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Abstract

The focus of this thesis is the inference of changes in the dynamics of rotavirus
epidemiological data. As was discussed by S Hahné et al. [1], there was an excep-
tionally low rotavirus incidence in the Netherlands in the winter of 2013/2014.
Motivated by an internal report from the National Institute of Public Health and
the Environment (RIVM) [2] that provided a transmission model of rotavirus
dynamics that suggested the appearance of bifurcations, we try to detect such
bifurcations by analysing rotavirus time series with the use of Wasserstein dis-
tances (as is discussed by Michael Muskulus and Verduyn-Lunel in [3] for time
series in general). Although we did not manage to detect the possible period
doubling bifurcation affecting the Netherlands, we could use the Wasserstein dis-
tances approach to detect changes in the dynamics of rotavirus corresponding
to the introduction of vaccination against the disease in Germany.
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Introduction

The purpose of this thesis research project is to test the method developed
by Verduyn-Lunel and Muskulus in the paper “Wasserstein distances in the
analysis of time series and dynamical systems” [3] as a numerical tool to de-
tect qualitative changes in the underlying dynamics of time series of infections.
Their method is promising as it has given interesting results when used to anal-
yse neurological processes and time series of respiratory impedance ([4] and [5],
respectively). For the time series of our interest, namely rotavirus incidence
per week, we observe a cyclic pattern repeating each year (see figure 1), with
high incidence reported around winter time and low incidence during the sum-
mer months. As the reason for this pattern is well known, we will pay special
attention to the apparent transition from annual to biennial cyclic incidence
occurring in the Netherlands in the year of 2014. As this might reflect a qual-
itative change in the dynamics of the epidemiological system of rotavirus, we
will analyse this possible transition from the perspective of dynamical systems
theory1, and within this context, we pay special attention to the concept of
bifurcation in the underlying dynamical system (as a previous research [2] leads
to the hypothesis that the above mentioned transition reflects a bifurcation).

Figure 1: Weekly incidence of rotavirus in the Netherlands.

We propose to test the bifurcation hypothesis on the grounds that we do not
know the set of differential equations describing the spread of rotavirus within
a population. As this means that we first need to obtain a multidimensional
dynamical representation that best corresponds to the behaviour of data (in one

1Which roughly speaking, is the branch of mathematics interested in the qualitative be-
haviour of a dynamical system.
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x INTRODUCTION

variable), we follow the approach of Verduyn-Lunel and Muskulus in [3], where
they choose for an attractor reconstruction technique called delay embedding.
The delay coordinate time series thus obtained represent dynamical regimes.

The reason for the selection of the delay embedding comes from the search
of a robust representation of a scalar time series. The vector time series thus
obtained is less sensitive to both noise in measurements and the selection of
initial conditions than the original scalar time series.

We assume the existence of an attractor for the underlying dynamical system
of rotavirus transmission, an attractor that is changing with the conditions of the
system. To determine whether there exists a vector time series representation
that will be faithful to the dynamical behaviour of this attractor, we can rely
on an important result by Takens, namely that a delay coordinates time series
will show both topological and differential equivalence to a trajectory in the
attractor.

Once this reconstruction is obtained, we will regard the space of recon-
structed trajectories as a measure space, over which we identify each trajectory
with a probability measure. This comes from the idea that two realisations of
the same stochastic process will show similar distributions (or even the same
if we care about the long-term behaviour). It is this kind of similarity that
we want to (numerically) measure for trajectories of the rotavirus dynamical
system.

Verduyn-Lunel and Muskulus choose for the Wasserstein distance among a
variety of distances between probability measures because it takes into account
both geometric and probabilistic aspects in the reconstructed trajectory (as
discussed in [6]).

Our claim can be stated as follows: if the delay coordinate map is a good
method, then the use of Wasserstein distances has the potential to detect bifur-
cations in the dynamics of rotavirus transmission.

In chapter 1, the mathematics supporting all methods are presented. In
chapter 2, the model of Alexandra Teslya is presented [2], and the method of
Verduyn-Lunel and Muskulus [3] is tested on synthetic time series obtained
from it. In chapter 3, the same method is applied to German notification data.
Finally, in chapter 4, all the results are discussed and conclusions from the
research project are given.
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Chapter 1

Mathematical background

In this chapter we start with a short review of dynamical systems theory (al-
though we refer to [7] for a complete treatment of the subject) with the purpose
of making the text as self-contained as possible. In the second part of the chap-
ter we address a technique to reconstruct attractors from time series. In the last
part, we introduce an optimisation problem that aims at providing a numerical
method for detecting bifurcations.

Hereafter, we deal with concepts arising from a deterministic continuous in
time dynamical system defined by a smooth vector field f : M → TM , where M
is a smooth manifold and TM is the tangent space of M . The integral curves
of this vector field provide the state space M with a flow Ψ on it, such that
Ψ(M) = M .

A continuous in time dynamical system can be defined by a system of dif-
ferential equations of the form

ẋ(t) = f(x, λ), (1.1)

where x ∈ Rn and λ ∈ Rm is a free parameter, i.e. there are n coordinates and
m parameters in the system.

An example of a differential equation of the form (1.1) is the SIR-type model
(2.1), designed to describe the dynamics of rotavirus within a population. As
we are interested in understanding the dynamical behaviour of this model’s
solutions, we include in the following a theoretical overview of the possible
qualitative changes in the flow dynamics of systems of the form (1.1), when the
parameter λ is varied. Such qualitative changes are called bifurcations, which
in order to be discussed, the concepts of trajectory and attractor first need to
be introduced.

Definition 1.0.1 (Trajectory) The trajectory of the initial point x(t0) ∈ Rn
under the flow Ψ of the dynamical system (1.1) is given by the set {x(t)}t>t0 .

Definition 1.0.2 (Phase portrait) The set of all trajectories of the dynami-
cal system (1.1) forms the phase portrait.

In the examples treated in this thesis project, we can understand that a time
series made up of observed incidence of rotavirus {xi}i∈I⊂N can be regarded as

1



2 CHAPTER 1. MATHEMATICAL BACKGROUND

a (discrete) trajectory for an unknown dynamical system, which is the one we
try to obtain information from. We will deal only with limiting trajectories or
attractors, since these are the components of the flow Ψ that characterize most
faithfully a dynamical system.

Definition 1.0.3 (Attractor) A set A ⊂ Rn is an attractor of the open set
U ⊂ Rn under the flow Ψ if for every neighbourhood V of A, and an initial
condition x(t0) of (1.1) lying in U , there exists a real number k(V ) such that
the corresponding trajectory {x(t)}t≥k(V ) ⊂ V .

In the case of our interest, we assume that the given time series are obtained
from observations of trajectories close to the attractor of their corresponding
dynamical system. Such attractors might be of chaotic nature, given the known
non-linearity of transmission models from epidemiology, which are the ones used
for modelling the transmission of infectious diseases [8]. However, we assume
that the attractor is topologically a circle (or more specifically a limit cycle),
since this is what the cyclic pattern in the time series 1 and the solutions of the
rotavirus transmission model in [2] suggest.

