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Abstract

For p a prime larger than 7, the Eisenstein series of weight p — 1 has some remarkable congruence
properties modulo p, implying for example that the j-invariants of its zeros (which are known to
be real algebraic numbers in the interval [0, 1728]), are all modulo p at most quadratic over the
field with p elements, are congruent modulo p to the zeros of certain truncated hypergeometric
series. In my thesis, I introduce the “theta modular form” of weight k, defined as the unique
modular form of that weight for which the first dim(Mj) Fourier coefficients are identical to
those of the Jacobi theta series. Theta modular form modulo p relate to the average weight
enumerators in coding theory. I show that theta modular forms of weight (p + 1)/2 behave in
many ways like Eisenstein series: the j-invariants of their zeros all belong to the interval [0, 1728],
are modulo p all in the ground field with p elements, and are congruent modulo p to the zeros of a
truncated hypergeometric function (with parameters halved compared to the Eisenstein series).
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The rational number defined by the relation ST = S00  Bugn,

n=0 n!

The largest integer n such that n < r.

The complex upper half plane {z € C | Im(z) > 0}.
The set {1,2,...} of natural numbers.

The order of a meromorphic function f at the point z.
The complex number ¢27%/3,

The group of matrices {(Z Z) | a,b,¢,d € Z,ad — bc = 1}.
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1 Introduction

1.1 Background

“Modular forms are everywhere’ﬂ They are highly symmetrical functions f : H — C and play
a central role in number theory, algebraic geometry, combinatorics, etc. This symmetry implies
that any modular form f(z) can be written as a Fourier series

f(z) =ag +a1q + a2q® + ..., (1)

where ¢ = €?™#. The Fourier coefficients a; often contain a lot of number theoretical information.
For example, modular forms can be used to find the number of representations of an integer as a
sum of squares. Modular forms also turn up in physics, see [43]. They occur in topics like string
theory, quantum mechanics, statistical physics and the theory of black holes.

One of the most important examples of modular forms are the Eisenstein series of weight k:

1

Bz =5 Y. () 2)
(e,d)eZ?
ged(e,d)=1

for every even integer k > 4.
In this thesis, we will consider the zeros and congruences of modular forms.

The study of zeros of modular forms seems to be initiated by Hardy and Ramanujan in their
paper [20] in 1919, in which they considered inverses of modular forms and needed to know the
location of the poles of these functions.

The study of zeros of modular forms is separated into two classes: the Eisenstein series and the
cuspidal Hecke eigenforms.

The study of the zeros of FEisenstein series was started by K. Wohlfahrt [44] in 1963. He
computed the zeros of Eisenstein series of low weight & (k < 24) and showed that for these
weights, all the zeros lie on the unit circle {e? | § € [r/2,27/3]} inside the fundamental domain.
In [44], the author explicitly computes the corresponding modular polynomial and shows that
the zeros of this polynomial all lie in a certain bounded interval. In 1969, R.A. Rankin [34]
showed additionally that for 28 < k < 38, except k = 36, the zeros of the Eisenstein series all
lie on the unit circle, using a method very different from [44]. Rankin showed that for certain
weights, k=0 (mod 4), the v-th power sums of the j-invariants of the zeros of E}, equal:

(k/12> “ Gy + 0(1)7

as k increases, for a certain value g, independent of k.

Rankin conjectured that for every even k > 4, the zeros of the Eisenstein series lie on the unit
circle. Rankin tried to disprove the conjecture by showing that a certain Hankel determinant
corresponding to the Eisenstein series is negative. However, in 2018 it was shown, by explicitly
computing it, that this determinant is strictly positive, see [19].

In 1970, an elementary proof was given by H.P.F. Swinnerton-Dyer and F.K.C. Rankirﬂ[SB]
showing that for even k > 4, the zeros of the Eisenstein series lie on the unit circle. For the
proof, Swinnerton-Dyer and Rankin considered the real valued function:

Fk(‘g) _ eik0/2Ek(ez'9)’

I This is the title of Don Zagier’s 65th birthday conference [28].
2The daughter of R.A. Rankin. Swinnerton-Dyer had asked Rankin’s daughter to help, apparrently in order
to tease her father.




and showed that on [r/2,27/3] the difference Ry (0) := |Fy(6) — 2cos(kf/2)] is strictly smaller
than 2, and this gives a way of finding a lower bound for the number of zeros of Ej. Now the
geometry of the fundamental region implies that the number of zeros of Fjy on the unit circle
has a certain upper bound, allowing them to conclude that all the zeros of Ej lie on the unit
circle. The method of Swinnerton-Dyer and Rankin can be used to prove results on the zeros of
different kinds of modular forms, even for congruence subgroups, see [16].

The method of Swinnerton-Dyer and Rankin applies for example to certain holomorphic weakly
modular forms meromorphic at ico: Writing k € Z as k = 120 + k' for k' = 0,4,6, 8,10, 14 and
¢ € Z, it was shown by W. Duke and P. Jenkins [I3] that the forms:

fk,m — q—m + O(QE—H)

also have all their zeros in the fundamental domain on the unit circle if m > |¢| — £. However,
there seems to be no unifying method of proof.

For cuspidal eigenforms, the behaviour of the zeros is very different from the zeros of the Eis-
enstein series. The zeros of these forms are in fact equidistributed with respect to the hyperbolic
measure in the fundamental domain, see [35].

Many number theoretical results can deduced using congruences of modular forms. For ex-
ample, we have the surprising congruence as a power series in ¢ established by Ramanujan [32]:

q H(l - = Z o11(n)q¢™ (mod 691).
n=1 n=1

It is a classical result by Deligne (for a proof see [22]) that the modular polynomial

o) = [I G- i), 3)
E(z)=0
2F#4,p
corresponding to the Eisenstein series of weight k, factors as a product of quadratic and linear
factors modulo p, if k = p — 1. These factors are the j-invariants of supersingular elliptic curves
over finite fields. In [22], it was shown that these polynomials are congruent to certain truncated
hypergeometric functions.

1.2 New Results in This Thesis

In Chapter 3, we apply the methods of Rankin’s original paper [34] to a different type of modular
form Thy, called the “Theta modular form” defined in [30]. These modular forms occur in coding
theory as “average weight enumerators”. In [30], it is conjectured that the zeros of all these forms
lie on the unit circle. We show that power sums of the j-invariants of the zeros of these modular
forms are:

(k/12) - hy + o(1),

as k increases for weights k = 0 (mod 4), for a certain constant value h,.
We use the theory of orthogonal polynomials and hypergeometric functions to prove that the
associated Hankel determinant:

ho  hi hy ... hyp
~ hi he  hy .. o
hn hn—i—l hn+2 oo h2n



is strictly positive for all n € N and has the factorization property:

Theorem A (Theorem [4.29)). For alln > 1

n
&n — 24n2+5n . 3712 . 11n . 23?7, . H ((
r=2

24r — 29)(24r — 17)(24r — 1)(24r — 13) )”*TH

(8r—5)2(3r — 9)(8r — 1) @

Further, we look at congruences of the modular polynomials Ry, corresponding to these “Theta
modular forms”. As with the polynomials ¢y, we show that the polynomials Ry are congruent
to certain truncated hypergeometric functions (lemma . Using this, we find the remarkable
factorisation property:

Theorem B (Theorem [4.33)). If p > 7 is a prime number with p+ 1 = 0,8 (mod 24), then for
= %1, Ry factors modulo p as a product of distinct linear factors.

We conjecture that this also holds if ¥ = 6,10 (mod 12). In Chapter 4, we apply the methods
of Duke and Jenkins [I3] to give a bound for the unique modular forms of the form:

fk,m = q_m + O(qdk)v (5)
m < 0, where dj, is the dimension of the space of modular forms of weight k.

( } o). o =0, let fk’m be the unique form defined by ‘D Then for
0 € [7/2,2m /3] we have: ‘ d
|fk,m(eze)| < 3.985 - 627Tm0'65_ (6)

This lemma implies that for a certain class of modular forms, the zeros all lie on the unit
circle.

Theorem D (Theorem . Let f = ZZOZO anq™ be a formal power series with real coefficients
and ag = 1. Let f be the unique modular of weight k such that

f=rf+0@™).

Let R = 1.985 and suppose that

dp—1
2—R
—21mn0.65
- . 7
3 fanl €70 < g 7)

Then all the zeros of f in the fundamental domain lie on the arc {¢¥ | 6 € [x/2,2x/3]}.

We use a stronger version of Theorem [D] (see Theorem [5.14) to prove:

Corollary E (Corollary [5.15). Consider the theta series g =1+2-> 7, q"z. Let Oy be the
unique modular form such that ©y = 6y + O(q%). Then all the zeros of Oy, in the fundamental
domain F lie on the circular arc {e'* | a € [7/2,27/3]}.



2 Classical Theory of Modular Forms

In this section we recall the basic definitions and properties of modular forms needed for the
following chapters. For proofs we refer to the literature, see for example [12] or [5].

There is a natural action of the group SL2(Z) on H.
Proposition 2.1. The map
SL(Z) x H — H
_ (e b z | — Z._azﬁ—b
T=\¢ al) Yz = cz 1 d

defines an action of SLa(Z) on H.

We denote by SLy(Z)\H the set of all orbits under this action.

Remark 2.2. In fact, the quotient space of orbits SLo(Z)\H has the structure of a Riemann
surface that can be compactified, for details see [12], §2].

We will start by defining modular forms for the group SLo(Z):

Definition 2.3 (Classical Modular Form). Let f : H — C and k a non-negative integer, f is
called a modular form of weight k if f satisfies the following three properties:

1. f is holomorphic on H

a b

2. for all z € H and v = d

> € SLy(Z), we have f(vz) = (cz + d)*f(2). (f is weakly
modular of weight k)
3. f is holomorphic as z — ico

Remark 2.4. The third part of the definition can be made more precise. For z € H, write
q = €?™%, The first and the second part of the definition imply that f can be written in the form

[= f(Q)ﬂ (8)

where f is a holomorphic function on the punctured unit disk {g € C | 0 < |¢| < 1}. We say
that f is holomorphic as z — 0o if f can be extended to be holomorphic on the whole unit disk
{q € C| |q| < 1}, for details see [12] p. 4].

As the group SLo(Z) is generated by

1 1 0 -1
(1) wa 5= (0 7))

condition 2 of definition can be reformulated as

f(z+1) = f(2) and f <1> =2"f(z) forall z € H. (9)

z
The C-vector space of modular forms of weight &k > 0 will be denoted by M},. This vector space
turns out to have finite dimension. As f(—1/(—z2)) = (—=1)¥f(2) for any f € My, it is clear that
there are no non-zero modular forms of odd dimension. We have the following well known result
for the dimension of Mj.



Proposition 2.5 (Dimension of My). If k is odd or k = 0, then My = {0}. If k is even, then

) J1E) if k=2 (mod 12),
dim(Mp) = {ngj +1 if k#2 (mod 12).

Ju

(10)

Proof. See [5, Theorem 2.11]. O

The following proposition gives us a way to count the number of zeros/poles of a meromorphic
weakly modular form, meromorphic at ioc.

Proposition 2.6 (Valence Formula). Let [ be a non-zero meromorphic weakly modular form of
weight k on H. Then we have:

1

k
oD+ Y odul =5 (1)

[w]€S La(Z)\H—{[4],[p]}

ord;oo (f) + %ordi(f) +

Remark 2.7. Here ord;o(f) := ordg=o(f), where f is the Fourier-expansion of f as in (8). As the
factor (cz + d)* in part 2 of definition has no zeros/poles on H, the order of a meromorphic
weakly modular form at a point depends only on the SLo(Z)-orbit of that point.

Definition 2.8 (Fundamental Domain). Let 7 C HU {ico} be the set

F:={zeH]||z| >1,-1/2 < Re(z) < 1/2}
U{z€eH]|z|] >1,Re(z) =—-1/2}U{z € H| |z| =1,-1/2 < Re(z) < 0} U {ioco}.

Then we call F the fundamental domain.

~

-1

i
N =
[T )

Figure 1: The striped region is the fundamental domain F, the picture is taken from [3].

Proposition 2.9. FEvery element z € H is in the SLa(Z)-orbit of a unique element in F.
Proof. See [5, p. 11]. O

Remark 2.10. Using the previous remark we see that it suffices to find zeros/poles of a
modular form in the fundamental region F.



2.1 Examples of Modular Forms
Let k > 4 be an even integer, then for z € H we define the Fisenstein series of weight k as
1
G = —_— 12
c,d€Z

(e:d)£(0,0)

This series is absolutely convergent (see for example [5, Proposition 2.1.]) and is a modular form
of weight k. Now define
S

d>0
and for k > 0, let By be the k-th Bernoulli number. The g-expansion of this modular form equals

i)k i)k
Gilz) = @2 k)! By, +2(§€2 )1)! fokfl(n)qm

for a proof, see [B, p. 19]. It is useful to normalize Gj such that the constant term in the
g-expansion equals 1. So we define

k!

Ei(z) = 1
k(z) (27Tl)kBk ( 3)
1 1
- Y 14)
2 e (cz + d)k (
ged(e,d)=1

Ey(z) =1- 5~ > oka(n)g". (15)

It will also be useful to the define the Eisenstein series of weight 2, Es. Although the series in
fails to converge if k = 2, it still makes sense to define Fs from the g-expansion in . Es
is not a modular form, although it is a quasimodular form.

Example 2.11. By the valence formulawe have that F4 only has a zero in (the SLy(Z)-orbit
of) z = p. One can also explicitly see that

Ey(p) = E4 (—1 - /1)) = p"Ea(p),

so that E4(p) = 0.

Now define A : H — C as
B - E?
1728
This is a modular form of weight 12, having the Fourier expansion

A(z) = q — 24¢% + 252¢° + O(q¢?).

A:

Modular forms with a g-expansion having constant term equal to zero are called cusp forms
(equivalently, modular forms having a zero at ico).
We can also write down an explicit basis for the C-vector space of modular forms Mj,.



Lemma 2.12. Let k > 4 be an even integer. Write k uniquely as k = 12ny + 6ay, + 4by, where
ny s a non-negative integer, ap € {0,1} and by € {0,1,2}. Then a basis of My is given by
B = {EPT3ES A= | for 0 <i < ny).

Proof. Looking at the g-expansions of the elements in B, we note that all the elements are linearly
independent. As there are ng+1 elements in 3, this must give a basis for M}, using the dimension
formula, see proposition [2.5 O

One can check that the only modular forms of weight 0 are the constant functions, see [3] p.
30]. It is therefore useful to relax the notion of modular forms of weight 0. We call a meromorphic
function g : H — C a modular function if it is weakly modular of weight 0 and meromorphic at
100, i.e. the g-expansion of g is a Laurent series. An example of such a function is the modular
j-invariant: s

. £y
i) =+~

1
§(2) = = + 744 + 196884q + 21493760¢> + O(¢*).
q

Proposition 2.13. The set of modular functions F form a field, and F = C(j), where j is the
modular j-invariant.

Proof. See [2, Theorem 2.8]. O
Proposition 2.14. The modular j-invariant j : SLy(Z)\H — C defines a bijection.

Proof sketch. For any ¢ € C, the modular function j(z) — ¢ has a unique zero, by the valence

formula (TT). O
Define R C F as
R=FN({z€H|Re(z) =—1/2} U{z € H|Re(z) =0} U {e® | 0 € (7/2,21/3)}).
Proposition 2.15. Let z € F, then j(z) € R if and only if z € R.

Proof. First of all, if 2 € {z € H | Re(z) = —1/2} U {z € H | Re(z) = 0}, then €2™* € R. As
the Fourier coefficients of the Eisenstein series Ej are all real, the Fourier coefficients of j are
also real. We conclude that j(z) € R. Now assume that z € {¢' | § € (7/2,27/3)}, again as the
Fourier coefficients are all real, we have that j(z) = j(—Z). As z lies on the unit circle, we have

(using modularity)
3(=2) = j(=1/z) = j(2).

