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Abstract
Constructing and Predicting School Advice for Academic Achievement:

A Comparison of Item Response Theory and Machine Learning Techniques

by Koen J. NIEMEIJER

Introduction. In contemporary education, tests can be used to estimate students’
abilities and thereby give an indication of whether their school type is suitable for
them. However, tests are usually conducted for each content area separately which
makes it difficult to combine these results into one single school advice. To this
end — in the context of a student monitoring system — we research a series of tests
that measure progress for the purpose of predicting school advice. Concretely, we
examine domain-specific and domain-agnostic methods and compare their results
both quantitatively and on explanations.

Method. In this research, we provide a comparison between both domain-specific
and domain-agnostic methods for predicting school advice. First, we describe current
approaches for measuring progress from educational tests. Next, we examine which
methods are suitable to use for the purpose of combining content areas and predicting
school advice. An IRT model is calibrated from which an ability score is extracted
and is subsequently plugged into a multinomial log-linear regression model. Second,
we train a random forest (RF) and a shallow neural network (NN) and apply case
weighting to give extra attention to students who switched between school types. We
compare the predictive performance, computational feasibility, and explainability of
the models.

Results. When considering the performance over all students, RFs provided the
most accurate predictions followed by NNs and IRT respectively. When only look-
ing at the performance of students who switched school type, IRT performed best
followed by NNs and RFs. Case weighting proved to provide a major improvement
for this group. Furthermore, all models were found to be computationally feasible.
Lastly, IRT was found to be much easier to explain in comparison to the other models;
RFs are somewhat more interpretable than NNs.

Discussion. In practice, concept drift would occur because the recommendations
made by the model leads to different school advice than the one given if there was
no model; hence, this positive feedback loop seems inevitable but can be diminished
by solely using the model for decision support. Ethical issues for the use of ML
models revolve around differences in importance between content areas and whether
this is fair. Moreover, legal considerations are posed by the GDPR’s ‘right to an
explanation’. Future research includes choosing different class aggregations, other
models, inspecting confounding variables, and testing generalisability.

Keywords. Educational Measurement, Item Response Theory, Machine Learning,
Explainable AI
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Chapter 1

Introduction

In 1967, only 38.5% of children in the Netherlands aged 12-18 years old attended
secondary education. A new law was subsequently passed requiring all children
to attend some form of education. One year later, the number of children aged
12-18 attending secondary education rose to 64.4%, and even further to 81.1% in
50 years’ time (CBS, 2018). Moreover, if we include children who already attend
tertiary education, as many as 98.6% attend part- or full-time education. Now that
nearly every teenager goes to school, secondary and tertiary education have become
a substantial part of our society.

Academic achievement has become increasingly important because it largely deter-
mines admission to further education and future opportunities on the labour market.
In contemporary educational systems, grades are an indication of academic achieve-
ment. Subject tests gauge an underlying (latent) skill which results in such a grade. In
practice, however, important decisions of students’ prospect are based on the general
view that a teacher has of a student. While latent skill can be measured accurately
through tests, combining different test results is less straightforward. For example,
should the performance on mathematics be just as important in making decisions
as English? In this research, we want to combine test results to form an overall
assessment of a student to help them in making important educational decisions.
After all, one of the most important decisions a pupil has to make in the final year of
primary school is which school type they want to pursue.

The Netherlands’ secondary educational system is characterised by division — a lay-
ered educational system ranging from vocational to theoretical school types1. Grades
determine what type of secondary education a student is eligible for; Subsequently,
the type of secondary education determines what type of tertiary education a student
can go to and consequently which jobs they can apply for. To adequately guide
students through the educational system, school advice plays an important part in
helping students decide on which school type to pursue. For this reason, the aim
of this study is to establish a method for determining school advice (i.e. advice on
which school type to go to) in secondary education. We are particularly interested
in finding those students who switch between school types in their first three years,
since they are usually the ones relying most on this advice.

1See Appendix A for an explanation of the educational system in the Netherlands
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Chapter 1. Introduction

Problem Statement

In the Netherlands, teachers in secondary education already give school advice to
students. They do so based on the results of a series of tests that measure progress.
Students take tests on different content areas (e.g. English or mathematics) and based
on the score of these tests, the teacher determines which school type is most suitable
for a student.

However, there are three problems with this approach:

I Latent scores are not intuitive. For instance, a score of 150 does not have any
intrinsic value until you compare it to the scores of classmates.

I Latent scores from tests on different content areas are not comparable. That is,
a score of 150 for mathematics and a score of 140 for Dutch does not imply this
student is better at mathematics than at Dutch because the scores have different
scales. Thus, scores only have value if you compare them to other scores from
the same test.

I For teachers, it is difficult to combine scores from different tests when trying to
establish school advice because of the previous problem. How should scores
with different values be counted? Furthermore, should a teacher consider
different subjects to be equally important? While we may be inclined to let each
subject weigh in equally, problems arise when one content area — for instance
English or mathematics — is highly beneficial to students’ future success and
should, therefore, attribute more to the school advice than tests from other
content areas. That is to say, should, for example, English weigh as much as
mathematics when deciding if a student should pass or not? How about when
deciding which educational track a student should pursue?

Since our aim is to facilitate the decision making of choosing the most suitable school
type, we predict students’ prospective academic achievement by establishing school
advice that gets to grips with their overall academic progress. To this end, this study
aims to create a novel approach to constructing this school advice for students.

In order to do so, we look at both domain-specific and domain-agnostic approaches
such as techniques from the fields of item response theory (IRT) and machine learning
(ML) respectively2. Using these techniques, we attempt to produce high-quality
predictions to estimate students’ achievement in a few years’ time based on their
current performance including the implicit (and some explicit) weights that are put
on these areas. To determine the validity of school advice, we compare the predictive
validity of different methods. More specifically, we analyse which methods are more
suitable to predict school advice in terms of accuracy, feasibility, and explainability.

Contributions

We make several scientific contributions: (i) a state-of-the-art literature review on the
latest trends in e-learning, (ii) a novel way to combine test scores on a unidimensional
scale, (iii) a proof-of-concept showing how domain-specific techniques compare to
domain-agnostic techniques, and (iv) an analysis of the trade-off between predictive
power and explainability.

2See the list of abbreviations, pp. ix
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1.1. Context

1. Project understanding
Determine project objectives
Assess situation
Determine data mining goals
Produce project plan

2. Data understanding
Collect initial data
Describe data
Explore data
Verify data quality

3. Data preparation
Select data
Clean data
Construct data
Integrate data
Format data

4. Modelling
Select modelling techniques
Generate test design
Build model
Assess model

5. Evaluation
Evaluate results
Review process
Determine next steps

Data6. Deployment

Figure 1.1: The cross-industry standard process for data mining (DM) is a general
stepwise description for a data mining project.

1.1 Context

This research revolves around a student monitoring system (SMS) in the Netherlands;
that is an information system widely used in Dutch secondary education to keep track
of students’ educational progress over multiple years (Van Til & Van Boxtel, 2015).
The SMS consists of multiple tests and test versions in which multiple skills of the
students are measured. Students can take tests at four moments in time: at the start of
year one and at the end of year one, two, and three. The further the students progress
in their education, the more difficult the tests become relative to their starting level.
Moreover, there are different test versions which differ in difficulty, depending on
the school type. Finally, tests aim to measure students’ skills in various content areas,
such as English reading skills or mathematics.

The results from these tests are used by teachers to determine the progress of students
in comparison to their peers. For each content area, teachers receive a score that
is consistent with other test scores for that content area. In other words, two tests
taken by the same student at the same moment in time but on different content areas
have independent scores. In this research, we attempt to establish school advice for
students by combining these scores into an (implicit) composite score.

1.2 Research Approach

To ensure a logical workflow and minimise the risks of pitfalls, we adopt the CRISP-
DM method. The cross-industry standard process for data mining (CRISP-DM) is
a widely applicable method for all sorts of data mining projects (Chapman et al.,
2000); it outlines a general process which minimises the chance of making critical
errors. The main phases and their subphases are depicted in Figure 1.1. Phases in the
model are sequential but backpedalling is usually inevitable (as is also indicated by
the arrows).

In this model, a project starts from the perspective of understanding both the project
(goals) and the data itself. When the goals are set and the data has been explored,
data preparation is a necessary step to construct a tidy, complete data set that can be

3



Chapter 1. Introduction

used in the modelling phase. The modelling phase is where the action happens —
various models are constructed and their parameters are tuned to an optimal value.
Once the models perform sufficiently, the results are evaluated and interpreted, and
subsequently gauged against the initial goals set in the project understanding phase.
The lessons learnt in this cycle can then be used to trigger new, more focussed research
questions. As is evident from Figure 1.1, there is a sixth phase called deployment which
is greyed out. This phase involves presenting the acquired knowledge to the customer
or some other stakeholder of the model to influence their decision making. However,
this step is outside the scope of this research.

Research Questions

At the beginning of this chapter, we stated a societal and scientific need to predict
school advice. The main research question is thus formulated as follows:

RQ How can educational tests be used to predict school advice?

To further concretise this knowledge problem, we identify several subquestions (SQs)
and closely related subsubquestions:

SQ1 What techniques can be used to predict school advice?
1.1 What are current approaches to predicting school advice?
1.2 How can domain-specific techniques be used to predict school advice?
1.3 How can domain-agnostic techniques be used to predict school advice?

This subquestion focusses in particular on the exploration of both
traditional and contemporary techniques that may be utilised to
predict school advice. While SQ1.2 looks at the domain-specific
side of aggregating items and estimating its error, SQ1.3 showcases
which state-of-the-art domain-agnostic techniques can be employed
to predict school advice.

SQ2 How do different techniques perform when predicting school advice?
2.1 How do domain-specific and domain-agnostic techniques perform in
terms of predictive accuracy?
2.2 How do domain-specific and domain-agnostic techniques perform in
terms of computational feasibility?
At the core of this research is constructing a number of models which
attempts to predict school advice as accurately as possible. Thus, we
tune their hyperparameters and see whether there any differences
between domain-specific and domain-agnostic techniques in terms
of accuracy. Additionally, we must take into account the compu-
tational feasibility that is likely to be a factor when constructing
computationally expensive ML models.

4



1.3. Thesis Outline

LITERATURE
STUDY

1. Project Understanding

PROBLEM
STATEMENT

MODEL
CONSTRUCTION

2. Data Understanding
3. Data Preparation 
4. Modelling

RQ1

EVALUATION

5. Evaluation
Evaluate Results
Review Process

RQ2

CONCLUSION AND
OUTLOOK

RQ3 RESULTS

         5. Evaluation
Determine Next Steps

Figure 1.2: Thesis structure

SQ3 How do different techniques perform in terms of explainability?
In addition to comparing the predictive quality of models, we must
also look at differences in explainability of domain-specific and
domain-agnostic models. That is, we hypothesise that predictions
from more complex approaches — such as black-box ML models —
are more difficult to explain than predictions from simpler methods
such as those from test theory.

We can roughly map each SQ to a phase in CRISP-DM. Concretely, SQ1 can be seen
as a way to understand and aggregate the data and therefore belongs in the data
understanding, data preparation, and perhaps even in the modelling phase since we not
only look at which models can be used but also how they can be used. Next, SQ2
evaluates the predictive performance of both models and therefore belongs in the
modelling (assess model) phase. Lastly, SQ3 covers the evaluation phase of CRISP-DM
and elaborates on the models in terms of explainability.

1.3 Thesis Outline

The rest of this thesis is structured as follows. A graphical overview can be found
in Figure 1.2. First, Part 1 provides an overview of current approaches for predict-
ing school advice and scrutinises literature which aims to yield a comprehensible
analysis of both domain-specific and domain-agnostic methods. This can be seen as
understanding the context and literature of the project and is, therefore, part of the
project understanding phase.

Then, Part 2 describes the data which is used to predict school advice and combine
scores to form school advice. Moreover, it corresponds to the data understanding,
data preparation, and modelling phases as defined by CRISP-DM.

Part 3 expands on both the philosophical and psychological aspect that underlies
this research. That is, models created in the previous part are compared in terms
of performance and explainability and we thereby evaluate their advantages and
disadvantages. This part corresponds to the evaluation phase.

Finally, Part 4 concludes this thesis by summarising over the results and providing
a discussion of the results by looking at its practical implications, limitations, and
outlook for the years to come.
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I

Literature Study
The previous chapter described the goals and research questions of this project
and provided a method to achieve this. In this part, we explore the scientific
literature to learn about existing solutions in different contexts and scrutinise
both domain-specific and domain-agnostic statistical methods.





Chapter 2

Background: Current Approaches
for Measuring Progress

Before commencing a literature study for potential techniques to use, we must first
evaluate which approaches have already been adopted in educational and related
fields. First, we look at (educational) progress tests and how they are used in practice
and in other fields. Moreover, we look at growth models which is a basic form of a
progress test. Finally, we examine how school advice has fared both in the SMS and
in other, related educational systems.

2.1 Educational Progress Tests

There are roughly two traditions of measuring progress in SMSs: tracking progress
and modelling growth. We first look at the former and see how they are applied in
an educational context before moving on to growth models.

Bradley and Terry (1952) and Luce (1959) first introduced a paired comparison model
known as the BTL model for comparing opponents in terms of skill. Based on this
model, an influential algorithm for doing this in chess was developed by Elo (1978)
and had shortly thereafter been adopted by the World Chess Federation (FIDE). In a
chess match, two opponents of equal strength play a game after which their scores
are updated to reflect either a victory or a defeat. This situation is analogous to item
scoring in the sense that a test taker and an item are ’opponents’ such that a test
taker’s score increases when the item has been endorsed (i.e. answered correctly)
or decreases when the item is not endorsed. While the Elo-rating has much been
researched in its original context (e.g. Batchelder & Bershad, 1979; Brinkhuis & Maris,
2010; Glickman, 1999), it has also been applied to other contexts such as sports
(Gásquez & Royuela, 2016), Go (Coulom, 2007), and, as stated before, education
(Brinkhuis, 2014; Klinkenberg, Straatemeier, & van der Maas, 2011; Pelánek, 2016).

With the advent of big data, continuously updating scores and parameters dynami-
cally has been an important topic especially. In their research, Brinkhuis et al. (2018)
describe their experience over a decade of on-the-fly parameter estimation in an
online learning environment for mathematics. While they found that the Elo-rating
system is well applicable to online learning, various unforeseen problems such as
situations where students outsmarted the system or violations of unidimensionality
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Chapter 2. Background: Current Approaches for Measuring Progress

occurred. Nevertheless, Brinkhuis et al. (2018) describe their approach as a suc-
cess thanks to high predictive accuracy and clear overall improvement of student
performance.

Similarly, Pelánek (2016) examines the use of the Elo-rating by applying it to tests
concerning knowledge of geography. They do so by comparing three methods:
(i) the proportion of correct answers, (ii) joint maximum likelihood estimation, and
(iii) the Elo-rating. In their findings, they describe Elo-rating to be well suitable for
"adaptive practice or low stakes testing" (Pelánek, 2016, p. 177) since it is fairly easy
to use, although it does not give statistical guarantees of estimated skills. Hence,
when one desires a fine-grained model for a high-stakes test, other methods might be
preferred over the Elo-rating.

Another approach of tracking progress in an education context is given by Hofman,
Jansen, De Mooij, Stevenson, and Van der Maas (2018) who used time-series analysis
to gain insight into developmental and learning process of mathematical skills. In
contrast to the previously listed studies, Hofman et al. (2018) applied Bayesian logistic
regression and a unidimensional IRT model to the data. Another example is given by
Brinkhuis and Maris (2019a) who use dynamic Bayesian estimation on a general IRT
model, which is able to deal with changes over time and missing data. Since IRT is
used as a dedicated method in this research, we refer to Chapter 3.1 for a detailed
description.

2.1.1 Growth Models

Already in 1938, Wishart developed an early growth model for the physical devel-
opment of piglets. For each individual, they used a growth term based on sex, litter,
and treatment, and fitted a model with both linear and quadratic terms as a function
of time. Corrected for the initial weight of the piglets, Wishart (1938) uses analysis
of variance to show how live weight-gain (i.e. growth) can be attributed for by a
function of time containing both linear and parabolic terms.

Rao (1958) further explained how various growth models can be used on all sorts of
data. Under the assumptions of normality and independence of errors, measurements
of growth y0, y1, . . . , yn do not need to be taken at specific points in time as long as
they are somewhat spread evenly. Since they also note how growth rate is rarely
uniform, a growth function τ = G(t) must be a complex function of time. By analysis
of variance on the growth of rats under different treatments, they show how growth
rate between groups is nearly unchanged when corrected for the initial weight (Rao,
1958, p. 6). Furthermore, they note how the growth curve can be transformed by
higher order polynomials or logarithms to get an even closer fit. In the rest of their
work, they outline several other tests for verifying the validity of their work.

Based on the work of Rao (1958) and Tucker (1958), McArdle (1986) developed latent-
variable structural-equation modelling (SEM) which seeks to replace fixed higher-order
terms with estimated basis functions for the coefficients. However, as Stoel, van den
Wittenboer, and Hox (2004, p. 242–243) note, while this is an elegant way of estimating
growth curves, it contains a number of deep-rooted pitfalls that may significantly
alter conclusions. Most of these issues are due to scaling of the latent growth factor
which may result in different estimations of the standard error and may even give
opposite conclusions in significance tests. In the work of Stoel et al. (2004, p. 243),
they explore the applicability of a two-stage approach (Jöreskog & Sörbom, 1989) for

10



2.2. Reliability of School Advice in Practice

a latent growth curve model (LGC) with an estimated basis function. According to
T. D. Little, Schnabel, Baumert, and Schnabel (2000, p. 82), this two-stage approach
“is certainly a viable optional basis in LGC models”.

2.2 Reliability of School Advice in Practice

In practice, an important question to ask when predicting school advice is to what
extent the advice is actually being followed-up on. In other words, what is the
predictive accuracy of school advice? To this end, we draw a comparison between the
test used in this research and one that is very similar but has already been thoroughly
investigated in earlier work. Concretely, we report on the results of a test taken at the
end of students’ primary education in the Netherlands.

After 8 years of primary education, students take a final test in order to get school
advice concerning their secondary education. In total, 85% of primary schools in the
Netherlands use this test to get an indication (i.e. school advice) as to what type of
secondary education is suitable for students (Van Boxtel, Engelen, & De Wijs, 2011).
Aside from school advice as a result of this test, students also receive school advice
from their teacher prior to taking this test. As it turns out, school advice from teachers
and this final test show great overlap, although there can be differences in the ‘lower’
levels of school types (Stroucken, Takkenberg, & Béguin, 2008). This is, therefore, an
indication of the reliability of this test. Additionally, Van Boxtel et al. (2011) applied
multiple regression as a way to predict school advice by using students’ test results
as predictors, R2 = .69, p < .001. Furthermore, results did not improve by adding
results of an intelligence test.

Finally, Van Boxtel et al. (2011) compared school advice from the final test to the
actual school type students were enrolled in their first or second year of secondary
education. In total, 80% of students who received school advice to go to a certain
type of secondary education followed this advice, while 13% went upstream (i.e.
to a ‘higher’ type) and 7% downstream. Notably, students who went upstream or
downstream were more likely to switch school types in their first or second year of
secondary education (Stroucken et al., 2008). In conclusion, while the final test in
primary education’s school advice is not perfect, it is being followed up on in 80% of
the cases and is off by one level in 96.7% of the cases (Van Boxtel et al., 2011, p. 80).

2.3 Summary

In this chapter, we laid out past and current state-of-the-art approaches for measur-
ing progress which contributes to answering SQ1.1. First, we described how and
why the Elo-rating system (Elo, 1978) can be applied to an educational context and,
more specifically, to item scoring. We scrutinised a number of researches thereby
highlighting current practices in today’s cases. Next, we examined the development
of growth models and how they can be applied to, amongst others, measuring the
growth of rats. Rao (1958) showed how growth must be a function of time and why
other variance may be explained by context-specific latent variables. This, in turn, led
to the development of SEM (McArdle, 1986) which, to this day, is still a widely used
method.

Finally, we analysed the reliability of school advice in practice by detailing the
predictive accuracy of a very similar test to the one studied in this research. In the

11



Chapter 2. Background: Current Approaches for Measuring Progress

next section, we further explore a multitude of state-of-the-art methods which may
be used to predict school advice and hence provide us with a way forward.

12



Chapter 3

An Overview of Statistical Methods

For the Prediction of School Advice

In this chapter, we look at various domain-specific and domain-agnostic methods and
evaluate their use in this problem context. First, we examine a widely used method
for evaluating both dichotomous and polytomous questions on tests, namely IRT.
Secondly, we list and describe various ML methods and discuss their applicability to
test data.

3.1 Item Response Theory

In the SMS, students receive one test for every school subject at four moments in time.
The goal of these tests is to estimate students’ performance on that subject. Tests for
each subject are composed of a series of questions which can come from pre-existing
test batteries. Naturally, tests are carefully constructed such that they only measure
the desired skills and are not too easy or too difficult for students.

A popular method for doing this from a psychometric point of view is called item
response theory (IRT) (Hambleton, Swaminathan, & Rogers, 1991; Lord, 1980; Lord,
Novick, & Birnbaum, 1968). In contrast to classical test theory (CTT) (Verhelst &
Verstralen, 1994), IRT focusses on the theory underlying the item and so does not
have a test-level focus like CTT. Therefore, IRT is often more justifiable and more
practical to solve measurement problems with than CTT (Embretson & Reise, 2000).
In the context of test theory, an item is usually a question on a test which can have
either one or multiple correct answers. Furthermore, a student’s answer to an item is
called a response. An item can be either dichotomous (i.e. two choices) or polytomous
(multiple choices). A scored item is the representation of a student’s response with
respect to the true answer of the item.

Definition 3.1.1 — Scored item. For a response Xi on item i, a scored item has the
following properties:

Xi =

{
1 if the response to item i is correct
0 if the response to item i is incorrect
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The idea behind IRT is that a person’s score is derived from the interaction of at least
these two elements: (i) a person’s innate skill at some subject called the ability, and
(ii) the difficulty of an item referred to as item difficulty. A latent trait, or a latent
variable, is a hypothetical construct that is not directly observable from the data
(Bollen, 2002). In the context of IRT, the latent trait of a person is often referred to as
their ability. Thus, the goal of IRT is essentially to make an ordering of the relative
ability of respondents (Partchev, 2004).

