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Abstract

For p a prime larger than 7, the Eisenstein series of weight p−1 has some remarkable congruence
properties modulo p, implying for example that the j-invariants of its zeros (which are known to
be real algebraic numbers in the interval [0, 1728]), are all modulo p at most quadratic over the
field with p elements, are congruent modulo p to the zeros of certain truncated hypergeometric
series. In my thesis, I introduce the “theta modular form” of weight k, defined as the unique
modular form of that weight for which the first dim(Mk) Fourier coefficients are identical to
those of the Jacobi theta series. Theta modular form modulo p relate to the average weight
enumerators in coding theory. I show that theta modular forms of weight (p + 1)/2 behave in
many ways like Eisenstein series: the j-invariants of their zeros all belong to the interval [0, 1728],
are modulo p all in the ground field with p elements, and are congruent modulo p to the zeros of a
truncated hypergeometric function (with parameters halved compared to the Eisenstein series).
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Notation

Bk The rational number defined by the relation t
exp(t)−1 =

∑∞
n=0

Bn
n! t

n.

brc The largest integer n such that n ≤ r.
H The complex upper half plane {z ∈ C | Im(z) > 0}.
N The set {1, 2, ...} of natural numbers.
ordz(f) The order of a meromorphic function f at the point z.
ρ The complex number e2πi/3.

SL2(Z) The group of matrices

{(
a b
c d

)
| a, b, c, d ∈ Z, ad− bc = 1

}
.
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1 Introduction

1.1 Background

“Modular forms are everywhere”1. They are highly symmetrical functions f : H → C and play
a central role in number theory, algebraic geometry, combinatorics, etc. This symmetry implies
that any modular form f(z) can be written as a Fourier series

f(z) = a0 + a1q + a2q
2 + ..., (1)

where q = e2πiz. The Fourier coefficients ai often contain a lot of number theoretical information.
For example, modular forms can be used to find the number of representations of an integer as a
sum of squares. Modular forms also turn up in physics, see [43]. They occur in topics like string
theory, quantum mechanics, statistical physics and the theory of black holes.

One of the most important examples of modular forms are the Eisenstein series of weight k :

Ek(z) :=
1

2

∑
(c,d)∈Z2

gcd(c,d)=1

(cz + d)−k, (2)

for every even integer k ≥ 4.

In this thesis, we will consider the zeros and congruences of modular forms.

The study of zeros of modular forms seems to be initiated by Hardy and Ramanujan in their
paper [20] in 1919, in which they considered inverses of modular forms and needed to know the
location of the poles of these functions.
The study of zeros of modular forms is separated into two classes: the Eisenstein series and the
cuspidal Hecke eigenforms.

The study of the zeros of Eisenstein series was started by K. Wohlfahrt [44] in 1963. He
computed the zeros of Eisenstein series of low weight k (k ≤ 24) and showed that for these
weights, all the zeros lie on the unit circle {eiθ | θ ∈ [π/2, 2π/3]} inside the fundamental domain.
In [44], the author explicitly computes the corresponding modular polynomial and shows that
the zeros of this polynomial all lie in a certain bounded interval. In 1969, R.A. Rankin [34]
showed additionally that for 28 ≤ k ≤ 38, except k = 36, the zeros of the Eisenstein series all
lie on the unit circle, using a method very different from [44]. Rankin showed that for certain
weights, k ≡ 0 (mod 4), the v-th power sums of the j-invariants of the zeros of Ek equal:

(k/12) · gv + o(1),

as k increases, for a certain value gv independent of k.
Rankin conjectured that for every even k ≥ 4, the zeros of the Eisenstein series lie on the unit

circle. Rankin tried to disprove the conjecture by showing that a certain Hankel determinant
corresponding to the Eisenstein series is negative. However, in 2018 it was shown, by explicitly
computing it, that this determinant is strictly positive, see [19].
In 1970, an elementary proof was given by H.P.F. Swinnerton-Dyer and F.K.C. Rankin2[33]
showing that for even k ≥ 4, the zeros of the Eisenstein series lie on the unit circle. For the
proof, Swinnerton-Dyer and Rankin considered the real valued function:

Fk(θ) = eikθ/2Ek(eiθ),

1This is the title of Don Zagier’s 65th birthday conference [28].
2The daughter of R.A. Rankin. Swinnerton-Dyer had asked Rankin’s daughter to help, apparrently in order

to tease her father.
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and showed that on [π/2, 2π/3] the difference Rk(θ) := |Fk(θ) − 2cos(kθ/2)| is strictly smaller
than 2, and this gives a way of finding a lower bound for the number of zeros of Ek. Now the
geometry of the fundamental region implies that the number of zeros of Ek on the unit circle
has a certain upper bound, allowing them to conclude that all the zeros of Ek lie on the unit
circle. The method of Swinnerton-Dyer and Rankin can be used to prove results on the zeros of
different kinds of modular forms, even for congruence subgroups, see [16].

The method of Swinnerton-Dyer and Rankin applies for example to certain holomorphic weakly
modular forms meromorphic at i∞: Writing k ∈ Z as k = 12` + k′ for k′ = 0, 4, 6, 8, 10, 14 and
` ∈ Z, it was shown by W. Duke and P. Jenkins [13] that the forms:

fk,m = q−m +O(q`+1)

also have all their zeros in the fundamental domain on the unit circle if m ≥ |`| − `. However,
there seems to be no unifying method of proof.

For cuspidal eigenforms, the behaviour of the zeros is very different from the zeros of the Eis-
enstein series. The zeros of these forms are in fact equidistributed with respect to the hyperbolic
measure in the fundamental domain, see [35].

Many number theoretical results can deduced using congruences of modular forms. For ex-
ample, we have the surprising congruence as a power series in q established by Ramanujan [32]:

q

∞∏
n=1

(1− qn)24 ≡
∞∑
n=1

σ11(n)qn (mod 691).

It is a classical result by Deligne (for a proof see [22]) that the modular polynomial

ϕk(j) =
∏

Ek(z)=0
z 6=i,ρ

(j − j(z)), (3)

corresponding to the Eisenstein series of weight k, factors as a product of quadratic and linear
factors modulo p, if k = p− 1. These factors are the j-invariants of supersingular elliptic curves
over finite fields. In [22], it was shown that these polynomials are congruent to certain truncated
hypergeometric functions.

1.2 New Results in This Thesis

In Chapter 3, we apply the methods of Rankin’s original paper [34] to a different type of modular
form Thk, called the “Theta modular form” defined in [30]. These modular forms occur in coding
theory as “average weight enumerators”. In [30], it is conjectured that the zeros of all these forms
lie on the unit circle. We show that power sums of the j-invariants of the zeros of these modular
forms are:

(k/12) · hv + o(1),

as k increases for weights k ≡ 0 (mod 4), for a certain constant value hv.
We use the theory of orthogonal polynomials and hypergeometric functions to prove that the

associated Hankel determinant:

∆̃n :=

∣∣∣∣∣∣∣∣∣
h0 h1 h2 . . . hn
h1 h2 h3 . . . hn+1

...
...

...
. . .

...
hn hn+1 hn+2 . . . h2n

∣∣∣∣∣∣∣∣∣ .
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is strictly positive for all n ∈ N and has the factorization property:

Theorem A (Theorem 4.29). For all n > 1

∆̃n = 24n2+5n · 3n
2

· 11n · 23n ·
n∏
r=2

( (24r − 29)(24r − 17)(24r − 1)(24r − 13)

(8r − 5)2(8r − 9)(8r − 1)

)n−r+1

. (4)

Further, we look at congruences of the modular polynomials Rk corresponding to these “Theta
modular forms”. As with the polynomials ϕk, we show that the polynomials Rk are congruent
to certain truncated hypergeometric functions (lemma 4.37). Using this, we find the remarkable
factorisation property:

Theorem B (Theorem 4.33). If p ≥ 7 is a prime number with p + 1 ≡ 0, 8 (mod 24), then for
k = p+1

2 , Rk factors modulo p as a product of distinct linear factors.

We conjecture that this also holds if k ≡ 6, 10 (mod 12). In Chapter 4, we apply the methods
of Duke and Jenkins [13] to give a bound for the unique modular forms of the form:

fk,m = q−m +O(qdk), (5)

m ≤ 0, where dk is the dimension of the space of modular forms of weight k.

Lemma C (Lemma 5.3). For m ≤ 0, let fk,m be the unique form defined by (5). Then for
θ ∈ [π/2, 2π/3] we have:

|fk,m(eiθ)| ≤ 3.985 · e2πm0.65. (6)

This lemma implies that for a certain class of modular forms, the zeros all lie on the unit
circle.

Theorem D (Theorem 5.6). Let f =
∑∞
n=0 anq

n be a formal power series with real coefficients

and a0 = 1. Let f̃ be the unique modular of weight k such that

f̃ = f +O(qdk).

Let R = 1.985 and suppose that

dk−1∑
n=1

|an| · e−2πn0.65 <
2−R
2 +R

. (7)

Then all the zeros of f̃ in the fundamental domain lie on the arc {eiθ | θ ∈ [π/2, 2π/3]}.

We use a stronger version of Theorem D, (see Theorem 5.14) to prove:

Corollary E (Corollary 5.15). Consider the theta series θ0 = 1 + 2 ·
∑∞
n=1 q

n2

. Let Θk be the
unique modular form such that Θk = θ0 + O(qdk). Then all the zeros of Θk in the fundamental
domain F lie on the circular arc {eiα | α ∈ [π/2, 2π/3]}.
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2 Classical Theory of Modular Forms

In this section we recall the basic definitions and properties of modular forms needed for the
following chapters. For proofs we refer to the literature, see for example [12] or [5].

There is a natural action of the group SL2(Z) on H.

Proposition 2.1. The map

SL2(Z)×H→ H(
γ =

(
a b
c d

)
, z

)
7→ γz :=

az + b

cz + d

defines an action of SL2(Z) on H.

We denote by SL2(Z)\H the set of all orbits under this action.

Remark 2.2. In fact, the quotient space of orbits SL2(Z)\H has the structure of a Riemann
surface that can be compactified, for details see [12, §2].

We will start by defining modular forms for the group SL2(Z):

Definition 2.3 (Classical Modular Form). Let f : H → C and k a non-negative integer, f is
called a modular form of weight k if f satisfies the following three properties:

1. f is holomorphic on H

2. for all z ∈ H and γ =

(
a b
c d

)
∈ SL2(Z), we have f (γz) = (cz + d)kf(z). (f is weakly

modular of weight k)

3. f is holomorphic as z → i∞

Remark 2.4. The third part of the definition can be made more precise. For z ∈ H, write
q = e2πiz. The first and the second part of the definition imply that f can be written in the form

f = f̃(q), (8)

where f̃ is a holomorphic function on the punctured unit disk {q ∈ C | 0 < |q| < 1}. We say
that f is holomorphic as z → i∞ if f̃ can be extended to be holomorphic on the whole unit disk
{q ∈ C | |q| < 1}, for details see [12, p. 4].

As the group SL2(Z) is generated by

T =

(
1 1
0 1

)
and S =

(
0 −1
1 0

)
,

condition 2 of definition 2.3 can be reformulated as

f(z + 1) = f(z) and f

(
−1

z

)
= zkf(z) for all z ∈ H. (9)

The C-vector space of modular forms of weight k ≥ 0 will be denoted by Mk. This vector space
turns out to have finite dimension. As f(−1/(−z)) = (−1)kf(z) for any f ∈Mk, it is clear that
there are no non-zero modular forms of odd dimension. We have the following well known result
for the dimension of Mk.
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Proposition 2.5 (Dimension of Mk). If k is odd or k = 0, then Mk = {0}. If k is even, then

dim(Mk) =

{
b k12c if k ≡ 2 (mod 12),
b k12c+ 1 if k 6≡ 2 (mod 12).

(10)

Proof. See [5, Theorem 2.11].

The following proposition gives us a way to count the number of zeros/poles of a meromorphic
weakly modular form, meromorphic at i∞.

Proposition 2.6 (Valence Formula). Let f be a non-zero meromorphic weakly modular form of
weight k on H. Then we have:

ordi∞(f) +
1

2
ordi(f) +

1

3
ordρ(f) +

∑
[w]∈SL2(Z)\H−{[i],[ρ]}

ordw(f) =
k

12
(11)

Remark 2.7. Here ordi∞(f) := ordq=0(f̃), where f̃ is the Fourier-expansion of f as in (8). As the
factor (cz + d)k in part 2 of definition 2.3 has no zeros/poles on H, the order of a meromorphic
weakly modular form at a point depends only on the SL2(Z)-orbit of that point.

Definition 2.8 (Fundamental Domain). Let F ⊂ H ∪ {i∞} be the set

F :={z ∈ H | |z| > 1,−1/2 < Re(z) < 1/2}
∪ {z ∈ H | |z| ≥ 1,Re(z) = −1/2} ∪ {z ∈ H | |z| = 1,−1/2 < Re(z) ≤ 0} ∪ {i∞}.

Then we call F the fundamental domain.

Figure 1: The striped region is the fundamental domain F , the picture is taken from [3].

Proposition 2.9. Every element z ∈ H is in the SL2(Z)-orbit of a unique element in F .

Proof. See [5, p. 11].

Remark 2.10. Using the previous remark 2.7, we see that it suffices to find zeros/poles of a
modular form in the fundamental region F .
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2.1 Examples of Modular Forms

Let k ≥ 4 be an even integer, then for z ∈ H we define the Eisenstein series of weight k as

Gk(z) =
∑
c,d∈Z

(c,d) 6=(0,0)

1

(cz + d)k
. (12)

This series is absolutely convergent (see for example [5, Proposition 2.1.]) and is a modular form
of weight k. Now define

σt(n) =
∑
d|n
d>0

dt,

and for k ≥ 0, let Bk be the k-th Bernoulli number. The q-expansion of this modular form equals

Gk(z) = − (2πi)kBk
k!

+ 2
(2πi)k

(k − 1)!

∞∑
n=1

σk−1(n)qn,

for a proof, see [5, p. 19]. It is useful to normalize Gk such that the constant term in the
q-expansion equals 1. So we define

Ek(z) = − k!

(2πi)kBk
Gk, (13)

=
1

2

∑
c,d∈Z

gcd(c,d)=1

1

(cz + d)k
. (14)

For the last equality see [12, §4.1]. The Fourier expansion of Ek is given by

Ek(z) = 1− 2k

Bk

∞∑
n=1

σk−1(n)qn. (15)

It will also be useful to the define the Eisenstein series of weight 2, E2. Although the series in
(12) fails to converge if k = 2, it still makes sense to define E2 from the q-expansion in (15). E2

is not a modular form, although it is a quasimodular form.

Example 2.11. By the valence formula 2.6 we have that E4 only has a zero in (the SL2(Z)-orbit
of) z = ρ. One can also explicitly see that

E4(ρ) = E4

(
−1− 1

ρ

)
= ρ4E4(ρ),

so that E4(ρ) = 0.

Now define ∆ : H→ C as

∆ =
E3

4 − E2
6

1728
(16)

This is a modular form of weight 12, having the Fourier expansion

∆(z) = q − 24q2 + 252q3 +O(q4).

Modular forms with a q-expansion having constant term equal to zero are called cusp forms
(equivalently, modular forms having a zero at i∞).

We can also write down an explicit basis for the C-vector space of modular forms Mk.
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Lemma 2.12. Let k ≥ 4 be an even integer. Write k uniquely as k = 12nk + 6ak + 4bk, where
nk is a non-negative integer, ak ∈ {0, 1} and bk ∈ {0, 1, 2}. Then a basis of Mk is given by
B = {Ebk+3i

4 Eak6 ∆nk−i | for 0 ≤ i ≤ nk}.

Proof. Looking at the q-expansions of the elements in B, we note that all the elements are linearly
independent. As there are nk+1 elements in B, this must give a basis for Mk using the dimension
formula, see proposition 2.5.

One can check that the only modular forms of weight 0 are the constant functions, see [5, p.
30]. It is therefore useful to relax the notion of modular forms of weight 0. We call a meromorphic
function g : H→ C a modular function if it is weakly modular of weight 0 and meromorphic at
i∞, i.e. the q-expansion of g is a Laurent series. An example of such a function is the modular
j-invariant:

j(z) =
E3

4

∆
.

j(z) =
1

q
+ 744 + 196884q + 21493760q2 +O(q3).

Proposition 2.13. The set of modular functions F form a field, and F = C(j), where j is the
modular j-invariant.

Proof. See [2, Theorem 2.8].

Proposition 2.14. The modular j-invariant j : SL2(Z)\H→ C defines a bijection.

Proof sketch. For any c ∈ C, the modular function j(z) − c has a unique zero, by the valence
formula (11).

Define R ⊂ F as

R = F ∩ ({z ∈ H | Re(z) = −1/2} ∪ {z ∈ H | Re(z) = 0} ∪ {eiθ | θ ∈ (π/2, 2π/3)}).

Proposition 2.15. Let z ∈ F , then j(z) ∈ R if and only if z ∈ R.

Proof. First of all, if z ∈ {z ∈ H | Re(z) = −1/2} ∪ {z ∈ H | Re(z) = 0}, then e2πiz ∈ R. As
the Fourier coefficients of the Eisenstein series Ek are all real, the Fourier coefficients of j are
also real. We conclude that j(z) ∈ R. Now assume that z ∈ {eiθ | θ ∈ (π/2, 2π/3)}, again as the
Fourier coefficients are all real, we have that j(z) = j(−z). As z lies on the unit circle, we have
(using modularity)

j(−z) = j(−1/z) = j(z).

Hence j(z) ∈ R if z ∈ R.
For the converse we observe from the q-expansion of j that

lim
t→∞

j(−1/2 + it) = −∞,

lim
t→∞

j(it) =∞.

Now j|R : R → R defines a continuous map on a connected set R ⊂ C, so that j(R) ⊂ R is
connected. We see that j(R) is an interval, and this interval must be (−∞,∞) = R.

10



2.2 Modular Forms for Congruence Subgroups

Modular forms can also be defined for certain subgroups of SL2(Z), the congruence subgroups.
Let N ∈ N and let

Γ(N) =
{
γ ∈ SL2(Z) | γ ≡

(
1 0
0 1

)
(mod N)

}
.

Γ(N) is a subgroup of SL2(Z) and is called the principal congruence subgroup of level N .

Definition 2.16. A congruence subgroup is a subgroup Γ ⊂ SL2(Z) such that Γ(N) ⊂ Γ for
some N ∈ N. The minimal N is called the level of the subgroup Γ.

Example 2.17. In practice we will only need the following two types of congruence subgroups:

Γ0(N) =
{
γ ∈ SL2(Z) | γ ≡

(
∗ ∗
0 ∗

)
(mod N)

}
,

Γ1(N) =
{
γ ∈ SL2(Z) | γ ≡

(
1 ∗
0 1

)
(mod N)

}
.

Note that if N = 1 both these groups coincide with SL2(Z).