Hence j(z) e Rif z € R.
For the converse we observe from the g-expansion of j that

Jim j(—=1/2 4 it) = —oo,

lim jj(it) = oo.

t—o0

Now jjg : R — R defines a continuous map on a connected set R C C, so that j(R) C R is
connected. We see that j(R) is an interval, and this interval must be (—o0, 00) = R. O

10



2.2 Modular Forms for Congruence Subgroups

Modular forms can also be defined for certain subgroups of SLy(Z), the congruence subgroups.

Let N € N and let

(V) = {7 €8La(Z) | 5 = <é (1)) (mod N) }.

I'(N) is a subgroup of SLy(Z) and is called the principal congruence subgroup of level N.

Definition 2.16. A congruence subgroup is a subgroup I' C SLy(Z) such that T'(N) C T for
some N € N. The minimal N is called the level of the subgroup T'.

Example 2.17. In practice we will only need the following two types of congruence subgroups:

*

o) = {r €8L2@) | 1= (1) (mod 1)}

T (N) = {7 € SLo(Z) | v = ((1) i) (mod N)}.

Note that if N =1 both these groups coincide with SLy(Z).

Definition 2.18. A holomorphic function f : H — C is a modular form of weight k for a
congruence subgroup I' if f is weakly modular of weight & for the subgroup I' and holomorphic
at the cusps of I', for more details see [5 Section 3.3].

2.3 The Theta and Eta Function

We will give some basic examples of modular forms on congruence subgroups.

Definition 2.19. For 7 € H define

0y is called the Jacobi theta function. 6y satisfies the transformation

0, <4ZZ+1) = VAz + 16(2), (17)

see [12| p. 12], where we take the principal branch of the square root. As the congruence
subgroup I'q (4) is generated by <(1) }) and (411 (1)>, see [5, Example 3.9], 63 is a modular form
of weight 1 for I'1(4).

Definition 2.20. For 7 € H define the Dedekind eta function
) oo
77(7_) _ emr/12 H(l _ qn).
n=1

The function 7 is not a modular form in the sense of definition but it is a modular form
with a “multiplier system” as: A
n(r+1) = ™/ 1n(r) (18)

11



and
n(=3) = V—irn(r)  (sec [39]), (19)

where the square root is taken to have a positive real part. Note that n?? is a modular form
of weight 12 for the full modular group SLo(Z). As the space of weight 12 cusp forms is 1-
dimensional, we find the product expansion for A,

A=q]a-gm (20)

This product formula can be used to write the Eisenstein series Fsy as the logarithmic derivative
of A. Comparing the coefficients in the g-expansion of Ey, we see that

A/

EQZKa

(21)
where the derivative is with respect to 1/(27i)7. Using the modularity of A, we find the trans-

formation rule for Es:
az+b\  6¢c(cz +d) 5
E, (cz n d) = — + (cz 4+ d)*Es, (22)

a b
where (c d) € SLy(Z).

12



3 Eisenstein Series: Zeros and Congruences

In this section we will study properties of Eisenstein series. First we discuss the zeros of Eisenstein
series. In [33] H.P.F. Swinnerton-Dyer and Rankin showed that the zeros of the Eisenstein series
lie on the unit circle in the fundamental domain F. Their proof was very elementary and short,
only two pages long. We will present their proof. Further, we will discuss R.A. Rankin’s original
argument [34].

Next, we will discuss certain congruences related to the Eisenstein series. We will follow the
argument of [22], showing that the modular polynomial corresponding to the Eisenstein series of
weight p — 1 for p prime, factors as a product of quadratic and linear factors modulo p.

3.1 Zeros of Classical Eisenstein Series: The Classical Proof

We will now show that the zeros of the classical Eisenstein series lie on the circular arc of the
fundamental domain F, following the argument of Swinnerton-Dyer and Rankin in [33]. Showing
that the zeros lie on this arc will be equivalent to showing that the j-invariants of all the zeros
are real and lie in the interval [0, 1728].

We first start with an easy lemma.

Lemma 3.1. Suppose f is a modular form of weight k with real Fourier coefficients. Then
g(eie) — eik@/Qf(eiQ)
is real for 6 € [7/2,2m/3].

Proof. Tt suffices to show that g(e??) = g(e®?). Write

and let z := e*. As all the a,, are real,

9(2) = e~ R0/2f(_5)
M1 )z)
— e R0/2 k£ (2) (using the modularity of f)
= 9(2).
O

Theorem 3.2 (Swinnerton-Dyer and Rankin [33]). Let Ej be the Eisenstein series of weight
k> 4. Write k in o unique way as k = 12n;+6ay +4by, ni € Z>o, ar € {0,1} and by, € {0,1,2}.
Then all the zeros z # i,p in F of Ey are distinct and lie on the arc {e¥| 0 € (n/2,27/3)}.
Furthermore, ord;(E(z)) = ax and ord,(Ey(z)) = by.

Proof. We will follow the proof of [33]. We can assume k > 10, as the zeros of Ej, for k < 10
are determined by the valence formula . Using the valence formula, we see that Ej has at
most ng zeros in F \ {7, p}. Hence it will suffice to prove there are at least ny zeros on the arc
{10 € (7/2,27/3)}. For this, we consider a scaled function

Fr(0) := 02 g, (')

13



on (7/2,2m/3) and compare the zeros of Fy, with the zeros of 2cos(kf/2). Note that the Fourier-
coefficients of Ej, are all real, so lemma [3.1] implies that Fj(0) is real for 6 € (7/2,27/3). Using

(14), we can write

1 1
Fu) =5 > : .
0/2 —i0/2\k
2 2 @ de T
ged(e,d)=1
Now we can split this sum into two parts, a part where ¢ +d? = 1 and a part where ¢ +d? > 1,
let Ry (6) be the latter part. Hence we can write

Fi(0) = 2cos(k6/2) + Ri(6).

The goal is to show that |R(0)| < 2 for all § € (7/2,27/3). Since |Ry(0)| < 2 implies that
Fyp(4rm/k + 2 /k) < 0 for all integers r € [£ — 1 % — 1] and Fy(4sm/k) > 0 for all integers
5 € [g, %] it follows that Fj, () changes sign at least ny times. Showing that Fj, has at least ny
distinct zeros on (w/2,27/3).

It remains to show that |R;(6)| < 2. First of all we have that

|ce®/? 4 de /22 = ¢ 4+ d? + 2¢d - cos(0),

and since —% < cos(¢) < 0, we have

¢+ d? 4 2cd - cos() > =(c? + d?).

DN | =

So that . 4
|Cew/2 _,'_de—zG/Z‘—k < (%(02 +d2))_k/2. (23)

We will give a upper bound for Ry (6) by giving an upper bound for the sum with terms (¢, d)
with ¢ +d? = N for N > 1. The number of terms with ¢? 4+ d? = N is bounded by 2(2v/N + 1),
as any ¢ can be chosen in {—|V/N],...,[V/N|} giving at most two choices for d. For N > 5 we
have 2(2v/N +1) < 5v/'N so that

1 1 1 &
50D . : <5 Y BVN(EN)TH2
10/2 —10/2|k — 2
2 c,d€Z |ce /2 +de /| 2N:10
A 4d*>5
ged(e,d)=1

One can check that the terms in the right sum decrease monotonously as N increases, so that
the sum can be bounded by an integral

S VNN <50 (3) 7 [ o0 Pas =m0
9

1
= (k — 3)(4.5)F/2

Now the sum of terms with ¢? +d? = 5 is bounded by 2 (5/2)~*/2, using (23). For the terms
where ¢ = d = £1 we have

|ce®/? 4 de /2|2 = 2 4 2cos(0) > 1.
Finally for the terms ¢ = 1 and d = —c we have using

|ce®/? 4 de~ /2| = 2 — 2cos() > 2.
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We can now derive an upper bound for Ry(6):

1

Re(®)] < 1+ o +2- (2/5)/2 + B sy

2k/2 (24)

As this expression is decreasing in k, we can compute an upper bound taking k = 12 on the right
of 7 which gives for k > 12:

|Rik(0)] <14 0.015625 + 0.008192 + 0.00180641 < 2,
finishing the proof. O

Remark 3.3. From the proof of it follows that if we divide the arc A = {e¥| 0 € (7/2,27/3)}
into ny sub-arcs of equal length, any such sub-arc contains exactly one zero of Ej. Therefore, it
follows that the set of zeros of Ey, for k = 4,6, ... become equidistributed on A with respect to 6.

Example 3.4.

| /

| Vs

EEAN /

i N\ / 5
e S

-3

ro[

Figure 2: The graph of ¢*%/2Ey (¢?) (blue) and 2cos(k6/2) (red) for k = 24 on (7/2,27/3).

Using proposition [2.15| we know that the j-invariant is real on the arc A. Since j is a bijection
from the fundamental domain to C, S C C is connected and we have j(p) = 0 and j(i) = 1728,
we must have that j(S) = [0, 1728]. Hence we can rephrase the previous theorem.

Theorem 3.5. For all zeros z € F,z # i, p of Ey, we have that the j(z)'s are real, distinct and
j(z) € (0,1728).

Now consider the following polynomials, for k € Z even and k > 4:

enX)= [ &X-iG).
z€H,E(2)=0
§(2)#£0,1728

A priori, this will be a real polynomial, but it will turn that it has rational coefficients. The
degree of this polynomial is exactly ng, with ny as in the previous theorem.
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Showing that the ny, zeros of Ej are on the arc S = {e¥| 6 € (7/2,27/3)} is therefore
equivalent to showing that the roots of the polynomials ¢, are all real and lie in the interval
(0,1728).

Proposition 3.6. Write k uniquely as k = 12ny + 6ay, + 4by,, where ny is a non-negative integer,
ar, € {0,1} and by € {0,1,2}. Then there exist a monic polynomial Py(X) € Q[X] of degree ny
such that

Ey = Pu(j)A™ ES* ESx.
Furthermore Pi(X) = ¢r(X), so that ¢ (X) has rational coefficients.

Proof. Using proposition [2.12} we can write Ej as a rational linear combination of elements
EZ”?”ES" A" =" where i is an integer 0 < i < ng. Dividing by A™* Efl’k Eg* shows that
Ey
ANk Ei’k Eélk
is a polynomial with rational coefficients in the j-invariant of degree ny. For any of the ny zeros
z of Ej, with j(z) # 0,1728, we must have that P;(j(z)) = 0. As all these zeros are distinct and

both polynomials P, and @) are monic, we must have that ¢ (X) = Px(X). Hence @i (X) has
rational coefficients. O

Example 3.7 (Examples of polynomials ).

k| oi(X) k| or(X)

4 1 16 X — 34356610700

A 1 | x i

8 1 20 X — 201975426010100

10 1 29 X — 3574726480300

12 X — % 24 X2 _ 342033663461460090100 X + 307213068;62404901000
14 1 2% X — 456759729030100

Remark 3.8. From the Fourier expansion of Ej, it is clear that the denominator of the coefficients
of ¢r(X) is given by the numerator of By/k.

We will use a recursion on the Eisenstein series to compute these polynomials. For this we define
the well known Weierstrass-p function. Define for a lattice A C C the Weierstrass-p function as

1 1 1
_ 1 _ 2
pa(2) 2 Z ((Z—w)2 wQ)’ (25)
weA—{0}
defined for z € C\A.
Proposition 3.9 ([12, Prop. 1.4.1.]). Fort € H, let A, =Z ® 7Z C C be a lattice.

(i) pna, satisfies the relation

(Ph, (2))* = 4(pa, (2))° = 60G4(T)pa, (2) — 140G (). (26)
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(i) The Laurent series expansion of pa. is given by

-t Z n+1)Gnya(7)2" (27)

71 even

for all z such that 0 < |z| < inf{|w| : w € A — {0}}.
Proof. See [12 Prop. 1.4.1.]. O

We see from [3.9]¢ that the Eisenstein series occur as the coefficients of the Weierstrass-p
function. Taking the derivative with respect to z on both sides of and dividing out 2¢/,
yields the following:

Corollary 3.10. The function py_ satisfies
Py =693 — 30G4(7). (28)
For notational purposes let Fj := — ® 12), s Ek.

Proposition 3.11. For k > 4 even, we have the following recursion:

(k — 2)(k + 5)Fk+4 = 12(F4Fk 4+ FgFr o+ ...+ FkF4). (29)
Proof. This follows from comparing the coefficients of 2* in ([28). O

As E, = P,(j)A™ E} E3+ for any even integer s > 4, we can substitute this relation in
to give a recurrence relation between the polynomials ¢g.
Consider the following table of integer tuples:

SEEERE

Let «(i,j) denote the integer tuple corresponding to the the i-th row and j-th column in the
table, counting from 0. Let «(4, j)(¢) denote the t-th coordinate of the tuple a(i, j) for ¢ € {0,1}.

Proposition 3.12. For i > 4 even, let v; , = a(k/2 (mod 6),4/2 (mod 6)) and let v; 1 (t) be the
t-th coordinate of v, for t € {0,1}. For even k > 4 we have the following recursion:

k
Orra(X) = ﬂﬁffggkﬂ = k 5 > (B3 X) v O (82X —1728)) VW (X ) ppya_i( X).
i even (30)

Where By, = —W and pg = g = 1.
Proof. This follows from , keeping track of all the constants. O
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This recursion, however, does not seem to give any (extra) information on the zeros of Fj.
This is different in the function field analogue, where such a recursion can be used to prove the
analogue of [3.5] see [9] and [10].

Using a similar argument as the one Swinnerton-Dyer and Rankin gave in [33], it has been
shown that the zeros of the Eisenstein series have interlacing properties.

Theorem 3.13 (Interlacing Property [27]). Let k > 12 be an even integer, and let E), be the
Eisenstein series of weight k for SLy(Z). Let {€'% | ay < ... < an,} be the zeros of Ey on
F—{i,p} and let {® | by < ... < by, 41} be the zeros of Eyi12 on F—{i,p}. Thenb; < a; < bji1
forj=12....n.

As the j-invariant is increasing on the arc S as the argument is decreasing, we have that
{©k, Prk+12, ...} also has the interlacing property (k > 14 and even). Furthermore, experiments in
[17] suggest that all the polynomials ¢y, are irreducible with the full symmetric group as Galois
group. The interlacing property, simplicity and reality of the roots of @) suggests some relations
with orthogonal polynomials, see propositions and below.

3.2 Congruence Properties of Eisenstein Series

It will turn out that the polynomials ¢y, have remarkable congruence properties. We will discuss
these properties and the relationship with supersingular elliptic curves defined over a finite field.
The main reference of this section will be [I7]. For general definitions and basic results on elliptic
curves, we refer to [40].

We will first discuss congruences of Eisenstein series. We start with the following well-known
lemma.

Lemma 3.14 (Von Staudt-Clausen). The value

is an integer for every even n.

From this, we see that the denominator of B,, is exactly divisible by all primes p such that
(p — 1)|k. As a consequence from the Fourier-expansion of Ej, we see that

Ep =1 (mod p), (31)

if (p—1)|k, where the congruence means (mod p) as power series. Furthermore for the polyno-
mials ¢y we find

Proposition 3.15. If k =0 (mod p — 1), all the coefficients of i are p-integral.
Proof. The Fourier coefficients of Ej are p-integral, hence the polynomials ¢y are p-integral. [

We now explain the relation with elliptic curves. Let E be an elliptic curve defined over Fp,
p > 5 a prime.

Proposition 3.16. Let E,E’ be two elliptic curves over Fp. Then E is isomorphic to E' over
I, if and only if they have the same j-invariant.

Proof. See [40, Proposition 1.4.]. O
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We call E supersingular if the group E(F,) has no p-torsion.

Proposition 3.17. Let E, E’ be two elliptic curves over Fp and E is isomorphic to E' over Fp.
Assume that E is supersingular. Then E’ is also supersingular.