In this thesis project only two kinds of bifurcations are considered: the period
doubling bifurcation and the limit point of cycles bifurcation. We restrict our
treatment for the following reasons:

• The actual measurements of rotavirus incidence suggest that a period-
doubling bifurcation in the dynamics might have occurred. This comes
from the observation of time series 1.

• The cyclic solutions of the transmission model in [2] undergo both period-
doubling and limit point of cycles bifurcations, as can be seen in the
bifurcation diagram 2.3.

1.1 Bifurcations in Dynamical systems

Definition 1.1.1 (Bifurcation) A bifurcation is the appearance of a topolog-
ically nonequivalent phase portrait of a dynamical system when the system pa-
rameters vary.

For example, we observe this phenomenon in the case of a period-doubling
bifurcation (to be explained in subsection 1.1.1), as there is no way to continu-
ously deform two cycles into one.

The mathematical analysis of bifurcations (simply called Bifurcation theory)
deals with the study of normal forms (thoroughly discussed in [9]), which are
power series representations of dynamical systems that allow for a systematic
characterisation of dynamical regimes in terms of the coefficients in the series
(also called normal form coefficients). We remark that the defining criterion for
identifying dynamical regimes is topological equivalence.

1.1.1 Codimension one bifurcations of limit cycles

Bifurcations of the dynamics can be classified by their codimension number,
which is the number of system parameters that need to be varied in order for
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a bifurcation to occur. The two bifurcations types that are considered within
this text correspond to codimension one bifurcations of limit cycles. These are
described in the following.

If the solutions of a dynamical system (1.1) converge to one (or more) limit
cycle(s) (as is the case in seasonally forced transmission SIR-models of epidemi-
ology [8]), the codimension one bifurcations that such cycles may undergo are:

1. Limit point of cycles (also called fold bifurcation): this consists of the
collision and disappearance of two cycles (one stable and one saddle) when
one of the parameters in (1.1) crosses a critical value α∗. This concept
is illustrated in figure 1.1a. In relation to this kind of bifurcation, the
parameter region corresponding to the existence of two stable limit cycles
and one saddle cycle will be referred to as a bi-stability region.

2. Period-doubling bifurcations (also called flip bifurcation): this consists of
the change in the stability of a cycle from stable to unstable and the
emergence of a stable limit cycle with double the period of the unstable
cycle when one of the parameters in (1.1) crosses a critical value ξ∗. This
concept is illustrated in figure 1.1b.

(a) (b)

Figure 1.1: In figure 1.1a there is illustrated the transition occurring in a limit
point of cycles bifurcation when one of the parameter of the system (1.1) crosses
the critical value α = 0. The transition illustrated in figure 1.1b corresponds to
a period-doubling bifurcation to be seen in chapter 2.

As we will perform numerical bifurcation analysis in the next chapter, we
now provide an analytical method for detecting codimension one bifurcations of
cycles based on the multipliers of the monodromy matrix.

Definition 1.1.2 If u(t) ∈ Rn is a limit cycle solution of (1.1) with period
τ , i.e. u(t) = u(t + τ) (for all t ∈ R+), then the cycle multipliers (also called
Floquet multipliers) of u(t) are the eigenvalues {µi}ni=1 of the monodromy matrix
M(τ), which is in turn defined as the solution of the system
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{
Ṁ(t) = fx(u(t), λ)M(t)
M(0) = In,

(1.2)

where In is the n× n identity matrix.

The first feature to recognize in the multipliers {µi}ni=1 is that one of them
is equal to one, e.g. µn = 1 without loss of generality. The significance of
this is found in the perturbations along u(τ): if y0 is a vector tangent to u(τ),
then the linear approximation of the vector field around the cycle (fx(u(t), λ))
will keep y0 fixed, i.e. fx(u(τ), λ)y0 = y0. It turns out that such y0

1 satisfies
M(τ)y0 = µny0 = y0. As the derivation of this result relies on concepts from
Floquet theory which we decide not to include in this thesis report, we refer to
[10, p. 60] and [7, p. 25] for a discussion on the relation between perturbations
of u(t) and the set of multipliers of M(τ).

In the following, we give a criterion for assessing the stability of u(t) in terms
of the eigenvalues of M(τ).

• If |µi| < 1 for all i 6= n, then the cycle u(t) is stable.

• On the other hand, if |µi| > 1 for any i ∈ 1, . . . , n− 1, then the cycle u(t)
is unstable.

The multipliers {µi}ni=1 of M(τ) provide the next criterion for detecting
codimension one bifurcations of the corresponding limit cycle.

• If µ1 = 1 at the parameter value λ∗, then the cycle u(t) is undergoing a
limit point of cycles bifurcation.

• If µ1 = −1 at the parameter value λ∗, then the cycle u(t) is undergoing a
period-doubling bifurcation.

As the numerical bifurcation package MATCONT [11] (to be extensively
used in the next chapter) has the computation of cycle multipliers implemented
in it, but only of their absolute values, MATCONT [11] also requires the compu-
tation of the normal form coefficients in order to numerically detect bifurcations
of limit cycles.

1.2 Attractor reconstruction

The motivation for attractor reconstruction methods is that a time series can be
regarded as an observable function of the solution trajectory near the attractor
of a dynamical system (provided we count on one). In case the system is non-
linear (as is the case in dynamical systems describing interactions such as the
transmission of a disease within a population), then we may be facing what is
called chaotic determinism, in which two seemingly different trajectories might
belong to the same attractor. Thus we choose for a vector time series represen-
tation that does not fall short in showing the bigger dynamical picture (as the

1y0 can be expressed as y0 = eλτy∗, where y∗ is an eigenvector corresponding to the
eigenvalue λ = 0 of the matrix R such that M(τ) = eRτ .
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scalar time series may do). Moreover, as real measurements are prone to noise,
and the analysis of a noisy scalar time series is more likely to be biased, it then
becomes natural to search for a vector time series representation that can work
around some noise. Attention should be stressed to the fact that we do not do
this in order to neglect (possible) randomness inherent to the rotavirus epidemi-
ological system, as it is well understood that randomness and determinism pull
the strings governing physical phenomena [12].

The discussion in the previous paragraph finds its relevance in chapters 2
and 3, where we deal with real-life observations of a dynamical system, namely
weekly measurements of rotavirus incidence2 in Germany. As will be illustrated
in chapter 2, the observable is not even a variable of the system, and further-
more the epidemiological measurements only provide one-variable data. What
we will proceed to do in the first part of this thesis project is to construct
a higher dimensional representation of the system trajectories from the one-
variable weekly incidence of rotavirus. Such multidimensional representation
will provide us with richer information of the dynamical behaviour. In this
section, we give the theoretical foundations of this reconstruction.

