
Linguistic Application Reconstruction: How Linguistic

Links Support the Relationship between Requirements

Engineering and Software Architecture

Sabine Molenaar (s.molenaar@uu.nl), 4075056

Department of Information and Computing Sciences, Utrecht University, Utrecht,
The Netherlands.

August 2, 2019

A thesis submitted in partial fulfillment of the requirements for the degree of:
Master of Business Informatics.

First supervisor: Prof. Dr. Sjaak Brinkkemper
Second supervisor: Dr. Fabiano Dalpiaz

Contents
List of Abbreviations 4

1 Introduction 5
1.1 Problem Statement . 5
1.2 Research Objective . 6

2 Research Approach 8
2.1 Research Questions . 8
2.2 Research Method . 10
2.3 Literature Study Approach . 13
2.4 Case Study Approach . 13

3 Literature Study 14
3.1 Requirements Engineering . 14
3.2 Software Architecture . 14

3.2.1 Functional Architecture Modeling . 15
3.2.2 Feature Diagrams . 17
3.2.3 Software Architecture Recovery . 18

3.3 Features . 18
3.4 RE4SA . 31

3.4.1 User Stories . 31
3.4.2 Jobs, Jobs-to-be-Done and Job Stories . 32
3.4.3 Epic Stories . 35
3.4.4 The Barista Problem . 36
3.4.5 Research Scope . 37

3.5 Functionality in RE and SA . 39
3.6 Linguistics . 40

3.6.1 Linguistic Structures in RE4SA Concepts 43
3.7 Traceability . 45
3.8 Naming Conventions for Models . 47

4 Case Study 48
4.1 Case Study Preparation . 48

4.1.1 Case Study Selection . 48
4.1.2 Case Study Preparation and Data Gathering Approach 48
4.1.3 Case Study Execution and Analysis Approach 50

4.2 Case Study Execution . 52
4.2.1 Case Descriptions . 52
4.2.2 Case Execution Process . 53

5 Analysis 57
5.1 Case 1 . 58

5.1.1 Dependency Analysis . 58
5.1.2 Epics & Modules . 59
5.1.3 USs & Features . 63
5.1.4 Semantic Frames . 65
5.1.5 Synonyms & Homonyms . 66

5.2 Case 2 . 66
5.2.1 Dependency Analysis . 67
5.2.2 Epics & Modules . 70
5.2.3 USs & Features . 71
5.2.4 Semantic Frames . 75
5.2.5 Synonyms & Homonyms . 76
5.2.6 Deriving Feature Names . 77

5.3 Case 3 . 80
5.4 Functionality in RE & SA . 80

2

6 Results 83
6.1 Story Quality . 86

7 Discussion 88
7.1 Benefits . 88
7.2 Limitations . 88
7.3 Future Research . 89

8 Conclusion 94

References 97

Appendix A 102

Appendix B 105

Appendix D 113

3

List of Abbreviations
AR Architecture Recovery

ASR Architecturally Significant Requirement

BDD Behavior-Driven Development

BDT Behavior-Driven Traceability

Epic Epic story

FAD Functional Architecture Diagram

FAM Functional Architecture Model

GUI Graphical User Interface

JTBD Job-to-be-Done

LSI Latent Semantic Indexing

MRQ Main Research Question

PDD Process-Deliverable Diagram

PDO Product Domain Ontology

PoS Part-of-Speech

QUS Quality User Story

RE Requirements Engineering

RE4SA Requirements Engineering for Software Architecture

RQ Research Question

SA Software Architecture

SLR Systematic Literature Review

uADL utrecht Architecture Definition Language

US User Story

4

1 Introduction
Software development is a fast-paced industry, with one of the more recent trends being the real-
ization of continuous deployment. Deploying continuously also means ever-changing requirements,
which is a considerable issue in Requirements Engineering (RE). One of the challenges is to make
and keep requirements unambiguous, traceable and modifiable among others (Niu, Brinkkemper,
Franch, Partanen, & Savolainen, 2018). However, this problem of changing requirements is not
limited to RE, it also affects other software development activities, such as Software Architecture
(SA). The requirements specification of a software product influences its architectural design, so if
the former continuously changes, so does the latter (Nuseibeh, 2001).

The existence of relationships between software architecture and requirements engineering is
well-known, but the nature of these relationships is not. The RE lab at Utrecht University has
developed a model to visualize these relationships, illustrated in figure 1.

Figure 1: The Requirements Engineering for Software Architecture (RE4SA) model, including the
four concepts.

On the left side RE documentation, such as Epic Stories (Epics) and User Stories (USs), describe
modules and features in the SA on the right side. As was stated previously, the relationship
between RE and SA is known, but the exact nature remains underexposed. However, this could
provide several benefits, such as: software traceability, decrease in ambiguity and facilitation of
communication between requirements engineers and architect (among other stakeholders). In this
research, the connection between requirements documentation and SA is analyzed by means of a
case study using real-world documentation.

1.1 Problem Statement

Requirements specify the needs of stakeholders for a software product or system, which makes them
influential when designing product architectures. However, these requirements are not fixed. New
requirements can be introduced and existing ones can be modified or removed. The SA should
reflect these changes. Moreover, software products are known for their continuously changing
requirements and thus a continuously changing architecture (Lucassen, Dalpiaz, van der Werf, &
Brinkkemper, 2015a). So-called change impact analyses demand that software architects are aware
of the changing requirements and can predict and track their impact on the SA (Khan, Greenwood,
Garcia, & Rashid, 2008).

This relationship between requirements and architecture is important, as explained by the
‘evil circle principle’, which states that if there is something wrong with the requirements, the
resulting architecture will be equally wrong, ultimately leading to a continuously bad project (Gilb
& Finzi, 1988). Furthermore, communication flaws within the project team are listed as one of
the most important issues in RE, sometimes even considered the main cause for project failure by
organizations (Fernández et al., 2017). Other information systems failure contributors are (among
others): inadequate requirements and related scope creep, poor communications within the project
or even among the majority or all stakeholders and key internal stakeholders leaving the project
(Hughes, Dwivedi, Rana, & Simintiras, 2016).

5

Traceability is able to tackle one of these issues, since it can support change impact analysis by
relating software artifacts by means of trace links (Cleland-Huang, Gotel, Huffman Hayes, Mäder,
& Zisman, 2014). An example of how such trace links can be established is by using ontologies.
This ontological traceability approach, however, does not take linguistics into account, apart from
extracting linguistic terms (Martens, Brinkkemper, & Dalpiaz, 2018). Ambiguous linguistic terms
can either introduce trace links that should not exist or fail to identify a trace link that should
be established. By considering linguistic links, ambiguity can also be play a role in determining
relationships between artifacts. Moreover, if the hierarchical structure of linguistic links is examined
as well, it might be possible to map the dependencies between and within software artifacts more
clearly and accurately.

The RE4SA model (Brinkkemper, 2018), as was briefly mentioned earlier, links the RE process
of an application to its SA: the relationship between Epics and USs on one side and the corre-
sponding modules and features on the other. However, it is not certain that the two sides are in
linguistic agreement. For example, if a US specifies a delivery as urgent, does the feature utilize
the same terminology or could it be called a priority delivery? This slight alteration could influ-
ence future changes. Newly added or changes in user requirements, adjusted business goals and
a changing environment all might introduce changes to the requirements and, by extension, SA
of an application. Hosseini, Breaux and Niu, devised a method for creating a shared meaning of
certain terms and concepts for different stakeholders, however, the meaning of the word and the
interpretation of their proposed function are not the same (Hosseini, Breaux, & Niu, 2018). Thus,
by checking the relationship between requirements documentation and SA documentation, the au-
thors of requirements can see whether their descriptions were interpreted correctly. Therefore, in
change management, it is important to know whether the SA and requirements documentation are
in agreement. After all, the success of a system is determined by “the degree to which it meets the
purpose for which it was intended ” (Nuseibeh & Easterbrook, 2000).

Moreover, the Twin Peaks model (Nuseibeh, 2001) and, especially, the Reciprocal Twin Peaks
model (Lucassen et al., 2015a) describe the importance of the synergy between requirements and
architecture, of which the latter focuses specifically on agile development of software products.
The challenge in product software is the nature of its development process, which has to manage,
on the one hand, a continuous flow of requirements and on the other hand a continuously changing
architecture. The consistency between the two is important in order to avoid misunderstandings.
However, realizing this consistency should not burden the involved stakeholders with more work.
The prevention of misunderstandings is of importance, since this can lead to incorrect implementa-
tion and thus potential rework, wasting time and resources. Taking the aforementioned factors into
account, tools are needed to ensure the consistency between artifacts and to establish traceability
of requirements, saving the stakeholders time and effort.

1.2 Research Objective

The objective of this research is twofold: validation of the RE4SA model and new insights and/or
confirmation of previous findings. Firstly, the proposed research aims to verify the RE4SA model
by applying it to real life cases. Secondly, it is expected to deliver new insights into and improved
understanding of the relationship between RE and SA. Therefore, the main artifact produced by
this research consists of the findings from the various case studies. The results can be used in
future research and to analyze existing RE and SA documentations. Ideally, it proves to be a basis
for the automatic generation of concept names within artifacts or even partial artifacts, such as
modules or features in SA documentation and/or modeling. This can be achieved by identifying
frequently used PoS tags and positioning of shared words. These can serve as a starting point from
which to generate artifact names. Furthermore, they can also be used when formulating artifacts
such as Epics and USs manually.

Similarly, a future goal is to automatically update SA documentation based on RE or source
code and also vice versa in case of the latter. Supporting the need for tools that realize consistency
and traceability in the software product development process (as was described in Chapter 1.1).
Additionally, it could support naming conventions/suggestions for concepts within artifacts. The
linguistic links can be utilized for planning and modeling extensions of an implemented system as
well. For one, by analyzing linguistic links it is possible to determine whether some functionality
needed for the extension already exists somewhere in the current system. Furthermore, the links
support positioning of the new architectural components. Finally, in terms of literature, it aims

6

to more precisely define SA concepts, to better understand the relationship of these concepts with
RE.

The remainder of this thesis is structured as follows. In Chapter 2, the research approach,
including the research questions and method, is described. Subsequently, Chapter 3 contains a
literature study to support the concepts and domains included in this research. The theoreti-
cal background consists of four main topics, namely: RE, SA, RE4SA and linguistics. Then, in
Chapter 4, the preparation and selection of the case studies are described. This also includes an
overview of the steps to be performed for each case and a summary of the case study study exe-
cution. In Chapter 4.1.3, the cases are analyzed according to the case study steps and theoretical
background as described in the literature study. Chapter 5 discusses the analysis per case, consist-
ing of a dependency analysis, a comparison and the links between Epics and modules, as well as
USs and features, identified semantic frames and observed synonyms and homonyms. In addition,
the meaning of the term functionality in the two domains in practice is examined. The last part
of the analysis is concerned with the quality of the Epics and USs. After which, in Chapter 6, the
findings are extracted from the analyses and used to answer the MRQ and sub-RQs. The findings
per case are presented, as well as the results of the research as a whole. Finally, the strengths
and limitations of the research are discussed, as well as future research directions and the overall
conclusion, in Chapters 7 and 8 respectively.

7

2 Research Approach
The main goal of this research, as mentioned in Chapter 1.2, is to validate a theoretical model by
means of a case study. The theoretical model that is considered is the RE4SA model, as depicted
in figure 2. To improve legibility, the story templates and architecture examples have been omitted
in this version of the model.

Figure 2: The Requirements Engineering for Software Architecture (RE4SA) model.

The RE4SA model states that RE and SA are related through their elements. Epics can be
connected to modules. Meaning that modules implement Epics and that Epics describe modules.
On a lower level, the same is true for USs and features. Furthermore, while Epics can be refined
into USs, modules contain multiple features, which implies that the hierarchical structures in
both domains are similar in granularity. By reconstructing an existing application based on its
linguistics, new insights into the relationship between requirements and SA can be obtained. This
reconstruction entails the visualization of the SA (using any and all architecture documentation
available) and comparing it to the requirements documentation. This comparison mainly concerns
the linguistic terms used in the artifacts at hand.

2.1 Research Questions

The following main research question (MRQ) was formulated based on the aforementioned goals
and problem statement:

Can linguistic links be identified between the two domains of RE4SA using application reconstruc-
tion?

In this study application reconstruction refers to the reconstruction and recovery of artifacts and
artifact documentation. While USs have a high adoption, the other artifacts are less prominent.
For Epics, the term ‘reconstruction’ is used, since they are formulated based on RE documentation.
For functional architecture artifacts (modules and features), the term recovery is used, since they
are recovered from an implemented system.

In addition, five sub-Research Questions (RQs) are stated to help answer the MRQ and further
guide the research:

1. What is understood as a feature in literature and in practice?
2. What is understood as functionality in literature and in practice?
3. Is there a linguistic relationship between the names and descriptions of Epics and USs and

modules and features?

8

4. Are the dependencies between Epics and USs the same as their corresponding modules and
features?

5. Is there a one-to-one relationship between USs and features?

Since all RQs are based on the same theoretical model, figure 3 illustrates where the sub-RQs are
located in the RE4SA model. The main research question is concerned with the model as a whole.

Figure 3: Visualization of the RQs in relation to the RE4SA model.

As the formulation may suggest, sub-RQs one and two can be partly answered using literature
research. In an attempt to verify the results of this research, the questions will also be considered
in practice, during the case study. Sub-RQ 1 is solely concerned with what is considered to be a
feature in the SA and whether these are usually of the same size within the architecture. The results
of the literature study and the case study are compared to see whether they are in agreement. Sub-
RQ 2 uses the same approach, although it also considers RE and not solely SA. Thirdly, as shown in
figure 3, the relationships between Epics and modules and USs and features is investigated in terms
of linguistics. This sub-RQ takes a ‘horizontal’ approach, meaning it pertains to the relationship
between RE and SA concepts. Contrarily, sub-RQ 4 regards the model ‘vertically’, being involved
with the concepts within RE and SA. However, apart from these dependencies within the domains,
this sub-RQ also requires a comparison of the dependencies in the two domains. Finally, sub-RQ
5 specifically examines the relationships, or rather the cardinalities of these relationships, between
USs and features.

In light of the theoretical model, hypotheses can be formulated for sub-RQs three to five.
According to the RE4SA model and given that SA is based on RE and vice versa, it is likely that
there it a linguistic relationship between names and descriptions of Epics and USs and modules
and features. If the theory proves valid, the answer to sub-RQ three should be yes. Similarly, the
dependencies between between Epics and USs should be the same as the dependencies between
their corresponding modules and features. Given the previous expectations, sub-RQ five should
also be true, meaning that there is a one-to-one relationship. If, for any of the three sub-RQs,
the hypotheses need to be rejected, it is important to investigate whether this results from the
theoretical model being invalid, or potential errors and/or flaws in either the RE or SA domain.
Since the objects of study are man-made, it is possible the grounds for rejection were introduced
by human errors.

As was stated previously, the first two sub-RQs are partially answered in a literature study. Sub-
RQ 1 is addressed in a systematic literature review (SLR) that examines the various definitions
of the concept ‘features’ used in research. Moreover, the concept is researched in practice, by

9

studying what constitutes as a feature in SA. This is done by means of SA models, explained
in detail in Chapter 3.2. The same approach is utilized for sub-RQ 2, although the concept
‘functionality’ is studied in practice by looking into the RE domain, as opposed to the SA domain.
Sub-RQ 3 is studied by extracting linguistic terms from RE and SA documentation and comparing
them. Similarly, for sub-RQ 4, the linguistic links are analyzed as well as the dependencies among
them, again comparing the artifacts of both domains. Finally, sub-RQ 5 specifically investigates
the relationships between USs and features. Since the case study-related sub-RQs are based on
linguistics and man-made artifacts, they can be subject to interpretation. Therefore, the extracted
linguistic links are evaluated to determine how likely or unlikely they are to be correct. Given the
results of all sub-RQs, the MRQ can be answered.

Before going into more detail about the research and its theoretical background, the proposed
term ‘linguistic link’ should be defined. Based on the definition of software traceability by Cleland-
Huang, Gotel and Zisman (which can be found in Chapter 3.7) (Cleland-Huang et al., 2014), the
following definition can be formulated for ‘linguistic traceability’: “Linguistic software traceability
is the ability to semantically interrelate any uniquely identifiable software engineering artifact to
any other ”. Such links can be referred to as linguistic links and in short can be described as
a linguistic relationship between software artifacts. To be more specific, linguistic links consist
of linguistic terms that can be matched. As for the former, linguistic terms refer to ‘semantically
meaningful’ words, oftentimes nouns, verbs (modular verbs excluded) and adjectives, as most other
types of words are used to formulate a coherent sentence, but are not essential to its meaning or
purpose. Along those lines, words that are part of the template are omitted. Secondly, matches
can be defined as the ability to identify a linguistic term in two artifacts (on the same level of
abstraction) or a linguistic term and its synonym. If the match is unique, as in the only match to
be made including those terms on the level of abstraction, it can be considered a linguistic link.

2.2 Research Method

The case study requires existing artifacts to support the different domains in the RE4SA model.
However, if certain artifacts are not (readily) available, they are reconstructed or recovered using
existing documentation and artifacts. An example of a recovery is the creation of feature diagrams
using the source code and Graphical User Interface (GUI) as input.

The RE4SA model is thought to be applicable and relevant in most, if not all, cases. Therefore,
a multiple-case design is used to test the theory. By analyzing multiple cases and having multiple
sources from which to draw results, an attempt to verify and validate the RE4SA model can be
made. If the model is correct, the results should be replicable across the different cases in the
case study. To be more specific, a sequential, direct replication multiple-case design is used. This
approach stipulates that a case must be completed prior to starting the next one. Due to this
sequential order, it is possible to slightly adapt the case study approach and adjust or reconsider
previous findings. Each case should follow more or less the same steps as the others in the case
study (R. K. Yin, 1981). Case studies are most often exploratory and make use of qualitative data
(Runeson & Höst, 2009). Runeson and Höst define five main steps for a conducting a case study:

1. Case study design
2. Preparation for data collection
3. Collecting evidence
4. Analysis of collected data
5. Reporting

The case study design, as was mentioned previously, is a multiple-case design, performed sequen-
tially. The different phases and activities are illustrated in a Process-Deliverable Diagram (PDD)
in figure 4. While the main steps remain mostly the same for each case, the most variation is ex-
pected in the preparation for data collection step. The research requires multiple software artifacts
as input, the most important ones being Epics, USs, a functional architecture and feature model.
Additional artifacts, such as requirements documentation and test cases, can also be of use, but
are not crucial to the collection of evidence step. It is possible to recover such missing artifacts if
necessary. For example, if the functional architecture is missing, it can be reverse engineered using
the source code and GUI. Similarly, a feature diagram can be extracted from both the functional
architecture (or source code) and the GUI. USs can also be reconstructed, however, this should
be avoided, as there is a high risk of subjectivity involved. Epics, however, are a different matter

10

entirely. Epics as they are used in relation to the RE4SA model (as described in Chapter 3.4.3)
are rarely, if ever, used in practice or research. Approaches similar to that of Epics are more likely
to exist (such as themes or USs groups). These can be used to formulate proper Epics, since using
the SA documents would reduce validity. Finally, the SA artifacts should not be recovered based
on the RE artifacts, as this would negatively affect the validity of the research as well.

When all artifacts are gathered and/or reconstructed/recovered, the activities are identical for
all cases. First, the SA artifacts are analyzed per module, which also include the corresponding
features. Similarly, the RE artifacts are analyzed per Epic, which include the corresponding USs.
Based on these analyses, linguistic links can be extracted. These linguistic links will then be com-
pared on four different aspects. Firstly, how similar the linguistic terms are, which is also referred
to as the evaluation of linguistic links. This similarity considers whether the terms are identical
or synonyms, among others. Secondly, the relationships are analyzed, to see which concepts and
artifacts can be related using the linguistic links. Thirdly, after these activities have been com-
pleted, the dependencies among the various artifacts and concepts will be investigated. Fourthly
and finally, these dependencies among concepts will be compared to what has been defined in
theory, so in this case the RE4SA model. The case study and results analyses phases are executed
three to four times, as this can be considered sufficient according to Yin (R. K. Yin, 1981). The
analysis is not solely focused on theory testing, but also on theory building. The former is done,
in short, by testing hypotheses the RE4SA model is based on. The latter is achieved by further
defining the relationship between RE and SA from a linguistic perspective, which is likely to lead
to new hypotheses.

11

Figure 4: Visualization of the research approach using a PDD.

12

2.3 Literature Study Approach

In the literature the main subjects used in and relevant to the research are discussed. Since the
sole purpose of this study is to support and guide the research, only the required literature is
included (it is by no means a systematic literature review). Sources were gathered by searching
(using various search terms related to the topics) on Google Scholar and by snowballing (forward
and backward searching) the results. The results of this search are presented and discussed in
Chapter 3. In addition, to answer sub-RQ 1, a systematic literature review (SLR) was conducted.
The results of this SLR are presented and discussed in Chapter 3.3.

2.4 Case Study Approach

As was mentioned earlier, a multi-case study is used. The steps performed in the case study are
repeated for every case (refer to Chapters 4.1.2 and 4.1.3. An estimated three to four cases are
used to not only gather data, but also validate results obtained from the other cases. Cases are
selected based on several selection criteria, as presented in Chapter 4.1.1. To be able to learn from
previous cases (for example to prevent any issues or challenges), each case is fully analyzed, prior
to the next one being started.

13

3 Literature Study
The literature study presented in this chapter focuses on the main subjects related to this research,
these being RE, SA and linguistics. For each subject, the main topics and concepts of importance
to or utilized throughout this thesis are discussed. Firstly, in Chapter 3.1 the subject of RE is
examined, followed by a chapter on SA in 3.2. The latter also discusses modeling techniques and
the concept of features (in relation to RQ1). The RE4SA model and its concepts are explained
in-depth in Chapter 3.4. This chapter describes various templates for RE concepts. To improve
readability these are written in verbatim. In Chapter 3.5 functionality is examined in the context
of RQ2. Subsequently, in Chapter 3.6, various topics related to linguistics are discussed, such as
ambiguity, parse trees, ontologies and linguistic structures. Finally, the relationship between RE
and SA and its use is explained in terms of traceability in Chapter 3.7.

3.1 Requirements Engineering

While this chapter discusses RE in general, the RE related concepts presented in the RE4SA model
are clarified in Chapter 3.4.

RE is concerned with the analysis, elicitation, validation and management of requirements,
among other activities. RE can be defined as follows: “Requirements engineering is the branch of
software engineering concerned with the real-world goals for, functions of, and constraints on soft-
ware systems. It is also concerned with the relationship of these factors to precise specifications of
software behavior, and to their evolution over time and across software families” (Zave, 1997). In
short RE handles requirements, in which a requirement can be described as “a property that must
be exhibited by something in order to solve some problem in the real world ” (Bourque & Fairley,
2014). The elicitation of requirements has little to do with architecture, as it is mostly concerned
with identifying stakeholders, gathering information and setting goals for the system. The next
step of the RE process, modeling and analyzing requirements is not of much use either. The main
architectural design challenge is in communicating and evolving requirements (Nuseibeh & East-
erbrook, 2000). Both activities focus heavily on change management. Change management should
not be considered an afterthought, software development is dynamic, meaning that requirements
can change and evolve while development is not yet finished (Nurmuliani, Zowghi, & Powell, 2004).

Changing requirements are also referred to as volatile requirements. Such requirements volatil-
ity is generally perceived as unwanted and is considered a major problem in the software industry
(Curtis, Krasner, & Iscoe, 1988). Reportedly, volatile requirements negatively a software project,
resulting in projects not being delivered on time and exceeding budgets (Zowghi & Nurmuliani,
2002). Requirements volatility can be defined as: “the tendency of requirements to change over
time in response to the evolving needs of customers, stakeholders, organisation, and work environ-
ment”. In RE, two types of requirements can be distinguished, namely functional and nonfunctional
requirements. The former refer to certain functions a system should offer, these are often called
features or capabilities. The latter refer to requirements that express constraints for the solution.
Therefore, they are sometimes referred to as constraints or quality requirements (Bourque & Fair-
ley, 2014). Nonfunctional requirements are often not located or addressed in a single part of the
architecture, but rather in multiple parts or even the product or system as a whole. Since these
requirements cannot be directly related to concepts in the SA, only functional requirements are
considered throughout the case studies. The concepts of Epics and USs are described in Chap-
ter 3.4.

3.2 Software Architecture

In this chapter, the SA dimension of the RE4SA model is described in more detail. First, SA
is examined in general, after which the SA related concepts in the RE4SA model are discussed
(modules and features).

According to Rozanski and Woods, “the architecture of a system is the set of fundamental
concepts or properties of the system in its environment, embodied in its elements, relationships, and
the principles of its design and evolution”. Since this research is concerned with the implementation
and realization of requirements, only the functional viewpoint of a SA is examined. This viewpoint
handles the runtime functional elements of a system, their responsibilities, primary interactions
and interfaces. Essentially, it describes how a system performs its necessary functions (Rozanski
& Woods, 2011). As has been explained previously, software architects are required to understand

14

evolving requirements and their impact on the architectural design of a system. Khan, Greenwood,
Garcia and Rashid distinguish six types of dependencies in architectures (Khan et al., 2008):

1. Goal: related to requirements specifying development and quality of service.
2. Service: related to requirements describing characteristics of the system that correspond to

operations and functions in the architecture.
3. Conditional: related to requirements that describe events that trigger services, processes and

tasks, which are realized in the architecture.
4. Temporal: related to requirements that are considered time-sensitive in the architecture.
5. Task: related to the connections between artifacts which require user input.
6. Infrastructure: related to resources, infrastructures, technical standards and compatibility

realized in the architecture.

Even though architectural models can describe a system’s structure, it is not in full agreement with
the source code. This discrepancy is also referred to as the ‘model-code gap’ by Fairbanks. He
states that the architecture is an abstraction and therefore includes elements that are not present
in the code, design decisions and constraints for example. He continues by saying you can either
avoid or manage it. The former, however, prevents you from sufficiently dealing with scalability
and complexity, so the latter option might be more appropriate. In shot managing the gap means
managing the consistency between source code and architecture. Fairbanks takes a risk-driven
approach to architecture. This means that he proposes doing “just enough” architecture, since
it can consume a lot of time and effort. Similarly, he describes a ‘constant sync’ of architecture
and source code as ‘expensive and uncommon’ (Fairbanks, 2010). Therefore, it could be valuable
to devise an approach to automatically updating the SA documentations using source code or
vice versa. In addition, RE documentation could also be used as a means for updating the SA
documentation and, by extension, the source code.

3.2.1 Functional Architecture Modeling

In the RE4SA model, the SA domain contains two concepts, namely modules and features. While
features can be modeled by means of feature diagrams, modules are often not included in such
visualizations. The utrecht Architecture Description Language (uADL), however, does provide
an approach for modeling modules (as well as the related features). The functional viewpoint in
the uADL, based on the work by Rozanski and Woods, utilizes Functional Architecture Models
(FAMs), feature diagrams and scenario overlays (Jansen & van Rhijn, 2018). The FAM as used in
the uADL was developed by Brinkkemper and Pachidi, for the purpose of modeling functionality in
relation to the satisfaction of requirements (Brinkkemper & Pachidi, 2010). Given this relationship
between FAMs and requirements, the modeling technique suits the aim of this research. In figure 5
a nonspecific example of such a FAM is provided.

Figure 5: Example of a Functional Architecture Model (FAM).

In this model, the scope can be defined by the product or system that is being described. The
system consists of modules, information flows and, optionally, external systems. Brinkkemper and

15

Pachidi distinguish two types of modules, namely modules that contain sub-modules and stand-
alone modules. Modules can consist of sub-modules (which are also modeled in the functional
architecture) or features, which are modeled using feature diagram, as described in Chapter 3.2.2.
In addition, there are systems outside of the scope that the system to be modeled interacts with.
Interactions, or rather communication, between modules and external systems are visualized us-
ing arrows called information flows. Information flows can either be one-way or bidirectional.
Brinkkemper and Pachidi also propose the use of Functional Architecture Diagrams (FADs). FADs
are used to separate different layers of the functional architecture. A nonspecific example of a FAD
is presented in figure 6. FADs can be created for all modules that contain sub-modules.

Figure 6: Example of a Functional Architecture Diagram (FAD).

The main difference with FAMs is that sub-modules are included in these diagrams. Furthermore,
the inbound and outbound origins and destinations of information flows of the module are not
included, since they are not part of the module scope. Other than that, the types of flows that
can be used are the same.

To better illustrate how FAMs can be used, consider the context-specific example (created for
an imaginary maps application, akin to Google Maps in functionality) shown in figure 7.

Figure 7: Context-specific example of a FAM of a maps application.

The maps application, aptly called ‘Maps’ (as shown in the scope in the bottom right), consists of
four modules, one of which contains sub-modules (‘Route Planning’). For this module it is possible
to create a FAD. The application also interacts with an external system. Finally, scenarios can
be written to describe the use of the application. These scenarios can be illustrated by using a
scenario overlay on the FAM, which essentially means showing which modules are used in which
order by putting arrows on top of the information flows in the FAM.

To provide an indication of what a FAD could look like, the scope of the ‘Route Planning’
module from the previous figure is illustrated in figure 8.

16

Figure 8: Context-specific example of a FAD of a maps application.

An example of which sub-modules can be contained in the ‘Route Planning’ module are ‘Traffic
Manager’ and ‘Travel Time Estimation’, the purposes of which are quite self-explanatory. Natu-
rally, the ‘Route Planning’ module could (and probably should) contain more sub-modules, but
they are not included in this non-exhaustive example.

3.2.2 Feature Diagrams

In addition to FAMs and FADs, feature diagrams are also used to illustrate the SA, an example
of a feature diagram is presented in figure 9.

Figure 9: Example of a feature diagram.

A feature diagram, in this format also referred to as a feature tree, since it shows which features are
contained within a module and which features are part of other features. A filled in circle means
that the feature is mandatory, while a white circle indicates an optional feature. In addition,
some features can consist of other features, in which a black decomposition indicates an ‘OR’ and
the white decomposition an alternative (Cechticky, Pasetti, Rohlik, & Schaufelberger, 2004). As
figure 9 has shown, composite features also exist. The distinction between modules, sub-modules,
features and sub-features may seem arbitrary, given that their formulation and description can
be slightly altered to turn move them up or down the hierarchy in terms of abstraction. This
granularity issue also exists in RE and is discussed further in Chapter 3.4.4.

Using the maps application as an example once again, figure 10 below illustrates what a feature
diagram for the ‘Route Planning’ module could look like. For completeness, all other modules and
their features should also be included in a feature diagram, but they have been omitted in this
example.

Figure 10: Context-specific example of a feature diagram of a maps application.

17

The black circles indicate mandatory features, while providing information about the weather is
considered optional. In addition, two of the three features are composite and can be specified
further. For the visualization preference, it is possible to select a globe view and to show traffic,
one of the two or neither. In regards to the weather information you can see the temperature in
Celsius or, alternatively, in Fahrenheit, but they essentially provide the same functionality, namely
showing the temperature.

3.2.3 Software Architecture Recovery

Creating a model from an existing system is often referred to as reverse engineering. Chikofksy
and Cross define the term as: “the process of analyzing a subject system to identify the system’s
components and their inter-relationships and create representations of the system in another form
or at a higher level of abstraction” (Chikofsky & Cross, 1990). The purpose of reverse engineering
is therefore to examine a system as-is and not necessarily to create a perfect or complete model
(Canfora, Di Penta, & Cerulo, 2011). Architecture Recovery (AR) is defined as “when the imple-
mented architecture is extracted from the implemented system” (Ali, Baker, O’Crowley, Herold, &
Buckley, 2018). AR can be divided into two approaches, namely top-down and bottom-up, called
‘discovery’ and ‘recovery’ respectively. Discovery using high-level knowledge as input, such as re-
quirements. However, since in this research the goal is to map the architecture to the requirements
based on granularity and linguistics, this is an undesirable approach. The recovered architecture
would be heavily influenced by the RE artifacts, negatively affecting the validity of the results.
Therefore, the recovery approach is used instead. Recovery utilizes source code and models that
represent it to create a high-level visualization of the architecture (Ali et al., 2018). In contrast
with discovery, recovery solely requires the use of SA artifacts, meaning that it will not impact the
validity due to (linguistic) bias.

The potential need for SA artifact recovery was already alluded to in Chapter 2, this, however,
should be done carefully. As described earlier, Fairbanks has identified a gap between architectural
designs and code by stating that the former is abstract and high-level and the latter concrete and
low-level (Fairbanks, 2010). This leads to the conclusion that it is perhaps not possible (or maybe
desirable) to map them one-on-one. Software reflexion models were developed to bridge this gap.
In this approach, high-level architectural models (depicting modules and calls) is mapped to the
source code. Then, a software reflexion model is generated by a tool that illustrates the similarities
and conflicts between the high-level model and the software reflexion model based on the code
(Murphy, Notkin, & Sullivan, 1995). This approach, however, seems to focus on the calls between
modules, which can be compared to the information flows between modules in a FAM or FAD (refer
to Chapter 3.2.1). Information flows are not explicitly included in the RE4SA model and therefore
not necessarily of importance when analyzing linguistic structures, making the model-code gap less
of an issue.

3.3 Features

The concept ‘feature’ in relation to software has been defined in various ways over the last three
decades. Arguably one of the first definitions was presented in the early 90s in a technical report on
feature-oriented domain analysis (Kang, Cohen, Hess, Novak, & Peterson, 1990). This definition
seems to be adapted from the American Heritage dictionary entry for feature. The report, in terms
of citations, was quite popular. However, ever since, feature definitions have started to deviate. In
an attempt to properly define the concept and categorize existing definitions, a small-scale SLR
was conducted, following the guide by Okoli and Schabram (Okoli & Schabram, 2010). This guide
specifies the following eight steps for executing an SLR:

1. Purpose of the literature review
2. Protocol and training
3. Searching for the literature
4. Practical screen
5. Quality appraisal
6. Data extraction
7. Synthesis of studies
8. Writing the review

18

Since the goal of this SLR is to provide definitions from various perspectives and for multiple
purposes, it is not the intent to create an exhaustive list of all feature definitions. instead, the
aim is to collect definitions from different perspectives and analyze them. This analysis, which
is a categorization of the definitions, is the main contribution. Furthermore, it should be noted
that the second step is superfluous in this case, since the search, screening and analysis were all
performed by the same person, so the risk of alignment issues is practically non-existent.

Results were found by using operator searching on Google Scholar. Since all definitions should
be specifically for the term ‘feature’, this word is always included in the search query. Since that
term in combination with the word ‘definition’ often lead to results not related to information
and/or computing science, more specific queries were used instead. The second term in the search
query is based on other topics relevant to this thesis, starting with RE and SA. The objective of
this SLR is, after all, to provide definitions for various purposes, which is why multiple research
fields are included in the search. Table 1 provides an overview of the search queries used and the
results that were included for each query.

Search query Included results
“feature” AND “requirements engineering” Classen et al., 2008; Kang et al., 1990
“feature” AND “software architecture” Apel & Kästner 2009; Kang et al., 1990
“feature” AND “product lines” Apel et al., 2013
“feature” AND “software system” Apel et al., 2013; Apel & Kästner 2009
“feature” AND “feature-oriented specification” Guerra et al., 1996; Apel & Kästner, 2009
“feature” AND “source code” Dit et al., 2013

Table 1: Overview of utilized search queries (on Google Scholar) and their included results.

The results are presented in order of the search results (so relevance in relation to the search query).
It should be noted that the work by Apel et al. published in 2013, is stated as a work from 2016
by Google Scholar. However, the book itself includes a copyright text from 2013 and the foreword
was also dated 2013. More results were presented, but in the table only results included as per the
selection criteria (described later) are shown.

In addition to search queries, the snowballing technique was also utilized. In this case this
consisted of backwards searching. Two articles were selected for this technique, since these two
works explicitly cited various definitions of the term ‘feature’. Table 2 summarizes which works
have been found in each article.

Source References

Classen et al., 2008 Kang et al., 1990; Kang et al., 1998; Bosch, 2000; Czarnecki & Eisenecker, 2000; Batory, 2004;
Batory et al., 2004; Pohl et al., 2005; Batory et al., 2006; Apel et al., 2007

Apel & Kästner, 2009
Kang et al., 1990; Kang et al., 1998; Bosch, 2000; Czarnecki & Eisenecker, 2000; Zave, 2003;
Batory et al., 2004; Chen et al., 2005; Czarnecki et al., 2005; Pohl et al., 2005; Batory et al., 2006;
Apel et al., 2007; Classen et al., 2008; Kästner et al., 2008

Table 2: Works found through the use of the snowballing technique.