Definition 2.18. A holomorphic function f : H → C is a modular form of weight k for a
congruence subgroup Γ if f is weakly modular of weight k for the subgroup Γ and holomorphic
at the cusps of Γ, for more details see [5, Section 3.3].

2.3 The Theta and Eta Function

We will give some basic examples of modular forms on congruence subgroups.

Definition 2.19. For τ ∈ H define

θ0(τ) := 1 + 2

∞∑
n=1

qn
2

(q = e2πiτ ),

θ0 is called the Jacobi theta function. θ0 satisfies the transformation

θ0

(
z

4z + 1

)
=
√

4z + 1θ0(z), (17)

see [12, p. 12], where we take the principal branch of the square root. As the congruence

subgroup Γ1(4) is generated by

(
1 1
0 1

)
and

(
1 0
4 1

)
, see [5, Example 3.9], θ2

0 is a modular form

of weight 1 for Γ1(4).

Definition 2.20. For τ ∈ H define the Dedekind eta function

η(τ) = eπiτ/12
∞∏
n=1

(1− qn).

The function η is not a modular form in the sense of definition 2.3, but it is a modular form
with a “multiplier system” as:

η(τ + 1) = eπi/12η(τ) (18)

11



and
η(− 1

τ ) =
√
−iτη(τ) (see [39]), (19)

where the square root is taken to have a positive real part. Note that η24 is a modular form
of weight 12 for the full modular group SL2(Z). As the space of weight 12 cusp forms is 1-
dimensional, we find the product expansion for ∆,

∆ = q

∞∏
n=1

(1− qn)24. (20)

This product formula can be used to write the Eisenstein series E2 as the logarithmic derivative
of ∆. Comparing the coefficients in the q-expansion of E2, we see that

E2 =
∆′

∆
, (21)

where the derivative is with respect to 1/(2πi)τ . Using the modularity of ∆, we find the trans-
formation rule for E2:

E2

(
az + b

cz + d

)
=

6c(cz + d)

πi
+ (cz + d)2E2, (22)

where

(
a b
c d

)
∈ SL2(Z).
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3 Eisenstein Series: Zeros and Congruences

In this section we will study properties of Eisenstein series. First we discuss the zeros of Eisenstein
series. In [33] H.P.F. Swinnerton-Dyer and Rankin showed that the zeros of the Eisenstein series
lie on the unit circle in the fundamental domain F . Their proof was very elementary and short,
only two pages long. We will present their proof. Further, we will discuss R.A. Rankin’s original
argument [34].

Next, we will discuss certain congruences related to the Eisenstein series. We will follow the
argument of [22], showing that the modular polynomial corresponding to the Eisenstein series of
weight p− 1 for p prime, factors as a product of quadratic and linear factors modulo p.

3.1 Zeros of Classical Eisenstein Series: The Classical Proof

We will now show that the zeros of the classical Eisenstein series lie on the circular arc of the
fundamental domain F , following the argument of Swinnerton-Dyer and Rankin in [33]. Showing
that the zeros lie on this arc will be equivalent to showing that the j-invariants of all the zeros
are real and lie in the interval [0, 1728].

We first start with an easy lemma.

Lemma 3.1. Suppose f is a modular form of weight k with real Fourier coefficients. Then

g(eiθ) := eikθ/2f(eiθ)

is real for θ ∈ [π/2, 2π/3].

Proof. It suffices to show that g(eiθ) = g(eiθ). Write

f(z) =

∞∑
n=0

ane
2πinz

and let z := eiθ. As all the an are real,

g(z) = e−ikθ/2f(−z̄)
= e−ikθ/2f(−1/z)

= e−ikθ/2zkf(z) (using the modularity of f)

= g(z).

Theorem 3.2 (Swinnerton-Dyer and Rankin [33]). Let Ek be the Eisenstein series of weight
k ≥ 4. Write k in a unique way as k = 12nk+6ak+4bk, nk ∈ Z≥0, ak ∈ {0, 1} and bk ∈ {0, 1, 2}.
Then all the zeros z 6= i, ρ in F of Ek are distinct and lie on the arc {eiθ| θ ∈ (π/2, 2π/3)}.
Furthermore, ordi(Ek(z)) = ak and ordρ(Ek(z)) = bk.

Proof. We will follow the proof of [33]. We can assume k > 10, as the zeros of Ek for k ≤ 10
are determined by the valence formula (11). Using the valence formula, we see that Ek has at
most nk zeros in F \ {i, ρ}. Hence it will suffice to prove there are at least nk zeros on the arc
{eiθ|θ ∈ (π/2, 2π/3)}. For this, we consider a scaled function

Fk(θ) := eikθ/2Ek(eiθ)

13



on (π/2, 2π/3) and compare the zeros of Fk with the zeros of 2cos(kθ/2). Note that the Fourier-
coefficients of Ek are all real, so lemma 3.1 implies that Fk(θ) is real for θ ∈ (π/2, 2π/3). Using
(14), we can write

Fk(θ) =
1

2

∑
c,d∈Z

gcd(c,d)=1

1

(ceiθ/2 + de−iθ/2)k
.

Now we can split this sum into two parts, a part where c2 +d2 = 1 and a part where c2 +d2 > 1,
let Rk(θ) be the latter part. Hence we can write

Fk(θ) = 2cos(kθ/2) +Rk(θ).

The goal is to show that |Rk(θ)| < 2 for all θ ∈ (π/2, 2π/3). Since |Rk(θ)| < 2 implies that
Fk(4rπ/k + 2π/k) < 0 for all integers r ∈ [k8 −

1
2 ,

k
6 −

1
2 ] and Fk(4sπ/k) > 0 for all integers

s ∈ [k8 ,
k
6 ] it follows that Fk(θ) changes sign at least nk times. Showing that Fk has at least nk

distinct zeros on (π/2, 2π/3).
It remains to show that |Rk(θ)| < 2. First of all we have that

|ceiθ/2 + de−iθ/2|2 = c2 + d2 + 2cd · cos(θ),

and since − 1
2 ≤ cos(θ) ≤ 0, we have

c2 + d2 + 2cd · cos(θ) ≥ 1

2
(c2 + d2).

So that
|ceiθ/2 + de−iθ/2|−k ≤ ( 1

2 (c2 + d2))−k/2. (23)

We will give a upper bound for Rk(θ) by giving an upper bound for the sum with terms (c, d)
with c2 + d2 = N for N > 1. The number of terms with c2 + d2 = N is bounded by 2(2

√
N + 1),

as any c can be chosen in {−b
√
Nc, ..., b

√
Nc} giving at most two choices for d. For N ≥ 5 we

have 2(2
√
N + 1) ≤ 5

√
N so that

1

2

∑
c,d∈Z

c2+d2>5
gcd(c,d)=1

1

|ceiθ/2 + de−iθ/2|k
≤ 1

2

∞∑
N=10

5
√
N( 1

2N)−k/2.

One can check that the terms in the right sum decrease monotonously as N increases, so that
the sum can be bounded by an integral

∞∑
N=10

5
√
N( 1

2N)−k/2 ≤ 5 ·
(

1
2

)−k/2 ∫ ∞
9

x
1
2 (1−k)dx = 270

1

(k − 3)(4.5)k/2
.

Now the sum of terms with c2 +d2 = 5 is bounded by 2 · (5/2)−k/2, using (23). For the terms
where c = d = ±1 we have

|ceiθ/2 + de−iθ/2|2 = 2 + 2cos(θ) ≥ 1.

Finally for the terms c = ±1 and d = −c we have using (23)

|ceiθ/2 + de−iθ/2|2 = 2− 2cos(θ) ≥ 2.

14



We can now derive an upper bound for Rk(θ):

|Rk(θ)| < 1 +
1

2k/2
+ 2 · (2/5)k/2 + 135

1

(k − 3)(4.5)k/2
. (24)

As this expression is decreasing in k, we can compute an upper bound taking k = 12 on the right
of (24), which gives for k ≥ 12:

|Rk(θ)| < 1 + 0.015625 + 0.008192 + 0.00180641 < 2,

finishing the proof.

Remark 3.3. From the proof of 3.2 it follows that if we divide the arc A = {eiθ| θ ∈ (π/2, 2π/3)}
into nk sub-arcs of equal length, any such sub-arc contains exactly one zero of Ek. Therefore, it
follows that the set of zeros of Ek for k = 4, 6, ... become equidistributed on A with respect to θ.

Example 3.4.

Figure 2: The graph of eikθ/2Ek(eiθ) (blue) and 2cos(kθ/2) (red) for k = 24 on (π/2, 2π/3).

Using proposition 2.15 we know that the j-invariant is real on the arc A. Since j is a bijection
from the fundamental domain to C, S ⊂ C is connected and we have j(ρ) = 0 and j(i) = 1728,
we must have that j(S) = [0, 1728]. Hence we can rephrase the previous theorem.

Theorem 3.5. For all zeros z ∈ F , z 6= i, ρ of Ek, we have that the j(z)′s are real, distinct and
j(z) ∈ (0, 1728).

Now consider the following polynomials, for k ∈ Z even and k ≥ 4:

ϕk(X) =
∏

z∈H,Ek(z)=0
j(z) 6=0,1728

(X − j(z)).

A priori, this will be a real polynomial, but it will turn that it has rational coefficients. The
degree of this polynomial is exactly nk, with nk as in the previous theorem.

15



Showing that the nk zeros of Ek are on the arc S = {eiθ| θ ∈ (π/2, 2π/3)} is therefore
equivalent to showing that the roots of the polynomials ϕk are all real and lie in the interval
(0, 1728).

Proposition 3.6. Write k uniquely as k = 12nk+6ak+4bk, where nk is a non-negative integer,
ak ∈ {0, 1} and bk ∈ {0, 1, 2}. Then there exist a monic polynomial Pk(X) ∈ Q[X] of degree nk
such that

Ek = Pk(j)∆nkEbk4 Eak6 .

Furthermore Pk(X) = ϕk(X), so that ϕk(X) has rational coefficients.

Proof. Using proposition 2.12, we can write Ek as a rational linear combination of elements
Ebk+3i

4 Eak6 ∆nk−i, where i is an integer 0 ≤ i ≤ nk. Dividing by ∆nkEbk4 Eak6 shows that

Ek

∆nkEbk4 Eak6

is a polynomial with rational coefficients in the j-invariant of degree nk. For any of the nk zeros
z of Ek with j(z) 6= 0, 1728, we must have that Pk(j(z)) = 0. As all these zeros are distinct and
both polynomials Pk and ϕk are monic, we must have that ϕk(X) = Pk(X). Hence ϕk(X) has
rational coefficients.

Example 3.7 (Examples of polynomials ϕk).

k ϕk(X)

4 1

6 1

8 1

10 1

12 X − 432000
691

14 1

k ϕk(X)

16 X − 3456000
3617

18 X − 9504000
43867

20 X − 209520000
174611

22 X − 35424000
77683

24 X2 − 340364160000
236364091 X + 30710845440000

236364091

26 X − 457920000
657931

Remark 3.8. From the Fourier expansion of Ek it is clear that the denominator of the coefficients
of ϕk(X) is given by the numerator of Bk/k.

We will use a recursion on the Eisenstein series to compute these polynomials. For this we define
the well known Weierstrass-℘ function. Define for a lattice Λ ⊂ C the Weierstrass-℘ function as

℘Λ(z) =
1

z2
+

∑
w∈Λ−{0}

(
1

(z − w)2
− 1

w2

)
, (25)

defined for z ∈ C\Λ.

Proposition 3.9 ([12, Prop. 1.4.1.]). For τ ∈ H, let Λτ = Z⊕ τZ ⊂ C be a lattice.

(i) ℘Λτ satisfies the relation

(℘′Λτ (z))2 = 4(℘Λτ (z))3 − 60G4(τ)℘Λτ (z)− 140G6(τ). (26)
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(ii) The Laurent series expansion of ℘Λτ is given by

℘Λτ (z) =
1

z2
+
∑
n=2
n even

(n+ 1)Gn+2(τ)zn. (27)

for all z such that 0 < |z| < inf{|w| : w ∈ Λ− {0}}.

Proof. See [12, Prop. 1.4.1.].

We see from 3.9.i that the Eisenstein series occur as the coefficients of the Weierstrass-p
function. Taking the derivative with respect to z on both sides of (27) and dividing out 2℘′λτ
yields the following:

Corollary 3.10. The function ℘λτ satisfies

℘′′λτ = 6℘2
λτ − 30G4(τ). (28)

For notational purposes let Fk := − 1
(k−2)!

Bk
2k Ek.

Proposition 3.11. For k ≥ 4 even, we have the following recursion:

(k − 2)(k + 5)Fk+4 = 12(F4Fk + F6Fk−2 + ...+ FkF4). (29)

Proof. This follows from comparing the coefficients of zk in (28).

As Es = Ps(j)∆
nsEbs4 E

as
6 for any even integer s ≥ 4, we can substitute this relation in (29)

to give a recurrence relation between the polynomials ϕs.
Consider the following table of integer tuples:

(0,0) (1,1) (0,0) (0,1) (1,0) (0,1)
(0,0) (1,0) (1,0) (0,0) (1,0) (1,0)
(0,0) (0,1) (0,0) (0,1) (0,0) (0,1)
(0,0) (1,0) (0,0) (0,0) (1,0) (0,0)
(0,0) (1,1) (1,0) (0,1) (1,0) (1,1)
(0,0) (0,0) (0,0) (0,0) (0,0) (0,0)

Let α(i, j) denote the integer tuple corresponding to the the i-th row and j-th column in the
table, counting from 0. Let α(i, j)(t) denote the t-th coordinate of the tuple α(i, j) for t ∈ {0, 1}.

Proposition 3.12. For i ≥ 4 even, let vi,k = α(k/2 (mod 6), i/2 (mod 6)) and let vi,k(t) be the
t-th coordinate of vi,k for t ∈ {0, 1}. For even k ≥ 4 we have the following recursion:

ϕk+4(X) =
βk+4

β
bk+4

4 β
ak+4

6

12

(k − 2)(k + 5)

k∑
i=4
i even

(β−3
4 X)vi,k(0)(β−2

6 (X−1728))vi,k(1)ϕi(X)ϕk+4−i(X).

(30)

Where βk = − (k−2)!2k
Bk

and ϕ4 = ϕ6 = 1.

Proof. This follows from (29), keeping track of all the constants.
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This recursion, however, does not seem to give any (extra) information on the zeros of Ek.
This is different in the function field analogue, where such a recursion can be used to prove the
analogue of 3.5, see [9] and [10].

Using a similar argument as the one Swinnerton-Dyer and Rankin gave in [33], it has been
shown that the zeros of the Eisenstein series have interlacing properties.

Theorem 3.13 (Interlacing Property [27]). Let k ≥ 12 be an even integer, and let Ek be the
Eisenstein series of weight k for SL2(Z). Let {eiaj | a1 < ... < ank} be the zeros of Ek on
F−{i, ρ} and let {eibj | b1 < ... < bnk+1} be the zeros of Ek+12 on F−{i, ρ}. Then bj < aj < bj+1

for j = 1, 2..., n.

As the j-invariant is increasing on the arc S as the argument is decreasing, we have that
{ϕk, ϕk+12, ...} also has the interlacing property (k ≥ 14 and even). Furthermore, experiments in
[17] suggest that all the polynomials ϕk are irreducible with the full symmetric group as Galois
group. The interlacing property, simplicity and reality of the roots of ϕk suggests some relations
with orthogonal polynomials, see propositions 3.50 and 3.51 below.

3.2 Congruence Properties of Eisenstein Series

It will turn out that the polynomials ϕk have remarkable congruence properties. We will discuss
these properties and the relationship with supersingular elliptic curves defined over a finite field.
The main reference of this section will be [17]. For general definitions and basic results on elliptic
curves, we refer to [40].

We will first discuss congruences of Eisenstein series. We start with the following well-known
lemma.

Lemma 3.14 (Von Staudt-Clausen). The value

Bn +
∑

(p−1)|n

1

p

is an integer for every even n.

From this, we see that the denominator of Bn is exactly divisible by all primes p such that
(p− 1)|k. As a consequence from the Fourier-expansion of Ek, we see that

Ek ≡ 1 (mod p), (31)

if (p− 1)|k, where the congruence means (mod p) as power series. Furthermore for the polyno-
mials ϕk we find

Proposition 3.15. If k ≡ 0 (mod p− 1), all the coefficients of ϕk are p-integral.

Proof. The Fourier coefficients of Ek are p-integral, hence the polynomials ϕk are p-integral.

We now explain the relation with elliptic curves. Let E be an elliptic curve defined over Fp,
p ≥ 5 a prime.

Proposition 3.16. Let E,E′ be two elliptic curves over Fp. Then E is isomorphic to E′ over
Fp if and only if they have the same j-invariant.

Proof. See [40, Proposition 1.4.].
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We call E supersingular if the group E(Fp) has no p-torsion.

Proposition 3.17. Let E,E′ be two elliptic curves over Fp and E is isomorphic to E′ over Fp.
Assume that E is supersingular. Then E′ is also supersingular.

Hence we see that the j-invariants of elliptic curves fully determine whether an elliptic curve
is supersingular. Now consider the following monic polynomial:

ssp(X) :=
∏
E/∼=,

E is supersingular

(X − j(E)), (32)

where E/ ∼= is the set of elliptic curves up to Fp-isomorphism and p ≥ 5 a prime number. This
polynomial lies in Fp[X] as the set of supersingular j-invariants is invariant under the Frobenius
endomorphism, see [40, Theorem 3.1.].
We have the following surprising result for the polynomials ϕk:

Theorem 3.18. jbp−1(j − 1728)ap−1ϕp−1 ≡ ssp (mod p).

Proof. See [22].

Remark 3.19. It is a general fact (see [40, Theorem 3.1]) that the j-invariants of supersingular
elliptic curves lie in Fp2 , so this means that the polynomial ϕp−1 factorises over Fp as products
of only linear and quadratic terms.

In [22, §10] it was shown that the roots of ϕp−1(mod p) lie in Fp2 using modular polynomials,
without using knowledge of supersingular elliptic curves over finite fields. We will present this
proof here.

For an integer N > 1, we can define the Modular Polynomial ΦN (X,Y ) ∈ Z[X,Y ]. This
polynomial will parametrize N -isogenous elliptic curves over C. For the construction of this
polynomial we follow [11, p. 229]. Let Γ0(N)γi be the right cosets of C(N) := Γ0(N)\ SL2(Z)
for i = 1, ..., |C(N)|. Then for any τ ∈ H we consider

ΦN (X, τ) :=

|C(N)|∏
i=1

(X − j(Nγiτ))

as a polynomial in the variable X. As j(Nτ) is a modular function for Γ0(N), it is easy to
see that this polynomial is well-defined. As the coefficients of this polynomial are symmetric
polynomials in the j(Nγiτ), we see that coefficients are invariant under the action of SL2 (Z).
Clearly these coefficients are holomorphic in τ , showing that the coefficients are polynomials
in the j-invariant, so this defines a polynomial ΦN (X,Y ) ∈ C[X,Y ]. We have the following
properties for the modular polynomial:

Theorem 3.20 ([11, Theorem 11.18]). Let N be a positive integer.

i ΦN (X,Y ) ∈ Z[X,Y ].

ii If N is a prime p, ΦN (X,Y ) ≡ (Xp − Y )(X − Y p) mod pZ[X,Y ].