The attractor reconstruction technique we consider is called the Delay coor-
dinate map. This was first discussed by Floris Takens [13], and it briefly works
as follows: for a given time series {xn}Nn=1, a time delay τ and an embedding
dimension k, k-delay coordinates are formed by sampling {xn(t)}Nn=1 every time
τ starting from any n ∈ {1, . . . , N − (k − 1)τ}. It will be shown that this pro-
cedure provides a representation that reconstructs the differential structure of
the system attractor A, i.e. the delay map is an embedding of A.

1.2.1 Delay embedding

We recall the notion of an observable and formalise it as follows: an observable
is a smooth function h : Rk → R. For instance, an observable of the dynamics
of rotavirus in the population is its incidence.

If we recall the expression (1.1) of a dynamical system, and substitute the
domain of f by the more general n-dimensional smooth manifold M , we can
understand that the solutions x(t) will define a flow Ψ on M .

The time series considered in the next chapters are made by first sampling
every time τ a solution trajectory x(t) ⊂M of a (whether known or unknown)
dynamical system and then applying an observable function h on this sampling,
i.e. from the sampled solution {xn}Nn=1 = {x(τn)}Nn=1, we consider the set
{h(xn)}Nn=1. We will not analyse such time series directly, but the corresponding
set of delay coordinates, a technique which is introduced in the following.

Definition 1.2.1 (Delay coordinate map) Given a manifold M equipped with
a flow Ψ on it, a time delay τ ∈ R+, and h an observable function on M , we
define the delay coordinate map F (h,Ψ, T ) : M → Rk as:

F (h,Ψ, τ)(x) = (h(x), h(Ψτ (x)), . . . , h(Ψ(k−1)τ (x))). (1.3)

We now explain the components of the delay coordinate map F (h,Ψ, τ) for
the cases considered in this thesis project.

2By incidence we mean the number of notifiable cases per 100, 000 persons.
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• In the case of synthetic time series {h1(xn)}Nn=1 (to be analysed in chapter
2), the flow Ψ is defined by the vector field of the system (2.1), h1 is the
solution of the influx into compartment I1, and τ is equal to one week.

• In the case of rotavirus incidence in German regions (the time series
{h2(yi)}Mi=1 to be analysed in chapter 3), Ψ is again the vector field of
the (unknown) underlying dynamical system, the image of h2 is the ro-
tavirus incidence, and τ is equal to one week.

The image of F (h,Ψ, τ) on a time series {xn}Nn=1 is also a time series con-
sisting of k coordinates for each point in it. If we set fn := F (h,Ψ, τ)(xn) for
1 ≤ n ≤ N − (k − 1)τ , then the resulting delay coordinates time series is

{fn}N̄n=1 ⊂ Rk, (1.4)

where N̄ = N − (k − 1)τ is the maximum length of the new time series. The
space Rk will be called reconstruction space for the reason that this is the space
where the reconstructed trajectory is obtained.

Remark. It is not the purpose of this thesis project to properly reconstruct
the attractor for a given time series, but rather to compare time series via their
(possibly degenerate) reconstructions. Therefore, we will not care for finding
the optimal embedding dimension k.

A theoretical result of high value for the purpose of this thesis project would
be the map F (h,Ψ, τ) to define an embedding of the attractor into reconstructed
space. The first theorem in such direction was provided by Whitney [14], who
proved the embedding to exist for smooth maps Φ : Rk → R2d+1 if the attractor
lies within a compact smooth manifold of dimension d. Takens [13], in an
effort to help experimentalists, extended this theorem by addressing the delay
coordinate map again on a compact smooth manifold in Rk. However, it might
be the case that the attractor has a fractal dimension, thereby becoming what
is called a strange attractor. It is in the work of Sauer, Yorke and Casdagli [15]
that fractal attractors were considered, and it is their result we will rely on.

One uncommon concept is present in the series of theorems mentioned before.
The last theorem concludes that F (h,Ψ, τ) is an embedding with probability
one. We place attention on this since the functional space of smooth maps
is infinite dimensional. However, the Lebesgue concept of probability one (or
almost every) is defined on linear spaces with finite dimension, and therefore
the need for an extension should be considered. This extension comes in the
concept of prevalence:

Definition 1.2.2 (Prevalence) A Borel subset S of a normed vector space V
is prevalent if there is a finite-dimensional vector subspace E ⊂ V such that for
v ∈ V , v + e ∈ S for almost every e in E.

Hereafter, we will interchangeably use the terms prevalence and almost every
to refer to probability one over normed linear spaces.

On the other hand, when addressing the concept of dimensionality of an
attractor, and if we suppose that this is a fractal, we resort to the box counting
dimension, defined in the following.
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Definition 1.2.3 (Box-counting dimension) If A is a strange attractor cov-
ered by voxels of size ε, the dimension of A is given by the limit

boxdim(A) = lim
ε→0

logN(ε)

− log ε
, (1.5)

where N(ε) is the number of voxels that make up the cover.

The embedding theorem of Sauer, Yorke and Casdagli [15] can now be stated.

Theorem 1.2.1 (Fractal Delay Embedding Prevalence Theorem) Let Ψ
be the flow of a dynamical system on an open subset U of Rk, and let A be a
compact subset (possibly a fractal) of U of box counting dimension d. Let k > 2d
be an integer, and let τ > 0. Assume that A contains at most a finite number
of equilibria, no periodic orbits of Ψ of period τ or 2τ , at most finitely many
periodic orbits of period 3τ, 4τ, . . . , nτ , and that the linearisations of those peri-
odic orbits have distinct eigenvalues. Then for almost every smooth function h
on U , the map F (h, ψ, τ) is:

1. One-to-one on A.

2. A C1−immersion on each compact subset C of a smooth manifold con-
tained in A.

Remark. Theorem 1.2.1 (as it appears in [15]) is given in terms of a back-
wards (in time) delay coordinate map F (h, ψ, τ), but their proof also holds for
our choice of a forward (in time) delay coordinate map.

We elaborate on some mathematical implications of Theorem 1.2.1. For
a given observable h, the map F (h,Ψ, τ) satisfies (with probability one) the
following:

1. F is one-to-one on A: this ensures that in case a solution trajectory (close
to the attractor) is being intertwined with h, then the delay map F will
disentangle it back to its original topology in reconstructed space.

2. F is a C1−immersion on each compact subset C of a smooth manifold
contained in A. This ensures that the Monodromy matrix M(τ) (the
solution of (1.2)) exists for the reconstructed cycle and furthermore it
has full rank, which allows for the codimension one bifurcation analysis of
cycles based on Floquet multipliers (explained in subsection 1.1.1).

The practical relevance of theorem 1.2.1 is the following. By applying the
delay coordinate map F (h, ψ, τ) on scalar time series, with k > 2d we obtain a
multidimensional time series that with probability one will satisfy the same dy-
namical properties of the actual trajectory (of the unknown dynamical system),
if we assume that the observations are taken close to the attractor.

1.3 Wasserstein distances

In this section we introduce a measure-theoretic representation of the delay
coordinates, and a distance (called Wasserstein distance) to compare the mea-
sures thus created. Such distance will in turn provide us with a numerical value
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that aims to reflect the similarity between dynamical regimes. This naturally
suggests the use of the distance as a numerical tool for detecting bifurcations in
the dynamics.