Hence we see that the j-invariants of elliptic curves fully determine whether an elliptic curve
is supersingular. Now consider the following monic polynomial:

sp(X) = [ (X -, (32)
E is suEp{:r:singular

where E/ 2 is the set of elliptic curves up to F,-isomorphism and p > 5 a prime number. This
polynomial lies in F,[X] as the set of supersingular j-invariants is invariant under the Frobenius
endomorphism, see [40, Theorem 3.1.].

We have the following surprising result for the polynomials @y:

Theorem 3.18. jb%-1(j — 1728)%-1¢p, 1 = ss, (mod p).
Proof. See [22]. O

Remark 3.19. Tt is a general fact (see [40, Theorem 3.1]) that the j-invariants of supersingular
elliptic curves lie in F,2, so this means that the polynomial ¢,_; factorises over I, as products
of only linear and quadratic terms.

In [22, §10] it was shown that the roots of p,_1(mod p) lie in F )2 using modular polynomials,
without using knowledge of supersingular elliptic curves over finite fields. We will present this
proof here.

For an integer N > 1, we can define the Modular Polynomial ®n(X,Y) € Z[X,Y]. This
polynomial will parametrize N-isogenous elliptic curves over C. For the construction of this
polynomial we follow [1I, p. 229]. Let I'o(NN)~; be the right cosets of C'(N) := I'o(IN)\ SL2(Z)
for i =1,...,|C(N)|. Then for any 7 € H we consider

[C(N)|
dn(X,7) = H (X — §(NT))

as a polynomial in the variable X. As j(N7) is a modular function for I'o(N), it is easy to
see that this polynomial is well-defined. As the coefficients of this polynomial are symmetric
polynomials in the j(Nv;7), we see that coefficients are invariant under the action of SLo (Z).
Clearly these coefficients are holomorphic in 7, showing that the coefficients are polynomials
in the j-invariant, so this defines a polynomial ®x(X,Y) € C[X,Y]. We have the following
properties for the modular polynomial:

Theorem 3.20 ([I1, Theorem 11.18]). Let N be a positive integer.
i on(X,)Y) € ZIX,Y].
it If N is a prime p, ®§(X,Y) = (XP - Y)(X — Y?) mod pZ[X,Y].
Proof. See [11] p. 231]. O

This last identity is also called Kronecker’s congruence. Further we can relate the modular
polynomials to elliptic curves over C. For E = E, = C/(Z & 7Z), define the j-invariant of E,
as j(7), where j is the modular j-invariant. For elliptic curves E, E’ over C, if & : E — E’ is an
isogeny, we say that « is cyclic if the kernel is cyclic.
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Theorem 3.21 ([I1, Theorem 14.11]). let E and E’ be elliptic curves over C. Then there is a
cyclic isogeny « from E to E' of degree N > 1 if and only if ®n(j(E),j(E’)) = 0.

Proof. See [11], p. 315]. O

Theorem 3.22. ¢,_1(mod p) factors as a product of linear and quadratic factors.

Proof. We will follow the proof of [22] §10]. Consider the holomorphic function

. J()P = (pT)
Up(i(7)) = ’

We will consider this function as a Laurent series in j 71, so that ¢(j) € Z((;~')). Let ®,(X,Y) €
Z[X,Y] be the modular function as defined before. Kronecker’s identity (3.20]) gives

?,(X,Y)=(X?P-Y)(X -YP)+pR,(X,Y), (33)
for R € Z[X,Y]. Clearly the elliptic curves E; and E,. are p-isogenous, so that
®,(j(7),j(p7)) = 0. (34)
Using and we deduce that
(M) (p7)? = §(7)) = Rp(i(7), j(pT))- (35)
As j(pr) = j(7)P (mod p) (for any F € Z((X)) we have F(X?) = F(X)?P (mod p)), we find that
. R,(7,5°
0p(d) = T (rnod ). (36)

From the last equation we see that the poles of the Laurent series ¢,(j) are all simple and lie
in Fp2. The idea is to show that roots of the polynomial @,_; := ¢p_1(mod p) are the poles of
1p(Jj), showing that the roots of ¢,_; are all in F2.
We compute the derivative of 1,(j(7)) with respect to 7, (the derivative is defined to be
7L to find
d¢p(]) ~(7_)p—1 _ j/(pT)

i = =j(r)P~t = §/(r)P~! (mod p). (37)

as Laurent series in j~!. As usual, write
Eyy = A EY T B o,
where p — 1 = 12n,_1 + 4b,—1 + 6a,—1. Using , we have that E,_; =1 (mod p), so that

Gp_1 = A" B PTUECP (mod p). (38)
As Eo(r)
/ _ BT
(1) E4(T)J(T),

we find using (38)
-/ —1 _ p—1712(p—1) A —(p—1
J(rPT = E§ B, A=l
= (E2)8np_1+4bp_1+4ap_1(Eg)an_1+2bp_1+4ap_1A—14np_1—6bp_1—8ap_1
- —6bp— —4a,_
. wp—21E4 P 1E6 ap 1A2bp,1+2a,,,1 (mOd p)7
anp_1+4bp_1+4ap_1 (,] _ 1728)6np_1+2bp_1+4ap_1

= — - - mod p).
Gyordo i — IT28)e 1 2 (mod p)
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Let S,(j) == @¢p_15%-1(j — 1728)%-1 (mod p), we now find

d'(/)p anp_1+4bp_1+4ap_1 (] _ 1728)6np_1 +2bp_1+4ap_1

—L2 =t § mod p). 39)
4 5,7 odp)-
f&s .all I[;che poles of dd% are in IF 2, we conclude using that the zeros of S, and hence of ¢, [1]
ie in .
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3.3 Power Sums of the zeros of Modular Forms

In this section we study power sums of Eisenstein series, based on the ideas of R.A. Rankin [34].
Given a modular form h, Rankin [34] estimates the j-invariants of the roots of h by computing
a certain sum of residues in two different ways.

Let F' be a meromorphic function on H and suppose F(z + 1) = F(z) for all z € H| i.e. F' has
a Fourier-expansion G(g). Furthermore, suppose F' is meromorphic at ico. This means that on
{g € C |0 < |q| < 1}, the function G(q) can be extended to a meromorphic function on the
whole open unit disk.

We define a sum of residues of F' as follows:

1 1
R(F) := §resi(F) + gresp(F) +resg=0(G/q) + Z res, (F), (40)
zeF—{[p,[d],ic0}

where the “res” is the residue defined as usual for a meromorphic function. From now on, let

the derivative be with respect to %7.

Definition 3.23 (Generalized weakly modular form). Suppose f : H — C is a meromorphic
function and suppose

az+b ,
f (cz—l—d) = e(a,b,c,d)(cz +d)F - f(2), (41)

where €(a, b, ¢,d) € C with unit modulus and k € Z. Furthermore suppose f has a g-expansion

1= Y aug/N,

n>ngo
for some ng € Z and N € N. We call f a weakly modular form with multiplier system e.

Lemma 3.24. Suppose g is a modular function and f is a non-zero modular function with
multiplier system € (i.e. k =0). Then the meromorphic function

il
!

n(s) <o »

Proof. The fact that ng/ is 1-periodic is easy to see and follows immediately from the definition
of a generalized weakly modular form. We will prove by integration over the boundary of
the fundamental region F in two different ways. First we assume that ngI has no poles on the
boundary of F. Let BB’, CC’' and DD’ in figure 3| be arcs of small radius € > 0, let AE be high
enough and e small enough such that all the possible poles of g% in F lie in the region (which

we will call W) with boundary C, see figure [3l Now by the residue theorem we have

s 1-periodic and

/

f—/* m r !
jggf_2 p;vesp<gf). (43)
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B‘\/C\\(‘D,
c i p+1

D e

Figure 3: The contour integral C, picture taken from [5]

On the other hand,

il e e e )

Clearly, using modularity we have
B E /
/
+ / g— =0.
1)
Furthermore if we write ¢ = €(0,1,—1,0), we see that

7 N ORI E
(gf> (1) = o) ) = 20 2.

C D l
f
+/ g— =0.
(/ ’ ’ ) f
Lastly, if € — 0, we see that

B’ D’ f/ 1 f/
(/B +, ) o gt (o ).
c’ ’
/c gf7 — —%ordzzi (g > .
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Further, as there are no poles above the line AF in F we have using the residue theorem

/ng/ = 2T T€S,—jn0 gi/ = TIeSg=0 (gfl> :
0T = f = q-f

If any pole lies on the boundary of F, we will exclude it from the region W by drawing small
half semicircles (of radius €) around them. The result now follows. O

Proposition 3.25. Let g be a modular function and h be a modular form of weight k, then

h k
R (gh) = ER(9E2)~

Again the derivatives are with respect to q.

Proof. We will follow the proof of [34]. Let f = h-n~2k, where 7 is the eta function. Note that
f is a modular function with respect to a certain multiplier e. Now if we apply proposition [3.24
to f and g, and use that ' = ﬁ - Eom, we find

h - 72k7ik.h. 72kE
R(g—" AR ) ) (44)
!
From this we deduce y .
R (o7 ) = 5B, (45)

O
Remark 3.26. Note that this result implies that the sum of residues of gh’/h on F only depends
on the choice of modular function g.

Now, let v be a non-negative integer. Then proposition can be applied to the modular
function

9=17"
where j is the modular j-invariant. As the only possible pole of j¥Es is the pole at ico, R(j*E2)
is simply the constant coefficient in the g-expansion of j¥Es. If we write j¥ = ¢~ > | ay.0q",
then

gy :=R(j*E2) = ay, — 24 Z Ay—m,w01(Mm). (46)

m=1

As the a,, are integers, so are the numbers .

Example 3.27 (Examples of values g,).
go =1, g1 =720, go = 911520, g3 = 130101120, gs = 1958042030400;

We have, using proposition [3.25

h/
R (]Uh> = kg, /12
for any modular form h of weight k. Now we can also compute R(j*h’/h) in a different way.

Note that the possible poles of j”h'/h consist of the pole at ioo (j has a simple pole at ico)
and the zeros of h. Hence this residue should contain information about the zeros of h. Let
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roo (3R /) be the residue of jVh’'/h at ico, i.e. the constant term in the g-expansion of j’h’/h.

So we can write o o "
n(i5) = (%) +5 ()

where S(j¥h//h) is the sum of the residues in the finite part of F. As before, if we write
k = 12ny, + 6ay, + 4by, for ax, € {0,1} and by, € {0, 1,2}, then by the valence formula ord;(h) — ay
and ord,(h) — by are multiples of 2 respectively 3. By definition we have

!

S (j°h'/h) = 1akj”(z') + 1bkj”(p) + 5" (j“h)

2 3 h
1 v 1 v * U h/
where a(h) ()
£/ v . v ord; — Ak .,y ord; — ag . v
SR My = Y )+ i)+ ()",
z€F—{i,p}
h(z)=0

counted with multiplicity. Hence S* is the sum over ny, not necessarily distinct, j-invariants of
the zeros of h. So we conclude, using

i !
kgy/12 = ro (j”];L) + S (j“Z) . (47)

This gives us a way of computing the j-invariants of the zeros of A in terms of the residue at ico
and the values g,.

Remark 3.28. Suppose h is a modular form with only rational Fourier coefficients. In that
case T (jVh'/h) is clearly rational for all non-negative integers v and therefore all the power
sums of the j-invariants of the mj roots (again where ¢ and p are counted with weight 2 and
3 respectively) of h are rational. If one construct a monic polynomial Pj, of degree nj; having
exactly the j-invariants of the my roots of h as zeros, this will be a rational polynomial. As a
consequence, the j-invariants of all the roots of h are algebraic over Q. Furthermore, due to a
result of Schneider (1973) [37] we know that if j(z) is algebraic, then either z is transcendental
over Q or z is imaginary quadratic.

In theorem we showed that the ny zeros of Ej all lie on the arc {¢ | 6 € (%,2)}. As
there are no imaginary quadratic numbers on this arc, it follows that the nj zeros of Ej are
transcendental over Q.

The idea is to apply to Eisenstein series. Let h = Ej be the Eisenstein series of weight
k, so that for any non-negative v, the sum S* gives precisely the sum of j(z)” over the ny roots
x of Ej, (again, we count i and p with weight 1/2 and 1/3 respectively). This gives systems of
equations:

2 E/
Zj(xi)” = kgy/12 — 1o (j”E’]:) - %1728”, forv=1,...,n (48)
i=1

where {1, ..., 2, } is the set of ny roots of Ej and we hope to solve j(x;) for all ¢ from this
equation (if j(z,;) = 1728 or j(z,;) = 4 turns out to be a solution, we have to count the root x;
with multiplicity 2 or 3 respectively).
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Remark 3.29. In fact, if we compute for v =1 we find the result stated in [29]:

ﬁZﬁO'k— Y. erord (Ei(r))j(r), (49)
T€H/ SL2(Z)

where e; =1/2if 7 =[i], e, =1/3 if 7 = [p] and e, = 1 otherwise.

Example 3.30. Consider the Eisenstein series of weight 30, E3p. By the valence formula ,
Esp has a zero of order congruent to 1 (mod 2) at ¢ and of order congruent to 0 (mod 3) at p.
In this case we have ni = 2,ax, = 1 and by = 0. To find the zeros of F3y, we need to solve the
following system of equations:

1 B
Sy o= j(x1) + ji(w2) = 30g1/12 — 21728 — oo (522 ),
2 E3o

1 E;
Sy i= j(x1)* + j(w2)* = 30g2/12 — 517282 — oo <j230) :

Es3o
As we have E3o = 1 — é—iq +0(¢?), By = —%ﬁq - %029(2)(12 + O(q?®), we conclude that
Too (1 B30/ E30) = —%’Z. We find that
. . 1 —60
Sy = j(x1) +j(z2) = 3091 /12 — 1728 — —,
2 Bsp

=936+9.97...- 1078

Also, we have that j2 = q% + % + O(1) and one can compute that

2k (ZIZ)Q 2k

Too (12 Ehy/E30)) = —14883— — — B—kzazg(z)

= —107.092...
So that
1
Sy = j(x1)* + j(x2)? = 30g2/12 — 517282 — (—107.092)
= 785915.092...

In fact one can now check that S < 2S5 so that j(z1) and j(x3) are both real and distinct,
furthermore

0< (j(xl) - @)2 + (j(xg) - @)2 — S, — 17285 + %17282 < (

1728)2
2 2 '

So that 0 < j(x1),j(z2) < 1728. Hence the values j(x1) and j(x2) are real and lie in (0, 1728),

as expected.

Proposition 3.31 ([34] p. 141). If for a fixed non-negative integer v the weight k increases we

get
E;
oo (jvE’;) = o(1)
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Proof. Note that it suffices to show that for a fixed integer 0 < w < v the ¢"-coefficient of E} /E},
converges to 0. This ¢"-coefficient is of the form

Sa(g) e (50)
i€ly

where I, is a finite index set depending only on v, ¢; a coefficient depending only on v, where a;
an integer 1 < a; < v and d; an integer 1 < d; < v”. Using Stirling’s formula and the fact that
¢(k) — 1 as k — oo, we have

By ~ V7k (;)k (%)k for k — oo. (51)

Now using and (51, it follows that roo(jVE},/Ex) = o(1) as k — oo. O
Using the previous proposition it follows that

S*(jYEL/Ey) = kgy/12 — %1728” +o(1), (52)

as ny +— oo. This means that the v-th power sums of the roots of the polynomials ¢, Yr+12, ..
grow approximately linear. Furthermore, the power sums of the roots of the polynomials py
approximate an integer value. In the next paragraph we find polynomials having as Newton
sums exactly these integer values. These turn out to be polynomials coming from extremal
modular forms.
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3.4 Power Sums and Hankel Matrices

In this section we explain how power sums of roots of polynomials give information about the
reality of the roots. We show how this is related to the so called “Hankel determinant” of a
polynomial.

3.4.1 Hankel Matrices

Suppose we are given a monic polynomial P(X) € R[X] of degree n > 0, write P(X) =
Z?:o a; X" where a; € R for all 0 < 4 < n and a, = 1. For convenience let a; := 0 for
k > n. Suppose z1,...,2, € C are the not necessarily distinct roots of P(X), then for 7 a
non-negative integer, we define the i—th power sum as

sii=ah 4.4l (53)

The well-known Newton-Girard formulae gives us a relation between the coefficients of the poly-
nomial P(X) and the power sums.