The references are shown in chronological order and, if two or more works were published in the
same year, alphabetical order. Overlapping references between the two works are included for both
for completeness. Based on correspondence with Sven Apel, three works co-written by Thorsten
Berger were included as well (S. Apel, personal communication, February 12, 2019). More than
one definition written by Apel has been included and the article providing an overview of feature-
oriented development was used not only as a starting point for searching for more definitions, but
also inspired the synthesis in part. Therefore, the recommendation was gladly accepted. Moreover,
these three works were published more recently than most of the other included works, providing
a nice overview of the term ‘feature’ over the past thirty years.

To scale down the number of results and to assure quality of the results, some results had to be
excluded. The definition and the works in they were provided should meet the following selection
criteria:

1. Works must be written in English.
2. Works must have been published in journals, workshops, conferences, books and the like.

19

3. Articles and books only, other media, such as blogs, videos and slides, are not included.
4. Works must present a unique definition of the concept feature.

At first, a minimal number of citations requirement was used. However, since the works used in
the SLR range from 1990 to 2018, this as deemed an ‘unfair’ criterion, since older works have had
more time to get cited. The fourth and final criterion refers to the fact that works that cite another
definition are not included here. Moreover, the aim is to provide an overview of existing definition,
so ‘unpopular’ definitions should be featured as well for completeness. After applying the selection
criteria, 22 works remained from the original set of 23. Table 3 shows the feature definitions in
chronological order. The references in the table are written using short citations, due to the size
and thus legibility of the table.

Authors Year of
publication Definition

Kang, Cohen, Hess, Novak & Peterson
(Kang et al., 1990) 1990 “a prominent or distinctive user-visible aspect, quality or

characteristic of a software system or systems”

Guerra, Ryan & Sernadas (Guerra et al., 1996) 1996 “is a part or aspect of a specification which a user perceives
as having a self-contained functional role”

Kang, Kim, Lee, Kim, Shin & Huh (Kang et al., 1998) 1998 “distinctively identifiable functional abstractions that must be
implemented, tested, delivered, and maintained”

Bosch (Bosch, 2000) 2000 “a logical unit of behaviour specified by a set of functional
and non-functional requirements”

Czarnecki & Eisenecker (Czarnecki & Eisenecker, 2000) 2000
“a distinguishable characteristic of a concept (e.g., system,
component, and so on) that is relevant to some stakeholder of
the concept”

Zave (Zave, 2003) 2003 “an optional or incremental unit of functionality”
Batory (Batory, 2004) 2004 “the primary units of software modularity”

Batory, Sarvela & Rauschmayer (Batory et al., 2004) 2004 “a product characteristic that is used in distinguishing
programs within a family of related programs”

Chen, Zhang, Zhao & Mei (K. Chen et al., 2005) 2005 “a product characteristic from user or customer views, which
essentially consists of a cohesive set of individual requirements”

Czarnecki, Helsen & Eisenecker
(Czarnecki et al., 2005) 2005

“a system property that is relevant to some stakeholder and is
used to capture commonalities or discriminate among systems
in a family”

Pohl, Böckle & van der Linden (Pohl et al., 2005) 2005 “an end-user visible characteristic of a system”
Batory, Benavides & Ruiz-Cortes (Batory et al., 2006) 2006 “an increment in product functionality”

Apel, Lengauer, Batory, Möller & Kästner
(Apel et al., 2007) 2007

“a structure that extends and modifies the structure of a given
program in order to satisfy a stakeholder’s requirement, to
implement and encapsulate a design decision, and to offer a
configuration option.”

Classen, Heymans & Schobbens (Classen et al., 2008) 2008
“a triplet, f = (R,W,S), where R represents the requirements the
feature satisfies, W the assumptions the feature takes about its
environment and S its specification”

Kästner, Apel & Kuhlemann (Kästner et al., 2008) 2008 “represents an increment in functionality relevant to
stakeholders”

Apel & Kästner (Apel & Kästner, 2009) 2009
“is a unit of functionality of a software system that satisfies
a requirement, represents a design decision, and provides a
potential configuration option”

Apel, Batory, Kästner & Saake (Apel et al., 2013) 2013 “is a characteristic or end-user-visible behavior of a software
system”

Dit, Revelle, Gethers & Poshyvanyk (Dit et al., 2013) 2013 “represents a functionality that is defined by requirements and
accessible to developers and users”

Berger, Lettner, Rubin, Grünbacher, Silva, Becker,
Chechik & Czarnecki (Berger et al., 2015) 2015 “describe the functional and non-functional characteristics of a

system”

Andam, Burger, Berger & Chaudron (Andam et al., 2017) 2017 “are high-level, domain-specific abstractions over implementation
artifacts”

Krüger, Gu, Shen, Mukelabai, Hebig & Berger
(Krüger et al., 2018) 2018

“used to specify, manage, and communicate the behavior of
software systems and to support developers in comprehending,
reusing, or changing these systems”

Rodríguez, Mendes & Turhan (Rodriíguez et al., 2018) 2018
“represent needs that are gathered via meetings with customers
or other stakeholders, which, once selected, are refined during
a requirements elicitation process”

Table 3: Overview of 22 definitions of the concept ‘feature’, presented in chronological order.

As is evident from the list in the table, many definitions of the term ‘feature’ exist. To complicate
matters further, there is no one true definition and, at first glance, one definition is not necessarily
better than another. Therefore, the goal is not to identify the ‘perfect’ definition, but to provide
multiple options given various context. Therefore, five different categorizations of the 22 definitions
are provided in this chapter:

1. Categorization by research topic
2. Categorization by number of citations on Google Scholar
3. Categorization by h-index of authors

20

4. Categorization by level of abstraction and viewpoint
5. Categorization by relationship based on cites and cited by

Firstly, it is possible to identify various research fields/topics. This division based on research topic
is provided in table 4.

Research topic Related works

Feature-oriented software Kang et al., 1990, 1998; Batory, 2004; Apel et al., 2007;
Apel & Kästner, 2009; Dit et al., 2013

Feature-oriented specifications Guerra et al., 1996; Zave, 2003
Generative programming Czarnecki & Eisenecker, 2000

Software product lines
Bosch, 2000; Batory et al., 2004; Pohl et al., 2005;
Kästner et al., 2008; Apel et al., 2013; Berger et al., 2015;
Andam et al., 2017; Krüger et al., 2018

Feature modeling Chen et al., 2005; Czarnecki et al., 2005; Batory et al.,
2006

Requirements engineering Classen et al., 2008
Release planning Rodríguez et al., 2018

Table 4: Feature definitions categorized by research topic.

The research topics were determined based on which topics or fields were mentioned in the abstract,
keywords or introduction. In addition, the research fields or topics related to the journal or
conference proceedings the work was published in were also taken into account. Some overlap
between the topics is possible, since some works included a more specific topic or field than others.
For example, in table 4, feature-oriented software may also be interpreted as feature-oriented
programming in some cases, but to keep it more generic, the former topic description has been
used instead. In addition, it is possible that a definition could fit more than one research topic,
in such cases the most important or prominent one was selected. For instance, the definition by
Rodríquez et al., could also fit the RE topic, but was categorized as release planning, since this
was the main topic of the work. Analyses of the evolution of a definition have not been considered
viable. While some authors have published multiple definitions on the same research topic, they
were in all cases written by a different research team. Therefore, the influence of the new/different
researchers could be great. Analyses of evolutions would thus be heavily based on assumptions.

Another approach could be to use the definitions presented in the most frequently cited works.
In that case, figure 11 could be used to select a definition. However, this does not take research
topics into account. Moreover, more recently published works have had less time to get cited,
resulting in a slightly skewed view.

21

Figure 11: Overview of number of citations on Google Scholar of works in which definitions are
provided (as of November 2018).

One approach for selecting a feature definition could be to consider all works that score above
average on the number of citations and use that one, or use the definition by Kang et al. from
1990, since it has the most citations.

22

In addition to the number of citations on Google Scholar, the h-index of authors as presented
by Google Scholar can also be considered. Table 5 provides an overview of the h-index scores for
all the authors that have been included in the feature definition overview (table 3), according to
Google Scholar (scores as of January 2019). These scores can give an indication of the prestige or
renown of an author, arguing their trustworthiness.

Work Author(s) h-index
Kang et al., 1990 Kang, Cohen, Hess, Novak, Peterson 29, 9, 7, 8, 38
Guerra et al., 1996 Guerra, Ryan, Sernadas 10, 39, 34
Kang et al., 1998 Kang, Kim, Lee, Kim, Shin, Huh 29, 21, 21, 125, 1, 1*
Czarnecki & Eisenecker, 2000 Czarnecki, Eisenecker 56, 10
Bosch, 2000 Bosch 56
Zave, 2003 Zave 32
Batory, 2004 Batory 60
Batory et al., 2004 Batory, Sarvela, Rauschmayer 60, 4, 10
Pohl et al., 2005 Pohl, Böckle, van der Linden 49, 10, 22
Chen et al., 2005 Chen, Zhang, Zhao, Mei 51, 51, 15, 51
Czarnecki et al., 2005 Czarnecki, Helsen, Eisenecker 56, 12, 10
Batory et al., 2006 Batory, Benavides, Ruiz Cortés 60, 30, 39
Apel et al., 2007 Apel, Lengauer, Batory, Möller, Kästner 54, 34, 60, 29, 53
Classen et al., 2008 Classen, Heymans, Schobbens 23, 43, 32
Kästner et al., 2008 Kästner, Apel, Kuhlemann 53, 54, 18
Apel & Kästner, 2009 Apel, Kästner 54, 53
Dit et al., 2013 Dit, Revelle, Gethers, Poshyvanyk 15, 11, 21, 54
Apel et al., 2013 Apel, Batory, Kästner, Saake 54, 60, 53, 46

Berger et al., 2015 Berger, Lettner, Rubin, Grünbacher, Silva,
Becker, Chechik, Czarnecki

24, 11, 18, 40, 5,
51, 40, 56

Andam et al., 2017 Andam, Burger, Berger, Chaudron 1, 5, 24, 31
Krüger et al., 2018 Krüger, Gu, Shen, Mukelabai, Hebig, Berger 7, 1, 51, 2, 12, 24
Rodríguez et al., 2018 Rodríguez, Mendes, Turhan 12, 45, 27

Table 5: Overview of h-index scores of authors (as of January 2019) included in the feature
definition table.

The short citations of the works have been included to improve consistency between the various
tables and figures. The h-index scores, if multiple are stated, are presented in the same order as the
authors are named in the ‘Author(s)’ column. For some authors their h-index was not available on
Google Scholar. Instead, a Google Chrome extension (the Scholar H-Index Calculator for Google
ChromeTM, accessible here: https://chrome.google.com/webstore/detail/scholar-h-index
-calculato/cdpobfbhbdlpbloccjokjgekjnmifbng) was used to calculate the h-index for missing
authors (included in italics in table 5). The h-index without any normalization was used, since on
Google Scholar the overall h-index was used. However, for some authors, their h-index could not
be precisely determined. Whenever the h-index exceeded fifty, only “> 50” was shown and since
the exact h-index cannot be accurately determined, for all authors exceeding fifty, 51 was included
in the table. Similarly, for one author the h-index was “> 1” including normalized calculations.
This score is indicated by an asterisk.

Using these data, figure 12 shows the average h-index of all authors of which the h-index was
available.

23

https://chrome.google.com/webstore/detail/scholar-h-index-calculato/cdpobfbhbdlpbloccjokjgekjnmifbng
https://chrome.google.com/webstore/detail/scholar-h-index-calculato/cdpobfbhbdlpbloccjokjgekjnmifbng

Figure 12: Average h-index of authors per work.

This figure represents the scientific value of the authors, so to speak, so this overview can also be
used to select a definition. Again, by selecting one from the authors that score above average or
by choosing from the four with the highest score.

To provide a slightly different perspective, figure 13 depicts the h-index scores of the first
author.

24

Figure 13: h-index of first author with available data.

As is apparent, this figure provides a slightly different impression of the authors. Similarly to the
previous categorizations, it could be advisable to select a definition by an author or authors that
score above average on the h-index. The top three, however, is dominated by Batory, so choosing
between these three could result in some bias.

Based on the categorization presented earlier, it is possible to reduce the number of relevant
definitions for a certain research topic. For research topics that are not included in the table and
topics that have multiple definitions to choose from, the issue is still not resolved. However, some
definitions might be more suitable than others given a certain context or intention. In all definitions
two aspects can be distinguished, namely: level of abstraction and viewpoint. The former aspect
was inspired by the differentiation between abstract and technical feature definitions as proposed
by Apel and Kästner (Apel & Kästner, 2009). They also recognize that features have more than
one use and describe the differentiation as follows:

1. Abstract: “features are abstract concepts of the target domain, used to specify and distinguish
software systems” (problem space)

2. Technical: “features must be implemented in order to satisfy requirements” (solution space)

Czarnecki and Eisenecker have separated the problem space from the solution space, in which
the former focuses on domain-specific abstractions and the latter in implementation-oriented ab-
stractions (Czarnecki & Eisenecker, 2000). Apel and Kästner use this distinction to further define
abstract and technical, relating abstract definitions to the problem space and technical definitions
to the solution space (Apel & Kästner, 2009). In addition to this distinction between abstract
and technical definitions, they have provided a list of ten definitions (all of which are also included

25

in table 3) and ordered them from abstract to technical. However, they have not described how
they decided on which definition is more technical than another. Moreover, they identified seven
abstract definitions and only three technical ones. In short, while the line between abstract and
technical is clear, the gap between the two is not and the reasoning behind the order within both
distinctions is vague at best. To clarify the interpretations of abstract and technical, prof. dr.
Apel was asked to comment on the paper. He stated that the first seven definitions “take a user-
centric/problem-space-centric perspective”, while the eighth definitions is only formal from an RE
perspective. The last two definitions focus on the implementation and are thus solution-space-
specific. He continues by saying that, within these categorizations, the definitions are more or less
sorted by date (S. Apel, personal communication, February 12, 2019). To conclude, this approach
was quite informal and therefore difficult to replicate. Moreover, it still does not solve the mystery
of which definition is more abstract or technical than another. A more formal categorization is
needed to tackle these challenges.

In an attempt to recreate such an order based on level of abstraction (from abstract to technical),
nine characteristics were extracted from the collection of 19 definitions (the other three were added
later). Four of these characteristics were labelled abstract (characteristic, distinct (or variations
thereof), aspect and abstraction) and five were considered technical (specification, functionality
(or variations thereof), requirements, behavior and unit). Present abstract characteristics receive
a 1, present technical characteristics receive a 0, divide this by the number of characteristics and
the resulting scores are somewhere between 0 and 1 (0 and 1 included). In this case, 1 is the most
abstract and 0 the most technical (or least abstract). A test comparing the order based on these
nine characteristics and resulting score and the order of seven definitions as presented by Apel and
Kästner resulted in the following findings:

1. Six out of seven definitions received a different position in the order.
2. Two definitions had a shift of three spaces.
3. If the line between abstract and technical is placed at 0.5, one definition shifts from abstract

to technical and one is shifted the other way around.

In other words, this approach is not satisfactory. A second attempt, taking a different approach
yielded better results. After analyzing the different characteristics of abstract and technical as
stated by Czarnecki and Eisenecker and Apel and Kästner, as discussed earlier in this chapter, the
following eight characteristics were selected:

1. Abstract: problem space, description of requirements, description of intended behavior and
characteristic/abstract/abstraction

2. Technical: solution space, satisfaction of requirements, implementation of intended behavior
and functionality

Using this approach, with the same method for calculating a score, the 19 definitions and an
additional three (due to new definition suggestions) were ordered once again. So, 22 definitions
were ordered, with the following results:

1. If the line between abstract and technical is placed at 0.5, none of the definitions shift from
abstract to technical or vice versa.

2. The three technical definitions are in the same order.
3. Out of the seven abstract definitions only two are out of order (and the order among those

two is the same as in the order by Apel and Kästner).

To summarize, out of the ten definitions, only two were out of order (and disregarding the other
definitions, those two were in the correct order). Another advantage of this approach is that it is
not based on terms/characteristics extracted from the definition, but on theoretical resources by
Czarnecki and Eisenecker and Apel and Kästner. Furthermore, it should not be forgotten that it
is unclear whether the original order as devised by Apel and Kästner is on an ordinal scale. It is
reasonable to assume so, since the definitions are numbered. However, the reasoning behind this
specific order is not thoroughly explained, apart from the descriptions of abstract and technical as
stated previously. The one fully unambiguous aspect is the distinction between the abstract and
technical definitions, since this was explicitly mentioned.

In addition to the level of abstraction, five viewpoints were also extracted from the 22 definitions:

1. System

26

2. Product
3. Developer (stakeholder)
4. User (stakeholder)
5. Customer (stakeholder)

Firstly, system and product are considered separate viewpoints, since a system can be contained
within a product, but a product can indicate more than just a system. Secondly, three stake-
holders were identified and only human beings are considered a stakeholder. The developer was
included, not because it was explicitly mentioned in any of the definitions, but sometimes the word
stakeholder also refers to the development viewpoint. Thirdly, the user viewpoint also includes
end-users and differs from the developer viewpoint, since developer do not necessarily use the
product or system, but other employees of the product’s or system’s company might. Fourthly,
customers are separated from user, since they are more specific than just any (end-) user. Finally,
whenever no specific viewpoint is mentioned or can be reasonably assumed given a definition, the
system is considered the viewpoint, due to features being part of the SA, which describes a system.
Figure 14 shows the categorization of the definitions based on the level of abstraction score (as
described previously) and the identified viewpoints.

Figure 14: Categorization of nineteen feature definitions, based on level of abstraction and view-
point.

27

The nineteen definitions and the scoring system were also presented to peers and information
science researchers. Both groups expressed a difficulty in understanding what the term ‘technical’
was supposed to mean in this context. Especially given their background, since they automatically
assumed technical characteristics to be related to development aspects or implementations (such
as code). Moreover, throughout this thesis, the level of abstraction is often seen as the level of
granularity, while in this categorization that is not the case. To make the categorization easier
to read and understand, a different name and more specific minimal and maximum values would
be desirable. Changing ‘technical’ to ‘detailed’ might solve the issue of misinterpreting technical
characteristics, but would be an inaccurate description. The definitions do not necessarily refer to
a certain level of detail and abstract definitions can still provide a detailed description of the term
feature. Garlan, a computer scientist, explains the role of SA in RE. In his explanation, he refers
to RE as being concerned with the ‘shape of the problem space’, while SA focuses on the ‘shape
of the solution space’ (Shekaran et al., 1994). The distinction between problem and solution space
is already present in the categorization, given the fact that the description of the problem space
is considered an abstract characteristic and, on the other hand, the solution space is considered a
technical characteristic (Apel & Kästner, 2009). To strengthen this reasoning, the QUS framework
is in agreement stating that a US should be problem-oriented, meaning that “a user story only
specifies the problem, not the solution to it” (Lucassen, Dalpiaz, van der Werf, & Brinkkemper,
2016a). Moreover, Hofmeister et al. mention that architecture solutions help move the design from
the problem space (in which architecturally significant requirements (ASRs) are formulated) to
the solution space (Hofmeister et al., 2007). Splitting the definitions into two main categories can
make selecting a definition easier, depending on the purpose for and context in which it is used.
However, problem-space definitions (RE) can arguably be considered of higher quality or more
useful, based on research by Berger et al. They state that “good features need to precisely describe
customer-relevant functionality” (Berger et al., 2015). Moreover, this would mean that definitions
which include the customer viewpoints are more suitable than those that do not.

The previous categorization or analysis of the definitions heavily relied on interpretation. To
provide a different perspective, the definitions were also analyzed objectively by determining the
term frequency. Only semantically interesting terms were examined, meaning nouns, verbs and
adjectives. Terms like determiners, adverbs and modular verbs are mostly used to construct a
legible sentence. The PoS tags were assigned using the CoreNLP tool. Table 6 shows how often a
term could be found in the definitions. Note that this does not equal the total number of times
the term is present in all definitions.

28

NN/NNS Frequency VX Frequency JJ Frequency
system* 8 represent 5 functional 3
characteristic 7 implement 2 visible 3
requirement* 7 specify 2 relevant 3
software 5 non-functional 2
functionality 5
stakeholder 4
unit 4
user* 3
behavior 3
product 3
specification 2
aspect 2
abstraction 2
set 2
program* 2
family 2
design 2
decision 2
configuration 2
option 2
increment 2
developers 2
customer* 2

Table 6: Observed term frequency in all definitions.

Words followed by an asterisk indicate that the singular and plural forms have been included
in the frequency, if no asterisk is present, the word was observed exactly as it is written in the
table. For the verbs, any kind of verb was included (hence the ‘VX’), except for modular verbs.
In addition, verbs that are not context-specific were excluded, e.g. ‘is’ and ‘have’ among others.
‘Visible’ is included by itself, but can sometimes be found in conjunction with other words as
a more specific adjective (for example ‘user-visible’). Only terms that could be observed more
than once are shown in the table. Furthermore, both ‘design decision’ and ‘configuration option’
can be considered compound nouns, as these terms could only be observed in combination. The
term ‘user’ was observed three times, but if the observation included the adjectives as well (e.g.
‘end-user-visible’), it could be found six times.

Furthermore, it would be interesting to see how certain definitions were developed and whether
they were inspired by any of the other definitions included in the SLR. The hermeneutics framework
as proposed by Cole and Avison visualizes how one goes from understanding a phenomenon to
explaining it and finally to interpreting it. The final step in this framework, part of interpretation,
is ‘fusion of horizons’, meaning that someone has gathered shared meanings and has created new
concepts (or in this case variations thereof) that differ from the original concepts and their meanings
(Cole & Avison, 2007). In an attempt to discern how the definitions were formulated, the works
that were cited have been looked into. Figure 15 shows who was cited by whom, possibly indicating
inspiration for the definitions.

29

Figure 15: Overview of included works referenced by other works included in the selection.

The figure depicts which works have been referenced by other works included in table 3. It is
important that these relationships show potential influence, rather than direct input. Only the
articles published by Classen et al. in 2008 and Apel and Kästner in 2009 have cited exact
definitions. Other than that, it can only be assumed that a definition was inspired by another
based on a reference to the work in which the latter was published. It is apparent that the first
paper selected in the SLR, by Kang et al. in 1990, has been used in many other works. The same is
true for the works written by Czarnecki and Eisenecker in 2000, Bosch in 2000 and Batory et al. in
2004. Another remarkable observation is that three of the included works were neither referenced
by nor referenced any of the other works. Interestingly, all research fields either referenced or were
referenced by another field, implying that they have overlap. Unfortunately, it is not possible to
determine whether authors refined or improved their definitions, if multiple have been included.
For example, Batory, Apel, Czarnecki, Kästner and Berger have been included more than once.
However, they were accompanied by different researchers every time, so it is uncertain whether
they changed their mind about their previous or original definition, or whether the influence of the
other authors caused a change in the definition.

In conclusion, there is no one ‘true’ or ‘correct’ definition. Many definitions exist and one is
not necessarily better or worse than the next. Instead, only guidelines or support on how to select
a definition for a specific goal can be provided. To summarize, these guidelines include: related
research topic, popularity based on number of citations on Google Scholar, reputation of authors
based on h-index, categorization based on abstraction and viewpoint, included terms and finally
which works the work that contained the definition is referenced by and which it references.

30

3.4 RE4SA

This chapter discusses the theoretical background of the RE4SA model in more detail, by first
describing the need for this relationship between RE and SA and then discussing all the RE
related concepts included in the model.

In 2001 Nuseibeh already recognized that requirements specification and design cannot be fully
separated due to their dependencies. In the Twin Peaks model, requirements and architecture
specifications are defined in concurrence, while still considered as separate structures and specifi-
cations. However, the model also states that the two domains are dependent on each other, as is
illustrated in figure 16.

Figure 16: The Twin Peaks model by Nuseibeh.

The red line represents a software development process. According to the figure, the focus on either
SA or RE shifts back and forth as development progresses, indicating an iterative and concurrent
process. The strength of this model is that requirements are still able to guide architectural
designs and yet architectural constraints can be taken into account when formulating requirements
(Nuseibeh, 2001). Requirements can be written using various techniques, however, in the RE4SA
model Epics and USs are used.

3.4.1 User Stories

USs are used to represent customer requirements (Jeffries, 2001). The most commonly used method
for writing USs is the Connextra template, which was popularized by Cohn (Cohn, 2004). This
template consists of three elements: who, what and why, of which the latter is optional. The
format describes these three elements respectively:

As a <role>, I want <action>(, so that <benefit>).

In an industry research conducted by Lucassen, Dalpiaz, Van Der Werf and Brinkkemper it became
apparent that nearly all Scrum practitioners also make use of USs, stating a use of 99% (Lucassen,
Dalpiaz, van der Werf, & Brinkkemper, 2016b). An example of a context-specific US, again using
the maps application as running example, is:

As a motorcyclist, I want to avoid densely populated areas while on a
leisurely drive, so that I do not disturb anyone with the noise of my bike.

31

Figure 17: Linguistic model of a US.

The linguistic US model in figure 17 was adapted from a conceptual model (Lucassen, Dalpiaz,
van der Werf, & Brinkkemper, 2015b). First and foremost, the “means” and “end” are formulated
as “action” and “benefit” respectively in this model, to more accurately reflect the US template.
In addition, the cardinality of the relationship between an Epic and a US has been changed from
one-to-many to two-to-many. If an Epic were to contain solely one US, one could argue the Epic
is supposed to be a US instead. Therefore, an Epic now requires at least two USs in order to be
considered an Epic. Furthermore, the relationship between “role” and “role” from the original model
has been omitted, since it is not of importance here. Instead of a format the template was added
as a concept. Since USs do not contain the template (or formerly the format), the aggregation
relationship was changed to ‘adheres to’. For completeness and clarity the components of the
template are included. Additionally, missing cardinalities have been added. Finally, it should be
noted that this linguistic model can only accurately describe correct USs.

Lucassen et al. describe the relationship between USs and features as follows: “the user story
is the most granular representation of a requirement that developers use to build new features”
(Lucassen et al., 2016b). This description, however, does not comment on the cardinalities involved
in this relationship, which is precisely the subject of RQ5. The same research team, both a month
later and a year earlier, discuss the same relationship in more depth in the context of the Quality
User Story (QUS) framework. This framework states that “a user story expresses a requirement
for exactly one feature” (Lucassen et al., 2015b, 2016a). Nevertheless, two questions regarding the
relationship remain unanswered. Firstly, this expresses solely one cardinality, while relationships
should have two, meaning that it is uncertain whether a feature is described by exactly one US or
more than one, this is visualized in figure 24. Secondly, the QUS framework exclusively includes
‘correct’ USs, while not all USs in practice may adhere to the rules stated in the framework.

3.4.2 Jobs, Jobs-to-be-Done and Job Stories

Despite their widespread usage and adoption, not everyone agrees with the effectiveness of USs.
In fact, Klement has called for the replacement of USs with Job stories, as based on the Job-to-be-
Done (JTBD) theory by Christensen. Intercom has created a template (provided below) for writing
JTBDs. They describe an event or situation that serves as the trigger, the motivation and goal and
the intended outcome (Adams, n.d.). According to Klement, USs contain too many assumptions
and do not focus enough on the ‘why’ part. Instead, he proposes the use of the Job story format.
He diverts slightly from the approach taken by Intercom by only describing a situation, motivation
and expected outcome:

When <situation>, I want (to) <motivation>, so that (I can) <expected

32

outcome>.

This template focuses more on motivation rather than implementation (Klement, 2013b). Addi-
tionally, Klement also takes a different approach to describing the situation. While Christensen
states that the triggering event or situation can be either a problem or an opportunity, Klement
only considers the former, saying that: “your Job story needs a struggling moment” (Klement,
2016). Confusingly, Klement released a book (“When Coffee & Kale Compete”) that solely men-
tions JTBD and Customer Jobs, never mentioning A Job story. To make matters more puzzling,
the template he used for the Job story is nowhere to be found (Klement, 2018). Disregarding
the complications introduced by the aforementioned book, the following conceptual model can be
deducted from Klement’s work as shown in figure 18.

Figure 18: Conceptual model of the Job story as proposed by Klement.

The template and components of the Job story have already been described and follow Klement’s
original proposal of the concept (Klement, 2013b). In addition, he extends his original description
by sharing five writing tips. In these tips he mentions the possibility of adding a context and
character to the Job story and also includes a solution that should fit the story (Klement, 2013a).

As was briefly mentioned earlier, Klement’s Job story is based on the JTBD theory as proposed
by Christensen. Similarly, JTBDs are also concerned with the motivations of customers.

Figure 19: Conceptual model of a Job-to-be-Done as described by Christensen.

33

The model is explained using the example situation Christensen describes. In this example he
states that people ‘hire’ milkshakes (Christensen, Anthony, Berstell, & Nitterhouse, 2007). Firstly,
one needs to understand why they do this. For instance, because they have a long commute ahead.
Christensen describes this as the situation that triggers the need for a solution. It is also possible
that something suddenly occurs that warrants a solution, this is considered an event. Moreover, he
distinguishes two types of triggers, namely problems and opportunities. Opportunities are more
difficult to describe, since they can often be formulated as a problem. An example of an opportunity
can be a desire for something, for instance, someone wants to taste a milkshake, which is not really
a problem that needs solving. The aforementioned solution(s) result or should result in an expected
outcome, since this is the reason people hired the product; they expect it to solve their problem. It
is possible that solutions have multiple expected outcomes, for example, a milkshake can keep you
from getting bored during your drive, while simultaneously ensuring you do not get hungry. It is
also possible that one situation or event has multiple solution, for instance, if you want to quench
your thirst you could drink water or drink a milkshake. However, a JTBD should include one event
or situation, one solution and one expected outcome (Christensen, Hall, Dillon, & Duncan, 2016).

To further complicate the concepts of Job stories and JTBDs, Ulwick has taken another ap-
proach (Bettencourt was also involved, but did not seem continue to work on the Jobs). While
he agrees with the idea of people hiring products, he proposes job mapping. Job mapping essen-
tially means describing a job using eight different steps. At every step one should aim to look for
opportunities for helping the customer. The conceptual model in figure 20 combines the original
description of Jobs and any extensions described by Ulwick. Note that Ulwick uses the terms Job
and JTBD alternately without clear reasoning, so both terms are used throughout the model and
its description.

Figure 20: Conceptual model of Jobs-To-Be-Done as stated by Ulwick.

As was stated previously, according to Ulwick, a Job should be divided into different steps, eight
to be precise. In the figure the numbers of the steps have been added for clarity. Every Job and
every step should be analyzed to see whether there are any opportunities for improving the Job

34

or one or more of the individual steps (Bettencourt & Ulwick, 2008). In addition, three different
types of Jobs can be described, namely: primary, secondary and targeted. Primary Jobs contain
targeted and secondary Jobs. Furthermore, Jobs should have one or more desired outcomes and
constraints, specified by the customer (Ulwick, 2003). The desired outcome should lead to a better
and/or cheaper result (Ulwick & Hamilton, 2016). As an aside, Ulwick has also commented on
the confusion surrounding the entire JTBD/Jobs theory (Ulwick, 2018). However, in this thesis no
fingers will be pointed and the different theories are treated as separate entities, apart from their
origins.

Lucassen, van de Keuken, Dalpiaz, Brinkkemper, Sloof and Schlingmann, however, have estab-
lished a different approach. Instead of using either Job stories or JTBD theory, they have combined
the two, which resulted in the Integrated Job Story method. This method considers the JTBD
theory (by Christensen) as the highest level formulation of a requirement. They have designed a
template for the formulation of Jobs, the template simply states (Lucassen et al., 2018):

Help me <verb> <noun phrase>.

This is in line with Christensen’s idea that customers buy a product to help them do a job
(Christensen et al., 2007, 2016). Then, they use the Job story (by Klement) to further define
requirements for a given JTBD. Finally, at the lowest level, USs specify requirements for designing
a solution to a problem described in a Job story (Lucassen et al., 2018). To avoid confusion, the
Job story was later renamed to Epic story (see Chapter 3.4.3 for further details) and the JTBDs
to simply ‘Jobs’. In an attempt to avoid any misunderstandings, the Job as used in conjunction
with the RE4SA model is illustrated in figure 21.

Figure 21: Conceptual model of a Job as described by van de Keuken et al.

This model differs from figure 19, since it does not specify two types of situations, instead only
problematic situations are used in Jobs. Apart from that modification, only the Job template (as
stated above) was added. Furthermore, the aggregation relationship with Epics is included.

3.4.3 Epic Stories

Epics are seen as large USs, since they describe a larger number of functionalities (Lin, Yu, Shen,
& Miao, 2014). Van de Lucassen et al. have not merely copied the Job story by Klement and

35

called it an Epic. Instead, they have extended it slightly, as shown in figure 22 (Lucassen et al.,
2018).

Figure 22: Conceptual model of an Epic as described by Lucassen et al.

The original model has been modified and expanded upon slightly. Firstly, three components of the
template have been added for completeness. The aggregation relationships between ‘Epic story’
and ‘template’ has been changed to a ‘regular’ relationship, since an Epic does not contain the
template, but rather adheres to it. To indicate how Epics fit into the hierarchy of the RE4SA model,
relationships with the concepts Job and US have been introduced. A context-specific example of
an Epic for the imaginary maps application (following the template as discussed in 3.4.2 could be:

When I am navigating to my destination, I want to select a scenic route, so
that I can enjoy my daily commute.

3.4.4 The Barista Problem

When considering the RE4SA model, the main granularity issue exists in the middle layer, so in
Epics and modules (given that Jobs and Products can be placed at the top, refer to figure 23 and
figure 24). Epics can be formulated broadly, turning them into Jobs or in detail, making them
USs. Blessinga refers to this granularity challenge in his thesis as ‘The Barista Problem’. This
problem states that even a job with simple activities can be difficult to model (Blessinga, 2018).
For instance, one can formulate the following Epic for a barista:

When a customer places an order, I want to make their coffee, so that I can
satisfy their request.

However, this Epic can also be formulated as a US:

As a barista, I want to make coffee, so that I can satisfy customers’
requests.

To make matters worse, a Job can also be written:

Help me satisfy customers’ requests.

The formulation and thus the level of abstraction is dependent on the level of detail that is required
to properly state a requirement using Jobs, Epics or USs. To solve the granularity issue, Blessinga

36

has adopted the approach taken by the JTBD theory. This states that high and low level Jobs
can be formulated, depending on how much abstraction is needed. Using this method, USs are
at the lowest level of abstraction, followed by Epics and then Job, high or low depending on
necessity. Basically, as opposed to defining multiple levels of Epics, the issue is moved up to the
Job level (Blessinga, 2018). Taking pages out of the books of other research does not solve the
issue, unfortunately. Epics as they are presented in Chapter 3.4.3 could not be found in literature
(apart from the article cited in said chapter). Instead, other interpretations of Epics are used.
For example, Wautelet et al. group USs around themes and call these themes Epics (Wautelet,
Heng, Kolp, Mirbel, & Poelmans, 2016). Another approach is to use ’large’ USs (also referred to
as Epics), which are basically regular USs written to be very broad (Lin et al., 2014). However,
making USs less specific and detailed is in conflict with the quality requirements as described in
the QUS framework, which states that USs should be atomic (Lucassen et al., 2016a). Finally,
one more level of granularity was identified in literature, namely tasks. Tasks are positioned below
USs and further refine requirements (Patton, 2005). They are, however, mostly used in Agile
development, during sprints, which is why they are not investigated any further in this research.

3.4.5 Research Scope

Taking these theories and templates into account, the structure is at follows: Jobs at the highest
level, then Epics followed by USs. Taking this hierarchy of Jobs, Epics and USs into consideration,
the RE4SA model can be extended to better suit this research, as illustrated in figure 23.

Figure 23: The RE4SA model in the scope of this research.

On the left side, Jobs are presented as input for the RE4SA model, as they can be further refined
into Epics and subsequently USs. On the right side a product can be defined, which is the combi-
nation of all modules and features, resulting in a system, application or piece of software, which is
referred to as a product. Finally, the Product Domain Ontology (PDO) (also refer to Chapter 3.7),
which is a domain ontology that describes a product, encompasses both domains (Martens et al.,
2018). All elements (Epics, USs, modules and features) may contain concepts and the relationships
among them, which can be included in the PDO. The scope of this research is restricted to the
original RE4SA model (between the two arrows), with the addition of linguistics in the form of the
PDO. In the context of meta-modeling, the RE4SA model can be visualized as shown in figure 24
(cardinalities in italics are (reasonable) assumptions).