Hereafter, we assume that the delay coordinate map has been applied to a
given time series {xi}Ni=1, and furthermore the reconstructed space Ω = Rk will
be regarded as a measurable space (equipped with the Borel σ−algebra B). The
probability measure µ{fi} : (Ω,B)→ [0, 1] is defined as:

µ{fi}(A) :=
1

N̄

N̄∑
i=1

δfi(A), (1.6)

where A ∈ B and δfi(A) is the Dirac measure of the delay-coordinates point fi,
with 1 ≤ i ≤ N̄ . Note that A in definition (1.6) can be an attractor in phase
space Rk, since all attractors are closed and B is the σ-algebra generated by
closed sets in Ω.

The interpretation we give to the measure µ{fi} is the following. For a
Borel set A ∈ B, µ{fi}(A) indicates the (normalized) number of visits paid by
the series {fi} to A. Equivalently, µ{fi}(A) is the counting measure of the set
A ∩ {fi}. We remark that µ{fi} defines a probability distribution in (Ω,B).

In definition (1.6), N̄ represents the length of the reconstructed time series,
and in general we would require N̄ → ∞ if we want µ to become an invariant
measure, i.e. a probability distribution satisfying µ(A) = µ(Ψ(A)) for every A ∈
B. For instance, in the reconstruction exercises of the following chapter we will
obtain a time series from a limit cycle A (which assumes N̄ →∞). Since Ψ(A) =
A (by definition of limit cycle), it follows that µ(A) = µ(Ψ(A)), and therefore µ
becomes an invariant measure under this particular scenario. For the incidence
of rotavirus time series to be analysed later, the conditions are the same up
to small random perturbations, since we assume that actual measurements of
rotavirus are the result of a noisy observable function on trajectories close to
a limit cycle. The issue arising here would be the non-uniqueness of µ, as the

random fluctuations may affect the counting measure in A ∩ {fi}N̄i=1. However,
the perturbations being small implies the unicity of µ (for a proof this we refer
to Lasota [16]). Therefore, the measure µ in (1.6) is called natural invariant
measure when N̄ →∞.

We proceed to consider the functional space composed of invariant measures
on (Ω,B,Ψ) and provide it with the Wasserstein metric.

For two probability measures µ{fi} and µ{gi} (generated by (1.6) from the
times series {xi} and {yi}, respectively), we introduce the concept of transport-
ing the probability distribution in (Ω,B, µ{fi}) to the probability distribution
in (Ω,B, µ{gi}).

Definition 1.3.1 (Transportation plan) A transportation plan consists of a
configuration specifying how much probability density will be moved between the
Borel sets of (Ω,B, µ{fi}) and (Ω,B, µ{gi}) in order to move one whole distribu-
tion to the other. This plan takes the form of a (product) measure π on (Ω×Ω)
that satisfies∫

y∈Ω

dπ[A, y] = µ{fi}(A) and

∫
x∈Ω

dπ[x,B] = µ{gi}(B), (1.7)
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for all A,B ∈ B.
Furthermore, the total cost of the plan π is given by the functional form

C(π) =

∫
Ω×Ω

‖x− y‖2dπ[x, y], (1.8)

where ‖ · ‖2 denotes Euclidean distance.

We denote the product measure space over which C(π) is defined as (Ω ×
Ω,B×B,Π(µ{fi}, µ{gi})), where Π(µ{fi}, µ{gi}) is the set of product probability
measures (defined in general in [17]) generated by µ{fi} and µ{gi}, and satisfying
(1.7). The Euclidean distance in between x and y in Ω gives the cost of moving
one probability mass point to the other, and this is why C(π) is called the cost
functional.

We introduce now the Wasserstein distance W between two measures µ{fi}
and µ{gi} on (Ω,B) as follows:

W (µ{fi}, µ{gi}) = inf
π∈Π(µ{fi},µ{gi})

∫
Ω×Ω

‖x− y‖2dπ[x, y]

= inf
π∈Π(µ{fi},µ{gi})

C(π).
(1.9)

In the literature, this discussion is referred to as the optimal transportation
problem.

Since the time series to be considered in this thesis project are all of finite
length, the corresponding measure (1.6) will consist of finite sums of Dirac mea-
sures. This converts the problem (1.9) into a discrete transportation problem,
as described in detail by Moeckel and Murray [6].

1.3.1 Discrete transportation problem

The probability measures (1.6) obtained from finite times series become proba-
bility mass functions. The shipping plan of the corresponding probability mass
points within reconstructed space is explained in the following. We regard a
box B ∈ B containing both delay coordinates, i.e. {fi}N̄i=1, {gi}N̄i=1 ⊂ B ⊂ Rk.
If we create a regular division of B into the set {Bn}mn=1, then we will care for
the invariant measures of the sub-boxes by introducing the set of probabilities
pn = µ{fi}(Bn) and qn = µ{gi}(Bn), with n = 1, . . . ,m.

A transportation plan in this context would provide us with a configuration
that specifies the amount of probability mass that is moved in between all pairs
of boxes in order to move one whole mass distribution to the other. If fij
is the amount of mass points being moved from Bi to Bj , then the optimal
transportation problem is stated in the following.

Definition 1.3.2 (Transportation problem) The discrete optimal transporta-
tion problem consists on finding the values of the matrix (fij), which minimizes
the expression

m∑
i=1

m∑
j=1

cijfij , (1.10)
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where cij is the Euclidean distance between the centres of Bi and Bj, and the
matrix (fij) is subject to the constraints

m∑
j=1

fij = pi for i = 1, 2, ...,m

m∑
i=1

fij = qj for j = 1, 2, ...,m

fij ≥ 0 for all i and j.

(1.11)

Definition 1.3.3 By taking m→∞ over the set of regular sub-boxes {Bn}mn=1,
then the minimum of (1.10) over all transportation plans (fij) is the Wasser-
stein distance between the probability mass functions {pn}∞n=1 and {qn}∞n=1.

Remark. As the time series that we want to compare ({fi}N̄i=1 and {gi}N̄i=1)
are finite, then there are also a finite number of non-zero probabilities in {pn}∞n=1

and {qn}∞n=1. By considering only these non-zero probabilities in the optimal
transportation plan 1.3.2, a linear programming problem is set up, which is
solved with the revised simplex algorithm presented in [18].

In the following we give an example of a discrete optimal transportation
problem, which is solved with functions from the R-package transport.

0.15

0.10

0.05

0.05

0.05

0.20

0.20

0.20

In this regular grid (with each cell having edges of length one) we observe
an example of two discrete distributions of mass points. If we wish to move the
uniform distribution represented by the red circles to the uniform distribution
of blue circles, we find an optimal transportation plan given by the arrows and
numbers on the right. The distance in the behavioural space (the Wasserstein
distance) is 2.4072.