Assumptions

To simplify the process of calculating their joint probability and thereby to estimate
their ability, IRT assumes local independence of the answers given by the respondents.
That is to say, the probability of a person endorsing (i.e. answering the item correctly)
does not depend on their other answers but rather on their ability. More formally,

P(X1i, X2i, . . . , XI |θj) =
I

∏
i=1

P(Xij|θj). (3.1)

Hambleton et al. (1991, p. 10–12) show that if this local independence assumption does
not hold, respondents with the same ability level would give different answers. Since
this property is undesirable, tests are constructed in such a way that this property
will hold.

1PL. Given the ability parameter θ and the item parameter β, a person’s likelihood
P(xij = 1|βi) of endorsing an item can be modelled as a sigmoid (logistic) function
which is more aptly called the item response function (IRF):

P(xij = 1|θj, βi) =
exp(θj − βi)

1 + exp(θj − βi)
, (3.2)

where i denotes the question and j references a person. This model is known as the
one-parameter logistic model (1PL) since only one parameter (β) is used to estimate
θ. The 1PL model is mathematically similar to the Rasch model (Rasch, 1960) although
some underlying philosophical aspects differ. The sigmoid function has the properties
that it forces the probability of a correct answer to always lie between 0 and 1 and
is monotone. In this IRT model, when the item parameters have been estimated,
a person’s ability can be obtained as the maximum likelihood given the difficulty
by essentially equating the ability parameter against the probability. Since the 1PL
model uses the item parameters β, we clarify how these can be estimated later in this
section when discussing design issues.

2PL. The 1PL model can be extended by including a discrimination parameter α that
controls the slope of the item response function. An increase in the discrimination
parameter allows for better distinguishing between persons with abilities far away
from each other on the ability axis but suffers in determining ability parameters that
are close to each other (Partchev, 2004, p. 25–26). This two-parameter logistic model
(2PL) is defined as

14



3.1. Item Response Theory

Figure 3.1: Four probability distributions with different parameter settings for the
1PL and 2PL model.

P(xij = 1|θj, βi, αi) =
exp[αi(θj − βi)]

1 + exp[αi(θj − βi)]
(3.3)

A graphical representation of the 1PL and 2PL model can be found in Figure 3.1.
In this figure, the curves with the same colour have the same item difficulty. As
a consequence, curves with the same colour have the same ability when P(xij =
1|βi, αi) = 0.5. For example, both green curves indicate students need, on average, an
ability of −1 to have a 50% chance of endorsing the item, while the for the red curves
students need an ability of 1 to have this same 50% chance on average. In fact, the
difficulty parameter β controls the position of the curve along the x-axis. This is also
indicated by the black line indicating the positions of the curves on the x-axis when
P(xij = 1|βi, αi) = 0.5. In other words, P(xij = 1|βi, αi) = 0.5 if θ = βi.

Additionally, curves with the same line type have the same discrimination parameter
α. In Figure 3.1, both dashed curves have the same slope. Since two models have a
discrimination parameter of 1, they are equivalent to a 1PL model. Only the dashed
curves are distinct from a 1PL and are in fact a 2PL model. Since the dotted curves
have α = 3, they are more discriminating for people with an ability close to 0. On the
other hand, the models represented by the solid curves have α = 1 and are therefore
better at discriminating between ability far away from each other.

To summarise, there are several conclusions to be observed in these models:

I A higher ability θ gives a higher probability of endorsing the item.

I A higher β shifts the IRF to the right, which implies the item is more difficult.

I For 2PL models, the discrimination parameter α controls the slope of the curve.
When α increases, the slope increases as well, making the item more discriminat-
ing for people with close to the same ability.
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Design issues. Subsequent tests are linked through a so-called pre-test, which is a
test containing items from two subsequent tests and is given to a sample group in
order to estimate a few item parameters. To prevent students in the sample group
from seeing a few items that may or may not be in their real test, the items on the
pre-test are not used for at least a few years. This notion of having anchor items is
visually represented in Figure 3.2 where level 1 is the most difficult and level 4 is the
easiest. In these hypothetical tests, each version is made up of 10 items. Furthermore,
each level inherits a few items (three in the example) from the more difficult levels.
By doing this, comparisons can be made to estimate the difficulty of each item in
relation to the level below (or above).

1 2 3 4 5 6 7 8 9 10Level 1

11 12 3 13 14 6 15 16 9 17Level 2

18 12 19 20 14 21 22 16 23 24Level 3

18 25 26 20 27 28 22 29 30 31Level 4

Test at Start Year 1

1 2 3 4 5 6 7 8 9 10 Level 1

11 2 12 13 5 14 15 8 16 17 Level 2

11 18 19 13 20 14 21 22 23 24 Level 3

18 25 26 20 27 28 22 29 30 31 Level 4

Test at End Year 1

1 2 3 4 5 6 7 8 9 10Level 1

Pre-test

Figure 3.2: Anchor items are items used in multiple test versions for the purpose of
determining their difficulty.

In summary, a test taken in a certain time period has multiple versions to accom-
modate different levels of difficulty. The items in each test are not disjoint but
overlapping such that the second most difficult version inherits a few items from
the most difficult test, the third most difficult version inherits a few items from the
second most difficult test, and so and so forth.

3.2 Machine Learning

A Machine learning algorithm is a statistical learning method which takes which
constructs a mathematical model of data and is able to make predictions or decisions
without being explicitly programmed (Nasrabadi, 2007). The goal of ML is to model
a function f̂ (·) = ŷ which approximates the true model f (·) = y. In other words,
ML algorithms attempt to model output data from some function that is shaped by
input data. This chapter discusses several ML methods from the work of Breiman,
Friedman, Olshen, and Stone (1984); James, Witten, Hastie, and Tibshirani (2013);
Jurafsky and Martin (2009) amongst others.

Definition 3.2.1 — Machine learning model. A machine learning model is a function
f̂ (·) of a number of predictors X that estimates some output values Ŷ (James et al.,
2013, p.15). The true model is given by f (·) which characterises the actual values
Y. Since the true model is assumed to be unknown (unless artificially created), the
estimated model can be seen as f̂ (X) → Y, i.e. the model is a mapping from a
number of input to a number of output values (Mohri, Rostamizadeh, & Talwalkar,
2012).
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3.2.1 Categories of ML

Following James et al. (2013, Chap. 2), this section distinguishes between three types
of machine learning. While there are many categories in ML, the ones listed below are
essential to understand before we describe various ML algorithms in the subsections
thereafter.

Supervised. In supervised ML, the outcome is known and the goal is hence to
create a model f̂ (·) ≈ y. Usually, the following procedure is used (known as the
validation-set approach (James et al., 2013, p. 176–178):

1. Split the data set into disjoint two parts: a training set (usually 70% of the data)
and a test (or dev) set.

2. Train a model on the training data using the class labels.

3. Validate the model’s performance on the test set.

Semi-supervised. While in supervised ML all the class labels are known, this is
often a scenario where the data is gathered before analysis. In many other practical
applications, only a part of the class labels is unknown and the model seeks to find
some structure in the data based on the class labels that it does have (Chapelle,
Scholkopf, & Zien, 2009, p. 2). In semi-supervised ML, there are two approaches to
determining this structure.

First, in passive learning, some class labels are already available and the algorithm has
to find some structure in the data to construct a model. In other words, the algorithm
has to make do with the data it is given.

Second, in active learning, the model starts with no class labels but the algorithm is
allowed to ‘buy’ a number of class labels to estimate a model from the data (Settles,
2012). Each class label that is ‘bought’ adds to the total cost of the algorithm. The
fewer labels are bought, the better the algorithm as long as the performance does not
suffer.

Unsupervised. Learning methods that fall under the unsupervised category of
ML try to seek interesting patterns and relationships in the data (James et al., 2013,
p. 26–28). Consider, for example, clustering algorithms that separate the data into
a number of groups (called clusters) that belong together according to some pre-
specified evaluation criteria.

3.2.2 Regression Analysis

Regression analysis is a ML technique which establishes a mathematical model of some
data where the output is continuous. For instance, regression analysis is useful for
predicting the maximum loan of a customer or learning the selling price of a house
based on prices of similar houses in the same area.

Linear regression. The most well-known example of regression analysis is linear
regression. This method models the relationship between an independent variable —
i.e. the cause — and a dependent variable — the effect. As described previously, the
independent variable can be seen as the parameters X while the dependent variable
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Figure 3.3: A linear plot of the interaction between the size of the living room and
the price of a house. The relationship of the data is in the form ŷ = β0 + β1X1 as
described earlier.

is represented by Y. If a regression has multiple parameters as input, it is known as
multiple regression.

� Example 3.1 — Linear regression for housing data. A real estate agent wants to know
the future selling price of a house they intend to sell. Since the price of the house is
determined by what it features (how many bedrooms, size of the living room, etc.),
the agent can use these features to model the relationship they assume is linear. The
model is in the form as described by James et al. (2013, Equation 3.19) only without
the random error term:

f̂ (X1, X2, X3) = Ŷ (3.4)

or equivalently

Ŷ ≈ β0 + β1X1 + β2X2 + β3X3 (3.5)

In Equation 3.4, X1 represents the size of the living room, X2, the number of bedrooms,
and X3 the size of the garden. The function is thus an estimation of the true model,
f̂ ≈ f . Note how capital letters refer to variables, whereas small letters denote an
example x1, i.e. a single instance of the variable X1.

Equation 3.5 is similar to Equation 3.4 but in a different form. Here, Ŷ is modelled as
the interaction of variables (also called predictors) X1, X2, X3 and their corresponding
coefficients β1, β2, β3. Furthermore, β0 represents the bias term, that is the offset from
the Y-axis. �

As the name implies, linear regression is always linear and thus has a straight line
through the data points. An advantage of linear regression is that, while the model
has high bias, it has low variance (James et al., 2013, p. 33–36). In other words, it has a

18



3.2. Machine Learning

strong bias in the sense that it assumes a linear relationship of the data while this is
not necessarily the case but changes very little when a portion of the data is changed
or a new sample is given. Linear regression performs especially well when the true
model f (·) is also linear, although a perfect linear relationship rarely ever occurs.
So even if the model is not perfectly linear and performs slightly worse than more
complex models, it can still be the most preferred model due to Occam’s Razor, that
is the simplest model within a small error margin is usually the best one (Blumer,
Ehrenfeucht, Haussler, & Warmuth, 1987).

Polynomial regression. An extension to linear regression is the use of polynomials
to represent a higher order function than linear regression which is strictly linear
(James et al., 2013, p. 266–288). A polynomial function based on Example 3.1 could
be:

Ŷ ≈ β0 + β1X1 + β2X2
2 + β3X3

3

Rather than fitting a high-degree polynomial over the entire range of X, piecewise
polynomial regression divides this range into separate pieces each with their own
polynomial term. In this model, the region of X is split up into a number of pre-
determined regions of X where the points of change of the coefficients are called knots
(James et al., 2013, p. 271).

yi =

{
β01 + β11xi + β21xi + β31xi if xi < c;
β02 + β12xi + β22xi + β32xi if xi ≥ c;

(3.6)

Equation 3.6 splits up the region of X into two regions: one of the subset of the
observation with xi < c, and one one of the subset of observations with xi ≥ c.

However, a consequence of piecewise polynomial regression is that the function
f̂ ‘breaks’ at every knot since it suddenly changes in slope and is therefore not
continuous. An outcome to this problem is the use of a degree-d spline which takes
the derivative of each piece. A further improvement can be made with natural splines
which pose additional boundary constraints (the region where X is smaller than the
smallest knot or larger than the largest knot) (James et al., 2013, p. 274) to further
improve estimates at the boundary of X, but this is outside the scope of this research.

Finally, smoothing splines can be used to prevent f̂ becoming too flexible and overfit
the data. This process of restricting the parameters is called penalisation. James et al.
(2013, p. 277) use the non-negative tuning parameter λ to penalise the residuals of f̂ :

n

∑
i=1

(yi − g(xi)
2) + λ

∫
g′′(t)2dt (3.7)

In Equation 3.7, the term ∑n
i=1(yi − g(xi)

2) is simply the loss function that encourages
the function f̂ to minimise its residuals, while

∫
g′′(t)2dt is a measure of the total

change in the function g′(t). Thus, if λ = 0 the function is a perfect fit for the data
whereas if λ→ ∞ the line would be straight.
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Generalised additive models. A useful addition to the previously mentioned linear
regression methods is generalised additive models (GAMs) (James et al., 2013, p. 282–287).
This method provides a framework for flexibly fitting Y when using multiple pre-
dictors. GAMs allows one to fit, for example, smoothing splines or least squares for
multiple predictors by plotting a single predictor while holding the others constant.
By doing this, multiple predictors can be fitted in turn and the method can conse-
quently easily be updated by simply plotting another predictor. Notwithstanding
this apparent ease of use, some methods, e.g. smoothing splines, are harder to fit than
others. Backfitting (Hastie, 2017) provides an outcome to this problem by iteratively
smoothing over the partial derivatives to estimate the parameters f̂ (Xj).

3.2.3 Classification

While Section 3.2.2 focussed on ML techniques that predict continuous data, there are
also scenarios in which ML techniques aim to predict discrete data. That is variables
that are not quantitative but qualitative in nature so that a model can classify a category.
Hence, this section describes a multitude of ML techniques that classify data into or
multiple categories.

Notation 3.1. We refer to predicted discrete instances of data as classes or (class) labels.
We denote a set of k labels as L ∈ Rk.

Logistic regression. While in theory linear regression can be used to predict cat-
egorical data, this is often a poor way of doing so (James et al., 2013, p. 129–130;
Jurafsky & Martin, 2009, p. 82–87). Linear regression for categorical data with a
decision boundary has two major problems:

I When there are more than two classes, using a linear regression would impose
an ordering in the classes while none exists.

I In a binary setting, some values may fall outside the range [0, 1] which can be
problematic.

An adaptation of linear regression called logistic regression solves this by squeezing
the values between 0 and 1 at either end of the curve. Logistic regression models the
probability that Y has a particular label from the set of class labels L. Its function is
given by the logistic function (James et al., 2013, p. 132):

P(X) =
eβ0+βT X

1 + eβ0+βT X
(3.8)

which can be rewritten as

P(X)

1− P(X)
= eβ0+βT X (3.9)

In fact, logistic regression is mathematically similar to IRT as described in Section 3.1.
Equation 3.8 is plotted in Figure 3.4 and is characterised by an S-shaped curve. The
left-hand side of equation 3.9 is called the odds, which can take on any value between
1 and ∞. In this notation, β is a vector of parameters such that if the transpose is
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Figure 3.4: Logistic regression is characterised by its S-shaped curve.

taken, i.e. βT, one can multiply it with the vector of parameters X to get the same
results as the sum over all parameters ∑n

j=0 β jxj.

To assess the fit of a logistic regression model, it is possible to look at the z-statistic of a
coefficient and its associated p-value. The error of the models is found by comparing
the true labels against the predicted labels:

1
n

n

∑
i=1

I(yi 6= ŷi)

where I(yi 6= ŷi) is an indicator function that returns 1 if the labels are equal and 0
otherwise (James et al., 2013, p. 37).

Linear Discriminant Analysis. Similar to linear regression, it is possible to use
logistic regression with multiple parameters. In practice, however, multiple logistic
regression is hardly used due to the fact that multiple logistic regression may yield
different results for the same predictors when they are highly correlated. Instead,
linear discriminant analysis (LDA) assumes predictors are drawn from a Gaussian
distribution with a common covariance matrix where the density functions overlap.
James et al. (2013, p. 139) then use Bayes’ theorem to estimate the probability that an
observation x belongs to the Kth class:

P(Y = k|X = x) =
πk fk(x)

∑K
l=1 πl fl(x)

,

where πk is the class prior probability (i.e. the fraction of observations belonging to
the Kth class) and fk(x) the posterior probability fk ≡ P(X = x|Y = k). Using the
assumption that X is drawn from a Gaussian distribution, a class-specific mean vector
and a common variance can be estimated and plugged into the posterior density
function:
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µ̂k =
1
nk

∑
i:yi=k

xi

σ̂2 =
1

n− K

K

∑
k=1

∑
i:yi=k

(xi − µ̂k)
2

James et al. (2013, p. 140) show that a variable is assigned to a class where the
discriminant function

δk = x · µk

σ2 −
µ2

k
2σ2 + log(πk)

is the largest. In that case, the decision boundary for x is equal to the point

x =
µ1 + µ2

2

When there are multiple classes, however, problems occur when data is highly
collinear. This is due to the fact that a multivariate Gaussian distribution expects only
some correlation between individual predictors and becomes distorted as collinearity
increases. In short, LDA outperforms logistic regression when the assumption of a
normal distribution approximately holds and the opposite is the case if it does not
hold (James et al., 2013).

Naive Bayes. While logistic regression attempts to discriminate the features by di-
rectly modelling the chance P(Y|X), naive Bayes instead is a generative classifier, that
is a classifier with an underlying model of the data (Ng & Jordan, 2002).

As is apparent from the name, naive Bayes utilises the Bayes theorem that states

P(Y|X) =
P(X|Y) · P(Y)

P(X)
.

Obviously, one wants to maximise the chance P(Y|X) which can be done by calcu-
lating the class prior of the feature distribution P(X) by marginalising over y (Hand,
Mannila, & Smyth, 2001, Chap. 4):

P(X = x) = ∑
y

P(X, Y = y)

= ∑
y

P(X|Y = y) · P(Y = y).

However, calculating these probabilities for multivariate data is expensive, i.e. naive
Bayes suffers from the curse of dimensionality. The algorithm thus assumes a condi-
tional independence assumption such that Xi and Xj are assumed to be conditionally
independent given the class label (Wu et al., 2008, p. 24–27)
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P(Xi|Xj, Y) = P(Xi|Y)

which simplifies the posterior into

P(Y|Xi, Xj) =
P(Xi|Y) · P(Xj|Y) · P(Y)

P(Xi, Xj)

αP(Y) ·∏
x∈X

P(x|Y)
(3.10)

By assuming this conditional independence, Equation 3.10 no longer suffers from the
curse of dimensionality. In a multiclass setting, the class with the highest probability
gets selected as the correct label. The error of naive Bayes is similar to that of logistic
regression as defined in Equation 3.2.3.

3.2.4 Tree-based Methods

A whole different category of models is tree-based methods. These models are based
on decision rules, that is rules derived from the data to decide in which category a
case belongs. More specifically, there are two types of trees: classification trees and
regression trees. While in the former decision rules are used to decide which class
label belongs to some input (see Example 3.2), the use of regression trees is equally
possible by discretising continuous values.

� Example 3.2 Consider the situation of a loan officer who determines whether cus-
tomers are eligible for a short-term loan. To help with their decision process, the loan
officer has constructed a (very) simple decision tree as shown in Figure 3.5. In this
example, a client walks into their office and asks whether they can get a loan. The
loan officer subsequently interviews the client and asks for their income, savings, and
age in order to determine whether this particular client is eligible for a loan. �

The rest of this subsection describes a number of popular tree-based methods, such
as decision trees, bagging, and boosting.

Decision trees. Decision trees involve segmenting the vector space into discrete
subgroups that maximise intra-node homogeneity and inter-node heterogeneity
(James et al., 2013). In other words, a decision tree attempts to create an upside-down
tree of the data where the leaves are as pure as possible (up to some extent). A visual
representation of a decision tree can be found in Figure 3.5.

In a decision tree, points where the tree splits are called internal nodes. Branches that
do not have a split are known as terminal nodes or leaf nodes. Furthermore, the top
(starting) node is termed the root node. As with any model, the goal of a decision tree
is to model the data as accurately as possible. This is generally achieved by using
recursive binary splitting which looks at node impurity and is measured by the Gini
index (Breiman et al., 1984, p. 38)

i(t) = ∑
j

p(j|t)(1− p(j|t)),
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Case #

Bad Good

1,2,...,10

5 5

6,7,9,10

1 3

1,2...,5,8

4 2

1 0

7

0 3

6,9,10

4 0

1,4,5,8

0 2

2,3

income > 26.000income ≤ 26.000

savings ≤ 2000 savings > 2000 age > 52 age ≤ 52

Figure 3.5: A decision tree for the purpose of determining whether someone is
eligible for a short-term loan or not. A case traverses from the top of the tree until it
reaches a leaf node where a red node indicates a loan has been declined and a green
node that a loan has been approved.

where p(j|t) is the relative frequency of class j in node t. Alternatively, entropy can
be used which is similar to the Gini index:

i(t) = −∑
j

p(j|t) log p(j|t).

However, there are two problems with a decision tree that models the data in this
way:

I For a large dataset, a decision tree for every possible split grows very complex
and becomes very difficult to compute.

I A fully grown tree models the data (nearly) perfectly which means the data has
been overfitted.

For this reason, cost-complexity pruning (Breiman et al., 1984, p. 66–71) with tuning
parameter α can be used to merge back the tree. However, even with this approach
decision trees are known to be a weak classifier with a high variance but low bias
(Breiman, 1996; Dietterich, 2000; Freund & Schapire, 1997, p. 62). To accommodate
their weaknesses, various ensemble methods have been developed that combine
multiple trees in order to make more accurate predictions.

Bagging. As stated before, decision trees are generally not a very good method since
they are prone to overfitting and cannot handle very complex cases. Consequently,
bootstrap aggregating (abbreviated as bagging) is an ensemble method which merges
multiple bootstrapped decision trees to significantly reduce the error rate. Breiman
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(1996) found that for classification trees the error rate was reduced by 6% to 77% by
using bagging instead of regular trees, and 21% to 46% for bagged regression trees.

In bagging, each time a tree is grown, the dataset is sampled with replacement (known
as bootstrapping) so that each tree is different from the rest. Trees are grown deep,
which means they have high variance but low bias. In a classification setting, the
majority vote can be used to determine to which class a case belongs.