Proposition 3.32 (Newton-Girard formulae). We can express the power sums s;, (0 < i < n)
in terms of the coefficients of P(X).

i—1
S; = _(ian—i + Z Sran—r)-
r=1

If k > n we have:

k—1
S — — E Qf—iSi-

i=k—n

Conversely,

1 [
Ap—j = *T(Z an—i+r5r)-
¢ r=1

Remark 3.33. First of all, by induction all the s; € R. Furthermore, if P(X) € Q[z], it follows
from that all the s; are rational.

The question is whether these power sums give any information on the roots of P(X). For
this we define the n x n-Hankel-matrix H(P) of P(X):

S0 S1 “e Sn—1
S1 S92 NN Sn
H(P) :=
Sp—1 Sp ... S2p—2

As a way to analyze the number of real roots of P, we can define for any real symmetric matrix
A its signature. It is a basic fact from linear algebra that all the eigenvalues of A are real.

Definition 3.34 (signature and rank of a matrix). Suppose A is a real symmetric n x n-matrix.
Let ny,n_ be the number of positive, respectively negative eigenvalues of A. Then we define
the signature of A

Sign(A) =n4y —n_.
And we define the rank as

Rank(A4) =ny +n_.
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Lemma 3.35. The signature of H(P) equals the number of real roots of P and the rank of H(P)
is the number of distinct complex roots of P.

Proof. See [31] Theorem 7.]. O

If the matrix H(P) is positive definite, this lemma implies that the roots of P are real and
distinct. A way of checking if a real symmetric n X n-matrix A is positive definite is by means
of Sylvester criterion. Let A; be the upper-left i x ¢ sub-matrix for 1 <1i < n.

Lemma 3.36 (Sylvester criterion). A matriz A is positive definite if and only if det(A;) > 0 for
alll <i<n.

Proof. See for example [15, Theorem 16.4.3.]. O

This result gives a criterion for a polynomial to have real roots. We need to check that the
determinants of the n upper left sub-matrices H(P); are positive.

Example 3.37. Consider the polynomial P(X) = X — 4X — 1. We compute
so=3; s1=0; 890 =8; 53 =3; 54 =32.

We find that
H(P); =3>0; H(P)y=24>0; H(P)3 =229 > 0.

Hence we can now conclude that the roots of P are all real and distinct.

3.4.2 Hankel Determinant of the g;’s

For n > 0 define the determinant:

g0 g1 g2 cee 9n
g1 g2 gs coo Yntl
gn  Yn+1 YGn+2 ---  G2n

where the g; are defined by . Now consider the matrix consisting of the power sums s, ; =
S*(jVE}./Ey), for 0 < v < 2ny. Furthermore, let P, be the monic real polynomial of degree ny,
corresponding to these power sums. So that

S0,k S1,k cee Snp—1,k
S1.,k S2.k . Sny,k
H(Py) = , D . : (55)
S’ﬂkfl,k} snk,k cee 82774“72,]6

Let A* be the determinant of the upper left s x s submatrix of H(Py), 1 < s < njp — 1. Using
the theory in the previous section, we know that in order to show that the roots of P} are all
real and distinct, it suffices to show that all the A¥ are strictly positive for 1 < s <nj — 1. We
can relate A¥ to As_; in the following way:

Proposition 3.38.
A =1275A, 1 k* + O(k*Y), (56)

as k — oo.
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Proof. This follows immediately from . O
Dividing both sides of by k*, we see that

A
ks

=127%A, 1+ O(k™Y),

as k — oo. In [34], R.A. Rankin tried to show that A;_; < 0 for some s, so that A* < 0 for big
enough kg, therefore concluding that Py has non-real roots for k£ > ky. However, R.A. Rankin
[34] conjectured a remarkable explicit formula for A,_;, showing that A;_; > 0 for all s. This
conjecture was recently proven in a submitted paper by [19] using the theory from [22].

Proposition 3.39.

s s—r+1
A, = ez T (12r — 3)(12r — 7)(12r — 5)(12r + 1) |
st (2r —1)2(r —1)r

Proof. See [19]. O

30



3.5 A Remark on Extremal Modular Forms

In this section we apply the methods of section 3.3 to extremal modular forms. We will give an
explicit formula for certain power sums of the j-invariants of the zeros of these forms.

Lemma 3.40. for every even k > 4, there ezxist a unique modular form fi o € My, such that fi o
has as a q-expansion:

fro(z) =1+ 0(g™),
where dy, := dim(My). Furthermore the coefficients in the g-expansion of fi o are all rational.

Proof. This follows from proposition The rationality of the g-expansion of f, ¢ follows from
the rationality of the basis elements in proposition [2.12] O

Using the theory in section 3, we have that for v > 0:

o) e o)
R<j Tk fee Tk 50\ fx)’

Proposition 3.41. Write k = 12ny, + 6ay + 4by, for ax, € {0,1}, by € {0,1,2} and ny a non-
negative integer. Then

!/
s (Jfko) = hgo/12 — 172",
fr0 2

forv=0,...,n; (with the convention 0° = 1).

Proof. This follows from and the observation that the meromorphic function f; o/ fi.0 has
a zero of order di at ¢ = 0, so that

!
Too <j”fk’o> =0 forv=0,...,n,
Jro0

the result now follows. O

Let

Ye(j) = %
EZkEgkAnk

be the corresponding modular polynomial in the j-invariant of degree ny. It follows from the
explicit basis for M}, that these polynomials have integer coefficients.

Example 3.42.

X12(X) = X — 720,
xo4(X) = X2 — 1440X + 125280;
x36(X) = X? —2160X? + 965520 X — 27302400;

Yas(X) = X* — 2880X° + 2324160X2 — 465638400X + 5611550400.

Proposition implies that the power sums of xj, are exactly given by the values kg, /12 —
%-1728". Further, let H(xx) be the Hankel matrix as in with the 2n; — 1 power sums of yx
as coefficients. We see that the corresponding determinants A, coincide (if aj, = 0) with A,_j,
up to a constant positive factor, if 0 < s < %t + 1. However, A;_; and A; will not coincide for
bigger % +1 < s < 2n; — 2. So, we cannot conclude that H(xy) is positive definite. Therefore,
we cannot conclude that the roots of xj are real from the positivity of As.

However, it was shown by [13] that the zeros of fj ¢ are all distinct and lie on the unit circle

in F (see also chapter 5). As a consequence:

Theorem 3.43. The roots of xi are all real, distinct and lie in the interval (0,1728).
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3.5.1 Congruences of Extremal Modular Forms

In this section we will prove some congruence properties of the polynomials y;. We will show
that xp—1 = ssp(mod p), where ss, is the supersingular polynomial defined by . In order to
prove this result we need to define modular forms mod p, for a general reference see [3§].

Let p > 5 be a prime number and let f = > - ang" be a modular form of weight k with
p-integral rational coefficients (meaning that the coefficients of the Fourier expansion of f have
no denominator divisible by p). Define

7= ang" € F,lldll

n>0

where a;, = a,, (mod p). Let f]\); be the set of all such f, then m is an F,-vector space. For
f.g € Fpllq]] write f = g (mod p) if the corresponding Fourier coefficients are congruent (mod

p)-

Lemma 3.44. Write k = 12ny, + 6ay, + 4by, with ny € Z>o, ar € {0,1} and by € {0,1,2}. Let
B = {A"’“_iEZkHlEg’“ |0 <i<mnyg} (this is well-defined as the Fourier coefficients of A,E4 and
Eg are all integers). Then B is a basis for M.

Proof. Let B = {A"’f’iE,i”?’iEg’“ | 0 < i< ng} be a basis of M. By induction one can show
that any modular form with p-integral Fourier coefficients is a_p-integral linear combination of
elements in B. Furthermore, by induction all the elements in B are linearly independent. This
shows B is a basis of M. O

As a consequence of , we have that Ep,l S Mk and E,_1 =1 (mod p).
So that,

Ep-1 = fop-1=O(¢" ™) (mod p) (57)

As Ep,l — ]?p, 1 € M, , if we write this form as a linear combination of elements in B we conclude
that E,_1 — fp—1 =0 (mod p). This means that in Mj

Ep,1 _ fO,pfl — COEZk+3TLk-, Egk + ClEZkJrfi(nk*l)EgkA 4o+ cnkEik EgkATLk (58)

where all the co,...,c,, are p-integral rational numbers with v,(c;) > 0. Hence, xp—1 =
@p—1 (mod p). Using theorem we deduce

Theorem 3.45. Forp > 5,
Xp—1 = 8Sp (mod p).
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3.6 Orthogonal Polynomials

In this section we will discuss some general properties of orthogonal polynomials. The main
reference is [22]. The sequence of polynomials {pg, @xt12,...} for k > 4 even, although not
orthogonal, shares these properties (see and .

Consider the vector space of polynomials in one variable V = K[X] over a field K. Suppose
we are given a K-linear map ¢ : V' — K. This induces a symmetric bilinear form (f, g) := ¥(fg)
on V. If we apply the Gram-Schmidt procedure to the basis {X™ | n € Z>o} of V, we get a
sequence of orthogonal polynomials P, as follows: Let Py = 1 and for n > 0 define

P( Z j‘i i P (X) (59)

m=0

provided that (P, Py,) # 0 for all m.

Remark 3.46. If K = R and (, ) is positive definite, it will automatically follow that is
well-defined.

From now on we will assume that the (P,,, Py,) # 0.

Proposition 3.47. The polynomials P, satisfy the following recursion:
Pn+1(X) = (X 7an)Pn(X) *bnpn—l(X) (n > 1)’ (60)

with Py =1, Py = X = (X, 1), an = 5222 and b, = gl

17711)

Proof. See [22] §4]. O
Let 7; := (X% 1) and define the numbers \,, € K for n > 1 by

90

U(x) := 1o+ 7w +rox® 4 ... =
)\1(E

1-—

(61)

)\21‘
1—...

1—

Proposition 3.48. All the )\, are non-zero and a,, = Aap + A2pt1,bn = Aon—1A2n forn > 1.
Proof. See [22] Prop. 2.iii]. O

Let A, be the (n+1) x (n+ 1)-Hankel determinant of the r;. The following theorem gives a
remarkable relation between the coefficients of the recursion and this Hankel determinant.

Theorem 3.49 (|24, Theorem 29]). Let V be the vector space of all polynomials in one variable
over a field K. Let ¢ : V — K be a K-linear map and let pj, = o(X*). Furthermore, let
P, (X)n>0 be the sequence of orthogonal polynomials with respect to ¢, and let

Pri1(X) = (2 — an) Pu(X) = b, P—1(X)
be the corresponding three term recursion from . Then

n+linin—1
odet (uivg) = ug BT by b (62)
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As a consequence of we see that

A =g ] Qarmiden)" (63)

r=1

We will use this theorem to compute a certain Hankel determinant in section 3.
From now on let K =R and

b
olf) = [ FOu(X)do (64)
for some real numbers a < b and a positive integrable function w(X) on (a,b). Then we have

the following important property of orthogonal polynomials.

Proposition 3.50 (Real and Distinct Zeros). The zeros of orthogonal polynomials P, over R
are all real and distinct and lie in the interval (a,b).

Proof. See [42] Thm. 3.3.1.] O

Proposition 3.51 (Interlacing Zeros). Suppose {x1,...,x,} are the (real) zeros of P, over R
and suppose {y1, ..., Yn+1} are the zeros of Pni1, then we have

Y1 <21 <Y < ... <Tp < Yn+i-

Proof. See [42] Thm. 3.3.2.]. O

3.7 Atkin Polynomials

In this section we define Atkin polynomials and we will briefly summarize some properties, in-
cluding relations with the supersingular polynomial. The reference is a paper from Kaneko and
Zagier [22].

Define the following inner product on R[X]:

(f(X),9(X))a := constant term of f(j)g(j)E> as a Laurent series in q.

Then we see that
(XU, 1) = v,

where the values g, were defined by . This inner product can be written in the integral form
of as follows:

Proposition 3.52 ([22] §5, Corollary]).

1728
(f.9)a = /0 FDg(yw(i)di,

where w(j) = %o_/(j) and o : [0,1728] — [r/3,7/2] is the inverse of the monotone increasing
function o — j(e'®).

Proof. See [22], §5, Corollary]. O

Now as w(j) > 0 on [0,1728], we see that ( , )4 is positive definite.
Define the Atkin Polynomials as the orthogonal polynomials with respect to the inner product
(, )a, defined via the Gram-Schmidt procedure (59)) (as the inner product is positive definite,
we see that the Gram-Schmidt procedure is well defined).

34



Example 3.53.

= X2 — 1640X + 269280;

5 12576
5

=X X? 4+ 1526958 X — 107765856.

As a consequence of and [3.52] we see that the roots of Ay are all real, distinct and lie
in (0,1728). Using theory of hypergeometric functions, an explicit recursion formula for the Ay
can be found:

Theorem 3.54 ([22, Theorem 4.]). For n > 2:

A () = (X = 2 2 B ) A x)

(12n — 13)(12n — 7)(12n — 5)(12n + 1)

- 36 n(n—1)(2n —1)2

Ap_a(X).

These polynomials turn out to have very remarkable congruence properties. Let n, be the
degree of the supersingular polynomial ss,, then A, (X) is p-integral, and we have:

Theorem 3.55 (Atkin). Let p > 5 be a prime number. Then ss,(X) = Ay (X) (mod p).
Proof. See [22], §6]. O
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4 Eisenstein Polynomials and Modular Forms

In this section properties of the “Eisenstein polynomial” defined by M. Oura [30] are discussed.
There is a natural way to associate a modular form of level 1 to this polynomial. These modular
forms share some properties with Eisenstein series, such as (conjecturally) the location of the
zeros and congruence properties. We prove a factorization property of the associated Hankel
determinant, analogous to the Hankel determinant corresponding to the Eisenstein series.

4.1 Eisenstein Polynomials and Relations with Modular Forms

For g € N, we define the following matrix group:
Hy:=(Dgy,Ay) C GLas(C).
Where:
e D, is the subgroup generated by all the diagonal matrices
3 .atSa g
Dg = diag(i® °*;a € F3),
for all symmetric matrices S € Matgx4(Z).

e A, is the 29 x 29 matrix, whose (a, b)-coefficient is given by

14+4\7
( 5 ) (=1)feb a b e FY, (65)

where we identify elements of F§ with {0, ...,29 — 1} via the binary number representation.

(Note that the definition of these diagonal matrices is independent of the choice of representative
of a (mod 2), so we might assume a € F9)
For any g € N, H is a finite group of order

20°+2042(49 _ 1)(49°1 —1)...3, (66)

see [36, §2 p. 183].
The group H, acts on the C-vector space of complex polynomials in 29 variables C[z, : a € F§],
induced by the natural action on the indices of the variables: for v € Hy, define

29-1

VYo = E Yi,aZi,
i=0

where v; , means the coefficient of the a-th column and é-th row of 7, counting from 0. We
are interested in the Hg-invariant subspace, which is clearly also a subring, of Clz, : a € F§],
Clz, : a € F§)Hs. This invariant ring will have a close connection to Siegel modular forms, as we
will explain in the next section.

An example of an element in this invariant ring is the Eisenstein polynomial of weight [, with
leN:

1
<le"’ (g :a €FY) = —— Z (o). (67)
\Hyl 57
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4.1.1 Siegel Modular Forms and the Theta Map

For g € N, let
H, = {z € Matyx4(C) | 2* = z and Im(z) > 0},

here Im(z) > 0 means that the imaginary part of the matrix z, Im(z) is positive definite.
Define the Siegel modular group (of degree g) as

Dy = {M= (A B> A,B,C and D € Matyy (2) | MUM = J,},

C D
Wherng:((} %’)
g

Remark 4.1. The condition M*J,M = J, is equivalent to A'C — C*A = 0,B'D — BD" = 0 and
A'D — C'B = I, showing that T'y = SLy(Z).