Proof. See [11, p. 231].

This last identity is also called Kronecker’s congruence. Further we can relate the modular
polynomials to elliptic curves over C. For E = Eτ ∼= C/(Z ⊕ τZ), define the j-invariant of Eτ
as j(τ), where j is the modular j-invariant. For elliptic curves E,E′ over C, if α : E → E′ is an
isogeny, we say that α is cyclic if the kernel is cyclic.
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Theorem 3.21 ([11, Theorem 14.11]). let E and E′ be elliptic curves over C. Then there is a
cyclic isogeny α from E to E′ of degree N > 1 if and only if ΦN (j(E), j(E′)) = 0.

Proof. See [11, p. 315].

Theorem 3.22. ϕp−1(mod p) factors as a product of linear and quadratic factors.

Proof. We will follow the proof of [22, §10]. Consider the holomorphic function

ψp(j(τ)) :=
j(τ)p − j(pτ)

p
.

We will consider this function as a Laurent series in j−1, so that ψ(j) ∈ Z((j−1)). Let Φp(X,Y ) ∈
Z[X,Y ] be the modular function as defined before. Kronecker’s identity (3.20) gives

Φp(X,Y ) ≡ (Xp − Y )(X − Y p) + pRp(X,Y ), (33)

for R ∈ Z[X,Y ]. Clearly the elliptic curves Eτ and Epτ are p-isogenous, so that

Φp(j(τ), j(pτ)) = 0. (34)

Using (33) and (34) we deduce that

ψp(j(τ))(j(pτ)p − j(τ)) = Rp(j(τ), j(pτ)). (35)

As j(pτ) ≡ j(τ)p (mod p) (for any F ∈ Z((X)) we have F (Xp) ≡ F (X)p (mod p)), we find that

ψp(j) ≡
Rp(j, j

p)

jp2 − j
(mod p). (36)

From the last equation we see that the poles of the Laurent series ψp(j) are all simple and lie
in Fp2 . The idea is to show that roots of the polynomial ϕ̃p−1 := ϕp−1(mod p) are the poles of
ψp(j), showing that the roots of ϕ̃p−1 are all in Fp2 .

We compute the derivative of ψp(j(τ)) with respect to τ , (the derivative is defined to be
1

2πi
d
dτ ) to find

dψp(j)

dj
= j(τ)p−1 − j′(pτ)

j′(τ)
≡ j(τ)p−1 − j′(τ)p−1 (mod p). (37)

as Laurent series in j−1. As usual, write

Ep−1 = ∆np−1E
bp−1

4 E
ap−1

6 ϕp−1,

where p− 1 = 12np−1 + 4bp−1 + 6ap−1. Using (31), we have that Ep−1 ≡ 1 (mod p), so that

ϕ̃p−1 ≡ ∆−np−1E
−bp−1

4 E
−ap−1

6 (mod p). (38)

As

j′(τ) = −E6(τ)

E4(τ)
j(τ),

we find using (38)

j′(τ)p−1 = Ep−1
6 E

2(p−1)
4 ∆−(p−1)

≡ (E3
4)8np−1+4bp−1+4ap−1(E2

6)6np−1+2bp−1+4ap−1∆−14np−1−6bp−1−8ap−1

· ϕ̃−2
p−1E

−6bp−1

4 E
−4ap−1

6 ∆2bp−1+2ap−1 (mod p),

≡ j8np−1+4bp−1+4ap−1(j − 1728)6np−1+2bp−1+4ap−1

(ϕ̃p−1jbp−1(j − 1728)ap−1)2
(mod p).
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Let Sp(j) :≡ ϕ̃p−1j
bp−1(j − 1728)ap−1 (mod p), we now find

dψp
dj
≡ jp−1 − j8np−1+4bp−1+4ap−1(j − 1728)6np−1+2bp−1+4ap−1

Sp(j)2
(mod p). (39)

As all the poles of
dψp
dj are in Fp2 , we conclude using (39) that the zeros of Sp and hence of ϕ̃p−1

lie in Fp2 .
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3.3 Power Sums of the zeros of Modular Forms

In this section we study power sums of Eisenstein series, based on the ideas of R.A. Rankin [34].
Given a modular form h, Rankin [34] estimates the j-invariants of the roots of h by computing
a certain sum of residues in two different ways.
Let F be a meromorphic function on H and suppose F (z + 1) = F (z) for all z ∈ H, i.e. F has
a Fourier-expansion G(q). Furthermore, suppose F is meromorphic at i∞. This means that on
{q ∈ C | 0 < |q| < 1}, the function G(q) can be extended to a meromorphic function on the
whole open unit disk.
We define a sum of residues of F as follows:

R(F ) :=
1

2
resi(F ) +

1

3
resρ(F ) + resq=0(G/q) +

∑
z∈F−{[ρ],[i],i∞}

resz(F ), (40)

where the “res” is the residue defined as usual for a meromorphic function. From now on, let
the derivative be with respect to 1

2πiτ .

Definition 3.23 (Generalized weakly modular form). Suppose f : H → C is a meromorphic
function and suppose

f

(
az + b

cz + d

)
= ε(a, b, c, d)(cz + d)k · f(z), (41)

where ε(a, b, c, d) ∈ C with unit modulus and k ∈ Z. Furthermore suppose f has a q-expansion

f(z) =
∑
n≥n0

anq
n/N ,

for some n0 ∈ Z and N ∈ N. We call f a weakly modular form with multiplier system ε.

Lemma 3.24. Suppose g is a modular function and f is a non-zero modular function with
multiplier system ε (i.e. k = 0). Then the meromorphic function

g
f ′

f

is 1-periodic and

R

(
g
f ′

f

)
= 0. (42)

Proof. The fact that g f
′

f is 1-periodic is easy to see and follows immediately from the definition

of a generalized weakly modular form. We will prove (42) by integration over the boundary of

the fundamental region F in two different ways. First we assume that g f
′

f has no poles on the

boundary of F . Let BB′, CC ′ and DD′ in figure 3 be arcs of small radius ε > 0, let AE be high

enough and ε small enough such that all the possible poles of g f
′

f in F lie in the region (which

we will call W ) with boundary C, see figure 3. Now by the residue theorem we have∮
C
g
f ′

f
= 2πi

∑
p∈W

resp

(
g
f ′

f

)
. (43)
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Figure 3: The contour integral C, picture taken from [5]

On the other hand,∮
C
g
f ′

f
=

(∫ B

A

+

∫ B′

B

+

∫ C

B′
+

∫ C′

C

+

∫ D

C′
+

∫ D′

D

+

∫ E

D′
+

∫ A

E

)
g
f ′

f
.

Clearly, using modularity we have (∫ B

A

+

∫ E

D′

)
g
f ′

f
= 0.

Furthermore if we write ε′ = ε(0, 1,−1, 0), we see that(
g
f ′

f

)
(−1/z) = g(z)

z2ε′f ′(z)

ε′f(z)
= z2g(z)

f ′(z)

f(z)
.

So that (∫ C

B′
+

∫ D

C′

)
g
f ′

f
= 0.

Lastly, if ε→ 0, we see that(∫ B′

B

+

∫ D′

D

)
g
f ′

f
→ −1

3
ordz=ρ

(
g
f ′

f

)
,

∫ C′

C

g
f ′

f
→ −1

2
ordz=i

(
g
f ′

f

)
.
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Further, as there are no poles above the line AE in F we have using the residue theorem∫ E

A

g
f ′

f
= 2πi resz=i∞ g

f ′

f
= resq=0

(
g
f ′

q · f

)
.

If any pole lies on the boundary of F , we will exclude it from the region W by drawing small
half semicircles (of radius ε) around them. The result now follows.

Proposition 3.25. Let g be a modular function and h be a modular form of weight k, then

R

(
g
h′

h

)
=

k

12
R (gE2) .

Again the derivatives are with respect to q.

Proof. We will follow the proof of [34]. Let f = h · η−2k, where η is the eta function. Note that
f is a modular function with respect to a certain multiplier ε. Now if we apply proposition 3.24
to f and g, and use that η′ = 1

24 · E2η, we find

R

(
g
h′ · η−2k − 1

12k · h · η
−2kE2

f

)
= 0. (44)

From this we deduce

R

(
g
h′

h

)
=

k

12
R (gE2) . (45)

Remark 3.26. Note that this result implies that the sum of residues of gh′/h on F only depends
on the choice of modular function g.

Now, let v be a non-negative integer. Then proposition 3.25 can be applied to the modular
function

g = jv,

where j is the modular j-invariant. As the only possible pole of jvE2 is the pole at i∞, R(jvE2)
is simply the constant coefficient in the q-expansion of jvE2. If we write jv = q−v

∑∞
n=0 an,vq

n,
then

gv := R(jvE2) = av,v − 24
v∑

m=1

av−m,vσ1(m). (46)

As the an,v are integers, so are the numbers (46).

Example 3.27 (Examples of values gv).

g0 = 1, g1 = 720, g2 = 911520, g3 = 130101120, g4 = 1958042030400;

We have, using proposition 3.25,

R

(
jv
h′

h

)
= kgv/12

for any modular form h of weight k. Now we can also compute R(jvh′/h) in a different way.
Note that the possible poles of jvh′/h consist of the pole at i∞ (j has a simple pole at i∞)
and the zeros of h. Hence this residue should contain information about the zeros of h. Let

24



r∞(jvh′/h) be the residue of jvh′/h at i∞, i.e. the constant term in the q-expansion of jvh′/h.
So we can write

R

(
jv
h′

h

)
= r∞

(
jv
h′

h

)
+ S

(
jv
h′

h

)
where S(jvh′/h) is the sum of the residues in the finite part of F . As before, if we write
k = 12nk + 6ak + 4bk for ak ∈ {0, 1} and bk ∈ {0, 1, 2}, then by the valence formula ordi(h)− ak
and ordρ(h)− bk are multiples of 2 respectively 3. By definition we have

S (jvh′/h) =
1

2
akj

v(i) +
1

3
bkj

v(ρ) + S∗
(
jv
h′

h

)
=

1

2
ak1728v +

1

3
bk0v + S∗

(
jv
h′

h

)
where

S∗(jvh′/h) =
∑

x∈F−{i,ρ}
h(x)=0

j(x)v +
ordi(h)− ak

2
j(i)v +

ordi(h)− ak
3

j(ρ)v,

counted with multiplicity. Hence S∗ is the sum over nk, not necessarily distinct, j-invariants of
the zeros of h. So we conclude, using 3.25

kgv/12 = r∞

(
jv
h′

h

)
+ S

(
jv
h′

h

)
. (47)

This gives us a way of computing the j-invariants of the zeros of h in terms of the residue at i∞
and the values gv.

Remark 3.28. Suppose h is a modular form with only rational Fourier coefficients. In that
case r∞(jvh′/h) is clearly rational for all non-negative integers v and therefore all the power
sums of the j-invariants of the nk roots (again where i and ρ are counted with weight 2 and
3 respectively) of h are rational. If one construct a monic polynomial Ph of degree nk having
exactly the j-invariants of the nk roots of h as zeros, this will be a rational polynomial. As a
consequence, the j-invariants of all the roots of h are algebraic over Q. Furthermore, due to a
result of Schneider (1973) [37] we know that if j(z) is algebraic, then either z is transcendental
over Q or z is imaginary quadratic.
In theorem 3.2 we showed that the nk zeros of Ek all lie on the arc {eiθ | θ ∈ (π2 ,

2π
3 )}. As

there are no imaginary quadratic numbers on this arc, it follows that the nk zeros of Ek are
transcendental over Q.

The idea is to apply (47) to Eisenstein series. Let h = Ek be the Eisenstein series of weight
k, so that for any non-negative v, the sum S∗ gives precisely the sum of j(x)v over the nk roots
x of Ek (again, we count i and ρ with weight 1/2 and 1/3 respectively). This gives systems of
equations:

nk∑
i=1

j(xi)
v = kgv/12− r∞

(
jv
E′k
Ek

)
− ak

2
1728v, for v = 1, ..., n (48)

where {x1, ..., xnk} is the set of nk roots of Ek and we hope to solve j(xi) for all i from this
equation (if j(xj) = 1728 or j(xj) = i turns out to be a solution, we have to count the root xj
with multiplicity 2 or 3 respectively).
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Remark 3.29. In fact, if we compute (48) for v = 1 we find the result stated in [29]:

2

ζ(1− k)
= 60 · k −

∑
τ∈H/ SL2(Z)

eτ ordτ (Ek(τ))j(τ), (49)

where eτ = 1/2 if τ = [i], eτ = 1/3 if τ = [ρ] and eτ = 1 otherwise.

Example 3.30. Consider the Eisenstein series of weight 30, E30. By the valence formula (11),
E30 has a zero of order congruent to 1 (mod 2) at i and of order congruent to 0 (mod 3) at ρ.
In this case we have nk = 2,ak = 1 and bk = 0. To find the zeros of E30, we need to solve the
following system of equations:

S1 := j(x1) + j(x2) = 30g1/12− 1

2
1728− r∞

(
j
E′30

E30

)
,

S2 := j(x1)2 + j(x2)2 = 30g2/12− 1

2
17282 − r∞

(
j2E

′
30

E30

)
.

As we have E30 = 1 − 2k
Bk
q + O(q2), E′30 = − 2k

Bk
q − 4k

Bk
σ29(2)q2 + O(q3), we conclude that

r∞ (jE′30/E30) = − 2k
Bk

. We find that

S1 = j(x1) + j(x2) = 30g1/12− 1

2
1728− −60

B30
,

= 936 + 9.97... · 10−8

Also, we have that j2 = 1
q2 + 1488

q +O(1) and one can compute that

r∞(j2E′30/E30)) = −1488
2k

Bk
−
( 2k

Bk

)2

− 2k

Bk
2σ29(2)

= −107.092...

So that

S2 = j(x1)2 + j(x2)2 = 30g2/12− 1

2
17282 − (−107.092)

= 785915.092...

In fact one can now check that S2
1 < 2S2 so that j(x1) and j(x2) are both real and distinct,

furthermore

0 <
(
j(x1)− 1728

2

)2

+
(
j(x2)− 1728

2

)2

= S2 − 1728 · S1 +
1

2
17282 <

(1728

2

)2

.

So that 0 < j(x1), j(x2) < 1728. Hence the values j(x1) and j(x2) are real and lie in (0, 1728),
as expected.

Proposition 3.31 ([34] p. 141). If for a fixed non-negative integer v the weight k increases we
get

r∞

(
jv
E′k
Ek

)
= o(1)
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Proof. Note that it suffices to show that for a fixed integer 0 ≤ w < v the qw-coefficient of E′k/Ek
converges to 0. This qw-coefficient is of the form∑

i∈Iv

ci

( 2k

Bk

)αi
dk−1
i (50)

where Iv is a finite index set depending only on v, ci a coefficient depending only on v, where αi
an integer 1 ≤ αi ≤ v and di an integer 1 ≤ di ≤ vv. Using Stirling’s formula and the fact that
ζ(k)→ 1 as k →∞, we have

Bk ∼
√
πk

(
1

2

)k ( k
πe

)k
for k →∞. (51)

Now using (50) and (51), it follows that r∞(jvE′k/Ek) = o(1) as k →∞.

Using the previous proposition it follows that

S∗(jvE′k/Ek) = kgv/12− ak
2

1728v + o(1), (52)

as nk 7→ ∞. This means that the v-th power sums of the roots of the polynomials ϕk, ϕk+12, ...
grow approximately linear. Furthermore, the power sums of the roots of the polynomials ϕk
approximate an integer value. In the next paragraph we find polynomials having as Newton
sums exactly these integer values. These turn out to be polynomials coming from extremal
modular forms.
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3.4 Power Sums and Hankel Matrices

In this section we explain how power sums of roots of polynomials give information about the
reality of the roots. We show how this is related to the so called “Hankel determinant” of a
polynomial.

3.4.1 Hankel Matrices

Suppose we are given a monic polynomial P (X) ∈ R[X] of degree n > 0, write P (X) =∑n
i=0 aiX

i where ai ∈ R for all 0 ≤ i ≤ n and an = 1. For convenience let ak := 0 for
k > n. Suppose x1, ..., xn ∈ C are the not necessarily distinct roots of P (X), then for i a
non-negative integer, we define the i−th power sum as

si := xi1 + ...+ xin. (53)

The well-known Newton-Girard formulae gives us a relation between the coefficients of the poly-
nomial P (X) and the power sums.

Proposition 3.32 (Newton-Girard formulae). We can express the power sums si, (0 < i ≤ n)
in terms of the coefficients of P (X).

si = −(ian−i +
i−1∑
r=1

sran−r).

If k > n we have:

sk = −
k−1∑
i=k−n

ak−isi.

Conversely,

an−i = −1

i
(

i∑
r=1

an−i+rsr).

Remark 3.33. First of all, by induction all the si ∈ R. Furthermore, if P (X) ∈ Q[x], it follows
from 3.32 that all the si are rational.

The question is whether these power sums give any information on the roots of P (X). For
this we define the n× n-Hankel-matrix H(P ) of P (X):

H(P ) :=


s0 s1 . . . sn−1

s1 s2 . . . sn
...

...
. . .

...
sn−1 sn . . . s2n−2

 .

As a way to analyze the number of real roots of P , we can define for any real symmetric matrix
A its signature. It is a basic fact from linear algebra that all the eigenvalues of A are real.

Definition 3.34 (signature and rank of a matrix). Suppose A is a real symmetric n×n-matrix.
Let n+, n− be the number of positive, respectively negative eigenvalues of A. Then we define
the signature of A

Sign(A) = n+ − n−.
And we define the rank as

Rank(A) = n+ + n−.
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Lemma 3.35. The signature of H(P ) equals the number of real roots of P and the rank of H(P )
is the number of distinct complex roots of P .

Proof. See [31, Theorem 7.].

If the matrix H(P ) is positive definite, this lemma implies that the roots of P are real and
distinct. A way of checking if a real symmetric n × n-matrix A is positive definite is by means
of Sylvester criterion. Let Ai be the upper-left i× i sub-matrix for 1 ≤ i ≤ n.

Lemma 3.36 (Sylvester criterion). A matrix A is positive definite if and only if det(Ai) > 0 for
all 1 ≤ i ≤ n.

Proof. See for example [15, Theorem 16.4.3.].

This result gives a criterion for a polynomial to have real roots. We need to check that the
determinants of the n upper left sub-matrices H(P )i are positive.

Example 3.37. Consider the polynomial P (X) = X3 − 4X − 1. We compute

s0 = 3; s1 = 0; s2 = 8; s3 = 3; s4 = 32.

We find that
H(P )1 = 3 > 0; H(P )2 = 24 > 0; H(P )3 = 229 > 0.