Chapter 2

Wasserstein distances on
synthetic time series

In this chapter we consider oscillatory solutions of a model developed to de-
scribe the dynamics of rotavirus transmission. We first analyse the model with
the aid of the MATCONT package [11] for Matlab (which performs numerical
bifurcation analysis). Afterwards, we apply the method of Verduyn-Lunel and
Muskulus [3] with the purpose of identifying bifurcations in the dynamics, when
the solutions of the model are regarded as synthetic time series.

Previous work by Alexandra Teslya [2] resulted in the Susceptible-Infected-
Recovered-Susceptible-Infected epidemiological model (2.1). This is a system of
ordinary differential equations (ODE’s) that describes the transmission dynam-
ics of rotavirus. The five variables of the model represent primary susceptible
individuals (denoted by S1), individuals infected for the first time (denoted by
I1), individuals recovered from the first infection (denoted by R), individuals
who lost immunity and became susceptible again (denoted by S2), and individ-
uals who got infected once more (denoted by I2).

Ṡ1 = −β(1 + η cos(2πt))S1(I1 + ρI2) + ξ(1− c− S1)

İ1 = β(1 + η cos(2πt))S1(I1 + ρI2)− (α+ ξ)I1

Ṙ = ξc+ αI1 + γI2 − (κ+ ξ)R

Ṡ2 = κR− νβ(1 + η cos(2πt))S2(I1 + ρI2)− ξS2

İ2 = νβ(1 + η cos(2πt))S2(I1 + ρI2)− (γ + ξ)I2.

(2.1)

Since the time scale used in this model is years and the forcing term (1 +
η cos(2πt)) reaches its maximum value at times t = 0, 1, 2, 3, . . ., then we set the
initial time t = 0 to be January 1st to reflect that rotavirus is more transmissible
in winter. In other words, the transmission rate β is seasonally driven with
amplitude η

The system (2.1) is a multi-compartment kind of model (the theory of which
is thoroughly discussed in [8]), since the total population is divided into sub-
population compartments represented by S1, I1, R, S2 and I2. Furthermore,
any of these variables gives the proportion of the population belonging to the
corresponding compartment (implying that S1 + I1 +R+ S2 + I2 = 1).

11
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The model 2.1 describes influx/outflux into/from the different compart-
ments, which represent changes in the epidemiological status of the individuals
in the population. This system is better illustrated in figure 2.1.

Figure 2.1: Flow diagram of the compartmental model (2.1). Red arrows repre-
sent influx given by newborns, black arrows represent out-flux given by deaths,
orange arrows represent inter-compartmental interactions that may lead to ro-
tavirus transmission, and blue arrows represent movement of individuals from
one compartment to another. Only rates corresponding to non-linear terms of
(2.1) are not shown in the diagram.

Movements between compartments are given by rates, which are explained
in the following.

• Birth/death rate, denoted by ξ. The model assumes that all newborns
belong to the compartment S1.

• Transmission rate, denoted by β. It gives the (mean) probability of infec-
tion for an individual in S1 when in contact with and infected individual.

• Relative susceptibility of S2, denoted by ν. This parameter is added be-
cause an individual who got once infected with rotavirus is less vulnerable
to a second infection.

• Recovery rates for primary and secondary infected individuals, denoted
by α and γ, respectively.

• Waning rate of immunity, denoted by κ. This rate describes how immunity
(in recovered individuals) decreases in time.

• Vaccination uptake, denoted by c. This takes up values in [0, 1], where
c = 0 represents no vaccination at all, and c = 1 means full vaccination
coverage.
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• Relative infectivity in I2, denoted by ρ. This rate takes up values in [0, 1]
since an individual (might) becomes less infectious during the second (or
subsequent) rotavirus infection.

The model parameters are described in table 2.1, and these are obtained from
several sources (WHO [19], Dafilis et al. [20] & Pitzer et al. [21]). Throughout
this chapter, only the case of no vaccination (c = 0) is considered, since it
represents the current situation in the Netherlands.

Parameter Units Value Source

ξ year−1 [1/125, 1/25],
mean is 1/81

[19]

β (number of people × year)−1 1040
Calculated by setting
R0 = 20 and c = 0.

ν [0.05, 1]
ρ [0, 1]
η [0.001, 1] [20]
α year−1 52 [21]
γ year−1 90 [21]
κ year−1 4/3 [21]

c [0, 1]
Vaccination uptake
rate × vaccine efficacy.

Table 2.1: Table of parameters taken from Teslya’s report [2].

As the basic reproduction number (defined in appendix B) of the system
(2.1) satisfies R0 > 1, the disease is able to spread in the population, and
therefore it is important to analyse the long term solutions.

2.1 Numerical bifurcation analysis

We first simulate model solutions using fixed parameter values ν, ρ = 0.2728,
η = 0.1, taken from table 2.1. We start off with a birth rate per year of
ξ = 0.0125, and the initial conditions S1(0) = 0.9 and I1(0) = 0.1. After a
transient time of 190 years, the solution converges to a cycle with period of
one year, as can be seen in figure 2.2a. We proceed to continue this cycle with
MATCONT [11] over the domain ξ ∈ [0.0075, 0.013].

(a) (b)

Figure 2.2: Oscillations of the I1(t) compartment (y-axis on both plots) of
system (2.1). In both plots, the x-axis represents time. In 2.2a the birth rate
per year is ξ = 0.0125, and in 2.2b it is ξ = 0.01.
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By observing the bifurcation diagram 2.3 we see that solution dynamics
of the model (2.1) undergo three bifurcations when the birth rate ξ is varied
within the interval [0.0075, 0.013]. One bifurcation on the dynamics occurs at
the parameter value ξ1 = 0.0119, and MATCONT [11] labels it as a period-
doubling (PD) bifurcation.

Remark. As the software only calculates the moduli of the multipliers
at ξ1 (which is equal to one for two of them), MATCONT [11] relies on the
computation of the normal form coefficient as a numerical criterion to detect
this kind of bifurcation. Such normal form coefficient has the value c = −1.34
1.

As was explained in 1.1.1, we observe the following effect on the limit cycle
solutions of (2.1): the period one cycle becomes unstable and a new stable
period two cycle appears when the birth rate decreases and crosses the value ξ1.
We observe in figure 2.2b that the period two cycle is comprised of two peaks.

If the value of ξ keeps decreasing during the continuation, we observe from
figure 2.3 that the amplitude of the highest peak smoothly decreases as well,
until reaching the next critical value at ξ2 = 0.0086, which MATCONT [11]
labels as a limit point of cycles (LPC) bifurcation (with corresponding normal
form coefficient −1.11591× 1016), followed by another LPC bifurcation at ξ3 =
0.0092 (with corresponding normal form coefficient 3.0066e+ 17).

The two bifurcations ξ2 = 0.0086 and ξ3 = 0.0092 provoke the next effect in
the dynamics: we observe the creation of a so-called bi-stability region, as is seen
in more detailed from picture 2.4 (created with MATCONT [11] as well). The
behaviour of solutions within this bi-stability region is as follows: for different
values of initial conditions, the corresponding solution trajectory may converge
to one or another limit cycle. We explain how to numerically integrate such
cycles in section 2.2.