37

Figure 24: The meta-model of the concepts included in the RE4SA model.

An Epic contains at least two USs, since otherwise the one US that is contained within the Epic
might as well be an Epic itself or the Epic it is related to is actually a US. The same is said for
modules and features in this model. According to Lucassen et al., USs describe the requirement for
exactly one feature, hence the one-to-one cardinality (Lucassen et al., 2015b). This is assumed to
be the case for Epics and modules as well, following the same reasoning, but has not been verified.
The most interesting cardinalities here are the missing ones, which can, hopefully, be added at the
end of this research. For completeness, Jobs and Products have been included, even though they
are outside of the scope of this research.

Theoretically speaking the relationship between features and USs should have a one-to-many
cardinality on the US side. Considering that a feature can be linked to more than one US, if
two different roles (stakeholders), desire the same action. However, does the module to which the
feature belongs change the situation and can the benefit in the US impact the implementation?
Furthermore, would the involved USs and feature still adhere to the template rules and quality
criteria? Additionally, one can question the need for two USs with the exact same action and
different roles, since it might be possible to group these roles and reduce the number of near-
duplicates. However, consider the role structure as illustrated in figure 25.

Figure 25: Example of a tree structure of different roles.

38

Assume that there are four different roles, which can be grouped in two different roles and,
at the top, be described by one role (for example ‘stakeholder’ or ‘user’). If a feature concerns
roles D and E, they can simply be grouped by stating role B. However, if roles D and G desire
the same feature, are they then grouped in a new role H to ensure that a feature is described by
only one US? For a case with few different roles this can be a feasible approach, but for larger,
complex cases this could lead to a big and confusing tree structure. Finally, in feature diagrams,
it is syntactically correct to model a feature with more than one parent-feature or parent-module.
Lee, Kang and Lee provide an example of such a case. They state that some complex relationships
can be simplified by looking at the closest common parent of two or more features that are related
to the same child-feature. This does not always solve the issue though, which means one is still
left with two parent-features being related to the same child-feature (Lee, Kang, & Lee, 2002).
So, returning to the original statement, the cardinality should theoretically be one-to-many, but
three questions remain, namely: (1) does this happen in practice, (2) is this correct and (3) is this
desirable?

3.5 Functionality in RE and SA

As part of answering RQ2, functionality as defined in literature is investigated. Since the RE4SA
model consists of two main dimensions, functionality is considered in the context of both perspec-
tives, starting with RE.

In terms of RE defining ‘functionality’ might seem easy at first glance, since ‘functional require-
ments’ can be formulated. According to SWEBOK: “Functional requirements describe the functions
that the software is to execute; for example, formatting some text or modulating a signal ”. They
can also be characterized as requirements for which test steps can be written to validate whether
they function correctly and do what they are supposed to do. This definition, however, does not
imply the granularity of functionality. In the SWEBOK guide, USs are said to address (required)
functionality by describing it in customer terms. The reasoning for this is that it helps developers
estimate the time needed to implement the US or required functionality and that acceptance tests
can be written to validate the behavior (Bourque & Fairley, 2014). This confirmed by Gilb and
Finzi, who state that in principle a “functional requirement specification lists essential things which
the product must do, and which must be delivered at specified times”. In addition they mention
that function is either present or not and cannot be semi-implemented, for instance (Gilb & Finzi,
1988). This notion of functionality being behavior the system must exhibit or express is also agreed
upon by Nuseibeh and Easterbrook. While they do not explicitly define functionality, they touch
upon it while describing behavioral modeling. They explain that such models can be analyzed “to
determine essential functionality” (Nuseibeh & Easterbrook, 2000).

Given the former description of functional requirements, specifying functionality should be at
the lowest level of abstraction, since, according to the RE4SA model, USs are at the lowest level.
The following can be said about functionality in the context of RE (given the previous information):

1. Functionality is described by stating functions using functional requirements;
2. Functionality can be described in USs;
3. Functionality is something the system must do;
4. Functionality must be delivered at specified times;
5. Functionality is either implemented or not;
6. Functionality must be tested to validate the behavior.

While the SWEBOK guide states that USs describe functionality in customer terms, this sentiment
is not shared. USs can indeed be used to describe customer wishes, but the roles specified in USs
are not limited to customers of the product or system. Other stakeholders can be included and
they are allowed and able to express desires for a system’s functionality as well.

Following the RE4SA model and the previous reasoning, functionality in SA should be located
at feature-level, since this is the lowest level of architecture and also related to USs. According
to Bosch, functionality in SA is something that is demanded from and imposed on architectural
components. He also adds that design decisions can “add requirements on the expected behavior
of components”, which is in line with the behavioral aspect in the RE context. Unfortunately, he
does not properly define ‘components’. They are described as key concepts in SA, along with con-
nectors (Bosch, 2004). Regrettably, this does not establish whether modules, features or both are

39

considered components. Brinkkemper and Pachidi utilize a modular decomposition for function-
ality of a product or system. The FAMs illustrate the primary functionality of a product through
modeling its modules. Each module should implement a part of the product’s functionality. Since
modules consist of features, this would mean that the functionality of a product is also present in
its features (feature diagrams). In addition, when they describe modeling flows that represent the
main functionality, these flows can include both modules and features (Brinkkemper & Pachidi,
2010). Given the former explanation of functionality being present in the architectural components
and the latter of functionality in modules and by extension in features, it becomes apparent that
functionality is specified on all levels of abstraction in the context of SA.

3.6 Linguistics

As visualized in figure 23, the third overarching subject in this research is linguistics. Many
different aspects can be included, but only the most applicable and relevant ones are discussed in
this chapter, these being: ambiguity, relationships in terminology, parse trees, similarity, ontologies
and linguistic structures.

Language errors, such as vagueness and ambiguity, can cause misunderstandings between stake-
holders and can ultimately cause the system to be insufficient given the needs of stakeholders
(Dalpiaz, van der Schalk, & Lucassen, 2018), which is why semantics are of importance in RE and
SA. Shaw and Gaines describe four types of relationships between concepts, dependent on chosen
terminology by their users (Shaw & Gaines, 1989):

1. Consensus: same terminology, same distinction: “experts use the same concepts in the same
way”

2. Correspondence: different terminology, same distinction: “experts use different terminology
for the same concepts”

3. Conflict: same terminology, different distinction: “experts use the same terminology for
different concepts”

4. Contrast: different terminology, different distinction: “experts differ in terminology and con-
cepts”

Essentially, in case of the former, people use the same word with the same intended meaning
and in case of the latter people use different words with different intended meanings. These two
types of relationships are not of interest in this research. The other two types, correspondence
and conflict, or synonyms and homonyms respectively, are of significance. When two people are
in correspondence, they will use different words that have the same meaning, so synonyms. When
two people are in conflict, they use the same word that has two different intended meanings. For
example, one person might use the word ‘pen’ to denote something you can write with, while
another person might use it to describe an enclosure.

Cimiano et al. have proposed an approach to determining synonyms, namely by taking the
context in which a term appears into account. They calculate the similarity of concepts by applying
the Jaccard coefficient to terms extracted from the corpus. In short, this coefficient considers the
nouns from a parsed text, along with the verbs they are related to. Based on their individual
relationships with these verbs, a score from 0 to 1 can be calculated, in which 1 is a perfect match
(the exact same term) and 0 means no similarity (Cimiano, Mädche, Staab, & Völker, 2009). In this
case, the ‘corpus’ refers to “any collection of written or spoken texts” and, in modern linguistics, also
denotes a finite size, machine-readable form and a standard reference for a language among others
(Lüdeling & Kytö, 2008). Cimiano et al. also discuss the use of lexico-syntactic patterns. However,
since these patterns as the researchers describe them are not expected to occur in either RE or
SA, they are not discussed here. Another analysis technique that may be of use is agglomerative
clustering. This technique clusters different concepts based on their similarity, using single linkage.
Using this technique, a cluster can be created that contains all extracted concepts or until a
predetermined stopping point is reached (Cimiano et al., 2009).

Hosseini, Breaux and Niu are more specific in their linguistic approach, as they define five terms
in relation to describing ontology fragments (Hosseini et al., 2018):

1. Hypernym: “a noun phrase, also called a superordinate term, that is more generic than
another noun phrase, called the hyponym or subordinate term”

2. Meronym: “a noun phrase that represents a part of a whole, which is also a noun phrase and
called a holonym”

40

3. Synonym: “a noun phrase that has a similar meaning to another noun phrase”
4. Lexicon: “a collection of phrases or concept names that may be used in an ontology”
5. Ontology: “a collection of concept names and logical relations between these concepts, in-

cluding hypernymy, meronymy and synonymy among others”

The aforementioned terms can be used to describe terms extracted from the software artifacts. In
addition, these denotations are also used to compare two terms and determine how likely or strong
the relationship between them is. Lexical relationships are only used to determine synonymy or
hyperonymy, since lexicons are linguistic objects and ontologies are not. It is not, however, within
the scope of this research to develop a lexicon (vocabulary) for the RE and SA concepts stating
precise definitions (Hirst, 2009).

To be more specific given the context, an ontology can be defined as follows: “an explicit
specification of a conceptualization. An ontology specifies the concepts, relationships, and other
distinctions that are relevant for modelling a domain” (Grüber, 1995). Guarino distinguishes four
different types of ontologies: top-level, domain, task and application. In this context, only domain
ontologies are considered, which describe “the vocabulary related to a generic domain” (Guarino,
1997). In short, an ontology, or to be more specific a ‘domain ontology’, can be seen as a ‘shared
language’ within a certain domain. More specifically, the ontology contains domain concepts, the
relationships among them and groups them based on similarity. An example of this can be found
in Chapter 3.7.

Once ontologies are created, they can be used to write textual descriptions. Androutsopoulos,
Lampouras and Galanis presented NaturalOWL, which is a system that can automatically generate
a natural language description of concepts or classes within an ontology (Androutsopoulos, Lam-
pouras, & Galanis, 2013). While generating a description of SA artifacts using such an approach
can be interesting for development, it is not within the scope of this research. However, the usage
of parse trees within this system can be of use still. These parse trees show the linguistic structure
of a certain sentence(Lampouras & Androutsopoulos, 2018). Parse trees and linguistic structures
can be especially useful in the light of artifact generation and naming conventions.

Despite the existence of domain ontologies, it is still possible that stakeholders misinterpret or
misunderstand each other. Natural language oftentimes introduces ambiguity. Berry, Kamsties
and Krieger omit the uncertainty aspect of ambiguity and instead use the following definition: “the
capability of being understood in two or more possible senses or ways”. In addition, they identify
four different types of ambiguity, namely (Berry, Kamsties, & Krieger, 2003):

1. Lexical: happens when a word has more than one meaning
2. Syntactic: when phrase can have multiple grammatical structures and thus multiple meanings
3. Semantic: when the meaning of a phrase depends on how it is read within the same context
4. Pragmatic: when the meaning of a phrase can differ given different contexts

The aforementioned types of ambiguity can be split into even more specific types of ambiguity,
but these are not included here. Ambiguity is only expected in RE documents, since this is where
natural language is most prevalent. Chances are that these ambiguities will not have a large impact
on the names and descriptions of features and models, since these can be quite generic. Rather such
misunderstandings introduced by ambiguity should be visible in the source code, where the exact
implementation and interpretation of requirements becomes apparent. Unfortunately, source code
is not within the scope of this research, unless SA artifacts need to be recovered. It is, however,
important to keep ambiguity in mind when identifying and validating potential linguistic links
(parse trees are discussed in more detail in Chapter 3.6.1.

Linguistic links will not solely be established by a yes or no answer to the question is there a
linguistic relationship. The links will also be analyzed based on their linguistic structure, which
was briefly touched upon earlier. Müter et al. have analyzed tasks that resulted from USs on their
linguistic structure. This analysis lead to the identification of the ten most frequently observed
linguistic structures of task labels and the most frequently occurring action verbs in task labels.
They describe a linguistic structure using the types of words used, for example nouns, verbs
and adjectives among others (Müter, Deoskar, Mathijssen, Brinkkemper, & Dalpiaz, 2018). The
linguistic relationships can be analyzed in order to identify the most frequently occurring linguistic
structure, but also whether the structure of a name of a module or feature can be inferred from
the Epic or USs it is related to.

41

In addition, it might be valuable to attempt to identify semantic frames. The concept can
be defined as follows: “frame semantics involves the specific structures of encyclopedic knowledge
that it invokes. Basically, these ‘frames’ are things happening and together in reality” (Fillmore,
1982). To put it simply, semantic frames describe which words are often found in combination
with other words or which words you can expect given some other word. For example, words such
as ‘banish’, ‘extradite’, ‘evacuate’ and ‘deport’ are all used to describe removing a person from a
certain location or situation (Goldberg, 2010). Therefore, one can expect a human being that is
removed and a place or circumstance from which they were removed, without needing knowledge
of the exact sentence. Two examples of repositories containing such frames are ‘FrameNet’ and
‘Levin’s English Verb Classes’ (Baker & Ruppenhofer, 2002). As the name may suggest, the
latter only includes verbs. Since software development does not solely include verbs, FrameNet
was examined. Using the word ‘building’ (the verb, not the noun), the following information is
presented: a definition, the semantic type, the core related words and the non-core related words.
In this the core contains an agent (someone who builds), components (building materials) and
created entity (what is being built) (“FrameNet Data”, n.d.). However, the FrameNet index might
not contain all terms that come up in the cases, so the English Verb Classes can be used as well
(Levin, 1993).

Fillmore and Baker have provided an example of how text can be broken down into the in-
dividual words and their dependencies, using Part-of-Speech (PoS) tagging. To summarize, the
following steps are performed (Fillmore & Baker, 2001):

1. Divide text into sentences.
2. Write down all the words in a specific sentence.
3. Index the words in said sentence by numbering them.
4. Determine the PoS tag for each word.
5. Identify the dependent elements for each word (it should be noted that not every word needs

to have a dependent).

This technique will be used to determine which kinds of words are commonly used in the various
artifacts. Since they mainly form the basis of identifying the linguistic relationship between artifact
instances, the dependencies of the elements are not included, as the focus is not on the linguistic
structure of individual phrases.

42

3.6.1 Linguistic Structures in RE4SA Concepts

Figure 26: Linguistic decomposition of artifacts (meta-meta model).

In the context of this research, artifacts (both RE and SA) can be described in one or multiple
templates. These templates can be divided into narrative and diagrammatic templates. The
former type can be found in RE artifacts, especially Epics and USs (templates are provided in
3.4). The latter are found in SA artifacts, namely FAMs, FADs and feature diagrams (refer
to 3.2. Both types of templates consists of two parts: semantic and syntactic constituents. In
short, these can be described as the filled in texts and fixed texts respectively. In case of narrative
templates distinguishing between semantic and syntactic constituent is quite self-explanatory, since
the templates itself contains fixed texts. Consider the following US:

As a (user), I want to (book a ticket), so that (I can attend the event).

The phrases in parentheses are the filled in texts (semantic constituents) and the remaining phrases
are part of the fixed texts in the template (syntactic constituents). In diagrammatic templates
identifying semantic and syntactic constituents is less straightforward. Diagrammatic templates,
such as FAMs, can include fixed texts, or rather non-semantic constituents. In this case, that
means that the constituents are not required to understand and read the model or diagram. For
example, in FAMs, databases can be modeled. Databases, however, are indicated by a cylinder
shape that are used solely for this purpose. Even so, these shapes often have a name that ends
with ‘DB’. Similarly it is possible that module names end with ‘module’. Such constituents can be
considered syntactic.

From these semantic constituents, concepts (or linguistic terms) can be extracted, as one would
when constructing an ontology. Considering the aforementioned US as an example, the concepts
per semantic constituent are: ‘user’, ‘book’ and ‘ticket’, ‘attend’ and ‘event’.

Based on the aforementioned literature and figures, some linguistic structures present in the
RE4SA concepts can be extracted, which are presented in table 7.

43

Concept Mandatory Optional
Job Verb, noun phrase N/A
Epic Subject, action verb, direct object N/A
US Subject, action verb, direct object Adjective, indirect object
Module Noun (substantivized) Noun, verb
Feature Verb, noun phrase N/A

Table 7: Linguistic structures found in RE4SA concepts.

According to the figures shown in Chapter 3.4, Jobs and Epics exclusively consist of mandatory
structures, namely verbs, noun phrases and subjects, action verbs and direct objects respectively.
Since USs have an optional element (the ‘why’ element), subjects, action verbs and direct objects
are mandatory to include, while adjectives and indirect objects are optional. Note that the struc-
tures related to the template are omitted. According to Brinkkemper and Pachidi, module names
should always start with a noun, a substantivized noun if applicable (for example, ‘planning’ as op-
posed to ‘plan’). However, the example FAMs and FADs provided also show modules that contain
additional nouns and verbs (such as ‘bookkeeping application’ or ‘order processing’) (Brinkkemper
& Pachidi, 2010). For features, Brinkkemper specifies that they should start with a verb followed
by a noun phrase, for instance ‘save file’. He also states that features visualized in feature diagrams
do not often conform to these naming conventions (Brinkkemper, 2018). However, they can be
reformulated quite easily. For example, if a feature in a feature diagram is simply named ‘window’
it can be changed to ‘open window’ in order to comply with the naming conventions, without
changing the feature’s purpose.

Given that subjects are nouns (or perhaps noun phrases), it may be possible to identify patterns
between the formulation of Epics and the names of modules. Similarly, the action verb and the
potential verb(s) in a module may correspond. In the case of USs and features, the subject and
noun phrase can be compared, as well as the action verb and the verb.

As was briefly mentioned earlier, parse trees can be used to model sentence structures (constituency-
based parse trees to be precise). Consider the following sentence as an example: “The girl read a
book at home.” The parse tree of this sentence is illustrated in figure 27.

Figure 27: Constituency-based parse tree example.

The meaning of the abbreviations (tags) can be found in the list of the abbreviations. These tags
are largely based on the Penn Treebank tagset (M. Marcus, Marcinkiewicz, & Santorini, 1993).
The only exception is that verbs are not distinguished based on tense and person, but are simply
tagged as a verb only. The tags will be used to create links between RE and SA documents and
their concepts, so the specific types of verbs are not expected to be of any importance. When
two words are the same and receive the same tag (so distinguishing verbs and nouns that can
be spelled exactly the same), this will be called a linguistic match. It is important to note that
two words also match regardless of tense in case of verbs and plural or singular in case of nouns,
with the exception of this difference changing the meaning or purpose of the artifact. Then, if a

44

match is unique, which implies that there are no other matches with those words, the match can
be considered a linguistic link. In addition, the types of phrases are also identified: noun, verb or
prepositional phrases. Finally, the words that appeared in the input sentence are put in italics to
improve legibility.

3.7 Traceability

Traceability refers to the linking various software artifacts to each other and thus also plays a role
in the relationship between RE and SA.

Software development results in various software artifacts. A software artifact “ is a tangible
piece of information obtained through the software development process” (Schach & Tomer, 2000).
Every artifact in the production process serves a purpose and the relationships between them can
be informative and useful (Bouillon, Mäder, & Philippow, 2013). However, the software artifacts
are not connected initially, meaning that the relationships between them are either implicit or
unclear (Cleland-Huang, Gotel, & Zisman, 2012). Software traceability is a means for establishing
such connections: “software traceability is the ability to interrelate any uniquely identifiable software
engineering artifact to any other, maintain required links over time, and use the resulting network
to answer questions of both the software product and its development process” (Cleland-Huang et
al., 2014). Traceability can help to expand the ontology of a product, by continuously adding new
concepts and relationships. A growth in the ontology can also result in an increase in the semantic
understanding of the concepts included in said ontology.

Links such as those described in the previous definition are often referred to as trace links, these
can be used for change management. The activity of predicting how changing requirements affect
other domains in software development is also referred to as impact forecasting. Figure 28 illustrates
how changes in different domains can impact the other domains by means of the relationships
between them.

Figure 28: Visualization of impact forecasting on three development domains (Brinkkemper, n.d.).

When on the topic of changing requirements, generally three different types of changes are consid-
ered throughout this research: adding, modifying or deleting requirements (Brinkkemper, n.d.).

Traceability can also be used to transform existing artifacts into new ones, or rather, generating
new artifacts using information contained in existing ones. Lucassen et al. present the Behavior-
Driven Traceability (BDT) method, which uses automated acceptance tests to link requirements
to source code. The BDT method depends on two characteristics of Behavior-Driven Development
(BDD), namely its description of end-user interaction in steps and the run-time execution of these
steps rather than source code, basically it simulates usage of the system as opposed to just running
part of the code in isolation (North, 2006). The BDT method utilizes the BDD tests by generating
a trace that links a US to a piece of source code. Then, it saves these traces in a matrix, which
allows developers to see all source code related to the realization of a particular US. This method
is expected to be beneficial for change impact activities and bug fixing (Lucassen, Dalpiaz, van der
Werf, Brinkkemper, & Zowghi, 2017). Moreover, it might be possible to generate new acceptance

45

tests by using USs as input, for example by extracting the phrases not included in the template
(Brinkkemper, 2018).

Trace links can be established manually or by means of tools. In case of the latter it is also
possible to identify trace links by using ontologies, meaning that if two artifacts share a domain
concept within an ontology, a trace link is established. Basically this approach, called the PDO
traceability method extracts terms, uses these to create a sub-ontology and subsequently compares
the two sub-ontologies by calculating a similarity score (Martens et al., 2018). The process of this
method is visualized in figure 29 (steps should be read from bottom to top).

Figure 29: Example of the PDO traceability method process.

The PDO method can also be used to suggest names within artifacts. For example, if there is a
requirement that describes booking tickets and a piece of code describes booking a coupon, the
method could suggest to change the word ‘coupon’ in the code to ‘ticket’. These naming suggestions
are based on the sub-ontologies extracted from the artifacts. Unfortunately, these sub-ontologies
are not always reliable. Whenever a sub-ontology is fully contained within another sub-ontology,
this received similarity score of 100% and is thus considered a perfect match. However, if the sub-
ontology that is contained consists of only two terms, while the second consists of twenty, this is also
considered a perfect match even though just two out of twenty terms correspond. In addition, this
ontological traceability approach does not take semantics into account, as only identical terms are
taken into consideration and synonyms are ignored. Therefore, software artifacts will be connected
based on ‘linguistic links’ throughout this research, as they are expected to be insightful still.

Latent Semantic Indexing (LSI), does, unsurprisingly, take semantics into account. LSI captures
the meanings of words and phrases, also including the context. Based on this, constraints can be
determined with which to deduct the similarity of the meaning of sets of words. However, again,
this approach does not consider all aspects of semantics, there is still a chance that synonyms
are ignored or that homonyms are included when they should not have been. In addition, this
approach has solely been used to trace documents to source code, not taking SA artifacts into
account (A. Marcus & Maletic, 2003).

46

3.8 Naming Conventions for Models

Given previous chapters, a little detour is required to explain the different kinds of models included
in this research. While modeling itself can be difficult, finding the right name for that model is
also challenging. For instance, figure 17. The main cause for this issue is the fact that there are
various levels of abstraction in these models. Originally, this was done to include as many details
as possible, while still generalizable and thus applicable to most if not all cases.

Firstly, when discussing conceptual models, a distinction should be made between the model of
a concept and a model that is conceptual. In case of the latter, there should be a real-world instance
of what is being modeled. In case of the former, however, there is no need for a real-world instance
of the concept. Modeling concepts is especially useful since it can be used to visualize concepts
that have no physical representation. According to Gregory, this leads to a dilemma, because if a
conceptual model does not necessarily need a physical instance, then there is no certainty that there
ever will be a conceptual model that corresponds to a physical instance. An approach to solving
this is to consider logico-linguistic conceptual models, which are based on stakeholders creating
and agreeing on a language for describing the problem. Subsequently, when all stakeholders agree,
the models are provided with a syntactical structure (Gregory, 1993). However, this approach
moves conceptual models into the context of predicate logic, which is not the desirable method for
description here.

Kung and Sölvberg argue that conceptual models serve four roles (Kung & Sölvberg, 1986):

1. Used as a reference framework to facilitate communication with future users of a system
2. Used to model reality, to improve understanding of the application domains and user needs
3. Basis for design and implementation of a database
4. Part of the documentation, used during maintenance and evolution phases

According to this explanation, however, conceptual models are aimed towards the representation
and design of systems, while, in the previous chapter, other concepts are modeled, such as Epics.
Entity Relationship Diagrams (ERDs) also have a prominent place in the context of information
systems modeling. Since these are focused on database modeling (P. Chen, 1976), the name ERD
would not be desirable either, due to possible confusion and misunderstandings. To emphasize the
overlap between software development and linguistics, the term ontology could be used here. On
the other hand, when looking at the following definition of an ontology: “an explicit specification
of a conceptualization” (Grüber, 1995), the term does not seem appropriate, since the models
still represent concepts. Another type of model to consider is a linguistic model. Unfortunately,
these are often concerned with logic as well, making them mostly rule-based (Gacto, Alcalá, &
Herrera, 2011). Finally, a meta-modeling approach can be considered. One such specification is
Meta-Object Facility (MOF), which describes four levels of models: meta-meta, meta, model and
data/information. This does not solve the issue of naming the model, since there are no specific
types mentioned in the model layer (M1) (OMG Group, 2002). Kühne presents another meta-
modeling approach. He uses token models, which do not include cardinalities, type models and
token & type models, the latter two do specify cardinalities. To be able to go into more detail using
this meta-modeling approach, he allows for ontological and linguistic instantiations of the models.
The former referring to concepts (such as ‘novel’) and the latter referring to specific instances
(such as ‘Moby Dick’). He calls such linguistic instances of ontological instances of a meta-model
linguistic meta-models, even though there are not technically meta-models according to the MOF
specification (Kühne, 2006).

To summarize, the models cannot (accurately) be considered meta-models, since they are not
models of models, but rather a model or visualization of a concept and its template. Secondly,
it is not technically a conceptual model in the context of information science, since these models
tend to describe systems. Thirdly, linguistic models are often rule-based, while these models are
not. So, while all of these names are somewhat feasible options, they are not 100% accurate and
can lead to confusion, especially across fields of research. However, since these models are used for
research in the information science community, the importance of accuracy in the field of linguistics
is decreased. Therefore, the term ‘linguistic conceptual model’ is proposed.

47

4 Case Study
In this chapter the case study is described in further detail. To start, the required preparations
are discussed, which include the case selection criteria and process, as well as the steps that are
executed. As was stated previously, the cases are performed sequentially, so a case must be fully
completed prior to the start of the next one. All cases are investigated following the steps presented
in the remainder of this chapter according to the replication design as stated by Yin (R. Yin, 2017),
unless specified otherwise in Chapters 4.2 and 4.1.3 (due to potential additional steps).

4.1 Case Study Preparation

Before analyzing each case, materials and background information are required, as described later
in this chapter. In addition, since multiple cases are under investigation, selection criteria are used
to ensure they are somewhat similar and comparable.

4.1.1 Case Study Selection

The cases included in this research must adhere to a set of selection criteria. The first being that
(extensive) requirements documentation, specifically USs, must be available. As was mentioned
earlier and is explained later, architecture documentation can be recovered if need be. Likewise,
Epics can be formulated based on the USs, although groupings, themes and large USs could prove to
be useful, since they already provide some direction as to which USs describe similar functionality.
Secondly, the selected cases must not be or include legacy software, but be a stand-alone piece
of software. This coincidentally also serves as the case boundary. Since legacy software is built
in several phases that depend on each other and keep extending the software, the architecture
runs a risk of becoming too complex and large. This could (over)complicate the identification
of (linguistic) links and dependencies between RE and SA artifacts. Moreover, it could lead to
establishing links that should not exist, introducing false positives. Thirdly, the source code or
the access to the system itself should be made available, in case any SA documentation needs to
be recovered. In addition it would be preferable if someone that was involved in the project was
available for questions, should there be any. Finally, supplementary documentation is desirable,
but not required.

4.1.2 Case Study Preparation and Data Gathering Approach

For each case, the gathering and preparation steps as shown in figure 30 are executed. It should
be noted that this approach is devised prior to the case study, any deviations from the original
steps are discussed in Chapter 4.2.

48

Figure 30: PDD depicting the data gathering and preparation process.

To start off, it is important to get familiarized with the case, since the linguistic terms can be
context-specific. Familiarizing oneself, in this research, refers to reading the documentation and
taking a look at the software system itself. Subsequently, the required documents are gathered,
which include RE documents (such as Epics, USs, etc.), SA documents (FAMs, FADs and feature
diagrams, among other architectural viewpoints and models) and additional documentation. The
latter are used during analysis, should there be difficult to define and/or interpret linguistic terms.

It is possible to recover missing SA documents, such as FAMs, FADs and feature diagrams. It is,
however, unacceptable to recreate all RE documents, since they are too dependent on subjectivity
and interpretation as was mentioned earlier. Then again, it is unlikely that Epics as described in
Chapter 3.4.3 are available. Instead themes or other kinds of US groupings are considered. If these
are also unavailable, Epics are written using the USs as the only input. The SA models should
be recovered using source code, the GUI and other architectural documentation. On the occasion
that RE documents are used as input, the risk of introducing linguistic links is too high, given that
RE concepts are utilized. To ensure the recovered SA documents are of sufficient quality, they will
be validated by an expert.

Then, the acquired documents are structured hierarchically, meaning that the dependencies
within the artifacts are taken into account. The hierarchical structure is determined starting from
the lowest level of abstraction, so the USs and feature diagrams. Finally, the dependencies, or
rather relationships, between artifacts are considered.

49

4.1.3 Case Study Execution and Analysis Approach

Figure 31: PDD presenting the steps in the analysis process.

During the preparation phase, the documents were hierarchically ordered. However, in this phase,
the hierarchies are specified in more detail by organizing the individual Epics, USs, modules and
features hierarchically. Subsequently, the USs and features and the Epics and modules are com-
pared. This comparison mainly functions as a way to determine whether there are as many USs as
features and as many Epics as modules. However, after the linguistic analysis is performed, these
numbers may have to be re-adjusted.

Then, the artifacts of both domains are analyzed in more detail. All words in the artifacts
will be assigned a PoS tag using the CoreNLP tool (Manning et al., 2014). To ensure context-

50

specific concepts and improperly formulated sentences are tagged correctly, all tags will be checked
manually and changed if need be. Subsequently, linguistic terms are extracted by filtering out
all the tags that do not indicate a verb or a noun (in whatever form). The PoS tags are also
used to determine the frequency of each tag (excluding the tags that are specific to the various
templates). In the final phase of the analysis, the extracted linguistic terms are compared to see if
linguistic links can be identified between artifacts, as well as the positions of the matched words.
In addition, potential synonyms, homonyms and semantic frames are identified. Not every word
that is a potential homonym is considered, there are two exceptions. Firstly, potential homonyms
that have an obvious difference in meaning based on their PoS tag, e.g.: ‘store’ as a noun and
‘store’ as a verb. Secondly, words that have more than one meaning, but are only used in one way,
e.g.: ‘fans’ as in rotating blades for ventilation and ‘fans’ as in supporters, but only the former
meaning of the word is ever used in the context.

The analyses per case are presented in individual case reports in Chapters 5.1 to 5.3. Subse-
quently, cross-case conclusions are drawn from the individual analyses (R. Yin, 2017). To determine
whether two semantically similar words can actually be considered synonyms, WordNet is used.
WordNet is a lexical database that groups nouns, verbs, adverbs and adjectives by synonyms
(Miller, 1998). However, for terms that are not present in this database and to verify the accuracy,
the Merriam-Webster dictionary is also used to identify synonyms. Examples of potentially missing
terms are abbreviations, context-specific concepts and compound nouns. As stated by Yin, it is
possible (and acceptable) to refine and/or change the steps in the process between cases.

All artifacts Epics & modules USs & features
Term frequency Term frequency Term frequency
Tag frequency Tag frequency Tag frequency
Semantic frames Semantic frames Semantic frames
Synonyms Linguistic structure Linguistic structure
Homonyms Added terms Added terms

Modified terms Modified terms
Deleted terms Deleted terms
Aggregation structure Cardinality

Table 8: Planned observations related to PoS tags and linguistic terms.

Note that these planned observations are not final and may be modified or adjusted during the
case study and subsequent analysis phase.

The different concepts, their respective analyses and their purposes are as follows:

1. Dependency of artifacts: used to test the cardinalities between the two levels of ab-
straction, involves comparing the categorization of the USs in Epics to that of features in
modules.

2. PoS tags: used to determine whether there is a linguistic relationship between RE and
SA and, if so, what this relationship entails and how it can be used to benefit software
development (arguably words can be used as well, but when using tags it is possible to
generalize the results and identify (potential) patterns).

3. Linguistic matches: words two mapped artifact instances have in common, also determines
how strong the match is, in case of a unique match a linguistic link can be established.

4. Match positioning: might give insight into the linguistic structure of artifacts, which can
be used to support PoS tag patterns if there are any and useful for educational purposes (e.g.
how to formulate the different artifacts).

5. Linguistic terms: used to identify synonyms, homonyms and semantic frames, of which the
former two are used to determine whether the words can be considered linguistic matches.

6. Semantic frames: support the analysis of linguistic structures and can be used for educa-
tional purposes, such as what requirements the use of certain words put on the remainder
of the US, can also provide additional, implicit information that might be useful in software
development.

51

4.2 Case Study Execution

This chapter contains descriptions of the cases that are analyzed in Chapter 5. In addition, the
process of executing the case study is described in terms of which documents were gathered,
whether there were any difficulties in PoS tagging the different artifact and if and how artifacts
were recovered and/or reconstructed. Three different systems were analyzed, an overview of their
descriptions is provided in table 9. Due to the use of sensitive materials in case 3, no details may
be disclosed and are therefore omitted in the remainder of this chapter.

ID Description Domain Organization Role interviewee
Case 1 Automated greenhouse software Agriculture Start-up Product owner
Case 2 Research data DMS with web application Research University department Developer
Case 3 Small web application Undisclosed Undisclosed Product manager

Table 9: Overview of the three cases included in the case study.

4.2.1 Case Descriptions

The first case that is selected is that of greenhouse software. The software of this start-up was
designed to fully automate greenhouses, while collaborating with existing processes, software and
hardware systems. It should be noted that the artifacts of this case were created keeping an earlier
version of the RE4SA model in mind. While the naming conventions for the different artifacts were
adhered to, this case did not take into account linguistic links in any way. The case documents
consist of:

1. Jobs (8)
2. Epics (31)
3. USs (96)
4. FAM (1)
5. Context diagram (1)
6. Scenario overlays (3)
7. Feature diagram (partial, 1 module)

The case includes an extensive list of Jobs, Epics and USs. Moreover, a FAM that represents the
whole system is included. Unfortunately, only one feature diagram is available, meaning that the
features for one module are modeled. In an attempt to discover more features, the owner of the
documents was asked whether more feature names, descriptions or diagrams can still be provided,
which was unfortunately not the case. Despite the lack of feature diagrams, this case was considered
valuable, since it includes an extensive set of Epics, formulated according to Lucassen’s work. Epics
that adhere to the template are few and far between, so this case provides a rare opportunity to
analyze them. Besides, the USs can still be compared to the one feature diagram that is available
and can be analyzed individually.

The second case is an archiving system for research data for a university, YODA. Not only can
data be stored in an immutable way for replication purposes, it can also be used to share data
within a research team. In short, it is a data management system as well as an archive. The case
documents that were delivered are:

1. Epics (32)
2. USs (300+)
3. Software design & documentation (available at: https://utrechtuniversity.github.io/

yoda-docs/)
4. Code (mostly) available on GitHub: https://github.com/UtrechtUniversity/

Due to the size and complexity of the system, it was advised by one of the developers to focus
on a part of the system. Especially the data storage, which includes communication with various
remote and distributed databases and servers, is a complex and difficult to comprehend part of
the system. Instead, a subset of the system will be used as a means to scope the case. More
specifically, the client/user side of the system will be investigated. This includes part of the data
management functionality, as well as interface considerations and authorization among others. This
scope provides one main benefit, namely, being able to interact with the system to clear up any

52

https://utrechtuniversity.github.io/yoda-docs/
https://utrechtuniversity.github.io/yoda-docs/
https://github.com/UtrechtUniversity/

uncertainties and to answer possible questions. In addition, the web application can be utilized
during architecture recovery. Documentation is provided in English, so there are no translation
concerns.