Hence we can now conclude that the roots of P are all real and distinct.

3.4.2 Hankel Determinant of the gi’s

For n ≥ 0 define the determinant:

∆n =

∣∣∣∣∣∣∣∣∣
g0 g1 g2 . . . gn
g1 g2 g3 . . . gn+1

...
...

...
. . .

...
gn gn+1 gn+2 . . . g2n

∣∣∣∣∣∣∣∣∣ , (54)

where the gi are defined by (46). Now consider the matrix consisting of the power sums sv,k =
S∗(jvE′k/Ek), for 0 ≤ v ≤ 2nk. Furthermore, let Pk be the monic real polynomial of degree nk
corresponding to these power sums. So that

H(Pk) =


s0,k s1,k . . . snk−1,k

s1,k s2,k . . . snk,k
...

...
. . .

...
snk−1,k snk,k . . . s2nk−2,k

 . (55)

Let ∆∗s be the determinant of the upper left s × s submatrix of H(Pk), 1 ≤ s ≤ nk − 1. Using
the theory in the previous section, we know that in order to show that the roots of Pk are all
real and distinct, it suffices to show that all the ∆∗s are strictly positive for 1 ≤ s ≤ nk − 1. We
can relate ∆∗s to ∆s−1 in the following way:

Proposition 3.38.
∆∗s = 12−s∆s−1k

s +O(ks−1), (56)

as k →∞.

29



Proof. This follows immediately from (52).

Dividing both sides of (56) by ks, we see that

∆∗s
ks

= 12−s∆s−1 +O(k−1),

as k →∞. In [34], R.A. Rankin tried to show that ∆s−1 < 0 for some s, so that ∆∗s < 0 for big
enough k0, therefore concluding that Pk has non-real roots for k > k0. However, R.A. Rankin
[34] conjectured a remarkable explicit formula for ∆s−1, showing that ∆s−1 > 0 for all s. This
conjecture was recently proven in a submitted paper by [19] using the theory from [22].

Proposition 3.39.

∆s = 2s
2+4s3s

2+2s5s7s13s
s∏
r=2

(
(12r − 3)(12r − 7)(12r − 5)(12r + 1)

(2r − 1)2(r − 1)r

)s−r+1

.

Proof. See [19].
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3.5 A Remark on Extremal Modular Forms

In this section we apply the methods of section 3.3 to extremal modular forms. We will give an
explicit formula for certain power sums of the j-invariants of the zeros of these forms.

Lemma 3.40. for every even k ≥ 4, there exist a unique modular form fk,0 ∈Mk such that fk,0
has as a q-expansion:

fk,0(z) = 1 +O(qdk),

where dk := dim(Mk). Furthermore the coefficients in the q-expansion of fk,0 are all rational.

Proof. This follows from proposition 2.12. The rationality of the q-expansion of fk,0 follows from
the rationality of the basis elements in proposition 2.12.

Using the theory in section 3, we have that for v ≥ 0:

R

(
jv
f ′k
fk

)
= r∞

(
jv
f ′k
fk

)
+ Sv

(
jv
f ′k
fk

)
.

Proposition 3.41. Write k = 12nk + 6ak + 4bk for ak ∈ {0, 1}, bk ∈ {0, 1, 2} and nk a non-
negative integer. Then

S∗
(
jv
f ′k,0
fk,0

)
= kgv/12− ak

2
1728v,

for v = 0, ..., nk (with the convention 00 = 1).

Proof. This follows from (47) and the observation that the meromorphic function f ′k,0/fk,0 has
a zero of order dk at q = 0, so that

r∞

(
jv
f ′k,0
fk,0

)
= 0 for v = 0, ..., nk,

the result now follows.

Let

χk(j) :=
fk,0

Ebk4 Eak6 ∆nk

be the corresponding modular polynomial in the j-invariant of degree nk. It follows from the
explicit basis for Mk that these polynomials have integer coefficients.

Example 3.42.

χ12(X) = X − 720;

χ24(X) = X2 − 1440X + 125280;

χ36(X) = X3 − 2160X2 + 965520X − 27302400;

χ48(X) = X4 − 2880X3 + 2324160X2 − 465638400X + 5611550400.

Proposition 3.41 implies that the power sums of χk are exactly given by the values kgv/12−
ak
2 1728v. Further, let H(χk) be the Hankel matrix as in (55) with the 2nk − 1 power sums of χk

as coefficients. We see that the corresponding determinants ∆
′

s coincide (if ak = 0) with ∆s−1,
up to a constant positive factor, if 0 ≤ s ≤ nk

2 + 1. However, ∆s−1 and ∆
′

s will not coincide for
bigger nk

2 + 1 < s < 2nk − 2. So, we cannot conclude that H(χk) is positive definite. Therefore,
we cannot conclude that the roots of χk are real from the positivity of ∆s.

However, it was shown by [13] that the zeros of fk,0 are all distinct and lie on the unit circle
in F (see also chapter 5). As a consequence:

Theorem 3.43. The roots of χk are all real, distinct and lie in the interval (0, 1728).
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3.5.1 Congruences of Extremal Modular Forms

In this section we will prove some congruence properties of the polynomials χk. We will show
that χp−1 ≡ ssp(mod p), where ssp is the supersingular polynomial defined by (32). In order to
prove this result we need to define modular forms mod p, for a general reference see [38].

Let p ≥ 5 be a prime number and let f =
∑
n≥0 anq

n be a modular form of weight k with
p-integral rational coefficients (meaning that the coefficients of the Fourier expansion of f have
no denominator divisible by p). Define

f̃ =
∑
n≥0

ãnq
n ∈ Fp[[q]],

where ãn ≡ an (mod p). Let M̃k be the set of all such f̃ , then M̃k is an Fp-vector space. For
f, g ∈ Fp[[q]] write f ≡ g (mod p) if the corresponding Fourier coefficients are congruent (mod
p).

Lemma 3.44. Write k = 12nk + 6ak + 4bk with nk ∈ Z≥0, ak ∈ {0, 1} and bk ∈ {0, 1, 2}. Let

B̃ = {∆̃nk−iẼbk+3i
4 Ẽak6 | 0 ≤ i ≤ nk} (this is well-defined as the Fourier coefficients of ∆,E4 and

E6 are all integers). Then B̃ is a basis for M̃k.

Proof. Let B = {∆nk−iEbk+3i
k Eak6 | 0 ≤ i ≤ nk} be a basis of Mk. By induction one can show

that any modular form with p-integral Fourier coefficients is a p-integral linear combination of
elements in B. Furthermore, by induction all the elements in B̃ are linearly independent. This
shows B̃ is a basis of M̃k.

As a consequence of (31), we have that Ẽp−1 ∈ M̃k and Ep−1 ≡ 1 (mod p).
So that,

Ẽp−1 − f̃0,p−1 ≡ O(qnk+1) (mod p) (57)

As Ẽp−1− f̃p−1 ∈ M̃k if we write this form as a linear combination of elements in B̃ we conclude

that Ẽp−1 − f̃p−1 ≡ 0 (mod p). This means that in Mk

Ep−1 − f0,p−1 = c0E
bk+3nk
4 Eak6 + c1E

bk+3(nk−1)
4 Eak6 ∆ + ...+ cnkE

bk
4 Eak6 ∆nk (58)

where all the c0, ..., cnk are p-integral rational numbers with vp(ci) > 0. Hence, χp−1 ≡
ϕp−1 (mod p). Using theorem 3.18, we deduce

Theorem 3.45. For p ≥ 5,
χp−1 ≡ ssp (mod p).
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3.6 Orthogonal Polynomials

In this section we will discuss some general properties of orthogonal polynomials. The main
reference is [22]. The sequence of polynomials {ϕk, ϕk+12, ...} for k ≥ 4 even, although not
orthogonal, shares these properties (see 3.13 and 3.2).

Consider the vector space of polynomials in one variable V = K[X] over a field K. Suppose
we are given a K-linear map ψ : V → K. This induces a symmetric bilinear form (f, g) := ψ(fg)
on V . If we apply the Gram-Schmidt procedure to the basis {Xn | n ∈ Z≥0} of V , we get a
sequence of orthogonal polynomials Pn as follows: Let P0 = 1 and for n > 0 define

Pn(X) = Xn −
n−1∑
m=0

(Xn, Pm)

(Pm, Pm)
Pm(X) (59)

provided that (Pm, Pm) 6= 0 for all m.

Remark 3.46. If K = R and ( , ) is positive definite, it will automatically follow that (59) is
well-defined.

From now on we will assume that the (Pm, Pm) 6= 0.

Proposition 3.47. The polynomials Pn satisfy the following recursion:

Pn+1(X) = (X − an)Pn(X)− bnPn−1(X) (n ≥ 1), (60)

with P0 = 1, P1 = X − (X, 1), an = (XPn,Pn)
(Pn,Pn) and bn = (Pn,Pn)

(Pn−1,Pn−1) .

Proof. See [22, §4].

Let ri := (Xi, 1) and define the numbers λn ∈ K for n ≥ 1 by

Ψ(x) := r0 + r1x+ r2x
2 + ... =

g0

1−
λ1x

1−
λ2x

1− ...

. (61)

Proposition 3.48. All the λn are non-zero and an = λ2n + λ2n+1, bn = λ2n−1λ2n for n ≥ 1.

Proof. See [22, Prop. 2.iii].

Let ∆̂n be the (n+ 1)× (n+ 1)-Hankel determinant of the ri. The following theorem gives a
remarkable relation between the coefficients of the recursion (60) and this Hankel determinant.

Theorem 3.49 ([24, Theorem 29]). Let V be the vector space of all polynomials in one variable
over a field K. Let ϕ : V → K be a K-linear map and let µk = ϕ(Xk). Furthermore, let
Pn(X)n≥0 be the sequence of orthogonal polynomials with respect to ϕ, and let

Pn+1(X) = (x− an)Pn(X)− bnPn−1(X)

be the corresponding three term recursion from (60). Then

det
0≤i,j≤n

(µi+j) = µn+1
0 bn1 b

n−1
2 ...b2n−1bn. (62)
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As a consequence of 3.48, we see that

∆̂n = µn+1
0

n∏
r=1

(λ2r−1λ2r)
n−r+1. (63)

We will use this theorem to compute a certain Hankel determinant in section 3.
From now on let K = R and

ψ(f) =

∫ b

a

f(X)w(X)dx (64)

for some real numbers a < b and a positive integrable function w(X) on (a, b). Then we have
the following important property of orthogonal polynomials.

Proposition 3.50 (Real and Distinct Zeros). The zeros of orthogonal polynomials Pn over R
are all real and distinct and lie in the interval (a, b).

Proof. See [42, Thm. 3.3.1.]

Proposition 3.51 (Interlacing Zeros). Suppose {x1, ..., xn} are the (real) zeros of Pn over R
and suppose {y1, ..., yn+1} are the zeros of Pn+1, then we have

y1 < x1 < y2 < ... < xn < yn+1.

Proof. See [42, Thm. 3.3.2.].

3.7 Atkin Polynomials

In this section we define Atkin polynomials and we will briefly summarize some properties, in-
cluding relations with the supersingular polynomial. The reference is a paper from Kaneko and
Zagier [22].

Define the following inner product on R[X]:

(f(X), g(X))A := constant term of f(j)g(j)E2 as a Laurent series in q.

Then we see that
(Xv, 1) = gv,

where the values gv were defined by (46). This inner product can be written in the integral form
of (64) as follows:

Proposition 3.52 ([22, §5, Corollary]).

(f, g)A =

∫ 1728

0

f(j)g(j)w(j)dj,

where w(j) = 6
πα
′(j) and α : [0, 1728] → [π/3, π/2] is the inverse of the monotone increasing

function α 7→ j(eiα).

Proof. See [22, §5, Corollary].

Now as w(j) > 0 on [0, 1728], we see that ( , )A is positive definite.
Define the Atkin Polynomials as the orthogonal polynomials with respect to the inner product
( , )A, defined via the Gram-Schmidt procedure (59) (as the inner product is positive definite,
we see that the Gram-Schmidt procedure is well defined).
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Example 3.53.

A0(X) = 1;

A1(X) = X − 720;

A2(X) = X2 − 1640X + 269280;

A3(X) = X3 − 12576

5
X2 + 1526958X − 107765856.

As a consequence of 3.50 and 3.52, we see that the roots of Ak are all real, distinct and lie
in (0, 1728). Using theory of hypergeometric functions, an explicit recursion formula for the Ak
can be found:

Theorem 3.54 ([22, Theorem 4.]). For n ≥ 2:

An+1(X) =

(
X − 24

144n2 − 29

(2n+ 1)(2n− 1)

)
An(X)

− 36
(12n− 13)(12n− 7)(12n− 5)(12n+ 1)

n(n− 1)(2n− 1)2
An−2(X).

These polynomials turn out to have very remarkable congruence properties. Let np be the
degree of the supersingular polynomial ssp, then Anp(X) is p-integral, and we have:

Theorem 3.55 (Atkin). Let p ≥ 5 be a prime number. Then ssp(X) ≡ Anp(X) (mod p).

Proof. See [22, §6].
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4 Eisenstein Polynomials and Modular Forms

In this section properties of the “Eisenstein polynomial” defined by M. Oura [30] are discussed.
There is a natural way to associate a modular form of level 1 to this polynomial. These modular
forms share some properties with Eisenstein series, such as (conjecturally) the location of the
zeros and congruence properties. We prove a factorization property of the associated Hankel
determinant, analogous to the Hankel determinant corresponding to the Eisenstein series.

4.1 Eisenstein Polynomials and Relations with Modular Forms

For g ∈ N, we define the following matrix group:

Hg := 〈Dg, Ag〉 ⊂ GL2g (C).

Where:

• Dg is the subgroup generated by all the diagonal matrices

DS = diag(ia
tSa; a ∈ Fg2),

for all symmetric matrices S ∈ Matg×g(Z).

• Ag is the 2g × 2g matrix, whose (a, b)-coefficient is given by(
1 + i

2

)g
(−1)〈a,b〉, a, b ∈ Fg2, (65)

where we identify elements of Fg2 with {0, ..., 2g − 1} via the binary number representation.

(Note that the definition of these diagonal matrices is independent of the choice of representative
of a (mod 2), so we might assume a ∈ Fg2)
For any g ∈ N, Hg is a finite group of order

2g
2+2g+2(4g − 1)(4g−1 − 1) · · · 3, (66)

see [36, §2 p. 183].
The group Hg acts on the C-vector space of complex polynomials in 2g variables C[xa : a ∈ Fg2],
induced by the natural action on the indices of the variables: for γ ∈ Hg, define

γxa =

2g−1∑
i=0

γi,axi,

where γi,a means the coefficient of the a-th column and i-th row of γ, counting from 0. We
are interested in the Hg-invariant subspace, which is clearly also a subring, of C[xa : a ∈ Fg2],
C[xa : a ∈ Fg2]Hg . This invariant ring will have a close connection to Siegel modular forms, as we
will explain in the next section.

An example of an element in this invariant ring is the Eisenstein polynomial of weight l, with
l ∈ N:

ϕ
Hg
l (xa : a ∈ Fg2) :=

1

|Hg|
∑
σ∈Hg

(σx0)l. (67)
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4.1.1 Siegel Modular Forms and the Theta Map

For g ∈ N, let
Hg = {z ∈ Matg×g(C) | zt = z and Im(z) > 0},

here Im(z) > 0 means that the imaginary part of the matrix z, Im(z) is positive definite.
Define the Siegel modular group (of degree g) as

Γg :=
{
M =

(
A B
C D

)
A,B,C and D ∈ Matg×g(Z) | M tJgM = Jg

}
,

where Jg =

(
0 Ig
−Ig 0

)
.

Remark 4.1. The condition M tJgM = Jg is equivalent to AtC −CtA = 0, BtD−BDt = 0 and
AtD − CtB = Ig, showing that Γ1 = SL2(Z).

The group Γg acts on Hg; for M =

(
A B
C D

)
∈ Hg

M · Z := (AZ +B)(CZ +D)−1.

Lemma 4.2. The group Γg is generated by

J =

(
0 Ig
−Ig 0

)
and σS =

(
Ig S
0 Ig

)
,

for all symmetric matrices S ∈ GLg(C).

Proof. See [14, Lemma 1.3.].

Definition 4.3 (Siegel Modular Form). Let f : Hg → C be a holomorphic function, f is called
a (Classical) Siegel Modular Form for Γg of weight k if

f(M · Z) = det(CZ +D)kf(Z), (68)

and if g = 1, we additionally demand that f is holomorphic at the cusp at i∞.

The space of all Siegel modular forms for Γg is a C-vector space and is denoted by M(Γg).

Remark 4.4. Note that Siegel modular forms for Γ1 coincide with classical modular forms for
the full modular group.

We will now show that to every element in the invariant ring C[xa : a ∈ Fg2]Hg we can associate
a Siegel modular form for Γg via the Theta map.

For a ∈ Zg, define the Theta Functions:

θa(τ) =
∑
x∈Zg

e2πi(x+ 1
2a)tτ(x+ 1

2a). (69)

The functions fa are independent of the choice of a (mod 2), hence we can consider a ∈ Fg2.

Proposition 4.5. The C-linear map

Thg : C[xa : a ∈ Fg2]Hg →M(Γg),

induced by xa 7→ fa(τ) is well-defined.

Proof. See [36, p. 179]

Remark 4.6. As the fa(τ) are Siegel modular forms of weight 1/2, it follows from proposition

4.5 that Thg sends ϕ
Hg
l to a Siegel modular form of weight l/2.
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4.2 Relations with (Binary) Coding Theory

We will now discuss the relation of the Eisenstein polynomials with coding theory. These Eisen-
stein polynomials will occur, up to a constant, as “average weight enumerators” in the space of
all weight enumerators of doubly even binary codes. We will first start by recalling some basic
concepts from coding theory.

Definition 4.7. A code is a binary linear code, i.e. a k-dimensional linear subspace of Fn2 ,
denoted by [n, k, d], where d = min{wt(c) | c ∈ C} is the minimal weight of the code. Here, the
weight wt(c) is defined to be the number of non-zero components in c ∈ Fn2 . Furthermore, we
define the dual code C⊥ = {x ∈ Fn2 | 〈x, y〉 = 0 for all y ∈ C}. A code is called doubly even if
the weights of all the codes are divisible by 4.

To a code C of length N we can associate a weight polynomial:

WC(x, y) :=
∑
c∈C

xN−wt(c)ywt(c). (70)

The coefficient of xN−iyi gives the number of codewords of weight i. We can extend this definition
to a g-weight polynomial in 2g variables. For a ∈ Fg2 we define a generalized weight function wa
on C × C × ...× C ⊂ (FN2 )g as

wa(α1, ..., αg) = |{i : a = (α1(i), ..., αg(i)}|,

where αj(i) denotes the i-th component of αj . Then we define the g-weight polynomial as

Pg(C)(xa; a ∈ Fg2) :=
∑

α1,...,αg∈C

∏
a∈Fg2

xwa(α1,...,αg)
a ,

where the xa are formal variables, so we consider Pg(C) as a polynomial in C[xa : a ∈ Fg2].
Note that the 1-weight polynomial coincides with (70). Let ε = (1 + i)/

√
2 · I2g ∈ GL2g (C) and

define
Gg := 〈Hg, ε〉,

to be the group generated by Hg and ε.