Random forests. Random forests is a method closely related to bagging. In essence,
the algorithm is the same except that each time a split occurs at a node, the predictors
are sampled so that only a subset is considered for that split. Breiman (2001) proposed
this tweak to bagging by stating that bagged trees with very strong predictors often
have high correlation among themselves. By sampling the predictors at each split, the
algorithm is only allowed to consider a few of the total number of predictors which
thereby decorrelates the trees. From a set of m predictors,

√
m are usually considered

best for classification and m/3 for regression trees (Breiman, 2001).

Boosting. Boosting is a general method that aims to make a ‘weak’ classifier strong
by slowly increasing its performance. While this method can be applied to any
learning algorithm, it is commonplace to do so for decision trees since these are
weak learners in itself (Dietterich, 2000; Freund & Schapire, 1997, p. 119–120). The
algorithm works by training a (weak) base classifier on various distributions of the
data and subsequently combining these predictions into a single composite classifier.
More specifically, the algorithm works by sequentially growing trees where each tree
uses information gained from the previously grown tree. Thus, in contrast to bagging,
trees learn slowly over time to prevent overfitting. Instead of fitting to the outcome Y,
boosting fits and updates the residuals with each new tree. Boosting has three tuning
parameters (James et al., 2013, p. 316–319):

I The number of trees B.

I The shrinkage parameter λ.

I The interaction depth d which determines the number of splits. If d = 1 the tree
is called a stump.

Various implementations of the algorithm have been developed, such as AdaBoost
(Freund & Schapire, 1997), stochastic gradient boosting (Friedman, 2002), and a more
efficient and scalable implementation called eXtreme Gradient Boosting (XGBoost)
(Chen, He, Benesty, Khotilovich, & Tang, 2015).

3.2.5 Support Vector Methods

An entirely different approach than the previously listed methods are kernel-based
methods. While kernels could in theory be applied to any ML technique, they are
generally applied to support vector machines.

Maximal margin classifier. Suppose a dataset of n training observations x1, . . . , xn ∈
Rp with two observation classes y1, . . . , yn ∈ {−1, 1} that is completely linearly
separable. According to James et al. (2013, p. 340), a separating hyperplane has the
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properties that

β0 + β1xi1 + β2xi2 + . . . + βpxip > 0 if yi = 1,

β0 + β1xi1 + β2xi2 + . . . + βpxip < 0 if yi = −1,

and
yi
(

β0 + β1xi1 + β2xi2 + . . . + βpxip
)
> 0

for all i = 1, ..., n. A test observation x∗1 , . . . , x∗p can thus be classified by looking at the
sign f (x∗) = β0 + β1x∗1 + β2x∗2 + . . . + βpx∗p with respect to the hyperplane.

Moreover, a maximal margin classifier seeks to maximise the distance (or margin)
between the hyperplane and the nearest training observation. The observations that
are equidistant from the maximal margin hyperplane are known as support vectors.
The maximal margin classifier is the solution to the optimisation problem

maximise
β0,β1,...,βp,M

M

subject to
p

∑
j=1

β2
j = 1, (3.11)

yi
(

β0 + β1xi1 = β2xi2 + . . . + βpxip
)
≥ M ∀i = 1, . . . , n. (3.12)

While Equation 3.12 guarantees that an observation is on the correct side of the
hyperplane, 3.11 gives the perpendicular distance from the ith observation to the hy-
perplane given by Equation 3.12 (James et al., 2013, p. 343). Together these constraints
ensure than an observation is on the correct side of the hyperplane keeping at least
M distance to the hyperplane. The optimisation problem then chooses β0, β1, . . . , βp
to maximise the margin M.

Support vector classifier. Naturally, a dataset is almost never completely separable.
Instead, we may want to allow some observations to cross the margin to create a more
robust and flexible method. A support vector classifier (sometimes called soft margin
classifier has a nonnegative tuning parameter C which acts as a sort of budget for the
amount that the margin can be violated. It is the solution to the optimisation problem

maximise
β0,β1,...,βp,ε1,...,εn,M

M

subject to
p

∑
j=1

β2
j = 1,(

β0 + β1xi1 = β2xi2 + . . . + βpxip
)
≥ M (1− εi) ,

εi ≥ 0,
n

∑
i=1

εi ≤ C, (3.13)

where ε1, . . . , εi are slack variables which take on the value εi = 0 when xi is on the
correct side of the margin, εi > 0 when xi has violated the margin, and εi > 1 when xi
is on the wrong side of the hyperplane (James et al., 2013, p. 346). If C in Equation 3.13
is 0, it must be that ε1 = . . . = εn = 0 which means there is no budget for error and
amounts to a maximal margin hyperplane. Similar to the maximal margin classifier,
as James et al. (2013, p. 348–349) note, a support vector classifier solely relies on the
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support vectors to determine the margin which is distinct from other approaches,
such as LDA, which rely on all observations.

Support vector machines. Both the maximal margin classifier and the support
vector classifier perform poorly with non-linear class boundaries. Similar to linear
regression, James et al. (2013, p. 350) extend the feature space with polynomials to
allow for fitting non-linear boundaries. The algorithm then becomes

maximise
β0,β11,β12,...,βp1,βp2,ε1,...,εn,M

M

subject to yi

(
β0

p

∑
j=1

β j1xij +
p

∑
j=1

β j2x2
ij

)
≥ M (1− εi) ,

n

∑
i=1

εi ≤ C, εi ≥ 0,
p

∑
j=1

2

∑
k=1

β2
jk = 1.

(3.14)

However, with a large number of features computing this algorithm quickly becomes
infeasible. To this end, support vector machines (SVMs) employ kernels to efficiently
execute this idea.

As it turns out, only the inner products are needed between observations to solve
the problem presented by Equation 3.14 so that 〈xi, xi′〉 = ∑

p
j=1 xijxi′ j which can be

represented as

f (x) = β0 +
n

∑
i=1

αi 〈x, xi〉.

Furthermore, only (n
2) inner products are needed between the pairs to estimate α

which is nonzero only for the support vectors. Given a set of support vectors S , James
et al. (2013, p. 351) then rewrite a linear support vector as

f (x) = β0 + ∑
i∈S

αi 〈x, xi〉. (3.15)

Next, James et al. (2013, p. 351) replace Equation 3.15 with a generalisation:

K (xi, xi′) ,

where K is a function referred to as a kernel. The kernel trick allows us to quantify
distances in feature space, usually in non-linear data such that we have a mapping
function of the input space to feature space φ : X → F . This generalised distance
measure is more efficiently than calculating inner products (Schölkopf, 2001). Com-
bining a non-linear kernel with a support vector classifier is known as a support vector
machine.

There are a few considerations to be made when picking a kernel. Naturally, the
choice for a kernel depends on the data, that is a linear kernel will perform well on
data that is (nearly) linearly separable while, for instance, a polynomial kernel would
perform poorly. In fact, an SVM with a linear kernel is equal to a support vector
classifier. Similar to other methods, the optimal kernel is estimated by looking at
the error via cross-validation. Adequate hyperparameters can be tuned via grid
search (Chu, Marron, & others, 1991) or adaptive feature selection (Somol, Pudil,
Novovičová, & Paclık, 1999). Next, we discuss a number of popular kernels and their
general use.
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Kernels. As stated before, an SVM with a linear kernel is equal to a support vector
classifier (James et al., 2013, p. 352). It uses Pearson (standard) correlation to measure
distances between inner products. It works especially well on data with a strong
linear relation. Because of this constraint, a linear kernel is seldom used for real-world
data that tends to have more complex connections.

K (xi, xi′) =
p

∑
j=1

xij, xi′ j. (Linear kernel)

Alternatively, the feature space F may be extended and replace the generalised
quantity measure of the linear kernel with a polynomial (James et al., 2013, p. 352).
Essentially, a polynomial kernel extends F in order to fit a support vector classifier
in a higher-dimensional space with degree d. Therefore, it allows for more complex
relations to be fitted than a linear kernel.

K(xi, xi′) =

(
1 +

p

∑
j=1

xij, xi′ j

)d

. (Polynomial kernel)

Another popular kernel is the Gaussian radial basis function (RBF) kernel (James et al.,
2013, p. 352). As the name implies, this kernel uses the Gaussian function to estimate
the Euclidean distance between training and test observations. Thus, if the distance
between two observations is large, exp

(
−γ ∑

p
j=1

(
xij − xi′ j

)2
)

, will be tiny and will
therefore be irrelevant in determining f (x∗).

K (xi, xi′) = exp

(
−γ

p

∑
j=1

(
xij − xi′ j

)2

)
, (Gaussian RBF kernel)

where γ is a positive constant.

Finally, we briefly discuss the multi-class classification setting for SVMs. First, in the
one-against rest method, Bottou et al. (1994) fit each class K to the remaining K− 1
classes. They choose the class K for which β0k + β1kx∗1 + β2kx∗2 + . . . + βpkx∗p is the
largest since this amounts to the highest level of confidence. Second, the one-against-
one method (Krebel, 1999) fits each class K against another class K′ such that K 6= K′.
As a consequence, this all-pairs approach means having to fit (K

2) number of SVMs.
The observation is assigned to the most frequently assigned class from the (K

2) pairs.

3.2.6 Neural Networks

Neural networks (NNs) are a connectionist system of nodes that are inspired by the
biological structure of the brain (Goodfellow, Bengio, & Courville, 2016, p. 13–17).
Similar to the brain, the idea in artificial neural networks is to find some universal
learning function. They are essentially a set of nodes with specialised functions: there
is always a set of input and output nodes, and frequently there is also one or multiple
sets of hidden nodes.

Since the concept of NNs comes from the human brain, the idea has been around
for a long time. For example, McCulloch and Pitts (1943) developed the concept of
threshold logical units (TLUs) which can be seen as an early form of an activation
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function. Since then, advances have been made by Hebb (1949) (development of
Hebbian learning), Rosenblatt (1958) (development of perceptrons), and Werbos
(1974) who first applied backpropagation to NNs. While extensive usage has been
limited in the past, (deep) NNs have seen a large increase in usage in recent years
thanks to advancements in computing technology.

We now briefly describe a number of popular NN families for the purpose of exploring
which NN architecture is most suitable for the purpose of predicting school advice.

x1Input #1

x2Input #2

x3Input #3

a1

a2

a3

a4

y1 Output #1

Hidden
layer

Input
layer

Output
layer

Figure 3.6: A feedforward neural network with three input nodes, four activation
functions, and one output node.

Feedforward. Deep feedforward neural networks, also called feedforward neural networks
or multilayer perceptrons are the most commonplace type of NNs. A feedforward
model seeks to define a mapping f (x; θ) = y and learn the value of parameter θ
through a series of activation functions (Goodfellow et al., 2016, p. 169). They are called
feedforward NNs because they receive no feedback from a subsequent node. If this
is the case, they are known as recurrent neural networks. An example feedforward
NN is depicted in Figure 3.6. The displayed model has a depth of three (layers) and
a width of four (nodes). The model is driven to approximate f (x) with f ∗(x). Each
training example is accompanied by some label f ∗(x) ≈ y which defines the desired
output of the node, but this does not define how each layer should behave. For this
reason, all layers — except the input and output layers — are known as hidden layers.

The universal learning strategy can be thought of as defining a mapping φ(x)→ Y.
As it turns out, φ can be any family of mapping functions, such as RBF kernel or a
manually engineered mapping. Thus, NNs seeks to learn this mapping φ by having a
parameter θ (not related to θ in IRT) and a set of weights w that maps from φ(x) to the
desired output. Following Goodfellow et al. (2016, p. 170), the model then becomes

y = f (x; θ, w) = φ(x; θ)>w. (3.16)

Other considerations to be made are that of the activation function. For example, we
may choose to use a softmax, sigmoid, or hyperbolic tangent function to compute the
hidden layer values. To determine the gradients of these functions, backpropagation
and its modern variants are used.
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Figure 3.7: A deep neural network with three input nodes, four activation functions
three layers deep, and three output nodes.

Deep neural network. A feedforward NN with a single hidden layer is called a
shallow NN, while a feedforward NN with multiple hidden layers (shown in Figure 3.7)
is known as a deep NN. The universal approximation theory (Hornik, Stinchcombe, &
White, 1989) states that a shallow NN with a ‘squashing’ activation function (such as
the sigmoid function, see also the paragraph on logistic regression in Section 3.2.3) can
represent any non-linear function. However, just because a shallow NN can represent
this universal learning function, does not mean it can actually learn it (Goodfellow et
al., 2016, p. 198–199).

The universal approximation theory also states that a shallow NN with enough units
can approximate this function to any extent desired. However, Barron (1993) shows
that in a binary case, the number of possible binary functions on vectors ∈ {0, 1} is
22n

which means it becomes infeasibly large to train. By subdividing this problem into
a number of tasks, they can reduce the number of units; this thus introduces the notion
of deep neural networks which contains multiple layers. There have been a number of
successes indicating that a greater depth corresponds to better generalisation (Bengio,
Louradour, Collobert, & Weston, 2009; Goodfellow, Bulatov, Ibarz, Arnoud, & Shet,
2014)
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Figure 3.8: A recurrent neural network of width t.

Recurrent neural network. A recurrent neural network (RNN) is a family of NNs
suitable for handling a sequence of values x(1), . . . , x(t). This idea is visually rep-
resented in Figure 3.8. This computational graph has been unfolded from a graph
with a repetitive structure, such that the system refers back to itself t times. The
advantage of this is that RNN can process much longer sequences than networks
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without sequence-based optimisations. The RNN can also be extended with other
operations where only a part is recurrent. Goodfellow et al. (2016, p. 376) rewrite
Equation 3.16 to represent the recurrent state h of the hidden units in the network:

h(t) = f (h(t−1), x(t); θ). (3.17)

Due to the temporal nature of the RNN, practical applications include unsegmented
tasks such as handwriting and speech recognition; recent success has also been made
with RNN in determining the re-hospitalisation rate after heart failure (Valk, 2018).
Further extensions are possible by applying gated states which (partly) reset the
progress and are used in, for example, long short-term memory networks (LSTMs),
while challenges include that of the vanishing and exploding gradient problem
(Goodfellow et al., 2016, p. 290).
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Figure 3.9: A recursive neural network has a deep tree-like structure.

Recursive neural network. A generalisation of a RNN can be made such that it
is a recursive neural network. Figure 3.9 depicts a simple example of the tree-like
structure in this model. While this structure resembles that of a decision tree, the
inner workings are vastly different. Instead of applying the unfolding principle as in
RNNs, operations are applied recursively to produce a structured prediction.

One clear advantage of a recursive neural network over a RNN is that the depth of the
model for a sequence T is drastically reduced, going from T to O(log T ) (Goodfellow
et al., 2016, p. 401). Practical applications of the tree are mostly in natural language
processing (NLP), such as Stanford’s CoreNLP (Manning et al., 2014).

3.3 Summary

In this chapter, we gave an overview of both domain-specific and domain-agnostic
statistical methods from the domains of IRT and ML. We found that IRT is most
suitable as a domain-specific method since it relies on the underlying theory of a test
and therefore has an edge over other methods which do not utilise this knowledge.
Moreover, tests in the SMS are designed in such a way that items overlap which
allows IRT to estimate certain parameters.

As for domain-agnostic methods, we looked at the different categories of ML and
described both regression and classification models. Since our goal is to predict school
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advice from both continuous and discrete variables, we must use methods which
can handle these values. Furthermore, the problem of predicting school advice is a
supervised learning problem, since the actual school type of students at T3 is known.
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II

Model
Construction

The previous part discussed approaches for estimating test scores and ex-
plored possible models for predicting school advice. In this part, we describe
data exploration and model construction of the approaches laid out in Part 1 for
the sake of reproducibility and insightfulness







Chapter 4

Data Description

First, we describe the data set given as output by the SMS. As stated previously, the
SMS consists of four measurement moments:

1. T0 at the start of year 1.
2. T1 at the end of year 1.
3. T2 at the end of year 2.
4. T3 at the end of year 3.

Since each student takes (at maximum) one test at each of these measurement mo-
ments, the data can essentially be subdivided into four regions. As also explained
previously, there are multiple test versions depending on the school type. In this
section, we scrutinise these intricacies of the data set.

In total, the data set contains 71 564 rows and 22 columns. Each row contains one
student per test moment. Since there are four test moments, there are 17 891 students
in total. Appendix B lists all columns in the data set and provides a brief description
of their contents.

Student ID

Arguably the most important variable in this data set is the student ID which connects
students across test moments. For this reason, it is paramount that student IDs
are indeed unique to students and link those (same) students to each other across
measurement moments. As it turns out, this is not a trivial task. While it is possible
to do matching based on attributes such as name, school, date of birth et cetera, it is
even better to ask the school directly to confirm that a student is indeed said student.
Cases where this was not possible have not been included in this data set.

Test Moment and Test Version

As stated previously, progress tests in the SMS are divided into four test moments: T0,
T1, T2, and T3.

The variable test_id indicates:

1. which school type, and
2. which measurement moment.
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Table 4.1: The most frequently occurring report dates of test scores per test version.

Test version Test date Frequency

T0
515 2015-10-21 513
516 2015-10-21 526
517 2015-10-21 850
518 2015-10-21 631

T1
523 2016-06-08 306
524 2016-05-31 598
525 2016-05-31 611
526 2016-06-06 517

T2
531 2017-04-19 118
532 2017-04-19 189
533 2017-04-26 965
534 2017-04-25 425
535 2017-04-20 465

T3
541 2018-06-06 132
542 2018-07-05 155
543 2018-06-06 387
544 2018-06-06 552
545 2018-05-02 456

The following test versions exist: 515, 516, 517, 518, 523, 524, 525, 526, 531, 532, 533,
534, 535, 541, 542, 543, 544, and 545. However, this specifies neither school type nor
test moment. One way to find which test version belongs to which test moment is to
simply look at the date the scores were reported. Because these dates are day-specific,
we simply look at the most frequently occurring one. As indicated by Table 4.1, test
moments are grouped by test version chunks, i.e. 515 to 518 are tests for measurement
moment T0, 523 to 526 for T1, and so forth. To simplify matters, we create a new
column ‘test moment’ that contains the values T0, T1, T2, and T3.

As for the school type, we can similarly look at the most occurring school advice
given by the mentor (see Table 4.2. If we assume these to be correct, we see that each
test corresponds to school advice levels BB+, BB, KB, GL, HAVO, and VWO1.

School Advice

Another important variable in this data set is school_advice which encodes school
advice given by the student’s mentor. Concretely, before a student takes a test, the
student’s mentor is asked which school type they think is most suitable for the
student. Mentors are asked for either a specific school type or a mix of school types,
i.e. a so-called mixed bridge year. Since this advice is usually the current school type
and is therefore fairly accurate, the school advice by the mentor is used as a gold

1See Appendix A for details of distinct school types.
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Table 4.2: Most frequently occurring school advice per test version.

Test version School advice Frequency Percentage Total number of students

515 KB 1596 51.73 3085
516 GL 3873 89.80 4313
517 HAVO 4751 78.99 6015
518 VWO 3449 77.02 4478
523 KB 1625 53.10 3060

524 GL 3897 91.82 4244
525 HAVO 4894 80.57 6074
526 VWO 3425 75.89 4513
531 BB+ 689 53.37 1291
532 KB 1731 97.58 1774

533 GL 4089 97.10 4211
534 HAVO 5482 93.01 5894
535 VWO 3476 73.63 4721
541 BB 822 61.71 1332
542 KB 1802 99.23 1816

543 GL 4340 99.56 4359
544 HAVO 5573 98.29 5670
545 VWO 3702 78.53 4714

Table 4.3: Number and percentages of students by school advice.

School advice Frequency Percentage

VMBO 29908 41.79
HAVO 23568 32.93
VWO 18088 25.28

standard (or ground truth) in this research. That is, we assume that the school advice
given by the mentor is correct since this advice is based on a whole year of experience
whereas a test is a measure of only a single moment in time.

As can be seen in Figure 4.1, assigned classes are usually either BB+, BB, KB, GL,
HAVO, VWO, or Gymnasium. Mixed classes do occur but much more infrequently.
To simplify matters, we may group school types BB+, BB, BB/KB, and GL/HAVO
as VMBO, HAVO and HAVO/VWO as HAVO, and VWO and Gymnasium as VWO.
The result can be found at the bottom half of Figure 4.1. Disregarding incomplete or
incorrectly filled in values, Table 4.3 shows that approximately 42% of the students at-
tends VMBO, 33% attends HAVO, and 25% attends VWO. However, this distribution
can vary depending on the measurement moment.

In Figure 4.2, one can observe that school advice does not vary much between years.
However, as many as 19% of students switches school type (e.g. from VMBO to
HAVO) between the first and third year. From this 19% of students, 42% went to a
more vocational school type (downstream) and 58% went to more academic school
type (upstream). Hence, school advice between years does not vary much since
almost as many students go upstream as downstream.
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Figure 4.1: Distribution of both aggregated and non-aggregated school advice.
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Table 4.4: Number of items per test version.

Test version Number of items

515 290
516 293
517 292
518 298
523 348

524 349
525 346
526 357
531 349
532 350

533 349
534 357
535 357
541 354
542 357

543 357
544 357
545 360

Table 4.5: Descriptive statistics for the end test of primary education.

school_advice N Mean SD Q25 Q75

VMBO 517 531.42 6.76 528 536
HAVO 917 540.64 4.73 538 544
VWO 959 546.08 3.54 544 549
Total 2393 540.83 7.32 537 546

Scored Response String (Dichotomous)

Data from the response column is a string representing a candidate’s responses to the
item. Table 4.4 lists the number of items per test version. From this table, it is clear
that tests on test moment T0 have fewer questions than those in other test moments.

Figure 4.3 shows the density distribution of the sum score per test moment. That
is the sum of the endorsed items per test moment. While one may expect that tests
become more difficult as students progress, students also become smarter and are
thus more able to provide the correct answers. On the other hand, tests are designed
such that easier school types get easier questions. This approach of test design is also
reflected in IRT as described in previous chapters.