The group I'y acts on Hy; for M = (é g) € H,

M-Z:=(AZ+ B)(CZ + D)%
Lemma 4.2. The group I'y is generated by

(0 I _(Iy S
J_(—Ig 0) andog—<0 Ig>’

for all symmetric matrices S € GL4(C).
Proof. See [14, Lemma 1.3.]. O

Definition 4.3 (Siegel Modular Form). Let f : H, — C be a holomorphic function, f is called
a (Classical) Siegel Modular Form for T'y of weight k if

f(M-2Z)=det(CZ+ D)*f(2), (68)
and if g = 1, we additionally demand that f is holomorphic at the cusp at ico.

The space of all Siegel modular forms for Ty is a C-vector space and is denoted by M (T'y).

Remark 4.4. Note that Siegel modular forms for I'; coincide with classical modular forms for
the full modular group.

We will now show that to every element in the invariant ring C[z, : a € F3]*s we can associate
a Siegel modular form for I'y via the Theta map.
For a € Z9, define the Theta Functions:

0o(7) = Z 62m(z+§a)tr(az+%a)_ (69)
©€LI
The functions f, are independent of the choice of a (mod 2), hence we can consider a € Fj.
Proposition 4.5. The C-linear map
Thy : Clz, : a € FHo — M(T,),
induced by x4 — fo(7) is well-defined.
Proof. See [36] p. 179] O

Remark 4.6. As the f,(7) are Siegel modular forms of weight 1/2, it follows from proposition
that Thg, sends w{{g to a Siegel modular form of weight /2.
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4.2 Relations with (Binary) Coding Theory

We will now discuss the relation of the Eisenstein polynomials with coding theory. These Eisen-
stein polynomials will occur, up to a constant, as “average weight enumerators” in the space of
all weight enumerators of doubly even binary codes. We will first start by recalling some basic
concepts from coding theory.

Definition 4.7. A code is a binary linear code, i.e. a k-dimensional linear subspace of F%,
denoted by [n, k, d], where d = min{wt(c) | ¢ € C} is the minimal weight of the code. Here, the
weight wt(c) is defined to be the number of non-zero components in ¢ € Fy. Furthermore, we
define the dual code C*+ = {z € F} | {(z,y) = 0 for all y € C}. A code is called doubly even if
the weights of all the codes are divisible by 4.

To a code C of length N we can associate a weight polynomial:

Wolayy) = 3 aN—wion, (10
ceC

The coefficient of 2V =%y’ gives the number of codewords of weight i. We can extend this definition
to a g-weight polynomial in 29 variables. For a € F§ we define a generalized weight function w,
on CxC x...xCC(FY)9 as

walan,...,aq) = {i + a=(ai(i),...,0q(%)}],

where (i) denotes the i-th component of «;. Then we define the g-weight polynomial as

Py(C)(zq;a € F) := Z H J;Z’“(O‘l""’(’g),

at,...,ag€C a€F}

where the z, are formal variables, so we consider P,(C) as a polynomial in Clz, : a € Fj).
Note that the 1-weight polynomial coincides with (70). Let € = (14 i)/v/2 - Ios € GL2s(C) and
define

Gy = (Hygy,€),

to be the group generated by H, and e.

Theorem 4.8 ([36, Theorem 3.6.]). The ring C[z, : a € F3]%9 is the ring of g-weight polynomials
corresponding to self dual doubly even codes.

If I = 0 (mod 8), the Eisenstein polynomial <leg lies in Clx, : a € F}]%, as <leg is invariant
under € in that case.

Lemma 4.9 (Runge, Nebe and Rains, [26l Theorem 6.3.]). For any doubly even binary code C
of length N =0 (mod 8) containing 1n and of dimension N/2 —r,
1 m i\ —1 /
A Y o Py(C) = H 2" +2)71> Py (C), (71)
o€Gy, 0<i<r c’
where the sum is over all doubly even self dual codes C’' containing C.

The idea is to apply this theorem to C' = (1), the Fay-vector space generated by 1y, where
1 is the all-one vector of length N.

Lemma 4.10. Any self dual code C contains the all-one vector.
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Proof. As {(c,c) = 0 (mod 2), wee see that ¢ has even weight. As (z,1y) = wt(c) = 0 (mod 2),
it follows that C contains the all-one vector. O

Theorem 4.11. Suppose N =0 (mod 8),

N!

HYI

o = = P,(C),
VT 9 lemiana (7 +2) & TAU(O)] 7

where the sum is over all doubly even self dual codes C of length N up to isomorphism.
Proof. Let C be the code generated by the all one vector of length N, 1. We have
-y
a€lFy

As the g-weight enumerator of any code containing 1 is invariant under permutation, it follows
from theorem and that the group G, contains all permutations of the variables, we

therefore see that
Z oPy(C) =290}
ceGy

dYoorC)= ] @ +2)) P
=

o€G, 0<i<N/2—1

where the sum is over all self dual doubly even codes, see lemma [& We find

ﬁzapg(m: I @ +2) ZP

Using [£.9] we have

9 seaq, 0<i<N/2—1
_ —1
= JI @ +2) Z|Aut ] Py(C"),
0<i<N/2—1
=Nt [ @ +2) Z|Aut gc’).
0<i<N/2—1

O

The previous result shows that Eisenstein polynomials are, up to a constant, equal to the
“average weight enumerator” of the doubly even self dual codes if I = 0 (mod 8).

Example 4.12. Suppose N = 8 and g = 1. The only doubly even self dual codes of length 8 is
the [8,4,4] Hamming code C. As |Aut(C)| = 1344 and P;(C) = z§ + z3x + 28, see [8 p. 80]).
We compute using corollary

5
ot = 21 — (2§ + 1dzgz] + 2}).

4.3 Eisenstein polynomials for g =1

From now on, we will be only considering the case g = 1. In this case the group Hj is:
149 144 10
= <§ (1—|—i —1—i>’(0 z) >

39



This is a group of order 96, using . Note that in this case the theta functions as in |69 are

= q"

neEZ

T) _ q1/4 an(n—&-l)’

n>0

where ¢ = €2™". We have the following structural theorem for the ring of invariant polynomials
(note the similarity with the ring of modular forms):

Theorem 4.13 (|25, p. 3.]). Clxg, z]! = C[gagh (xo,xl),w{él (0, 21)], andgo?l (x07x1)7<p{{21 (29, 1)
are algebraically independent.

Explicitly, we have

5

ogt = Y — (x5 + Mgz} + 27), (72)
5

e 3 2( — 33z22 — 332248 4 212). (73)

Remark 4.14. From and the formulas (72), (73) it follows that goHl =0ifl=4o0rl #
0 (mod 4). Further, it follows from [£.13] and - 5| that the map T hq is an isomorphism if g = 1.

We find the following explicit formula for the polynomials gol
Proposition 4.15. If [ =0 (mod 4) and | # 4, we have

l 2—-1

2~ 4 27 (14 +1 2% A
ot = : wh + . e LD R W E

j=0 (mod 4),
o<yl

Proof. We prove this formula by explicitly computing oxg for all o € H;. Recall that if ¢ =

d )
pairs (a, c). As =0 (mod 4), we find:

(CCL b we have oxg = axg + cx1. As Hj is a finite group, one can compute all the possible
o = % (16:c0+16(( Dzo+ (3i+ D) +16((3i + 2)zo + (36 — 3)a1)!
+16((3i+ Do + (~3i+ Dan)' +16((3i + bz + (~Fi = $an)' +1621).

Using the binomial theorem, we derive

4—1 2—1

277 (—1)/4 41 2% ()4 41 2% A
R e R S M G DI W )

6 6 3 )
7=0 (mod 4),
0<i<l
O
For notational purposes, normalize <le1 such that the coefficient of ) is 1, write
6

~H H
SDZ 1 = —SDZ 1. (75)

2T (—1)V4 41

We can consider the modular form Thl(NHl). As the forms 63,67 have weight a 1 for the

congruence subgroup I'(2), it is clear that Thy := Thl(gélHl) is a modular form of weight k = é
for the full modular group.
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Example 4.16. It is easy to see that Thy = E4 and Thg = Eg.
Thiy = E} — 518784/1025A;
This = Ej — 97280/113AEy;
Thyy = Ej — 121472/109AEF;
Thay = ES — 1126806528 /838861 F; A + 358849019904 /41943052,

The modular forms Thj, and the Eisenstein series are conjectured to have some analogous
properties.

Conjecture 4.17 ([25, Conjecture 1.1.]). All the zeros of Th(y;) in the fundamental domain lie
on the unit circle {e* | § € [r/2,27/3]}.

4.4 Power Sums of Th

Using the method of R.A. Rankin, we will try to compute the power sums of the j-invariants of
the zeros of Thy. Using formula , we have that

THh) Th,
kg, /12 = ro | j¥=E S 0=, 76
itz =rs (i) +5 (7 75 ) i
where the derivative is taken with respect to %MT. We now compute the value of 7o, (j“ ;Z%)

and we will show this value is O(1) as k increases.

Proposition 4.18. For a fired v > 0,
Th, A
0o v =2k reo v = 1),
o (17 ) =2k (3°2) o)

Proof. For n € N fixed let ay , b, be the n-th Fourier coefficients of T'hy and 0y respectively.
Since 07 is a cusp form, we have

2k (=12 2k jg2k—i n
Thy = 65" + 2y 2h2 > . )018 7 +0(d"). (77)
0<j<n,j=0 (mod 4)

i DT (Y

k—s 00 (71)]@‘/2 + 2k=2\ n

it is clear that limy_,oc @y i = b,. Hence we see that
0!, (92k)’ Th),
2k - 1o 020 ) - v \"0 =re v k 1).
() = (05 ) = () o0

As in the case of Eisenstein series, the values of ro, (jV6;/600) are strongly related to hyper-
geometric functions, as we will we see in the next paragraph. Using [4.18| we have

as k increases.

O

- v v Th;c Ak v
D_i(@)" = kgo/12 = (Ut ) = S1728", (78)
i=1
96 ap
= kg, /12 — 2k - 7o (j”e) - ?’1728” + o(1), (79)
0
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as ny increases. Write
Thy, = A™ B} Eg*Qu(j),

where k = 12ny, + 6ay + 4bg, nx € Z>g,ar, € {0,1} and b, € {0,1,2}. Then @ is a monic
polynomial of degree n; with rational coefficients in the j-invariant. We have that implies
that the power sums of the ny roots of Qx(j) increases linearly as nj increases.

Example 4.19.

518784
X)=x - 2%
@12 (X) 1025

1126806528 358849019904

X)=X?*- ;

@24(X) 838861 t T il04305

3 0926919963264 .,  2652630646063104 248220139256807424
3435973837 3435973837 17179869185

Q36(X) = X

The result implies, for example, that the X"~! coefficient of Qi2,(X) is approximately
—672 - n.

4.5 Hankel Determinants of the Forms Th,

As with the Eisenstein series we can consider the Hankel determinant corresponding to the power
sums of Q. If this Hankel determinant A, were negative for some n € N, we would conclude
that @ has non-real roots. However, we will show that this determinant A,, is always positive.
As ny — oo we have that for £ =0 (mod 4),

STh\ 00
B (J Thk) — kg /12— 2 7o (.7 90) +o(1), (30)

see . Now let

/

0
Ry =gy — 24 - 7o <j1}0> >
o

we are interested in the sign of the Hankel determinant:

ho M he ... hy
. hi  ha  hs ... hpi
hn hn-i—l hn+2 ce h?n
We will show that for n > 1:
- 2 > n((24r — 29)(24r — 17)(24r — 1)(24r — 13)\ "
A, = 24 Fom  gnt 1. 93 . ( 82
H (8r —5)2(8r —9)(8r — 1) (82

r=2

so that A, > 0. Note the resemblance with the Hankel determinant in proposition
As with the values g, in section 3.9, the values h, induce a symmetric bilinear form on the
space of real polynomials. Let

/
(f(X),9(X))r := constant term in the g-expansion of f(j)g(7) <E2 — 2420> ,
0

where j is the modular j-invariant. Clearly, h, = (X", 1)r.
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Example 4.20.
ho =1; hy = 672; hy = 840192; hg = 1193164800; hy = 1790864130048;
We will prove as follows:
e We will show that (, )7 defines an inner product on R[X], using some numerical analysis.

e We will compute the continued fraction expansion of the moment generating function
Y(X) =ho+hi1 X +hoX? +
using hypergeometric functions.
e Using we will compute the determinant ﬁn using this continued fraction expansion.

4.5.1 (, )r is an Inner Product

From now on let

H(r) := By — 2420
we can rewrite H in the following way:
Lemma 4.21. For all T € H,
H(T) = E5(7) + 2E5(27) — 2E5(7 + 3). (83)

Proof. This follows from the Jacobi triple product identity [21]: For ¢,y € C, |¢| < 1 and y # 0,
we have the identity

o0 2
H 2m 1 +q2m 1 2) (1 + ) _ Z q y (84)
m=1 n=-—oo

For y = 1, this gives

o0

0= ] (01— ™A+ ) (85)

m=1

Now taking the logarithmic derivative with respect to 2m7‘ gives

0, > 2mg?m o= (2m — 1)g®m !
70 _ 2 e SR 86
o 2m S k oo 2n
mq k(—q) 2n(—q)
=2 —2 - 87
S e (S S !
= -1 (Ea(27) = 1) + S(Ea(7+ 3

2) - 1)’ (88)

using the identity

) e ,nkrflqn
Ek:1+ E )
C1—k) =l

we conclude that H(7) = Ea(7) 4+ 2E2(27) — 2E5(7 + %)
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Lemma 4.22. The following linear functionals on R[z] coincide:

1 (f(X),9(X))r;

2. (f(X),g(X)) := constant term as Laurent series in 5~ of f(5)g(j) gig:gH(T),

3. (F(X),9(X)) = [T/ F((e)g(i (€)W (a)da;
where W (a) = i(H(—e )™ — ei®H (e®))da.

Proof. We first start proving 1 implies 2. Write ag for the constant term in the g-expansion of
Ff(Ng(4)H(T). By the residue formula

1

ap = ——
211

f FG)a)H(R) Y,
C q

for some small enough circle around ¢ = 0. Further as

d.__;E
qdq] ]E4
we see that ) E, d(1/))
- Na(i)H (r) 22 D2
a0 =55 ¢ SUIDH) Zo=r=

hence the result follows using the residue theorem.