Figure 2.3: On the plot to the left we observe the period of the limit cycle
solutions of system (2.1) when the birth rate is varied between [0.0080, 0.0140].
On the right plot, we observe the bifurcation diagram. For the interval ξ ∈
[0.0086, 0.0119], the line above represents the global peak incidence of period-
two limit cycles and the line just below represents the other peak incidence,
both repeating every two years (as can be seen in the example of figure 2.2b).
Diagrams taken from Teslya’s report [2].

1We note that (in general) the normal form coefficients depend very much on the details
of the computations and can be reliably used only if the bifurcation points are computed to
high accuracy.
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Figure 2.4: The bi-stability region for birth rates within the interval ξ ∈
[0.0086, 0.0092] is shown in here. The plot represents birth rates on the x−
axis, and on the y-axis we observe maximum values of the I1 compartment for
the corresponding cyclic solutions of system (2.1).

2.2 Wasserstein distance analysis

We now perform another numerical analysis, but this time it is based on Wasser-
stein distances, with the purpose of detecting bifurcations in the dynamics of
synthetic rotavirus data. The generation of synthetic data from the model (2.1)
is first explained, followed by the Wasserstein distance calculation on these data.

For the sake of consistency with the actual observable function (rotavirus
incidence per week), we only address the variable corresponding to observations
of rotavirus per week, and for this we consider the second equation in (2.1), the
one giving the rate of change in the compartment of primary infected individuals
(I1). If we take the first term in the r.h.s. of this equation, and define the
function of time U(t) as follows

U̇ = β(1 + η cos(2πt))S1(I1 + ρI2), (2.2)

we are left with the influx into this compartment. The solution U(t) of (2.2)
can also be regarded as the cumulative (primary) incidence of rotavirus infection
given by the transmission model (2.1). In order to make a time series from this,
we discretise the time variable with the constant time step ∆t = 1/52, (so as
to approximately divide a year into weeks) obtaining the discrete time variable
ti = i∆t, with i = 0, . . . , 52. This time sampling is used to define ten years of
synthetic data I(ti) as:

I(tj) := U(tj+1)− U(tj), j = 1, . . . , 520. (2.3)

In the following we describe the plan used to generate the probability mass
functions that will be used in the Wasserstein distance analysis.
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1. Numerically integrate the model (2.1) and the influx equation (2.2) with
the use of the ode45 algorithm of Matlab (for specifics about this algorithm
we refer to [22]). After a transient time of 190 years, the numerical (cyclic)
solution corresponding to the years [190, 200] is stored. We apply this first
step to the following set of initial conditions.

• For the initial values S1(t0 = 0) = 0.0130, I1(t0 = 0) = 6.1916e− 08,
R(t0 = 0) = 0.1019, S2(t0 = 0) = 0.8851, I2(t0 = 0) = 1.3215e− 06,
and ξ = 0.0075. The corresponding solution trajectory converges to
a cycle with amplitude greater than one, represented by a point on
the line above in the plot of figure 2.4.

• For the initial values I1(t0 = 0) = 0.000001, S2(t0 = 0) = .9999999,
and ξ = 0.0086. The corresponding solution trajectory converges to
a cycle with amplitude less than one, represented by a point on the
line below in the plot of figure 2.4.

2. Sample the function U(t) with the time step ∆t = 1/52.

3. Introduce the variable I(t) as explained in (2.3), this contains ten years
of weekly incidence data.

4. Create the delay coordinates time series corresponding to I(t) (from defi-
nition 1.2.1), using the embedding dimension k = 3.

5. Make a probability mass function from the delay coordinates time series
by following the rule (1.6). The R package transport has this conversion
implemented in the function wpp.

In order to obtain all the probability mass functions, we proceed with a
numerical continuation of the cycles obtained in the first step, i.e., we take the
last value of each cycle (we may call it xlast), move the parameter by ∆ξ, and
use xlast as the initial condition for the new numerical integration (xlast = x0).
This process makes the computation of limit cycles more efficient, since we know
from the bifurcation diagram that there is no discontinuity in the amplitude of
the cycles.

The above described plan is implemented for a grid of the parameter space
given by dividing the interval [0.0075, 0.013] of ξ with a constant step size of
∆ξ = 0.0001. As a result, 62 time series I(t) are obtained. This number does
not equal the number of values that ξ takes on in the grid because (we know
from the numerical bifurcation analysis) one can extract two different time series
I(t) for values of ξ within the bi-stability region.

2.2.1 Period doubling bifurcation

In the following, we compute the Wasserstein distances corresponding to syn-
thetic time series of incidence obtained through the previous discussion. The
parameter values used to generate these discrete solutions are close to the actual
values and include the PD bifurcation value ξ1 = 0.0119 (obtained with MAT-
CONT [11]). In figure 2.5, we can observe the Wasserstein distances matrix of
time series generated from cycles corresponding to birth rate values ξ ranging
from 0.0086 to 0.013.
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Figure 2.5: The map represents the Wasserstein distance matrix for stable cycles
corresponding to birth rate values between ξ = 0.0086 to ξ = 0.013. Dark
colours represent small distances, light colours represent long distances.

2.2.2 Limit point of cycles bifurcation

The next bifurcation to be considered is the one that creates a bi-stability region
in the parameter space. Such region is defined as the interval between the two
limit point of cycles bifurcations ξ2 = 0.0086 and ξ3 = 0.0092. The effect of
these two bifurcations can be seen in detail in figure 2.4: for different values of
initial conditions, the solution trajectory may converge to one of the two limit
cycles. If we numerically integrate these cycles, we can compare them with the
use of the Wasserstein distance, and moreover, compare them with all the cycles
considered in figure 2.5.

2.2.3 Complete Wasserstein distances matrix

In figure 2.6 we observe how the Wasserstein distance behaves for all values of
ξ within [0.0075, 0.013]. We describe this plot by dividing it into the following
subregions.

1. Region A := [0.0075, 0.0092] × [0.0075, 0.0086]. Since we only count with
delay time series corresponding to large amplitude cycles (as can be seen
in the plot of 2.4), we plot the Wasserstein distances matrix between
these same cycles, which we call self distance Matrix. This gives the dark
purple-coloured region at the bottom-left corner of 2.6.

2. Region B := [0.0075, 0.0092] × [0.0086, 0.013]. In this region we plot the
Wasserstein distances between delay time series corresponding to large
amplitude cycles (x-axis) and small amplitude cycles (y-axis). We observe
that the Wasserstein distance increases as the value of ξ on the y-axis
increases. In particular, there is a clear discontinuity when ξ exceeds the
LPC bifurcation value ξ2 = 0.0086.
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3. Region C := [0.0092, 0.013] × [0.0075, 0.0086]. In this region we plot the
Wasserstein distances between delay time series corresponding to small
amplitude cycles (on the x-axis) and large amplitude cycles (y-axis). The
situation is similar to the one observed in region B, as the Wasserstein
distance increases when the value of ξ on the x-axis increases. This time
the discontinuity occurs at the LPC bifurcation value ξ3 = 0.0092.