Standardised Score on the End Test of Primary Education

At the end of primary education, most primary schools in the Netherlands conduct
an end test of primary education (see Appendix A). In short, the end test of primary
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Figure 4.3: Sum scores by school advice per test moment.
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education helps determine what is the most suitable school type for students and
is thus very similar to the tests used in this research. Until 2015, Cito was the only
company authorised to develop the end test of primary education. In 2018, only
56% of all schools used the end test developed by Cito which has led to a multitude
of problems such as incomparable school advice, different levels of difficulties, and
schools switching between tests to seemingly achieve the ‘best’ advice (Swart, Van den
Berge, & Visser, 2019, p. 6–7). For this reason (and possibly other reasons as well), as
little as 13% of scores on the end test of primary education are not missing.

In total, we are left with 2 393 students whose score on the end test is not missing.
Figure 4.4 presents density functions per school type. The score ranges from 500 to
550. The dotted borders represent the cut-off points for determining school advice
as used in the end test of primary education (i.e. 537 and 545). These cut-off points
have been determined by Cito (Van Boxtel et al., 2011, p. 55). While the cut-off point
between VMBO and HAVO seems accurate, the line dividing HAVO and VWO is
shifted too far to the right.

As concluded in Chapter 2.2, 80% of all students follow the advice given by the end
test of primary education (Van Boxtel et al., 2011, p. 88). In this data set, however,
only 67% of students followed their end test school advice.

Year of Test

The variable test_year indicates the year the test was taken in. Of course, this should
be similar to the year the result was reported in (i.e. the variable test_time). The years
corresponding to these tests are 2015/2016, 2016/2017, and 2017/2018. Of course,
this corresponds to T0/T1, T2, and T3 respectively since students must progress over
at least three years in order to be able to take all tests.

Specific Date of Test

Figure 4.5 depicts the number of measurements over the past few years. Additionally,
dotted lines have been plotted to show the separation of test moments. Notably, tests
do not need to be taken at a specific date so schools have some freedom to choose
regarding which month suits them best.

Computerised Test

The variable digital refers to the medium that was used to take the test, i.e. paper or
digital. For this data set, none of the tests were computerised.

Date of Birth

In addition to data about the tests themselves, there is of course also data about
students. The column birth_date lists the date of birth for each student. Naturally,
some of the data is incorrect. For example, the youngest person in the data set was
born on 2015-01-10 while the oldest person was born on 1899-12-30. These extreme
dates are, however, a bit arbitrary since the data was trimmed to ensure that there are
no dates of birth such as 1899-01-01. Furthermore, there are 292 empty values. While
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Figure 4.5: Tests registered over time. Text with test moment and dotted line
indicating a new test moment have been added for visual aid.

dates of birth are not used in IRT, we must ensure empty and incorrect values are not
used when applying ML techniques.

Sex

The column sex can take on the values female, male, and not filled in. In total, there
are 34 014 boys, 37 235 girls, and 315 cases where the sex was not filled in. There are
no missing values.

Primary Language spoken at Home

Students may also fill in which language they speak at home. In total, there are 60 566
students (85% of total) who speak Dutch at home, 5 860 students (8.2% of total) who
speak a language other than Dutch at home, and 5 138 students (7.2% of total) who
did not fill this in. Thus, not counting those whose language was not filled in, 9.7%
did not speak Dutch as their primary language at home.

Sector of the Student.

In the second year of VMBO education, students can choose a sector they want to
specialise in. They can choose between the profiles ‘engineering and technology’, ‘care
and welfare’, ‘business’, and ‘agriculture’.

As can be observed from Figure 4.6, care and welfare (30% of students) is the most
popular sector to specialise in while agriculture (15% of students) is the least popular
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Figure 4.6: At the VMBO level, students can choose which sector to specialise in
during their last three years.

sector. Interestingly, agriculture is the most popular sector for BB+ students (33%)
followed by agriculture (33%). For BB students, both agriculture (15%) and business
(21%) are relatively unpopular while both care and welfare (30%) and engineering
and technology (33%) seem to attract the most students. On the contrary, sectors
are similarly popular with KB students with the exception of care and welfare (32%)
which is slightly more popular. Finally, GL students massively choose the sector of
business (37%) while agriculture (19%) is by far the least popular. Note that mixed
classes are not shown in Figure 4.6 due to a very limited amount of data.

Educational Track

At the HAVO level, students can choose between various educational tracks students
will follow in year 4. Students can choose between the profiles ‘Culture and Society
(CS)’ ‘Economics and Society (ES)’, ‘Nature and Health (NH)’, and ‘Nature and Technology
(NT)’. The culture and society profile and the economy and society profile can be seen
as preparation for humanities or economics studies, while nature and health provide
access to health sciences studies, among others. Nature and technology includes
subjects such as chemistry and physics and therefore prepares for a technical (STEM)
studies.

The number of students choosing a certain educational track is depicted in Figure 4.7.
From this figure, we see that economics and society is by far the most popular profile
to choose (41% of total) while culture and society is the least popular profile (10% of
total). Interestingly, as many as 46% of HAVO students chose the profile of economics
and society, while only 34% of VWO students chose that same profile. Conversely,
26% of VWO students chose for science and technology, while only 15 opted for
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Figure 4.7: Educational profile by sex and test moment.

Table 4.6: Descriptive statistics on number of students per class.

School type Mean Median SD Max Min

VMBO 8.77 7 6.63 59 1
HAVO 13.12 14 7.98 36 1
VWO 14.73 16 9.34 64 1

this technical side. Thus, it appears that VWO students tend to favour a technical
(i.e. STEM) track, while HAVO students are more likely to follow a business-oriented
profile.

Furthermore, different sexes seem to prefer different profiles as well. For instance,
only 3.7% of boys chose to pursue a culture and society profile. On the other hand,
45% of boys wanted to have an economics and society profile. Girls follow the same
trend, although there are different when it comes to science and health, and science
and technology. That is, 37% of girls versus 20% of boys chose for the science and
health profile. Conversely, 31% of boys versus 11% of girls opt for the science and
technology track.

Class

The variable class refers to the school class a student is in. Usually, this is a com-
bination of numbers and letters to refer to the year a student is in (e.g. 1, 2, or 3)
and to which class since there are frequently too many students to fit in one class.
For instance, if there are 80 students in year 1, it makes sense to divide this into
groups of 20 and labelling them as 1A, 1B, 1C, and 1D. Table 4.6 shows the number of
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Figure 4.8: These distribution functions show how VMBO classes are typically
smaller, whereas both HAVO and VWO classes have around 20-25 students.

students per class per school type. From this table, we see that a typical VMBO class
contains fewer students than a HAVO class and even fewer students than a VWO
class. Notably, the standard deviation and the maximum number of students per
class is very high.

Figure 4.8 depicts a possible explanation for this high dispersion. That is, the density
function for the number of students per class seems to be bimodal for both HAVO
and VWO classes. While this does not explain why there are classes with fewer
than 5 students, it does shed some light on what the ‘true’ number of students in a
HAVO or VWO class is. As for VMBO, classes are usually smaller since educational
is vocational and therefore requires more active guidance for students. On top of
that, classes with mixed school type in VMBO education (e.g. BB/KB or KB/GL)
have fewer students as well. Classes with more than 40 students are likely to be an
anomaly.

School ID

The variable school_id refers to a school. In total, there are 239 schools in the data set
which means there are on average of 299 students per school.
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Chapter 5

IRT Analysis

This chapter describes the modelling of response data using different IRT models, a
process that is sometimes referred to as item calibration. Once item calibration has
been completed successfully, the IRT model can estimate ability scores or person pa-
rameters. These ability scores will later be used for predicting the future educational
track of students.

5.1 Data preprocessing

Since data is in a compressed format, we must first do some additional cleaning (and
add some information in the process). Table 5.1 lists the different subjects that each
test measures. Note that at test moment T0, the subjects mathematics 1 and mathematics
2 are not measured yet since this is usually not taught in primary school. For the
purpose of calibrating items, it is imperative to know which items overlap between
tests. To this end, we add item codes to responses to link different tests so that it can
be used to compare students over different test versions.

To calibrate items on a unidimensional scale, we use the Dexter package in R (Maris,
Bechger, Koops, & Partchev, 2019). This package requires data in a long format which
means it has to be transformed. Starting with a long format, we use the melt function
from the reshape2 package (Wickham, 2007) to convert the list of items and item codes
to a long format and to combine this with the responses in the data set.

5.1.1 Creating Scoring Rules for Dexter

Dexter also requires scoring rules for the items. These rules indicate what type of
response is valid for an item and how this response should be scored. Since items in
the tests are dichotomous, these are simply the categories of responses (i.e. 0 or 1) per
item. Items not filled in by a student are encoded as 9 but are be scored as 0 here.

The output of the scoring rules is displayed in Table 5.2 and the first six rows of
the input for Dexter are given in Table 5.3. The terminology is a bit different since
Dexter expects these exact column names, but it should be obvious that a person_id
is a student_id and a booklet_id is a test_id. In total, the data in long format has
24 231 337 rows and 4 columns. Finally, the data is loaded into an SQLite database
which serves as a backend to Dexter.
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Table 5.1: There are 10 distinct subjects in this data set. To identify subjects, we add a
prefix to the item codes.

Subject Abbreviation

Dutch reading skills 1 NL1
Dutch reading skills 2 NL2
Dutch vocabulary NLWA
Dutch language skills NLTA
English 1 EN1

English 2 EN2
Arithmetic 1 R1
Arithmetic 2 R2
Mathematics 1 WI1
Mathematics 2 WI2

Table 5.2: Structure of the scoring rules used in dexter. The column response refers
to the response given by the student while the item_score is the score used by dexter
to assess the ability.

item_id item_score response

NL197531 1 1
NL197531 0 0
NL197531 0 9
NL197532 0 0
NL197532 1 1

NL197532 0 9

5.2 Estimating Item Parameters

As described in 3.1, person parameters can be estimated by using maximum likeli-
hood once the item parameters have been estimated. Thus, we first create models
that estimate these item parematers, review these parameters, and then move on to
assessing person ability in the next section. A multidimensional approach has also
been attempted and is described in Appendix C.

5.2.1 CTT

Usually before any IRT analyses are performed, some classical test theoretical (CTT)
item and test statistics are computed. Figure 5.1 depicts an empirical cumulative
distribution function (ECDF) of the p-values per test moment. In this context, a
p-value is defined as the proportion of correct answers in relation to the total number
of given answers. From this figure, we see that especially the subject of mathematics
was a more difficult test for students since the p-values are much lower than for other
subjects. Additionally, we can look at the test statistics given in Table 5.4. Because of
the high number of items per test version, it is not surprising to find a high level of
Cronbach’s alpha, indicating that the tests have very high internal consistency.
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Table 5.3: This table gives the first few rows of the data that is actually loaded into a
database to be used by Dexter. Here, the response column corresponds to the one in
the rules.

person_id booklet_id item_id response

729870901 515 NL197531 1
729870975 515 NL197531 1
729870899 515 NL197531 1
729870935 515 NL197531 0
729870908 515 NL197531 0

729870932 515 NL197531 1

Table 5.4: Test statistics for the different test versions showing, amongst others,
Cronbach’s alpha, the mean proportion of correct answers across items, and various
correlations between tests, items, and responses. The high alpha levels show that
there is a high consistency in the different test versions.

Test version # of items Alpha Mean p-value Mean item-test correlation Mean item-response correlation Max test score # of students

515 290 0.952 0.640 0.262 0.249 290 3085
516 293 0.911 0.660 0.193 0.176 293 4313
517 292 0.926 0.678 0.213 0.197 292 6015
518 298 0.933 0.664 0.220 0.206 298 4478
523 348 0.960 0.667 0.264 0.254 348 3060

524 349 0.931 0.642 0.201 0.187 349 4244
525 346 0.938 0.653 0.211 0.198 346 6074
526 356 0.944 0.644 0.219 0.207 356 4513
531 349 0.950 0.620 0.236 0.224 349 1291
532 350 0.936 0.640 0.209 0.196 350 1774

533 349 0.950 0.620 0.236 0.225 349 4211
534 357 0.952 0.633 0.239 0.228 357 5894
535 357 0.955 0.640 0.245 0.234 357 4721
541 354 0.961 0.577 0.262 0.251 354 1332
542 357 0.947 0.613 0.228 0.217 357 1816

543 357 0.952 0.586 0.240 0.228 357 4359
544 357 0.965 0.557 0.273 0.264 357 5670
545 360 0.961 0.586 0.260 0.250 360 4714

5.2.2 Estimate Item Parameters in Dexter

First, let us take a look at the test design in Dexter. This design is displayed as a
network of nodes in Figure 5.2. For calibration purposes, nodes are ideally connected
either directly or indirectly, this is not the case with this data set. In the actual SMS, a
pre-test is used to connect the test moments but this data is not at our disposal (see
Section 3.1 for an explanation of a pre-test). Since there are very few or none overlap-
ping items, the design is not connected and hence Dexter is unable to concurrently
estimate item parameters over all test moments. Thus, we have to estimate one model
per test moment (T0, T1, T2, and T3). To do this, we use the fit_enorm function from
the Dexter package.

Results can be found in Figure 5.3. Analogous to the results found in Figure 5.1, the
subjects mathematics 1 and mathematics 2 have been experienced as more difficult test
subjects. Item difficulties for the remaining item subjects seem to be comparable.
Naturally, this in line with our expectations since Figure 5.1 already shows that the
p-values follow approximately the same trend as the item difficulties.
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Figure 5.3: Empirical cumulative distribution functions (ECDF) for difficulty
parameters per test moment.

5.3 Estimating Person Parameters

Besides estimating item parameters, the goal of IRT is to estimate latent trait scores (in
this case students’ ability). First, we estimate person parameters on a unidimensional
scale using Dexter and expected a posteriori.

Estimating person parameters in Dexter is straightforward. Using the function
ability, we estimate the corresponding person ability and visualise them together
with the observed score in Figure 5.4. Unsurprisingly, a higher observed score leads
to a higher ability estimate. Additionally, each facet in the plot has either four or
five lines which correspond to the number of test versions for that test moment. We
can thus show how each test version has been designed for a specific school type
(although they can be administered to students of other school types as well).

Since abilities have been calibrated on a unidimensional scale per test moment, the
ordering of students’ abilities only applies within a test moment. In other words, the
ability of students does not necessarily increase or decrease over test moments and
stays the same if their ability progresses just as much as other students; if they stay in
the same ability quantile, their ability score stays approximately the same as well in
relation to other students. We may, therefore, report on the correlation between test
moments to show to what extent abilities stayed the same across students. We find
there to be a strong correlation between abilities on test moment T0 and T1, ρ = 0.91.
While there is still a strong correlation between T0 and T2, ρ = 0.83, this correlation
gets weaker across test moments — between T0 and T3 the correlation is mediocre,
ρ = 0.76. Between contiguous test moments, however, the correlation stays around
ρ = 0.89.
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Figure 5.5: Cut-off lines have been drawn between the intersections of the density
functions by visual inspection. By doing this, we can determine what ability is
needed to get certain school advice.
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5.4 Classifying Students

However, the goal of this research is not to estimate ability but to determine school
advice. To this end, we can create density functions and colour them by the class
labels of T3, thereby effectively inspecting the fit of the ability at some test moment
in relation to school advice at T3. We can then draw borders by visual inspection to
determine the cut-off lines. This process is displayed in Figure 5.5. The plot shows
that the borders lie on different points. One reason for this is the fact that the mean is
slightly different across different test moments — case in point, the mean ability at T0
(M = 0.88, SD = 0.75) is larger than the mean ability at T3 (M = 0.67, SD = 0.86).
Therefore, assuming that abilities stay the same (numerically) across test moments
would be incorrect. A simple paired two-tailed t-test indeed proves the distributions
are not similar, t(17 890) = 50, p < .001. Of course, this problem could be easily
overcome by standardising the distributions where a t-test would then point out the
two samples are similar, t(17 890) = 0, p = 1.

Table 5.5: Confusion matrices per test moment for a Rasch model made with Dexter.

(a) T0

Reference

Predictions VMBO HAVO VWO

VMBO 0.724 0.201 0.042
HAVO 0.247 0.536 0.3
VWO 0.029 0.263 0.658

(b) T1

Reference

Predictions VMBO HAVO VWO

VMBO 0.785 0.172 0.026
HAVO 0.203 0.598 0.334
VWO 0.012 0.229 0.639

(c) T2

Reference

Predictions VMBO HAVO VWO

VMBO 0.782 0.191 0.028
HAVO 0.207 0.606 0.295
VWO 0.012 0.203 0.677

(d) T3

Reference

Predictions VMBO HAVO VWO

VMBO 0.761 0.266 0.064
HAVO 0.224 0.557 0.238
VWO 0.015 0.177 0.699

We can look at how accurate these borders are by means of looking at the F1-score,
precision, and recall. This is visually represented for each class in Figure 5.6 and
the corresponding confusion matrices are found in Table 5.5. Moreover, the non-
proportional confusion matrices are found in Appendix D.1. We see that VMBO is
the best performing class, followed closely by VWO. The worst performing class by
far is HAVO which can be explained by the fact that this class gets cut-off at both
sides of the curve (see Figure 5.5). Interestingly, the fit is not for the class labels at
T3 is not the based when using the ability at T3 but at T2, having an overall F1-score
of 0.69 while the ability at T3 has an F1-score of only 0.68 over all classes. Granted,
differences in F1-score between the test moments are slim, ranging from 0.69 (T2) to
0.64 (T0) and therefore may be explained by inaccuracy when determining the cut-off
lines by visual inspection.

Finally, we note how the precision and recall are similar for school types at different
test moments. For example, differences in precision and recall at T0 are at most 0.08
(precision at recall for VMBO) but is much smaller for any other classes at any other
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Figure 5.6: Three performance measures show how VMBO is the best performing
class followed by VWO and HAVO. The latter is likely to perform worse because it is
a middle class and is therefore cut off at both sides of the curve.

test moment. Thus, we can say that the models are balanced in the sense that they
favour neither precision nor recall. Of course, that also raises the question of what
is more important in this situation: being sure that the students (for any school advice)
are correctly predicted (precision) or being sure that the students that should have a specific
school advice have been correctly captured? In multi-class classification, this may be
hard to interpret and can best be understood from the viewpoint of one specific class.
For instance, we could maximise recall for the class VMBO by predicting VMBO for
all students. As a result, precision will be low since many students that have been
classified as VMBO will actually be HAVO or VWO. Then for the other classes, recall
will automatically be 0 since there are no students left to be put in this class. The
takeaway from this is that it makes sense that precision and recall is balanced among
classes, since balancing one metric for one class will lower it for the others.

5.5 Predicting School Advice

In addition to drawing borders between the classes’ density functions, we can also
fit a multinomial log-linear regression (MLR) with the ability at T0 as a predictor
and school advice at T3 as an outcome variable. We do so by using the function
multinom from the nnet package (Venables & Ripley, 2002) in R. It should be noted
that contrary to ML procedures, this model does not need to be trained first and then
tested on a separate (unseen) part of the data set since the ability distribution has
already been fixed by Dexter when the IRT Rasch model was applied to the data. The
only difference which would result from following a validation-set approach is due
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Figure 5.7: By displaying the multinomial log-linear model as a set of nodes and arcs,
we see that this loosely resembles a neural network.

Table 5.6: Coefficients for the multinomial log-linear model describing predictions
from ability at T0 to school advice T3.

Class (Intercept) theta

HAVO -2.136206 2.627102
VWO -5.408948 5.008078

to sampling and does therefore not improve the model. Hence, we can train on the
full data set and evaluate the fitted values directly.

Just like the other functions from the nnet package, multinom is essentially a small
neural network without a hidden layer. For our function, this idea is demonstrated in
Figure 5.7. The model has two input nodes, i.e. (i) an intercept term and (ii) the theta
(ability) itself, and four output nodes, i.e. one node for each class plus a bias term.
The coefficients for these nodes are provided in Table 5.6.

We can visualise the distributions created by the MLR in a similar fashion as previ-
ously. As can be seen in Figure 5.8, we can draw cut-off borders by visual inspection
although in contrast to earlier in this chapter this is not necessary since the model
automatically calculates the class probability for every data instance (i.e. student).

We then compare Figure 5.8 to Figure 5.5 in terms of performance. Note that in this
section we have only predicted T3 from T0 and not from any other test moments since
we also do to this for ML in the next chapter. The reason for this is trivial, namely that
predicting from the earliest to the latest test moment is the most difficult, although
one might also argue that T1 is a good candidate as a predictor since students have to
make a choice at this test moment regarding which school type they want to pursue
next year.

Various performance measures have been plotted along with their exact value in
Figure 5.9. The proportional confusion matrix for this model is given in Table 5.7.
When comparing these values to the one in Figure 5.6, we see that they are more or less
the same for most metrics across most school types. Overall, the model has actually
gone a bit down in performance, i.e. precision is now 0.65 (was 0.64), recall is now
0.65 (was 0.64), and F1-score is now 0.65 (was 0.64). The only noticeable improvement
seems to be for the class VMBO in terms of recall, which is now 0.8 (was 0.724). Indeed,
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Figure 5.8: This plot shows the fitted values of the multinomial log-linear model.
Just like before, HAVO seems the be the worst performing class.
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Figure 5.9: Precision, recall, and F1-score for a multinomial log-linear regression
using the ability at T0 as a prediction for the school type at T3.
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Table 5.7: Confusion matrix for the three classes when applying a multinomial
log-linear regression. Numbers in the table are given as a proportion of the reference
counts.

Reference

Predictions VMBO HAVO VWO

VMBO 0.795 0.3 0.065
HAVO 0.181 0.489 0.282
VWO 0.023 0.211 0.652

Table 5.8: Sensitivity, specificity, and AUC for the multinomial log-linear model for
classifying students from ability scores.

School advice Sensitivity Specificity AUC

VMBO 0.781 0.891 0.744
HAVO 0.494 0.747 0.679
VWO 0.679 0.839 0.719
Overall 0.661 0.830 0.826

a McNemar’s Chi-squared test with continuity correction (Agresti, 1990, p. 415) points
out that predictions are significantly different, X 2(1, N = 17 891) = 7, p = 0.008.