Among the USs, other types of stories can be found. One type is aptly called ‘ideas’, which
is also available as an Epic/theme. More notable are the so-called ‘enabler stories’. These stories
are almost exclusively written from the perspective of developers and/or testers. According to Lo
and Chen enabler stories are “technical stories enabling the system to fulfill business user stories or
achieve system attributes” (Lo & Chen, 2017). In short, they can describe constraints and quality
requirements. Interestingly, this is the only result for the “enabler story requirements engineering”
search query on Google Scholar from 2015 to now. Given the fact that this research is focused on
USs, enabler stories are excluded from analysis.

Details of the third case may not be disclosed. Based on the recommendations of the product
manager, only the parts of the system (web application) that were covered in the USs were included
in the scope. The functional architecture, so both FAM and feature diagram had to be recovered.

4.2.2 Case Execution Process

In the artifacts for all cases, minor spelling errors or typos were corrected to prevent erroneous
PoS-tagging by the CoreNLP tool. For example, in some stories ‘I’ was spelled in lowercase, which
lead the tool to tag this word as a foreign word (tag ‘FW’), while it is in fact a personal pronoun
(tag ‘PRP’). Similarly, to avoid confusion and incorrect tags, all contractions have been removed
and written in full instead (for example ‘don’t’) for case 1. In addition, some words received the
wrong tag. ‘Changes’ was considered a plural noun, while it was in fact a verb (for instance ‘When
[a noun] changes (...)’). The word ‘set’ was tagged as a verb, but since the word before it was ‘data’,
it was actually a noun (as in ‘the set’). Likewise, the word ‘light’ was tagged as an adjective (tag
‘JJ’), while in combination with the word ‘manager’, it is also a noun. Finally, a minor difficulty
was the word ‘data’, which was often tagged as a plural noun, but in some cases where it was
preceded by ‘a’ as a singular noun. Like in the previous two issues, the determiner ‘a’ was actually
related to the noun following ‘data’ (for instance ‘a data manager’), so the plural noun tag was
used instead.

In the USs of the second case, extra information was sometimes added in parentheses. This
extra information is included in the analysis if it provides an additional explanation, for instance
when examples are stated. However, in one case (YDA-1605) a word was defined by adding another
word in parentheses, since this did not make sense grammatically, this word was not taken into
account during analysis. For the sake of consistency between cases, the word ‘data’ is considered
plural (this also includes the word ‘metadata’). In multiple USs, a forward slash is present. At
first these were tagged as a symbol, but to be able to extract some meaning from them, they were
later considered ‘CC’ tags, since they can indicate ‘and’, ‘or’ or both.

During USs selection of the second case, it became apparent that perhaps not all USs can
be linked to features. However, the question is not solely how to solve this problem, but more
importantly what its source is. In feature diagrams, as discussed in Chapter 3.2.2, features are
usually considered interactive functionality between the system and the user, e.g. buttons that
can be clicked. In the USs of the second case, there are requirements for features that are not, at
first glance, functional requirements, nor are they quality requirements or constraints. They either
describe some extended functionality for an existing feature or functionality that is not directly
related to user interaction. The following US is an example of this:

“As a data manager, I want that revisions of files are removed from Yoda according to the re-
tention policy, so that I can manage the storage costs.”

Arguably, it can be considered a quality requirement, but it does not address any of the qual-
ity perspectives of SA, as described by Rozanski and Woods (Rozanski & Woods, 2011), and the
focus is not on the quality requirement aspect, since it is included in the benefit constituent. Sec-
ondly, it does not define a constraint, nor a functional requirement in the sense that it describes
user interaction. Essentially, it more accurately illustrates something that ‘just happens’, or rather
system behavior or a system response. One can argue that this is a bad US, since it does not
describe a requirement from a user perspective. However, how else would functionality like this be
captured in requirements or otherwise included in the system? Or should this be considered ‘de-
velopmental freedom’? In addition, perhaps the purpose or intent of a feature can be twofold. In

53

that case, a feature with more than one functionality could be called a complex feature. Unfortu-
nately, this brings us back to an earlier question, should this be considered extending functionality
of another feature (and thus another US) or should this be considered functionality an sich and
be described by its very own US? If the former approach is selected, that means that, technically,
a US does not describe a requirement for one feature anymore. Were the USs to be extended,
then the purpose of USs being a technique to describe piecemeal requirements is defeated. To
make matters even more complicated, if extended or complex functionality is introduced, how can
this be represented in feature diagrams? The RE4SA model, although not proven, assumes that
there is a one-to-one relationship between the formulation of USs and the design or description
of features. Does it benefit software development to enforce these cardinalities and if so, how can
they be enforced or prescribed? On the other hand, the question whether there exists (or should
exist) a one-to-one relationship between features and functionality remains.

In an attempt to mitigate these issues, the concern-based requirements taxonomy as presented
by Glinz was applied to the USs. This taxonomy distinguishes four types of system requirements:

1. Functionality and behavior: functions, data, stimuli, reactions and behavior.
2. Time and space bounds: timing, speed, volume and throughput.
3. “-ilities”: reliability, usability, security, availability, portability and maintainability (non-

exhaustive list).
4. Constraints: physical, legal, cultural, environmental, design & implementation and interface

(non-exhaustive list).

The first type is also referred to as functional requirements, followed by performance requirements,
specific quality requirements and finally constraints (Glinz, 2007). Applying the taxonomy resulted
in the removal of six quality requirements and one constraint. However, it can be reasonably as-
sumed that not all functional requirements can be translated into a functional architecture element.
The functional view is concerned with modeling the internal structure of a system and its com-
munication with external systems (Rozanski & Woods, 2011). The information and concurrency
views, on the other hand, might be more suitable to model interactions and behavior. USs that
describe behavioral requirements will be included to examine if and how they can be mapped to
the functional architecture.

Since the Epics were more akin to themes, they had to be formulated into Epics according to
the template and then validated with an expert, as specified in figure 30. A selection of Epics, not
adhering to template (ones that involved the client-side of the system), were transformed into Epics,
adhering to the template, and discussed with a key stakeholder (developer to be specific) of the
system. They were formulated based on RE documentation only, so the existing Epic descriptions
and their corresponding USs.

First and foremost, the developer advised to exclude an additional Epic (EPOS-MSL), since
technically it was not part of the system, but rather part of the IT infrastructure of the university
as a whole. Furthermore, four motivation constituents had to be changed slightly to increase
accuracy and completeness. He also explained some of the Epics and their goals in more detail
and while they did not require rewriting, the information is included here:

1. YDA-321 Manage vault: while considered a separate Epic, there is some overlap with the
Vault Epic (YDA-96).

2. YDA-2208 Metadataschema: mainly concerned with metadata settings for communities
within the system (such as default metadata forms), in the future it will also be changed
for transforming existing schemas into other schemas, so different versions of the metadata.

3. YDA-2694 Export: not meant for migrating data, but rather for archiving data when you do
not want to store it in the system any longer.

Another important remark is that data is considered just data or files or folders when stored inside
the research module and is called a datapackage as soon as it enters the vault.

In similar fashion, a FAM was recovered. Only architecture documentation, the system itself
and source code was used to model the functional architecture. A first version was created and
discussed with the same developer. Some sub-modules were changed into modules and vice versa
and some missing information flows were added. The names of the modules and flows were also
discussed, but no modifications were required. There was a necessity to model two external systems
for completeness. While not part of the internal structure of the system in question, these external

54

systems were deemed important for providing an accurate representation of the system as well as
explaining its functionalities. After changes were made, the second (improved) version was sent
back for a follow up validation.

The feature diagrams were recovered using the architecture documentation, the GUI of the
application and the source code. For the majority of the features, the GUI was used. Each
interactive element (buttons, sliders, textboxes, etc.) is considered a feature. Then, if an interaction
leads to more interactions (options), it is modeled as a composite feature. If no other interactions
succeed the interaction, this is considered an atomic feature. In some feature diagrams the features
are not only grouped based on composite features and modules, but also by headers in the GUI. This
was only done in situations in which there was an exceptionally large number of features related
to one module or composite feature. These headers do not have any effect on the architecture, but
are utilized to improve legibility. An example of how feature diagrams are recovered utilizing the
GUI as input is shown in figure 32.

Figure 32: Example of how the GUI elements are utilized to recover feature diagrams.

A screenshot of part of the Group Manager page is shown at the top and the corresponding part of
the Group Manager module feature diagram is included at the bottom. The three layer structure in
the GUI is represented as a three layer depth in the feature diagram and the following architectural
elements were extracted from the GUI:

1. Group Manager: the starting point of the feature diagram is the module in which the feature
are positioned. In this case this is the ‘Group manager’ (shown in bold), since these features

55

are accessible through the ‘Group Manager’ page.
2. Group Properties: as was mentioned previously, headers from the GUI are included to im-

prove legibility of the feature diagrams (or in other cases allow for an alternative decompo-
sition). As they do not provide any functionality, they are not considered features. Headers
are shown as gray boxes.

3. Category & Subcategory: the category element in the GUI consists of searching for a category
and selecting a category and is accessed by clicking on the arrow.

4. Data Classification: composite feature that is refined into five options (atomic features).
5. Group Description: text box, currently invisible due to the unfolded data classification menu.
6. Classification Selection: the composite feature ‘data classification’ is refined into five options

(atomic features): unspecified, public, basic, sensitive and critical.

Note that the update group properties feature is not visible in the GUI, since it is hidden behind
the data classification menu. Features are considered mandatory if they are required to carry out a
certain task. In the example, when a user creates a group, they must select a category, subcategory
and data classification. Other examples of required and thus mandatory features are when entering
personal details, in such a situation the required elements are indicated by an asterisk.

In addition, the features were grouped based on the modules as specified in the FAM. The
quality of the feature diagrams in terms of completeness is sufficient, since all GUI features are
included and the diagrams were validated by a Yoda developer. However, the accuracy in terms of
presentation is questionable. The feature diagram syntax does not allow for ‘conditional’ features.
Meaning that features are only available when certain other conditions are met. For instance, in
terms of service agreements, oftentimes a box needs to be checked prior to accepting the terms.
The lack of conditionality expressions mainly has consequences for the depth of branches in feature
diagrams. By including the order of activities in the feature diagram, some features are placed at a
far greater depth than they are given the GUI. The depth of a feature diagram refers to how many
steps or actions need to be performed in order to make use of a feature or carry out a specific task.
For instance, in the Yoda case, to get the option to submit a folder to the vault, there first needs
to be a folder, which needs to be selected and subsequently locked. While the vault submission
feature is placed at the same depth as the locking of the folder (so after a folder is selected). Since
the structural accuracy is not of importance here, the issue is ignored here, but included as part
of future research directions. For the sake of brevity, the feature diagrams and their descriptions
are included in Appendix B.

56

5 Analysis
In this chapter, the performed steps in the analysis process (as described in Chapter 4.1.3) are
discussed in more detail. Throughout this chapter, qualitative findings included in the results
chapter (Chapter 6) are indicated by an ID and presented in bold. Table 10 provides an overview
of the Penn Treebank PoS tagset (M. Marcus et al., 1993) that are used throughout the linguistic
analysis of the artifacts.

Tag Description Tag Description
CC Coordinating conjuction TO to
CD Cardinal number UH Interjection
DT Determiner VB Verb, base form
EX Existential there VBD Verb, past tense
FW Foreign word VBG Verb, gerund/present participle
IN Preposition/subord. conjuction VBN Verb, past participle
JJ Adjective VBP Verb, non-3rd ps. sing. present
JJR Adjective, comparative VBZ Verb, 3rd ps. sing. present
JJS Adjective, superlative WDT wh-determiner
LS List item marker WP wh-pronoun
MD Modal WP$ Possessive wh-pronoun
NN Noun, singular or mass WRB wh-adverb
NNS Noun, plural # Pound sign
NNP Proper noun, singular $ Dollar sign
NNPS Proper noun, plural . Sentence-final punctuation
PDT Predeterminer , Comma
POS Possessive ending : Colon, semi-colon
PRP Personal pronoun (Left bracket character
PP$ Possessive pronoun) Right bracket character
RB Adverb " Straight double quote
RBR Adverb, comparative ‘ Left open single quote
RBS Adverb, superlative “ Left open double quote
RP Particle ’ Right close single quote
SYM Symbol (mathematical or scientific) ” Right close double quote

Table 10: Overview of the Penn Treebank PoS tagset used for linguistic analysis.

In some cases, while PoS tagging, a word could be interpreted in more than one way, resulting
in more than one appropriate tag. For example, when considering verbs in the past participle
preceding a noun, they should actually be tagged as adjectives (JJ). Not all such cases were tagged
correctly and had to be fixed manually. As another example, the word ‘much’ can either be an
adjective (JJ) or an adverb (RB), depending on the sentence structure. However, these were tagged
correctly and few occurrences of the word could be observed. Finally, when looking at the matches
and subsequent links between RE artifacts and SA artifacts, mostly verbs and nouns are taken
into account. In case of the former, modals (MD) were not regarded as verbs. The reason for this
is twofold: firstly, verb tags exist and they are purposely not included in those tags. Secondly,
the sentences or phrases that include modals can be rephrased in such a way that they can be
omitted without changing the meaning. Earlier, it was stated that only nouns and verbs would be
considered during the linguistic analyses. However, it became apparent that additional words (and
thus tags) can be necessary in order to establish a linguistic link. Therefore, all tags are considered
during the linguistic matching and linking activities.

Linguistic matches are analyzed to determine how accurate or precise they are. Generally, four
types of matches are distinguished:

1. Precise: the match consists of two words that are exactly the same. E.g.: ‘temperature’ (NN)
and ‘temperature’ (NN).

2. Synonym: the match consists of two synonyms. E.g.: ‘moisture’ (NN) and ‘humidity’ (NN).
3. Near-precise: the match is nearly identical (e.g. one compound noun and two nouns or

singular and plural). E.g.: ‘sprays’ (NNS) and ‘spray’ (NN).

57

4. Partial: difference in PoS tag (such as a verb and a noun), but the root of the word is the
same. E.g.: ‘pump’ (VB) and ‘pump’ (NN).

After analyzing the first case, it became apparent that determining the frequency of terms is
not of any use to the objectives of this research. The same is true for added, modified and/or
deleted terms, since these are not of any influence on the current linguistic structure. On the other
hand, an observation that was missing is the position of the words that can be matched. This
is especially relevant to determine how artifact names can be generated and how matches could
possibly established automatically.

5.1 Case 1

As was stated in the case description, both Epics and USs were provided in this case, as well as a
functional architecture. Moreover, the Epics and USs were already hierarchically ordered, stating
which USs are related to which Epic. The same is true for the functional architecture, the modules
were already divided over the different systems and the parent module of the feature diagram was
included. Considering the dependencies, it soon became apparent that there exist as many Epics
as modules. Unfortunately, since only one feature diagram was included, little can be said about
the dependency between USs and features. In case of the former, it is not completely self-evident
which Epics are related to which modules. The provided figures can be found in Appendix A. In
the references a link to the thesis can be found, which includes the stories. An interesting note
is that the roles of the USs in this case are actually system components. So, rather than using
specific stakeholders in roles, different parts of the system that communicate and interact with each
other are used instead, which makes sense since the requirements were written for an autonomous
system.

5.1.1 Dependency Analysis

Fortunately, the Epics, modules, USs and features are well-documented, making it easy to see
which USs are part of which Epic and which features are contained in which module. From the
31 Epics, all have been modeled as a module. However, only one feature diagram is included, as
was mentioned previously, so only a subset of the features and USs can be analyzed in terms of
dependency. The feature diagram that was included (depicted in Appendix A, figure 38), consists
of ten features. Arguably, it contains six features if the one-to-one composite-atomic features are
not taken into account and five if only the lowest level features are included. In any case, the Epic
that is related to the module of which the feature diagram is created contains only four USs, so
there is no one-to-one relationship (1.1). Based on the linguistic matches, the USs can be
linked to the ten features. Oddly, two USs resulted in four features, one US in two features and
the final US in no features. These discrepancies can be explained by three possible issues based on
the literature study:

1. Poorly written USs
2. Poorly modeled features
3. Same action is desired by more than one role

Keep in mind that these possibilities are not mutually exclusive. Starting with US 2-1:1, this one is
related to four features. One of which, ‘verify begin state’ cannot be matched to any of the words
in the US, but the relationship is inferred from a composite feature (‘process light instructions’).
Other than that, it seems as if the US contains two actions rather than one, resulting in more
than one feature. Subsequently, one of those features required additional functionality, resulting
in another feature. According to the QUS framework, the US should describe a requirement for
exactly one feature, meaning that the US should have been split into two.

US 2-1:2 is related to two features, one of which can be related through a linguistic match,
the other is the child feature to that parent feature. In this case it seems that, again, a feature
required an additional feature to work. So, this could mean that a US describing this feature was
missing.

US 2-1:3 is related to four features, which can all be matched linguistically. It seems that the
US describes two features again, one for monitoring screens and one for monitoring lamps, which
could have been split into two separate USs. They can even share the same benefit. Like before,

58

additional features were added that are not described by a US. Both ‘assigning a screen state’ and
‘assigning a light state’ could have been formulated in USs. So it seems as if there are USs missing.

Finally, US 2-1:4 cannot be related to any of the features. So either it describes a feature that
is present in another module or it cannot be contained in a feature. When reading the US, its
description of a potential feature is quite vague and seems to describe functionality on a higher-
level, almost as if it could have been an Epic. However, due to the lack of other feature diagrams
it is difficult to determine what the purpose of this US was.

Coming back to the possible issues, it can be assumed that the one-to-many relationship between
three USs and their features can be explained by poorly written USs, referring to the fact that
they contain a requirement for more than one feature, and missing USs.

To gain more insight into the relationship between USs and features, the USs that are not re-
lated to a feature are analyzed as well. It is possible, based on their formulation, to infer whether
they would refer (or seem to refer) to one or more features. An indication of whether a US describes
a requirement for more than one feature is the word ‘and’. In extension, the word ‘or’ is considered
as well, meaning that USs that contain any ‘CC’ tags are examined. The ‘CC’ tag, according to
table 15 was observed 24 times. The benefit constituent is not mandatory and therefore does not
provide essential requirement information for a feature, which means fourteen USs are left. The
features that can be extracted from USs are, however, subject to interpretation. Consider the
following US as an example:

“As a temperature manager, I want to open or close the overhead windows, so that hot air can exit
the greenhouse.”

Based on this US, it is possible to identify two features, namely opening and closing the over-
head windows. On the other hand, the US can be rewritten as follows:

“As a temperature manager, I want to determine the state of the overhead windows, so that hot
air can exit the greenhouse.”

In this case, the ‘state’ can refer to either opening or closing the windows. This results in an-
other question, should this state be refined into opening or closing, or left as-is? Another approach
would be to split the former US into one that describes opening the windows and the other that
describes closing the windows, again resulting into two features. To make matters more compli-
cated, developers and architects can make the decision to combine opening and closing into the
state of the windows, as described in the second example, leading to one feature. So there are four
possibilities:

1. One US resulting in one feature
2. One US resulting in two features
3. Two USs resulting in one feature
4. Two USs resulting in two features

Of the fourteen ‘CC’ tags, three out of ten times ‘and’ could cause confusion when translating the
described requirement into one or more features. For ‘or’ this was the case three out of four times.
The non-problematic cases were USs in which ‘and’ or ‘or’ were used to describe a combination of
resources.

5.1.2 Epics & Modules

PoS-tagging the module names shows that they solely consist of nouns, with the exception of two
modules that also contained an adjective. Seventeen modules consisted of two words, while the
remaining fourteen consisted of three. The terms that are part of the module name template are
the last noun or the last compound noun. Table 11 provides an overview of the PoS tags that
could be identified and their frequency of occurrence per Epic and module constituent.

59

PoS tag Situation Motivation Expected outcome Total Module name Module template Total
CC 1 4 1 6 - - -
DT 16 24 51 91 - - -
EX 1 - - 1 - - -
IN 2 5 27 34 - - -
JJ 8 10 21 39 2 - 2
JJR 2 - - 2 - - -
MD - - 4 4 - - -
NN 49 33 45 127 38 35 73
NNS 3 14 23 40 1 - 1
NNP - - 1 1 - - -
PRP 3 3 1 7 - - -
PP$ - - 1 1 - - -
RB - 4 2 6 - - -
RP - 13 2 15 - - -
TO 3 4 2 9 - - -
VB 3 35 12 50 - - -
VBG 10 - 1 11 - - -
VBN 6 2 6 14 - - -
VBP 4 0 3 7 - - -
VBZ 17 - 17 34 - - -
WRB - 3 1 4 - - -
, - 2 - 2 - - -
. - - 1 1 - - -

Table 11: Overview of PoS tags in Epics and modules of case 1.

In Chapter 3.6.1 the mandatory and optional linguistic structures were discussed. For Epics these
include a subject, action verb and direct object, which can be considered a noun, a verb and a noun
respectively. Modules consist of at least a noun and possibly another noun and a verb. In this case,
mostly nouns are used in module names (1.2). However, in case of Epics, these words are
only used to formulate the motivation constituent. For the other two constituents no mandatory
or optional words have been defined, even though the situation constituent is of importance when
creating modules (explained in more detail later in this chapter). Given basic sentence structures
it is reasonable to assume that both constituents require nouns and verbs. Furthermore, looking
at the Epics in the case, the situation constituent oftentimes only consists of verbs and nouns.
The expected outcome constituent takes a slightly different approach. Again, verbs and nouns are
needed to formulate a comprehensible phrase. In addition, prepositions are often included as well
as adjectives. The module names do not adhere to the template rules in all cases, since twice an
adjective is included, while only nouns and verbs should be used. However, when looking at the
linguistic links in table 12, an adjective can mean the difference between a unique or duplicate
match. Since this adjective was matched with a preposition in the Epic, the nouns in the situation
constituent should be allowed to include prepositions to facilitate such matching. In addition,
one can argue that information is lost when comparing the PoS tags observed in Epics and those
observed in modules. For instance, personal pronouns can indicate that a noun belongs to someone,
or in this case something. Similarly, any activities performed on objects are specified by verbs and
thus not explicitly included in module names.

Two modules contained template terms that corresponded with words in the Epic. In case of
the ‘harvest predictor’ module, the term ‘predictor’ can be related to the term ‘prediction’ in the
Epic, which is not an identical match. Similarly, the term ‘planner’ in the ‘action planner’ module
can be linked to the term ‘plan’ in the Epic, which is, again, not a precise match. Out of the
31 modules and Epics, only one pair did not contain any corresponding terms. The others have
been analyzed to see whether there was an exact match and in which part or parts of the Epic the
matching term could be observed. Excluding the words related to the module name template, 21
module names contained only one word and the other ten included two. Out of these ten names
with two words eight can be considered compound nouns and the other two contain an adjective
that is related to the noun. The results of the linguistic matching are shown in table 12.

To illustrate how the table should be read, consider the following example of an Epic (3-3), in
which the parts of the template are in brackets:

“[When] receiving a timer[, I want to] turn on the window sprays[, so that] the greenhouse
cools down”

60

It has been mapped to the following module, of which the template word is put in brackets:

“window spray [control] ”

The words in bold can be matched: the words “window” and “sprays” in the Epic and the words
“window” and “spray” in the module. Both words, including their PoS tag are then included in
the table. In addition, since the combination of these words can be seen as a compound noun,
the ‘c’ in parentheses is noted to suggest that this match is only unique if the compound noun is
considered. Finally, the match is labelled as ‘near-precise’, since they do not use the exact same
words. The Epic uses a plural, while the module uses singular.

ID Epic term(s) PoS tag Module term(s) PoS tag Match Unique?
1-1 data NNS data NNS Precise Yes
1-2 yield NN harvest NN Synonym Yes
1-3 action NN action NN Precise Yes
1-4 - - - - - -
2-1 (light, lighting) (NN, NN) light NN (Precise, partial) No
2-2 screen NN screen NN Precise Yes
2-3 lighting NN light NN Partial No
3-1 temperature NN temperature NN Precise No
3-2 heating NN heating NN Precise Yes
3-3 window, sprays NN, NNS window, spray NN, NN Near-precise Yes (c)
3-4 windows NNS window NN Near-precise Yes
4-1 humidity NN humidity NN Precise No

4-2 (moisture; humidity),
pump

(NN; NN),
NN(S) moisture, pump NN, NN (Precise; synonym),

precise Yes (c)

4-3 ventilation NN ventilation NN Precise Yes
5-1 CO2 NN CO2 NN Precise No
5-2 CO2, pump NN, VB/NN CO2, pump NN, NN Precise (partial) Yes (c)
6-1 plant NN plant NN Precise Yes
6-2 growth, model NN, NN growth, model NN, NN Precise No
6-3 growth, model NN, NN growth, model NN, NN Precise No
7-1 wind NN wind NN Precise Yes
7-2 pressure NN pressure NN Precise Yes
7-3 sunshine NN radiation NN Synonym Yes
7-4 outside, temperature IN, NN external, temperature JJ, NN Synonym, precise Yes (c)
7-5 cloud NN cloud NN Precise Yes
8-1 evaporation NN evaporation NN Precise Yes
8-2 soil, moisture NN, NN soil, moisture NN, NN Precise Yes (c)
8-3 humidity NN humidity NN Precise No
8-4 CO2 NN CO2 NN Precise No
8-5 temperature NN temperature NN Precise No
8-6 light NN light NN Precise No
8-7 light, absorption NN, NN light, absorption NN, NN Precise Yes (c)

Table 12: Linguistic matches between Epics and modules in case 1.

For clarity, the term ‘pump’ in Epic 4-2 has both the NN and NNS tag, since it is present more
than once, as both a singular and plural noun. Similarly, in 5-2, the term ‘pump’ is included as
both a verb and a noun. Matches are considered precise if the terms in the Epic and the module are
exactly the same, with the exception of plurals of nouns, which are considered near-precise matches.
For example, in Epic 3-3, the term ‘sprays’ is plural, while in the module name its singular form is
present. Matches are deemed to be partial if the root word is the same, but the terms used are not
(see 2-3 for an example). Some matches are based on synonyms, for example in case of the terms
‘sunshine’ and ‘radiation’ in 7-3, these words are considered synonyms according to the thesaurus.
Finally, some matches are unique, while others are not. Matches are considered unique when an
Epic can be mapped to only one module, exclusively based on the matched terms. For nineteen
pairs, the match is unique. For six of those, the nouns have to be considered compound nouns
in order to result in a unique match (indicated by a ‘c’ in parentheses). Finally, there exists a
possibility that a match is not unique when solely considering the terms. However, if such a match
is contained within another match, for example in a compound noun, it can still be considered
unique if there are no other similar matches. To illustrate: if only one Epic and module mentioned

61

the term ‘CO2’, it can be considered unique, since it is the only match left after eliminating the
compound noun match of ‘CO2 pump’. So, a process of elimination can lead to more unique
matches and subsequent linguistic links (1.3). While this did not occur in table 12, it should
be taken into consideration in future analyses. While adjectives are not included in the linguistic
structure of modules, they can be used to establish links. For instance, in case of 7-4, this match
can only be considered unique when taking the adjective into account (1.4).

Table 13 shows in which constituents of the Epic template the matches can be found. It should
be noted that compound nouns are considered one match and not two. Only one Epic contained
two matches in one constituent (5-2), since the word ‘pumps’ was also present as a verb. The term
‘outside temperature’ was also considered a compound noun.

Epic constituent Situation Motivation Expected outcome
Number of matches 23 9 10

Table 13: Number of matches divided over the three constituents of the Epic template in case 1.

As is apparent, the matches can most often be found in the first constituent of the Epic
(1.5). This, however, can also introduce misunderstandings, since some situation constituents refer
to other modules to explain dependencies and information flows. For instance, Epic 1-3 refers to
‘yield prediction’ in the situation constituent, which seems to be related to the ‘harvest predictor’
module, while it is in fact mapped to the ‘action planner’ module. This is, oddly, in conflict
with what Blessinga mentioned in his master thesis. He stated that the motivation constituent
(the second part) should be functional, so that it can be mapped to a module (Blessinga, 2018).
However, this constituent could be mapped to a module only nine times. The expected outcome
constituent could be mapped to a module ten times using linguistic matches, out of which only
three matches would lead to a unique mapping to a module. The other seven Epics with matches
could be mapped to more than one module.

Out of the 23 matches within the first constituent of the Epic, the matched term was the only
noun or part of the only compound noun in nineteen instances. When only a compound noun was
present, the noun that was matched with the module name was the first noun in the compound
noun all but once (in Epic 7-2 it was the last noun, but including solely the first noun or the full
compound noun would change little for the module name). In two Epics more than one (compound)
noun could be identified and twice the matched noun was part of the last compound noun. Only
once could the matched noun be identified as the first noun in the constituent. Oddly enough,
out of the seventeen Epics that contain compound nouns (not including the Epics that include an
adjective or preposition), nine of them lose part of the compound noun in the module name. While
the meaning is not lost and no ambiguity is introduced, the module names become slightly
less detailed (1.6). Furthermore, if more modules were to be introduced in the future the names
might lead to confusion or erroneous links. An example of a less specific module name is the
‘humidity monitor’ module, which does not disclose what kind of humidity is meant or where it is
being monitored. In the Epic however, this is formulated as ‘greenhouse humidity’, which is more
specific. Two other examples are ‘pressure monitor’ and ‘wind monitor’, which are described in
the Epics as ‘air pressure’ and ‘wind direction’ respectively. The opposite is true once, for an Epic
in which merely the word ‘plant’ is mentioned, while the module defines a ‘plant type’. Module
names are generally more concise than Epics, but in this case it is not a rare occurrence that a
module consists of three words, which means that including the full compound noun cannot have
been a decision for the sake of brevity. Moreover, there is sufficient space for longer names in the
architectural elements of the FAM.

Table 14 shows the positions of the matched terms per Epic constituent. In this table, only
unique matches (so linguistic links) were included.

Situation constituent Motivation constituent Outcome constituent
Frequency Percentage Frequency Percentage Frequency Percentage

First noun 8 66,7 5 55,6 2 100
First c. noun 3* 25 3 33,3 - -
Second noun - - 1 11,1 - -
First noun if ext. to c. 1 8,3 - - - -

Table 14: Positions of the linguistic matches in Epics in case 1.

62

In this table ‘c.’ stands for ‘compound’. In the situation constituent, nearly all linguistic matches
are the first noun or first compound noun. in one Epic, the first compound noun consisted of a
preposition and a noun. Moreover, the one match that was not in the position of the first noun
can be slightly altered. By extending the matching noun to a compound noun, without changing
the meaning: from ‘pressure’ to ‘air pressure’. If that were the case, 100% of the linguistic links
in the first constituent are the first (compound) noun. However, this is possible in just barely the
majority of all the Epics, since there are a total of 23 matches in the situation constituents. This is
quite different in case of the motivation constituent. Since eight out of nine of the unique linguistic
matches are positioned as the first noun or first compound noun. Finally, only two of the matches
in the expected outcome constituent were unique, but both were the first noun.

5.1.3 USs & Features

Table 15 shows which PoS tags could be identified in each US constituent and the USs in general,
as well as the tags for the few features that were defined. Only tags that could be found in at least
one constituent or feature have been included in the table. In total 96 USs, five composite and five
atomic features were analyzed.

PoS tag Role Action Benefit Total Feature name
CC - 14 10 24 -
CD - 5 - 5 -
DT - 66 66 132 -
IN - 59 39 98 -
JJ 4 47 52 103 1
JJR - 2 - 2 -
MD - 4 49 53 -
NN 210 158 125 491 15
NNS - 71 52 123 4
NNP - 2 - 2 -
PRP - 7 43 50 -
PP$ - 3 9 12 -
RB - 9 26 35 -
RP - 10 4 14 -
TO - 20 5 31 4
VB - 112 65 177 9
VBG - 3 4 7 -
VBN - 20 41 61 -
VBP - 9 26 35 -
VBZ - 10 32 42 -
WP - 5 2 7 -
WRB - 12 8 20 -
, - 1 1 2 -
. - - 1 1 -

Table 15: Overview of PoS tags in USs and features in case 1.

It is immediately apparent that the role constituent nearly exclusively consists of singular nouns.
In four out of 96 cases, an adjective was included as well. Also, since there are 96 USs and
after checking the USs, all USs included a compound noun as a role, mostly with two nouns and
sometimes three. The action constituent is less straightforward to formulate, as many different
tags could be observed. When looking at which words occur in half the USs, the nouns, verbs,
determiners, prepositions and adjectives are left (even though the latter could be observed in one
less than half). The use of verbs (base form verbs to be precise) is easy to explain since the action
constituent template is “I want to”, which needs to be followed by a verb. Furthermore, the verb
should refer to something, which explains the necessity of nouns. In some cases the ‘minimal’ action
is extended by another verb phrase containing more nouns, as well as prepositions and adjectives.
Finally, the benefit constituent is hard to pin down. A wide range of PoS tags could be identified,
with varying degrees of frequency. Again, determiners are popular, since they accompany nouns.

63

In addition, prepositions and adjectives are also frequent occurrences. Taking into account both
singular and plural nouns and any form of a verb, a US contains on average six nouns (rounded
down) and three verbs (rounded down). Features consist of nearly exclusively nouns and
verbs (1.7), which is in agreement with the linguistic structure for feature names.

Looking at the single feature diagram that was included, some linguistic comparisons can be
made between the USs and feature names. Fortunately, due to the hierarchy of Epics and USs, it is
self-explanatory which USs are related to the feature diagram. Strangely, however, some compos-
ite features include only one feature, defeating the purpose of the former feature being composite.
Table 16 provides an overview of the linguistic matches found in the USs and their corresponding
features. The first three digits in the feature ID indicate to which US they are related. As an
example, consider the following US (2-1:1), again, the parts in the template are put in brackets:

“[As a] light manager[, I want to] use a light instruction to determine if a zone needs light
or shadow[, so that] the correct lighting is implemented ”

The following feature (F 2-1:1) can be mapped to said US:

“Process light instructions”

Like before, the terms that could be matched are shown in bold. Compound noun matches are
indicated by a ‘c’ in parentheses. Furthermore, if two terms could be matched based on synonymy,
this is expressed by including the two terms that are synonyms followed by ‘syn.’ in parentheses.

ID US term(s) PoS tag Feature term(s) PoS tag Match Unique?
F 2-1:1 light, instruction, lighting NN, NN, NN light, instructions NN, NNS Precise, near-precise, partial Yes (c)
F 2-1:1-1 instruction, zone NN, NN instruction, zone NN, NN Precise, precise Yes
F 2-1:1-1-1 instruction NN instruction NN Precise Yes
F 2-1:1-2 - - - - - -
F 2-1:2 sensors NNS sensors NNS Precise Yes
F 2-1:2-1 light NN light NN Precise Yes
F 2-1:3-1 check, screens VB, NNS monitor, screens VB, NNS Syn., precise Yes
F 2-1:3-1-1 state, screens NN, NNS state, screen NN, NN Precise, near-precise Yes
F 2-1:3-2 check, lamps VB, NNS monitor, lamps VB, NNS Syn., precise Yes
F 2-1:3-2-1 light, state NN, NN light, state NN, NN Precise, precise Yes

Table 16: Linguistic matches between USs and features in case 1.

All USs that could be linguistically matched to a feature have at least one match in the action con-
stituent, while only three are and four are observed in the role and benefit constituent respectively.
This means that the action constituent is the most important of the three to identify
matches (1.8). The ‘c’ in parentheses indicates whether the words can be considered a compound
noun. Furthermore, it is shown when two words are considered synonymous. As is apparent in
the table, US 2-1:4 cannot be (linguistically) related to any of the composite or atomic features
included in the diagram, even though it should be included given the Epic-module relationship.
There are three possible explanations for this. Firstly, the US is actually part of a different Epic
and therefore a different module. Secondly, the US describes some implicit functionality that is
not included in the features explicitly or is part of multiple features. Thirdly, the functionality
described in the US is not at all included in the architecture and can thus be considered redundant
or pointless. As was the case with the modules and features, some detail is lost in naming the
features. Again, compound nouns are changed into just one of the two nouns. For example, in
US2-1:2, the Epic describes ‘light sensors’, while the feature merely includes the term ‘sensors’. In
this case, it would presumably be better to include the full compound noun to avoid confusion and
ambiguity, since more than one type of sensor can be found in the set of USs.