Theorem 4.8 ([36, Theorem 3.6.]). The ring C[xa : a ∈ Fg2]Gg is the ring of g-weight polynomials
corresponding to self dual doubly even codes.

If l ≡ 0 (mod 8), the Eisenstein polynomial ϕ
Hg
l lies in C[xa : a ∈ Fg2]Gg , as ϕ

Hg
l is invariant

under ε in that case.

Lemma 4.9 (Runge, Nebe and Rains, [26, Theorem 6.3.]). For any doubly even binary code C
of length N ≡ 0 (mod 8) containing 1N and of dimension N/2− r,

1

|Gg|
∑
σ∈Gg

σ · Pg(C) =
∏

0≤i<r

(2m + 2i)−1
∑
C′

Pg(C
′), (71)

where the sum is over all doubly even self dual codes C ′ containing C.

The idea is to apply this theorem to C = 〈1N 〉, the F2-vector space generated by 1N , where
1N is the all-one vector of length N .

Lemma 4.10. Any self dual code C contains the all-one vector.
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Proof. As 〈c, c〉 ≡ 0 (mod 2), wee see that c has even weight. As 〈x,1N 〉 ≡ wt(c) ≡ 0 (mod 2),
it follows that C contains the all-one vector.

Theorem 4.11. Suppose N ≡ 0 (mod 8),

ϕH
g

N =
N !

2g
∏

0≤i<N/2−1(2m + 2i)

∑
[C]

1

|Aut(C)|
Pg(C),

where the sum is over all doubly even self dual codes C of length N up to isomorphism.

Proof. Let C be the code generated by the all one vector of length N , 1N . We have

Pg(C) =
∑
a∈Fg2

xNa .

As the g-weight enumerator of any code containing 1N is invariant under permutation, it follows
from theorem 4.9 and 4.10, that the group Gg contains all permutations of the variables, we
therefore see that ∑

σ∈Gg

σPg(C) = 2gϕH
g

N .

Using 4.9 we have ∑
σ∈Gg

σPg(C) =
∏

0≤i<N/2−1

(2g + 2i)
∑
C′

Pg(C
′),

where the sum is over all self dual doubly even codes, see lemma 4.10. We find

1

|Gg|
∑
σ∈Gg

σPg(C) =
∏

0≤i<N/2−1

(2g + 2i)−1
∑
C′

Pg(C
′),

=
∏

0≤i<N/2−1

(2g + 2i)−1
∑
[C′]

N !

|Aut(C ′)|
Pg(C

′),

= N !
∏

0≤i<N/2−1

(2g + 2i)−1
∑
[C′]

1

|Aut(C ′)|
Pg(C

′).

The previous result shows that Eisenstein polynomials are, up to a constant, equal to the
“average weight enumerator” of the doubly even self dual codes if l ≡ 0 (mod 8).

Example 4.12. Suppose N = 8 and g = 1. The only doubly even self dual codes of length 8 is
the [8, 4, 4] Hamming code C. As |Aut(C)| = 1344 and P1(C) = x8

0 + x4
0x

4
1 + x8

1, see [8, p. 80]).
We compute using corollary 4.11:

ϕH1
8 =

5

24
(x8

0 + 14x4
0x

4
1 + x8

1).

4.3 Eisenstein polynomials for g = 1

From now on, we will be only considering the case g = 1. In this case the group H1 is:

H1 =
〈1

2

(
1 + i 1 + i
1 + i −1− i

)
,

(
1 0
0 i

)〉
,

39



This is a group of order 96, using (66). Note that in this case the theta functions as in 69 are

θ0(τ) =
∑
n∈Z

qn
2

,

θ1(τ) = q1/4
∑
n≥0

qn(n+1),

where q = e2πiτ . We have the following structural theorem for the ring of invariant polynomials
(note the similarity with the ring of modular forms):

Theorem 4.13 ([25, p. 3.]). C[x0, x1]H1 = C[ϕH1
8 (x0, x1), ϕH1

12 (x0, x1)], and ϕH1
8 (x0, x1), ϕH1

12 (x0, x1)
are algebraically independent.

Explicitly, we have

ϕH1
8 =

5

24
(x8

0 + 14x4
0x

4
1 + x8

1), (72)

ϕH1
12 =

5

32
(x12

0 − 33x4
0x

8
1 − 33x4

0x
8
1 + x12

1 ). (73)

Remark 4.14. From 4.13 and the formulas (72), (73) it follows that ϕH1

l ≡ 0 if l = 4 or l 6≡
0 (mod 4). Further, it follows from 4.13 and 4.5 that the map Thg is an isomorphism if g = 1.

We find the following explicit formula for the polynomials ϕH1

l .

Proposition 4.15. If l ≡ 0 (mod 4) and l 6= 4, we have

ϕH1

l =
2

4−l
2 (−1)l/4 + 1

6
xl0 +

2
4−l
2 (−1)l/4 + 1

6
xl1 +

2
2−l
2

3
(−1)l/4

∑
j≡0 (mod 4),

0<j<l

(
l

n

)
xj0x

l−j
1 .

Proof. We prove this formula by explicitly computing σx0 for all σ ∈ H1. Recall that if σ =(
a b
c d

)
, we have σx0 = ax0 + cx1. As H1 is a finite group, one can compute all the possible

pairs (a, c). As l ≡ 0 (mod 4), we find:

ϕ
Hg
l =

1

96

(
16xl0 + 16

(
( 1

2 i+ 1
2 )x0 + ( 1

2 i+ 1
2 )x1)l + 16

(
( 1

2 i+ 1
2 )x0 + ( 1

2 i−
1
2 )x1)l

+ 16
(
( 1

2 i+ 1
2 )x0 + (− 1

2 i+ 1
2 )x1)l + 16

(
( 1

2 i+ 1
2 )x0 + (− 1

2 i−
1
2 )x1)l + 16xl1

)
.

Using the binomial theorem, we derive

ϕH1

l =
2

4−l
2 (−1)l/4 + 1

6
xl0 +

2
4−l
2 (−1)l/4 + 1

6
xl1 +

2
2−l
2

3
(−1)l/4

∑
j≡0 (mod 4),

0<i<l

(
l

n

)
xj0x

l−j
1 . (74)

For notational purposes, normalize ϕH1

l such that the coefficient of xl0 is 1, write

ϕ̃H1

l :=
6

2
4−l
2 (−1)l/4 + 1

ϕH1

l . (75)

We can consider the modular form Th1(ϕ̃H1

l ). As the forms θ2
0, θ

2
1 have weight a 1 for the

congruence subgroup Γ(2), it is clear that Thk := Th1(ϕ̃H1

l ) is a modular form of weight k = l
2

for the full modular group.
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Example 4.16. It is easy to see that Th4 = E4 and Th6 = E6.

Th12 = E3
4 − 518784/1025∆;

Th16 = E4
4 − 97280/113∆E4;

Th20 = E5
4 − 121472/109∆E2

4 ;

Th24 = E6
4 − 1126806528/838861E3

4∆ + 358849019904/4194305∆2.

The modular forms Thk and the Eisenstein series are conjectured to have some analogous
properties.

Conjecture 4.17 ([25, Conjecture 1.1.]). All the zeros of Th(ϕl) in the fundamental domain lie
on the unit circle {eiθ | θ ∈ [π/2, 2π/3]}.

4.4 Power Sums of Thk

Using the method of R.A. Rankin, we will try to compute the power sums of the j-invariants of
the zeros of Thk. Using formula (47), we have that

kgv/12 = r∞

(
jv
Th′k
Thk

)
+ S

(
jv
Th′k
Thk

)
, (76)

where the derivative is taken with respect to 1
2πiτ . We now compute the value of r∞

(
jv

Th′k
Thk

)
and we will show this value is O(1) as k increases.

Proposition 4.18. For a fixed v ≥ 0,

r∞

(
jv
Th′k
Thk

)
= 2k · r∞

(
jv
θ′0
θ0

)
+ o(1),

as k increases.

Proof. For n ∈ N fixed let an,k, bn be the n-th Fourier coefficients of Thk and θ0 respectively.
Since θ4

1 is a cusp form, we have

Thk = θ2k
0 +

(−1)k/2

(−1)k/2 + 2k−2

∑
0<j<n,j≡0 (mod 4)

(
2k

n

)
θj1θ

2k−j
0 +O(qn). (77)

As

lim
k→∞

(−1)k/2

(−1)k/2 + 2k−2

(
2k

n

)
= 0,

it is clear that limk→∞ an,k = bn. Hence we see that

2k · r∞
(
jv
θ′0
θ0

)
= r∞

(
jv

(θ2k
0 )′

θ2k
0

)
= r∞

(
jv
Th′k
Thk

)
+ o(1).

As in the case of Eisenstein series, the values of r∞ (jvθ′0/θ0) are strongly related to hyper-
geometric functions, as we will we see in the next paragraph. Using 4.18 we have

nk∑
i=1

j(xi)
v = kgv/12− r∞

(
jv
Th′k
Thk

)
− ak

2
1728v, (78)

= kgv/12− 2k · r∞
(
jv
θ′0
θ0

)
− ak

2
1728v + o(1), (79)
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as nk increases. Write
Thk = ∆nkEbk4 Eak6 Qk(j),

where k = 12nk + 6ak + 4bk, nk ∈ Z≥0, ak ∈ {0, 1} and bk ∈ {0, 1, 2}. Then Qk is a monic
polynomial of degree nk with rational coefficients in the j-invariant. We have that (78) implies
that the power sums of the nk roots of Qk(j) increases linearly as nk increases.

Example 4.19.

Q12(X) = X − 518784

1025
;

Q24(X) = X2 − 1126806528

838861
X +

358849019904

4194305
;

Q36(X) = X3 − 6926919963264

3435973837
X2 +

2652630646063104

3435973837
X − 248220139256807424

17179869185
.

The result (78) implies, for example, that the Xn−1 coefficient of Q12n(X) is approximately
−672 · n.

4.5 Hankel Determinants of the Forms Thk

As with the Eisenstein series we can consider the Hankel determinant corresponding to the power
sums of Qk. If this Hankel determinant ∆̃n were negative for some n ∈ N, we would conclude
that Qk has non-real roots. However, we will show that this determinant ∆̃n is always positive.
As nk →∞ we have that for k ≡ 0 (mod 4),

S

(
jv
Th′k
Thk

)
= kgv/12− 2k · r∞

(
jv
θ′0
θ0

)
+ o(1), (80)

see (78). Now let

hv := gv − 24 · r∞
(
jv
θ′0
θ0

)
,

we are interested in the sign of the Hankel determinant:

∆̃n =

∣∣∣∣∣∣∣∣∣
h0 h1 h2 . . . hn
h1 h2 h3 . . . hn+1

...
...

...
. . .

...
hn hn+1 hn+2 . . . h2n

∣∣∣∣∣∣∣∣∣ . (81)

We will show that for n > 1:

∆̃n = 24n2+5n · 3n
2

· 11n · 23n ·
n∏
r=2

(
(24r − 29)(24r − 17)(24r − 1)(24r − 13)

(8r − 5)2(8r − 9)(8r − 1)

)n−r+1

, (82)

so that ∆̃n > 0. Note the resemblance with the Hankel determinant in proposition 3.50.
As with the values gv in section 3.9, the values hv induce a symmetric bilinear form on the

space of real polynomials. Let

(f(X), g(X))T := constant term in the q-expansion of f(j)g(j)

(
E2 − 24

θ′0
θ0

)
,

where j is the modular j-invariant. Clearly, hv = (Xv, 1)T .
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Example 4.20.

h0 = 1; h1 = 672; h2 = 840192; h3 = 1193164800; h4 = 1790864130048;

We will prove (82) as follows:

• We will show that ( , )T defines an inner product on R[X], using some numerical analysis.

• We will compute the continued fraction expansion of the moment generating function

ψ(X) = h0 + h1X + h2X
2 + ...,

using hypergeometric functions.

• Using 3.49, we will compute the determinant ∆̃n using this continued fraction expansion.

4.5.1 ( , )T is an Inner Product

From now on let

H(τ) := E2 − 24
θ′0
θ0
,

we can rewrite H in the following way:

Lemma 4.21. For all τ ∈ H,

H(τ) = E2(τ) + 2E2(2τ)− 2E2(τ + 1
2 ). (83)

Proof. This follows from the Jacobi triple product identity [21]: For q, y ∈ C, |q| < 1 and y 6= 0,
we have the identity

∞∏
m=1

(1− q2m)(1 + q2m−1y2)

(
1 +

q2m−1

y2

)
=

∞∑
n=−∞

qn
2

y2n. (84)

For y = 1, this gives

θ0 =

∞∏
m=1

(1− q2m)(1 + q2m−1)2. (85)

Now taking the logarithmic derivative with respect to 1
2πiτ , gives

θ
′

0

θ0
= −

∞∑
m=1

2mq2m

1− q2m
+ 2

∞∑
m=1

(2m− 1)q2m−1

1 + q2m−1
(86)

= −2

∞∑
m=1

mq2m

1− q2m
− 2

( ∞∑
k=1

k(−q)k

1− (−q)k
−
∞∑
n=1

2n(−q)2n

1− (−q)2n

)
(87)

= − 1
12 (E2(2τ)− 1) + 1

12 (E2(τ + 1
2 )− 1), (88)

using the identity

Ek = 1 +
2

ζ(1− k)

∞∑
n=1

nk−1qn

1− qn
,

we conclude that H(τ) = E2(τ) + 2E2(2τ)− 2E2(τ + 1
2 ).
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Lemma 4.22. The following linear functionals on R[x] coincide:

1. (f(X), g(X))T ;

2. (f(X), g(X)) := constant term as Laurent series in j−1 of f(j)g(j)E4(τ)
E6(τ)H(τ);

3. (f(X), g(X)) :=
∫ π/2
π/3

f(j(eiα))g(j(eiα))W (α)dα;

where W (α) = i(H(−e−iα)e−iα − eiαH(eα))dα.

Proof. We first start proving 1 implies 2. Write a0 for the constant term in the q-expansion of
f(j)g(j)H(τ). By the residue formula

a0 =
1

2πi

∮
C

f(j)g(j)H(τ)
dq

q
,

for some small enough circle around q = 0. Further as

q
d

dq
j = −j E6

E4

we see that

a0 =
1

2πi

∮
C

f(j)g(j)H(τ)
E4

E6

d(1/j)

1/j
,

hence the result follows using the residue theorem.

For 1 implies 3, note that we have∮
C

f(j)g(j)H(τ)
dq

q
=

∫ 0.5+a·i

−0.5+a·i
f(j)g(j)H(τ)dτ

for some a > 1. Now using the residue formula, the sum of integrals over the horizontal part
{0.5 +a · i | |a| ≤ 1/2}, the vertical parts Re(τ) = ±1/2 and the circular part of the fundamental
domain equals zero. As f(j)g(j)H(τ) is 1-periodic, the sum of integrals over the vertical parts
vanishes. Hence we find∫ 0.5+a·i

−0.5+a·i
f(j)g(j)Hdτ =

∫ π/3

2π/3

f(j(eiα))g(j(eiα))H(eiα)dτ,

where τ = eiθ. As f(j(τ))g(j(τ)) is invariant under the action τ 7→ − 1
τ , we find∫ π/3

2π/3

f(j(τ))g(j(τ))H(τ)dτ =

∫ π/2

2π/3

f(j(τ))g(j(τ))H(τ)dτ −
∫ π/2

π/3

f(j(τ))g(j(τ))H(τ)dτ

=

∫ π/2

π/3

f(j(τ))g(j(τ))

(
H

(
−1

τ

)
1

τ2
−H(τ)

)
dτ.

As dτ = iτdα, we derive the desired result.

We would like to show that this linear functional is positive definite and therefore defines an

inner product on R[X]. As (f(X), f(X)) =
∫ π/2
π/3

f(j(eiα))2i
(
H(−e−iα)e−iα −H(eiα)eiα

)
dα, it

suffices to show that
i
(
H(−e−i)e−iα −H(eiα)eiα

)
> 0

on (π/3, π/2). We will prove this using the following two lemma’s:
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Lemma 4.23. For τ = eiθ with θ ∈ (π/3, π/2), we have

i

(
E2

(
2
−1

τ

)
1

τ
− E2(2τ)τ

)
>

3

π
+ 0.77.

Proof. We use the transformation law for E2:

E2

(
−1

τ

)
=

6

πi
τ + τ2E2(τ),

to find

E2

(
2
−1

τ

)
= E2

(
−1

τ/2

)
=

3

πi
τ +

τ2

4
E2(τ/2). (89)

So that

i

(
E2

(
2
−1

τ

)
1

τ
− E2(τ)τ

)
=

3

π
+
i

4
τ (E2(τ/2)− 4E2(2τ)) . (90)

We will show that G(τ) := i
4τ (E2(τ/2)− 4E2(2τ)) > 0.77 for θ ∈ (π/3, π/2). Write E2(τ) =∑∞

n=1 ane
2πiτn. Using Mathematica one can show that

Re (GN (τ)) > .776, (91)

where GN (τ) := i
4τ
∑N
n=1 an(eπiτn − 4e4πiτn) and N = 100. Further we find that

|Re(G(τ))− Re(GN (τ))| ≤ 1

4

∞∑
n=N+1

|an|e−π
1
2

√
3n +

∞∑
n=N+1

|an|e−2π
√

3n (92)

As |an| = 24σ0(n) ≤ 24n, we have

|Re(G(τ))− Re(GN (τ))| ≤ 1

4

∫ ∞
N

24ne−π
1
2

√
3ndn+

∫ ∞
N

24ne−2π
√

3ndn. (93)

< 10−115. (94)

Hence G(τ) = Re(G(τ)) > 0.77.

Lemma 4.24. For τ = eiθ with θ ∈ (π/3, π/2), we have

F (τ) := i

(
E2

(
−1

τ
+

1

2

)
1

τ
− E2(τ +

1

2
)τ

)
< 2.1

Proof. Using a computer algebra system one can show that

Re(FN (τ)) < 2.09, (95)

where

FN (τ) = i

(
1

τ

N∑
n=0

ane
2πi(−1

τ + 1
2 )n − τ

N∑
n=0

ane
2πi(τ+ 1

2 )n

)
and N = 100, using the same notation as in the proof of the previous lemma. Further we see
that

|Re(F (τ))− Re(FN (τ))| ≤ 2
∑

n=N+1

|an|e−π
√

3

< 2

∫ ∞
N

24ne−π
√

3ndn

< 10−233.

We conclude that F (τ) = Re(F (τ)) < 2.1.
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Corollary 4.25. The linear functional ( , )T is positive definite, hence defines an inner product
on R[X].