Additionally, ROC analysis is also performed to give insight regarding the sensi-
tivity/specificity trade-off which is visualised in Figure 5.10. The specific numbers
per class are given in Table 5.8. As described previously, VMBO is the best perform-
ing class followed closely by VWO with HAVO lagging much behind. Overall, the
area under the curve (AUC) is 0.83. Additionally, note how the specificity is much
higher than the sensitivity, although this can be changed by adjusting the (probability)
thresholds. These metrics will be used in Chapter 7 to draw a comparison between
the performance of IRT and ML.

5.5.1 Evaluating Switching of School Type

At the beginning of this research, we stated how there is not only a need to accurately
predict those who stay in the same school type throughout test moments but to
provide special attention to predicting those who do switch. To this end, we provide
a brief overview of how well IRT has performed in terms of predicting switchers. We
do so based on the MLR model since this is overall a cleaner way to predict school
advice. First of all, we perform a similar analysis as earlier in this section but this
time only for students that actually switched. Secondly, we reshape the data so that
our target variable changes from school advice to switched, simply indicating whether a
student has made a switch or not. This is then evaluated by using measures that can
handle imbalanced classes more appropriately.

Figure 5.11 visualises sensitivity, specificity, and AUC for the three school types but
this time only for students who actually switched. The classes have high specificity
but low sensitivity, indicating that not many students are classified as switching
from this class but if it does predict so, the model is fairly certain this is actually the
case. Interestingly, the AUC of HAVO is much higher than for the other class. One
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Figure 5.10: As an alternative to precision and recall, we can also draw a multi-class
ROC curve to evaluate the sensitivity/specificity trade-off. As expected, HAVO is the
worst performing class.
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Table 5.9: Confusion matrix for students that actually switched.

Reference

Predictions VMBO HAVO VWO

VMBO 0.503 0.32 0.131
HAVO 0.4 0.444 0.428
VWO 0.097 0.236 0.44
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Figure 5.11: Performance metrics for students who switched school type between T0
and T3. Overall, the model performed worse for students who switched school type
than for those who did not switch.

explanation may be the result of the ‘squashing‘ that occurs in Figure 5.8. That is, only
a few pupils are classified as HAVO (while there are much more) which culminates
into predicting correctly many HAVO students who switched school type.

Overall, the model treats students who switch much worse than students who do not,
compare the sensitivity (switchers 0.45; all students 0.661), specificity (switchers 0.73;
all students 0.830), and AUC (switchers 0.66; all students 0.826). So for students who
switch, the model performs much worse. Notwithstanding this bad performance,
a binomial test points out the predictions are better than the no information rate,
p = 0.04 (1-sided).

As an alternative to looking at the performance of looking at switchers in isolation,
we can also look at a binary view (switch / no switch) and use a performance metric
which is more robust to class imbalance.

To evaluate this, we only look at whether someone switched school type or not in
comparison to test moment T0. All sensible combinations (while keeping T0 fixed
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Table 5.10: Table of combinations between school advice at T0, T3, and predictions
where school advice at T0 is fixed at VMBO. Labels 0 and 1 indicate incorrect and
correct respectively.

T0 T3 Prediction Truth label Prediction label

TN VMBO VMBO VMBO 0 0
FN VMBO HAVO VMBO 1 0
FP VMBO VMBO HAVO 0 1
TP VMBO HAVO HAVO 1 1

Table 5.11: Disagreement between school advice at T0, T3, and predictions for T3.
Misclassification type indicates the severity of the prediction in relation to actual
school advice at T0 and T3. In total, there are 231 underestimates, 122 overestimates,
and 35 cases where the prediction was in between the school advice at T0 and T3.

School advice at T0 School advice at T3 Predicted label # of cases Misclassification type

VMBO HAVO VWO 61 Overestimate
VMBO VWO HAVO 15 Average
HAVO VMBO VWO 61 Overestimate
HAVO VWO VMBO 144 Underestimate
VWO VMBO HAVO 20 Average

VWO HAVO VMBO 87 Underestimate

at VMBO) are reflected in Table 5.10. The cases that are not shown, are for instance
when school advice at T0 is VMBO, at T3 HAVO, and predicted is VWO. In that
case, the student indeed switched school type and although this is also predicted,
the prediction is for the wrong class. In order to make a fair comparison, we throw
these cases out. In total, there are 388 students where the school advice at T0, T3, and
the prediction were all different school types. A more in-depth analysis is given in
Table 5.11.

Since there are only 2 965 students who switched school type between T0 and T3 (out
of 17 503 students, leaving out the 388 students mentioned before), there is a vast class
imbalance. From the work of Parker (2011), we know that traditional performance
measures such as F1 or AUC give a misleading view when there is a large class
imbalance. When classes are very imbalanced, both the H measure (Hand, 2009) and
Matthews correlation coefficient (MCC) (Matthews, 1975) have the least disagreement
with other measures and are therefore most suitable (Boughorbel, Jarray, & El-Anbari,
2017; Parker, 2011). However, the H measure depends on knowing the posterior of
the classes. While the posterior for school advice is provided by MLR, we do not
have this for the classes switch / not switch. Thus, we resort to MCC which can be
calculated from a contingency table. It is known as the φ coefficient and is related to
the Chi-square statistic

|MCC| =
√
X 2

n

or based on a 2x2 contingency table
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MCC =
TP× TN − FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)

Essentially, it is the correlation between the true and predicted class labels such that
1 represents total agreement, -1 total disagreement, and 0 no better than a random
prediction. For the data as described previously, we found there to be a φ statistic of
0.16. Thus, the MLR model is only slightly better than a random guess when it comes
to predicting whether a student switched or not.

5.6 Discussion and Conclusion

In this chapter, we described the process of predicting one’s school advice at T3 by
using test results from T0. To this end, we used a Rasch model to estimate the item
and person parameters. We converted ability to school advice in two ways: (i) by
drawing borders between the school advice density functions by visual inspection
and (ii) by applying a MLR to compute the class probabilities for each student. We
found the results to be similar for both models. For the log-linear regression model,
the overall F1-score is 0.65 and the overall AUC is 0.83. Interestingly, HAVO is by
far the worst performing class which is to be explained by the fact that it is cut-off at
both sides of the curve.

Since students who switch are of extra importance, we also looked at how MLR
performs on those who actually switched school type. Overall, we found that the
model treats switchers much worse than non-switchers, having an overall AUC of
versus 0.826 for all students. Furthermore, an analysis was performed on the binary
case of a switch (1) or no switch (0) where we employed the measure of Matthews
Correlation Coefficient to battle heavy class imbalance. This indicated that the model
is only slightly better at predicting whether someone switched school type than a
random guess, φ = 0.16.

A multidimensional approach was also attempted and is described in Appendix C. In
brief, the (multidimensional) 2PL model gave misleading results due to population
misspecification and the results were therefore unusable. Hence, we solely focussed
on the unidimensional model in this chapter. Nevertheless, we noted that it is
possible to overcome this problem by specifying the actual school type for each
student. Further research will have to show whether a multidimensional 2PL model
will improve results.
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Chapter 6

Machine Learning

This chapter demonstrates how ML techniques can be used with data from educa-
tional progress tests. Specifically, we utilise ML to predict school advice from a set
of dichotomous response data. This chapter is structured following two CRISP-DM
phases: (i) data preparation and (ii) modelling. Hence, we first briefly outline data
preprocessing and some challenges we faced before training the models in the next
section. Subsequently, we evaluate the performance so that we can compare them
with IRT as described in Chapter 5.

6.1 Data Preparation

In Chapter 5 we outlined the conversion of the original data to a long format. In
Appendix C, we described how data can be transformed to a wide format using the
spread function from the tidyr package (Wickham & Henry, 2019). However, this
means data is then in a transactional-like format having four rows per student (i.e. for
every test moment) instead of a flat-file format which is the de-facto standard in ML
(i.e. one row per student). However, reducing four rows per student to one row is not
an effortless task.

This is caused by, for example, the features test_moment, test_id, or sex. For
test_moment it may be obvious that this cannot be brought back to one row, but
for test_id we can create four columns test_id_T0, test_id_T1, test_id_T2, and
test_id_T3 which denote the test versions a student was administered. For sex, this
should be the same value1 as previous years so we can simply take the majority value
— for example, if ‘male’ was filled in three times and ‘female’ one time, we assume
the student to be a male. One final issue we had to overcome was the fact that due
to a clerical error, there are 12 overlapping items between test moments, which we
heretofore considered to be non-existent. This is problematic since every student now
has one row with items in the columns. If a student was administered an item twice,
we can either take the sum, mean, or take the value we happen to find first. All of
these options are nonsensical so we remove these 12 items which will likely have a
very minimal impact given that there are 5 183 items in total. When we throw these
out, we can finally reduce the data set to one row per student.

1Since 2014 it is possible to change your sex at birth in the Netherlands. For the sake of simplicity,
we assume this did not occur, especially since people need to be at least 16 years of age in order to apply
for this change.
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6.2 Modelling

In this section, we outline the usage of two very different types of models: (i) a
relatively transparent model and (ii) a ‘black-box’ model. By doing this, we showcase
what the trade-off is between the complexity and performance of a model. We
hypothesise that a more complex (i.e. black-box) model performs better, while a
transparent model, despite given less accurate results, may be more valuable thanks
to a higher degree of explainability. In this section, we only focus on the performance
of the model while explainability is explored in Chapter 7. To keep a structured
approach, we follow the various tasks laid out by CRISP-DM in the modelling phase.

6.2.1 Select Modelling Technique

As mentioned before, we select two models at either end of the complexity spectrum.
Concretely, we look at a random forest (RF) and a single hidden layer (i.e. shallow)
neural network (NN). RFs (Breiman, 2001) are fairly transparent since they are built
on decision trees which are easy to interpret. In contrast, a NN (Venables & Ripley,
2002) is much more complex due to the hidden layer which essentially forms a model
of other models.

While there are many other models available (see Chapter 3 for examples), we limit
ourselves to only these two since our goal is not to try every model available, but
rather to examine two well-known models that are very different from each other and
thereby get an idea of what trade-off exists between complexity and performance.

6.2.2 Generate Test Design

One of the key challenges in training ML models is choosing a suitable test design.
To make a fair comparison between IRT and ML, we opt to limit the ML models to
the item responses. That is, we do not use ‘metadata’ about students such as their
sex, birth date, or language spoken at home (see Chapter 4 for other attributes of
students). Thus, the predictions for the school types are based on a matrix with
only 0’s (incorrect), 1’s (correct), 9’s (not filled in), and missing values (item was not
administered). The latter option has to do with the fact that the tests follow a design
where the difficulty of the items has been adapted to the ability of students and has
been described in Section 4. In essence, the data used for prediction is a sparse matrix
with values not missing at random (NMAR) (R. J. A. Little & Rubin, 2002).

Since most classifiers cannot deal with large amounts of missing value (especially
if they are NMAR), we consequently train one classifier per test version. Because
our goal is to predict school advice at T3 from item responses at T0, we have four
test version to deal with: 515, 516, 517, and 518 (see Section 4 for a description). The
procedure for generating our test design is as follows:

1. Select the items from T0;
2. Split the data into a training (70%) and test (30%) set;
3. Split the training data into four parts corresponding to their test version;
4. Train the models on each of the parts (continued in Section 6.2.3).

We end up with two models for each test version, so eight models in total.

In this research, there is a special interest in those who switch school type. However,
we have already established that there are many more people who do not switch
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than those who do switch. A classifier is therefore prone to predicting no one (or
very few) as having switched to a different school type. To remedy this, we follow a
cost-sensitive learning approach (Elkan, 2001) and assign case weights to observations.
According to this approach, a case weight determines the misclassification cost that
occurs when an observation is incorrectly classified; the higher the weight, the more
costly the misclassification. To gauge the impact of these weights, we train two
variations of a model: one with case weights and one without case weights. The
weights are chosen such that the group of switchers has the same sum of weights as
the groups who did not switch.

For instance, if there are 20 people who switched and 100 people who did not switch
between school types, we assign a weight of five to switchers and a weight of one to
non-switchers so that the sum of the weights for both groups is 100. As a consequence,
misclassifying one (entire) group is just as costly as misclassifying the other. However,
this is an extreme case as it is in practice unlikely to find misclassifying five people
just as bad as misclassifying one. As stated before, this is merely done to showcase
the potential of predicting switching of school type. To test the effect of case weighing,
we train every model with two variations: one having weights and one having no
weights. This increases the total number of models we need to train from 8 to 16.

6.2.3 Build Model

In the previous subsections we argued the need to train 16 different models: two
techniques, namely a RF and a NN; one model per test version (4 in total); and
a variation of every model with weights and no weights. Training these models
and tuning their hyperparameters in a loop can be done effortlessly with the train
function from the caret package (Kuhn, 2008) in R. For the RF we use the Ranger
package (Wright & Ziegler, 2017) (which is just a faster reimplementation in C++ of
the original Fortran code by Breiman (2001)) and for the NN we use the nnet package
(Venables & Ripley, 2002).

The caret package tries different combinations of hyperparameters, automatically per-
forms cross-validation (CV), and then calculates a performance metric. To speed up
this process, we perform futility analysis (Kuhn, 2014) to adaptively resample hyper-
parameters such that we discard combinations which are clearly sub-optimal. When
tuning hyperparameters in the caret package, there are two types of performance
measures which can be optimised for in a classification setting, that is (i) accuracy
and (ii) Cohen’s kappa. While the latter is more suitable for class imbalance (as is the
case for school type), we instead use accuracy because, as it turns out, kappa cannot
always be computed and thus results in a value of 0. For each hyperparameter, we
try 20 different combinations (i.e. tune length).

While it is possible to increase certain settings which allow more hyperparameters to
be tested, this is most likely not necessary and will only increase training time which
is already high. For example, the maximum number of weights of the NN is restricted
to 10 000 and increasing this to, for example, 20 000 allows for more complex fits but
also greatly increases training time. In total, training all the models took 254 minutes.

6.2.4 Assess Model

Now that the models are trained, we can evaluate their performance on the test set.
Similar to Chapter 5, we do this by looking at the metrics sensitivity, specificity, and
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Table 6.1: Performance metrics for 12 models. For models computed for test version
515, some metrics could not be computed due to division by zero and is therefore not
shown in this table.

Test Model Weighted Sensitivity Specificity AUC

516 NN Unweighted 0.740 0.870 0.691
516 NN Weighted 0.742 0.871 0.719
516 RF Unweighted 0.863 0.932 0.698
516 RF Weighted 0.861 0.931 0.634
517 NN Unweighted 0.692 0.846 0.529

517 NN Weighted 0.567 0.784 0.638
517 RF Unweighted 0.697 0.848 0.685
517 RF Weighted 0.700 0.850 0.713
518 NN Unweighted 0.790 0.895 0.715
518 NN Weighted 0.772 0.886 0.659

518 RF Unweighted 0.795 0.897 0.788
518 RF Weighted 0.790 0.895 0.792

area under the curve (AUC). The results are presented in Table 6.1, but we discuss
them in greater detail in this section. A confusion matrix for each table specifying
the class counts between the predicted and reference model is given in Table D.2.
Because we trained a separate classifier per test version, we will evaluate them per
classifier as well. In the next subsection, we take a closer look at how the models treat
students who switch — analogously to Section 6.2.5.

Test version 515. As described in Section 4, test version 515 roughly corresponds
to VMBO-BB and VMBO-KB which is one of the vocational school subtypes. Conse-
quently, it rarely occurs that people go ‘upstream’ multiple levels (see Appendix A for
an explanation of the different subtypes). In fact, out of 3 085, only 6 people switched
to HAVO. While case weighing has been applied to accommodate for class imbalance,
this situation is so severe that the model has essentially become worthless. To under-
stand why, consider that the performance of hyperparameters is tested by means of
CV. If there are only 6 people who switched (of which 2 are in the test set), it stands
to reason that in some iterations there is only one output class (i.e. VMBO). These
iterations then result in an error (because there is only one response class) which
means this particular value of the hyperparameter will not be considered. Thus, the
model is ill-trained and if it was not, the results would hardly be generalisable.

In contrast to the other test version, results for test version 515 are not included in
Table 6.1. We find there to be a specificity of 0.999 for all four models (i.e. NN and
RF, one with weights and one without) while the sensitivity cannot be computed.
Consequently, the AUC cannot be computed either. As stated before, however, these
results are nonsensical due to having only a few people who switch school type.

Test version 516. In the previous paragraph, we found that only a few students
switched to a different school type. This was due to the different subtypes in VMBO
education. For test version 516, recall that this roughly corresponds to school advice
of VMBO-GT. Thus, there are now fewer subtypes separating VMBO and HAVO.
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Indeed, students who were administered test version 516 switched to a different
school type 687 times while in 3 626 cases their school advice remained the same.
Notwithstanding this increase in switchers, there is still a large imbalance in both
switchers and school type. Case in point, 3 640 students followed the VMBO school
type at T3 versus 647 students pursuing HAVO and 26 students in VWO. These
numbers do not exactly correspond with the previous number because a test version
can also be distributed to students not in the corresponding school type.

We begin our performance evaluation by looking at the performance of the NN.
Performance on the test set yields a sensitivity of 0.740 and a specificity 0.870 for the
unweighted model. Furthermore, AUC is 0.691. One characteristic of performance
that is true for all models in Table 6.1 is that the specificity is higher than the sensitivity.
Of course, one could adjust the threshold t such that sensitivity and specificity are
balanced. Another characteristic of these models we note is that there is a minimal
difference in terms of performance between the weighted and unweighted model.
In fact, the weighted NN performs a bit better in terms of sensitivity and specificity,
0.742 and 0.871 respectively. This discrepancy is likely caused by the random search
algorithm used in caret — it tries random values of hyperparameters and then out of
this subset selects the best ones available. It just might have happened that a different
set of random hyperparameter values was tried which resulted in a slightly better
performing value to be selected for the weighted model.

In addition to a NN, we also trained a RF on data for test version 516. For the
unweighted model, we found a sensitivity of 0.863 and a specificity of 0.932. The
overall AUC is 0.698. Interestingly, this model performs much better than the NN
described previously in terms of sensitivity and specificity but not so much on AUC.
This indicates that, at one point, a RF performs much better than a NN but on average
a RF is only slightly better. Finally, we note that the sensitivity and specificity of
the weighted model are similar to that of the unweighted model — 0.861 and 0.931
respectively. Again, this minor difference is likely due to random chance when
selecting hyperparameters.

Test version 517. In the previous two test versions, we saw people who switched
between school types were under-represented. While in test version 516 only 16%
of students switched school types between T0 and T3, this is already 30% in this test
version (517). Consequently, we expect the models to perform worse for this test
version. Furthermore, in contrast to the previous test version, students can now go
upstream (to VWO) or downstream (to VMBO), whereas previously they could only
go upstream. Between T0 and T3, 4 175 students stayed at the HAVO school type, 756
went to VMBO, and 1 084 went to VWO.

As expected, both sensitivity and specificity are much lower than for the previous
test versions. For the unweighted NN, we find a sensitivity of 0.692 and a speci-
ficity of 0.846. The overall AUC is 0.529. Because many more students who were
administered test version 517 switched school type (because this is a middle class),
we expect weighing to play a larger role. A weighted NN has a sensitivity of 0.567
and a specificity of 0.784. Although both the sensitivity and specificity are lower
for a weighted than for an unweighted NN, the AUC is higher, i.e. 0.638 (weighted)
versus 0.529 (unweighted). Thus, while an unweighted NN performs better for these
thresholds, a weighted NN performs better on average.
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The RF models perform worse for this test version as well. An unweighted RF model
achieves a sensitivity of 0.697 and a specificity of 0.848. Nevertheless, the AUC has
not decreased by much; while an unweighted RF in test version 516 had an average
AUC of 0.698, the AUC in test version 517 was 0.685.

As stated before, we expected case weights to play a larger role in this test version
because more people switched school type. In contrast to NNs, a weighted RF model
performs slightly better than an unweighted RF — having a sensitivity of 0.700, a
specificity of 0.850, and an average AUC of 0.713. However, it is unclear whether this
is actually caused by case weights or if it is the effects of the random search pattern
when tuning hyperparameters.

Test version 518. The final test version we discuss is test version 518 which roughly
corresponds to VWO. Consequently, we expect most people to stay in VWO and
some going downstream to HAVO or even VMBO. The number of switchers is
approximately equal to test version 516, only for this test version the primary class is
VWO. Between T0 and T3, 3 613 stayed at the VWO school type, 832 went to HAVO,
and 33 went to VMBO.

We begin our performance evaluation by looking at the NN. For the unweighted
model, we find a sensitivity of 0.790, a specificity of 0.895, and an average AUC of
0.715. Coincidentally, not only are the number of switchers approximately equal
between test version 516 and 518, but the models also perform approximately the
same. A weighted NN has a sensitivity of 0.772 and a specificity of 0.886 which means
a weighted NN slightly underperforms in comparison to an unweighted NN. The
average AUC is 0.659. In the next section, we take a closer look at how the models
treat students who switch instead of all students as in this section.

A RF performs similar to a NN. Concretely, an unweighted RF trained with the ranger
package achieves a sensitivity of 0.795, a specificity of 0.897, and an average AUC of
0.788. A weighted RF performs slightly worse in terms of sensitivity and specificity
(0.790 and 0.895 respectively) but a bit better on average AUC (0.792).

6.2.5 Evaluating Switching of School Type

In this section, we evaluate the impact of the model on students who have actually
switched school type. This section is laid out analogously to Section 5.5.1 with a few
changes:

I In Section 5.5.1 there was only a log-linear model; in this section, we have two
different models: a NN and a RF. We can evaluate the impact of both these
models separately.

I Instead of training a single classifier over all test versions, we now have one
classifier per test version. While this complicates the process of comparing the
models, this was ultimately necessary to be able to train the models.

I In Section 5.5.1 we had only an unweighted model. In this section, we have
both a weighted and unweighted model. In Section 6.2.4 we hypothesised that
an unweighted model would do better overall; Likewise, for students who
actually switched we assume that a model which assigns a higher weight to
those students will outperform a model who does not give this group special
attention.
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Figure 6.1: This figure depicts the sensitivity, specificity, and AUC of 12 models (NN
and RF; weighted and unweighted; one model per test version) for students who
switched school types.