As was explained previously, ‘light’ and ‘lighting’ can be considered synonymous. Furthermore,
the terms ‘check’ and ‘monitor’ are synonyms according to WordNet, the Merriam-Webster dictio-
nary and the thesaurus. This means that two features can be fully derived from the US they are
related to. In US 2-1:1, the word ‘use’ can be replaced with ‘process’ without changing the meaning
of the US and without breaking any template rules. This would lead to a more accurate and unique
match with feature 2-1:1. However, WordNet, the Merriam-Webster dictionary and the thesaurus
do not consider ‘use’ and ‘process’ to be synonyms. In similar fashion, on the topic of US 2-1:2,
‘use output’ and ‘read’ could be considered synonymous. Again, since the chance does not impact

64

the meaning of the US or feature and does not violate any template rules. Unfortunately, Word-
Net and the thesaurus do not acknowledge these terms as being synonyms. The Merriam-Webster
dictionary does allude to it, by stating that ‘read’ can be defined as “to acquire (information) from
storage”. Still, ‘output’ is not considered storage and thus the terms are considered synonymous.

US 2-1:3 can be linguistically related to more than one feature, to two composite features to be
precise. Arguably, it would be better to split this US into two USs based on two reasons. Firstly,
the US now describes two features and according to the quality criteria it should describe exactly
one feature. Secondly, the current formulation can lead to confusion in traceability, which can
possibly be avoided. For example, should the US be modified or deleted, it is not clear whether
both features should be affected or not. It could be beneficial to split the action constituent into
two USs with the same role and benefit constituents.

Considering the linguistic matches shown in the table, it can be reasonably assumed that the
action constituent of a US is the most important one when identifying linguistic links. This is also
the safer option compared to the benefit constituent, since its inclusion is optional.

5.1.4 Semantic Frames

In addition to quantitative analyses on the PoS tags, more qualitative, or rather semantic, inves-
tigation is also desirable. One such semantic analysis is identifying semantic frames. To recap, a
semantic frame basically describes which words a certain word is usually associated with or related
to. For the semantic frames, only nouns and verbs are considered, since, for instance, adjectives can
be related to any noun. Additionally, only frames that were observed multiple times are included
in this chapter.

The verb ‘use’ is present in the action constituent of the USs twenty times (as the first word in
that constituent). FrameNet distinguishes two meanings for the word, namely ‘using’ in general
and ‘using a resource’. In the USs, ‘use’ is frequently accompanied by a noun (a resource), such as
data. FrameNet states that “an agent has access to a finite amount of some resource and uses it
in some way to complete a purpose”. In this case, the agent is the role that is specified in the role
constituent of the US and the purpose is what is described in the motivation constituent, which
means that a motivation constituent would become mandatory (1.9). Sometimes the
words ‘information’, ‘knowledge’ or ‘output’ are the resource. In twelve of the 31 Epics, the verb
‘send’ could be observed in the motivation constituent. According to FrameNet, the word ‘send’
needs at least a sender, a theme and a recipient or goal. A goal is not meant as an objective here,
but as a destination. In Epics the sender is described by ‘I’ in the template part of the motivation
constituent, which, an sich, is not very specific. However, if an Epic can be mapped to a module,
the module can help describe the sender. For instance, consider the following Epic:

“When wind direction changes, I want to send out a notification, so that the data is available
for the rest of the system.”

From just the Epic, it is not clear who ‘I’ refers to, but it can be mapped to the “wind moni-
tor” module. So the sender is the wind monitor. Using the aforementioned Epic as an example,
‘a notification’ is the theme (or the thing that is being sent) and the recipient is ‘the rest of the
system’. It is also possible to define a path, which is the route that the theme takes when sent. In
addition, a method of transportation can also be expressed.

Some semantic frames are less apparent or more difficult to identify, since the words do not
have an exact match in the FrameNet index. For example, the verb ‘activate’ is not present in the
index, but can be described by the semantic frame that describes changing an operational state.
This frame contains an agent who activates (or turns on) a device. Again, the agent can only
be accurately determined by the module to which the Epic is related. In the five times the word
activate or turn on is used in the 31 Epics, the device that is activated is the (compound) noun
that follows the verb in all cases. In nine of the USs and four of the Epics, the verb ‘determine’
can be observed in the second constituent. This verb is comparable to the choosing frame, which
states that a cognizer (the one who chooses), decides upon the chosen (which is an item or a
course of action) out of a set of possibilities and may or may not contain an explanation of the
decision made. In USs the cognizer is the role, while in Epics this is determined by the module to
which the Epic is linked. The chosen entity is the noun that succeeds ‘determine’. In some cases
a vague explanation of how the decision is made it also contained within the second constituent.
An example of such a vague explanation is “based on predictions”.

65

A sharing frame can also be identified in verbs such as ‘provide’ and ‘store’. This frame specifies
two protagonists, one who shares something and the second who receives said something. This
something is called an entity, the thing that is shared. The construction of this frame in a US is
mostly contained in the action constituent. The first protagonist is the role of the US, the entity
follows the verb in question (so ‘provide’ or ‘store’) and the recipient or second protagonist succeeds
the entity. The latter is the last (compound) noun in the action constituent in this case. However,
as per the semantic frame, it is not obligatory to define a separate first and second protagonist. It
is also possible that there is a collective set of protagonists, a simple example of this is “they share
an office”, in which ‘they’ refers to the protagonists. This makes matters slightly more complicated,
so consider the following US:

“As an effect monitor, I want to store proposed actions and executed actions separately, so that I
can later compare planner accuracy.”

In this case, the ‘effect monitor’ is both the first and second protagonist, which is not a prob-
lem in itself, because when there is a lack of a second protagonist, the first can be considered the
collective protagonists. However, in this US, the entity compound noun is followed by another
compound noun. So, at first glance this latter compound noun would be considered the second
protagonist, while it is actually part of the entity. A way to remedy this might be to include
coordinating conjunctions (e.g. ‘and’).

The value of semantic frames may not be immediately apparent from an SA perspective. How-
ever, it could prove to be useful in communications between requirements engineers and architects.
Consider, for instance, the need for a purpose in the benefut constituent related to the verb ‘use’ in
combination with a resource. This can provide a semantic explanation of what the resource should
(be able to) gather, collect or store. This information can help architects decide which data needs
to be stored and how the involved modules and/or features should manage this. So, it is possible
to infer architectural constraints (1.10) without taking a solution-oriented approach in the
requirements. In addition to constraints, semantic frames can help to model information
flows or messages related to communications between modules (1.10). The sharing frame
is an example of this, since it describes what kind of data or information is shared and who the
source and recipient are.

5.1.5 Synonyms & Homonyms

In the Epics and modules, four synonyms could be identified and three were observed in the USs
and features. This means that, if ontology matching was used, these seven links would possibly
be omitted, since ontology matching focuses on exact linguistic term matches. If synonyms had
not been considered in the linguistic matches, two features could not have been properly matched
to the USs. In case of the Epics, four modules could only be mapped to their respective Epics
through identifying synonyms. In two cases these module terms could have been confused with
terms found in other Epics (and modules), meaning that mapping would have been more difficult.
The synonymous terms can vary looking at their definitions, but are used interchangeably in
the documentation of the system (1.11). Only one homonym could be observed, namely
‘cloud’, which is used to both describe a fluffy thing in the sky and a cloud solution related to
computing. However, within the context of the system it is clear which definition is used.

5.2 Case 2

As was mentioned previously, a subset of the system is investigated during the case study due
to the system’s size and complexity. The subset is created by examining the Epics and selecting
those that are, or are suspected to be, related to the client/user side of the system. This includes
account management, data management, data storing, interface, etc., focused on the web applica-
tion itself and some back-end functionality. The YouthData part of the system is also excluded,
since it offers similar functionality. The I-Lab Catalog is also not included, since it is a separate
entity. Subsequently, the USs are reviewed in the same manner and categorized in Epics, if that
has not been done already. If, after examination of the USs, Epics have not been assigned any
USs, it is removed from the case study prior to analysis. Epics that only contain unimplemented
USs are also removed from the subset. As a result, the following Epics were not included: Cos-
metics, Distribution, JsonMetadata, Youth, Windows webdav driver, Youth Data Request, Test

66

Environment, Integrity, I-Lab Catalog, Tools, Monitoring, Intake and Development Manual.
In the context of this case, Epic is a problematic term. These so-called Epics are in fact

more akin to themes, so they more accurately represent a general description of a part of the
system or its functionality and are not written as a story (as explained in Chapter 3.4.3). To
remedy this, the themes are formulated into Epics, only using information gathered from the RE
documents, to prevent validity concerns using the SA documentation as input would introduce.
The number of USs is decreased further by removing USs that have not yet been implemented.
If the functionality is not present in the code, its architectural elements cannot be recovered and
thus not linked to USs. In case of Epics, not only finished Epics could be included, in fact, all
Epics are still in development. This can be explained by the USs and their features that are still
under construction. The recovered FAM, modeled using the GUI, architecture documentation and
code as input can be found in Appendix B (figure 39). The parts of the system that were excluded
from analysis are also not included in the recovered architectural artifacts.

5.2.1 Dependency Analysis

First and foremost, the set of USs contains USs with two roles and one action and benefit. Con-
firming one of the suspicions raised in Chapter 3.4.5. According to the QUS framework, this US
should be split into two separate USs to ensure that each US contains only one role. However,
that would lead to two nearly identical USs with an identical feature as result. In addition, four
USs are contained in two Epics, which implies that the feature that are described by these USs
are used by two different modules. This means that the one-to-one cardinality from US to Epic
is inaccurate, since USs can be part of more than one Epic and the same holds true for the re-
lationship between modules and features. Logically speaking this makes sense, since it would be
redundant to implement a feature twice if it offers the exact same functionality in both instances.
Theoretically, an example of a feature that has more than one instance could be a search function.
The searching functionality can be called on by more than one module.

The USs were grouped in Epics based on documentation provided by the Yoda developers.
Most of the Epics included a clear overview of which USs they contain. However, some of the
Epics did not have this overview, so after receiving clarification from the developers what the
differences between similar Epics were (such as ‘Vault’ and ‘Manage Vault’), the remaining USs
were categorized manually. The following Epics are included in the analysis: Group Manager,
Research, Metadata, Revisions, Vault, Statistics, User Management, Manage Vault, Publish Data
Package, External User, Metadataschema and Export. Out of these twelve Epics, only Vault did
not include an overview of USs.

The recovered architectural artifacts were linked to their requirements engineering counterparts
by starting at the highest level of abstraction. Epics were connected to modules by considering the
functionalities described by the individual artifacts and matching them based on similarity. Out of
twelve Epics all twelve could be linked to a module. However, the formulation of the Epic did not
specify whether the module it described would be a sub-module or not and neither could this be
inferred. Subsequently, the number of USs per Epic and the number of features per modules were
compared (since there are as many Epics as modules, they are not included in the comparison),
the results are shown in table 17.

67

USs Features
YDA-02 5 16
YDA-09 20 24
YDA-94 17 56
YDA-95 4 4
YDA-96 2 0
YDA-156 3 1
YDA-157 2 6
YDA-321 6 19
YDA-800 22 3
YDA-2110 4 5
YDA-2208 9 5
YDA-2694 2 -
Total 96 139

Table 17: Number of USs and atomic features contained in each Epic or module in case 2 according
to provided documentation.

According to table 17, more features can be extracted from the GUI than are described
in the USs (2.1). The lack of features contained in the Vault Space module (YDA-96) can be
explained by the fact that this module is only concerned with giving users the ability to save
data in the vault (which is not included in the web application and thus the scope of this case
study). Manipulation of said data is handled by the Vault Management module (YDA-321). Due
to miscommunication, YDA-2694 was included in the USs selection, but as it turns out none
of the USs have been implemented. This Epic and its USs are excluded from analysis for the
remainder of this research. USs categorizations as specified by the developers were used whenever
possible, otherwise reasonable assumptions have been made (as was explained earlier). Only atomic
features (features where degree = 0) are included in the count. In addition, features concerned
with facilitating navigation were excluded (such as showing the next or previous page of a list).
Duplicate features within feature diagrams are excluded, but duplicate features between feature
diagrams are included. Choices presented in drop down menus are also excluded if they are
modeled as a number in the feature diagram. For instance, when the option to select a language
is presented, language selection is considered a feature, the individual language choices are not.
Choices made by the system succeeding an action are also not included as atomic features. For
example, when adding a new user it is possible to add an existing or new user, but this distinction
is made automatically by checking the email address. As is evident, in all but one case the number
of USs does not match the number of features. After reading the USs and comparing them to the
feature diagrams, there are a few possible explanations for this discrepancy:

1. Some USs describe behavior or reactions, as opposed to functions.
2. Some USs describe a requirement for more than one feature.
3. Multiple USs describe similar functionality.
4. Features have been included based on common sense or practice and have not been explicitly

mentioned in the requirements.
5. The Epic-USs categorization does not match the module-feature categorization.

Relating features to USs within the same Epic and module resulted in 26 features related to 30 USs
(in some cases one feature could be linked to multiple USs or vice versa). Going by these relations,
66 USs are not yet related to features and the opposite is true for 110 features. To remedy this,
the remaining USs and features are related regardless of Epic/module categorization. Note that
they will not be related based on linguistics, but rather based on which functionality is described
in the USs and which feature contains that functionality.

To see which of the hypothesized explanations is or are correct, the USs are also categorized
based on which features they are related to and, using the categorization of features, which module
and by extension which Epic. In addition to the five expected discrepancies, two others were
identified as well, namely: incorrect level of abstraction and not within the scope of this research.
Surprisingly, one US could not be related to any feature, even though the functionality described
seems to be within the scope of the research. The USs document exported from Jira has marked

68

the status of this US (YDA-1677) as done, so either the requirement is not actually satisfied by
the system or it could not be found or related. Table 18 provides an overview of the issues that
were encountered while relating features to USs and how often they occurred.

Issue Frequency
Behavioral requirements 33
More than one feature described 7
Functionality described by more than one US 16
Not explicitly described in requirements* 42
Epic-US categorization does not match mod-f categorization 8
Suspected incorrect level of abstraction 4
Outside of scope 6

Table 18: Overview of the issues encountered while relating features to USs and their frequency in
case 2.

Note that the frequency refers to the number of USs, for instance, seven USs described more than
one feature. Only in case of the features not explicitly described in requirements does the frequency
refer to the number of features (indicated by the asterisk). Overlap between the issues is possible.
However, if a US is considered a behavioral requirement (in the remainder of this study also referred
to as a ‘behavioral US’), it does not count towards duplicate functionality. Since checking whether
every feature is described by at least one USs is time consuming and prone to error, an estimation is
calculated instead: 64 unique features could be related to USs, meaning that 75 features could not
be related (going by the original set of 139 features as specified in table 17). Removing the atomic
features that were only described by means of their common composite feature (21), 54 features
are unrelated to USs. Note that atomic features in a selection are only not included if none of the
options have been specified in a US. Removing the duplicates, leftover features between the feature
diagrams allows for a decrease by nine. Therefore, it is reasonable to assume that ⇡ 42 features
are not described by USs. This estimate indicates that ⇡ 69,8% of features are described by USs.
After relating the remaining USs and features it became apparent that USs are not always related
to atomic features, but sometimes to composite features. For instance, when the composite feature
describes functionality that results in various options that serve as the related atomic features.

An interesting Epic-US/module-feature categorization discrepancy is between the modules
Vault Management and Publication Space. According to the ‘Asynchronous and Privileged Execu-
tion’ document, the Publication Space is only used after a datapackage is approved for publication.
This means that the process that leads up to a publication, such as submitting for publication,
confirming to the agreement and approving the publication, is technically still part of the Vault
Management module. Therefore, it seems logical to include such steps in the process in the Publish
Data Package Epic, even though according to the architecture they are part of the Manage Vault
Epic. This means that the Epic-US dependencies do not always match the module-feature
dependencies (2.2). A possible explanation for this variation is that the intended architecture
is not always identical to the implemented architecture.

To give an example of a suspected incorrect level of abstraction, consider the following US:

“As a researcher, I want to add metadata to a datapackage, so that I can satisfy information
queries on that datapackage.”

This US describes a requirement for more than one feature. In fact, it describes an entire module,
namely the Metadata Form module. Moreover, the Epic that was formulated to encompass the
USs related to metadata is very similar:

“When I am storing research data, I want to include metadata about the content, so that I can
document my data.”

The US could be refined to suit its benefit constituent better. For instance, by describing meta-
data that is used specifically for search queries or information that is required to describe the
datapackage. Even so, the US would probably need to split into multiple USs.

69

5.2.2 Epics & Modules

In table 19 the PoS tags of the Epics and modules observed in case 2 are presented.

PoS tag Situation Motivation Expected outcome Total Module name Module template Total
CC - - 3 3 - - -
DT 5 6 4 15 - - -
EX 2 - - 2 - - -
FW - 1 - 1 - - -
IN 8 2 3 13 - - -
JJ - 4 1 5 2 - 2
MD - - 9 9 - - -
NN 10 8 7 25 9 12 21
NNP 1 - 2 3 - - -
NNS 6 10 10 26 2 - 2
PRP 9 4 10 23 - - -
PP$ 3 5 4 12 - - -
RB - 2 5 7 - - -
TO 1 5 3 9 - - -
VB 1 14 10 25 - - -
VBG 7 - - 7 - - -
VBN 2 - 4 6 - - -
VBP 9 - 2 11 - - -
VBZ 2 - 1 3 - - -
, - - 2 2 - - -

Table 19: Overview of PoS tags in Epics and modules in case 2.

As was done in the first case, the last word of the module name is considered the template word.
Again, modules names consist of mostly nouns (2.3). Notably, these module names also
contained adjectives, like the first case, although these are not included in the linguistic structure
of a module. Again, no verbs are included in the modules, even though they are allowed according
to the linguistic structure and are used in the Epics. It is possible that some information is lost
when naming the modules, but the information may be implicit or not relevant for the architecture.

The linguistic matches observed between the Epics and modules of case 2 are presented in
table 20 below.

ID Epic term(s) PoS tag Module term(s) PoS tag Match Unique?
YDA-02 group, manage NN, VB group, manager NN, NN Precise, partial Yes
YDA-09 research NN research NN Precise Yes
YDA-94 metadata NNS metadata NNS Precise Yes
YDA-95 revisions, managing NNS, VBG revision, management NN, NNS Near-precise, partial Yes
YDA-96 vault NN vault NN Precise Yes
YDA-156 statistics NNS statistics NNS Precise Yes
YDA-157 - - - - - -
YDA-321 vault, manage NN, VB vault, management NN, NN Precise, partial Yes
YDA-800 publish VB publication NN Partial Yes
YDA-2110 outside IN external JJ Synonym Yes
YDA-2208 (metadata, schema) NNS, NN metadataschema NN Near-precise Yes (c)
YDA-2694 export VB export JJ Partial Yes

Table 20: Linguistic matches between Epics and modules in case 2.

Only one Epic did not contain any linguistic matches with its corresponding module. This means
that, technically, this still results in a unique ‘link’, since only one Epic and one module will be
left when all others have been linked. This module is called “User Management” and there is no
mention of a ‘user’ in the Epic. The closest match is the term ‘others’, but this seems to be too
much of a stretch to justify a linguistic match. It should also be noted that YDA-94 and YDA-96
can only result in a unique matching through a process of elimination (2.4). YDA-2208
and YDA-321 would have to be linked first, since the former two cannot yet be linked with any
confidence. In the case of YDA-2208, the terms in the Epic need to be seen as a compound noun
(denoted by the ‘c’ in parentheses), since it is considered a single word in the module name. Twice
adjectives in the functional architecture components were essential for establishing a
linguistic match and link (2.5), like in the first case.

70

In table 21, the number of matches per constituent are presented. Note that some terms occur
more than once in an Epic and that all instances of the matched term are included in this count.

Epic constituent Situation Motivation Expected outcome
Number of matches 7 8 1

Table 21: Number of matches divided over the three constituents of the Epic template in case 2.

Out of the eleven Epics with linguistic matches, most contained a match in either the situation
constituent, the motivation constituent, or both. As is apparent, most matches were found in
the motivation constituent (2.6), unlike in the first case. Only once was a match found in the
expected outcome constituent. Notably in this case, the matched word was ‘manage’, which was
also present in the motivation constituent, meaning that this match can be considered inessential.
Table 22 shows where the linguistic matches were found in terms of word positioning. The expected
outcome constituent is omitted, since it contained only one match, which also happened to be a
duplicate match.

Situation constituent Motivation constituent
Frequency Percentage Frequency Percentage

First noun 2 28,6 3 37,5
Second noun 2 28,6 2* 25
First verb 2 28,6 3 37,5
Second prep. 1 14,3 0 0

Table 22: Positions of the linguistic matches in Epics in case 2.

The asterisk indicates that one of the second noun matches in the motivation constituent could
be a first noun match, if it were extended to a compound noun, without changing the meaning or
formulation of the Epic. For instance, from simply ‘statistics’ to ‘storage statistics’. In this table,
n is the number of matches for each of the constituents, since all identified matches were unique.
As is apparent from the table, the positions of the matched terms differs and there is no safe bet.
Based on the positions of case 2, it is a guess as to which terms should be extracted in order to
generate module names.

5.2.3 USs & Features

In table 23 the PoS tags per US constituent and per feature are provided. Due to the larger
number of features than in the previous case, the numbers have been divided into PoS tags used
in composite and atomic features. Like with the feature count, duplicate features within feature
diagrams are counted once, while they are included between feature diagrams.

71

User Stories Features
PoS tag Role Action Benefit Total Composite Atomic Total
CC 1 10 6 17 - - -
CD - - 1 1 - 2 2
DT - 111 38 149 - 1 1
FW - - 1 1 - - -
IN - 90 38 128 4 20 24
JJ 4 51 25 80 2 21 23
JJR - - 2 2 - - -
MD - 7 64 71 - - -
NN 105 180 78 363 31 151 182
NNS 12 105 63 180 4 20 24
NNP 3 11 5 19 - 7 7
PRP - 2 76 78 - - -
PP$ - 39 27 66 - - -
RB - 3 19 23 - - -
SYM - 4 3 7 - - -
TO - 48 13 61 2 6 8
VB - 117 72 189 31 141 172
VBG - 14 6 20 - - -
VBN - 48 30 78 - 15 15
VBP - 3 14 17 - - -
VBZ - 5 15 20 - - -
WDT - - 2 2 - - -
WRB - 1 - 1 - - -

Table 23: Overview of PoS tags in USs and features in case 2.

As expected, the USs contain a variety of PoS tags. The features, however, include more tags
than just verbs and nouns, which where the predicted tags according to the linguistic structures as
prescribed in table 7. Of all the atomic features, 21 did not contain any nouns, but instead included
an additional verb, an adjective or, in four cases, consisted of just one word. The vast majority of
atomic features, 83, did adhere to the linguistic structure and contained nothing more than a
verb and a (compound) noun (2.7). Six USs did not include a benefit constituent.

Table 24 shows the linguistic matches that were observed in 87 USs. Note that USs that could
not be linked to a feature (for instance because they were not included in the scope or because they
could simply not be found in the implemented system) as well as the USs that should be considered
Epics are omitted. While the behavioral requirements (marked with an asterisk) are included
to examine the linguistic relationship, they are not taken into consideration while establishing
linguistic links (determining unique matches), since only USs that describe a requirement
for a function can be accurately mapped to a feature (2.8). Like in the previous case, only
nouns, verbs and adjectives were analyzed.

ID US term(s) PoS tag Feature term(s) PoS tag Match Unique?
YDA-03 members NNS user NN Syn Yes
YDA-10* metadata NNS metadata NNS Precise -
YDA-12* metadata, formats NNS, NNS metadata, form NNS, NN Precise, syn -
YDA-13 metadata NNS metadata NNS Precise No
YDA-14 - - - - - -
YDA-15 metadata, file NNS, NN metadata, form NNS, NN Precise, syn Yes
YDA-16 discard, metadata VB, NNS delete, metadata VB, NNS Precise, precise Yes
YDA-17 metadata NNS metadata NNS Precise No
YDA-19 metadata NNS metadata; metadata NNS; NNS Precise; precise No
YDA-21 metadata, search NNS, NN metadata, search NNS, VB Precise, partial Yes
YDA-76 select, file VB, NN select, file VB, NN Precise, precise Yes
YDA-77 - - - - - -
YDA-78* metadata NNS metadata NNS Precise -
YDA-82 protect, folder VB, NN lock, folder VB, NN Syn, precise Yes (f)
YDA-84 submitted, vault VBN, NN submitted, vault VBN, NN Precise, precise Yes
YDA-87* accepted, folder VBN, NN accept, folder VB, NN Near-precise, precise -
YDA-146 - - - - - -
YDA-162 submit, folder VB, NN submit, folder VB, NN Precise, precise Yes (f)
YDA-164* metadata NNS metadata NNS Precise -
YDA-170 unlock, folder VB, NN unlock, folder VB, NN Precise, precise Yes (f)
YDA-185 unprotect, folder VB, NN unlock, folder VB, NN Syn, precise Yes (f)
YDA-245 update, password VB, NN change, password VB, NN Syn, precise Yes

YDA-303* category NN category;
subcategory NN, NN Precise; near-precise -

YDA-318 enter, usernames VB, NNS enter, username VB, NN Precise, near-precise Yes
YDA-322* revisions NNS revision NN Near-precise -
YDA-324* submitted, folder VBN, NN submit, folder VB, NN Near-precise, precise -

72

YDA-338* read-only, access,
group’s JJ, NN, PP$ read, access, group NN, NN,

NN
Partial, precise,
near-precise -

YDA-380 unlock, folder VB, NN unlock, folder VB, NN Precise, precise Yes (f)
YDA-381 unlock, folder VB, NN unlock, folder VB, NN Precise, precise Yes (f)
YDA-382 submit, folder VB, NN submit, folder VB, NN Precise, precise Yes (f)
YDA-383 submit, folder VB, NN submit, folder VB, NN Precise, precise Yes (f)

YDA-384 (undo, submission),
folder

(VB, NN),
NN (unsubmit), folder VB, NN Syn, precise Yes

YDA-385 lock, folder VB, NN lock, folder VB, NN Precise, precise Yes
YDA-388* accepted, folder VBN, NN accept, folder VB, NN Near-precise, precise -
YDA-397 restore, file VB, NN restore, file VB, NN Precise, precise Yes

YDA-432
give, read-only,
access, research,
group

VB, JJ, NN,
NN, NN

grant, read, access,
research, group

VB, NN, NN,
NN, NN

Syn, partial,
precise/partial, precise,
precise

Yes

YDA-441 specify, (spatial,
coverage)/location

VB, (JJ,
NN)/NN enter, location VB, NN Syn, (syn)/precise Yes (f)

YDA-451* search VB search VB Precise -
YDA-452 restoration NN restore VB Partial Yes
YDA-453* folder NN folder NN Precise -

YDA-475 revoke, read-only,
access, research, group

VB, JJ, NN,
NN, NN

revoke, read, access,
research, group

VB, NN, NN,
NN, NN

Precise, partial,
precise/partial, precise,
precise

Yes

YDA-524 history NN provenance NN Syn Yes
YDA-606 search, status VB, NN search, status VB, NN Precise, precise Yes

YDA-682
specify,
accessibility/access,
(dataset)

VB, NN/NN,
NN

select, access, (data,
package)

VB, NN,
(NNS, NN)

Syn, (near-precise,
precise), (syn) Yes

YDA-801 metadata NNS metadata NNS Precise No
YDA-866 approve, publication VB, NN approve, publication VB, NN Precise, precise Yes
YDA-867 view, status VB, NN show, log VB, NN Syn, syn Yes
YDA-918* - - - - - -
YDA-919 publication NN publication NN Precise Yes
YDA-921 confirm, agree VB, VBP confirm, agreement VB, NN Precise, partial Yes
YDA-922* search, status NN, NN search, status VB, NN Partial, precise -
YDA-923 cancel, publication VB, NN cancel, publication VB, NN Precise, precise Yes
YDA-942* - - - - - -

YDA-985 enter, date VB, NN enter, date; enter, date VB, NN;
VB, NN

Precise, precise; precise,
precise Yes

YDA-987 system, metadata NN, NNS system, metadata NN, NNS Precise, precise Yes (c)
YDA-989* published/publication VBN/NN publication NN Partial/precise -

YDA-990 published/publications,
depublished

VBN/NNS,
VBN publication, depublish NN, VB Near-precise/partial,

near-precise Yes

YDA-991* depublished,
publications VBN, NNS depublish, publication VB, NN Near-precise,

near-precise -

YDA-1000* published VBN publication NN Partial -

YDA-1003 specify, data,
classification

VB, NNS,
NN

select, data,
classification

VB, NNS,
NN Syn, precise, precise Yes

YDA-1013* approved, publication VBN, NN approve, publication VB, NN Near-precise, precise -
YDA-1031 - - - - - -
YDA-1034* - - - - - -
YDA-1068* publication NN publication NN Precise -

YDA-1389 specify, (spatial,
coverage)/location

VB, (JJ,
NN)/NN enter, (location) VB, (NN) Syn, (syn)/precise Yes (f)

YDA-1463* location NN location NN Precise -
YDA-1464* - - - - - -
YDA-1465* - - - - - -
YDA-1486* - - - - - -
YDA-1605 republish VB republish VB Precise Yes (f)
YDA-1606 republish VB republish VB Precise Yes (f)
YDA-1823* published VBN publication NN Partial -

YDA-1998
fold, unfold,
(categories,
subcategories)

VB, VB,
(NNS, NNS)

hide, (category);
show (category)

VB, (NN);
VB, (NN)

Syn, (precise, near-
precise); syn, (precise,
near-precise)

Yes

YDA-2001 groups NNS group NN Near-precise Yes

YDA-2111 invite, external, user VB, JJ, NN enroll, external, user VB, JJ,
NN Syn, precise, precise Yes (c, f)

YDA-2112 provision, external,
user VB, JJ, NN enroll, external, user VB, JJ,

NN Syn, precise, precise Yes (c, f)

YDA-2163 (set, new), password
(b) (VB, JJ), NN reset, password VB, NN (Syn), precise Yes

YDA-2164* metadata NNS metadata NNS Precise -

YDA-2165 transform, Yoda-
metadata/metadata VB, NNS/NNS transform, metadata VB, NNS Precise, near-precise Yes (f)

YDA-2166* view, transformation,
result VB, NN, NN view, transformation,

result
VB, NN,
NN Precise, precise, precise -

YDA-2286 indicate, datatype VB, NN select, type VB, NN Syn, partial Yes
YDA-2360* metadata, file NNS, NN metadata, form NNS, NN Precise, syn -
YDA-2361* metadata, files NNS, NNS metadata, form NNS, NN Precise, syn -
YDA-2362 convert, metadata VB, NNS transform, metadata VB, NNS Syn, precise Yes (f)
YDA-2363 metadata NNS metadata NNS Precise No

YDA-2644 view, transformation,
result VB, NN, NN view, transformation,

result
VB, NN,
NN Precise, precise, precise Yes

YDA-2645 accept, reject,
(transformation) VB, VB, NN accept, (transformation);

reject, (transformation)
VB, (NN);
VB, (NN) Precise, precise, (precise) Yes

Table 24: Linguistic matches between USs and features in case 2.

Only seven USs had a linguistic match in the benefit constituent (such matches are in bold) and
three of these contained a partial linguistic match for the same term in the action constituent
as well (YDA-682, YDA-989 and YDA-990), so most matches can be found in the action
constituent (2.9). Linguistic links have been established slightly differently from before. In
addition to considering compound nouns, multiple USs that describe the same feature
(2.10) are also taken into account, indicated by an ‘f’ in parentheses. Out of the 57 USs that
describe a function, 48 have a unique linguistic match and can thus be said to have a linguistic
link. In order to establish these links, the process of elimination is crucial (2.3). Starting
with the most reliable or certain links allows other, weaker matches to be considered unique as
well. Five USs could not be uniquely linked to a feature and four USs did not have a linguistic
match with their related feature at all.

Behavioral requirements in table 24 are not linked to the feature that they describe, since they

73

do not technically describe a requirement for a feature. Instead, they have been mapped to the
feature of which they extend the functionality or for which they describe some response or action,
which can lead to more than one relation (2.11). Oftentimes, they are related to features
that are already described by a functional US. However, it is possible to identify linguistic matches
for behavioral USs.

Table 25 shows which terms could be linguistically matched in the context of their position in
the US. For this analysis only the action constituent of the US is considered, since that is where
80 out of 87 linguistic matches were found.

Frequency Percentage

Verbmatch

First verb 32 61,5
First verb excl. have/be 6 11,5
CC tag second verb 4 7,7
Other verb 4 7,7

Nounmatch

First noun 31 59,6
First compound noun 1 1,9
First noun if ext. to compound 7 13,5
First ‘partial’ match 2 3,8
Other noun 5 9,6

Table 25: Positions of the linguistic matches in USs in case 2.

Note that it is possible that the percentages do not add up to 100%, since not all USs contained a
verb match or noun match. Only USs that could be uniquely matched to a feature are included in
the analysis. In the event that multiple features are linked to the same US, the US was duplicated
to avoid introducing a skew. In the table, ‘CC tag second verb’ refers to the instances where a CC
tag is present in the US (such as the word ‘and’, a comma or a forward slash) and the verb after
the CC tag is the one that could be matched to the verb in the feature. For the nouns, ‘first noun
if ext. to compound noun’ refers to situations in which the linguistic match is the first noun, if
the noun in the US is extended to a compound noun. Finally, ‘first partial match’ means that the
linguistic match was considered partial according to table 24.

In relation to the conceptual model of a US, as shown in figure 17, the terms required to derive
feature names are located in the action constituent of a US, more particularly the action verb and
direct object. In the example, visualized in figure 33, the terms that need to extracted from a US
are highlighted.

Figure 33: Derivation of feature names visualized in the conceptual model of the action constituent
of a US.

74

The subject, adjectives and indirect objects are grayed out, since they are not used to derive a
feature name, according to table 25. Furthermore, the selected US does not contain a compound
noun, however, compound nouns would be considered a direct object as well.

If linguistic matches and links were to be identified automatically, the words themselves and
their PoS tags would be considered, meaning that this information is of no value to that endeavor.
However, the objective of this research also included support for generating (partial) artifacts. In
particular, how to generate features, or at least the names of features, by extracting terms from
USs. While 61,5% does not seem to be the safest bet, the accuracy can be increased by excluding
verbs such as ‘have’ and ‘be’, which often do not describe any specifics about a feature, but are
required to formulate a proper phrase. Even then, 73% accuracy is still questionable. In the case
of nouns there is more uncertainty, with a frequency of 59,6%. Although, the first compound noun
can be considered as well and partial matches are still matches, bringing the percentage up to
78,8%, which is an improvement. However, not in all cases can the the noun match be extended to
the first compound noun, in five cases (9,6%), this could not be done. In the context of this case
this would mean that 27% of the verbs extracted from the USs would be incorrect or inappropriate
and 21,2% of the nouns. On the other hand, combining the first verb and the first noun to
create a feature name is a decent starting point 2.12). The accuracy can then be improved
by evaluating the feature names that were formed as such and by fine-tuning the extraction of
terms. Another approach would be to teach requirements engineers to write USs to fit the feature
derivation rules, but that would require them to think solution-oriented, while they should only
focus on the problem.

5.2.4 Semantic Frames

To get some direction in the search for semantic frames, the semantic frames identified in case 1
are examined for case 2 first. Like before, frames are only included if they can be observed more
than once.

The only frames case 1 and 2 have in common are the frames ‘using resource’ and ‘store’. The
former varies slightly from case 1, it more specifically mentions reusing a resource as opposed to
using one. The frame using resource is described by FrameNet as: “an agent has access to a finite
amount of some resource and uses it in some way to complete a purpose”. In case 2, the resource
is either data or a data package, which refer to the same kind of resource. The purpose can differ,
since in one instance an outsider wants to use the data for their own research and in the other
the owner of the data wants to make it publicly available (for example to adhere to the FAIR
principles), but does require a benefit constituent (2.13). The semantic frame ‘store’ can be
observed five times in the Epics. FrameNet states that “a supply of a resource is kept safe and
available for future use”. In addition, there may be a possessor who owns (possesses) said supply.
In this context, the supply always concerns (research) data. They are kept safe and made available
by storing them in the Yoda system (either the group storage or the vault). The possessor is the
owner of the data, so in this context that would be a researcher.

The semantic frame ‘change accessibility’ was observed multiple times, in relation to user per-
missions. This frame states that “an agent causes a useful location to become accessible (or
non-accessible) to a theme to a certain degree”. In this case, the agent is a user with the rights to
promote or demote other users, the useful location is a specific data package (either in the vault
or in group storage), the theme refers to other users with specified permissions and the degree
refers to no access, read-only access and read/edit permission. Two USs contain all the previously
mentioned elements:

1. “As a data manager, I want to give read-only access on a data package in the vault to group
users of the corresponding research group, so that they can access this package.”