Proof. Using lemmas 4.23, 4.24 and the fact that i(E2(−1
τ ) 1

τ − E2(τ)τ) = 6
π , we deduce that

i

(
H

(
−1

τ

)
1

τ
−H(τ)τ

)
>

12

π
− 2.66 > 0. (96)

Hence it defines an inner product.

4.5.2 The Moment Generating Function

We want to compute the continued fraction of the moment generating function with respect to
( , )T , i.e. we want to compute the λi such that

Ψ(z) := h0 + h1z + h2z
2 + ... =

λ0

1−
λ1z

1−
λ2z

1−
λ3z

1− ...

. (97)

Write H(τ)E4(τ)
E6(τ) locally as a power series in 1/j. Using characterization 2 in lemma 4.22 of

( , )T , we see that

Ψ

(
1

j

)
= H(τ)

E4(τ)

E6(τ)
, (98)

as a power series in 1/j. We will relate H(τ)E4(τ)/E6(τ) to a fraction of hypergeometric func-
tions. We start with the following lemma.

Lemma 4.26. We have

θ24
0 = ∆ · j · 2F1

(−1

24
,

7

24
,

3

4
;

1728

j

)24

, (99)

as a power series in 1/j.

Proof. The function F (z) = 2F1

(−1
24 ,

7
24 ,

3
4 ; z ) is the unique holomorphic solution around z = 0

having F (0) = 1 of the differential equation:

z(z − 1)
d2F

dz2
+ ( 5

4z −
3
4 )
dF

dz
− 7

576
F = 0. (100)

We will show that G(τ) := θ
η · j

− 1
24 satisfies this differential equation as a function in z = 1728

j ,
where

η = q
1
24

∞∏
n=1

(1− qn)

and η24 = ∆. As dz
dτ = zE6

E4
we get

dF

dz
=

1

z

E4

E6

dF

dτ
, (101)

d2F

dz2
=
E4

E6

1

z2

(
− 4

3
− 1

6

E2E4

E6
+

1

2

E3
4

E2
6

)dF
dτ

+
1

z2

E2
4

E2
6

d2F

dτ2
. (102)
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By substituting the above equations and dividing out

1

z

E4

E6
,

the differential equation (100) becomes

(z − 1)
E4

E6

d2F

dτ2
+

(
5

4
z − 3

4
+ S · (z − 1)

)
dF

dτ
− zE6

E4

7

576
F = 0,

where S = − 4
3 −

1
6
E2E4

E6
+ 1

2
E3

4

E2
6
. As we have

θ0 =
η5(2τ)

η2(τ)η2(4τ)
,

an easy computation (using that η′ = 1
24E2η) shows that

dG

dτ
= G · T,

d2G

dτ2
= G · (T 2 + T ′),

where

T (τ) =
5

12
E2(2τ)− 1

8
E2(τ)− 1

3
E2(4τ) +

1

24

E6

E4
.

If we substitute G in the left side of (100), we find

(z − 1)
E4

E6

d2G

dτ2
+ ( 5

4z −
3
4+S · (z − 1))

dG

dτ
− zE6

E4

7

576
G =

1

FE4
4E

2
6

[(1728∆E2
4 − E5

4)E6(T 2 + T ′)

+
(

5
4 · 1728 · E4∆E2

6 − 3
4E

4
4E

2
6 + 1728∆E4(− 4

3E
2
6 − 1

6E2E4E6 + 1
2E

3
4)

+ E4
4

(
4
3E

2
6 − 1

6E2E4E6 + 1
2E

3
4)
)
T − 1728

7

576
∆E3

6 ].

The expression inside the brackets “[ ]” is a quasimodular form (i.e. an “almost holomorphic
modular form”, see [6, §5.3.] for definitions) of weight k = 30 for the congruence subgroup
Γ = Γ0(4) , as any term is the (second order) derivative of a modular form for Γ0(4). An easy
computation shows that the term in brackets is O(q100), and an explicit computation of the space
of quasimodular forms of weight k for Γ gives that the term in brackets must be identically equal
to zero, showing that G satisfies the correct differential equation. Hence we see that as a power
series in 1/j,

θ0

η
j−

1
24 = 2F1

(
−1

24
,

7

24
,

3

4
;

1728

j

)
. (103)

We deduce that

θ24
0 = ∆ · j · 2F1

(
−1

24
,

7

24
,

3

4
;

1728

j

)24

, (104)

as a power series in 1/j.
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Lemma 4.27. Let 2F1(a, b, c; z) be a hypergeometric function, then

2F1(a+ 1, b, c; z)

2F1(a, b, c; z)
=

1

1−
λ1z

1−
λ2z

1−
λ3z

1− ...

,

where λ1 = b
c and for n > 0, λ2n = (a+n)(c−b+n−1)

(c+2n−2)(c+2n−1) and λ2n+1 = (c−a+n−1)(b+n)
(c+2n)(c+2n−1) .

Proof. We will use F (a, b, c) as shorthand for 2F1(a, b, c; z). Using the contiguous relations (152)
and (153) we have

F (a+ 1, b, c)− F (a, b, c) = z
b

c
F (a+ 1, b+ 1, c+ 1). (105)

So that
F (a+ 1)

F
=

1

1− b
czF (a+ 1, b+ 1, c+ 1)

,

hence λ1 = b
c . Further, using the relations (152), (157) and (158) we have

F (a+ 1)− F (a+ 1, b+ 1, c+ 1) =
(a+ 1)(b− c)
c(c+ 1)

zF (a+ 2, b+ 1, c+ 2). (106)

Using the relations (152), (153) and (155), we find

F (a+ 1, b+ 1, c+ 1)− F (a+ 2, b+ 1, c+ 2) =
(a− c)(b+ 1)

(c+ 2)(c+ 1)
zF (a+ 2, b+ 2, c+ 3). (107)

In general we have

F (a+ n, b+ n− 1, c+ 2n− 2)− F (a+ n, b+ n, c+ 2n− 1) =

(a+ n)(b− c− n+ 1)

(c+ 2n− 2)(c+ 2n− 1)
zF (a+ n+ 1, b+ n, c+ 2n)

and

F (a+ n, b+ n, c+ 2n− 1)− F (a+ n+ 1, b+ n, c+ 2n) =

(a− c− n+ 1)(b+ n)

(c+ 2n)(c+ 2n− 1)
zF (a+ n+ 1, b+ n+ 1, c+ 2n+ 1).

Hence we see that

λ2n = − (a+ n)(b− c− n+ 1)

(c+ 2n− 2)(c+ 2n− 1)
=

(a+ n)(c− b+ n− 1)

(c+ 2n− 2)(c+ 2n− 1)
(108)

and

λ2n+1 = − (a− c− n+ 1)(b+ n)

(c+ 2n)(c+ 2n− 1)
=

(c− a+ n− 1)(b+ n)

(c+ 2n)(c+ 2n− 1)
. (109)
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Proposition 4.28. λ0 = 1, λ1 = 672 and for n > 0 we have

λ2n =
48(24n− 1)(24n− 13)

(8n− 5)(8n− 1)

and

λ2n+1 =
48(24n− 5)(24n+ 7)

(8n− 1)(8n+ 3)
.

Proof. We are interested in the coefficients of

H(τ)
E4

E6

expressed as a power series in z = 1/j. First of all note that

H(τ)
E4

E6
=

(
E2 − 24

θ′0
θ0

)
E4

E6
=

(
1

2πi

d

dτ
log

(
∆

θ24
0

))
E4

E6

= z
d

dz
log

(
∆

θ24
0

)
,

here we use that j′ = −jE6/E4. Using 4.26 we have

z
d

dz
log

(
∆

θ24
0

)
= −z

(
−1

z
+ 24

d
dz 2

F1(−1
24 ,

7
24 ,

3
4 ; 1728z)

2F1(−1
24 ,

7
24 ,

3
4 ; 1728z)

)
.

Using (153), we find

d

dz
2F1

(
−1

24
,

7

24
,

3

4
; 1728z

)
= −1728

24

(
2F1

(
23

24
,

7

24
,

3

4
; 1728z

)
− 2F1

(
− 1

24
,

7

24
,

3

4
; 1728z

))
.

We conclude that

H(τ)
E4

E6
=

2F1( 23
24 ,

7
24 ,

3
4 ; 1728z)

2F1(− 1
24 ,

7
24 ,

3
4 ; 1728z)

,

as a power series in z = 1/j. The values for λi now follow from lemma 4.27.

Using (63) and proposition 4.28, we find

Theorem 4.29. For n > 1:

∆̃n = 24n2+5n · 3n
2

· 11n · 23n ·
n∏
r=2

( (24r − 29)(24r − 17)(24r − 1)(24r − 13)

(8r − 5)2(8r − 9)(8r − 1)

)n−r+1

. (110)

Note that this determinant is positive for all n > 0, hence this theorem does not give any
information on the location of the roots of Thk.

Remark 4.30. As the hi are all integers, it is clear that ∆̃n is integral. However, from (110) this
is not immediately obvious.

Corollary 4.31. vp(∆̃n) = 0 if p > 24n− 1.
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4.6 Congruence Properties of Thk

Consider the modular form Thk and assume that p = 2k − 1 is a prime number (as k ≥ 4,
we have p ≥ 7). In this section we discuss congruence properties of Thk. We will show that
the modular polynomial corresponding to Thk factors as a product of distinct linear factors if
k ≡ 0, 4 (mod 12) and conjecture it for k ≡ 6, 10 (mod 12).

We start with an easy lemma.

Lemma 4.32. The modular form Thk is p-integral, i.e. none of the denominators in the q-
expansion are divisible by p, and Thk ≡ θ0 + O(qdk) (mod p) (by “mod p” we mean that we
reduce all the coefficients in the Fourier expansion mod p) , where dk := dim(Mk).

Proof. Consider the denominator in (75), an easy computation shows that this denominator is

given by 2k−2(−1)k/2 + 1 = 2−12
p−1
2 (−1)k/2 + 1. We have 2

p−1
2 ≡ (−1)

p2−1
8 (mod p), and this

implies

2−12
p−1
2 (−1)k/2 + 1 6≡ 0,

as 2−1 6≡ ±1 (mod p). Furthermore if n < p+ 1 we have
(
p+1
n

)
≡ 0 (mod p), showing that

Thk ≡ θ2k
0 + θ2k

1 (mod p)

≡ θ0θ
p
0 + θp+1

1 (mod p)

≡ θ0 +O(qdk) (mod p),

for the last line we use that (p+ 1)/4 ≥ dk.

Next, we write Θk for the unique modular form of weight k such that Θk = θ0 +O(qdk), and
we let Rk be the monic polynomial in the j-invariant such that Θk = ∆nkEbk4 Eak6 Rk(j). Using
lemma 4.32, we see that Rk(X) ≡ Qk(X) (mod p) as polynomials in X.

Theorem 4.33. For any k ≡ 0, 4 (mod 12), Rk(X) (mod p) factors as a product of distinct
linear factors in the j-invariant.

Conjecture 4.34. Theorem 4.33 also holds if k ≡ 6, 10 (mod 12).

Example 4.35.

k Rk Rk (mod p)
12 j − 18 j + 18
16 j − 958 j + 3
22 j − 454 j + 19
24 j2 − 1438j + 123888 (j + 9)(j + 10)
30 j2 − 934j + 44760 (j + 25)(j + 44)
34 j2 − 1174j + 145800 (j + 44)(j + 55)

Remark 4.36. Note that theorem 4.33 is the analogy of theorem 3.18.

In order to prove theorem 4.33, we will rewrite the polynomial Rk(j) in terms of the modular
λ-function and show, using hypergeometric properties, that this polynomial (as a polynomial in
λ) will factor as a product of distinct linear factors.
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We can express these polynomials in terms of hypergeometric functions in the following way:
Let W 0

n and W 1
n be the unique polynomials of degree n ≥ 0 such that:

jn · 2F1

(
−1

24
,

7

24
,

3

4
;

1728

j

)
= W 0

n(j) +O(1/j), (111)

jn · 2F1

(
11

24
,

19

24
,

3

4
;

1728

j

)
= W 1

n(j) +O(1/j). (112)

We can interpret the polynomials W 0
n and W 1

n as “the polynomial in j-part” of the left hand
side of (111) and (112) respectively.

Lemma 4.37. Let k = p+1
2 for a prime p ≥ 7, then

Rk(j) ≡W ak
nk

(j) (mod p). (113)

Proof. Assume that k ≡ 0 (mod 12), we need to show that θ0 ≡ ∆nkW 0
nk

(mod p, qnk+1) (this
notation means that the Fourier coefficients should coincide modulo p, up to the coefficient of
qnk). Using lemma 4.26 we have that

2F1

(
−1

24
,

7

24
,

3

4
,

1728

j

)
= θ0 ·∆−1/24 · j−1/24.

First of all note that

∆nk ·W 0
nk

(j) ≡ θ0 ·∆nk · jnk− 1
24 ∆−

1
24 (mod qnk+1).

i.e. their q-expansions coincide up to qnk+1. Hence in order to show (113), it suffices to show

θ0 ≡ θ0∆nk− 1
24 jnk−

1
24 (mod p, qnk+1). (114)

As
∆nk− 1

24 jnk−
1
24 = E

p
8
4

and (
E

1
8
4

)p
≡ 1 (mod p, qp) (115)

, we deduce that (114) holds (note that p ≥ nk + 1). For k ≡ 4 (mod 12) the proof is similar.
Now suppose k ≡ 6 (mod 12). Using proposition A.1, we have

2F1

(
−1

24
,

7

24
,

3

4
; z

)
= (1− z) 1

2 · 2F1

(
11

24
,

19

24
,

3

4
; z

)
. (116)

So that we have

E6∆nk ·W 1
nk

(j) ≡ E6∆nkjnk2F1

(
11

24
,

19

24
,

3

4
,

1728

j

)
(mod qnk+1),

≡ E6∆nk− 1
24 jnk−

1
24

(
1− 1728

j

)− 1
2

· θ0 (mod qnk+1).

≡ E
p
8
4 θ0 (mod qnk+1).

Using (115), we see that (113) holds. Again, if k ≡ 10 (mod 12) we can give a similar argument.
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Now we will rewrite our polynomial Rk in terms of the modular λ-function. We will define this
form using the Weierstrass relation. Let Λ = Zω1⊕Zω2 be a lattice such that τ := ω2

ω1
∈ H, then

we have the following elliptic curve over C coming from the Weierstrass’s differential equation
(see 26)

Y 2 = 4X3 − g2(Λ)X − g3(Λ), (117)

where

g2(Λ) = 60 ·
∑

z∈Λ−{0}

1

z4
and g3(Λ) = 140 ·

∑
z∈Λ−{0}

1

z6
.

Further, let

e1 = ℘Λ

(ω1

2

)
, e2 = ℘Λ

(ω2

2

)
and e3 = ℘Λ

(ω3

2

)
.

The e′is are the (distinct) roots of the right hand side of (117) (see [11, Proposition 10.7.]). Now
let j(Λ) be the j-invariant of (117) and let ∆(Λ) be the discriminant of the right hand side of
(117).

Lemma 4.38. We have the following equalities

j(Λ) = 1728
g2(Λ)3

∆(Λ)
= 1728

g2(Λ)3

16(e1 − e2)2(e1 − e3)2(e2 − e3)3
= j(τ), (118)

where j(τ) is the modular j-invariant.

Proof. See for example [11, §10.B.].

Note that (118) is independent of the choice of basis for Λ. From now on fix

ω1 = π
∑
n∈Z

2(q′)n
2

where q′ := eπiτ ,

and ω2 := τω1. Now we define the λ-function as

λ(τ) =
e3 − e2

e1 − e2
.

λ(τ) is a modular function for the congruence group Γ(2) (See [7, §7 Theorem 2], in fact λ is a
hauptmodul, for Γ(2) of genus 0). We will now give a relation between the j-invariant and the
λ-function:

Proposition 4.39.

j(τ) =
256(1 + λ(λ− 1))3

(λ(λ− 1))2
. (119)

Proof. We can write the right hand side of (119) in terms of e1, e2, e3

256(1 + (λ(λ− 1)))3

(λ(λ− 1))2
=

256((e1 − e2)2 − (e3 − e2)(e1 − e3))3

(e1 − e2)2(e1 − e3)2(e1 − e3)2
,

=
4096((e1 + e2 + e3)2 − 3(e1e2 + e2e3 + e1e3))

∆(Λ)
.

As the ei are the roots of 4X3 − g2(Λ)X + g3(Λ), we see that

e1 + e2 + e3 = 0,

e1e2 + e2e3 + e1e3 =
−g2(Λ)

4
.
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So that
256(1 + λ(λ− 1))3

(λ(λ− 1))2
=

4096( 3
4g2(Λ))3

∆(Λ)
= j(τ).

Now define the polynomials

Fk(λ) :=
(λ(λ− 1))2nk

256nk
·W ak

nk

(
256(1 + λ(λ− 1))3

(λ(λ− 1))2

)
.

These are monic polynomials of degree 6nk in the variable λ. As the relation (119) is six to one,
i.e. any value of j ∈ Fp corresponds to at most 6 values of λ ∈ Fp, it suffices to show that all the

polynomials F̃k :≡ Fk (mod p) have 6nk distinct roots t ∈ Fp with t 6= 0, 1 (mod p). Define the
following truncated hypergeometric function of degree p+1

4 :

G(λ)p := 2F1

(
−1

4
,

1

4
,

1

2
;λ

)
( p+1

4 )
(mod p). (120)

This is well-defined as:

Lemma 4.40. The hypergeometric function 2F1

(
− 1

4 ,
1
4 ,

1
2 ;λ
)

is p-integral, for all p > 2.

Proof. This follows from the expression in A.3, since the Taylor expansion of both
√

1 + x and√
1− x is p-integral for p > 2.

If k ≡ 0, 4 (mod 12), we have the following hypergeometric expression for F̃k

Proposition 4.41.

F̃k(λ) ≡


G(λ)p, if k ≡ 0 (mod 12)

G(λ)p
1 + λ(λ− 1)

, if k ≡ 4 (mod 12)

Proof. Let k ≡ 0 (mod 12). We will first write F̃k as a hypergeometric series in λ(λ− 1). Write

2F1

(
−1

24
,

7

24
,

3

4
;

1728

j

)
=
∑
m≥0

amj
−m.

Using the binomial theorem, we find that

Fk(λ) = a0(1 + λ(λ− 1))3nk +
a1

256
(1 + λ(λ− 1))3(nk−1)(λ(λ− 1))2 + ...+

ank
256nk

(λ(λ− 1))2nk

=

3nk∑
i=0

bi(λ(λ− 1))i,

where

bi =

b i2 c∑
r=0

(
3nk − 3j

i− 2j

)
aj

256j
.

As nk = (p+ 1)/24, we see that(
3nk − 3j

i− 2j

)
≡ (−1)i

1

(i− 2j)!

(
1

8
+ 3j

)
i−2j

(mod p),
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where ( . )n is the Pochhammer symbol. Using Mathematica, we find the identity

bi ≡ (−4)i ·
(− 1

8 )i(
1
8 )i

( 1
2 )ii!

