the vector bundle of densities over G, with fibre D(7,G)
at the point p € G. We denote the fibre at the identity by Dg. Recall, that the
space of densities of a complex vector space is always one-dimensional. Whenever
we want to refer to the positive densities, we write D, (T'G).

Lemma A.1.1 (Construction of a density on T'G). Let wy € D, g. Then the element
w given by

w(z) = (dlg-1(x)*wy forxedG

15 a positive left-invariant smooth density on T'G. Furthermore, positive left-invariant
densities are unique up to a positive scalar multiples.

Proof. We shall check in the first place that w is indeed a density. So for fixed x € G
and A € End(T,G), we have that

A*w(z) = A*(dly-1(x))*wo = |det dl,-1(z) | | det A|wy = |det A|w(x).
Thus w is a density. It is clearly left-invariant as
(lgw)(x) = (dly(x)) w(gz) = (dlg(x))" (dlg-1g-1(2))*wo = (dlg-1(x)) wo = w(x).
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Precisely as w(z) = |det dl,-1(z)| wo, the density is positive for every = € G since
so is wp. To prove the last assertion, suppose we have wy,wy; € I'(D,TG). Then
wi(e),wq(e) € Dg, which is one dimensional. Then there exists C' > 0 such that
wi(e) = Cws(e). Hence, for z € G

wi(x) = (dl-1(2))*wi(e) = C(dl-1(x))*wa(e) = Cwa(x)
[

In a Lie group, we benefit from the C*- structure by taking the density wy = |Wg|
where &g € /AP g and apply A.1.1. The theory of integration over densities provides
us the following integral

Lemma A.1.2. The map I : Co(G) — C given by I(f) = §, fw is a positive
continuous complex linear functional such that I(l3f) = I(f) for all f € C.(G).

The Riesz representation theorem for positive complex linear functionals, applied
to the positive functional in Lemma A.1.2, yields the existence of a Haar measure
on (. This Haar measure will be denoted by dg.

Remark. If G is compact, then there exists a unique left Haar measure dg for which
SG dg = 1. Let dg be a Haar measure for G. Then 0 < C' = SG dg < 0. Define
dg = C7'dg. By left-invariance, if there where another left Haar measure w such
that §,w =1, then 1 = §dg = §, cow = ¢o §,w = ¢ for some ¢y > 0. Thus dg = w

Now we explore the situation when our Haar measure is bi-invariant

Definition A.1.2 (Unimodular Lie group). We say that a Lie group is unimodular
if |det Ad(g) | = 1 for every g € G.

Lemma A.1.3. If G is unimodular, then every left invariant density is right in-
variant.

Proof. Let w be a left invariant density, then for g € GG
riw =il w = (Cg1)*w = Ad(g ") *w = |det Ad(g ") jw = w
]

Lemma A.1.4. [5, Corollary 8.31] A Lie group is unimodular if it is either abelian,
compact, semisimple or nilpotent.

A.1.1 Positive densities on homogeneous spaces

The goal is now to investigate the existence of positive invariant densities on G/H,
where G is a Lie group and H a closed subgroup. It is well-known, since left
multiplication on G defines a free and proper action, that there exists a unique
structure of C' manifold making the projection map 7¢/y : G — G/H a smooth
surjective submersion. By differentiating, drg/m(e) induces a linear isomorphism
between g/h and T.(G/H). We observe that the maps Cj(z) = hzh™! for z € G
and h € H, leave H invariant, meaning that Ad(h)|h : b — bh. Therefore the map
Tgp © Ad(h) induces a linear automorphism of g/h that we shall denote by A(h).
Now we identify D(T.x(G/H)) with D(g/h). Then for w e D(g/h), we see that

| det Ad(R)], |

A(h)*w = |det A(h) |w = Tdet Ad() [ w
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Definition A.1.3 (Modular function). We call A : H — R given by

| det Ad(h)], |
| det Ad(h) |

the modular function. The modular function is a character.

Lemma A.1.5 (Existence of an invariant positive density on G/H). [11, Corollary
19.19]. Let G be a Lie group and H be a compact subgroup. Then G/H has a
H-invariant positive density that is unique up to positive scalar multiples.