2. “As a data manager, I want to revoke read-only access on a data package in the vault to group
users of the corresponding research group, so that they can access this package.”

Other USs concerned with access and/or permissions contain only a subset of the elements. For
instance: “As a group member, I need read-only access to vault data, so that I can access all our
group’s archived data packages.” This US does not specify an agent, only the location, the theme
and the degree.

In similar fashion, the semantic frame ‘choosing’ could be observed, albeit in multiple forms
using different words. The frame is described as follows: “a cognizer decides upon the chosen

75

(either an item or a course of action) out of a set of possibilities”. In the Epics and USs, the word
‘choose’ is never used, but ‘select’ and ‘indicate’ are used instead. To a lesser degree, ‘specify’ and
‘enter’ can be related to this frame, but both of these terms are not accompanied by any options.

Forgiving the fact that one of the elements is implied, the ‘publishing’ frame, as could be
expected, is also present. It contains the following elements: “a publisher makes a work of an
author (or authors) available to some public audience for general enjoyment, examination, and
reference”. The publisher is not explicitly mentioned in the Epics or USs, but is instead implied
as it is the system (Yoda). The author refers to the role that wants to publish something, in
most cases a researcher, and the work is research data or a data package. The audience is the
general public, as the data is made publicly accessible. It is reasonable to say that the semantic
frame ‘searching scenario’ (defined as: “a cognizer seeks a phenomenon within the ground”) is used,
although the ground is never specified, since it concerns the system, or the storage space of the
user within the system. The cognizer is always the role, so either a general user or a researcher
and the phenomenon tends to refer to a folder, file or data package. Like in the previous case,
semantic frames can provide additional constraints or information on how the system
should be developed and implemented (2.14).

5.2.5 Synonyms & Homonyms

Multiple synonyms could be found, as is clear from tables 20 and 24. The synonyms are not limited
to those identified in the aforementioned tables, since synonyms within the artifacts are possible
too. A confusing inconsistency, which may simply consist of synonyms, is the use of the words
‘data’, ‘dataset’, ‘data package’ (with or without a space), ‘folder’ and ‘file’, seemingly without
any obvious pattern or reason. If all these terms can be used interchangeably, there is no issue. At
this point in time, that is, since future extensions and modifications could refer to specific entities.
Currently, according to the developer, the naming convention is that data (data in general, a file
or a folder) is referred to as a data package as soon as it enters the vault. However, in case of
the US that is concerned with searching, this is not the case, because it is also possible to search
in the research module. The term ‘dataset’ is only used in the context of metadata, but seems
interchangeable with folder, file, data and data package (depending on the location of the data).
Moreover, the term ‘folder’ is also used for data packages (contained in an accepted folder) in the
vault, which may lead to confusion. The terms ‘format’ and ‘form’ appear to be interchangeable
as well, even though they are not clearly synonymous. Arguably, a ‘format’ refers to the general
makeup (according to the Merriam-Webster dictionary), while a ‘form’ is a typed document that
requires someone to fill in information. However, in this case the format is contained in a form.
In the current implementation of the system, the two terms refer to the same object, but if other
forms or formats are added in the future, this may lead to confusion. These terms become more
puzzling given the fact that the term ‘file’ is sometimes also used to refer to a ‘form’ and in other
cases to indicate a ‘regular’ file or document that contains some data or information.

A set of less obvious synonyms is ‘specify’, ‘enter’ and ‘select’. From a linguistic standpoint
(in relation to definitions) they seem quite different, but in the context of software (systems) they
can be similar. For instance, the term ‘select’ is often used when there are options to choose from
and ‘enter’ is used when the user types something. However, in the case of ‘enter start/end date’,
the user is not asked to type a date, but can select a day and month from a calendar pop-up.
To make matters more complicated, the term ‘indicate’ is sometimes also used to refer to ‘select’.
For instance, when in the RE documentation ‘indicating a datatype’ is mentioned, this is related
to ‘selecting a datatype’ from a drop-down menu in the architecture and GUI. Whenever there
are options involved, the synonymous terms tend to adhere to the ‘choosing’ semantic frame, so
‘specify’ and ‘enter’ do not belong in the list of synonyms, unless they are implemented with
options.

More obvious synonyms include ‘history’ and ‘provenance’, ‘unprotect’ and ‘unlock’, ‘spatial
coverage’ and ‘location’ and ‘undo + submission’ and ‘unsubmit’. Although the latter introduces
a challenge, since the terms cannot be considered a compound noun and would therefore need to
be identified separately. The terms ‘state’ and ‘status’ are also synonymous as they both refer to
a certain condition: either ‘being in a certain state’ or ‘having a certain status’. The terms can be
used interchangeably in the USs.

The terms ‘external’ and ‘outside’ are synonymous and were also identified in case 1. In both
cases, ‘outside’ was used in an Epic and ‘external’ in the corresponding module, so it seems that the
latter is a more technical term. Oftentimes terms used in Epics and USs are translated into a more

76

technical, synonymous term in their architectural counterparts. Other such synonyms include (RE
term first, followed by SA term):

1. members - users
2. view - show
3. status - log
4. fold - hide
5. unfold - show
6. set + new - reset
7. invite/provision - enroll
8. give - grant

Arguably, ‘members’ and ‘users’ are not synonymous. Especially when the context concerns IT,
one can argue that users do not pay and members do. However, in this case, one US mentions “enter
usernames of new members”, which confirms they are synonyms. Twice the SA term seems to be
the less technical option, namely in the cases of ‘update’ and ‘change’ and ‘convert’ and ‘transform’.
The latter set of terms are synonymous, the former not necessarily. However, in this case updating
refers to providing a newer version of a file or form that contains changes. Finally, ‘subproperties’
and ‘attributes’ seem to refer to the same implemented functionality and are both related to
metadata. Moreover, the Merriam-Webster dictionary lists attribute as a synonym for property.
The feature names could not be linguistically linked to the USs that mention the terms, which
is why it is unclear whether the terms are synonymous or refer to different values/information.
Furthermore, the term ‘field’ is also used in combination with metadata. Although this term
seems to refer to any kind of information related to metadata that can be filled in, this might also
contain subproperties and attributes. No homonyms could be observed in any of the four artifacts.

To summarize, synonyms are not solely qualified on their definitions (linguistics), but also on
their meaning within the context of the system and what they refer to (software development).
Linguistically speaking some terms may differ, while they can and are used inter-
changeably in the implementation and vice versa (2.15).

5.2.6 Deriving Feature Names

The Yoda system is up and running, yet still evolving. Several USs that were included in the
documentation have not been developed yet and will be addressed in upcoming sprints. These
backlog USs provide an excellent opportunity for testing the correctness and relevance of deriving
feature names. According to table 25 the majority of the links with feature names consist of the
first verb and the first (compound) noun in the USs. In the context of a small-scale experiment,
the USs marked as ‘to do’ will be used to derive feature names, following the first verb + first
(compound) noun structure. The USs selection process will follow mostly the same criteria as
before, but to be clear they are listed below:

1. No enabler stories
2. No behavioral requirements
3. No quality requirements
4. Only roles that were included in Chapter 5.2.3
5. Only USs with status ‘to do’
6. Only USs that are a well-formed sentence
7. Only USs that describe a requirement for exactly one feature

The results of applying the linguistic link structure (first verb + first (compound) noun) to derive
feature names is provided in table 26. Note that the verb and noun do not necessarily appear in
this order in the USs. Feature names derived from 24 USs are included in the table.

77

ID US Feature name

YDA-2641 As a researcher, I want to view the status of my submitted data requests,
so that I am informed of its progress. View status

YDA-2640 As a data manager, I want to view all research proposals, so that I know
which data may be released. View research proposals

YDA-2639
YDA-2508

As a researcher, I want to submit my full research proposal, so that it can
be appraised. Submit research proposal

YDA-2547 As an admin, I want users deprovisioned from Yoda that are not member
of any group. Deprovision users

YDA-2564 As a datamanager, I want to know that a group within my category has
not been active for 3 months, so that I can detect inactive groups. Know group

YDA-2511 As a datamanager (board secretary), I want to accept a submitted research
proposal, so that research can start. Accept research proposal

YDA-2510 As a datamanager (board secretary), I want to view a submitted research
proposal, so that I can appraise it. View research proposal

YDA-2509 As a researcher, I want to submit a data request, so that the data manager
can give me access to the data. Submit data request

YDA-2507 As researcher, I want an overview of my research proposals, so that I can
track their status. (track) research proposals

YDA-2296 As a Yoda admin, I want to have an overview of all user autorisation
changes, so that I can analyse incidents. Have overview

YDA-2289 As a datamanager, I want to know to which groups a user belongs, so that
I can manage my community. Know groups

YDA-2213 As a researcher, I want to specify my data package type, so that I can have
types other than dataset. Specify data package type

YDA-2167
As a researcher, I can view original metadata alongside transformed
metadata, so that I can make an informed decision on transformation
acceptance.

View metadata

YDA-2001 As a datamanager, I want to see the statistics of all groups in my categories,
so that I can supervise storage usage and costs. See statistics

YDA-1715
As a user, I want to reference a data object in my package as the value of a
metadata field, so that I can describe the function of an object in my data
package.

Reference data object

YDA-1641 As a system admin, I want to verify all SSL related info, so that I know SSL
certs are configured properly. Verify (SSL) info

YDA-1628 As a researcher, I want to select a single point using a map in order to
specify a single coordinate. Select single point

YDA-1624 As a group manager, I want to inform new Yoda users how to use Yoda, so
that they can get started. Inform Yoda users

YDA-1585 As a datamanager, I want to process vault data and save result in vault. Process vault data

YDA-1083 As a researcher, I want to delete a named shopping bag, so that I can
manage my bags. Delete shopping bag

YDA-1080 As a researcher, I want to view a list of all items in my selected shopping
bag. View list

YDA-1079 As a researcher, I want to click on a data package to add it to my shopping
bag. Click data package

YDA-1078 As a researcher, I want to select a named shopping bag, so that all further
shopping actions relate to this bag. Select shopping bag

YDA-1076 As a researcher, I want to create a named shopping bag, so that I can add
selected data packages. Create shopping bag

Table 26: Feature names derived from nouns and verbs extracted from USs in case 2.

YDA-2639 and YDA-2508 are considered duplicates, since they describe a requirement for the
same functionality. Arguably, some of the derived feature names are not particularly useful and/or
relevant due to unspecific verbs used in the USs, examples of this are: YDA-2564, YDA-2296,
YDA-2289. All three can be easily rewritten in such a way that they lend themselves to the fea-
ture name derivation:

YDA-2564: “As a datamanager, I want to view inactive groups, so that I can detect groups within
my category that have not been active for 3 months.”

YDA-2296: “As a Yoda admin, I want to view all user autorisation changes, so that I can analyse
incidents.”

YDA-2289: “As a datamanager, I want to view a user’s groups, so that I can manage my commu-
nity.”

78

The new formulations of the USs do not include any solutions and are therefore appropriate for
the problem space. The other 21 feature names, from an outsider perspective, seem relevant and
clear and could prove to be useful to software architects and developers.

Two feature names contain terms in brackets. Firstly, in the case of YDA-1641, ‘SSL’ is not
included since it is a proper noun. Furthermore, it is not directly adjacent to ‘info’, which makes
it difficult to consider ‘SSL info’ a compound noun. Instead of ‘info’, ‘SSL’ could also be used,
if no distinction is made between ‘regular’ nouns and proper nouns. Secondly, the first verb in
YDA-2507 is ‘track’, but it is positioned in the benefit constituent, which is not mandatory. As an
alternative, a partial match could be established by using the word ‘view’ derived from ‘overview’.
However, this would make automatically deriving feature names more difficult, since overview is
a noun and considered as such in other USs and feature names (for instance in YDA-2296). As
a countermeasure, requirements engineers could be asked to consider the use of an action verb in
every action constituent.

To confirm which derived feature names are useful and/or relevant and which are not, the
derived names were assessed by a Yoda developer. The results are presented in table 27. Whenever
a feature names was considered irrelevant or useless, a rationale was provided to explain why.

US ID Feature name Useful/relevant Rationale
YDA-2641 View status No Too generic
YDA-2640 View research proposals Yes -
YDA-2639/2508 Submit research proposal Yes -
YDA-2547 Deprovision users Yes -
YDA-2564 Know group No Inaccurate
YDA-2511 Accept research proposal Yes -
YDA-2510 View research proposal Yes -
YDA-2509 Submit data request Yes -
YDA-2507 (track) research proposals Yes -
YDA-2296 Have overview No Too generic
YDA-2289 Know groups No Too generic
YDA-2213 Specify data package type Yes -
YDA-2167 View metadata No Inaccurate
YDA-2001 See statistics No Too generic
YDA-1715 Reference data object No Vague
YDA-1641 Verify (SSL) info Yes -
YDA-1628 Select single point No Too generic
YDA-1624 Inform Yoda users Yes -
YDA-1585 Process vault data Yes -
YDA-1083 Delete shopping bag Yes -
YDA-1080 View list No Too generic
YDA-1079 Click data package No Inaccurate
YDA-1078 Select shopping bag Yes -
YDA-1076 Create shopping bag Yes -

Table 27: Assessment of the derived feature names in case 2.

According to the developer, fourteen out of 24 feature names were relevant and/or useful for de-
velopment, which makes extracting the first verb and first (compound) noun a promising
approach (2.12). Out of the ten irrelevant/useless feature names, this was to be expected in
three cases (YDA-2564, YDA-2296 and YDA-2289). Six were considered too generic, three inac-
curate and one too vague. To start with the latter, the vagueness could possibly be solved by
taking the Epic/module it belongs to into account. The developer’s rationale is: “important that
reference is in metadata”. If the feature is placed in the Metadata Form module, this would be
clear enough. In the case of the remaining generic feature names, the issue could potentially also
be solved by considering the Epic/module. The rationale for rejecting the feature name derived
from YDA-1079 is: “real feature is adding it to the shopping bag”, which is a reasonable judgment.
However, this might imply that the US contained a technical solution to the problem, by stating
that ‘clicking on a data package’ is how the data package should be added to the shopping bag.
A US focused exclusively on the problem space would then be: “As a researcher, I want to add a

79

data package to my shopping bag.” Finally, the feature name derived from YDA-2167 is just too
inaccurate according to the developer’s rationale: “the feature is viewing original and transformed
metadata alongside”.

5.3 Case 3

As was stated previously, due to the sensitive materials used in case 3, no details about this case
may be disclosed publicly.

5.4 Functionality in RE & SA

In the context of SA, or rather functional architectures, functionality would have to be related
to some architectural element(s), otherwise it would have to be implicit functionality, which is
not immediately apparent in a functional architecture. As such, explicit functionality is relatively
easy to identify: it is described by functional requirements, or more specifically, requirements
that describe functions. This can be done through USs for RE and features as their explicit
architectural counterparts. what is left is implicit functionality, which seems, according to the case
studies, more akin to behavior and responses (for the sake of brevity both will be referred to as
behavior or behavioral) rather than functions. Behavior can still be described in requirements, so
through USs as well. So how can behavioral requirements be captured in architectural elements?
The obvious solution is to not limit SA to functional architectures only. As is apparent from the
terminology, a functional architecture captures functional requirements, so behavioral requirements
need to be translated into an architecture using a behavioral view, as opposed to a functional one.

Rozanski and Woods present an information view in addition to a functional view (Rozanski &
Woods, 2011). While an information view does capture how information is handled and stored in
the system, this view takes a more technical approach (similar to database modeling). Moreover,
while it does describe how information is used and manipulated, it does not specify when and how
this happens by default, so it is disconnected from the functional view. Information flows in the
information view should be consistent with those in the functional view, however, the functional
view does not allow for detailed information flows, since that is not its purpose. Including detailed
information flows for every piece of information in the system would increase the complexity of a
FAM, simultaneously defeating its purpose of providing a relatively simple overview of the internal
structure of a system. The concurrency view, on the other hand, maps tasks to functional elements
and also models communication. Consider the following US (taken from case 2) as an example:

“As a researcher and datamanager, I want an email notification of newly published data pack-
ages, so that I am informed about its publication.” (YDA-989)

This US does not describe a functional requirement, since there is no specific function or user
interaction associated with it. Instead, it extends the behavior of another functional requirement,
namely:

“As a data manager, I want to approve publication of a data package that is in the vault, so
that it can be found publicly.” (YDA-866)

This US describes a function, namely being able to approve publication of a data package. In
a concurrency view, or to be specific a Petri net, this can be modeled using a state that says that
there should be a data package awaiting approval for publication in the vault then the option to
either approve or reject that data package, followed by the data package being published or not
(depending on the decision made). When the data package is published, two transitions can be
used: one that describes that a data package is made accessible to the public and a second one that
describes a message is sent to the owner(s) of the data package so that they know it was published.
A trade-off analysis shows that there are as many pros as there are cons, as shown in table 28.

80

Benefits Drawbacks
- ensures that behavioral requirements are satisfied by
the system - requires additional modeling

- communication/behavior of the system is visualized,
which might improve stakeholder communication

- does not directly translate to specific parts of code
(possibly multiple locations and instances involved)

- allows for analysis, since Petri nets can be tested on
their quality - may require training in order to be done correctly

Table 28: Benefits and drawbacks of using a concurrency view in addition to the functional view.

A potential solution to the issues of the difficulty of Petri nets and the ‘technical’ aspect of class
diagrams would be to use sequence diagrams, which are not included as architectural models by
Rozanski and Woods. Sequence diagrams, however, show both the information that is transferred
between points and also the order (sequence) in which steps or activities are performed. Moreover,
they allow for a simple distinction between user interaction and system behavior.

As a small experiment, the behavioral requirements related to the “As a data manager, I
want to approve publication of a data package that is in the vault, so that it can be found publicly”
(YDA-866) US, linked to the “approve for publication” feature and categorized in the ‘Publish Data
Package’ (YDA-800) Epic/module, are modeled in a sequence diagram. This selection includes the
following USs:

1. YDA-918: “As a datamanager, I want the vault copy of an accepted data package to be
registered with the state unpublished, so that their status is accounted for.”

2. YDA-942: “As a researcher, I want to have Datacite compliant metadata derived from selected
Yoda metadata, so that later my metadata can be found.”

3. YDA-1000: “As a datamanager, I want a published data package to have DOI, so that it can
be found and referenced publicly.”

4. YDA-1013: “As a researcher, I want a package approved for publication to be published, so
that others can find my data.”

5. YDA-1034: “As a researcher, I want my data package shown on a themed landingpage, so
that it has a professional image.”

6. YDA-1068: “As a publisher, I want a license file to be added to a data package upon publica-
tion, so that downloaders are informed of the license conditions.”

7. YDA-1823: “As a user, I want a detailed data package published notification, so that I am
informed.”

Since it is unclear which of these responses/behaviors are concurrent and which sequential, they are
modeled according to the numerical order of the USs. the resulting sequence diagram is presented
in figure 34.

81

Figure 34: Example of a sequence diagram to model behavioral USs.

In the diagram, a distinction is made between roles (people) in white boxes and systems in grey
boxes. In this case “system” refers to Yoda as a whole (to reduce complexity the individual modules
are not included). For the sake of completeness the trigger of the aforementioned USs is included as
well, which is when a researcher submits a locked folder for publication. Another US that describes
a function that is included is the approval of a package by the data manager. All the other messages
shown in the sequence diagram illustrate either system behavior or system responses. Utilizing a
sequence diagram is a relatively simple approach, since every US in the selection can be mapped to
a message (with the exception of the “return” message, which is only included so as not to interrupt
the sequence). In addition, by modeling this behavior it became evident that the vault copy of a
datapackage is registered with the state “unpublished”, but that this state is never updated after
publication, or at least not according to the USs.

On the contrary, features that are not described in any USs were also observed. These features
can be seen as implicit functionality that are implemented based on common sense or practice.
Consider features such as those that realize GUI functionality. Fine examples are features related
to navigation, for instance being able to click on the next page if items in a list do not fit on one
screen or clicking on the logo to go to the home screen. Nearly all modules, and thus most the
feature diagrams, contained features that enable navigation, yet no USs covered this functionality.

82

6 Results
In this chapter, the results of two of three case studies are discussed. Firstly, the findings of
each case are listed separately. Subsequently, the qualitative results (the aforementioned findings)
of the analyses are compared to see which are in agreement and which contradict each other.
Then, the quantitative results of two cases are combined to provide an overview of the outcome
of the research as a whole. Finally, the quality of the Epics and USs analyzed during the study is
discussed. Please note that the only the results from cases 1 and 2 are included, due to confidential
information present in case 3, which may not be disclosed publicly and is omitted here. This means
that all results, findings and conclusions are based exclusively on case 1 and 2.

To start, the qualitative (preliminary) findings of the first case are summarized:

1.1 There is not necessarily a one-to-one relationship between USs and features.
1.2 Module names consist of mostly, if not all, nouns.
1.3 The process of elimination is crucial when establishing as many linguistic matches and subse-

quent links as possible.
1.4 Adjectives can be essential for establishing (unique) linguistic matches.
1.5 Most Epic-module matches are found in the situation constituent.
1.6 Module names are less specific than their description by the related Epic, due to compound

nouns not being included in full.
1.7 Feature names mostly contain nouns and verbs.
1.8 Most US-feature matches are found in the action constituent.
1.9 When the verb ‘use’ is present in the action constituent of and it refers to a resource, the

benefit constituent is mandatory according to the semantic frame of ‘use’, which is the case
in the USs.

1.10 Semantic frames can provide additional input for development of the architecture of a system.
1.11 Linguistically speaking some terms may differ, while they can and are used interchangeably

in the implementation and vice versa.

The last finding refers to the fact that the definition of linguistic terms may not be synonymous,
such as ‘information’ and ‘data’, which are arguably not the same, but are used interchangeably
in the documentation regardless.
Secondly, the qualitative (preliminary) findings of the second case are listed below:

2.1 Not nearly all (atomic) features are explicitly described in USs, so feature diagram recovery
utilizing the GUI results in a more complete set of features.

2.2 The dependencies between Epics and USs are not necessarily the same as the dependencies
between their respective modules and features.

2.3 Module names consist of mostly, if not all, nouns.
2.4 The process of elimination is crucial when establishing as many linguistic matches and subse-

quent links as possible.
2.5 Adjectives can be essential for establishing (unique) linguistic matches.
2.6 Most Epic-module matches are found in the motivation constituent.
2.7 Feature names mostly contain nouns and verbs.
2.8 Only USs that describe functions, not behavior or reactions, can be accurately mapped to

features in the architecture.
2.9 Most US-feature matches are found in the action constituent.
2.10 There is not necessarily a one-to-one relationship between USs and features.
2.11 Behavioral USs can be related to more than one feature and both explicit functions and

results of a particular (set of) feature(s).
2.12 When deriving feature names, extracting the first verb and first (compound) noun from a

USs seems a promising and accurate approach.
2.13 When the verb ‘use’ is present in the action constituent of and it refers to a resource, the

benefit constituent is mandatory according to the semantic frame of ‘use’, which is the case
in the USs.

2.14 Semantic frames can provide additional input for development of the architecture of a system.

83

2.15 Linguistically speaking some terms may differ, while they can and are used interchangeably
in the implementation and vice versa.

There are various speculated explanations for finding 2.1. Firstly, as was mentioned previously,
front-end features that are solely related to the GUI, such as navigation buttons, are not included
in the USs. Secondly, oftentimes if a composite feature contains multiple atomic features, only the
composite feature is described in a US. This was confirmed by a fellow researcher, who also said that
feature diagrams recovered from the GUI are more complete than only taking into consideration
the front-end features described in USs. Based on this it seems that the features contained in
an alternative structure (mainly drop-down menus) in feature diagrams are not included in the
requirements documentation, but only their parent is. The one exception that can be found is
when there is a Boolean choice, such as accepting or rejecting changes or confirming or canceling
an agreement. Finally, a situation in which atomic features in an alternative structure are explicitly
described in USs, is when the option of the alternative structure cannot be reasonably assumed.
For instance, a composite feature called ‘personal details’ can easily be expanded with different
pieces of information that can be assumed, such as name, date of birth, address, etc. The ‘search by
status’ composite feature in case 2 (refer to figure 40) is not as self-explanatory and is specific to this
system, which is why some of its atomic features are covered by USs. Arguably, the accuracy of this
finding heavily depends on how a feature is defined, since recovering interactive elements from the
GUI is one of the most granular approaches to identifying features. Either way, feature diagrams
recovered from the GUI provide a more detailed representation of the implemented system, but
the question is whether this is desirable and to what extent.
Thirdly, the qualitative (preliminary) findings of the third case are not shared publicly.

First and foremost, it is apparent that most linguistic matches between USs and features were
found in the action constituent of a US. This was to be expected, since this is where the requirement
for a particular feature is described. Secondly, modules names contain almost exclusively nouns, as
specified for module naming, but sometimes adjectives can be included as well. Similarly, features
names consist mostly of nouns and verbs, which is also in line with the naming conventions.
Furthermore, while not investigated in detail, it seems that semantic frames may potentially provide
additional input for software architects for development of the architecture. However, it is unclear
whether this input is self-explanatory and therefore redundant or if it can be useful. Additional
research is needed to evaluate this finding. Finally, in both case 1 and 2 synonyms were identified
(results from case 3 are omitted due to sensitive materials). However, the terms were synonymous
the way they were used in the implementation, while their dictionary definitions may differ. In
the current state of the systems, this does not have any consequences, but in the future the terms
may become inaccurate or confusing.

Most of the Epic-module matches in case 1 can be found in the situation constituent. However,
in case 2 most matches could be found in the motivation constituent, so the results are somewhat
conflicting as shown in table 29.

Epic constituent
Situation Motivation Expected outcome

Number of matches
Case 1 23 9 10
Case 2 7 8 1

Table 29: Number of matches in cases 1 and 2 divided over the three constituents of the Epic
template.

Overall the most matches can be found in the situation constituent, although this may not be
desirable, as is discussed in Chapter 6.1.

Even though they are not included in the naming conventions for modules, adjectives can some-
times be crucial to establishing a linguistic link. In similar fashion, using a process of elimination
when establishing links is essential to determining as many unique matches as possible. In both
case 1 and 2, the semantic frame ‘using resource’ was observed. This frame specifies a purpose for
the used resource, meaning that the benefit constituent of the US becomes mandatory. In all USs
that used the frame, a benefit was mentioned. An interesting obstacle is the mapping of behav-
ioral USs, since they do not describe functions. Therefore, only USs that describe requirements for
functions can be accurately mapped to features. To complicate matters further, it is sometimes
possible to relate a behavioral US to more than one feature. In case 2, the feature diagrams needed

84

to be recovered from the GUI. This leads to more (atomic) features than were described in the
USs.

Findings that were observed once are not discussed any further, especially because most of
them have been explained in the previous chapters already. The only exception is made for finding
three in the second case, as it directly contradicts a hypothesized cardinality in the RE4SA model.
Finding three in case 2 is stated as follows: “There is not necessarily a one-to-one relationship
between USs and features.” While it became clear that behavioral USs cannot be mapped to a
single feature or any feature at all, this can also be the case for USs that describe a function
according to case 2. This would result in a one-to-many relationship between USs and features.
On the other hand, the quality framework for USs specifies that a US should describe a requirement
for one feature only, so the question is which relationship is desirable. Another question is whether
practice should adapt to research or vice versa.

To summarize the quantitative results of two case study analyses, three tables and their de-
scriptions are provided. Firstly, to recap which artifacts were studied, table 30 provides a selection
of descriptive statistics in terms of the Epics, USs, modules and features included in the two cases.

Numbers Coverage
Epics USs Modules Features Modules Features

Case 1 31 96 31 N/A 100% N/A
Case 2 12 96 12 139 100% 69,8%

Table 30: Descriptive statistics of the first two cases.

In this table the number of features is only concerned with atomic features. Since only one feature
diagram was included in the documentation of the first case, the number of features could not
accurately be determined, the same is true for the feature coverage. The coverage is determined by
calculating how many modules or features were covered by Epics or USs, respectively. Therefore,
the percentage is only concerned with modules or features, not stories. According to the table,
modules are more frequently covered by Epics than features by USs. The lack of feature coverage
in case 2 can be explained by the fact that not all features are explicitly described in requirements,
such as requirements concerned with design and navigation.

The coverage of modules and features does not provide any insight into whether they could
linguistically be related to their respective Epics and USs. Table 31 shows how many Epics and
USs could be related to modules and features respectively, per case. In addition, the table also
shows how many linguistic matches could be identified per case and how many of those were unique
and thus a linguistic link.

Epics USs
Relations Matches Links Relations Matches Links

Case 1 31 30 19 10 9 9
Case 2 12 11 11 87 77 48*

Table 31: Statistics of the linguistic relationships in the two cases.

The asterisk indicates that the remaining 29 matches were not necessarily common, but that for
four USs there was no relation, so no possible link, for another five the match was simply not
unique and the rest are behavioral USs, which were not included in the identification of unique
matches.

Finally, the relations, matches and links in the two cases are presented as percentages of the
total, or of the number of relations or matches, shown in table 32. All percentages are to the
nearest decimal.

Relations %
of total

Matches %
of total

Matches %
of relations

Links %
of total

Links %
of relations

Links %
of matches

Epic 100 95,3 95,3 69,8 69,8 73,2
US 50,5 44,8 88,7 29,7 58,8 66,3

Table 32: Percentage of total relations, matches and links in the two cases.

85

It is important to note that these percentages were calculated from the RE perspective, meaning
they consider the total number of Epics and USs, not the total number of modules and features.
In addition, the relations, matches and links found in case 3 are not included. For results on the
relationship between RE and SA it is better to refer to table 30. The number of relations between
USs and features compared to the total number of USs is heavily influenced by the fact that a
limited number of USs in case 1 could be related to features, due to the lack of feature diagrams.
Therefore, it is more insightful to consider the matches and links, which are not as affected by the
lack of features in the first case.

6.1 Story Quality

Throughout the linguistic analyses, the quality of the Epics and USs was briefly mentioned on
several occasions, but never discussed in detail. Many aspects of the story formulation can be
examined, so to keep it succinct the stories are evaluated using the QUS framework (Lucassen et
al., 2016a). As became apparent while relating USs to features, the atomic criterion was violated
more than once, as oftentimes the action constituent contained the word ‘and’. To avoid such
violations it would be better to split these USs into two and thus not use the word ‘and’. Strictly
speaking, the minimal criterion was not met in all USs either, since several USs contain two
roles. However, this may not be a bad approach, because splitting these USs would have lead to
more duplicates, resulting in a violation of the unique criterion. Other factors that play a role
are more closely related to the architecture than the USs in and of themselves. For instance,
it would be beneficial to always start the action constituent with an action verb that actually
describes some task or activity. In case 2, verbs such as ‘know’ and ‘have’ were used, which are
not specific enough when deriving a feature name or linking to a feature. Circling back to the
atomic criterion, if a US describes a selection, options, choices or anything of the sort, with more
than two possibilities, it would be better to include the possibilities as additional information. In
case of only two possibilities it is feasible to write two USs, but when describing a feature that
allows a user to select a language, you may have over fifty language options. In such cases, it would
be more efficient to just describe the composite feature (i.e. ‘select language’) and not describe
every language option separately. A more questionable comment on the US quality is that not
all USs focus on user interaction or functions of the system, but rather also included behavioral
requirements. Perhaps it would be desirable to make a distinction between USs that describe
actions the user takes using the system and the system’s responses and behavior. Finally, in case
2, the template was often changed. The action constituent template was modified 32 times, 23
times ‘to’ was left out and nine times ‘want to’ was omitted. In the benefit constituent template
‘that’ was removed once. In the action constituent modifications of the template may influence
the ability to derive feature names, since ‘want to’ enforces the use of a verb.

Furthermore, it is difficult to identify any particular words that indicate that a US describes
a behavioral requirement. Oftentimes, according to case 2, these USs contain the verb ‘have’, for
instance: “As a researcher, I want to have a simple Yoda-conform dialogue for restoration of a
revision [...]”. The feature that allows for revisions to be restored is described in a different US.
Similarly, the verb ‘to be’ is frequently present in “behavioral USs”, as is any reference to the
system in question and the omission of ‘to’ in the action constituent of the template. However,
these four patterns can also be observed in USs that clearly describe a feature. In order to develop
a method for automatically identifying behavioral USs, additional research is required. As of yet,
this remains a manual assessment.

The quality of the Epics is more difficult to evaluate, since no framework exists and the only
guidance that is provided is included in the explanation of how to write an Epic. However, based
on whether the Epics were any use in regards to the architecture and how accurately they could
be linked to modules, some guidelines can be defined. Firstly, for the (problematic) situation
constituent, it is probably best if a trigger, an incoming message or the result of a completed task
is stated here. Mostly because this would facilitate the modeling of input flows in the functional
architecture. In addition, this would also provide a better introduction to the motivation. Similarly,
the description of ongoing activities, such as “when I am working...” or “when I am managing...”,
should be avoided. Phrases like these do not describe a situation or problem in detail and are
also not helpful when linking Epics to modules. Secondly, the motivation constituent should focus
on the activity that solves the aforementioned problem or is the correct response to a particular
situation. However, it should not be too detailed or specific, since it should categorize multiple USs

86

and it might be useful to leave room for extensions in the future. Thirdly, the expected outcome
constituent should be formulated as output, so the result of the action and the solution to the
original problem. Another good practice would be to try to formulate the outcome in such a way
that it can serve as the input or trigger for another Epic or at least leads up to the (problematic)
situation of another Epic. Finally, a guideline that is related to all three constituents, is to avoid
circular reasoning. An example of such reasoning is: “When I receive an email, I want to write a
response, so I can reply to my email.”

87

7 Discussion
In this chapter, the benefits as well as the limitations of the research are discussed. Future research
directions and hypotheses are presented at the end of this chapter. Note that all information
regarding case 3 was omitted in this chapter.

7.1 Benefits

Two novel approaches were utilized to extract architectural information from requirements docu-
mentation: derivation of feature names from USs and the identification of semantic frames in USs.
To start with the former, while only a preliminary and small-scale experiment was conducted, the
results seem promising. More than half of the derived feature names in case 2 were considered
useful and/or relevant. In addition to this sufficient quality, the formulation of the feature names
was easy and not at all time consuming. If the USs are PoS tagged, it takes approximately ten
seconds to extract the first verb and first (compound) noun and transform them to the template
“action verb noun” by hand. The activity can be made more efficient by automating it, although
in some cases the extracted verb needs to be put into a different tense or person, which is a bit
more challenging. If this linguistic structure proves to be applicable in USs in other contexts and
other cases, automatically deriving such feature names is quite a straightforward technique and
the effort of transforming the verbs would be worth it. Finally, deriving feature names from USs
in this way facilitates (requirements) traceability, since the terms used in the feature names can be
easily linked to the USs. Secondly, it became apparent during the analysis phase that additional
information about architectural components and their relationships can be extracted from USs
by considering semantic frames, although their use has not yet been tested. What has also been
observed is that semantic frames can prescribe the need for a benefit constituent in a US.

Another asset of this research is the experience gained with architecture recovery (specifically,
FAMs and feature diagrams) from an implemented system utilizing the GUI. Not only is extracting
features from the GUI a relatively quick and simple task, it is also hypothesized to result in a more
complete overview of features than when considering the requirements only. Moreover, it should
theoretically provide a more accurate representation than when using the requirements as input,
since it is concerned with the implemented architecture rather than the intended architecture.
Other experience gained includes the formulation of Epics. For one case, Epics needed to be
written based solely on the USs provided. This Epic formulation practice aided the process of
devising guidelines and tips for writing Epics, similar to the QUS framework (Lucassen et al.,
2016a), as discussed in Chapter 6.1.

Finally, this study benefited from use of implemented systems and real-life documentation.
Not only does this ensure that the analyses conducted can be applied to industry projects, it also
shows that the approaches are generalizable to more than one project or context. The cases were
provided by different companies and provided real-world materials. Additionally, the real-world
examples allowed for a quality assessment of USs in practice, which has shown that companies are
able to provide USs suitable for academic research.

7.2 Limitations

The limitations of this research are discussed according to the four aspects of validity for case
studies: construct validity, internal validity, external validity and reliability (Wohlin et al., 2012;
R. K. Yin, 1981).

Firstly, in relation to construct validity, no clear threats can be identified, due to following
the prevention tactics. Multiple sources were used to gather data for analyses. Moreover, a chain
of evidence was established by explicitly describing the various steps of data preparation and
subsequent analysis. Additionally, since all analyses were performed by one researcher, there is no
risk of different interpretations of data and results.