For 1 implies 3, note that we have

0.54+a-1
fc f(j)g(j)H(T)% - / F()g(G)H(r)dr

—0.54a-%

for some a > 1. Now using the residue formula, the sum of integrals over the horizontal part
{0.5+a-i| |a| < 1/2}, the vertical parts Re(r) = +1/2 and the circular part of the fundamental
domain equals zero. As f(j)g(j)H(7) is 1-periodic, the sum of integrals over the vertical parts
vanishes. Hence we find

0.54a-i /3 ) ) )
/ fG)g(G)Hdr = [ ))g(i(e"™))H (e )dr,

~0.5+a- 27/3

where 7 = €. As f(j())g(j(7)) is invariant under the action 7 +— —1, we find

/3 w/2 /2

fG()g(G(r) H(T)dr = fG()g(G(r)H(T)dr — / fG(T)g(G(r)H(T)dr
27/3 27/3 m/3
/2 1 1
= [ st (1 (5) 55 - 1)) e

As d1 = iTda, we derive the desired result. O

We would like to show that this linear functional is positive definite and therefore defines an
inner product on R[X]. As (f(X), f(X)) = f:/; (e )i (H(—e")e™" — H(e')e™) dav, it
suffices to show that

i (H(—e ")e " — H(e"™)e") > 0

on (7/3,m/2). We will prove this using the following two lemma’s:
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Lemma 4.23. For 7 = e% with 0 € (7/3,7/2), we have
-1\ 1 3
) <E2 (2) - — E2(27)7'> > — + 0.77.
T )T ™

Proof. We use the transformation law for Fs:

-1
Es () = E.T-FTZEQ(T)’

to find o )
E» (2?) = By (;/12> = %T + %EQ(T/z). (89)
o i <E2 (2?) % - EQ(T)T) = % + %} (Ey(7/2) — 4E5(27)). (90)

We will show that G(7) := 47 (E2(7/2) — 4E2(27)) > 0.77 for 6 € (7/3,7/2). Write Ey(r) =
>0 | ane*™ ™. Using Mathematica one can show that

Re (Gn(T)) > .776, (91)
where Gn(7) := 47 ETJLI @ (™™ — 44 and N = 100. Further we find that

R . -
_ﬂi\/gn —27'r\/§n
[Re(G(7)) = Re(Gn(7))| < 7 D lanle + > lanle (92)
n=N+1 n=N+1
As |ay| = 2400(n) < 24n, we have
1 [ ; o
[Re(G(r)) ~ Re(@n(r))| < + / 2pe=EVngy | / 2pe=2mVn gy (93)
N N
< 107115, (94)
Hence G(7) = Re(G(7)) > 0.77. O

Lemma 4.24. For 7 = ¢ with 6 € (7/3,7/2), we have
. -1 1\1 1
F(T) =1 (E2 <7’ -+ 2) ; - EQ(T + 2)7_> <21
Proof. Using a computer algebra system one can show that
Re(Fy (7)) < 2.09, (95)
where
1 N -1 1 N . 1
Fy(r)=i| = Z ane?™ (= t2)n _ o Z a2 rtz)n
T
n=0 n=0
and N = 100, using the same notation as in the proof of the previous lemma. Further we see
that

Re(F (1)) = Re(Fn(r))[ <2 3 anle™™?
n=N+1

< 2/ 24ne="V3nqp,
N

<1077,
We conclude that F'(1) = Re(F (7)) < 2.1. O
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Corollary 4.25. The linear functional (, )7 is positive definite, hence defines an inner product
on R[X].

Proof. Using lemmas and the fact that i(Ey(=1)L — Fa(7)7) = £, we deduce that

)
1\ 1

i (H (_> - - H(ﬂr) 2 o660 (96)

T T s

Hence it defines an inner product. O

4.5.2 The Moment Generating Function

We want to compute the continued fraction of the moment generating function with respect to
(, ), i.e. we want to compute the A; such that

Ao
)\12’
)\22
A
1o %
1— ..

U(z):=ho+hiz+he2® + ... = (97)
1 _

1-—

Write H(7) Ei(m) Jocally as a power series in 1/j. Using characterization 2 in lemma of

Bo(7)
v <1> = H(r) Eu(7) (98)

(, )T, we see that
J Eg(7)’

as a power series in 1/j. We will relate H(7)E4(7)/Eg(7) to a fraction of hypergeometric func-
tions. We start with the following lemma.

Lemma 4.26. We have
-1 24
B =GR (S ) (99)

as a power series in 1/j.

Proof. The function F(z) = oF} (;—41, 214, %; z) is the unique holomorphic solution around z = 0

having F(0) = 1 of the differential equation:

d*F N 7
D)+ (32-3)— - ——=F=0. 100
SR L U T (100)
1
We will show that G(7) := % - j~ 24 satisfies this differential equation as a function in z = %,
where
Es 0o
n=q21 [[(1-q¢")
n=1
and n?* = A. As g—j = zg—i we get
df  1E,dF
e gl 101
dz 2z FEgdr’ (101)
sz?%i(féilEQE‘l 1@)d£+iﬁ@ (102)
dz?  Eg 22 3 6 Fg 2FE2/)dr = 22 EZ dr?’
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By substituting the above equations and dividing out

1E,
z EG ’
the differential equation (100]) becomes

E, d®F dF E
(z—1)=2 +(5z—3—|—5-(z—1)>— Lo T p_y,

FEs dr? 4 4 dr E4 576
where S = —% éE}f‘l + é gg As we have
6o — 1 (27)
n?(T)n?(4r)’

an easy computation (using that ' = iEg’l]) shows that

dG

oG- T
dr ’
d*G
— =G (T°+T
dT2 ( + )7
where 5 . | E
T(r) = 2 By(27) — 2 Eo(r) — S By(ar) 4+ 28
(1) = 5 B2(27) = g Ba(7) = 3 Ba(dr) + gy
If we substitute G in the left side of (100)), we find
E, d*G 5 3 aG Eeg 7 1 9
D)+ (323485 (2 1) — — 2= —G = ——[(1728AF; — E})Es(T* + T’
+ (31728 - E4AE] — 3E{E; + 1728AE4(—4E2 — 1E,E Eg + 1E3)
+ E; (3E; — tEsE4Eg + 3E3)) T — 1728%AE6]
The expression inside the brackets “[ ] is a quasimodular form (i.e. an “almost holomorphic

modular form”, see [0 §5.3.] for definitions) of weight k = 30 for the congruence subgroup
I' =Ty(4) , as any term is the (second order) derivative of a modular form for I'y(4). An easy
computation shows that the term in brackets is O(¢'%), and an explicit computation of the space
of quasimodular forms of weight k for I" gives that the term in brackets must be identically equal
to zero, showing that G satisfies the correct differential equation. Hence we see that as a power

series in 1/,
Oy L -1 7 3 1728
—J 24 ==, —,-;—|. 103

77] =2 1<24a24747 j ) ( )

We deduce that
17 3 1728)24

—, 5= 104
247244 (104)

9(2)4=A-j-2F1<

as a power series in 1/7. O
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Lemma 4.27. Let oF1(a,b,c; z) be a hypergeometric function, then

oFi(a+1,b,¢;2) 1
oF1(a,b,¢;2) - L Az ’
1_ /\22
1 A3z
1—..
where A\ = % and for n > 0, Ay, = % and Aap i1 = %.

Proof. We will use F(a,b,c) as shorthand for o F (a, b, ¢; z). Using the contiguous relations (152])

and (153 we have

b
F(a—l—l,b,c)—F(a,b,c):zEF(a—Fl,b—i—l,c—i—l). (105)
So that
Fla+1) 1
F o 1-2%Fa+1,b+1,c+1)
hence A\; = &. Further, using the relations (152), (I57) and (I58) we have
(a+1)(b—c)

Fla+1)— Fla+1,b+1,c+1)= zF(a+2,b+1,c+2). (106)

clc+1)
Using the relations ((152)), (153) and (155]), we find

- 1
Fla+1,b+1,¢+1)—F(a+2,b+1,c+2) = msz(a—f—Zb—&-Q,c—&-B). (107)

In general we have
Fla+nb+n—1,c+2n—-2)—Fla+n,b+n,c+2n—-1) =

(a+n)b—c—n+1)
(c+2n—2)(c+2n—-1)

zF(a+n+1,b+n,c+ 2n)

and

Fla+nb+nc+2n—1)—Fla+n+1,b+n,c+2n) =
(a—c—n+1)(b+n)
(c+2n)(c+2n—-1)

zFla+n+1,b+n+1lc+2n+1).

Hence we see that

_ (a+n)b—c=n+1) _ (a+n)(c—bt+n—1)
Ao = (c+2n—2)(c+2n—1) (c+2n—2)(c+2n—1) (108)

and (a—c—n+1)b+n) (c—a+n—1)(b+n)

(c+2n)(c+2n—1)  (c+2n)(c+2n—1) "

Aopg1 = — (109)

48



Proposition 4.28. \g =1, A\; =672 and for n > 0 we have

48(24n — 1)(24n — 13)
(8n —5)(8n — 1)

2n —

and
48(24n — 5)(24n+7)

(8n —1)(8n + 3)

)\2n+1 =

Proof. We are interested in the coefficients of

E,

H(r) 5

expressed as a power series in z = 1/j. First of all note that

B ONE (1 d AN E
H By 240 ) 24 _ [ = D D)) 24
(v )EG < ? 90) Es (27ri dr 0g<034 Eg

A (A
~Faz ez )
here we use that j' = —jEg/FEy. Using |4.26 we have
d A 1 Fi(52, &, 2;17282
zlog( 24) =—z —7—1-24‘122 1(f4 434 ) .
d 0 2F1( 555 555 73 17282)
Using ((153)), we find
d -1 7 3 1728 23 7 3 1 7 3
—o F; 317282 | = ———— | o F ;17282 ) —oFy | — ;1728
dz> 1(24 244 Z) 24 <2 1(24 PYAVR z> 1( PYAEYRVE Z))

We conclude that

Ey,  oF\(3, 5, 5;17282)

H(r =24 — 240241 4>
( )EG 2 F1(— 5, o5, 3;17282)
as a power series in z = 1/j. The values for \; now follow from lemma O

Using and proposition [£.28] we find

Theorem 4.29. Forn > 1:

Zn — 24n2+5n . 3n2 L1 2371 . H ((

r=2

24r — 29)(24r — 17)(24r — 1)(24r — 13)\n—r+1
(87 —5)%(8r — 9)(8r — 1) ) . (110)

Note that this determinant is positive for all n > 0, hence this theorem does not give any
information on the location of the roots of Thy.

Remark 4.30. As the h; are all integers, it is clear that A, is integral. However, from (110]) this
is not immediately obvious.

Corollary 4.31. v,(A,) =0 if p > 24n — 1.
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4.6 Congruence Properties of Thy

Consider the modular form Thy and assume that p = 2k — 1 is a prime number (as k > 4,
we have p > 7). In this section we discuss congruence properties of Thy. We will show that
the modular polynomial corresponding to Thy factors as a product of distinct linear factors if
k =0,4 (mod 12) and conjecture it for k£ = 6,10 (mod 12).

We start with an easy lemma.

Lemma 4.32. The modular form Thy is p-integral, i.e. none of the denominators in the g-
expansion are divisible by p, and Thy, = 0y + O(q%) (mod p) (by “mod p” we mean that we
reduce all the coefficients in the Fourier expansion mod p) , where dy, := dim(Mjy).

Proof. Consider the denominator in , an easy computation shows that this denominator is

- pP— P2— .
given by 2F72(—1)k/2 + 1 = 2_121771(—1)’“/2 + 1. We have 2"7" = (—1)T1 (mod p), and this
implies

27 12" (—1)M2 4 1£0,
as 271 # 41 (mod p). Furthermore if n < p + 1 we have (pzl) =0 (mod p), showing that
Thy, = 02F + 62% (mod p)
= 0008 + 9f+1 (mod p)
= 6y + O(¢™) (mod p),
for the last line we use that (p +1)/4 > dj. O

Next, we write @y, for the unique modular form of weight & such that ©; = 6y + O(q%), and
we let Ry be the monic polynomial in the j-invariant such that ©, = A™* EZ’“ Eg* Ry (j). Using
lemma [4.32] we see that Ri(X) = Qr(X) (mod p) as polynomials in X.

Theorem 4.33. For any k = 0,4 (mod 12), Ri(X) (mod p) factors as a product of distinct
linear factors in the j-invariant.

Conjecture 4.34. Theorem also holds if k£ = 6,10 (mod 12).
Example 4.35.

kE Ry Ry, (mod p)
12 ;-18 J+18

16 j—958 Jj+3

22 j— 454 419

24 j2 — 14385 + 123888  (j +9)(j + 10)
30 j2— 9345 + 44760  (j+25)(j + 44)
34 2 — 11745 + 145800  (j + 44)(j + 55)

Remark 4.36. Note that theorem [4.33]is the analogy of theorem [3.18

In order to prove theorem we will rewrite the polynomial Ry (j) in terms of the modular
A-function and show, using hypergeometric properties, that this polynomial (as a polynomial in
A) will factor as a product of distinct linear factors.
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We can express these polynomials in terms of hypergeometric functions in the following way:
Let W2 and W} be the unique polynomials of degree n > 0 such that:

, 1 7 3 1728 o)

n. - = 1 111
. 1119 3 1728\ .

i (G 3 )—Wnu)wam. (112

We can interpret the polynomials W2 and W,! as “the polynomial in j-part” of the left hand
side of (111) and (112]) respectively.
Lemma 4.37. Let k = % for a prime p > 7, then

Ry (j) = Wyt (4) (mod p). (113)

Proof. Assume that k = 0 (mod 12), we need to show that 6y = A™W? (mod p,¢"**1) (this

notation means that the Fourier coefficients should coincide modulo p, up to the coefficient of
¢™). Using lemma we have that

First of all note that
AW (5) = g - A™ . j™ 720 AT (mod g™,
i.e. their g-expansions coincide up to ¢"™*+!. Hence in order to show , it suffices to show

B = B A™ 31 ;™21 (mod p, ¢ ). (114)

As ,
1 1 b
Nk—34 sk~ 31 8
A 24 § 2 = Ff
and

(Ef)p =1 (mod p, ¢*) (115)

, we deduce that (114) holds (note that p > ng + 1). For k =4 (mod 12) the proof is similar.
Now suppose k = 6 (mod 12). Using proposition we have

1 7 3 1 11 19 3
F, =(1—-2)2-9F 116
2(24244>( 2)22<24244> (116)
So that we have
11 19 3 1728
E- A" . N\ = FE. A" "% [ 11 1J 9 41
6 W, (4) 627" 2 1( 21 ) (mod ¢™ ),
1
1 172 2
= Fg AT 21 70T 4( ) (mod ¢™*T1).

= E4%90 (mod ¢™**1).

Using (115)), we see that (113)) holds. Again, if ¥ = 10 (mod 12) we can give a similar argument.
O
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Now we will rewrite our polynomial Ry, in terms of the modular \-function. We will define this
form using the Weierstrass relation. Let A = Zw, @ Zws be a lattice such that 7 := i—i € H, then
we have the following elliptic curve over C coming from the Weierstrass’s differential equation

(see [26)
Y2 =4X° — g5(A)X — g3(A), (117)

where

1 1
g2(A) =60- Y o and  gs(A) =140 > =

zeA—{0} zeA—{0}
Further, let
“(3). aman(3) ma-a(3)
61@/\2,62@A2a3p/\2~

The e}s are the (distinct) roots of the right hand side of (117)) (see [II, Proposition 10.7.]). Now
let j(A) be the j-invariant of (117) and let A(A) be the discriminant of the right hand side of
(i17).

Lemma 4.38. We have the following equalities

, g2(A)? g2(A)° ,
A)=1728 = 1728 =j(7), 118
i) A(A) I6(e1 —ea)%(e1 —ea)(ea —ea)p 007 (118)
where j(T) is the modular j-invariant.
Proof. See for example [IT], §10.B.]. O

Note that (118) is independent of the choice of basis for A. From now on fix
Wi =T Z 2(q’)"2 where ¢/ := ™,
ne
and wy := 7w;. Now we define the A-function as
€3 — €9
A1) = —.
N =

A(7) is a modular function for the congruence group I'(2) (See [T, §7 Theorem 2], in fact A is a
hauptmodul, for I'(2) of genus 0). We will now give a relation between the j-invariant and the
A-function:

Proposition 4.39.
_256(1 4 A(A — 1))3
=00y

Proof. We can write the right hand side of (119) in terms of ey, e, e3
256(1 + ()\()\ — 1)))3 - 256((61 — 62)2 — (63 — 62)(61 - 63))3

(119)

(A(A=1))? (e —e2)?(er —e3)?(e1 — e3)?
_ 4096((61 +eg + 63)2 - 3(6162 + eges + 6163))
A(A) '

As the e; are the roots of 4X3 — go(A)X + g3(A), we see that

e1+es+e3=0,

—g2(A)
.

ei1es + egxez +ejez =
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So that
256(1 + A\ —1))3  4096(3g2(A))>
SYC R ERNV Bl

Now define the polynomials

o (AN = 1))2"k an 256(1 + A\ — 1))3
Fi(d) = W ( T E)E )

2567 n

These are monic polynomials of degree 6ny, in the variable A. As the relation (119) is six to one,
i.e. any value of j € IF,, corresponds to at most 6 values of A € F,,, it suffices to show that all the

polynomials Fj, := Fj, (mod p) have 6ny, distinct roots t € F,, with ¢ # 0,1 (mod p). Define the
following truncated hypergeometric function of degree pTH:

G(N)p = oF1 (i, i, %; )\> (mod p). (120)

This is well-defined as:

11 1.