A.2 The Casimir element

The Casimir element plays an important role in the theory developed. That is why,
it has been decided to include its construction in this appendix.We will begin by
giving a brief description of the universal enveloping algebra in terms of the the
tensor and symmetric algebras of a Lie algebra . To find a more detatiled account
of the tensor and symmetric algebras, we recommend to consult [13, Chapter 9] and
[6].

Let g be a complex finite dimensional Lie algebra. Consider the two-sided ideal
J < T'(g) generated by all elements of the form X®Y - Y ®X —[X,Y] for X,Y € g.

Definition A.2.1 (Universal enveloping algebra). The universal enveloping algebra
is the associative unital algebra given by the quotient U(g) = T'(g)/J .

Again, the canonical injective map j : g < 7T'(g) induces a linear map v :
g — U(g) when composed with the quotient map 7'(g) — U(g). We have the
following universal property for the universal enveloping algebra that determines
it up to algebra isomorphism: let A be any associative unital algebra and ¢ :
g — (A, [, ]eom) a Lie algebra homomorphism. Then there exists a unique algebra
homomorphism ¢ making the following diagram commmute

g —— (A [ Jeom)
|
Ulg)

The Poincaré-Birkhoff-Witt theorem gives an explicit basis for the universal envelop-
ing algebra once given a basis for the Lie algebra.

Theorem A.2.1 (Poincaré-Birkhoff-Witt Theorem). [5, Theorem 3.18] Let {X;}!,
be a basis of g. Then the products X{l - X for j; = 0 form a basis of U(g).

Remark. The PBW theorem implies that the map v is injective since it sends linearly
independent vectors to linearly independent vectors.

The motivation behind considering the universal enveloping algebra in represen-
tation theory is that we can extend any g-module to a U(g)-module by the universal
property. On the other hand, any U(g)-module can be restricted to a g-module.
Moreover, this establishes an isomorphism between the categories of g-modules and
U(g)-modules.
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One last tool that we need is the symmetrisation map. Its importance lies in
the fact that it is an effective attempt to parametrise an non-abelian algebra by an
abelian one. Details of the construction of this map can be found in [13, Chapter
10]

Lemma A.2.1 (Symmetrisation map). There exists a unique linear map s : S(g) —
U(g) such that s(X™) = X" for all X € g.

We are now prepared to make the construction of the Casimir element. Let g be
a complex semisimple Lie algebra, h a Cartan subalgebra! of g and let R be a root
system with R* a choice of positive roots. Recall that B the Killing form on g. is
given by B(X,Y) = Tr(ad(X)ad(Y)). The Killing form is symmetric and invariant
under automorphisms and under the Lie bracket.

Lemma A.2.2. The following holds
1. For all \,ppeb*, if X+ p#0. Then gy LB g,.

2. There are elements X, € go and Y, € g_o such that B(X,,Y,) =1 for all root
a€ R.

3. B|h]R defines a positive definite inner product.
Proof.

1. Let X e gy and Y e g,. For H € h. Since B([H, X],Y) = —B(X,[H,Y]), the
result follows.

2. Assume by contradiction that X,g,\{0} there does not exist Yg suc that
B(X,,Y) = 1. This means that for X, € g, there does not exist Y € g, such
that B(X,,Y) # 0. Thus B(X,,Y) =0 for all Y € g. Since g is semisimple,
B is non-degenerate. Hence X, = 0, which is a contradiction. By the root
decomposition 1.1.3 and the previous result Y =Y, € g_,.

3. Let X € bg. Then B(X,X) = Tr(ad(X)?). We observe that ad(X) is anti-
symmetric, then ad(X)? is symmetric. Then it diagonalises in real positive
eigenvalue. Then B(X,X) = 0. And if B(X, X) = 0, the sum of all positive
eigenvalues are zero, hence all are zero. Then ad(X) = 0. Thus X = 0 because
B is non-degenerate.

[]

We proceed to construct the Casimir element. Let {H;}_, be a B-orthonormal
basis of hg. We complete the basis up to a basis for g with elements X, € g, and
Y, € g, as in Lemma A.2.2. Since each g, has dimension 1 for « € R. Then
{Hj, Xo,Ya}l_| seq+ is a basis for g. Denote {H7, X, Y} | .. its associated
basis in g*.