4. Region E := [0.0092, 0.013] × [0.0086, 0.013]. Since we count with de-
lay time series corresponding to small amplitude cycles only, we plot the
self distance Wasserstein matrix for this region. As the amplitudes cor-
responding to small amplitude cycles do not vary much, the Wasserstein
distances remain rather low.

Figure 2.6: The map represents the Wasserstein distance matrix between cycles
with high amplitude and low amplitude cycles. There is a discontinuity in
the matrix when the high amplitude cycles are compared with small amplitude
cycles from outside of the bi-stability region.



Chapter 3

Wasserstein distances for
rotavirus incidence in
German states

We obtained from the Robert Koch Institute website a dataset of rotavirus in-
cidence in the 16 German states [23]. The measurements are recorded on a
weekly basis, starting from the first week of the year 2001 up until the last week
of 2017. Recall that by incidence we mean the number of notified cases per
100, 000 persons.

In this chapter, the time series analysed with the use of Wasserstein distances
are of the following form:

1. Measurements of rotavirus incidence along time for each of the German
states, so one time series of weekly reports starting from the beginning of
year 2001 and comprising a total of 934 weeks.

2. For each of the German states, we split the rotavirus measurements in two
halves, and we consider the corresponding time series.

3.1 Wasserstein distances between German states

We start with the 17 year-long time series for each of the German states, which
can be seen in the series of figures 3.1 and 3.2. As we can observe in these, the
incidence seems to follow a cyclic pattern with peaks repeating every winter. If
we regard the incidence as an observable function h defined on an epidemiologi-
cal dynamical system in the population (one example being the model of Teslya
(2.1)), it would then make sense to use the theory of chapter 1 in order to find
the degree of similarity between the regional dynamics of rotavirus.

In the following we make use of the delay embedding map F (h,Ψ, τ =
one week) on the regional time series plotted in the figures 3.1 and 3.2. The
report of Teslya [2] indicates the existence of limit cycles in the dynamics of
rotavirus (as it was discussed in chapter 2). Since the dimension of a limit cycle

19
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is one, the Delay Embedding Theorem 1.2.1 suggests that the use of the embed-
ding dimension k = 3 makes the delay coordinates time series thus obtained a
good dynamical representation of the actual attractor.

Remark. We do not care for the optimal value of the embedding dimension
k, since it is not the purpose of this thesis project to properly reconstruct the
attractor.

From the delay coordinates thus created we obtain the probability mass func-
tions {µi}16

i=1 (as defined in the expression (1.6)), one for each of the German
states, upon which the Wasserstein distances will be computed. For this we
use the R package transport, which has implemented in it the conversion from
(coordinate) time series to probability mass functions of the form (1.6). Fur-
thermore, the package includes the function wasserstein which we use to solve
the corresponding discrete transportation problem introduced in the subsection
1.3.1.

We store the Wasserstein distances between all states in a matrix M (shown
in table 3.1). Since it is rather difficult to interpret this matrix directly, we
choose to analyse it by using classical multidimensional scaling (abbreviated as
cMDS), a method which places a point for each state in multidimensional space,
where these points satisfy (in a Euclidean fashion) the distances in matrix M
(as it is explained in detail in appendix A). As a result of applying cMDS on
the matrix M , we get the two-dimensional plot of figure 3.3, which we compare
with a map of Germany 3.4.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.1: Notified incidence (number of cases per 100, 000) of rotavirus on
each German state. The years covered range from 2001 to 2018.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.2: Notified incidence (number of cases per 100, 000) of rotavirus on
each German state. The years covered range from 2001 to 2018.
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Figure 3.3: Classical MDS for the Wasserstein distances matrix 3.1. The years
covered range from 2001 to 2017, and the weights of these two dimensions are
given by the GOF (0.9842, 0.9857).

Figure 3.4: German states.
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3.2 Wasserstein distances within German states

We follow to split the 934 week-long time series into two halves, for each of the
German states. The first half corresponds to incidence of rotavirus from the
first week of the year 2001 to the week 49 of 2009, and the second half covers
from the week 50 of 2009 to the week 45 of the year 2018. We use the resulting
time series to compute Wasserstein distances within region. The motivation to
make this analysis comes from observing the time series 3.1 and 3.2, where we
can see an overall difference in the cyclic pattern between the first and second
halves of records.

The Wasserstein distances within regions can be seen in the table 3.2, where
the largest distances correspond to the states of the former Eastern Germany,
namely Brandenburg, Mecklenburg Vorpommern, Saxony, Saxony Anhalt, and
Thuringia. When observing the time series corresponding to these states, we
can confirm that these are the ones with less regularity, and with an overall
tendency to lower rotavirus incidence in the second half of the measurements.
As the values of these Wasserstein distances are so high that are similar to the
largest distances between regions (as seen from the table 3.1), it is natural to
suspect that a major change happened within the internal conditions of these
states. In [24] we find the dates when rotavirus vaccination was included into
the German state guidelines.
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State
Wasserstein
distance

Inclusion date for
rotavirus vaccination

Mecklenburg-
Vorpommern

3.35 July-2009

Saxony 2.87 January-2008
Saxony-
Anhlat

2.41 July-2013

Thuringia 1.84 October-2009
Brandenburg 1.6 January-2009
Rhineland-
Palatinate

1.01 July-2013

Baden-
Württemberg

0.58 July-2013

Lower Saxony 0.54 July-2013
Saarland 0.49 July-2013
Berlin 0.47 July-2013
Bremen 0.45 July-2013
Bavaria 0.43 July-2013
Hamburg 0.42 July-2013
North Rhine-
Westphalia

0.35 July-2013

Hesse 0.33 July-2013
Schleswig-
Holstein

0.32 March-2011

Table 3.2: Correspondence between Wasserstein distances within German states
and introduction dates of rotavirus vaccination.



Chapter 4

Discussion and conclusions

4.1 Wasserstein distance between synthetic se-
ries

Unfortunately, in the Figure 2.6 we do not observe any discontinuity between the
distances around the PD-parameter value ξ = 0.0119. As the period doubling
bifurcation produces cycles occupying very similar Borel sets for the double-
cycle and for the one-cycle, the invariant measure is not really a good method to
distinguish between these two different dynamical regimes. Thus, we cannot rely
on the method of Verduyn-Lunel and Muskulus [3] to detect a period doubling
bifurcation on the underlying dynamics of data.

On the other hand, we observe in Figure 2.6 a clear discontinuity when
the two stable cycles within the bi-stability region are compared. This is ex-
plained by the computation of the Wasserstein distance: the invariant measures
corresponding to delay coordinates time series are defined over Borel sets, there-
fore, as the limit cycles within the bi-stability region occupy different Borel sets
(this can be observed in the bifurcation diagram 2.4), it makes sense that the
transportation plan will imply larger cost than a corresponding one for cycles
that occupy Borel sets very close to each other (which is what happens at the
PD bifurcation). The same (as for the bi-stability region) can be said for the
Wasserstein distances between large and small amplitude limit cycles in general,
which are created when LPC bifurcation of cycles occurs. Thus, the method
of Verduyn-Lunel and Muskulus [3] can be used for the numerical detection of
LPC bifurcations of cycles from data.