Lemma 4.40. The hypergeometric function oF; (_17 15 /\) is p-integral, for all p > 2.

Proof. This follows from the expression in since the Taylor expansion of both /1 + z and
V1 — z is p-integral for p > 2. O

If k= 0,4 (mod 12), we have the following hypergeometric expression for Fp
Proposition 4.41.
G(N)p, if k=0 (mod 12)

Fr()) = G\,

Proof. Let k =0 (mod 12). We will first write F}, as a hypergeometric series in A(A — 1). Write
-1 7 3 1728
(== = 2. 2222 = E mi
21<24324747 ] > >0a]

Using the binomial theorem, we find that

Fe(A) = ag(1+ A — 1)) + 2%(1 FAN = 1)) D (AN = 1)) 4. + 2§g;k A\ — 1))27

where

b‘ L 3, — 3 a;
e\ i-2j ) 2560

As ni = (p+1)/24, we see that
3ny, — 3§ o 1
=(-1)i— (=
< Py > (-1) =) (8+3J>i2j (mod p),
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where (. ), is the Pochhammer symbol. Using Mathematica, we find the identity

— (_avi (8)i
bi - (_4) : (%)il' (mOd p)7
so that
~ 111
Fr(\) =21 | —5, 505, —4AA = 1) (mod p).
882 (2t1)
8
As the coefficients z" of o F} (f%, %, %, z) vanish modulo p if pT'H <n< %, it suffices to show
that 111 111
Fil——, =, =, —4XA—=1) ) =2F1 | —,—, =, A ].
21( 878727 ( )> 21( 474a27)

Now using (161]), we see that

111 1
2 F (8’ 3% —4AN(A — 1)) = cos (8 arccos(1 + 8A(\ — 1))> .

AsoF (-1,5.4.0) =14 ((1 — A7)z 4+ (1+ )\2)%>, (see corollary ) it suffices to show that
1
Ty <2 ((1 —AE)E 4 (1 +A5)5)) =1+8\A-1),

where Ty is the eigth Chebyshev polynomial of the first kind (see the Appendix), the latter
identity can be easily checked. The proof for the case k =4 (mod 12) proceeds similarly. O

For weights k = 6,10 (mod 12), we conjecture the following;:
Conjecture 4.42.

Gy o
~ A+ 1A —2)(A—3)’ if k=6 (mod 12)

A+ DA-2) A - H(R2+1)’ if k=10 (mod 12)

In order to prove theorem [4.33] we will show that the truncated hypergeometric function
G()), factors as a product of distinct linear factors over F,,. We need the following easy lemma.

Lemma 4.43. Letn € Z>o and p > 2 a prime, then

Zan{;L if nlp—1. (121)

otherwise.
a€l,

Proof. Assume n {p—1 and let S = ZGGFP a". As F} is cyclic, there is a g € F), such that
g" # 1. Clearly a — ¢ - a permutes IF,, so that ¢”S = .S and hence S =0, as g" # 1. O

Proposition 4.44. Let p be a prime p = 3 (mod 4). The polynomial ép()\) splits over Fy, as a
product of distinct linear factors. More specifically:

G,(\) = 11 (A—t) (mod p).

t is not a square (mod p)
t—1 is a square (mod p)
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Proof. Let H ()\) be the polynomial on the right hand side. We will compute the power sums
of the roots of H, »(A) and show, using symmetric polynomials, that the coefficients of ﬁp(/\) and
Gp()\) are congruent. First we show that the degrees of G,()\) and H,()) coincide. The degree
of flp()\) is exactly

N, :=#{t € F)| —t and t — 1 are squares (mod p)},

as —1 is not a square (mod p). In terms of Legendre symbols, this is

Nlei(<“>+1)((‘”pj)+l)v

)£ ()£ (),

a

0
b S

b=0

1
4

where we use that the Legendre symbol is multiplicative. As a +— (£) defines a non-trivial
multiplicative character on F,, we have

p—1 a

a=0 p

) for z € I, we find

(]

Further as (5) = (I_l
p p

g(—aa—1>:p:< a_1)>
:Z( 1+a~ )
“S6)-5 )

Hence deg(ﬁp()\)) =N, = % and this coincides~with the degree of ép(/\).
Now we compute the n-th power sums S,, of H,(X) for 0 < n < %, SO

S, = Z t"  (mod p).

t is not a square (mod p)
t — 1 is a square (mod p)

Again we can compute S, in terms of Legendre symbols, so that

=2 () ) ((57) )
(EEG) - E ()R ()

a=0 a=0

s}
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By Euler’s criterion we have (£) = a"= (mod p) for all a € Z. Hence
p—1 —
o= (S St S p st S
a=0 a=0
p—1 p—1 = - 2l p—1y P—1 )
n n+252 El 2 k+n+E2+=
)IUED AR NI )z e () e
a=0 a=0 a=0 k=0 a=0
Using (121)) and the fact that 0 < n < p“ < 221 if p > 3, we find that for primes p > 3
=N p=1y 2-1 .
- - 2 k4+n+E5=
S (k )k
k=0 a=0

Note that a non-zero contribution only occurs if k+n-+ pT_l =p—1lie.,ifk= 5= L _n. Therefore

we find e (1)21> _1(3)n

,_.

M

—_

4 n 4 n!

Using the power sums, we can compute the coefficients of Gp(/\) using Newton’s identities: Let
¢n, be the A" coefficient of Hy(A), then
1
Ccp = —E(Cn_lsl +cp_9Sy + ...+ c1S-1 + Sn) (122)
We need to show o
(=2)n(3)n
(%)nn' ’

Using mathematical induction, it suffices to prove that

Cn =

_ _!f () (D) (3)nes

=" (Dl (n—n)

Using Mathematica we find the following identity:

zn: (_Tl)r(i)r (%)nﬂ“ _ (%)! ' (123)
= (3)er! (n—=7)!  (2n)! (=3)!
Therefore, using this identity, it suffices to show
(%)n(%)n (1 B 1) _ (4n;1)'
(3)nn! dn dn(2n)! (—3)V

and this can easily be verified by induction. O

Remark 4.45. As p =3 (mod 4), we see that ép()\) is non-zero if A =0, 1.
Remark 4.46. Note that the polynomial G()), is the analogon of the Hasse-polynomial
o F (27 551, )\) »+14, factoring modulo p as a product of linear and quadratic factors, with as
roots mod p the 2supersinguleur A-invariants.

Now we can prove:

Theorem 4.47. If k = 0,4 (mod 12) and suppose p = 2k — 1 is prime p > 7, then E splits
over I, as a product of distinct linear factors.

Proof. This follows directly from [£.45] [£.41] and [£.44] [

56



4.7 Properties of The Orthogonal Polynomials

We have shown that the functional (, )7 defines an inner product on the space of real polyno-
mials. This inner product is analogous to the inner product defined in [22]. As in [22], we will
compute the orthogonal polynomials with respect to (, )7, using the Gram-Schmidt procedure,
see . These polynomials B; will therefore be the analogue of the Atkin polynomials.

We find:

By =1
By =X — 672
17792 2714112

By— X2 779 N 7

11 11

. 47392 282

By = X3 — %9)(2 28296960 ?S%OX — 98279424

272 191592 26284 24
By = X4 3027 X3+MX2 75652628 80X+ 924787539968

9 207 69 23

Using proposition and the values A; we computed in (4.28), we get for n > 2 an explicit
recursion formula for the B;:

96(576n? — 144n — 107) 2304(24n — 1)(24n — 13)(24n — 29)(24n — 17)
Bn—i—l = (X_ ) n_ 2 By 1.
(8n —5)(8n + 3) (8n —9)(8n — 1)(8n — 5)
(124)
Proposition 4.48. All the n zeros of B, are real, distinct and lie in the interval (0,1728).

Proof. We can rewrite the inner product (f(X),g(X))r = f:/; fG ) g(j(e*))W (a)da as

1728
(F(X), g(X))r = / FDgGW (e)e ()i

where a(j) is the inverse of j(e'®) on (m/3,7/2). Clearly W(a)a'(j) > 0 on (7/3,7/2). Using
proposition we derive our result. O]

4.7.1 Congruence Observations

From the recursign , it is clear that the polynomials B, are p-integral if p > 8(n—1)+3 =
8n—5. So that B,, := B,, (mod p) is well-defined. Similar to the Atkin polynomials, we observed
some factorization properties modulo p:

Conjecture 4.49. Let n > 2, then RPTH (mod p) divides B, for all primes 24n > p > 8n — 5,
p =3 (mod 4).

Example 4.50. We consider the factorization of BZ for primes 31 < p < 83, p =3 (mod 4).

p  Bu(X)

31 X(X+3)(X2+9X +1)

43 X(X +19)(X +32)(X + 35)

47 (X +9)(X +10)(X?2 + 38X + 38)
59 (X + 13)(X + 25)(X +42)(X + 44)
67 X (X 4 14)(X +44)(X 4 55)

71 (X +29)(X + 33)(X + 39)(X + 46)
79 X (X +16)(X +45)(X +69)

83 (X 4+ 15)(X +17)(X + 33)(X + 39)
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5 Modular Forms With All Zeros on The Unit Circle

In this section, we will give an explicit sufficient condition for a modular form to have all its
zeros on the unit circle, see theorem This sufficient condition will depend on the bound we
can give for a certain cuspidal modular form on the unit circle. For the bounds on these modular
forms, we will use the theory of W. Duke and P. Jenkins [13].

5.1 Results for Certain Weakly Modular Forms

In this section we review the results of [13]. In [I3], the authors studied the location of the zeros
of certain weakly modular forms.

For k € 2Z, write k = 120+ k', where k' € {0,4,6,8,10,14} and £ € Z. As in [I3] fix the notation
fi,m for the unique holomorphic weakly modular form of weight k such that:

frm =a"" +0(¢"), (125)

with m > —¢. Note that if k& > 4, the value £ 4+ 1 coincides with dj := dim(My). In [I3], the
authors showed that:

Theorem 5.1 ([I3, Theorem 1.]). If m > |¢| — £, then all the zeros of fim in the finite part of
F lie on the unit circle {0 € [r/2,27/3]}.

The authors used a similar argument as in [33]. More specifically they proved the following:
Lemma 5.2 (I3, Lemma 2.]). For all 0 € (7/2,27/3) and m > 0:
|eik0/2g=2mmsin(0) g, (1) — 2cos (kO/2 — 2mm cos(0)) | < 1.985. (126)

If m > 0, the function
0 — 2cos (kB/2 — 2m cos(0))

has exactly £+ 14m values on [r/2, 27 /3] where it takes on absolute value 2, alternating between
2 and —2 as 6 increases, see [13] for more details. By the intermediate value theorem, it follows
that the real valued function

0 — eike/sz,m (ei0)6727rmsin(9)

has at least ¢ + m zeros on (m/2,2m/3). Using the valence formula (LI, we see that f ., has
exactly £ + m zeros on (7/2,27/3), as fim has a pole of order m at iocc.

As an application of lemma [5.2] we find that
€072 £, (') — 2cos(k0/2)] < 1.985, (127)

so that the zeros of the extremal modular forms f; o in the fundamental domain F lie on the
unit circle.

5.2 Bounds for Cusp Forms on the Unit Circle

In this section we will present Theorem [5.6] In order to prove this result, we will show the
following result for the value of cusp forms on the unit circle:

Lemma 5.3. For m <0, let frm, be the unique form defined by (125). Then for 6 € [7/2,2m/3]
we have: '
| Fem (e)] < 3.985 - £2™m0-65, (128)
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This result gives an explicit way of bounding the values of the cusp forms f ,, on the unit
circle. We will prove this result in the next section. Lemma allows us to prove the main
lemma:

Lemma 5.4. Let f =5 7" a,q" be a formal power series in q with real coefficients, such that

agp=1. Let f be the unique modular form of weight k such that f: f+0(q™). Let R =1.985
and assume that

“ 2R
M =" |ay| e ™05 < SR (129)
n=1

Then ‘ o
|et*0/2 f(%9) — 2cos(kB/2)| < 2,

for 0 € [7/2,2m/3].

Proof. We can write
drp—1

.]?: fk,O + Z anfk,fna

n=1

as the difference is a modular form of the form O(q%), and such a form must be identically equal
to 0 (using the valence formula for example). Now

() — acon(8/2)] < €M ) — 2e0s(48/2) + 3 168 o)
" n=1
<R+ Y lan|- (24 R)-e 206
n=1
<R+ (2—-R)=2,
using ([127), for all § € [r/2,27/3]. O

Remark 5.5. An analogous result can be found in [41] for certain modular functions.

Theorem 5.6. Suppose f is a modular form as in lemma satisfying (129)), then all the zeros
of f in the fundamental domain F lie on the arc {e’ | € [r/2,27/3]}.

Proof. Using lemma we have that |e?*?/2 f(e") — 2cos(kf/2)| < 2. Using lemma we see
that e0/2f(¢i) is real for 6 € [r/2,27/3]. Write k = 12ny, + 6ay, + 4by, ni € Z>o, ar, € {0,1}
and by € {0,1,2}. As in the proof of theorem we conclude that fhas at least ny zeros on
the arc {¢ | 6 € (7/2,27/3)} and by the valence formula it has ezactly ny zeros on this
arc, finishing the proof. O
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5.3 Proof of Lemma [5.3

The proof of lemma [5.3] will proceed as follows; we will extend lemma [5.2] for m < 0 using the
methods from [I3]. We will show that for m < 0 and dj, > 12 :

Lemma 5.7. For 0 € [n/2,27/3] we have the following inequality:

1.985¢2mm(sin(0)=0.75), 0 € [n/2,1.9)

ik0/2 ,—2mmsin(0) AN o
e e m(e 2cos(k0/2—2mm cos(0))] < ) .
| fiem(e®) (kb/2-2m Ol < {1+0.9856—2”7"(51“(9)—0-65); 0 € [1.9,27/3]

Assuming this lemma, we can prove lemma For 0 € [1.9,27/3] we find, using the triangle
inequality
|eika/2e—2wmsin(9)fkm(ez‘a)| < 14 0.985¢~2mm(sin(6)—0.65) | 12c0s (k62 — 2mm cos(6)) |
<3+ 0'9856727Tm(sin(9)70.65),

dividing by e=27sin(9) giyes

|fk,m<ei9)‘ S 3627rmsin(9) + 0.985627Tm0.65 S 3.985€2ﬂm0'657
as sin(f) > 0.65.
Similarly, for 6 € [r/2,1.9) we find, using the triangle inequality

|eik0/2g=2mmsin() g (e1)| < 1.985e 27O =0-T5) L 19¢0s (k02 — 2mm, cos(6)) |
< 2 4 1.985¢ 2™ (sin(0)—0.75)

dividing by e~27ms1n(0) gives

|fk‘,m(6i9)| S 26271'77151[1(9) + 0.985€2ﬂm0'75 S 2.985627‘-"10'75 S 3.9856271'7710.657

as sin(g) > 0.75.

We shall treat the cases of low weight separately: If dj, < 12, we can write the form fj; ,,
—dp +1 <m <0 as the linear combination

dip—1

frem = Z Cifr—12i 04",

i=—m
for some ¢; € R. Using lemma we see that

dkfl
| frm (€] < > el fa-12i0(€™)] - 0.00481°.

i=—m

As €072 i o, o(€?) — 2cos(kB/2)| < 1.985, we find that |fr_12:0(e?)| < 3.985. An easy com-
putation for all £ with dj < 12, shows that

dr—1
| frm ()] < Z |ci| - 3.985 - 0.00481° < 3.985 - ¢2™m0-65,

1=—m

This proves lemma [5.3] In the remainder of this section we will prove lemma
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Let k be a positive even integer and write k uniquely as k = 12(dy, — 1) + &/, where k' €
{0,4,6,8,10,14}. For the proof of lemma we use the following the following remarkable
formula:

Lemma 5.8 ([I3] lemma 2]). Let m be an integer such that m > —dj + 1, then we have

L AT B (2)Buow (1)
o) = 55 § SR s 0

for C' a (counterclockwise) circle centered at ¢ = 0 with a sufficiently small radius.
Remark 5.9. We use the convention Eg = 1.