(mod p),

so that

F̃k(λ) ≡ 2F1

(
−1

8
,

1

8
,

1

2
,−4λ(λ− 1)

)
( p+1

8 )
(mod p).

As the coefficients zn of 2F1

(
− 1

8 ,
1
8 ,

1
2 , z
)

vanish modulo p if p+1
8 ≤ n ≤ p+1

4 , it suffices to show
that

2F1

(
−1

8
,

1

8
,

1

2
,−4λ(λ− 1)

)
= 2F1

(
−1

4
,

1

4
,

1

2
, λ

)
.

Now using (161), we see that

2F1

(
−1

8
,

1

8
,

1

2
,−4λ(λ− 1)

)
= cos

(
1

8
arccos(1 + 8λ(λ− 1))

)
.

As 2F1

(
− 1

4 ,
1
4 ,

1
2 , λ
)

= 1
2

(
(1− λ 1

2 )
1
2 + (1 + λ

1
2 )

1
2

)
, (see corollary A.3) it suffices to show that

T8

(
1

2

(
(1− λ 1

2 )
1
2 + (1 + λ

1
2 )

1
2

))
= 1 + 8λ(λ− 1),

where T8 is the eigth Chebyshev polynomial of the first kind (see the Appendix), the latter
identity can be easily checked. The proof for the case k ≡ 4 (mod 12) proceeds similarly.

For weights k ≡ 6, 10 (mod 12), we conjecture the following:

Conjecture 4.42.

F̃k(λ) ≡


G(λ)p

(λ+ 1)(λ− 2)(λ− 1
2 )
, if k ≡ 6 (mod 12)

G(λ)p

(λ+ 1)(λ− 2)(λ− 1
2 )(λ2 + 1)

, if k ≡ 10 (mod 12)

In order to prove theorem 4.33, we will show that the truncated hypergeometric function
G(λ)p factors as a product of distinct linear factors over Fp. We need the following easy lemma.

Lemma 4.43. Let n ∈ Z≥0 and p > 2 a prime, then

∑
a∈Fp

an =

{
−1, if n|p− 1.

0, otherwise.
(121)

Proof. Assume n - p − 1 and let S =
∑
a∈Fp a

n. As F∗p is cyclic, there is a g ∈ F∗p such that
gn 6= 1. Clearly a→ g · a permutes Fp so that gnS = S and hence S = 0, as gn 6= 1.

Proposition 4.44. Let p be a prime p ≡ 3 (mod 4). The polynomial G̃p(λ) splits over Fp as a
product of distinct linear factors. More specifically:

G̃p(λ) ≡
∏

t is not a square (mod p)
t−1 is a square (mod p)

(λ− t) (mod p).
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Proof. Let H̃p(λ) be the polynomial on the right hand side. We will compute the power sums

of the roots of H̃p(λ) and show, using symmetric polynomials, that the coefficients of H̃p(λ) and

G̃p(λ) are congruent. First we show that the degrees of G̃p(λ) and H̃p(λ) coincide. The degree

of H̃p(λ) is exactly

Np := #{t ∈ Fp| − t and t− 1 are squares (mod p)},

as −1 is not a square (mod p). In terms of Legendre symbols, this is

Np =

p−1∑
a=0

1

4

((
−a
p

)
+ 1

)((
a− 1

p

)
+ 1

)
,

=
p+ 1

4
+

1

4

(
p−1∑
a=0

(
−a
p

)
+

p−1∑
a=0

(
a− 1

p

)
+

p−1∑
a=0

(
−a(a− 1))

p

))
,

=
p+ 1

4
+

1

4

p−1∑
a=0

(
−a(a− 1)

p

)
+

1

2

p−1∑
b=0

(
b

p

)
,

where we use that the Legendre symbol is multiplicative. As a 7→ (ap ) defines a non-trivial
multiplicative character on Fp, we have

p−1∑
a=0

(
a

p

)
= 0.

Further as
(
x
p

)
=
(
x−1

p

)
for x ∈ F∗p, we find

p−1∑
a=0

(
−a(a− 1)

p

)
=

p−1∑
a=0

(
−a−1(a− 1)

p

)

=

p−1∑
a=1

(
−1 + a−1

p

)

=

p−2∑
c=2

(
c

p

)
=

p−1∑
c=0

(
c

p

)
− 1 + 1 = 0.

Hence deg(H̃p(λ)) = Np = p+1
4 and this coincides with the degree of G̃p(λ).

Now we compute the n-th power sums Sn of H̃p(λ) for 0 < n ≤ p+1
4 , so

Sn ≡
∑

t is not a square (mod p)
t− 1 is a square (mod p)

tn (mod p).

Again we can compute Sn in terms of Legendre symbols, so that

Sn =

p−1∑
a=0

1

4

((
−a
p

)
+ 1

)((
a− 1

p

)
+ 1

)
an

=
1

4

(
p−1∑
a=0

an +

p−1∑
a=0

(
−a
p

)
an +

p−1∑
a=0

(
a− 1

p

)
an +

p−1∑
a=0

(
−a(a− 1)

p

)
an

)
.
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By Euler’s criterion we have (ap ) ≡ a
p−1
2 (mod p) for all a ∈ Z. Hence

Sn ≡
1

4

(
p−1∑
a=0

an −
p−1∑
a=0

an+ p−1
2 +

p−1∑
a=0

(a− 1)
p−1
2 an +

p−1∑
a=0

(1− a)
p−1
2 an+ p−1

2

)

≡ 1

4

p−1∑
a=0

an −
p−1∑
a=0

an+ p−1
2 +

p−1
2∑

k=0

(−1)k
(p−1

2

k

) p−1∑
a=0

ak+n +

p−1
2∑

k=0

(−1)k
(p−1

2

k

) p−1∑
a=0

ak+n+ p−1
2

 .

Using (121) and the fact that 0 < n ≤ p+1
4 < p−1

2 if p > 3, we find that for primes p > 3

Sn ≡ −
1

4

p−1
2∑

k=0

(−1)k
(p−1

2

k

) p−1∑
a=0

ak+n+ p−1
2 .

Note that a non-zero contribution only occurs if k+n+ p−1
2 = p−1 i.e., if k = p−1

2 −n. Therefore
we find

Sn ≡
(−1)n

4

(p−1
2

n

)
≡ 1

4

( 1
2 )n

n!
.

Using the power sums, we can compute the coefficients of G̃p(λ) using Newton’s identities: Let

cn be the λn coefficient of H̃p(λ), then

cn ≡ −
1

n
(cn−1S1 + cn−2S2 + ...+ c1Sn−1 + Sn). (122)

We need to show

cn ≡
(− 1

4 )n( 1
4 )n

( 1
2 )nn!

.

Using mathematical induction, it suffices to prove that

cn ≡ −
1

4n

n−1∑
r=0

(−1
4 )r(

1
4 )r

( 1
2 )rr!

( 1
2 )n−r

(n− r)!
.

Using Mathematica we find the following identity:
n∑
r=0

(−1
4 )r(

1
4 )r

( 1
2 )rr!

( 1
2 )n−r

(n− r)!
=

(
4n−1

2

)
!

(2n)!
(
− 1

2

)
!
. (123)

Therefore, using this identity, it suffices to show

(−1
4 )n( 1

4 )n

( 1
2 )nn!

(
1− 1

4n

)
= −

(
4n−1

2

)
!

4n(2n)!
(
− 1

2

)
!
,

and this can easily be verified by induction.

Remark 4.45. As p ≡ 3 (mod 4), we see that G̃p(λ) is non-zero if λ = 0, 1.

Remark 4.46. Note that the polynomial G(λ)p is the analogon of the Hasse-polynomial

2F1

(
1
2 ,

1
2 , 1, λ

)
( p+1

2 ), factoring modulo p as a product of linear and quadratic factors, with as

roots mod p the supersingular λ-invariants.

Now we can prove:

Theorem 4.47. If k ≡ 0, 4 (mod 12) and suppose p = 2k − 1 is prime p > 7, then R̃k splits
over Fp as a product of distinct linear factors.

Proof. This follows directly from 4.45, 4.41 and 4.44.
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4.7 Properties of The Orthogonal Polynomials

We have shown that the functional ( , )T defines an inner product on the space of real polyno-
mials. This inner product is analogous to the inner product defined in [22]. As in [22], we will
compute the orthogonal polynomials with respect to ( , )T , using the Gram-Schmidt procedure,
see (59). These polynomials Bi will therefore be the analogue of the Atkin polynomials.
We find:

B0 = 1

B1 = X − 672

B2 = X2 − 17792

11
X +

2714112

11

B3 = X3 − 47392

19
X2 +

28296960

19
X − 98279424

B4 = X4 − 30272

9
X3 +

719159296

207
X2 − 75652628480

69
X +

924787539968

23
.

Using proposition 3.48 and the values λi we computed in (4.28), we get for n ≥ 2 an explicit
recursion formula for the Bi:

Bn+1 =
(
X−96(576n2 − 144n− 107)

(8n− 5)(8n+ 3)

)
Bn−

2304(24n− 1)(24n− 13)(24n− 29)(24n− 17)

(8n− 9)(8n− 1)(8n− 5)2
Bn−1.

(124)

Proposition 4.48. All the n zeros of Bn are real, distinct and lie in the interval (0, 1728).

Proof. We can rewrite the inner product (f(X), g(X))T =
∫ π/2
π/3

f(j(eiα))g(j(eiα))W (α)dα as

(f(X), g(X))T =

∫ 1728

0

f(j)g(j)W (α)α′(j)dj,

where α(j) is the inverse of j(eiα) on (π/3, π/2). Clearly W (α)α′(j) > 0 on (π/3, π/2). Using
proposition 3.50, we derive our result.

4.7.1 Congruence Observations

From the recursion (124), it is clear that the polynomials Bn are p-integral if p > 8(n− 1) + 3 =

8n−5. So that B̃n := Bn (mod p) is well-defined. Similar to the Atkin polynomials, we observed
some factorization properties modulo p:

Conjecture 4.49. Let n ≥ 2, then R p+1
2

(mod p) divides B̃n for all primes 24n > p > 8n − 5,

p ≡ 3 (mod 4).

Example 4.50. We consider the factorization of B̃4 for primes 31 ≤ p ≤ 83, p ≡ 3 (mod 4).

p B̃4(X)

31 X(X + 3)(X2 + 9X + 1)

43 X(X + 19)(X + 32)(X + 35)

47 (X + 9)(X + 10)(X2 + 38X + 38)

59 (X + 13)(X + 25)(X + 42)(X + 44)

67 X(X + 14)(X + 44)(X + 55)

71 (X + 29)(X + 33)(X + 39)(X + 46)

79 X(X + 16)(X + 45)(X + 69)

83 (X + 15)(X + 17)(X + 33)(X + 39)
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5 Modular Forms With All Zeros on The Unit Circle

In this section, we will give an explicit sufficient condition for a modular form to have all its
zeros on the unit circle, see theorem 5.6. This sufficient condition will depend on the bound we
can give for a certain cuspidal modular form on the unit circle. For the bounds on these modular
forms, we will use the theory of W. Duke and P. Jenkins [13].

5.1 Results for Certain Weakly Modular Forms

In this section we review the results of [13]. In [13], the authors studied the location of the zeros
of certain weakly modular forms.
For k ∈ 2Z, write k = 12`+k′, where k′ ∈ {0, 4, 6, 8, 10, 14} and ` ∈ Z. As in [13] fix the notation
fk,m for the unique holomorphic weakly modular form of weight k such that:

fk,m = q−m +O(q`+1), (125)

with m ≥ −`. Note that if k ≥ 4, the value ` + 1 coincides with dk := dim(Mk). In [13], the
authors showed that:

Theorem 5.1 ([13, Theorem 1.]). If m ≥ |`| − `, then all the zeros of fk,m in the finite part of
F lie on the unit circle {eiθ|θ ∈ [π/2, 2π/3]}.

The authors used a similar argument as in [33]. More specifically they proved the following:

Lemma 5.2 ([13, Lemma 2.]). For all θ ∈ (π/2, 2π/3) and m ≥ 0:

|eikθ/2e−2πmsin(θ)fk,m(eiθ)− 2cos (kθ/2− 2πm cos(θ)) | < 1.985. (126)

If m ≥ 0, the function
θ 7→ 2cos (kθ/2− 2πm cos(θ))

has exactly `+1+m values on [π/2, 2π/3] where it takes on absolute value 2, alternating between
2 and −2 as θ increases, see [13] for more details. By the intermediate value theorem, it follows
that the real valued function

θ 7→ eikθ/2fk,m(eiθ)e−2πmsin(θ)

has at least ` + m zeros on (π/2, 2π/3). Using the valence formula (11), we see that fk,m has
exactly `+m zeros on (π/2, 2π/3), as fk,m has a pole of order m at i∞.

As an application of lemma 5.2, we find that

|eikθ/2fk,0(eiθ)− 2cos(kθ/2)| < 1.985, (127)

so that the zeros of the extremal modular forms fk,0 in the fundamental domain F lie on the
unit circle.

5.2 Bounds for Cusp Forms on the Unit Circle

In this section we will present Theorem 5.6. In order to prove this result, we will show the
following result for the value of cusp forms on the unit circle:

Lemma 5.3. For m ≤ 0, let fk,m be the unique form defined by (125). Then for θ ∈ [π/2, 2π/3]
we have:

|fk,m(eiθ)| ≤ 3.985 · e2πm0.65. (128)
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This result gives an explicit way of bounding the values of the cusp forms fk,m on the unit
circle. We will prove this result in the next section. Lemma 5.3 allows us to prove the main
lemma:

Lemma 5.4. Let f =
∑∞
n=0 anq

n be a formal power series in q with real coefficients, such that

a0 = 1. Let f̃ be the unique modular form of weight k such that f̃ = f +O(qdk). Let R = 1.985
and assume that

M =

dk−1∑
n=1

|an| · e−2πn0.65 <
2−R
2 +R

. (129)

Then
|eikθ/2f̃(eiθ)− 2cos(kθ/2)| < 2,

for θ ∈ [π/2, 2π/3].

Proof. We can write

f̃ = fk,0 +

dk−1∑
n=1

anfk,−n,

as the difference is a modular form of the form O(qdk), and such a form must be identically equal
to 0 (using the valence formula (11) for example). Now

|eikθ/2f̃(eiθ)− 2cos(kθ/2)| ≤ |eikθ/2fk,0(eiθ)− 2cos(kθ/2)|+
dk−1∑
n=1

|eikθ/2||an||fk,−n(eiθ)|

< R+

dk−1∑
n=1

|an| · (2 +R) · e−2πn0.65

< R+ (2−R) = 2,

using (127), for all θ ∈ [π/2, 2π/3].

Remark 5.5. An analogous result can be found in [41] for certain modular functions.

Theorem 5.6. Suppose f̃ is a modular form as in lemma 5.4 satisfying (129), then all the zeros

of f̃ in the fundamental domain F lie on the arc {eiθ | θ ∈ [π/2, 2π/3]}.

Proof. Using lemma 5.4, we have that |eikθ/2f̃(eiθ)− 2cos(kθ/2)| < 2. Using lemma 3.1, we see

that eikθ/2f̃(eiθ) is real for θ ∈ [π/2, 2π/3]. Write k = 12nk + 6ak + 4bk, nk ∈ Z≥0, ak ∈ {0, 1}
and bk ∈ {0, 1, 2}. As in the proof of theorem 3.2, we conclude that f̃ has at least nk zeros on
the arc {eiθ | θ ∈ (π/2, 2π/3)} and by the valence formula (11) it has exactly nk zeros on this
arc, finishing the proof.
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5.3 Proof of Lemma 5.3

The proof of lemma 5.3 will proceed as follows; we will extend lemma 5.2 for m ≤ 0 using the
methods from [13]. We will show that for m ≤ 0 and dk > 12 :

Lemma 5.7. For θ ∈ [π/2, 2π/3] we have the following inequality:

|eikθ/2e−2πmsin(θ)fk,m(eiθ)−2cos(kθ/2−2πm cos(θ))| ≤

{
1.985e−2πm(sin(θ)−0.75); θ ∈ [π/2, 1.9)

1 + 0.985e−2πm(sin(θ)−0.65); θ ∈ [1.9, 2π/3]
.

Assuming this lemma, we can prove lemma 5.3: For θ ∈ [1.9, 2π/3] we find, using the triangle
inequality

|eikθ/2e−2πmsin(θ)fk,m(eiθ)| ≤ 1 + 0.985e−2πm(sin(θ)−0.65) + |2cos (kθ/2− 2πm cos(θ)) |
≤ 3 + 0.985e−2πm(sin(θ)−0.65),

dividing by e−2πmsin(θ) gives

|fk,m(eiθ)| ≤ 3e2πmsin(θ) + 0.985e2πm0.65 ≤ 3.985e2πm0.65,

as sin(θ) > 0.65.
Similarly, for θ ∈ [π/2, 1.9) we find, using the triangle inequality

|eikθ/2e−2πmsin(θ)fk,m(eiθ)| ≤ 1.985e−2πm(sin(θ)−0.75) + |2cos (kθ/2− 2πm cos(θ)) |
≤ 2 + 1.985e−2πm(sin(θ)−0.75),

dividing by e−2πmsin(θ) gives

|fk,m(eiθ)| ≤ 2e2πmsin(θ) + 0.985e2πm0.75 ≤ 2.985e2πm0.75 ≤ 3.985e2πm0.65,

as sin(θ) > 0.75.

We shall treat the cases of low weight separately: If dk ≤ 12, we can write the form fk,m,
−dk + 1 ≤ m ≤ 0 as the linear combination

fk,m =

dk−1∑
i=−m

cifk−12i,0∆i,

for some ci ∈ R. Using lemma B.4 we see that

|fk,m(eiθ)| ≤
dk−1∑
i=−m

|ci||fk−12i,0(eiθ)| · 0.00481i.

As |eikθ/2fk−2i,0(eiθ) − 2cos(kθ/2)| < 1.985, we find that |fk−12i,0(eiθ)| ≤ 3.985. An easy com-
putation for all k with dk ≤ 12, shows that

|fk,m(eiθ)| ≤
dk−1∑
i=−m

|ci| · 3.985 · 0.00481i ≤ 3.985 · e2πm0.65.

This proves lemma 5.3. In the remainder of this section we will prove lemma 5.7.
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Let k be a positive even integer and write k uniquely as k = 12(dk − 1) + k′, where k′ ∈
{0, 4, 6, 8, 10, 14}. For the proof of lemma 5.7, we use the following the following remarkable
formula:

Lemma 5.8 ([13, lemma 2]). Let m be an integer such that m ≥ −dk + 1, then we have

fk,m(z) =
1

2πi

∮
C

∆(z)dk−1Ek′(z)E14−k′(τ)

∆(τ)dk(j(τ)− j(z))
q−m−1dq, (130)

for C a (counterclockwise) circle centered at q = 0 with a sufficiently small radius.

Remark 5.9. We use the convention E0 ≡ 1.