Secondly, several threats to the internal validity can be observed. There is a chance that
the degree to which linguistic matches and links could be identified is affected by other factors.
For instance, the requirements artifacts used are of sufficient quality (if not high quality). This
quality mainly refers to adherence to the template and the main quality criteria in the context
of USs. There are two options to remedy this, either linguistic links assume that artifacts are of
sufficient quality or the approach needs to be adjusted in order to facilitate the use of artifacts with
questionable quality too. The latter is complicated if not nigh impossible. All manner of factors

88

would need to be taken into account and the basic principles on which the approach is based would
be lost. Secondly, it is probably better to produce artifacts of higher quality for organizations
regardless of the analyses they wish to perform, making the former option more attractive. To
summarize there is a trade-off between accuracy and precision. When identifying linguistic links
it is arguably better to be roughly right than precisely wrong. Moreover, the linguistic terms used
in the artifacts are influenced by the writing style and experience of the requirements engineer(s)
or researcher in case of reconstructed artifacts. The latter means that they were formulated with
knowledge of and experience on what should and should not be included in an Epic. Be that as it
may, the quality of the Epics was barely considered in the analysis, since only their words were used.
These words were based only on what was already written by the owners of the documentation, so
this should not introduce any bias. Similarly, the architecture is dependent on the implementation
of developers. Developers may have used their personal experiences and styles to implement the
system, which affects the as-is architecture and can cause it to diverge from the to-be (or intended)
architecture. Furthermore, it is possible that the provided documentation was non-exhaustive, for
example due to non-documented interviews, meetings or other personal communications about the
implementation of the requirements. Finally, the choice of granularity in the context of features
may have impacted the feature coverage. If the developers used a different definition or granularity
for the term feature than is applied in this study, a discrepancy may occur.

Thirdly, on the topic of external validity, there are few threats. In an attempt to improve the
generalizability, multiple cases were examined, replicating the same process each time. Moreover,
cases 1 and 2 originated from different companies or institutions, so two different systems were
investigated. The only threat to generalizability is the fact that the two companies and institutions
were based in the Netherlands.

Finally, threats to reliability are discussed. The preparation and analyses activities were docu-
mented in detail, following a protocol, and little interpretation was required. Whenever interpre-
tation was needed, the rationale was explicitly explained. The naming of architectural elements
and the formulation of Epics may be dependent on the researcher, but as many words and names
were extracted from the provided documentation and implemented system to prevent this threat.
In addition, the reconstructed and recovered artifacts were mostly validated by a stakeholder of
the system. Another activity in which replications of this research may differ is the process of
establishing linguistic matches and subsequent links, since the Epics and modules and USs and
features were manually linked beforehand. So, the mapping may vary between researchers. Fol-
lowing this approach, during linguistic analysis, exclusively terms shared between the artifact were
considered. However, if all nouns, verbs and adjectives are utilized to form matches and not just
the nouns, verbs and adjectives the US and its respective feature have in common, it is possible
that more matches can be identified and that there are fewer linguistic links (unique matches). One
can hypothesize that the number of possible links can be restricted by prohibiting links between
Epics/modules and only allowing links within Epics/modules. On the other hand, this does require
that the Epic/module categorization is done correctly. Statistically speaking, there are not enough
data points to produce any conclusive results, but due to the exploratory nature of the study, this
was to be expected. However, this research does provide interesting findings and suggestions for
future work. Finally, one minor drawback is the probability of human error in the analyses. In
relation to the former, most of the analysis, except for PoS tagging, was done manually and can
therefore introduce bias.

7.3 Future Research

The future research directions can roughly be divided into four categories: the RE4SA model,
the applications of this model, the linguistic relationship between requirements and architectures
and hypotheses for individual artifacts. At the end of the chapter, an overview of the discussed
hypotheses can be found (table 33).

The hypothesized relationship between the Epics and modules is one-to-one, but according to
the analysis, this is not always the case for USs and features in practice. Frequently, more than
one US describes the same feature or two features are described in one US. In order to accurately
support requirements traceability, it is important to either discern what the cardinalities are like
or prescribe guidelines for what they should be like. The expected cardinalities between the
two levels of abstraction are mostly accurate according to this study. All USs belong to one
Epic and features belong to one module, except for duplicate features, which can be included in

89

multiple modules. It could also be beneficial to remove duplicate USs. In some cases, the USs that
describe the same features were nearly identical, so including only one of them in the requirements
documentation would have been enough. To avoid confusion about whether a US has already been
implemented/covered in a sprint or not, USs can be checked for duplicity based on a similarity
score. Since USs can describe the same functionality without being identical, looking for perfect
matches in terms of words is not sufficient. However, a similarity score can handle non-identical
yet similar USs. This similarity score should also take into account synonyms and partial matches
(as described in the introduction to Chapter 5).

As of yet, the RE4SA model exclusively relates the requirements to the software architecture,
but other software artifacts exist, such as source code, acceptance tests/test scripts, user manuals
and release planning among others. Ideally, all software artifacts are linked and requirements
traceability permeates throughout all of them. Therefore, theoretical as well as practical research
should examine whether the RE4SA model can (and should) be applied to additional software
product management activities. An example of how the RE4SA model can be extended is by
relating modules and features to classes and methods in source code.

The objective of this research was to discover whether there is a linguistic relationship between
Epics and modules and USs and features, respectively. However, establishing these relationships
was done manually so far, as was discussed in the limitations previously (Chapter 7.2). In prepara-
tion for the analysis, the artifacts were linked and then their linguistic terms were compared. This
means that the artifacts may contain more relevant terms that were excluded during this research,
which may lead to additional linguistic matches with other artifacts that were ignored. In future
research, the linguistic matches and subsequent links should be established automatically based on
the results of this research. However, the artifacts should not be related manually beforehand in
order to determine how beneficial this approach is and whether unique matches can still be found.
To limit the number of possibilities, matches should only be observed within an Epic or module,
as opposed to between.

Earlier in this chapter the perceived benefits of deriving feature names from USs were discussed,
however, these can be extended by hypothesized advantages. For instance, the derived feature
names are expected to prevent misunderstandings and misinterpretations among stakeholders,
especially between requirements engineers and software architects and developers, by using similar,
if not the same, terminology. Furthermore, it is hypothesized that the approach saves time, since
only (approximately) two words need to be extracted from a US. In addition, even if the derived
feature name is too generic or inaccurate, as was sometimes the case in the assessment, it provides
architects and developers with a starting point. Arguably, it is easier to reason about whether a
feature name is right or wrong than to ascertain and formulate a feature from scratch.

Similarly, semantic frames were identified in an attempt to analyze linguistic structures. As
was stated before, semantic frames can help requirements engineers to determine whether they
should use a benefit constituent in their USs. Hypothetically, semantic frames can improve the
communication between requirements engineers and software architects, as semantic frames can
provide additional information about what the (technical) solution should look like. Likewise,
semantic frames provide more rules and/or guidelines for architectures. The question is whether
architects need this additional information to be made more explicit or whether it is self-explanatory
and does not require any specific attention.

The analysis of linguistics matches has shown that the system artifacts often have words in
common. Especially in the architecture this can help to group similar functionality. Therefore,
one can hypothesize that new features can be positioned in an implemented/existing system archi-
tecture by taking into account linguistics. A simplified example is presented using figure 35. The
white boxes represent features that have already been implemented in the system. The gray boxes
indicate an extension of the existing functionality, so new features.

90

Figure 35: Example of a feature diagram of a navigation app.

The new feature “file route”, can easily be positioned in the ‘Route Planner’ module and subse-
quently the composite feature “determine route”, since they all have the word ‘route’ in common,
while the other module and other features do not contain this word. Similarly, the other two new
atomic features contain the word ‘expense’ and can therefore be positioned in the ‘Expense Filing’
module. This example, however, concerns an imaginary system, so industry research is necessary
to confirm whether this is a feasible approach.

Furthermore, behavioral requirements were excluded from analysis in this study, since they
cannot always be accurately linked to functionality in the architecture (features). In the instances
where they can be linked, they are superfluous, because there is already a functional requirement
in place to describe the functionality. Still, behavioral requirements provide additional, relevant
information for development, so how can architectural information be extracted from them? Be-
havioral requirements describe how data is handled, as well as responses and behavior performed
by the system. Therefore, it would make sense to use an architectural viewpoint that reflects these
characteristics. In the context of data, the information viewpoint can be used, as it “describes
the way that the system stores, manipulates, manages, and distributes information” (Rozanski &
Woods, 2011). To model behavioral requirements concerning data, ERDs and class diagrams can be
used. Similarly, the concurrency viewpoint “describes the concurrency structure of the system and
maps functional elements to concurrency units [. . .] and how this is coordinated and controlled ”
(Rozanski & Woods, 2011). Statecharts, sequence diagrams and Petri nets allow for modeling
system responses and behaviors. The latter seem a better option, since they provide more detail
and can be analyzed on quality. Theoretical research as well as case studies should determine if
information and concurrency viewpoints can be utilized for modeling behavioral requirements and,
if this is the case, whether they provide any valuable contributions or benefits.

An unrelated hypothesis is that architecture models, such as the functional architecture and
feature diagrams, can be utilized to assess the usability of a system. The functional architecture,
for instance, can help to identify the presence of ‘God elements’. Such an element has the majority
of responsibilities in the system, making it not just complex to understand and maintain, but may
also lower performance, reliability and scalability (Rozanski & Woods, 2011). Feature diagram
assessment serves a different purpose, namely determining the quality of the GUI. Seffah et al.
have defined 25 usability criteria for software systems (Seffah, Donyaee, Kline, & Padda, 2006).
Three of these criteria can potentially be assessed by analyzing feature diagrams, namely:

1. Minimal action: minimal number of steps required to carry out a specific task.
2. Consistency: uniformity of elements of the GUI.
3. Navigability: ability to navigate the application in an efficient way.

The hypothesis is that feature diagrams can support the assessment of these usability aspects
through relatively simple statistics. Firstly, whether the application requires minimal action can
be determined by carrying out a use case and counting how many features in a feature diagram need
to be used in order to complete the task. Similarly, navigability can be evaluated by analyzing
the feature diagrams to see how easy it is to get from one feature (or one feature diagram) to
another. Finally, consistency can be assessed based on the degrees and depths of feature diagrams.
Degrees specify the number of child features for each parent feature. If this number is more or

91

less equal for all parent features in all feature diagrams, you can assume consistency. The depth
refers to how many steps it takes to get from the starting point (a module) of a feature diagram to
a specific atomic feature. Again, if the number of steps is (nearly) equal across feature diagrams,
their structure can be considered consistent. For larger systems, it may be useful to consider the
standard deviation in order to determine consistency, since it is reasonable that not all degrees
and depths are equal. Moreover, for some features it is not uncalled for that they require more
effort to reach. An example of such a ‘rare usage’ feature is an airbag in a car. It is important
that is it there, but is not used often. In software, a similar feature would be deleting an account.
It does not happen frequently in daily usage, but it is still required. However, such a feature may
be positioned at a lower depth than other, more frequently used features. Finally, the number
of atomic features (where the degree is zero), per (sub) module can help to recognize bad code
smells. For instance, when a module consists of a much higher number of atomic features than
other (sub) modules, this could be an indication that too much functionality and/or responsibility
is contained in one module. Again, this is referred to as a ‘God element’ and can make the system
more difficult to maintain.

During the feature diagram recovery process, it became apparent that there are no syntactic
elements that facilitate modeling conditionality in feature diagrams. Conditionality in feature
diagrams refers to the fact that some features can only be accessed or used if another feature
was used prior to the first one. Visualizing conditionality is necessary for accurately modeling the
system’s features and might help to document user interaction or user manuals. For instance by
showing what a user needs to do in order to enable a certain other feature. In addition, it could,
hypothetically, support release planning, since it makes dependencies among features (that are
perhaps not in the same ‘branch’ of the feature tree) explicit. The only syntax that is somewhat
similar to conditionality is the ‘required’ relationship. This, however, does not take a sequence
of events or actions into account, but simply states that a feature can only exist or be present
if another exists or is present. An example is that a feature that allows a user to take a picture
with their smartphone requires that this smartphone has a camera lens. This required relationship
covers a hardware requirement, while the conditionality issue in the feature diagrams was only
concerned with software. The ‘required’ relationship can only be utilized if its meaning is extended
with an order or sequence of actions that enable and/or disable features. Finally, it seems that
feature diagrams recovered from the GUI are more extensive or detailed than when only taking the
front-end features explicitly described by USs into consideration. The cause of this completeness
discrepancy is that the options in an alternative structure (drop-down menu) are oftentimes not
covered in USs individually and that features related to navigation are not explicitly included as
requirements either.

In addition to these feature diagram analyses, the small-scale feature SLR is still a promising
and interesting study. In future research, this SLR should be expanded, analyzed in more detail
and properly finished.

The aforementioned future research directions have been formulated into hypotheses and are
presented in table 33. They have been divided into five categories: the structure of the RE4SA
model, applications of the RE4SA model, linguistics, architecture and feature diagrams. Finally,
the research approaches with which the hypotheses will be tested are included.

92

Hypothesis Research approach
RE4SA model

A one-to-one relationship between USs and features is desirable. Case study
USs and features belong to one Epic or module respectively, the
only exception being duplicate features.* Case study

Applications of RE4SA
The RE4SA model can be extended and applied to other software
development activities, such as testing and release planning.*

Literature & case
study

Epics and modules and USs and features can be mapped to classes
and methods in source code respectively.

Literature & case
study

Linguistics
Duplicate USs can best be identified by using a similarity score. Case study
Linguistic links can be established automatically, if the Epic/module
categorization of USs and features is taken into account. Case study

Feature names can be derived from USs by extracting the first verb
and the first (compound) noun. Case study

Deriving feature names is more efficient than creating them from
scratch and improve communication between stakeholders.

Expert interview &
case study

New features can easily be positioned in an architecture by considering
linguistics.* Case study

USs can be classified as either functional or behavioral USs based on
their formulation.

Literature study & case
study

Architecture
Semantic frames identified in requirements documentation provide
useful/relevant additional information to software architects.

Expert interview &
case study

Behavioral requirements can be satisfied in information and/or
concurrency viewpoints of the software architecture.

Literature & case
study

Modules that contain much more atomic features than other modules
contain too much functionality/have too many responsibilities.

Literature & case
study

Feature diagrams
Feature diagrams can be utilized to assess the usability of a GUI, based
on their depths and degrees.

Literature & case
study

Feature diagrams would more accurately represent a system if
conditionality was taken into account. Case study

Recovering feature diagrams from the GUI results in the most complete
and accurate collection of features of the front-end of a system. Case study

Table 33: Hypotheses for future research with envisioned research approaches.

Hypotheses marked with an asterisk indicate that they were also included in the paper submitted
to RE@Next!, which can be found in Appendix D.

93

8 Conclusion
In this research, the linguistic relationship between RE and SA, based on the RE4SA model, was
analyzed in two phases. In the first phase, literature research was done to provide a theoretical
background to the case study done in the second phase, as well as to investigate the terms ‘fea-
ture’ and ‘functionality’. Subsequently, a sequential, direct replication multiple-case design was
used to research the main RQ as well as the sub-RQs presented in Chapter 2 in detail. The cases
were analyzed on the following components: dependencies, linguistic relationship between Epics
and modules, linguistic relationship between USs and features, semantic frames and synonyms and
homonyms. Additionally, based on findings discovered during the analyses, a small experiment
on the derivation of feature names and the modeling of behavioral USs has been performed. Fi-
nally, the results were used to determine directions for future research, of which some have been
formulated into hypotheses.

While not explicitly included in the RQs, one of the objectives of this research was to assess the
validity of the RE4SA model. In cases 1 and 2 it became apparent that there is indeed a relationship
between Epics and USs and modules and features, respectively (results from case 3 are left out
due to confidentiality). During the preparation of the analyses, it was possible to categorize USs
in Epics and features in modules. The cardinalities of these relationships are discussed later, in
sub-RQs four and five. Behavioral USs, however, introduce obstacles in both relating USs to
features and categorizing USs in Epics. In case of the former, it can be difficult to ascertain which
feature a behavioral US describes or whether they describe a requirement for any specific feature
at all. It was also observed that some behavioral USs can be linked to more than one feature, since
they require multiple features to exist or be used in order to satisfy a requirement. The biggest
challenge that needs to be overcome when applying the RE4SA model to a product or system is
that, according to this study, only one of four artifacts is available, namely the USs. The Epics
need to be reconstructed based on USs and other requirement documentation, while the modules
and features need to be recovered using the GUI, source code and architecture documentation.

To conclude, the sub-RQs and MRQ are answered and discussed in order, based on the findings
and results presented in Chapter 6. Firstly, sub-RQ 1 posed the following question: “What is
understood as a feature in literature and in practice? ” In the context of literature, no definitive
answer can be found. Many definitions of the term exist and one is not necessarily better or more
accurate than the next. The meaning of the term is largely dependent on its purpose, be it for
requirements, architecture, development, modeling, target audience or otherwise. To complicate
matters further, the viewpoint can influence the definition. In this research a distinction was made
between problem-oriented (abstract) and solution-oriented (technical). The only aid that can be
provided when selecting a definition is the popularity of the definition, the reputation of its authors,
the research field and/or context, viewpoint and intended audience. Although even then multiple
options may be available. In practice, the answer to this question in the case study is twofold. On
the one hand, features are considered GUI elements the user of the system can interact with. On
the other hand, features are the requirement for specific functionality described in a US and the
former and the latter are not always one and the same. The difference between the two is best
illustrated by figure 36.

Figure 36: Visualization of the differences and overlap between features recovered from the GUI
and features described in requirements.

94

Both recovered features and features described in the requirements are concerned with functions.
However, the former does not explicitly include behavior and responses of the system and the latter
tends not to cover all GUI elements.

Secondly, sub-RQ 2 is stated as follows: “What is understood as functionality in literature and
in practice? ” According to literature, functionality is described in functional requirements in the
context of RE and are contained in architectural components in the context of SA. Unfortunately,
the term ‘architectural components’ is not very specific, but since both modules and features are
considered architectural components, functionality is present on both levels of abstraction in the
architecture. On the other hand, since functional requirements are described in USs, which are on
the lowest level of abstraction, which describe features, it seems that functionality is mostly ad-
dressed in USs and features. In practice, the meaning of functionality is mostly the same, although
a distinction can be made between implicit and explicit functionality. Explicit functionality refers
to functional requirements and how they are satisfied by architectural components in the SA. Im-
plicit functionality, however, is described in USs as behavior or responses of the system, but such
behavioral USs cannot be translated into a feature. Instead, a different architectural view is re-
quired in addition to the functional view. Hypothesized views are information and/or concurrency
views. As a small experiment on the feasibility of this approach, a selection of behavioral USs
from case 2 were used to model a sequence diagram. Furthermore, not all features are explicitly
described by USs. For instance, features related to the design of the GUI (such as buttons for
navigation the system) cannot be mapped to USs. In a sense, these can also be considered implicit
functionality, since they are included based on experience or common sense and not covered in the
requirements documentation.

Thirdly, sub-RQ 3 asked the question: “Is there a linguistic relationship between the names
and descriptions of Epics and USs and modules and features? ” The short answer is yes. In total,
95,3% of Epics in cases 1 and 2 could be linguistically matched to a module. Note that the findings
from case 3 are omitted here, since they are confidential. For USs the percentage is lower at
50,5%, which can be explained by the lack of feature diagrams in case 1. A more insightful number
is the percentage of linguistic matches that could be identified in the mapped artifacts, 95,3%
and 88,7% for Epics and USs, respectively. The only concern here is that the mapping was done
manually beforehand and not automatically based on linguistics. However, this does not disprove
the evidence for the linguistic relationships between Epics and modules and USs and features. The
linguistic relationship between artifacts is most prevalent in nouns, verbs and, to a lesser extent,
adjectives. To be more specific, both compound and ‘regular’ nouns are used in linguistic links. In
the case of verbs, these are mostly action verbs and oftentimes the present form of verbs. As was
stated previously, no discernible patterns could be observed across the two cases. However, the
largest dataset, case 2, has a clear trend of using the first verb and first noun in linguistic matches
and subsequent links.

Fourthly, the following was asked in sub-RQ 4: “Are the dependencies between Epics and USs
the same as their corresponding modules and features? ”. In most cases this is true, but there have
been some exceptions. In case 2, eight times USs could not be mapped to features, since the Epic-
US categorization did not match the module-feature categorization. It is unclear which of the two
categorizations is correct in these cases. However, it seems more likely that the module-feature
categorization deviates, since the intended and implemented architectures are not necessarily iden-
tical.

The final sub-RQ was stated as follows: “Is there a one-to-one relationship between USs and
features? ” Not taking into account behavioral USs, the answer is yes in most cases. However, in
case 2, there were seven (functional) USs that described a requirement for more than one feature
and in case 1 there were also some instances in which there was a one-to-many relationship.
Whenever the words ‘and’ or ‘or’ are used, the solution is simple, namely split the US into two
USs. In other circumstances, this may not be a desirable approach. For instance, if a US describes
a composite feature (e.g. personal details), it technically describes more than one atomic feature,
since it encompasses all atomic features contained in the composite feature ‘personal details’. It
is possible to split the US in such a way that all atomic features are described explicitly, but that
would lead to many, similar USs, that can be summarized by the one mentioned earlier.

Finally, the MRQ was: “Can linguistic links be identified between the two domains of RE4SA
using application reconstruction? ” In both case 1 and 2 it was possible to identify linguistic
matches and subsequently establish linguistic links between RE and SA (again, results from case
3 are omitted due to confidentiality). The exact nature of these relationships, however, is not

95

yet defined. Some progress has been made by analyzing which types of words can be matched
and where these words are positioned, but the results are not fully conclusive. Twice the Epics
needed to be reconstructed and the functional architecture recovered. While both activities can
be time-consuming, they are quite simple and valuable for linguistic analysis.

Acknowledgements

First and foremost, I want to thank Prof. Dr. Sjaak Brinkkemper and Dr. Fabiano Dalpiaz for their
guidance, comments, feedback and lengthy discussions. Without their time, effort and input, this research
would not have made half as much sense. Secondly, a special thanks to Remmelt Blessinga, the Yoda
development team and the anonymous product manager of the third case for contributing their documen-
tation, time and access to their systems to this research. Finally, I would like to thank Martijn van Vliet,
Lientje Maas, Mitchell van Winsum, all the students of office 5.86 and the Grimm research group for their
immeasurable support, valuable contributions and scintillating conversations.

96

References
Adams, P. (n.d.). The dribbblisation of design. Retrieved from https://www.intercom.com/

blog/the-dribbblisation-of-design/ (Accessed: 11-12-2018)
Ali, N., Baker, S., O’Crowley, R., Herold, S., & Buckley, J. (2018). Architecture consistency:

State of the practice, challenges and requirements. Empirical Software Engineering , 23 (1),
224–258.

Andam, B., Burger, A., Berger, T., & Chaudron, M. (2017). Florida: Feature location dashboard
for extracting and visualizing feature traces. In: Proceedings of the Eleventh International
Workshop on Variability Modelling of Software-intensive Systems, 100–107.

Androutsopoulos, I., Lampouras, G., & Galanis, D. (2013). Generating natural language de-
scriptions from owl ontologies: the naturalowl system. Journal of Artificial Intelligence
Research(48), 671–715.

Apel, S., Batory, D., Kästner, C., & Saake, G. (2013). Feature-oriented software product lines:
Concepts and implementation. Springer, Berlin, Heidelberg.

Apel, S., & Kästner, C. (2009). An overview of feature-oriented software development. Journal of
Object Technology , 8 (5), 49–84.

Apel, S., Lengauer, C., Batory, D., Möller, B., & Kästner, C. (2007). An algebra for feature-
oriented software development. Department of Informatics and Mathematics, University of
Passau, Tech. Rep. MIP-0706 .

Baker, C., & Ruppenhofer, J. (2002). Framenet’s frames vs. levin’s verb classes. In: Annual
Meeting of the Berkeley Linguistics Society , 28 (1), 27–38.

Batory, D. (2004). Feature-oriented programming and the ahead tool suite. In: Proceedings of the
26th International Conference on Software Engineering , 702–703.

Batory, D., Benavides, D., & Ruiz-Cortes, A. (2006). Automated analysis of feature models:
challenges ahead. Communications of the ACM , 49 (12), 45–47.

Batory, D., Sarvela, J., & Rauschmayer, A. (2004). Scaling step-wise refinement. IEEE Transac-
tions on Software Engineering , 30 (6), 355–371.

Berger, T., Lettner, D., Rubin, J., Grünbacher, P., Silva, A., Becker, M., . . . Czarnecki, K. (2015).
What is a feature?: a qualitative study of features in industrial software product lines. In:
Proceedings of the 19th International Conference on Software Product Line, 16–25.

Berry, D., Kamsties, E., & Krieger, M. (2003). From contract drafting to software specification:
Linguistic sources of ambiguity (version 1.0). Technical report, University of Waterloo.

Bettencourt, L., & Ulwick, A. (2008). The customer-centered innovation map. Harvard Business
Review , 86 (5), 109–116.

Blessinga, R. (2018). Designing the automated greenhouse: Matching requirements and architec-
ture for startup product specification using epic stories. Unpublished master thesis, Utrecht
University . Retrieved from https://dspace.library.uu.nl/handle/1874/374865

Bosch, J. (2000). Design and use of software architectures: adopting and evolving a product-line
approach. Pearson Education.

Bosch, J. (2004). Software architecture: The next step. In: European Workshop on Software
Architecture, 194–199.

Bouillon, E., Mäder, P., & Philippow, I. (2013). A survey on usage scenarios for requirements
traceability in practice. In: International Working Conference on Requirements Engineering:
Foundation for Software Quality , 158–173.

Bourque, P., & Fairley, R. (2014). Guide to the software engineering body of knowledge (SWEBOK
(R)): Version 3.0. IEEE Computer Society Press.

Brinkkemper, S. (n.d.). Impact forecasting. Internal Documentation, Utrecht University .
Brinkkemper, S. (2018). RE4SA. Internal Documentation, Utrecht University .
Brinkkemper, S., & Pachidi, S. (2010). Functional architecture modeling for the software product

industry. In: European Conference on Software Architecture, 198–213.
Canfora, G., Di Penta, M., & Cerulo, L. (2011). Achievements and challenges in software reverse

engineering. Communications of the ACM , 54 (4), 142–151.
Cechticky, V., Pasetti, A., Rohlik, O., & Schaufelberger, W. (2004). XML-based feature modelling.

In: International Conference on Software Reuse, 101–114.
Chen, K., Zhang, W., Zhao, H., & Mei, H. (2005). An approach to constructing feature models

based on requirements clustering. 13th IEEE International Conference on Requirements
Engineering (RE’05).

97

https://www.intercom.com/blog/the-dribbblisation-of-design/
https://www.intercom.com/blog/the-dribbblisation-of-design/
https://dspace.library.uu.nl/handle/1874/374865

Chen, P. (1976). The entity-relationship model—toward a unified view of data. ACM Transactions
on Database Systems (TODS), 1 (1), 9–36.

Chikofsky, E., & Cross, J. (1990). Reverse engineering and design recovery: A taxonomy. IEEE
Software, 7 (1), 13–17.

Christensen, C., Anthony, S., Berstell, G., & Nitterhouse, D. (2007). Finding the right job for
your product. MIT Sloan management review , 48 (3), 38–47.

Christensen, C., Hall, T., Dillon, K., & Duncan, D. (2016). "know your customers’"jobs to be
done"". Harvard Business Review , 94 (9), 14.

Cimiano, P., Mädche, A., Staab, S., & Völker, J. (2009). Ontology learning. In: Handbook on
ontologies, 245–267.

Classen, A., Heymans, P., & Schobbens, P. (2008). What’s in a feature: A requirements engi-
neering perspective. In: International Conference on Fundamental Approaches to Software
Engineering , 16–30.

Cleland-Huang, J., Gotel, O., Huffman Hayes, J., Mäder, P., & Zisman, A. (2014). Software
traceability: trends and future directions. In: Proceedings of the on Future of Software
Engineering , ACM, 55–69.

Cleland-Huang, J., Gotel, O., & Zisman, A. (2012). Software and systems traceability. Springer,
Berlin, Heidelberg.

Cohn, M. (2004). User stories applied: for agile software development. Addison Wesley, Boston.
Cole, M., & Avison, D. (2007). The potential of hermeneutics in information systems research.

European Journal of Information Systems, 16 (6), 820–833.
Curtis, B., Krasner, H., & Iscoe, N. (1988). A field study of the software design process for large

systems. Communications of the ACM , 31 (11), 1268–1287.
Czarnecki, K., & Eisenecker, U. (2000). Generative programming: methods, tools, and applications

(vol. 16). Reading: Addison Wesley.
Czarnecki, K., Helsen, S., & Eisenecker, U. (2005). Formalizing cardinality[U+2010]based feature

models and their specialization. Software process: Improvement and practice, 10 (1), 7–29.
Dalpiaz, F., van der Schalk, I., & Lucassen, G. (2018). Pinpointing ambiguity and incompleteness

in requirements engineering via information visualization and nlp. In: International Working
Conference on Requirements Engineering: Foundation for Software Quality , 119–135.

Dit, B., Revelle, M., Gethers, M., & Poshyvanyk, D. (2013). Feature location in source code: a
taxonomy and survey. Journal of software: Evolution and Process, 25 (1), 53–95.

Fairbanks, G. (2010). Just enough software architecture: a risk-driven approach. Marshall &
Brainerd.

Fernández, D., Wagner, S., Kalinowski, M., Felderer, M., Mafra, P., Vetrò, A., . . . Wieringa, R.
(2017). Naming the pain in requirements engineering. Empirical software engineering , 22 (5),
2298–2338.

Fillmore, C. (1982). Frame semantics. Cognitive linguistics: Basic readings.
Fillmore, C., & Baker, C. (2001). Frame semantics for text understanding. In: Proceedings of

WordNet and Other Lexical Resources Workshop, NAACL.
FrameNet data. (n.d.). Retrieved from https://framenet.icsi.berkeley.edu/fndrupal/

frameIndex (Accessed: 09-01-2019)
Gacto, M., Alcalá, R., & Herrera, F. (2011). Interpretability of linguistic fuzzy rule-based systems:

An overview of interpretability measures. Information Sciences, 181 (20), 4340–4360.
Gilb, T., & Finzi, S. (1988). Principles of software engineering management (vol. 11). Reading,

MA: Addison-wesley.
Glinz, M. (2007). On non-functional requirements. In: 15th IEEE International Requirements

Engineering Conference (RE 2007), 21–26.
Goldberg, A. (2010). Verbs, constructions and semantic frames. Syntax, lexical semantics, and

event structure, 39–58.
Gregory, F. (1993). Cause, effect, efficiency and soft systems models. Journal of the Operational

Research Society , 44 (4), 333–344.
Grüber, T. (1995). Toward principles for the design of ontologies used for knowledge sharing? In:

International journal of human-computer studies, 907–928.
Guarino, N. (1997). Semantic matching: Formal ontological distinctions for information or-

ganization, extraction, and integration. In: International Summer School on Information
Extraction, 139–170.

Guerra, S., Ryan, M., & Sernadas, A. (1996). Feature-oriented specifications.

98

https://framenet.icsi.berkeley.edu/fndrupal/frameIndex
https://framenet.icsi.berkeley.edu/fndrupal/frameIndex

Hirst, G. (2009). Ontology and the lexicon. In: Handbook on ontologies, 269–292.
Hofmeister, C., Kruchten, P., Nord, R., Obbink, H., Ran, A., & America, P. (2007). A general

model of software architecture design derived from five industrial approaches. Journal of
Systems and Software, 80 (1), 106–126.

Hosseini, M., Breaux, T., & Niu, J. (2018). Inferring ontology fragments from semantic role typing
of lexical variants. In: International Working Conference on Requirements Engineering:
Foundation for Software Quality , Springer, Cham, 39–56.

Hughes, D., Dwivedi, Y., Rana, N., & Simintiras, A. (2016). Information systems project fail-
ure–analysis of causal links using interpretive structural modelling. Production Planning
Control , 27 (16), 1313–1333.

Jansen, N., & van Rhijn, J. (2018). utrecht architecture description language. Internal Documen-
tation, Utrecht University .

Jeffries, R. (2001). Essential XP: card, conversation, confirmation. XP Magazine, 30 .
Kang, K., Cohen, S., Hess, J., Novak, W., & Peterson, A. (1990). Feature-oriented domain analysis

(FODA) feasibility study. Carnegie-Mellon Univ Pittsburgh Pa Software Engineering Inst..
Kang, K., Kim, S., Lee, J., Kim, K., Shin, E., & Huh, M. (1998). Form: A feature-oriented reuse

method with domain-specific reference architectures. Annals of Software Engineering , 5 (1),
143–168.

Kästner, C., Apel, S., & Kuhlemann, M. (2008). Granularity in software product lines. In:
Proceedings of the 30th international conference on Software engineering , 311–320.

Khan, S., Greenwood, P., Garcia, A., & Rashid, A. (2008). On the impact of evolving requirements-
architecture dependencies: An exploratory study. In: International Conference on Advanced
Information Systems Engineering , Springer, Berlin, Heidelberg, 243–257.

Klement, A. (2013a). 5 tips for writing a job story. Retrieved from https://jtbd.info/5-tips
-for-writing-a-job-story-7c9092911fc9 (Accessed: 11-12-2018)

Klement, A. (2013b). Replacing the user story with the job story. Retrieved from https://
jtbd.info/replacing-the-user-story-with-the-job-story-af7cdee10c27 (Accessed:
11-12-2018)

Klement, A. (2016). Your job story needs a struggling moment. Retrieved from https://jtbd
.info/your-job-story-needs-a-struggling-moment-c03de87c6026 (Accessed: 11-12-
2018)

Klement, A. (2018). When coffee and kale compete.
Krüger, J., Gu, W., Shen, H., Mukelabai, M., Hebig, R., & Berger, T. (2018). Towards a better

understanding of software features and their characteristics: a case study of marlin. In:
Proceedings of the 12th International Workshop on Variability Modelling of Software-Intensive
Systems, 105–112.

Kung, C., & Sölvberg, A. (1986). Activity modeling and behavior modeling. In: Proc. of the
IFIP WG 8.1 working conference on Information systems design methodologies: improving
the practice, 145–171.

Kühne, T. (2006). Matters of (meta-) modeling. Software & Systems Modeling , 5 (4), 369–385.
Lampouras, G., & Androutsopoulos, I. (2018). Extracting linguistic resources from the web for

concept-to-text generation.
Lee, K., Kang, K., & Lee, J. (2002). Concepts and guidelines of feature modeling for product line

software engineering. In: International Conference on Software Reuse, 62–77.
Levin, B. (1993). English verb classes and alternations: A preliminary investigation. University

of Chicago press.
Lin, J., Yu, H., Shen, Z., & Miao, C. (2014). Using goal net to model user stories in agile

software development. In: Software Engineering, Artificial Intelligence, Networking and
ParallelDistributed Computing (SNPD), 2014 15th IEEE/ACIS International Conference on,
1–6.

Lo, S., & Chen, N. (2017). IEEE 42010 and agile process-create architecture description through
agile architecture framework. In: Proceedings of the International Conference on Software
Engineering Research and Practice (SERP), 149–155.

Lucassen, G., Dalpiaz, F., van der Werf, J., & Brinkkemper, S. (2015a). Bridging the twin peaks:
the case of the software industry. In: Proceedings of the Fifth International Workshop on
Twin Peaks of Requirements and Architecture, 24–28.

Lucassen, G., Dalpiaz, F., van der Werf, J., & Brinkkemper, S. (2015b). Forging high-quality user
stories: towards a discipline for agile requirements. In: Requirements Engineering Conference

99

https://jtbd.info/5-tips-for-writing-a-job-story-7c9092911fc9
https://jtbd.info/5-tips-for-writing-a-job-story-7c9092911fc9
https://jtbd.info/replacing-the-user-story-with-the-job-story-af7cdee10c27
https://jtbd.info/replacing-the-user-story-with-the-job-story-af7cdee10c27
https://jtbd.info/your-job-story-needs-a-struggling-moment-c03de87c6026
https://jtbd.info/your-job-story-needs-a-struggling-moment-c03de87c6026

(RE), 2015 IEEE 23rd International , 126–135.
Lucassen, G., Dalpiaz, F., van der Werf, J., & Brinkkemper, S. (2016a). Improving agile re-

quirements: the quality user story framework and tool. Requirements Engineering , 21 (3),
383–403.