Proof. We follow the proof of [13]. We can write:
fram(T) = A" By By p (),

where Fj, p(j) is a monic polynomial of degree D = m + dj, — 1 > 0 in the j-invariant. Using
Cauchy’s integral theorem twice, we have

1 Fr..p(j) 1 " O(q™)

Bl =omi 8, =2 Y= o f A Be G =0V T o A B (G - 9)
1 g™

T 21 Joo A5 By (1)(j — x)dj’

dj,

for a sufficient large counterclockwise oriented circle C” around j = 0. Now using the identity

4 _ —Eu
i

we find

L A<Z)dk_1Ek'(Z)E14*k'(T) —m—1
QWiﬁ A(T) 4 (j(7) = §(2)) o

for C' a (counterclockwise) circle centered at ¢ = 0 with a sufficiently small radius. O

fom(2) = A2)" By (2) Fr,p(j(2)) =

For A > 1 big enough, lemma implies that, after changing variables ¢ = €>™" with 7, we
find:

o 3+iA A(z)dk*lEk/(Z)EM—k'(T)efzm'mr -
S (2) = /§+iA A(T) (5 (1) = §(2)) " e

using Cauchy’s integral theorem. As in [I3], we will write

A(z) " B (2) Era—p (1)
A(T) A (j(7) = §(2))

From now on let z = €' for 0 € (7/2,27/3). For 0 < A’ < A, define the box

—2mimT

G(t,z2) :=

and A’ <Im(r) < A}

|~

By 1:{T€H|7%SR6(T)§
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Then by the residue theorem, assuming there are no poles on the boundary of Ba:,

LA $+iA
/ G(r,z)dr = / G(7,z)dr + 2mi Z Res;—r, G(T, 2), (132)
7%+iA, 7%4"»1.‘4 ToEDB 41
= fem(2) + 2mi Z Res;—-,G(T, z). (133)
T()GBA/

Note that the only possible poles of G(7,z2) in Ba/, seen as a function in the variable 7, are at
T =z, for v € SLy(Z). As we have the identity
&G _ —Fu
qdq A

and g—q = 2miq, we can rewrite G(7, z) as:
T

e—2mimT A(Z)dk_lEk’ (z) di-r(j (T) 7.7(2))

G2 = T A B () G —G)

. . by . .
Hence, the residue at the points 79 = vz for v = (Z d)’ is given by:

6727r1m-('yz)

Res;—+.G(T,2) = —T(cz +d)7*. (134)

As we have
sin(0)

2 + d? + 2cd cos(6)’

Im(yz) = (135)

we see that if v/3/2 < A < sin(f), the region B contains exactly two poles of G(7, 2):

1
=2 and TH=——.
z

Hence, for these A we have:

G(r,z)dr = e*0/2e=2mmsin@) g, (1) — 2cos(Ee — 2mmcos(0)). (136)

3

6ik0/2€7277msin(9) / B
—14+Ai

The goal is to bound the left side of the equation.
If 1.9 < 0 < 27/3, one can check using (135) that if we choose A" = 0.65, we have that the
only poles in B4 are given by

1 1 d z
To = %, 0= ——, 0= — an To = .
0 0 z 0 z+1 0 z+1
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As —ﬁ and ZLH have real part —% and % respectively, these poles lie on the vertical boundary

of B,/. Adding a small circular arc of the same size around each of these points, we get using
(134) and Cauchy’s residue theorem:

G(T,z)dr (137)

1
2

— ik0/2 o —2mmsin(6) <2m' : RestfﬁG(T, z) + ’ G(z + 0.65¢, z)dw)

—mim

e O )

1
k02 g=2mmsin(0) /2 G(z + 0.651, z)dx. (138)

1
2

If 7/2 < 0 < 1.9, one can similarly show that if A’ = 0.75, the poles of G(7,z) in Ba/ are
given by

1
To =2 and o= ——,
z
hence we need to give a bound for
, , 3
¢tk0/2 = 2mmsin() G(z + 0.754, 2)dx (139)

1
in this case. The next sections will be devoted to bounding (138]) and (139)).

5.3.1 The Case 1.9 <0 < 27/3
We assume 1.9 < 0 < 27/3 and A’ = 0.65. We need to give an upper bound for:

. 1

€™ —wm(2sin(0)—tan(0/2)) | ik6/2,—2mxmsin(6) [ + j

e _x in an mmsin G 0.65 dz| . 140
(2(:08(9/2))16‘e ‘ ‘ “ he e

1
2
Clearly this is bounded above by

1
1 . . 2
oo (07D e~ (2sin(0)—tan(6/2)) 4 o—2mmsin(0) / |Gz + 0.650, 2)|dz. (141)

3
We claim that g(6) := me_”m@sm(e)_tan(e/m is bounded above by 1 on [1.9,27/3). The
derivative of g(#) is given by
e—mm(2sin(0)—tan(6/2)) | (—wm (2008(9) - W) + k(ZCOS(Q/Q)k*ISin(g/2)))
"(0) = .
g (2cos(0/2))2F

An easy computation shows that

1

vy
2cos(0/2)2 — 7

—3 < 2cos(6)
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and for all even positive k

< (2cos(6/2))5 1sin(6/2).

| S

As =& <m < 0and —37% + k% > 0, we deduce that ¢’(f) > 0 and hence g(f) is strictly
increasing on [1.9,27/3). Therefore

9(0) <g(2m/3) =1

and it suffices to bound the value

1

. 2
e~ 2mmsin(6) / |G(z 4 0.650, 2)|d. (142)

[N

Proposition 5.10.

1
/2
1

2

So that for d > 8, the right side of (146) is bounded by 0.985.

A(Z)d’“_lEk/ (Z)E14,k1 ($ + 065’&)
Az + 0.650)% (j(z + 0.651) — j(2))

‘ dz < 516 - 0.481% 1, (143)

Proof. We prove this by giving lower bounds for terms in the denominator and upper bounds
for the terms in the numerator. First of all we fix some notation, given a Laurent series F' =
S L ang™, for some s € Zs>o, a, € C, we define Fiy to be the truncated series Znszs anq™.

n=-—s

Using Mathematica, one can show that for all ¥’ € {0,4,6,8,10,14}
max‘w‘g% |E14,k/($ + 0.65i)13| < 416.
This implies that

|E14,k/ (!IJ + 065Z)| = |E14,k/ (.’E + 0651)13 + E14,k/($ + 0651) — E14,k/ (.’E + 0652)13|
S |E14_k/ ($ + 0651)13| + |E14_k/($ + 0657,) — E14_k/($ + 0651)13|

o0
S 416+ Z |an|672‘n’0.65n
n=14

< 416 + / 5042147 ¢ =2m0-652 gy
13
(Using lemma and the fact that the integrand is decreasing)

<416 +1.14-1078
< 417.

Similar arguments (using lemmasand B.3) show that |A(x+0.65¢)| > 0.01, |Ex/ (2)] < 4 and
|7 (z +0.657) — j(2)| > 323 for all —5 <2 < 3 and 1.9 < 6 < 27/3. This shows that
Ek/(z)EM,k/ (.’L’ + 0652) ’ < 4-416 <
Az +0.659)(j(x + 0.65¢) — j(2))! ~ 0.01-323

Furthermore, we have that |A(z)| < 0.00481 (see lemma [B.4)) for all § € (7/2,27/3), hence

516. (144)

|A(2)] 0.00481
= .481. 145
|A(z +0.651)] ~ 0.01 (145)
So we conclude that the bound (146 holds. O
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For m < 0 and di > 8 this implies that,

1

o~ 2mmsin(6) /2 |G(x + 0.651, z)|dx

o= 2mim(a-+0.650) A(2)" By (2) Bua_i (1)

1
2
1
—27msin(0) /2
= e .

1
2

< 0.985¢ 2mm(sin(6)—0.65)

From this we conclude that for € [1.9,27/3] and dj) > 8:

|6ik0/26727rmsin(0)f

3

5.3.2 The Case 71/2 <6 < 1.9
We assume 7/2 < § < 1.9 and A" = 0.75.

Proposition 5.11.

1
/2
_1

2

A(Z)dk_lEk/(Z)EM_k/(l‘ + 0.75i)
Az + 0.750)% (j(x + 0.751) — j(2))

'dx < 167-0.67%1,

So that for d > 12, the right side of (146)) is bounded by 1.985.
Proof. Using a similar argument as in proposition we have:
Ek/ (Z)E14,k/ (l’ + 0752)

1
’A(a: 1+ 0.750) (i (x + 0.75%) — j(2)) | <167
and AG)
z
‘A(:c+0.75i) < 0.67

forall —1/2 <z <1/2and 6 € (7/2,1.9). So that

‘ A(Z)d’“_lEk/ (Z)E14,k/ (z+ 0752)

167 - 0.67% 1,
Az + 0.750)% (j(z + 0.750) — j(2)) ‘ <

Using a similar reasoning as before, we conclude that for dj, > 12 and 6 € [x/2,1.9):

|eth0/2e=2mmsin@®) £ (") — 2cos (k)2 — 2mmcos(0))| < 1.985¢2mm(sin(6)=0.75),

This finishes the last case.

65

Az + 0.650)% (j(x + 0.651) — j(2))

e (€) — 2cos(k0/2 — 2rmcos(0))| < 1+ 0.985¢~2mm(sin(6)=0.65)

dx

(146)

(147)

(148)



5.4 Stronger variant of Theorem 5.6

We can make the value R in the theorem [5.6] dependent on k, finding an even stronger result.
If 1.9 < 0 < 2x/3, using (145)), (141) and (144) we get that for m <0

, . , 1/2
|eik0/2g=2mmsin(0) g, (1) — 2cos(kO/2 — 2mmcos(6))] < 1+ / |G(z + 0.65¢, z)|dx
~1/2

<1+ 0.481dk*1 . 516 - 6727Tm(sin(«9)70.65).

So that
|fk7m(619)‘ S 3627rmsin(0) + 0481dk—1 . 516 . 627Tm0.65 S (3 + 0481dk—1 . 516) . 627rm0.65.

Further, if 7/2 < 6 < 1.9, using the estimates (147)) and (148)), we find

, . _ 1/2
|eik0/2g=2mmsin(®) g, (1) — 2cos(kB/2 — 2mmcos(6))| < / |G(z + 0.75i, z)|dx
—1/2

S 0.67dk71 . 167 . 6727Tm(sin(9)70.75).

Similarly, we find 4
| fem(€)] < (24 0.67% 1 167) - 27070,

An easy computation shows that if di > 14,

0.67%1 167 <1+ 0.481%' - 516.
So that:
Lemma 5.12. For dy, > 14 and 0 € [1/2,27 /3], we have

012 f0(e") — 2c08(k0/2)| < 1+ 048171 516,
Lemma 5.13. Fordy > 14, m <0 and 6 € [7/2,27/3], we have
| fem(e)] < (3+0.481% 1. 516) - 2™m0-65, (149)
This allows us to replace R in theorem m with the value 1 + 0.481%~1. 516.

Theorem 5.14. Let f = ZZOZO anq™ be a formal power series in q with real coefficients, such

that ag = 1. Let f be the unique modular form of weight k with dy, > 14 such that f: F+O(q%).
Let R =1+ 0.481%~1.516, assume that

dr—1

2—-R
M = Z |an| . ¢—2mn0.65 <
n=1

—_— 150
2+ R (150)
Then all the zeros of f in F lie on the unit circle {e*® | a € [7/2,27/3]}.

Corollary 5.15. Consider the theta series 0y =1+ 2- 23:;1 q"Q. Let ©y, be the unique modular
form such that ©, = 0y + O(q™). Then all the zeros of Oy, in the fundamental domain F lie on
the circular arc {e** | a € [r/2,2m/3]}.
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Proof. Let a, be the n-th Fourier coefficient of ©;. Then

dp—1 oo o —270.65
. —2mn0.65 —2m0.65 _
n=1 n=1
Note that 0 R
M < ;,
2+ R

where R is as in theorem [5.14l Hence if d; > 14, we conclude that all the zeros of © in the
fundamental domain F lie on the circular arc.

For dj, < 14, one can explicitly compute the polynomial

O

Qk(]) = m

in the j-invariant of degree ny (= di — 1), and show that the zeros of this polynomial lie in the
interval [0, 1728]. O
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A Hypergeometric Functions

In this appendix we recall some basic notations and properties of hypergeometric functions.
For a general reference see [I]. We will only be considering the classical Gauss’ hypergeometric
function. Let a,b,c € R and ¢ ¢ Z<q. Define the ordinary hypergeometric function

oFi(a,b,c;z) = Zwi, (151)

where
n =20,

@ =1
D= Valg+ 1) (grn—1) n>o.

If a,b & Z>( this defines an infinite series with radius of convergence 1 (if @ and b are positive
integers, (151]) is just a polynomial).

A.1 Contiguous Relations

Let F = 5Fy(a,b,c; z), then we have the following relations:

dF b
e = Z%F(a+, b+, c+) (152)
=a(F(at) - F) (153)
=b(F(b+) — F) (154)
=(c=1)(F(c—) - F) (155)
- - - F
(c—a)F(a—)+ (a —c+b2) (156)
1—-=2
_ (c=b)F(b—)+ (b—c+az)F (157)
1-=2
:Z(c—a)(c—b)F(c—i—)+c(a+b—c)F (158)
(1 —2)
where F'(a+) means oFy(a + 1,b, ¢; 2) ete.
A.2 Hypergeometric Differential Equation
The hypergeometric function o F}(a, b, ¢; z) is a solution to the differential equation:
d>w dw
1_ )22 — 1)z] — — =0. 159
1= )5 e (a+b+ 1)) T —abw =0 (159)
A.3 Hypergeometric Relations
We recall a few well-known relations between hypergeometric functions.
Proposition A.1 (Euler’s transformation formula).
oFi(a,b,c;2) = (1 —2) " % Fi(c—a,c—b,c;2). (160)

Another relation is given by
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Proposition A.2. For a € Z~y we have

11
oF (a, —a,5; 5(1 - cos(z))> = cos(az),

= Ta(cos(z)),
where Ty, is the a-th Chebyshev polynomial of the first kind.

From the previous statement we immediately deduce the following:

Corollary A.3.

Nl

111 1
2F1< ,2;z>— ((1—2%)%+(1+z)

44 T2
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(162)
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B Bounds for Modular Forms

In this appendix we discuss some bounds for the coefficients of modular forms we need for section

5.

Lemma B.1. Let By, = > o7 a,q™ be the Eisenstein series of weight k € {4,6,8,10,12,14}

(normalized such that ag = 1), then |a,| < 504n* for n > 1.

Proof. Clearly |a1| < 504 for all k € {4,6,8,10,12, 14}, furthermore |a,| < 5040_1(n) is trivially

bounded by 504n*.

Lemma B.2. Write A =" 7(n)q", then |7(n)| < 2nS.

Proof. Using a bound by Deligne, see for example [23, p. 164], we have
|7(n)| < oo(n)ntt/?,

Trivially we have o¢(n) < 2v/n, so that |7(n)| < 2nS.

Lemma B.3. Let j =Y 7" | c,q" be the modular j-invariant. Then for n > 1:

|Cn| S e47rn.
Proof. Using [4], we have that for n > 1,
6477\/5
Cp, S W
As .
€ mn 4mn

\/§n3/4 -

and the coefficients of the j-invariant are all positive, the result follows.

We finish this appendix with a bound for A on the unit circle:
Lemma B.4. Let 0 € [7/2,27/3]. Then we have |A(e'?)| < 0.00481.
Proof. See [18| Prop. 2.2.].
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