The sensitivity, specificity, and AUC of the 12 models for students who switched
school type are visually displayed in Figure 6.1. While we will not discuss these
results in as much detail as in Section 6.2.4, we note a number of key observations
that characterise model performance of switchers.

The first observation is straightforward; that is students who switch are likely harder
to predict that those who do not (and are more scarce) so it makes sense that the mod-
els perform (much) worse on this group. Averaging over all models, the sensitivity
has decreased by 0.55, the specificity by 0.28, and the AUC by 0.028 in comparison to
the unweighted models. The decrease in specificity and most notably sensitivity ap-
pears to be an enormous cutback but may be misleading given the fact that the AUC
has only gone down slightly in performance. This may indicate that the threshold t
along which we can move the ROC curve is chosen sub-optimally. In other words,
there are thresholds which are favourable to students who switched, but perhaps less
favourable to those who do not switch.

A second observation is that, in contrast to the performance metrics shown in Table 6.1,
weighted models perform better than unweighted models in terms of AUC. This is an
important observation as it confirms our intention that we want to weigh students
who switch school types higher than students who do not switch. Thus, Figure 6.1
effectively shows that the poor performance for switchers can be mitigated at the cost
of performance of non-switchers by employing a cost-sensitive learning approach. Of
course, the question then becomes: how much is the performance of non-switchers allowed
to decrease in order for the performance of switchers to increase? Comparing the AUC of
the weighted models in Figure 6.1 to the AUC of the unweighted models in Table 6.1,
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Figure 6.2: This figure shows the number of mismatches between school advice at T0,
T3, and the predictions output by ML models. These results have previously been
established in Table 5.10.

we see that former generally performs better, indicating that the weights of the model
(for switchers) are set too high if the goal is to treat the two groups equally.

Finally, we note that — similar to the performance over all students — specificity is
much higher than sensitivity. While it is unclear what exactly is causing this, one
explanation may be that it is only favourable to classify that a student has switched
when the model’s confidence about this is high. Consequently, only few students
who actually switched school type have been classified as such, but when this did
occur the confidence of this event is relatively high. If we compare the accuracy of
the models on switchers, we find that the accuracy is significantly worse than the
no information rate, p < .001. In practice, however, this test is nonsensical since it
implies that if we know that a student will switch, it is better to predict the majority
class (HAVO).

To conclude this Section in a similar fashion as Section 5.5.1, we briefly look at how
the models perform in terms of predicting whether a student has switched instead of
which school type. Rules for transforming the data are given by Table 5.10. In total,
there are 66 mismatches over the different models and test versions. A more detailed
specification is shown in Figure 6.2. One interesting pattern is that a weighted NN in
test version 517 (corresponding to HAVO) tends to overestimate students — that is it
predicts they will switch from HAVO to VWO but they actually went from HAVO to
VMBO. The other mismatches occur relatively infrequently (between 1–4).

So, without considering the mismatches between school advice at T0, actual school
type at T3, and predictions by ML, we can look at Matthews correlation coefficient
(MCC, denoted as φ) to discover the relationship between the actual school type at T3
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and the predictions by ML. This is done analogously to Section 5.5.1 and is further
explained there. For an unweighted NN, we find there to be a strong correlation
between predicted switches by ML and actual switch at T3, φ = 0.7. For the weighted
variant, φ = 0.39 which indicates a weak to moderate correlation between predicted
and actual class labels. RF models perform better in predicting whether a student
has switched; both an unweighted and weighted RF have a very strong correlation
between predicted switching of school type and actual switches at T3, φ = 0.88 and
φ = 0.81 for an unweighted and weighted model respectively.

6.3 Discussion and Conclusion

In this chapter, we described how two types of ML models can be applied to predict-
ing school advice from educational tests. Concretely, we have trained a RF and a NN
on different test versions. This was necessary because of the sparse matrix resulting
from the multiple test versions. Furthermore, cost-sensitivity learning (Elkan, 2001)
was applied to assign extra weights to students who switched school type between
T0 and T3. Thus, we trained 16 models in total.

We first established that results from test version 515 are inoperable since the model
simply predicts that all students stay at the same school type. Next, we found that
weighted models sometimes exceeded and sometimes fell behind unweighted models
in terms of performance; this also depends on how many students switched. Another
observation was that all models seemed to favour specificity over sensitivity, although
it must be noted that this can be adjusted by moving the threshold along the ROC
curve.

To evaluate how the ML models treat students who switch school type, we highlighted
their performance by only looking at the performance of this group. In contrast to
previous results, weighted models now outperformed unweighted models. In other
words, when students are assigned a higher weight, ML tends to treat them better.
One caveat that must be noted is that, if we know that a student has switched, it
is better to predict the majority class (VMBO), p < .001. Finally, we looked at the
performance of whether ML predicted a student has switched (instead of to which
school type). Overall, we found that weighted NN on test version 517 systematically
overestimates school type. Class label correlation ranged from φ = 0.39 (weighted
NN) to φ = 0.88 (unweighted RF).
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III

Evaluation
In the final part of the CRISP-DM cycle, we perform an evaluation of the mod-
els. In Chapter 7, we take a closer look at the explainability of the model and
how this compares to their compared performance. Thus, we essentially seek
to answer SQ2: How do different techniques perform when predicting school
advice? and SQ3: How do different techniques perform in terms of explainabil-
ity?.





Chapter 7

Comparing IRT and ML

The primary goal of this research is investigating how IRT and ML differ in terms
of performance and explainability. To this end, we evaluate two key aspects of per-
formance in this subsection: (i) predictive accuracy and (ii) computational feasibility
after which we discuss differences in explainability by utilising the explainability
framework laid out by Lipton (2016) and is further described by Robeer (2018) and
extended by Waa, Robeer, Diggelen, Brinkhuis, and Neerincx (2018) in the form of foil
trees.

7.1 Performance Evaluation

In this section, we compare the two methods in terms of predictive accuracy and
computational feasibility as specified in research questions SQ2.1 and SQ2.2. Already
in Chapter 5 and Chapter 6, we have described the performance of IRT and ML
respectively in detail. In this section, we discuss the comparison of both methods
in more detail. Moreover, we compare the two models in two different ways: (i) in
terms of predictive accuracy and (ii) in terms of sensitivity, specificity, and AUC. This
is because different performance metrics may come to different conclusions.

7.1.1 Predictive Accuracy

First, we look at the predictive accuracy over all students. To compare IRT and ML
in terms of performance, we have computed a McNemar’s chi-squared test (Agresti,
1990, p. 415) to compare the accuracy of IRT1 and the four ML models. This is achieved
by aggregating the class labels of each model over all test versions (i.e. pretending
there is only one test version) and then tabulating a confusion matrix of the two
methods from which the diagonals can be compared against each other. This chi-
squared test is used since it can be applied to a 2x2 contingency matrix where the
McNemar test statistic is defined as X 2 = (b−c)2

b+c (Agresti, 1990, p. 415). Note that this
is only performed on the test set of ML since using all data would overfit the ML
models. Results are presented in Table 7.1. The tests point out that all ML models are
significantly different from IRT, p < .001. However, this does not imply ML models
are performing better than IRT, but judging from the higher sensitivity, specificity,
and occasional higher AUC it is easy to imagine that ML techniques indeed perform

1Although we used MLR to make predictions from the IRT procedure, we use the term IRT to refer
to the general process that involves both IRT and MLR.
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Table 7.1: McNemar’s chi-squared test for four ML models. The labels from the
different test versions have been aggregated. The columns Model 1 and 2 acc indicate
the number of correct labels alongside the diagonal (i.e. the true positives).

Model 1 Model 2 Model 1 acc Model 2 acc X 2 df p-value

Weighted RF IRT 0.813 0.657 316.49 1 <.001
Weighted NN IRT 0.735 0.657 74.73 1 <.001
Unweighted RF IRT 0.814 0.657 315.76 1 <.001
Unweighted NN IRT 0.781 0.657 194.38 1 <.001
Weighted RF Weighted NN 0.813 0.735 180.57 1 <.001

Weighted RF Unweighted RF 0.813 0.814 0.07 1 .79
Weighted RF Unweighted NN 0.813 0.781 72.25 1 <.001
Weighted NN Unweighted RF 0.735 0.814 174.31 1 <.001
Weighted NN Unweighted NN 0.735 0.781 58.27 1 <.001
Unweighted RF Unweighted NN 0.814 0.781 79.81 1 <.001

better than IRT. Additionally, the higher accuracy of the ML models also indicates
they indeed perform better than IRT.

Furthermore, we have compared every ML model with every other ML model in a
similar fashion. One way to appreciate these models is to rank them by their accuracy:

1. Unweighted RF (accuracy of 0.81)
2. Weighted RF (accuracy of 0.81)
3. Unweighted NN (accuracy of 0.78)
4. Weighted NN (accuracy of 0.73)
5. IRT (accuracy of 0.66)

From Table 7.1, we see that the predictions of a weighted RF and an unweighted RF
are similar, X 2(1, N = 5 364) = 0.07, p = 0.79. This pattern has previously been
observed — albeit without a significance value — in Table 6.1 where the performance
metrics of both models were consistently similar. Other inferences we made from this
table carry over to the aforementioned ranking. For example, from the performance
metrics, we noticed how a weighted NN usually performed the worst; hence, this
model is in the last place.

Comparing Sensitivity, Specificity, and AUC

In addition to looking at the predictive accuracy of the models, we can compare
the other performance measures of IRT given in Table 5.8 against the performance
measures of ML given in Table 6.1. One use of doing this is that it serves as a validation
of the previously described results. In essence, the metrics describe hereafter are
robustness measures. Note that the performance measures of IRT are computed using
all data, whereas those for ML are only on the test set. Furthermore, this comparison
is convoluted because classifiers are trained per test version and can therefore not
easily be compared to the IRT. In other words, the aggregated class (VMBO, HAVO,
VWO) do not directly correspond to a single test version so these cannot simply
be compared. Additionally, test versions can also be administered to students not
corresponding to that school type. We can, however, describe the general patterns we
have seen between the two approaches. We do so by following a mapping between
test versions and school type and hence we describe these results per test version.
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Table 7.2: McNemar’s chi-squared test for all models of the group of students that
switched.

Model 1 Model 2 Model 1 acc Model 2 acc X 2 df p-value

Weighted RF IRT 0.147 0.693 464.83 1 <.001
Weighted NN IRT 0.354 0.693 202.21 1 <.001
Unweighted RF IRT 0.091 0.693 542.82 1 <.001
Unweighted NN IRT 0.167 0.693 425.53 1 <.001
Weighted RF Weighted NN 0.147 0.354 154.13 1 <.001

Weighted RF Unweighted RF 0.147 0.091 49.59 1 <.001
Weighted RF Unweighted NN 0.147 0.167 3.33 1 .07
Weighted NN Unweighted RF 0.354 0.091 235.37 1 <.001
Weighted NN Unweighted NN 0.354 0.167 125.39 1 <.001
Unweighted RF Unweighted NN 0.091 0.167 51.61 1 <.001

Starting with the class VMBO, we can roughly map this to test version 515 and
516 (see Section 4). As stated before, however, test version 515 has been rendered
inoperable due to only very few people switching school type and thus being left
with only one class. For this reason, we leave test version 515 out of the equation
and continue to compare VMBO to test version 516. In terms of sensitivity and
specificity, a (un)weighted NN slightly underperforms and a (un)weighted RF slightly
outperforms IRT. When it comes to AUC, however, IRT is the better model. This may
be relevant if one decides sensitivity should be more favoured instead of specificity
(or vice versa), but at the current threshold, it means RF performs slightly better and
a NN performs slightly worse than IRT.

The HAVO class is interesting because it features many more switchers than other
classes. This is precisely where ML may have an edge; ML models trained on test
version 517 all outperform IRT in terms of sensitivity and specificity. The differences
are also much greater than in the previous test version. When it comes to AUC, NNs
perform much worse while RFs perform slightly better. Thus, we can say that IRT
is, on average, a slightly better model than NNs in the HAVO class, but NNs still
perform better at the current threshold. RFs outperform IRT on every metric.

Finally, we look at the VWO class which we can roughly map to test version 518.
Again, in terms of sensitivity and specificity, ML outperforms IRT. NNs are slightly
behind IRT when it comes to AUC, a weighted NN more so than an unweighted
NN. On the other hand, RF also outperforms IRT in terms of AUC; consequently, we
can say that a RF is a better model if a student’s school advice at T0 is VWO or their
administered test version is 518.

Switching of School Type. Similar to Chapter 5 and Chapter 6, we direct some of
our attention towards those who switch school type. Hence, it is imperative we also
evaluate which model performs best in terms of predictive accuracy on the group of
students who switched school types. Similar to before, we have also computed Mc-
Nemar’s chi-squared tests (Agresti, 1990, p. 415) to compare the predictive accuracy
of IRT and various ML models. Results are displayed in Table 7.2. Looking at the
comparisons of each ML model with respect to IRT, we see that all are significantly
different. Moreover, the predictive accuracy of IRT is much higher than for any
ML model. Being provided with the results described above and the much higher
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accuracy, we can conclude IRT performs better at predicting school advice of students
who switch.

We can also draw some conclusions about ML models. For instance, we can create a
ranking based on their predictive accuracy:

1. IRT (accuracy of 0.69)
2. Weighted NN (accuracy of 0.35)
3. Unweighted NN (accuracy of 0.17)
4. Weighted RF (accuracy of 0.15)
5. Unweighted RF (accuracy of 0.091)

This ordering is the complete opposite of the one we found when looking at all
students. Furthermore, from Table 7.2 we see that an unweighted NN and a weighted
RF perform similar, X 2(1, N = 987) = 3.3, p = 0.07. This reversed ranking can have a
number of causes. First of all, weighted models now perform better than unweighted
models. This is a pattern we noted earlier in Section 6.2.5 where we hypothesised and
found that weighted models perform better as more people switch school type. A
second reason may have to do with the complexity of the models. While previously
we found that a RF performed better than a NN, it is the other way around when we
only focus on those who switch school type. Because a NN is generally more flexible
than a RF (i.e. a RF is more robust), NNs can more easily adapt itself to ‘unlikely’ data
patterns such as students who switch school type and therefore deviate from the
majority of students.

Comparing Sensitivity, Specificity, and AUC

Like Section 6.2.5, we also compare the sensitivity, specificity, and AUC for the
group of students that switched school type. Thus, we compare Figure 5.11 (IRT) to
Figure 6.1. Again, the mapping between school types and test version is unclear, but
we assume the structure 515/516–VMBO, 517–HAVO, and 518–VWO to provide a
reasonable comparison.

From Figure 5.11 we can see that for the VMBO school type the sensitivity is 0.4, the
specificity 0.7, and the AUC 0.6. Then, from Figure 6.1 we learn that the sensitivity
and specificity of every ML model trained on test version 516 is lower than for IRT
(again, we leave test version 515 out of the equation). That said, the AUC for every ML
model is higher than for IRT which indicates that ML models are better on average,
while at the current threshold IRT performs better.

For the HAVO class, IRT achieved a sensitivity of 0.47, a specificity of 0.74, and an
AUC of 0.8. None of the ML models performed better on any measure. Hence, we
can conclude IRT is clearly the better model for the HAVO school type.

Finally, we compare the performance of the VWO school type. IRT has a sensitivity
of 0.47, a specificity of 0.7, and an AUC of 0.6. These results are comparable to that of
the VMBO school type; the same is true for ML models. All ML models performed
worse in terms of sensitivity and specificity, but better in terms of AUC.

Binary case. We concluded Chapter 5 and Chapter 6 by looking at they performed
in terms of whether a student switched instead of which school type (i.e. converting the
problem to a binary case). When comparing the results of IRT provided in Table 5.11
against ML in Figure 6.2, we see there are dramatically fewer mismatches in ML than
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Table 7.3: Overall training time in minutes for calibrating the Rasch model (IRT) and
training each ML model at T0.

Model Weighted Training time

NN Yes 115.67
NN No 88.51
RF No 25.10
RF Yes 24.54
IRT No 4.51

IRT. This becomes a bit better provided that Table 5.11 considers all 17 891 students
whereas Figure 6.2 only covers the test set of ML, i.e. 5 364 students (of whom 970
switched). In terms of performance, we can compare Matthews correlation coefficient
(MCC) of IRT and ML to make an ordering of the models ranging from better to
worse:

1. Unweighted RF (φ = 0.88)
2. Weighted RF (φ = 0.81)
3. Unweighted NN (φ = 0.7)
4. Unweighted NN (φ = 0.39)
5. IRT (φ = 0.16)

In conclusion, all ML models outperform IRT in predicting whether a student has
switched in terms of MCC.

7.1.2 Computational Feasibility

At the beginning of this research (in Section 1.2), we hypothesised that computational
feasibility would be an issue when constructing (computationally) expensive ML
models. This time is of course depending on the machine used. For both IRT and ML,
we used an R server running Ubuntu 14.04.6 LTS with 16GB RAM and an Intel(R)
Xeon(R) E5620 @2.40GHz CPU.

Already in Section 6.2.3, we have commented on the total time to train the models but
in this section, we dissect this even further. Overall, we found that the total training
time for all ML models was 254 minutes. To get an idea of the differences between
IRT and ML we can look at the training time for each model. The number of minutes
needed to train (or calibrate in the case of IRT) is provided in Table 7.3. From this
table, it becomes clear that a weighted NN requires the most time to train (almost 2
hours) while calibrating a Rasch model takes only four and a half minutes. Thus, all
ML models require much more time to be trained than an IRT (i.e. Rasch) model.

We can further dive into the training time to gain a deeper understanding of the
underlying patterns. A subdivision is visually represented for each model per test
version in Figure 7.1. IRT is not included since this is trained over all test versions.
There are a couple of key observations that stand out:

I A NN can take twice as much time to train than a RF. This is likely due to the
fact that NNs are much more complex than RFs or that a NN needed to be more
complex in order to achieve the same performance as a RF.
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Figure 7.1: Training time in minutes for the ML models.

I Training models for test version 515 is much faster than for any other test
version. A simple explanation is the one we noted in Section 6.2.4, namely that
only 6 people switched school type (of which none was predicted correctly).
Hence, we end up with a straightforward model in which all students stay in
the same school type.

I Training a model with case weights requires more training time than a model
without case weights. This is especially true for the NN but can also be observed
in test version 518 for the RF. Apparently, following a cost-sensitivity learn-
ing approach requires more computational power because it (in this research)
requires the model to be more complex.

In addition to these inferences, there are a couple of other intricacies worth pointing
out. For example, note that for IRT we have only displayed the time needed to
calibrate the Rasch model but not the time needed to determine the expected a
posteriori (EAP) estimates for the abilities. This is significant because calculating the
EAP values take much more time than making predictions for ML models (using the
predict function in R). Compare 25 seconds for IRT to a tenth of a second for ML.
This is closely related to some effects that occur as more students get added to the
database.

So far we have seen that training a ML model costs much more time than calibrating
a Rasch model. As more students get added (say twice as many), ML models will
require much more time to be trained because new patterns occur that may influence
the complexity of the model (likely make it more complex). In contrast, in IRT (using
conditional maximum likelihood) the time to calibrate stops increasing once the
probability of all response patterns have been calculated, so adding many more
students will not increase calibration time by much. Conversely, more students will
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not cause any problems for ML when predicting their values school advice but this
might cause IRT to take longer. That said, the difference in training/calibration time
between IRT and ML is much greater than the difference in their prediction time.
One solution for ML to this problem is to take a reasonably large sample to train the
model until the desired performance is reached, and then use the model from there
on only to make predictions. For IRT, this problem is much less severe.

Finally, it should be noted that the training time of ML is greatly influenced by
the settings chosen in Section 6.2.3. In other words, by allowing more or fewer
hyperparameters to be tested by caret, the overall training time can be adjusted. This
may possibly influence the performance of the model.

In conclusion, we can say that calibrating an IRT model is much faster than either a RF
or a NN. To put these results into perspective, training even the most expensive model
(weighted NN, 116 minutes) does still not take so much time since this can easily be
run over night. Even when adding many more students, ML is still unlikely to run
into any problems. Otherwise, a more powerful computer, fewer hyperparameters,
or a sample is required to remedy this problem. Thus, while ML models take much
longer to be trained than IRT models, all of them remain computationally feasible.

7.2 Explainability Evaluation

At the beginning of this research, we stated how there is a need to have explainable
models. This necessity has been captured in SQ3. While in the previous section
we have looked at the performance of the models, the interpretability has been left
undiscussed. In other words, if a student was to ask why they were given certain
school advice, to what extent can we explain why this advice was given?

One of the properties of interpretable models is that a model is transparent. In a
sense, a transparent model is the antithesis of a black-box model. Lipton (2016) shows
how transparency can be subdivided into three distinct viewpoints: (i) simulatability,
(ii) decomposability, and (iii) algorithmic transparency. We visit each of these three
notions, explain what they entail, and to what extent this applies to IRT, RFs, and
NNs.

7.2.1 Simulatability

One way to evaluate whether a model is transparent is to see if a person can grasp
the workings of a model in its entirety. That is, simulatability (Lipton, 2016) refers
to what extent a model can be fully understood by a human in a reasonable amount
of time. This may include time needed to perform the calculations of the model by
hand, but may also refer to making inferences based on the model — for example
in a decision tree following a data point from root to leaf. However, simulatability
is not necessarily intrinsic to a model. Consider a linear regression with three input
features; this can easily be calculated by hand. If we were to increase the number of
features to 1000, this suddenly becomes infeasible. On the other hand, a shallow NN
with two input nodes and two hidden nodes can actually be simulated as well.

An IRT model (Rasch in this research) with only a few items can be easily calculated
by hand. However, if the number of items increases to 290–360 (as is the case in
this research), this process suddenly becomes cumbersome. This is much different
for a RF, although, admittedly, this depends on the definition of what simulatability
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entails. As Lipton (2016) notes, this can be either the time needed to compute the
model by hand or the time needed to make inferences. While calculating a RF for
even a small number of features is time-consuming, walking through a RF from
root to leaf tree-by-tree is viable. The model can then be understood as a series of
textual explanations after which the final verdict results from a majority vote. Finally,
it should be evident that computing a single hidden layer NN with 290–360 input
features is rather infeasible.