Lucassen, G., Dalpiaz, F., van der Werf, J., & Brinkkemper, S. (2016b). The use and effectiveness of
user stories in practice. In: International Working Conference on Requirements Engineering:
Foundation for Software Quality , Springer, Cham, 205–222.

Lucassen, G., Dalpiaz, F., van der Werf, J., Brinkkemper, S., & Zowghi, D. (2017). Behavior-driven
requirements traceability via automated acceptance tests. In: 2017 IEEE 25th International
Requirements Engineering Conference Workshops (REW), 431–434.

Lucassen, G., van de Keuken, M., Dalpiaz, F., Brinkkemper, S., Sloof, G., & Schlingmann, J.
(2018). Jobs-to-be-done oriented requirements engineering: A method for defining job sto-
ries. In: International Working Conference on Requirements Engineering: Foundation for
Software Quality , Springer, Cham, 227–243.

Lüdeling, A., & Kytö, M. (2008). Corpus linguistics: An international handbook. Walter de
Gruyter GmbH.

Manning, C., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S., & McClosky, D. (2014). The stanford
corenlp natural language processing toolkit. In: Proceedings of 52nd annual meeting of the
association for computational linguistics: system demonstrations, 55–60. Retrieved from
https://stanfordnlp.github.io/CoreNLP/index.html (Accessed: 29-01-2019)

Marcus, A., & Maletic, J. (2003). Recovering documentation-to-source-code traceability links using
latent semantic indexing. In: Proceedings of the 25th international conference on software
engineering , 125–135.

Marcus, M., Marcinkiewicz, M., & Santorini, B. (1993). Building a large annotated corpus of
english: The Penn Treebank. Computational linguistics, 19 (2), 313–330.

Martens, S., Brinkkemper, S., & Dalpiaz, F. (2018). Matching of domain concepts to enable
ontological traceability for software products. Working paper, University of Utrecht .

Miller, G. (1998). Wordnet: An electronic lexical database. MIT press.
Murphy, G., Notkin, D., & Sullivan, K. (1995). Software reflexion models: Bridging the gap

between source and high-level models. ACM SIGSOFT Software Engineering Notes, 20 (4),
18–28.

Müter, L., Deoskar, T., Mathijssen, M., Brinkkemper, S., & Dalpiaz, F. (2018). Refinement of user
stories into backlog items: Linguistic structure and action verbs. Accepted paper, University
of Utrecht .

Niu, N., Brinkkemper, S., Franch, X., Partanen, J., & Savolainen, J. (2018). Requirements
engineering and continuous deployment. IEEE software, 35 (2), 86–90.

North, D. (2006). Behavior modification. Better Software Magazine.
Nurmuliani, N., Zowghi, D., & Powell, S. (2004). Analysis of requirements volatility during

software development life cycle. In: Software Engineering Conference, 2004. Proceedings.
2004 Australian, IEEE, 28–37.

Nuseibeh, B. (2001). Weaving together requirements and architectures. Computer , 34 (3), 115–119.
Nuseibeh, B., & Easterbrook, S. (2000). Requirements engineering: a roadmap. In: Proceedings

of the Conference on the Future of Software Engineering , ACM, 35–46.
Okoli, C., & Schabram, K. (2010). A guide to conducting a systematic literature review of

information systems research. Sprouts: Working Papers on Information Systems, 10 (26).
OMG Group. (2002). Meta object facility (MOF) specification (version 1.4). Retrieved from

https://www.omg.org/spec/MOF/1.4 (Accessed: 18-03-2019)
Patton, J. (2005). Finding the forest in the trees. In: Companion to the 20th annual ACM

SIGPLAN conference on Object-oriented programming, systems, languages, and applications,
266–274.

Pohl, K., Böckle, G., & van der Linden, F. (2005). Software product line engineering: foundations,
principles and techniques. Springer Science Business Media.

Rodriíguez, P., Mendes, E., & Turhan, B. (2018). Key stakeholders’ value propositions for feature
selection in software-intensive products: An industrial case study.

Rozanski, N., & Woods, E. (2011). Software systems architecture: working with stakeholders using
viewpoints and perspectives. Addison-Wesley.

Runeson, P., & Höst, M. (2009). Guidelines for conducting and reporting case study research in
software engineering. Empirical software engineering , 14 (2), 131–164.

100

https://stanfordnlp.github.io/CoreNLP/index.html
https://www.omg.org/spec/MOF/1.4

Schach, S., & Tomer, A. (2000). A maintenance-oriented approach to software construction.
Journal of Software Maintenance: Research and Practice, 12 (1), 25–45.

Seffah, A., Donyaee, M., Kline, R., & Padda, H. (2006). Usability measurement and metrics: A
consolidated model. Software quality journal , 14 (2), 159–178.

Shaw, M., & Gaines, B. (1989). Comparing conceptual structures: consensus, conflict, correspon-
dence and contrast. Knowledge acquisition, 1 (4), 341–363.

Shekaran, C., Garlan, D., Jackson, M., Mead, N., Potts, C., & Reubenstein, H. (1994). The role
of software architecture in requirements engineering. In Requirements Engineering, 1994.,
Proceedings of the First International Conference on, 239–245.

Ulwick, A. (2003). The strategic role of customer requirements in innovation. Strategyn inc,
13 (12), 1–24.

Ulwick, A. (2018). Alan klement’s war on jobs-to-be-done. Retrieved from https://jobs-to
-be-done.com/alan-klements-war-on-jobs-to-be-done-dad8eaed567c (Accessed: 12-
12-2018)

Ulwick, A., & Hamilton, P. (2016). The jobs-to-be-done growth strategy matrix. Technical report,
Strategyn, 1–12.

Wautelet, Y., Heng, S., Kolp, M., Mirbel, I., & Poelmans, S. (2016). Building a rationale diagram
for evaluating user story sets. In: Research Challenges in Information Science (RCIS), 2016
IEEE Tenth International Conference on, 1–12.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M., Regnell, B., & Wesslén, A. (2012). Experimenta-
tion in software engineering. Springer Science & Business Media.

Yin, R. (2017). Case study research and applications: Design and methods. Sage publication.
Yin, R. K. (1981). The case study as a serious research strategy. Knowledge, 3 (1), 97–114.
Zave, P. (1997). Classification of research efforts in requirements engineering. ACM Computing

Surveys, 29 (4), 315–321.
Zave, P. (2003). An experiment in feature engineering. In: Programming methodology , 353–377.
Zowghi, D., & Nurmuliani, N. (2002). A study of the impact of requirements volatility on software

project performance. In: Ninth Asia-Pacific Software Engineering Conference, 3–11.

101

https://jobs-to-be-done.com/alan-klements-war-on-jobs-to-be-done-dad8eaed567c
https://jobs-to-be-done.com/alan-klements-war-on-jobs-to-be-done-dad8eaed567c

Appendix A
This appendix contains the artifacts of the first case that were gathered. In this case these include
a FAM and a feature diagram (Blessinga, 2018).

102

Figure 37: FAM of greenhouse system of case 1.

103

Figure 38: Feature diagram of the light action management module in case 1.

104

Appendix B
This appendix contains the artifacts of the second case that were recovered. In this case these
include a FAM and multiple feature diagrams.

Figure 39: FAM of the Yoda system of case 2 (front end-only).

As was mentioned previously, the FAM was modeled in collaboration with a Yoda developer and
also validated by them. Theoretically, including only one sub module in a module makes little
sense, but since the implementation of the system was used to model the functional architecture,
it still has been modeled as such here.

105

Figure 40: Feature diagram of the Research module (YDA-09).

Figure 40 shows all the features contained in the Research module. Duplicate features (within the
module, not between modules) are indicated by the thick outlines of the boxes. Since the Revision
management module can be accessed through the Research module it is shown here, but its full
feature diagram is presented in figure 43.

106

Figure 41: Feature diagram of the Metadata form module (YDA-94).

In order to improve legibility in figure 41, the GUI headers are included in gray boxes. Again,
duplicate features (within the diagram) are indicated by the thicker outlines for the boxes. The
numbers in circles refer to the number of options the feature presents after clicking on it. They have
been omitted here, since they would only clutter the diagram and are not specified in individual
USs. The only exceptions are the circles with a thick outline and a six in them, because these refer
to duplicate features that are presented by the atomic features contained in the ‘enter start date’
composite feature.

107

Figure 42: Feature diagram of the Statistics module (YDA-156).

The Statistics module, shown in figure 42, only includes two features as of yet.

Figure 43: Feature diagram of the Revision management module (YDA-95).

Figure 43 visualizes the features contained in the Revision management module. Like before,
duplicate features within the diagram are presented as a box with a thick outline.

108

Figure 44: Feature diagram of the Group management module (YDA-02), which also contains the
User management sub module (YDA-157).

As was the case in figure 41, the gray boxes in figure 44 are used to improve legibility and refer
to headers in the GUI. Since the Group manager module also contains the User management sub
module, the feature diagram of the latter is included too.

109

Figure 45: Feature diagram of the Vault space module (YDA-96), which also contains the Vault
management (YDA-321) and Publication space (YDA-800) sub modules.

The Vault space module itself does not contain any front-end features itself, but instead contains
the Vault management and Publication space modules, as visualized in figure 45. Taking into
account the structure in the diagram, it may seem that the Publication space sub module is part
of the Vault management module while this is not the case, the former is merely accessed through
the latter. Again, duplicate features within the diagram are indicated by boxes with thick outlines.

110

Figure 46: Feature diagram of the Metadataschema module (YDA-2208).

Figure 46 shows the feature diagram for the Metadataschema module, without duplicate features
and sub modules.

Figure 47: Feature diagram of the External user service module (YDA-2110).

The feature diagram of the External user service module is presented in figure 47, also without
any duplicate features and sub modules.

111

Appendix C
Due to the inclusion of sensitive materials, the FAM and feature diagrams of case 3 may not be
disclosed.

112

Appendix D
The paper that was submitted to RE@Next! is included in this appendix in full.

113

On the Nature of Links between Requirements
and Architectures: Case Studies on User Story

Utilization in Agile Development
Anonymous

Abstract—Communication between requirements engineers
and software architects is experienced as problematic. In this
paper we present the Requirements Engineering for Software
Architecture (RE4SA) model as a tool that supports the com-
munication between these two roles. In the RE4SA model,
requirements are expressed as epic stories and user stories,
which are linked to modules and features, respectively, as their
architectural counterparts. By applying the RE4SA model to a
multi-case study, we investigate the nature of the relationships
between the requirements and the architectural artifacts. Based
on the gained experience, we put forward nine hypotheses for
further research on the utilization of user stories in agile RE.

I. INTRODUCTION

Communication flaws within a development team are con-
sidered one of the most important issues in requirements
engineering (RE) and are sometimes identified as the main
cause for project failure, according to the NaPiRE project [1].
In a 2014 study, Smith and colleagues found that 47% of
unsuccessful projects failed due to poor requirements manage-
ment [2]. Similarly, volatile requirements have been called one
of the main issues in the software industry in recent history
[3], [4]. The ‘evil circle’ principle [5] states that problems
in the RE process do not remain isolated, but rather echo
throughout a development process. Other major contributors
to project failure include scope creep due to inadequate
requirements, poor communications within the project team or
among the stakeholders, and key internal stakeholders leaving
the project [6]. Finally, proper architecture documentation can
help prevent architectural drift and erosion, reduce costs and
improve software quality [7].

Nuseibeh recognized that requirements specification and
design cannot be separated due to their inter-dependencies
[8]. The Twin Peaks model describes how requirements and
architecture are defined concurrently, yet being separate spec-
ifications, with the former guiding the latter and the latter
constraining the former. The Reciprocal Twin Peaks extends
this work for agile development and explains why the syn-
ergy between requirements and artifacts matters. In short, a
development process has to manage a continuous flow of
requirements, as well as a continuously changing architecture
[9]. Consistency between the two helps prevent misunder-
standings in the development team. However, realizing this
consistency should not burden the involved stakeholders with
excessive work as the improvement in communication is meant
to prevent incorrect implementations, rework and wasting time,
money and potential other resources. Therefore, tools are

needed to achieve consistency between the artifacts. Software
architecture demands good requirements engineering, which
can only be guaranteed if proper communication exists.

While Nuseibeh and Lucassen identified challenges and
explained how RE and SA can support each other, they did not
provide any specific approaches for tackling these challenges.
As a remedy, we present explicit concepts and relationships
that can be utilized to link requirements and architectures.

The remainder of this paper is structured as follows. In Sec-
tion II, we present the RE4SA model, alongside its theoretical
background, rationale and objectives. Subsequently, we discuss
the feasibility and applicability in Section III by means of a
multi-case study. This section also explains how the model
can be applied, our main findings and the observed benefits.
The empirical work serves as the basis for us to draw nine
hypotheses that will guide future work (Section IV). Finally,
Section V summarizes our contribution and discusses the main
challenges we have identified.

II. THE RE4SA MODEL

In an attempt to facilitate good communication within the
development team, we propose the Requirements Engineer-
ing for Software Architecture (RE4SA) model, visualized in
Fig. 1. RE4SA was assembled on the basis of tight collabora-
tion with industrial partners in the software products domain,
and it combines artifacts (like user stories and features) that
we found often employed in their work practices.

Fig. 1. The Requirements Engineering for Software Architecture model.

A. Concept

Similar to the Twin Peaks model, the RE4SA model
links the RE process of a software product to its Software
Architecture (SA). More specifically, it describes the links
between Epic Stories (ESs) [10] and User Stories (USs) [11]
in the requirements and modules and features in the func-
tional architecture [12], respectively. Essentially, the problem
space, which describes the requirements and their intended
behavior, is related to the solution space that defines how
intended behavior is implemented in a system and thus how
requirements are satisfied [13]. ESs can be used to describe the
modules in the architecture, while USs introduce more detail
by describing the features of a software product. We define a
functional architecture as a description of “the system by its
functional behavior and the interactions observable with the
environment” [12]. Examples of functional architectures are
illustrated in the top two levels of Fig. 4 and Fig. 5.

B. Illustration

As an example, consider a navigation app. Some of its
implemented features (white boxes) are visualized in Fig. 2.
An ES, consisting of the three parts problematic situation,

Fig. 2. Example of a feature diagram extension.

motivation and expected outcome, can be written to extend the
functionality of the app: “When I have to file for expenses to
my employer, I want to have all my routes and local expenses
registered, so that I can collect my expense data and minimize
effort for filing.” Using this ES it is possible to include the
“Expense Filing” module in the software architecture. Going
into the requirements process, the aforementioned ES can be
refined by the following two USs. “As a consultant, I want to
file my travel expenses, so that I have complete expense and
travel data with minimal effort”, using the verbs and nouns
of the US this results in the “file travel expense” feature,
which is part of the “Expense Filing” module. Subsequently,
“As a consultant, I want to collect my expenses of the past
month, so that I can get an overview of my monthly costs”
can also be added. In addition, the existing functionality of
the app needs to be extended in order to support these new
features. In its current form, the app does not keep track
of the user’s previous routes, which is necessary in order to

file the expenses. The following US can be added to remedy
this: “As a consultant, I want to file a route, so that I can
calculate the costs of that route for my employer”. The three
newly added features described by the previous ES and USs
are illustrated as gray boxes in Fig. 2. Features are not only
grouped based on their functionality, their naming can also
be utilized to determine their position. For instance, the “file
route” feature is part of the “determine route” composite
feature within the “Route Planner” module. The keyword here
is ‘route’. On the other hand, the architectural elements related
to the newly introduced ES all contain the word ‘expense’ or
a variation thereof. Figure 2 illustrates the way ESs and USs
can be transformed into functional architecture components
and also serves as a simple means to discuss the position of
the new functionality as well as the impact on the current
implementation of the system.

C. Expected Benefits

RE4SA is intended to improve communication between
product managers and software architects or product owners
through (1) simple communication means, (2) clear structural
guidelines, and (3) consistent domain terminology. The objec-
tive of the RE4SA model, however, is not limited to improving
communication. Gayer et al. argued for the need of dynamic
architecture creation. This architecture allows for traceability
in order to make software more maintainable, changeable and
sustainable [14]. By establishing a relationship between ESs
and modules and USs and features respectively, traceability
is supported, with little documentation and effort required.
The conflicts between architects and requirements engineers
has been the subject of research before, such as in the case
of the RADAR tool [15]. RADAR supports requirements and
architecture decision analysis in an attempt to reduce struggle
and miscommunication among stakeholders. As opposed to
designing a new modeling language and analysis approach,
we apply knowledge and techniques that already have a high
adoption in the RE4SA model, in order to minimize the need
for change and training in industry. USs, for instance, were
found to often be one of the requirements documents used
in agile methods [16]. The validity and applicability of the
RE4SA model are discussed based on three case studies,
presented in Section III.

III. CASE STUDIES: FIRST EXPERIENCES WITH RE4SA

To support the envisioned relevance and benefits argued in
the previous sections, we present an industrial multi-case study
that illustrates how RE4SA can be applied and that helps
us develop the model and formulate hypotheses for future
research. The three cases encompass different apps; while the
selection is based on industrial availability, all of them target
business consumers, and each studies a different use case of
RE4SA: (i) modeling requirements and architectures prior to
developing software, (ii) extending an existing product, and
(iii) recovering an architecture. Case study findings on RE4SA
are numbered and presented in bold.

A. Modeling for a Start-up

The first case is concerned with a software start-up in
the context of intelligent greenhouses. To support modeling
activities for the start-up’s software, the RE4SA model was
applied, which resulted in the formulation of 31 ESs and
96 USs. Based on the formulated RE artifacts, a functional
architecture was developed that consisted of 31 modules. Dur-
ing this activity, the start-up’s founder observed that Finding-
A.1: ES formulation leads to module identification. Prior to
development, the artifacts were discussed with the system’s
stakeholder to determine their value. Most importantly, it
became apparent that none of the artifacts alone provided
sufficient information to about the system to be developed.
However, when taken together, the artifacts sufficiently provide
a comprehensive overview, which provides evidence on the
synergies between RE and SA, leading to the finding F-
A.2: RE and SA artifacts shall be used in conjunction in a
synergistic fashion.

Furthermore, this case has produced additional insight into
how RE4SA should be applied to a development process.
Firstly, it is important to determine the level of abstraction
in terms of ESs and USs. Information to fully define the
abstraction level is lacking prior to development, so instead
it is important to distinguish between the ES and US level.
Moreover, an ES should categorize at least two USs, otherwise
the formulation of the ES is superfluous. This implies that if an
ES contains only one US, the ES is formulated on an incorrect
level of abstraction and should be reformulated to fit the US
template instead. This may seem trivial, but is crucial to the
structure of RE4SA given the levels of abstraction. Once this
distinction is established, ESs can be written, followed by USs.
F-A.3: the level of abstraction should be established prior to
developing the RE artifacts.

The ESs were found to be especially useful in the modeling
and subsequent naming of modules in the functional archi-
tecture. Names for modules could often be derived from the
nouns and verbs included in the ESs, which does not only
simplify the modeling process, but also facilitates linking RE
artifacts to the functional architecture, F-A.4: modules names
can be derived from ESs. Likewise, the verbs and nouns
used to formulate USs can be adopted to name features (as
illustrated in Section II-B), F-A.5: feature names ought to be
derived from USs. The formulation of ESs is often functional
in nature, which lends itself to mapping them to a functional
architecture, while still allowing the requirements engineers
to work from a problem-oriented perspective. In addition
to designing modules, ESs can support the specification of
information flows between said modules too, as shown in
Table I.

The (problematic) situation, motivation and expected out-
come formulated in an ES can be utilized to determine the
input flow, module name and output flow respectively. F-
A.6: ESs provide naming suggestions for all elements in a
functional architecture: modules, input flows, and output flows.
An ES can be translated into functional architectural elements

TABLE I
INFORMATION FLOWS AND MODULES FORMULATED BASED ON ESS.

Epic Story Module
Input flow Output flow

When using a neural network, I
want to gather and format data
continuously, so that the AI can
interpret the data.

Data Manager
sensor output,
weather report,
growth model

climate data

When there is new prediction
data available, I want to run it
through a trained neural network,
so that I can make yield
predictions.

Harvest Predictor

climate
data prediction

When I have a yield prediction,
I want to plan the right course of
action, so that I can set the right
climate conditions.

Action Planner

prediction
instructions:

humidity,
light, CO2

When receiving a humidity
instruction, I want to determine
a course of action, so that I can
control humidity systems.

Humidity Action Management

humidity
instruction

ventilation on
timer, pump

on timer

as illustrated in Fig. 3.

Fig. 3. ES to module translation in a functional architecture.

B. Extending a Software Product
The RE4SA model was also applied to a software company

that determines the value of real estate and wanted to extend
their software product with valuation analysis. The architec-
tural artifacts were limited to tacit knowledge repositories, so it
was unclear which existing modules and features were relevant
for creating the software extension. Therefore, it was necessary
to recover the functional architecture of the current system
manually. The existing modules (28) have been modeled as
feature diagrams, with 121 atomic features in total.

Extending the functional architecture with new modules
resulted in several findings. First, the clarity of the visual
representation was found to ease the communication between
product manager and technical lead through the use of explicit
architectural components. Second, the diagrams highlight
which modules the extension depends on to implement new
features. The development team confirmed that the functional
architecture was helpful in discussions among stakeholders,
leading to the finding F-B.1: the concepts in the RE4SA model
are suitable for functional architecture recovery.

Then, the RE4SA model was applied to establish a func-
tional architecture that satisfied the requirements of the soft-
ware product extension. These requirements were elicited by
the product manager, directly from customers of the software
product. 23 USs were created and subsequently categorized

in eight ESs. The functional architecture of the current sys-
tem, illustrated in Fig. 4 positions the extension on three
different levels of abstraction. These models identify parts

Fig. 4. Three-layered functional architecture of a real estate valuation tool.

the implemented system will be affected by the extension.
Furthermore, the required interactions (modeled as information
flows) with other modules are captured in the top level. The
functional architecture enables a clear focus for sprint planning
on developing well-defined components of the system and
stakeholder validation of the architecture. F-B.2: the functional
architecture allows sprint planning to focus on specific com-
ponents. Moreover, thanks to the separation of concerns that
RE4SA promotes, F-B.3: units of the software can be tested
individually and thereby promotes re-usability. Furthermore,
the functional architecture could be used to determine which
parts of the system are (not) affected by the software product
extension, F-B.4: the functional architecture has an appropriate
level of abstraction that enables predicting the impact of new
requirements on the existing system. Based on this evaluation
of the RE4SA model in practice, there appears to be F-B.5: a
1-to-1 mapping between ESs and modules, and between USs
and features.

C. Architecture Recovery of a Web Application

In a recent study, Tamburri and Kazman affirmed that “both
theory and practice suggests that maintaining good quality
software architectures is non-trivial” [17]. For web applica-
tions the problem may be even worse: proper documentation
is rare, because well-known software engineering practices
are seldom adopted by web developers and there is a high
employee turnover rate [18]. To improve the understanding of

these applications or systems, reverse engineering and system
visualization techniques have been proposed [18].

The RE4SA model was applied to recover a functional
architecture from the Graphical User Interface (GUI) of a web
application. The application, a tournament planner with nearly
25,000 lines of code, was modeled in a feature diagram using
the GUI as input for architecture recovery. Then, the website
hierarchy and the principles of the RE4SA model were used
to group the 199 atomic features into eight modules. Each
module embodies a manageable and well-defined functionality
that can be developed relatively independently from other
modules [19]. Sub modules (21) were added for six modules
to further differentiate between features and to facilitate the
interpretation of the model by different stakeholders. The
created interactive visualization of the model, shown in Fig. 5,
was found by an interviewee at the company to help improve
the communication between the stakeholders by allowing them
to discuss specific components of the architecture, instead of
a list with discussion points. Moreover, there is no need for
all the stakeholders to understand the code. Therefore, we
could conclude that F-C.1: the layered architecture recovered
using the RE4SA model facilitates communication between
stakeholders.

Fig. 5. Three-layered functional architecture of a web application, recovered
based on the GUI.

During this case study, a crowdsourcing platform was used
for the elicitation of new requirements in the form of USs.
One user requested: “As an organizer I want to set a unique
start time of a playing field for each match day’’. The current
“set start time of playing field” feature does not allow this.
If this feature would be implemented, it would require two
new sub features (“set start time per day” and “set overall

start time”) with an alternative relationship to the feature
above: exactly one of the sub features must be selected. F-
C.2: the relationship between USs and features facilitates the
positioning of new features in the functional architecture.

Mapping USs to features makes it easier to analyze which
parts of the architecture are affected by evolving requirements.
Furthermore, once the requirements have been mapped to the
architecture, their location in the architecture and relation to
the type of architectural component can support development
estimations of USs. For instance, USs that are linked to atomic
features were found to be relatively easy to implement by all
stakeholders, while USs that require a new sub module are
more complex and require more time to develop and imple-
ment. F-C.3: applying the RE4SA model facilitates impact
forecasting in the context of changing requirements. Although
no automation for creating and maintaining the traceability
between the requirements, architecture and code was used,
the case study shows how the RE4SA model can serve as a
basis for communication and for the further analysis on the
linguistic relationship between USs and features.

IV. HYPOTHESES

We have proposed a model that relates RE to SA in order
to improve communication between stakeholders and support
software development. The RE4SA model was proven to be
promising based on a multi-case study, however, coincidence is
still a factor and the relationships have not yet been sufficiently
investigated. For instance, the strength of the relationships and
their cardinalities are still unclear. Furthermore, the multi-case
study that was presented previously was conducted on a small
scale over a short period of time. To be able to accurately refine
the links, large scale and long term research are required. In
case of the latter, this could involve a study that examines
the design and maintenance phase of a software development
project, as opposed to one or the other. Moreover, we envision
additional purposes for the model as well.

Based on the insight gained during the multi-case study,
we have formulated nine hypotheses for future research in
categories structure, requirements, architecture, and develop-
ment process, presented in Table II. While the existence of
relationships between the artifacts was confirmed, the exact
nature of these relationships require further refinement as well
as their cardinalities. The hypothesized cardinalities on the
artifact structuring in the RE4SA model are shown in a meta-
model in Fig. 6.

We hypothesize that ESs and modules should contain two or
more USs and features respectively. If this rule is violated it is
likely that an incorrect level of abstraction is used. Secondly,
we expect that a US and a feature both belong to one ES or
module. Based on the quality framework designed for USs,
it is reasonable to assume that a US describes one feature,
since a US of sufficient quality should express a requirement
for exactly one feature [20]. Similarly, we expect an ES to
describe only one module. On the other hand, we hypothesize
that features and modules are described by one RE artifact,
as we expect that the abstraction level may be inaccurate if

TABLE II
HYPOTHESES FOR FUTURE RESEARCH.

ID Hypothesis Findings
Structure

H.1 ESs and modules contain at least two USs or
features. A.3, C.1

H.2 There is a 1..1 relationship between ESs and
modules and USs and features.

A.1, A.2,
A.6, B.5

H.3 USs and features belong to exactly one ES or
module respectively. A.3, C.1

Requirements

H.4 The application of the RE4SA model effectively
supports impact analysis of new requirements. B.4, C.3

H.5 There exists a linguistic relationship between
names of RE and SA artifacts.

A.2, A.4,
A.5

Architecture

H.6 The RE4SA model supports architecture recovery
activities. B.1

H.7 The application of the RE4SA model effectively
supports positioning of new features. C.2

Development process

H.8 The RE4SA model can be utilized to guide and
support testing activities. B.3

H.9

The RE4SA model uses appropriate levels of
abstraction so that it can be embedded in
software product management activities, such as
release planning.

B.2

Fig. 6. Meta-model of the relationships between the RE4SA concepts,
illustrating the hypotheses.

multiple RE artifacts are required to describe one module or
feature. The hypothesized cardinalities (H.1-H.3) will be tested
by conducting empirical research. Multiple case studies will
analyze real-world artifacts in order to precisely define the
links between the concepts.

A natural progression of this research is to analyze how
change impact can be supported, especially in the context of
impact forecasting and automated requirements traceability.
H.4 focuses on the maintenance and evolution phase of a
software product and will therefore require a fully imple-
mented system with existing development artifacts as a case
study. Likewise, we aim to investigate how to generate (partial)
artifacts to facilitate software development. We hypothesize
(H.5) that both these objectives can be achieved by developing
a complete picture of the artifact structures included in the
model, as well as by conducting research on linguistic analyses
of the artifacts and the potential discovery of linguistic patterns
and links. These structures will be investigated using linguistic
analysis techniques such as Part-of-Speech tagging and NLP.

Regarding architectures, functional architecture recovery was
performed twice during the multi-case study presented earlier.
However, this recovery was not the objective of the study
and was also not performed in a structured manner. In order
to properly test H.6, architecture recovery activities need to
be performed (following a rigorous method) on a real-life
case study and subsequently replicated using other cases.
The RE4SA model can also be applied to design a method
for software product design and development. This could be
effective for keeping the software architecture up to date, and
deciding where to position new features in the software. H.7
will be tested by examining existing systems that need to
be extended or updated through means of a case study. It is
expected that during all of these studies, artifacts will need to
be developed. Finally, case B and C have hinted at the RE4SA
model’s usefulness for release planning and guiding the testing
process, stating that parts of the software can be tested some-
what independently and can provide separate functionality. H.8
requires case studies to assess the applicability and feasibility
of utilizing the RE4SA model for testing activities, as well
as expert interviews or surveys to evaluate the usability and
reliability. Finally, H.9 will be tested based on additional
literature research to determine how the model can be utilized
and whether it uses the appropriate levels of abstraction, as
well as case studies to validate these applications.

V. CONCLUSION

In this study on the links between requirements and architec-
tures we propose a model with the objective to solve communi-
cation issues as well as supporting the software development
process, best illustrated by the RE4SA model. A multi-case
study was performed to verify the accuracy and applicability of
the model in various contexts. The cases have also shown that
the use of the model, and its underlying principles, supports
multiple activities, such as: determining the level of abstraction
for modeling the system, name derivations, identifying infor-
mation flows, recovery of functional architectures, modeling
extensions of an existing system, traceability between artifacts
and impact forecasting. The most important results are the
hypotheses for future research we formulated through the use
of the multi-case study.

A few challenges related to the RE4SA model need to
be addressed. Firstly, we need to study broader usage in
large projects, since it was only applied in smaller cases up
to this point. One of the main contributors to the expected
hesitance of practitioners is the availability of a software
architecture, more specifically, a functional architecture. On
the other hand, the principle does rely on existing concepts
that already have a wide adoption. As of yet we are not
familiar with how the model can or should be applied in
different development contexts. In similar fashion, there are no
guidelines on how to apply the model. By this we mean that
the starting point can vary and that the order of subsequent ac-
tivities should not be fixed, since the development team should
decide on the appropriate sequence of development activities.
Finally, the software development process is not finished after

eliciting requirements and designing the architecture. Future
work should also focus on whether the RE4SA model can
and should be extended in order to support more software
product management activities, such as the design of technical
architectures, feature programming, or release planning.

REFERENCES

[1] D. Méndez Fernández et al., “Naming the pain in requirements engi-
neering,” Empirical software engineering, vol. 22, no. 5, pp. 2298–2338,
2017.

[2] A. Smith, D. Bieg, and T. Cabrey, “PMI’s pulse of the profession R� in-
depth report: Requirements management–a core competency for project
and program success,” Project Management Institute, Newtown Square,
PA, 2014.

[3] B. Curtis, H. Krasner, and N. Iscoe, “A field study of the software design
process for large systems,” Communications of the ACM, vol. 31, no. 11,
pp. 1268–1288, 1988.

[4] D. Zowghi and N. Nurmuliani, “A study of the impact of requirements
volatility on software project performance,” in Ninth Asia-Pacific Soft-
ware Engineering Conference, 2002. IEEE, 2002, pp. 3–11.

[5] T. Gilb and S. Finzi, Principles of software engineering management.
Addison-wesley Reading, MA, 1988, vol. 11.

[6] D. L. Hughes, Y. K. Dwivedi, N. P. Rana, and A. C. Simintiras, “Infor-
mation systems project failure–analysis of causal links using interpretive
structural modelling,” Production Planning & Control, vol. 27, no. 16,
pp. 1313–1333, 2016.

[7] C. C. Venters, R. Capilla, S. Betz, B. Penzenstadler, T. Crick, S. Crouch,
E. Y. Nakagawa, C. Becker, and C. Carrillo, “Software sustainability:
Research and practice from a software architecture viewpoint,” Journal
of Systems and Software, vol. 138, pp. 174–188, 2018.

[8] B. Nuseibeh, “Weaving together requirements and architectures,” Com-
puter, vol. 34, no. 3, pp. 115–119, 2001.

[9] G. Lucassen, F. Dalpiaz, J. M. Van Der Werf, and S. Brinkkemper,
“Bridging the twin peaks: the case of the software industry,” in Proceed-
ings of the Fifth International Workshop on Twin Peaks of Requirements
and Architecture. IEEE Press, 2015, pp. 24–28.

[10] G. Lucassen, M. van de Keuken, F. Dalpiaz, S. Brinkkemper, G. W.
Sloof, and J. Schlingmann, “Jobs-to-be-done oriented requirements
engineering: a method for defining job stories,” in International Working
Conference on Requirements Engineering: Foundation for Software
Quality. Springer, 2018, pp. 227–243.

[11] M. Cohn, User Stories Applied: for Agile Software Development. Red-
wood City, CA, USA: Addison Wesley Professional, 2004.

[12] S. Brinkkemper and S. Pachidi, “Functional architecture modeling for
the software product industry,” In: European Conference on Software
Architecture, pp. 198–213, 2010.

[13] S. Apel and C. Kästner, “An overview of feature-oriented software
development.” Journal of Object Technology, vol. 8, no. 5, pp. 49–84,
2009.

[14] S. Gayer, A. Herrmann, T. Keuler, M. Riebisch, and P. O. Antonino,
“Lightweight traceability for the agile architect,” Computer, vol. 49,
no. 5, pp. 64–71, 2016.

[15] S. A. Busari and E. Letier, “Radar: A lightweight tool for requirements
and architecture decision analysis,” in Proceedings of the 39th Inter-
national Conference on Software Engineering. IEEE Press, 2017, pp.
552–562.

[16] I. Inayat, S. S. Salim, S. Marczak, M. Daneva, and S. Shamshirband, “A
systematic literature review on agile requirements engineering practices
and challenges,” Computers in human behavior, vol. 51, pp. 915–929,
2015.

[17] D. A. Tamburri and R. Kazman, “General methods for software ar-
chitecture recovery: a potential approach and its evaluation,” Empirical
Software Engineering, vol. 23, no. 3, pp. 1457–1489, 2018.

[18] A. E. Hassan and R. C. Holt, “Architecture recovery of web applica-
tions,” in Proceedings of the 24th International Conference on Software
Engineering. ACM, 2002, pp. 349–359.

[19] D. L. Parnas, “On the criteria to be used in decomposing systems into
modules,” Communications of the ACM, vol. 15, no. 12, pp. 1053–1058,
1972.

[20] G. Lucassen, F. Dalpiaz, J. M. E. van der Werf, and S. Brinkkemper,
“Improving agile requirements: the quality user story framework and
tool,” Requirements Engineering, vol. 21, no. 3, pp. 383–403, 2016.

	List of Abbreviations
	Introduction
	Problem Statement
	Research Objective

	Research Approach
	Research Questions
	Research Method
	Literature Study Approach
	Case Study Approach

	Literature Study
	Requirements Engineering
	Software Architecture
	Functional Architecture Modeling
	Feature Diagrams
	Software Architecture Recovery

	Features
	RE4SA
	User Stories
	Jobs, Jobs-to-be-Done and Job Stories
	Epic Stories
	The Barista Problem
	Research Scope

	Functionality in RE and SA
	Linguistics
	Linguistic Structures in RE4SA Concepts

	Traceability
	Naming Conventions for Models

	Case Study
	Case Study Preparation
	Case Study Selection
	Case Study Preparation and Data Gathering Approach
	Case Study Execution and Analysis Approach

	Case Study Execution
	Case Descriptions
	Case Execution Process

	Analysis
	Case 1
	Dependency Analysis
	Epics & Modules
	USs & Features
	Semantic Frames
	Synonyms & Homonyms

	Case 2
	Dependency Analysis
	Epics & Modules
	USs & Features
	Semantic Frames
	Synonyms & Homonyms
	Deriving Feature Names

	Case 3
	Functionality in RE & SA

	Results
	Story Quality

	Discussion
	Benefits
	Limitations
	Future Research

	Conclusion
	References
	Appendix A
	Appendix B
	Appendix D