Lemma A.2.3. In the previous bases the Killing form can be written as

k
B=) H@H + ) X"Q@Y*+Y*®X"

Jj=1 aeRt

LA Cartan subalgebra b is an abelian subalgebra which is maximal and for which ad(h) is
contained in the diagonalisible endomorphisms of g
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Proof. Write

X = ZhH’JeraX ty Yy X = ZhHJ+Zan + .Y

7=1 acRT acERT

We compute

B(X,X) = (ZhH+Zan +yaYa,ZhH+Zan +yaY>

j=1 aeRT Jj=1 aeRT
k
:Z h j) + Z IozyNaB<Xa7Yo¢) +ya:%\&B(YauXa)
Jj=1 aeRt
k ~
- Z + ) XHX)Y(X) + YUX)X(X).
Jj=1 aeRt

]

With the previous Lemma we can dualise the Killing form, which takes the form

of
k
B*=B=) Hi®@H+ ) Xo®Ys+Y,®X,.
j=1 aeRt

We consider now the the polynomial p € P(g*), given by p(§) = B*(§,&). Thus,
seen in S(g),

p= Zk:H +2 ) XoYa. (A1)

Definition A.2.2 (Casimir element). The Casimir element is the image under the
symmetrisation map of the polynomial given in (A.1).

Then the Casimir operator takes the following form

k
Q= ZH2+ D1 s(2XaYo) = > H 42 >0 XoY + YaXo.
aeRt =1 aeRt
Lemma A.2.4. Q) is an element in the centre of the universal enveloping algebra.
Proof. We have to prove that 2 commutes with every element in the universal

enveloping algebra. Observe that it is enough to show that it commutes with the
elements of the basis {H;, X,,Y,}. Forall j =1,... k, it follows

ZH3+2 Z XoYoHj + Yo Xo H;

aERT

—ZH3+2 0 Xo(HYo — [H), Vo)) + Ya(H; Xo — [Hj, X))

aERT

:ZH;’+2 Z HanYa+HjYaXa

i=1 aceRt+
= H;Q.
With the same techniques, one can show that Q2X, = X,Q and QY, = 3,8 for all
a € R and the result follows. O]
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Usually, Q is also refered as the Casimir operator. Consider (C*(G), R) the
right regular representation of a Lie group GG. Then its associated g-module can be
computed by means of the differential given by the following

R:g— Bnd(C7(@), X v (Rxf)lg) = &

t=0
Then for every X € g, the map Rx defines a first order linear differential operator.
Moreover, Ry is G-equivariant with the left regular representation, which implies
that Ry is left-invariant linear differential operator. Left invariant linear differential
operators form a Lie algebra with the commutator and it will be denoted by D(G)?.
By the universal property of the universal enveloping algebra, we can extend R :
U(g) — D(G) (note the abuse of notation) satisfying the following commutative
diagram

Rexthf(g)'

g —— D(G)

l/

This extension allows us to consider R € D(G), thence we can speak of the Casimir
operator. Analogously, the discussion equally applies to the construction of Lg.

Lemma A.2.5. Let G be a connected semisimple Lie group, Ad(z)Q = Q for all
re(.

Proof. Since G is a connected Lie group, it is enough to prove the statement for
x = exp X for some X € g. First of all, the universal property of the universal
enveloping algebra yields an extensension of the adjoint action on G in the following
way

g o —— Ulg)
Vl Ad(zx)
U(g)
Hence Ad(z) is well-defined. Then Ad(x)Q = Ad(exp X)Q = 24X = Q) since
ad(X) |3y = 0. O

Lemma A.2.6. In G, Lo = Rq.
Proof. Let g€ G, X € g and f € C*(G)

Lxf(g) = jt f(exp —tX g) = al, f(gg’l(exp ~tX)g)
~ 4 flgesptAdlgX) = R sy 0)
t=0

With the Casimir operator of the form Q = H? + 2(XY + Y X),
Laf(g9) =(LyLp +2(LxLy + Ly Lx))f(g)
=R ada-nme2f(g) + 2Raaxy+vx)f(9) = Raag—ef(g9) = Raf(g).
O

2See [13, Chapters 11 & 12] for a more detailed account on D(G).
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