However, simulatability does not necessarily refer to the time it takes to compute a
model, but to the time it takes to understand it on a conceptual level. While both
RFs and certainly NNs are difficult to conceptually grasp for non-expert, this is not
the case for IRT. In this model, the difficulty parameter is (as the name implies)
the difficulty in relation to the other items on the test and is therefore very easy to
understand. Moreover, the ability parameter is less intuitive but can also be described
by looking at the sum score of the scored item responses since this is a sufficient
statistic. In other words, by looking at the number of endorsed items, a student can
easily understand how this affects their ability which makes IRT the best explainable
model in terms of simulatability.

7.2.2 Decomposability

The concept of decomposability refers to the extent that each input, parameter, and
calculation can be intuitively explained. This is, of course, much easier if the inputs,
parameters, and calculations can be related to the output of the model and its effect
can be described. For this reason, models with (inherent) feature selection score poorly
on this transparency property. For ML models, we evaluate their decomposability
based on their hyperparameters and their feature importance (FI). Although it is
not even possible to do this for IRT (since it does not have hyperparameter or FI),
in a way we have already provided some insight into the model by describing the
distribution of the difficulty parameters and how they relate to ability in Chapter 5.

These distributions provide valuable insight in terms of decomposability. In the
Rasch model, there is one parameter that is to be estimated (difficulty) and one output
value (ability). The difficulty is easy to interpret and understand since it has real-
world value in that it can be linked to items itself. The ability is either useful when
comparing it to peers or when looking at sum score. The decomposability is even
greater in a 2PL model since this also estimates a discrimination parameter which can
be interpreted as the importance of an item.

Hyperparameters. One way of interpreting a model through decomposability is to
look at its (hyper)parameters. The hyperparameters of each RF and NN model are
given in Table 7.4. Starting with the NNs, we see that the models for test version
515 appear to be identical. Having only two units in the hidden layer and a very
low weight decay, they only predict a single class (VMBO). In a NN, the size of the
model refers to the number of nodes that are in the hidden layer (see Section 3.2.6 for
a more detailed explanation) while the weight decay functions as an early stopping
mechanism for gradient descent. In fact, the weight decay is similar to `2 penalisation
as used in, for example, the ridge or lasso regression. Other than this, there are two
other observations that stand out for the hyperparameters of a NN:
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Table 7.4: Hyperparameters selected by caret based on adaptive cross-validation.

(a) Hyperparameters for a neural network with a
single hidden layer. The size refers to the number of
nodes in the hidden layer. The decay function is
penalisation of the model.

Size Decay Test version Weighted?

2 0.00006 515 yes
2 0.00006 515 no

20 0.00337 516 yes
7 0.00026 516 no
4 0.00144 517 yes

1 0.06917 517 no
20 1.15205 518 yes
16 8.08174 518 no

(b) Hyperparameters for a random forest model. The number of trees is the number of trees
used in aggregating the model. The split rule is the algorithm used to determine on which
value to split. The minimum node size is the minimum number of observations used to make a
leaf node.

Number of trees Split rule Min node size Test version Weighted?

180 Extra trees 1 515 yes
169 Extra trees 2 515 no

27 Gini 9 516 yes
269 Extra trees 18 516 no

38 Gini 20 517 yes

179 Extra trees 3 517 no
237 Extra trees 19 518 yes
245 Gini 5 518 no
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I The number of nodes in the hidden layers is higher in a weighted model than in
an unweighted model. From this observation, it appears that weighed models
are more complex than their unweighted counterparts.

I The weight decay of the unweighted models is higher than the weighted models.
Recall that the weight decay parameter is essentially a form of regularisation
for the gradient descent optimisation algorithm to prevent it from overshooting
its minimum value. Thus, models with a higher weight decay are less complex
because they are more restricted by the higher penalisation term. Thus, not
only are unweighted models less complex because they have fewer nodes in
the hidden layer, but they are also more restricted. Consequently, this may also
imply that the models with a higher weight decay generalise better to other,
previously unseen data (Krogh & Hertz, 1992).

We also note some observations for the hyperparameters of the RF models (see
Table 7.4). In a RF model, the number of trees is the number of trees that leads to
a majority vote. This has previously been laid out in Section 3.2.4. The split rule is
the cost function used to determine the optimal split. This can either be Gini (see
Section 3.2.4) or extremely randomised trees (extra trees) (Geurts, Ernst, & Wehenkel,
2006), which aims to further randomise random forests by also selecting random
split points from random variables. By doing this, the time-consuming Gini index
needs no longer be calculated while performance decrease is often kept at a minimum.
Finally, the ‘min node size’ is the interaction depth of the model — i.e. the minimum
number of observations needed to perform a split; a higher ‘min node size’ leads to a
less complex tree.

For the RF models trained for test version 515, we see that they consist of 180 and
169 trees. Furthermore, the trees are grown deep having a minimum node size of
1 and 2. The trees are randomised even further by applying the extra trees split
rule. These results are unexpected given that they predict only one class (VMBO). A
possible explanation may be given by the fact that the CV accuracy for all attempted
hyperparameters on all folds was 1. For the other hyperparameters, there seems to be
no obvious pattern as to why they were selected. While there is no clear explanation
for this, one hint may be given by the fact that there is only little variance in the
accuracy when cross-validating different hyperparameters set-ups. For instance, the
difference between the best and the worst performing selection (i.e. the range) of
hyperparameters for an unweighted RF forest model is only as little as 0.0033; the
average range over all RF models is only 0.0052. Thus, it hardly seems to matter what
value of the hyperparameters is selected since all attempted combinations perform
about the same.

Feature Importance. A second way of looking at the decomposability of a model
is by looking at FI. We define this concept as the relative importance of the most
important feature in comparison to all the other features. Concretely, the most
important feature is defined as having a FI of 100(%) while the others have a score
relative to this number. In a RF, the feature importance is computed as the total
decrease in node impurities from splitting on the variable, averaged over all trees.
The FI in NNs is computed using Garson weights (Garson, 1991). Because each
test version has 290–360 input features (i.e. items), we have increased readability by
summing over the subjects the features belong to and is displayed in Figure 7.2. From
this figure, it is easy to see that Dutch language skills are viewed as most important
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Figure 7.2: Relative feature importance grouped by subject. This figure shows that
Dutch language skills is the most important subject followed by Dutch vocabulary.
Note that in this figure the models over different test versions have been aggregated.

in both models. In the RF model, arithmetic 1 and 2 seem to be a little bit more
important than the other content areas, but in general, the other content areas are
similarly influential. In a NN, only Dutch reading skills 1 and 2 appear to be less
important than the other content areas.

One interesting pattern in Figure 7.2 is that the sum of importance over all content
areas is much greater for the NN (60 079) than for the RF (23 576). This is remarkable
because FI has been scaled so that the most important feature has a score of 100.
An explanation for this phenomenon can be found in Figure 7.3. Here we see the
distribution of the FI per feature and is therefore much more detailed than Figure 7.2.
What stands out is that the box plots for the NN are much more stretched out than
for the RF. In other words, many features in NNs are more or less important, with
some being highly important. In RFs, most features do not contribute much (or even
anything) to the model while there is a small number of highly informative ‘super’
features that greatly determine the outcome. In terms of fairness, having a model
where most features contribute approximately equally is much more favourable than
a model with a small number of super features.

7.2.3 Algorithmic Transparency

The final property of a transparent model concerns the algorithm’s transparency. In
contrast to simulatability, this is intrinsic to the learning algorithm itself. For example,
since we know the shape of the error surface of a linear regression model, we can
give guarantees it will perform well even on unseen data. On the other hand, the
gradient descent algorithm used for NNs does not give such guarantees and thus
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Figure 7.3: The box plots in this figure show the distribution of feature importance
between a RF and a NN. For a RF most features are of little importance with many
outliers greatly determining one’s odds of achieving certain school advice. On the
other hand, the feature importance of a NN is much more spread out, indicating that,
while some are more difficult than others, there are only few that hardly matter or
that are highly informative.
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may need retraining. For both RFs and NNs we cannot a priori guarantee whether
they will work well on previously unseen data and their algorithmic transparency is
hence low. However, for IRT we can guarantee that the sum score of items is directly
related to the ability itself; the higher the sum score, the higher the ability since this
function is monotone and the sum score is a sufficient statistic of the model.

7.2.4 Post-hoc Interpretability

As Lipton (2016) notes, post-hoc interpretability involves explaining models after the
fact. While this has not been implemented in this research, we provide some directions
on how post-hoc interpretability can contribute to understanding the results.

Text Explanations. Consider a situation where a student asks their mentor why
they were given certain school advice. The mentor may then describe why they think
this is the case. Text explanations for ML follow a similar approach; by giving verbal
explanations of the model’s strategy, we can inform a student why they were given
certain school advice. For example, we can elucidate a student’s school advice by
(textually) listing some of the items they answered incorrectly but that proved to be
important for the model. Another approach is to train a second model (for example a
RNN language model) to generate an explanation (e.g. Krening et al., 2017).

Visualisation. Since humans are experts at quickly grasping visual patterns, post-
hoc interpretation through visualisation is a popular technique of qualitatively show-
casing what a model has learnt. In the context of educational tests, however, we
do not immediately see any form of visualisation which can help explain students’
school advice.

Local Explanations. Whereas the previous types of post-hoc explanations aim to
explain the entire model, it may be useful to explain only a single decision if the
former is unattainable. For example, in computer vision applications we may create
a saliency map by asking what would happen if a single pixel were changed. The
gradient descent search pattern can then be superimposed on an image to show what
the NN has focussed on. As Edwards and Veale (2017, p. 56) note, a decision may
explain both before and after it has occurred as long as one has access to the model.
In turn, this allows students to create mental models of how an algorithm came to
a decision. However, in the context of educational tests, this may not be applicable
since a single changed value is unlikely to impact the model significantly.

Explanation by Example. If a student is to ask a mentor on why they were given
certain school advice, the mentor is likely to bring up the results from other students
to draw an analogy to theirs. Given enough students, every response pattern has been
filled and we can thus find (highly) similar response patterns where the school advice
was different. By doing this, the student may get a better understanding of why their
school advice was different from others who gave slightly different answers. Note
that this only works with students who were administered the same test version.
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7.3 Discussion and Conclusion

In this chapter, we have described a comparison of IRT and ML in terms of perfor-
mance and explainability. Before we draw conclusions based on these findings, we
first note a couple of limitations and considerations arising from the results.

One limitation of comparing the predictive performance is that we only looked at
predictive accuracy. While sensitivity, specificity, and AUC were also discussed, we
did not draw any conclusions on this and this was not shown in the ranking. The
reason why this was not showed is that we had to train a separate classifier per test
version. Consequently, this test version could not be compared to the results of IRT
subdivided by class since this does not completely correspond (see Section \ref{{test-
moment-and-test-version}). Because AUC was generally higher for IRT, this leads
to the question of whether it is better to have a better model on average or at this
threshold.

When it comes to decomposability of the models, we found that Dutch language skills
were deemed to be more important than the other content areas. While this simply
arose from the data, we can ask ourselves whether such a property is desirable to
have in an educational test. In other words, should it be the case that one content
area is more important than others, or should all content areas weigh equally? If the
latter is considered to be more desirable, tests should be accommodated such that
this shows in the data.

In conclusion, we found that all ML models performed better than IRT when we
look at the predictive accuracy over all students. More specifically, RFs performed
better than NNs even though this was not hypothesised. There was little difference
between weighted and unweighted models. When we zoomed in on students who
switched, we found the ranking is now suddenly in reverse order; IRT performs by far
best followed by NNs and then RFs. Moreover, weighted models proved to provide
a substantial improvement to unweighted models. However, when only looking
at whether a model predicted a switch accurately, we found Matthews correlation
coefficient between the predicted switch and ground truth to be highest for RFs,
followed by NNs and IRT lagging much behind.

As a second component of performance, we evaluated computational feasibility.
Even though ML models took much longer to train than IRT (especially NNs), we
concluded both are computational feasible since these models can still easily be
trained overnight. Of more data were to be added, this would not pose any problem
for IRT but may — at some point — start to become cumbersome for training ML
models. To reduce training time, one can either upgrade to a more powerful computer
or use a sample to train the model and use that to predict the rest. After all, when it
comes to predicting school advice, times for both IRT and ML are negligible.

Finally, we utilised the explainability framework by Lipton (2016) to evaluate the
explainability of both IRT and ML models. In terms of simulatability, IRT is more
transparent since a model with a small number of items can be calculated by hand.
Furthermore, it is conceptually easy to understand given the real-world value at-
tached to both the difficulty and ability parameters. RFs are somewhat interpretable
because one can walk through every decision tree root to leaf to gain a deeper under-
standing of the model. NNs are least transparent due to the nature of the hidden layer.
In terms of decomposability, we were able to gain a deeper understanding using the
hyperparameters of the models. From this we found weighted models to be complex
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than unweighted models. By looking at the feature importance, we found that the
content area of Dutch language skills was more important in determining school
advice than others. For IRT, we can look at the difficulty parameter distribution
and ability distribution to gain a better understanding of how a student compares
to others. Although this does not tell us which items were more important for this
decision, it does give an idea of which items were more difficult. Thirdly, in terms
of algorithmic transparency, neither RFs nor NNs can give any guarantee that they
will hold for new data. IRT does this to some extent, namely that we know that the
test response function is monotone such that a higher sum score relates to a higher
ability. Finally, we gave some directions to provide post-hoc interpretability such as
providing textual explanations or providing similar response patterns with different
school advice.
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IV

Conclusion and
Discussion

In the last part of this research, we attempt to answer the (sub)research ques-
tions. We conclude this part in Chapter 9 by having a brief discussion on the
implications, limitation, and recommendations following this research.





Chapter 8

Conclusion

This study investigates how progress tests can be used to establish school advice by
comparing methods from the fields of IRT and ML. To this end, we have defined the
main research question as follows:

RQ How can educational tests be used to predict school advice?

In this chapter, we look back at the previous chapters and try to answer the main
research question by first reviewing its subquestions.

Subquestions

In order to answer the main research questions, we look at its subquestions respec-
tively.

SQ1 What techniques can be used to predict school advice?
1.1 What are current approaches to predicting school advice?
1.2 How can domain-specific techniques be used to predict school advice?
1.3 How can domain-agnostic techniques be used to predict school advice?

In Chapter 2, we provided an overview of currently used methods to measure ed-
ucational progress. Concretely, we found that both SEM and IRT in conjunction
with an Elo-like rating were used in both adaptive and non-adaptive tests. Then in
Chapter 3, we gave an overview of domain-specific and domain-agnostic methods
that may be used for predicting school advice. Concretely, we found that IRT is likely
the most suitable domain-specific method because of its underlying focus on the
theory behind the test. Given that school advice is a discrete outcome variable, some
potent domain-agnostic methods from ML include RFs, SVMs, and various types of
NNs. As to how these techniques can be used, we laid out the process of calibrating
both a unidimensional and multidimensional IRT model in Chapter 5, although the
latter was rendered inoperable due to population misspecification. Furthermore,
we outlined the process of constructing a RF and a NN, the process of tuning the
hyperparameters, and the intricacies resulting from having multiple test versions
which caused us to train 16 models in Chapter 6.
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SQ2 How do different techniques perform when predicting school advice?
2.1 How do domain-specific and domain-agnostic techniques perform in
terms of predictive accuracy?
2.2 How do domain-specific and domain-agnostic techniques perform in
terms of computational feasibility?

In terms of overall predictive accuracy, we found that ML outperformed IRT with
a RF giving more accurate results than a NN. When zooming in on the group of
students who switched school type, however, IRT severely outperformed all other
models with NNs being more accurate than RFs. Moreover, using case weights
substantially improved the ML models for the group of switchers. When looking
at whether a switch was predicted, ML yielded better results than IRT in terms of
Matthews correlation coefficient. Related to computational feasibility (SQ2.2), we
found that IRT is much faster than ML (with RFs being faster than NNs) but this may
only be an issue if the data set is considerably larger. Even then, alternatives exist to
handle this problem and we thus conclude all models are computationally feasible.

SQ3 How do different techniques perform in terms of explainability?

In Chapter 7 we evaluated the explainability of both IRT and ML. Overall, IRT is
easier to explain since its parameters (difficulty and ability) have real-world value
and the overall ability can be explained through the sum score which is a sufficient
statistic. In terms of decomposability, IRT is also easier to break apart since its diffi-
culty and ability parameters provide valuable insight when combined with students’
item responses. ML models now perform slightly better since we can look at their
hyperparameters and feature importance to get a better understanding of how a
model came to a decision. Furthermore, none of the ML models provides decent
inherent algorithmic transparency while IRT provides some assurances since it is a
monotone function where a higher sum score corresponds to a higher ability. Finally,
post-hoc interpretability allows even greater explainability by providing textual or
visual explanations, although this has not been implemented in this research.

Main Research Question

Provided with the insight and inferences from the subquestions, we can integrate this
in order to answer our main research question:

RQ How can educational tests be used to predict school advice?

School advice is used for determining which school type is most suitable for a student.
Two disparate ways to predict school advice is to use either IRT or ML techniques.
For IRT, we calibrated a Rasch model on all test versions and extracted an ability
estimate using expected a posteriori which is then plugged into a multinomial log-
linear regression to calculate students’ probabilities for every distinct school advice.
For ML we trained one classifier (a RF and a NN) per test version due to a sparse
matrix. Furthermore, we followed a cost-sensitive learning approach and applied
higher case weights to students who switched between school type. When looking at
the performance of all students, RFs proved to perform substantially better than any
other model. When concentrating on only those students who switched school type,
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IRT outperformed all ML models. Furthermore, IRT was usually the better model on
average (in terms of AUC) while ML often performed better on the tested thresholds
(sensitivity and specificity). We found all models to be computationally feasible. In
terms of explainability, the models are a close match; IRT is more straightforward to
understand while ML is more decomposable.
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Chapter 9

Discussion

In this chapter, we expand on a number of choices made in this research by first
discussing some practical implications, stating a number of practical implications,
limitations, and finally providing pointers for future research. Because different test
scores on different content areas are difficult to combine and interpret for teachers,
this study investigated how to predict school advice for students. To this end, we
have compared a number of domain-specific and domain-agnostic techniques and
compared them in terms of performance and explainability. In this process, a number
of decisions have been made that influence the outcome but also provide us with
future work which we reflect on in this chapter.

9.1 Practical Implications

One important aspect of discussing the use of the proposed solution is to see how
it can be applied in practice. To this end, we note some practical implications and
limitations the models may run into. Additionally, we also note ethical considerations
that arise when using algorithms to automatically classify a student for a school type.
We focus on the implications of ML although we occasionally make a comparison
with IRT to see how the current situation would change.

If the proposed ML models were to be implemented into practice, there are few key
aspects that should be taken into consideration. First of all, concept drift is likely to
occur. Concept drift is best explained by considering an alternative reality where the
proposed solution is already implemented (whether this is RFs or NNs is irrelevant)
and where students always follow the advice given by the system. Thus, if the model
advises a student to go to a different school type than they are currently, they will
do so. This means the model then becomes a positive feedback loop (Brinkhuis, Bakker,
& Maris, 2015). That is, a student will switch school type because the model said so;
the model is correct in that the student switched because the model recommended the
student to do so. To combat this problem, the use of trackers has been proposed to
deal with such dynamically changing data (e.g. Brinkhuis & Maris, 2019b). As stated
before, it is therefore of paramount importance that the model remains for decision
support only. While this does not solve the feedback loop, it does diminish it. An
indirect effect is the way it may influence teachers. For example, from the ML models
it turned out that Dutch reading skills was among the less important content areas.
Consequently, teachers may decide to spend less time on teaching this skill because it
is deemed ‘unimportant’. Of course, in practice this effect would be undesirable.
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Earlier we already commented on the fact that the feature importance for NNs is
much more equally divided over all items than for RFs. In other words, RFs has a
number of ‘super’ features whereas NN’s features contribute more or less equally.
While this is a scientifically interesting result, in practice this may be undesirable.
After all, one the requirements of educational tests is that it is fair to students in the
sense that they all have an equal opportunities. Although it may be the case that
Dutch language skills are more important than other content areas, it does not mean
this should be reflected in the model since students who are lacking on this subject
may still have room for improvement. Concretely, imagine a student who — for
whatever reason — has been lagging behind on this particular content area; their
school advice is now significantly lower than it would have been if all content areas
were to weigh in equally despite that they could easily improve their results by one
or two weeks of training. To make a comparison, school advice from a teacher does
not suffer from this because teachers look at how the students progress week by week
instead of at a single (measurement) moment.

One final practical implication is related to the explainability of the models. As
we have shown, ‘black-box’ ML models show a lot of promise in making accurate
predictions. With this high performance also comes the cost of complexity; to what
extent are we capable to explain how an algorithm comes to a decision? Especially
because of the ‘right to an explanation’ from the General Data Protection Regulation
(GDPR) (Council of the European Union & European Parliament, 2016), we pose
the question whether it is ethical (or even legal) to use algorithms to influence an
important choice in the lives of teenagers. While this is largely mitigated if the model
is instead used as decision support, future implementations (with better performance)
may play a larger role thereby also imposing greater ethical concerns.

9.2 Limitations

With this project, there are also a few other limitations that need to be taken into
account. First of all, this is a study aimed at showcasing differences between IRT
and ML within an educational context. Consequently, the created models can by
no means be readily implemented into practice. This is also the reason why the
deployment phase from the CRISP-DM cycle is not implemented. In addition to the
practical implications noted before, there are also a number of other limitations that
impact the validity of this study. We evaluate this by using the validity framework
laid out by Wohlin et al. (2012, p. 102–112).