4.2 Wasserstein distances between German states

Before starting with this discussion, it is important to remark that the goodness
of fit (denoted as GOF and defined in A.0.1) corresponding to the plot 3.3 is
GOF = (0.9842, 0.9857), which implies that we can rely on this plot to draw
conclusions from the Wasserstein distances analysis.

We observe a cluster of points on the left side of figure 3.3, which implies
similar rotavirus dynamics in the corresponding regions, e.g. the Wasserstein
distance analysis suggests that the spread of rotavirus in the regions of North−

27
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Rhine −Westphalia and Bavaria show similar dynamics. A claim that turns
out to be remarkably accurate when we observe the time series corresponding
to these regions: the qualitative behaviour in 3.2b and 3.1b is very similar,
and furthermore, if we note that the scales in both plots are the same, then
we realize that the quantitative character is also very similar. On the other
hand, points far away from each other in the plot 3.3 correspond to time series
with different behaviour, e.g. the Wasserstein distance analysis suggests that
the spread of rotavirus in the regions of Saxony and Bremen follows different
dynamics. This claim is confirmed when we observe the figures 3.1e and 3.2e:
these plots show major qualitative and quantitative differences in the regional
incidences.

When we compute cMDS with l = 1, we obtain aGOF value of (0.977, 0.978).
Therefore, we can neglect the rather big distance between Mecklenburg and Sax-
ony in the plot 3.3, as their x-coordinates are 2.8747 and 2.8141, respectively.
Indeed, as the Wasserstein distance between these two states is 0.61 (the lowest
for these two, as seen in table 3.1) and we can observe a strong similarity in the
time series 3.2a and 3.2e, the relation stated in the last paragraph is confirmed.

4.3 Wasserstein distances within German states

As the Wasserstein distances within German states is remarkably high for for-
mer Eastern Germany states, we looked into a major change in the composition
of the population, such as the introduction of vaccination against rotavirus. As
vaccination intake results in newborn individuals being considered directly into
the R compartment of the flow chart 2.1, it is understandable that the intro-
duction of vaccination would decrease the disease transmission. Therefore, it is
no coincidence that high Wasserstein distances correspond to the introduction
of vaccination in states with high rotavirus incidence.

4.4 Conclusions

• We cannot know by using the approach of Verduyn-Lunel and Muskulus
[3] if a period doubling bifurcation occurred in the dynamics of rotavirus.

• We can use their approach to find major changes in the patterns, such as
the sudden decrease in rotavirus incidence that suggested the introduction
of vaccination in Eastern Germany.

• It is not necessary for the actual trajectory (from which the measurements
of rotavirus are taken) to lie on the attractor, as it can be close to it and
the Takens embedding theorem will still hold.

4.5 Recommendations for further research

• As the Takens embedding theorem holds for strange attractors as well, it
might be worth to try using the method of Verduyn-Lunel and Muskulus
[3] for time series more irregular than the ones for rotavirus.
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• As we could see from the clear detection of the LPC bifurcation, we can
rely on Wasserstein distances to spot bifurcations that produce a radi-
cal change in the dynamical regime (in terms of Borel sets), such as the
Andronov-Hopf bifurcation, and therefore, dynamical systems that may
have been affected by this kind of bifurcations can be analysed with the
method.
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Appendix A

Multidimensional scaling

The objective of classic multidimensional analysis (denoted by cMDS) is to re-
trieve a low-dimensional visualisation of points, such that the distances between
any two of these points satisfy a given distance matrix Mij . For a thorough dis-
cussion of cMDS we refer to the book of Borg and Groenen [25].

The set of points {xn} retrieved in chapter 4 (figure 3.3) lies in an Euclidean
space, but it represents a set of dynamical systems. Therefore, we shall interpret
the Euclidean distance between any two of the points in {xn} as a measure of
similarity between the corresponding dynamical systems.

Classical multidimensional analysis works as follows. We first assume that a
given matrix Mij of n× n shows the Euclidean distance between n (unknown)
points lying in Rm (with m < n), i.e. the (unknown) set {xi}ni=1 ⊂ Rm (with
m < n) will satisfy d(xi, xj) = Mij , for 1 ≤ i, j ≤ n. We want to find the
(n×m) matrix X such that {Xij}mj=1 = xi, for 1 ≤ i ≤ n. We do this by first
obtaining the matrix B = XX ′ from the relation

B = −1

2
JM2J, (A.1)

with J = I − 1

n
1n(1n)′. Note that in here, I is the n × n identity matrix and

1n is a column vector made up of n ones. Furthermore, ′ denotes the transpose
of a matrix.

The cMDS coordinate points X to be obtained from B come from the eigen-
decomposition of B. If we take B = Q∆Q′, where ∆ is a diagonal matrix
composed of the eigenvalues of B, and Q is the matrix whose columns are the
corresponding eigenvectors, then we may write B = (Q∆1/2)(Q∆1/2)′ = XX ′.

We proceed to order the matrix ∆ so that ∆ii ≥ ∆jj if i < j, and to
rearrange the matrix Q accordingly. Furthermore, we choose a number l so that
Ql is the matrix whose columns are the first l columns of Q. The matrix of
coordinate points obtained from cMDS is thus:

X := Ql∆
1/2
l . (A.2)

If l > 3 we will face the problem of not being able to plot X, and therefore
we need to choose l ≤ 3. As this might imply the loss of information in the
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graphic setting, we consider the percentage explained by l dimensions of the
classical multidimensional scaling. We will do this by reporting the so called
goodness of fit, which is implemented in the R function cmdscale (as seen in the
documentation webpage [26]).

Definition A.0.1 Goodness of fit is a numeric vector of two coordinates (g1, g2)
defined as

gi =

∑l
j=1 λj∑n

j=1 Ti(λj))
, i = 1, 2, (A.3)

where l is the dimension chosen for the visual representation of the cMDS pro-
cess, λj = ∆jj for j = 1, . . . , n (the ordered eigenvalues in ∆), and T1(λj) =
abs(λj) and T2(λj) = max(λj , 0).



Appendix B

Epidemiology

The basic reproduction number (denoted by R0), plays a central role in the
study of the long term dynamics of an infectious disease in the population, and
it is defined as follows.

Definition B.0.1 (Basic reproduction number of an infectious disease)
If we assume an initial demographic setting where a population consisting of
N + 1 individuals is comprised of one infected individual and N individuals be-
ing susceptible to become infected, then R0 is defined as the average number of
individuals infected (in the long run) by the primary infected.

Once the computation of the basic reproduction number is obtained, a first
criterion to assess whether the corresponding disease might be dangerous is
given by the following.

• If R0 < 1 then the disease will not be spread in the population.

• If R0 > 1 then the disease might spread within the population.
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