Proof. We follow the proof of [13]. We can write:

fk,m(τ) = ∆dk−1Ek′Fk,D(j),

where Fk,D(j) is a monic polynomial of degree D = m + dk − 1 ≥ 0 in the j-invariant. Using
Cauchy’s integral theorem twice, we have

Fk,D(x) =
1

2πi

∮
C′

Fk,D(j)

j − x
dj =

1

2πi

∮
C′

q−m

∆(τ)dk−1Ek′(τ)(j − x)
dj +

∮
C′

O(qdk)

∆(τ)dk−1Ek′(τ)(j − x)
dj,

=
1

2πi

∮
C′

q−m

∆(τ)dk−1Ek′(τ)(j − x)
dj,

for a sufficient large counterclockwise oriented circle C ′ around j = 0. Now using the identity

q
dj

dq
=
−E14

∆
,

we find

fk,m(z) = ∆(z)dk−1Ek′(z)Fk,D(j(z)) =
1

2πi

∮
C

∆(z)dk−1Ek′(z)E14−k′(τ)

∆(τ)dk(j(τ)− j(z))
q−m−1dq,

for C a (counterclockwise) circle centered at q = 0 with a sufficiently small radius.

For A > 1 big enough, lemma 5.8 implies that, after changing variables q = e2πiτ with τ , we
find:

fk,m(z) =

∫ 1
2 +iA

− 1
2 +iA

∆(z)dk−1Ek′(z)E14−k′(τ)

∆(τ)dk(j(τ)− j(z))
e−2πimτ dτ, (131)

using Cauchy’s integral theorem. As in [13], we will write

G(τ, z) :=
∆(z)dk−1Ek′(z)E14−k′(τ)

∆(τ)dk(j(τ)− j(z))
e−2πimτ .

From now on let z = eiθ for θ ∈ (π/2, 2π/3). For 0 < A′ < A, define the box

BA′ := {τ ∈ H | − 1

2
≤ Re(τ) ≤ 1

2
and A′ ≤ Im(τ) ≤ A}.
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Then by the residue theorem, assuming there are no poles on the boundary of BA′ ,∫ 1
2 +iA′

− 1
2 +iA′

G(τ, z) dτ =

∫ 1
2 +iA

− 1
2 +iA

G(τ, z) dτ + 2πi
∑

τ0∈BA′

Resτ=τ0G(τ, z), (132)

= fk,m(z) + 2πi
∑

τ0∈BA′

Resτ=τ0G(τ, z). (133)

Note that the only possible poles of G(τ, z) in BA′ , seen as a function in the variable τ , are at
τ = γz, for γ ∈ SL2(Z). As we have the identity

q
dj

dq
=
−E14

∆

and dq
dτ = 2πiq, we can rewrite G(τ, z) as:

G(τ, z) =
e−2πimτ

−2πi

∆(z)dk−1Ek′(z)

∆(τ)dk−1Ek′(τ)
·
d
dτ (j(τ)− j(z))
(j(τ)− j(z))

.

Hence, the residue at the points τ0 = γz for γ =

(
a b
c d

)
, is given by:

Resτ=γzG(τ, z) = −e
−2πim·(γz)

2πi
(cz + d)−k. (134)

As we have

Im(γz) =
sin(θ)

c2 + d2 + 2cd cos(θ)
, (135)

we see that if
√

3/2 < Ã < sin(θ), the region BÃ contains exactly two poles of G(τ, z):

τ0 = z and τ0 = −1

z
.

Hence, for these Ã we have:∫ 1
2 +Ãi

− 1
2 +Ãi

G(τ, z)dτ = fk,m(z)− e−2πimz − z−ke−2πim(−1/z).

If we multiply both sides of the equation by eikθ/2e−2πmsin(θ), we find:

eikθ/2e−2πmsin(θ)

∫ 1
2 +Ãi

− 1
2 +Ãi

G(τ, z)dτ = eikθ/2e−2πmsin(θ)fk,m(eiθ)− 2cos(kθ2 − 2πmcos(θ)). (136)

The goal is to bound the left side of the equation.

If 1.9 ≤ θ < 2π/3, one can check using (135) that if we choose A′ = 0.65, we have that the
only poles in BA′ are given by

τ0 = z, τ0 = −1

z
, τ0 = − 1

z + 1
and τ0 =

z

z + 1
.
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As − 1
z+1 and z

z+1 have real part − 1
2 and 1

2 respectively, these poles lie on the vertical boundary
of BA′ . Adding a small circular arc of the same size around each of these points, we get using
(134) and Cauchy’s residue theorem:

eikθ/2e−2πmsin(θ)

∫ 1
2 +Ãi

− 1
2 +Ãi

G(τ, z)dτ (137)

= eikθ/2e−2πmsin(θ)

(
−2πi · Resτ=− 1

z+1
G(τ, z) +

∫ 1
2

− 1
2

G(x+ 0.65i, z)dx

)

=
e−πim

(2cos(θ/2))k
e−πm(2sin(θ)−tan(θ/2))+

eikθ/2e−2πmsin(θ)

∫ 1
2

− 1
2

G(x+ 0.65i, z)dx. (138)

If π/2 ≤ θ < 1.9, one can similarly show that if A′ = 0.75, the poles of G(τ, z) in BA′ are
given by

τ0 = z and τ0 = −1

z
,

hence we need to give a bound for

eikθ/2e−2πmsin(θ)

∫ 1
2

− 1
2

G(x+ 0.75i, z)dx (139)

in this case. The next sections will be devoted to bounding (138) and (139).

5.3.1 The Case 1.9 ≤ θ < 2π/3

We assume 1.9 ≤ θ < 2π/3 and A′ = 0.65. We need to give an upper bound for:∣∣∣∣∣ e−πim

(2cos(θ/2))k
e−πm(2sin(θ)−tan(θ/2)) + eikθ/2e−2πmsin(θ)

∫ 1
2

− 1
2

G(x+ 0.65i, z)dx

∣∣∣∣∣ . (140)

Clearly this is bounded above by

1

(2cos(θ/2))k
e−πm(2sin(θ)−tan(θ/2)) + e−2πmsin(θ)

∫ 1
2

− 1
2

|G(x+ 0.65i, z)|dx. (141)

We claim that g(θ) := 1
(2cos(θ/2))k

e−πm(2sin(θ)−tan(θ/2)) is bounded above by 1 on [1.9, 2π/3). The

derivative of g(θ) is given by

g′(θ) =
e−πm(2sin(θ)−tan(θ/2)) ·

(
−πm

(
2cos(θ)− 1

2cos(θ/2)2

)
+ k(2cos(θ/2)k−1sin(θ/2))

)
(2cos(θ/2))2k

.

An easy computation shows that

−3 < 2cos(θ)− 1

2cos(θ/2)2
≤ −1,
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and for all even positive k √
3

2
< (2cos(θ/2))k−1sin(θ/2).

As − k
12 ≤ m ≤ 0 and −3πk12 + k

√
3

12 > 0, we deduce that g′(θ) > 0 and hence g(θ) is strictly
increasing on [1.9, 2π/3). Therefore

g(θ) < g(2π/3) = 1

and it suffices to bound the value

e−2πmsin(θ)

∫ 1
2

− 1
2

|G(x+ 0.65i, z)|dx. (142)

Proposition 5.10.∫ 1
2

− 1
2

∣∣∣∣ ∆(z)dk−1Ek′(z)E14−k′(x+ 0.65i)

∆(x+ 0.65i)dk(j(x+ 0.65i)− j(z))

∣∣∣∣ dx < 516 · 0.481dk−1. (143)

So that for dk > 8, the right side of (146) is bounded by 0.985.

Proof. We prove this by giving lower bounds for terms in the denominator and upper bounds
for the terms in the numerator. First of all we fix some notation, given a Laurent series F =∑∞
n=−s anq

n, for some s ∈ Z≥0, an ∈ C, we define FN to be the truncated series
∑N
n=−s anq

n.
Using Mathematica, one can show that for all k′ ∈ {0, 4, 6, 8, 10, 14}

max|x|≤ 1
2
|E14−k′(x+ 0.65i)13| ≤ 416.

This implies that

|E14−k′(x+ 0.65i)| = |E14−k′(x+ 0.65i)13 + E14−k′(x+ 0.65i)− E14−k′(x+ 0.65i)13|
≤ |E14−k′(x+ 0.65i)13|+ |E14−k′(x+ 0.65i)− E14−k′(x+ 0.65i)13|

≤ 416 +

∞∑
n=14

|an|e−2π0.65n

≤ 416 +

∫ ∞
13

504x14−k′e−2π0.65xdx

(Using lemma B.1 and the fact that the integrand is decreasing)

≤ 416 + 1.14 · 10−8

< 417.

Similar arguments (using lemmas B.2 and B.3) show that |∆(x+0.65i)| > 0.01, |Ek′(z)| < 4 and
|j(x+ 0.65i)− j(z)| > 323 for all − 1

2 ≤ x ≤
1
2 and 1.9 ≤ θ ≤ 2π/3. This shows that∣∣∣ Ek′(z)E14−k′(x+ 0.65i)

∆(x+ 0.65i)(j(x+ 0.65i)− j(z))

∣∣∣ < 4 · 416

0.01 · 323
< 516. (144)

Furthermore, we have that |∆(z)| < 0.00481 (see lemma B.4) for all θ ∈ (π/2, 2π/3), hence

|∆(z)|
|∆(x+ 0.65i)|

<
0.00481

0.01
= .481. (145)

So we conclude that the bound (146) holds.
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For m ≤ 0 and dk > 8 this implies that,

e−2πmsin(θ)

∫ 1
2

− 1
2

|G(x+ 0.65i, z)|dx

= e−2πmsin(θ) ·
∫ 1

2

− 1
2

∣∣∣e−2πim(x+0.65i) ∆(z)dk−1Ek′(z)E14−k′(τ)

∆(x+ 0.65i)dk(j(x+ 0.65i)− j(z))

∣∣∣dx
≤ 0.985e−2πm(sin(θ)−0.65).

From this we conclude that for θ ∈ [1.9, 2π/3] and dk > 8:

|eikθ/2e−2πmsin(θ)fk,m(eiθ)− 2cos
(
kθ/2− 2πmcos(θ)

)
| ≤ 1 + 0.985e−2πm(sin(θ)−0.65).

5.3.2 The Case π/2 < θ < 1.9

We assume π/2 < θ < 1.9 and A′ = 0.75.

Proposition 5.11.∫ 1
2

− 1
2

∣∣∣∣ ∆(z)dk−1Ek′(z)E14−k′(x+ 0.75i)

∆(x+ 0.75i)dk(j(x+ 0.75i)− j(z))

∣∣∣∣ dx < 167 · 0.67dk−1. (146)

So that for dk > 12, the right side of (146) is bounded by 1.985.

Proof. Using a similar argument as in proposition 5.11 we have:∣∣∣ Ek′(z)E14−k′(x+ 0.75i)

∆(x+ 0.75i)(j(x+ 0.75i)− j(z))

∣∣∣ < 167, (147)

and ∣∣∣∣ ∆(z)

∆(x+ 0.75i)

∣∣∣∣ < 0.67 (148)

for all −1/2 ≤ x ≤ 1/2 and θ ∈ (π/2, 1.9). So that∣∣∣∣ ∆(z)dk−1Ek′(z)E14−k′(x+ 0.75i)

∆(x+ 0.75i)dk(j(x+ 0.75i)− j(z))

∣∣∣∣ < 167 · 0.67dk−1.

Using a similar reasoning as before, we conclude that for dk > 12 and θ ∈ [π/2, 1.9):

|eikθ/2e−2πmsin(θ)fk,m(eiθ)− 2cos
(
kθ/2− 2πmcos(θ)

)
| ≤ 1.985e−2πm(sin(θ)−0.75).

This finishes the last case.

65



5.4 Stronger variant of Theorem 5.6

We can make the value R in the theorem 5.6 dependent on k, finding an even stronger result.
If 1.9 ≤ θ ≤ 2π/3, using (145), (141) and (144) we get that for m ≤ 0

|eikθ/2e−2πmsin(θ)fk,m(eiθ)− 2cos(kθ/2− 2πmcos(θ))| ≤ 1 +

∫ 1/2

−1/2

|G(x+ 0.65i, z)|dx

≤ 1 + 0.481dk−1 · 516 · e−2πm(sin(θ)−0.65).

So that

|fk,m(eiθ)| ≤ 3e2πmsin(θ) + 0.481dk−1 · 516 · e2πm0.65 ≤ (3 + 0.481dk−1 · 516) · e2πm0.65.

Further, if π/2 < θ < 1.9, using the estimates (147) and (148), we find

|eikθ/2e−2πmsin(θ)fk,m(eiθ)− 2cos(kθ/2− 2πmcos(θ))| ≤
∫ 1/2

−1/2

|G(x+ 0.75i, z)|dx

≤ 0.67dk−1 · 167 · e−2πm(sin(θ)−0.75).

Similarly, we find
|fk,m(eiθ)| ≤ (2 + 0.67dk−1 · 167) · e2πm0.75.

An easy computation shows that if dk > 14,

0.67dk−1 · 167 ≤ 1 + 0.481dk−1 · 516.

So that:

Lemma 5.12. For dk > 14 and θ ∈ [π/2, 2π/3], we have∣∣∣eikθ/2fk,0(eiθ)− 2cos(kθ/2)
∣∣∣ ≤ 1 + 0.481dk−1 · 516.

Lemma 5.13. For dk > 14, m ≤ 0 and θ ∈ [π/2, 2π/3], we have

|fk,m(eiθ)| ≤ (3 + 0.481dk−1 · 516) · e2πm0.65. (149)

This allows us to replace R in theorem 5.4 with the value 1 + 0.481dk−1 · 516.

Theorem 5.14. Let f =
∑∞
n=0 anq

n be a formal power series in q with real coefficients, such

that a0 = 1. Let f̃ be the unique modular form of weight k with dk > 14 such that f̃ = f+O(qdk).
Let R = 1 + 0.481dk−1 · 516, assume that

M :=

dk−1∑
n=1

|an| · e−2πn0.65 <
2−R
2 +R

. (150)

Then all the zeros of f̃ in F lie on the unit circle {eiα | α ∈ [π/2, 2π/3]}.

Corollary 5.15. Consider the theta series θ0 = 1 + 2 ·
∑∞
n=1 q

n2

. Let Θk be the unique modular
form such that Θk = θ0 +O(qdk). Then all the zeros of Θk in the fundamental domain F lie on
the circular arc {eiα | α ∈ [π/2, 2π/3]}.
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Proof. Let an be the n-th Fourier coefficient of Θk. Then

M :=

dk−1∑
n=1

|an| · e−2πn0.65 ≤ 2

∞∑
n=1

e−2πn0.65 = 2
e−2π0.65

1− e−2π0.65
< 0.0343.

Note that

M <
2−R
2 +R

,

where R is as in theorem 5.14. Hence if dk > 14, we conclude that all the zeros of Θk in the
fundamental domain F lie on the circular arc.
For dk ≤ 14, one can explicitly compute the polynomial

Qk(j) =
Θk

∆nkEbk4 Eak6

in the j-invariant of degree nk (= dk − 1), and show that the zeros of this polynomial lie in the
interval [0, 1728].
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A Hypergeometric Functions

In this appendix we recall some basic notations and properties of hypergeometric functions.
For a general reference see [1]. We will only be considering the classical Gauss’ hypergeometric
function. Let a, b, c ∈ R and c 6∈ Z≤0. Define the ordinary hypergeometric function

2F1(a, b, c; z) =

∞∑
n=0

(a)n(b)n
(c)n

zn

n!
, (151)

where

(q)n =

{
1 n = 0,

q(q + 1) · · · (q + n− 1) n > 0.

If a, b 6∈ Z≥0 this defines an infinite series with radius of convergence 1 (if a and b are positive
integers, (151) is just a polynomial).

A.1 Contiguous Relations

Let F = 2F1(a, b, c; z), then we have the following relations:

z
dF

dz
= z

ab

c
F (a+, b+, c+) (152)

= a(F (a+)− F ) (153)

= b(F (b+)− F ) (154)

= (c− 1)(F (c−)− F ) (155)

=
(c− a)F (a−) + (a− c+ bz)F

1− z
(156)

=
(c− b)F (b−) + (b− c+ az)F

1− z
(157)

= z
(c− a)(c− b)F (c+) + c(a+ b− c)F

c(1− z)
(158)

where F (a+) means 2F1(a+ 1, b, c; z) etc.

A.2 Hypergeometric Differential Equation

The hypergeometric function 2F1(a, b, c; z) is a solution to the differential equation:

z(1− z)d
2w

dz2
+ [c− (a+ b+ 1)z]

dw

dz
− abw = 0. (159)

A.3 Hypergeometric Relations

We recall a few well-known relations between hypergeometric functions.

Proposition A.1 (Euler’s transformation formula).

2F1(a, b, c; z) = (1− z)c−a−b2F1(c− a, c− b, c; z). (160)

Another relation is given by
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Proposition A.2. For a ∈ Z>0 we have

2F1

(
a,−a, 1

2
;

1

2
(1− cos(z))

)
= cos(az), (161)

= Ta(cos(z)), (162)

where Ta is the a-th Chebyshev polynomial of the first kind.

From the previous statement we immediately deduce the following:

Corollary A.3.

2F1

(
−1

4
,

1

4
,

1

2
; z

)
=

1

2

(
(1− z 1

2 )
1
2 + (1 + z

1
2 )

1
2

)
. (163)
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B Bounds for Modular Forms

In this appendix we discuss some bounds for the coefficients of modular forms we need for section
5.

Lemma B.1. Let Ek =
∑∞
n=0 anq

n be the Eisenstein series of weight k ∈ {4, 6, 8, 10, 12, 14}
(normalized such that a0 = 1), then |an| ≤ 504nk for n ≥ 1.

Proof. Clearly |a1| ≤ 504 for all k ∈ {4, 6, 8, 10, 12, 14}, furthermore |an| ≤ 504σk−1(n) is trivially
bounded by 504nk.

Lemma B.2. Write ∆ =
∑∞
n=0 τ(n)qn, then |τ(n)| ≤ 2n6.

Proof. Using a bound by Deligne, see for example [23, p. 164], we have

|τ(n)| ≤ σ0(n)n11/2.

Trivially we have σ0(n) ≤ 2
√
n, so that |τ(n)| ≤ 2n6.

Lemma B.3. Let j =
∑∞
n=−1 cnq

n be the modular j-invariant. Then for n ≥ 1:

|cn| ≤ e4πn.

Proof. Using [4], we have that for n ≥ 1,

cn ≤
e4π
√
n

√
2n3/4

.

As
e4π
√
n

√
2n3/4

≤ e4πn

and the coefficients of the j-invariant are all positive, the result follows.

We finish this appendix with a bound for ∆ on the unit circle:

Lemma B.4. Let θ ∈ [π/2, 2π/3]. Then we have |∆(eiθ)| ≤ 0.00481.

Proof. See [18, Prop. 2.2.].
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