Internal validity refers to the extent the models influence the outcome. The concerns
for this type of validity is two-fold: (1) the underlying validity of the tests itself
and (2) the internal validity of the models. Starting with the former, the threat to
instrumentation is mitigated by having a pre-test to detect any deviating items which
are then dropped from the test. Selection is only partly mitigated since schools can
choose whether they can participate in the SMS or not. If their students performed
poorly last year, they are less likely to participate next year. Furthermore, mortality
occurs since students may change schools, repeat a year, or some other event occurs
which causes us to lose track of them. Diffusion or imitation of treatments may pose
a threat since students in a higher year may pass some answers to a year below them.
This is possible because tests are changed only every few years. Lastly, resentful
demoralisation may be present because some students do not want to participate
in the tests. As a consequence, they may not put in as much effort and thereby get
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different school advice. Internal validity of the model may also be at risk due to the
black-boxness of ML which leads to a decreased understanding of how the models
came to a decision. Another internal validity threat for ML is posed by the seemingly
contradictory results found in Table 7.1 and Table 7.2 where the ranking of best
performing models based on accuracy reverses. While a possible explanation is that
this is caused by the different degrees of flexibility of the model, this is not further
explored and is therefore a threat.

External validity is concerned with conditions that limit our ability to generalise the
results outside the context of this research. Most notably, subject population is a
threat because certain groups are not included in the data. Students who switched
schools, skipped or repeated a year, or just any student who had an anomaly in their
data have been left out and therefore the results may be misleading.

Construction validity involves the relation between theory and observation. First of
all, Inadequate preoperational explications of constructs were mitigated because
we beforehand specified that the ‘best’ model is the one with the highest predic-
tive accuracy. However, confounding constructs and levels of constructs were not
accounted for but can be evaluated by future research.

Conclusion validity is concerned with the relationship between the models and the
outcome. Although low statistical power has been mitigated because the data set
consists of 17 891 students, ML could likely profit from having even more data.
Because we trained one classifier per test version and only 19% of students switched
school type, the number of switchers per school type is still relatively low for training
ML models. Adding (many) more observations to the data set is likely to further
improve performance for ML but might not have a similar effect on IRT. Furthermore,
drawing conclusions was convoluted because of the mismatch in the number of test
versions and the number of outcome classes. This led to a comparison of aggregated
predictive accuracy with only a loose comparison of sensitivity, specificity, and AUC.

9.3 Future Directions

Based on these results and limitations we also provide some directions for future
research.

Different Models, Metrics, and Classes. In this project, we made a number of
choices that highly influenced the outcomes and the results to be found. For example,
comparing other ML models (i.e. not RFs and NNs) may lead to vastly different results
and insights. Similarly, comparing other metrics or choosing different thresholds
along the ROC curve also affect which model performs ‘best’. Additionally, choosing
different classes will highly influence the outcome. That is, by choosing different
aggregations of school type there is not only any longer a mismatch between the
data and outcome, but it also causes the model to give different attention to different
classes. For instance, we have seen how the predictions for HAVO are worse because
students can go either upstream or downstream; if more classes are added (i.e. more
fine-grained classes), this class discrepancy is much more spread out.

Case Weights. An open question in this research is the one we posed in Section 6.2.5
related to case weights: how much is the performance of non-switchers allowed to decrease
in order for the performance of switchers to increase? In other words, how much do we
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value correctly predicting switchers at the cost of non-switchers? In this research, we
have used two extremes, namely one where switchers did not receive any special
attention and one where the group of switcher was just as important as non-switchers.
While there is no ‘optimal’ value, a desired value is likely somewhere in the middle
which can be evaluated in further research.

Confounding Variables. To make the models as fair as possible (and to provide a
fair comparison with IRT), we have opted to only use the item responses in ML to
predict school advice. This is a deliberate choice because — although adding more
information will improve the model — it may lead to biases against certain groups.
For example, the model may give better predictions for boys than girls, or assign a
vocational school type more frequently to those students who do not speak Dutch.
For the sake of fairness, we want to avoid this. However, even though we only used
item responses, it may still be the case that there are confounding variables which led
to a bias in the model. This can be inspected by either reviewing the predictions
by group to see if there are any differences or by adding those variables we think
are confounding to the model to see if they are of any importance; if they are not of
importance, they are not confounding. Future research may look into this matter.

Integrating IRT and ML. To even further improve the performance of the models,
one might look into integrating IRT and ML into a new framework. For example,
Pliakos et al. (2019) have already integrated these methods for the prediction of
personalised items’ recommendation in e-learning. They found their method to
perform better than either IRT or ML by itself. This result may carry over to this
research, although it remains to be seen how this combined approach will perform on
students who switch. Furthermore, multidimensional IRT models could be integrated
with ML to provide even further improvement.
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Appendix A

Education in the Netherlands

This appendix explains the various school types and tracks a student must go through
to complete their education. First, we outline the different parts of the Dutch edu-
cational system and how they contribute to their academic achievement. Next, we
take a closer look at the various components in Dutch education and the choices a
student can make along the way. Since this research is in the context of secondary
education, we scrutinise the different secondary educational tracks and how they
lead up to choosing a specific type of tertiary education.

A.1 Composition of the Educational System

Education in the Netherlands is divided into three parts: (i) primary education,
(ii) secondary education, and (iii) tertiary education. Primary education (also called
elementary education) starts at the age of 5 although children of 4 years old can
usually be admitted. After the completion of primary education, children go to
secondary education at the age of 12 until the age of 16, 17, or 18 depending on
the school type. Section A.3 identifies and explains the various types of secondary
education students may choose between. Both primary and secondary education
are compulsory to attend until students reach the age of 16. Then, education is only
partially compulsory to attend for two days a week. This is also depicted in Figure A.1.
Finally, tertiary education consists of both further and higher education (FE and HE
respectively). Concretely, FE is a type of tertiary vocational education known as
MBO (middle-level applied education or “middelbaar beroepsonderwijs” in Dutch)
which is subdivided into four more levels. HE consists of both HBO (higher-level
applied education or “hoger beroepsonderwijs” in Dutch) and WO (scientific education
or “wetenschappelijk onderwijs” in Dutch, colloquially referred to as university) which
focusses on more theory demanding jobs and scientific education. Their relation is
portrayed in Figure A.1.

A.2 From Birth to Job

When children have just been born, they usually stay at home with one of their
parents until they are old enough to go to daycare. From the ages of 2 to 4, children
can go to kindergarten which is a type of pre-school education. While kindergarten
is non-compulsory, it is popular because it allows both parents to get a full-time job.
Children of 5 years old have to be admitted to primary school which is compulsory
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Figure A.1: The different levels of education in the Netherlands.

education, although 4-year-olds are usually also accepted. After 8 years at the age of
12, students choose a school type to go to as part of their secondary education. Which
school types exist and how school advice is established is discussed in Section A.3.

Students’ first year (or first two years) of secondary education is called the bridge
year during which most students make a definitive choice for which school type to
follow. This is possible because most schools offer classes with mixed school types,
e.g. HAVO/VWO or VMBO GL/TL. This makes it easier for students to find out
which school type suits them best and switch accordingly without too much of an
impact. When finishing the VMBO school type, students can go to either MBO or
complete HAVO in one more year. HAVO students can go to MBO, HBO, or complete
VWO with one more of study. Additionally, HAVO students can take a full-time job
even if they are under the age of 18. This is possible because, even though students
must follow education for at least two days a week under the age of 18, obtaining a so-
called initial qualification releases them from this obligation. Finally, VWO graduates
may attend any form of tertiary education (i.e. MBO, HBO, or WO) or start a full-time
job.

Transfers from secondary to tertiary education are depicted in Figure A.1. Since
VMBO students still have to attend some form of education for two days a week,
most students transfer to MBO after which they pursue a full-time job. Additionally,
they can transfer to the HBO level. In contrast, HAVO students have the option to
take on a full-time job since they no longer have to attend compulsory education.
They may also go to the MBO or HBO tertiary education or spend one more year in
secondary education to complete VWO. After graduating from VWO, students can go
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to MBO or HBO, although the majority tends to go to WO (referred to as university)
to attain a bachelor’s degree. Subsequently, students who complete their bachelor’s
programme may pursue a (research) master and even a PhD.

A.3 School Types in Secondary Education

This section describes the various school types that exist in Dutch secondary ed-
ucation. When students graduate from primary school, they must choose which
school type to go to. This choice does not happen arbitrarily; school advice is typically
established from two components: advice the teacher gives and an extensive final
test at the end of primary education (although the latter not required by law). The
advice by the teacher is a teacher’s own opinion of which school type they think a
student fits best. Even though this is not an objective measure, it is usually highly
appreciated (and thus usually more important than the results of the end test of
primary education) because this advice encapsulates the experiences of a whole year
(or multiple years) rather than one to three measurement moments (as is the case for
the end test of primary education). In other words, school advice given by the teacher
is valuable since a teacher also looks at the personal side of a student and has more
time to establish advice. On the other hand, the end test of primary education is an
objective, national measure to compare a student relative to their peers.

We now list the various school types a student may choose considering the school
advice provided by both the teacher and the end test of primary education.

I VMBO — Preparatory middle-level applied education (“voorbereidend middel-
baar beroepsonderwijs” in Dutch) is a type of pre-vocational education which aims
to prepare students for furthered (vocational) education. This school type spans
the ages of 12-16 years old and can roughly be divided as having vocational
and theoretical tracks. All tracks prepare students for the MBO level in tertiary
education (albeit different types of MBO).

I Pro — Practical education (“praktijkonderswijs” in Dutch) is an educational
track for those who would otherwise not be able to attain a VMBO diploma.
Practical education is not included in this research.

I BB — Basic vocational programme (“basisberoepsgerichte leerweg” in Dutch)
aims to train students for a specific profession and is thus more practical
than the other programmes.

I BB+ — The same as BB, but with extra support for students who have
difficulty with the regular BB programme.

I KB — Middle management vocational programme (“kaderberoepsgerichte
leerweg” in Dutch) balances both vocational and theoretical education and
prepares students for either middle management or vocational training at
the MBO level.

I GL — Mixed programme (gemengde leerweg” in Dutch) is a mixture of KB
and TL.

I TL — Theoretical programme (“theoretische leerweg” in Dutch) is the highest
(i.e. most theoretical) programme in the VMBO school type and prepares
students for the most difficult type of MBO education. Moreover, after
completing this track it is possible to go to the HAVO school type. Since
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TL does not differ much from GL, we use a combined type GT (mixed
theoretical or “ gemengd theoretisch” in Dutch) to denote both these tracks.

I HAVO — Higher general continued education (“hoger algemeen voortgezet on-
derwijs” in Dutch) is followed by approximately 30% of students and typically
lasts five years from the ages of 12 to 17. It prepares students for the HBO
(polytechnic) level. After graduating, it is also possible to go to the VWO level
(year 5).

I VWO — Preparatory scholarly education or pre-academic education (“voorberei-
dend wetenschappelijk onderwijs” in Dutch) is a school type focussed on theory
which prepares students for going to university. It is followed by approximately
20% of all students and lasts from the ages of 12 to 18. There are two types of
VWO.

I Atheneum — The ‘default’ type of VWO.

I Gymnasium — Replaces one language subject (not English or Dutch) with
Greek or Latin. Hence, the Gymnasium school type provides students
with a classical background which can be helpful in medical studies or to
broaden students’ common knowledge.
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Table B.1: This table lists all variables in the data set and provides a brief description
of what they contain.

Column name Type Description

student_id Numeric ID unique to a single student
test_moment Factor Which test moment, e.g. T0 or T1
test_id Factor Which test version was used
school_advice Factor School advice for a student
response Character Scored response string (i.e. dichotomous)

ss_ftpe Numeric Standardised Score on the Final Test Primary
Education

school_type Factor School type corresponding to test version
test_year Factor Year in which the test was taken
test_time Date Specific date of when the test was taken
digital Logical Whether it is a computerised test or not

first_letters Character First letter(s) of a student’s first name
articles Character Prepositions or articles between first name and

surname, e.g. ‘van’ or ‘van der’
surname Character Surname of the student
birth_date Date Date of birth
sex Factor Sex at birth

language_home Factor Primary language spoken at home
sector Factor Sector of the student (only applies to VMBO).

E.g. business or agriculture
profile Factor Educational track students intend to follow in

year 4. E.g. Culture and Society or Nature and
Health

class Character ID code of students’ school class, e.g. 1A or 2B
school_id Numeric ID code of students’ school

unscored_response Character Unscored response string (i.e. polytomous)
school_advice_alt Factor Non-aggregated school advice
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Multidimensional IRT Analysis

In order to calibrate a multidimensional scale, the MIRT (Multidimensional Item
Response Theory) package is used in R (Chalmers, 2012). In contrast to Dexter, this
package requires data in a wide format. So, we use the data set in long format as
described in Section 5.1 as a stepping stone in order to transform it into a wide
format. We convert long to wide format by utilising the gather function from the
tidyr package (Wickham & Henry, 2019).

C.1 Estimating Item Parameters

The procedure for estimating parameters using the MIRT package is similar to that of
Dexter — i.e. we create one model per test moment.

The difficulty parameters from MIRT are plotted as an empirical cumulative distribu-
tion function (ECDF) in Figure C.1. At a glance, the item parameters seem relatively
similar to those estimated by Dexter. However, the high standard error points out
something is wrong with the estimates. Where Dexter uses conditional maximum
likelihood (CML), MIRT uses marginal maximum likelihood (MML) which is a differ-
ent approach but does not explain the large differences between the two packages.
Figure C.2 shows the relationship between MIRT and Dexter at test moment T0. The
relation appears to be a strong linear correlation, ρ = 0.98. However, Figure C.2
also points out a striking pattern in the item parameters: there is a clear separation
between the different test versions. More specifically, although the relation between
estimated item parameters by Dexter and MIRT is linear, the parameters returned
by Dexter are much higher than those reported by MIRT. For example, consider the
point where Dexter estimates parameters to have a difficulty of 0. In contrast, MIRT
estimates these items to have a difficulty between −1.1 and −0.5 depending on the
test version.

The reason why this happens is because of population misspecification. In targeted
testing design, MML assumes students have been sampled from the same population.
In this case, however, there seem to be multiple subpopulations. Consider two
situations for the background variable Y which provides some information about
students:

1. Y plays no role in sampling students, only in determining which items will be
administered.
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Figure C.1: Empirical cumulative distribution functions (ECDF) of the item
difficulties estimated by MIRT. Mathematics 1 and 2 seem to be amongst the harder
topics for students.
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Figure C.2: Comparison of item parameters estimated by Dexter and MIRT at test
moment T0. The distinct lines indicating school advice seem to hint at population
misspecification.
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Figure C.3: This figure shows that there is a clear separation between school types
when it comes to ability when this ability is estimated by Dexter or MIRT.

2. Y plays both a role in sampling students and in determining which items will
be administered.

In the second, situation we are interested in finding both the item and person param-
eters from each of the ability distributions corresponding to levels of the background
variable Y (Eggen & Sanders, 1993, p. 269–271). It may now be easy to see that Y
is, in fact, the school type of a student. In this testing design, we have not sampled
students independently of their school type but rather applied stratified sampling, so
leaving out that information when performing MML analysis will lead to incorrect
results since we then ignore the missing at random (MAR) condition of MML (Eggen
& Sanders, 1993).

As Eggen and Sanders (1993, p. 271) note, we can overcome this problem by specifying
Y in the MML analysis. This is certainly possible in MIRT by using the mixedmirt
function to specify which school type belongs to which student. However, this is
exactly what we like to be determined by IRT and by specifying this beforehand
the predictions become self-fulfilling. For completeness, we evaluate the effect of
population misspecification on the person parameters.

C.2 Estimating Person Parameters

Similar to the item parameters, the person parameters estimated by MIRT also suffer
from population misspecification. A comparison can be found in Figure C.3. Similar
to Figure C.2, there is a clear distinction between the ability of different school types
when they are estimated by either MIRT or Dexter.
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Figure C.4: In comparison to Figure 5.5, the density functions of the school types are
much closer together and are therefore guaranteed to have a higher error rate. This
occurs because of population misspecification.

To make this problem concrete, compare Figure C.4 to Figure 5.5. Between these charts,
it stands out that the distributions per school type are closer together in the models
estimated by MIRT than in those generated by Dexter. Hence, the misclassification
rate will be much higher for these models since they contain more overlap. To
estimate the impact of this problem, we look at various performance measures in a
similar fashion as for the Dexter models. The result is visualised in Figure C.5.

When comparing the results in Figure C.5 (confusion matrices given in Table C.1) to
those in Figure 5.6, we see that nearly all metrics are approximately 0.1 lower for all
school types. The overall AUC is 0.55, 0.59, 0.6, and 0.61 for T0 to T3 respectively
which is much lower than for the Rasch model constructed by Dexter. Thus, because
of this violation of the missing data, the fitted school advice is significantly worse for
models estimated by MIRT.

Finally, we briefly provide a comparison of a Rasch, 2PL and multidimensional (2
factors) model estimated by MIRT. This is also intended to emphasise the importance
of population misspecification. Figure C.6 shows four ability distributions for three
models, (1) for a Rasch model, (2) for a 2PL model, and (3) and (4) for a 2PL model
with two underlying factors. The fit gets worse as the model becomes more complex.
In fact, the cut-off lines for VMBO/HAVO and HAVO/VWO in Figure C.6 in (3)
and (4) are swapped, indicating that students with a higher ability are assigned to
a more vocational school type. Furthermore, a one-way ANOVA was conducted to
compare the distributions of a Rasch and 2PL model estimated by MIRT. There was a
significant difference between the two models, p < .001 (Table C.2).
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Table C.1: Confusion matrices per test moment for a Rasch model made with MIRT.

(a) T0

Reference

Predictions VMBO HAVO VWO

VMBO 0.646 0.286 0.105
HAVO 0.277 0.413 0.287
VWO 0.077 0.301 0.607

(b) T1

Reference

Predictions VMBO HAVO VWO

VMBO 0.718 0.288 0.085
HAVO 0.237 0.452 0.308
VWO 0.045 0.26 0.607

(c) T2

Reference

Predictions VMBO HAVO VWO

VMBO 0.687 0.286 0.083
HAVO 0.269 0.471 0.283
VWO 0.044 0.243 0.634

(d) T3

Reference

Predictions VMBO HAVO VWO

VMBO 0.709 0.336 0.092
HAVO 0.249 0.447 0.235
VWO 0.041 0.217 0.673
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Figure C.5: Similar to Figure 5.6, these plots show how various cut-off points affect
the ROC curve. In contrast to the person parameters estimated by Dexter, these
ROCs have much less AUC.
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Table C.2: Analysis of variance between a Rasch and a 2PL model showing Akaike’s
information criterion (AIC), Bayes information criterion (BIC), log likelihood, X 2

statistic, degrees of freedom (df), and the significance value (p).

AIC BIC Log likelihood X 2 df p

Rasch 6071870 6079569 -3034947 - - -
2PL 6019226 6034607 -3007639 54616.52 986 0
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Figure C.6: This figure depicts four ability distributions from different models at test
moment T0; in (1), the ability distribution for a Rasch model is shown. Next to that,
(2) shows the ability distribution under a 2PL model. Finally, (3) and (4) depict the
ability distribution for a multidimensional 2PL model with two factors.
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Confusion Matrices

D.1 Confusion Matrices for Cut-off Density Functions

Table D.1: Non-proportional confusion matrices corresponding to Table 5.5.

(a) T0

Reference

Predictions VMBO HAVO VWO Total

VMBO 5439 1135 198 6772
HAVO 1857 3031 1417 6305
VWO 216 1490 3108 4814
Total 7512 5656 4723 17891

(b) T1

Reference

Predictions VMBO HAVO VWO Total

VMBO 5895 973 125 6993
HAVO 1528 3385 1579 6492
VWO 89 1298 3019 4406
Total 7512 5656 4723 17891

(c) T2

Reference

Predictions VMBO HAVO VWO Total

VMBO 5872 1078 132 7082
HAVO 1553 3428 1392 6373
VWO 87 1150 3199 4436
Total 7512 5656 4723 17891

(d) T3

Reference

Predictions VMBO HAVO VWO Total

VMBO 5714 1502 301 7517
HAVO 1683 3152 1122 5957
VWO 115 1002 3300 4417
Total 7512 5656 4723 17891

D.2 Confusion Matrices for ML Models
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Table D.2: Confusion matrices for the 16 ML models described in Chapter 6.

(a) Confusion matrix for a weighted RF model in test
version 515

Reference

Predictions VMBO HAVO VWO Total

VMBO 935 2 0 937
HAVO 0 0 0 0
VWO 0 0 0 0
Total 935 2 0 937

(b) Confusion matrix for a weighted NN model in test
version 515

Reference

Predictions VMBO HAVO VWO Total

VMBO 935 2 0 937
HAVO 0 0 0 0
VWO 0 0 0 0
Total 935 2 0 937

(c) Confusion matrix for an unweighted RF model in test
version 515

Reference

Predictions VMBO HAVO VWO Total

VMBO 935 2 0 937
HAVO 0 0 0 0
VWO 0 0 0 0
Total 935 2 0 937

(d) Confusion matrix for an unweighted NN model in test
version 515

Reference

Predictions VMBO HAVO VWO Total

VMBO 935 2 0 937
HAVO 0 0 0 0
VWO 0 0 0 0
Total 935 2 0 937

(e) Confusion matrix for a weighted RF model in test
version 516

Reference

Predictions VMBO HAVO VWO Total

VMBO 1094 159 3 1256
HAVO 16 13 0 29
VWO 0 0 0 0
Total 1110 172 3 1285

(f) Confusion matrix for a weighted NN model in test
version 516

Reference

Predictions VMBO HAVO VWO Total

VMBO 1094 159 3 1256
HAVO 16 13 0 29
VWO 0 0 0 0
Total 1110 172 3 1285

(g) Confusion matrix for an unweighted RF model in test
version 516

Reference

Predictions VMBO HAVO VWO Total

VMBO 1094 159 3 1256
HAVO 16 13 0 29
VWO 0 0 0 0
Total 1110 172 3 1285

(h) Confusion matrix for an unweighted NN model in test
version 516

Reference

Predictions VMBO HAVO VWO Total

VMBO 1094 159 3 1256
HAVO 16 13 0 29
VWO 0 0 0 0
Total 1110 172 3 1285
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Reference

Predictions VMBO HAVO VWO Total

VMBO 5 3 0 8
HAVO 224 1229 295 1748
VWO 1 21 33 55
Total 230 1253 328 1811

(i) Confusion matrix for a weighted RF model in test version
517

Reference

Predictions VMBO HAVO VWO Total

VMBO 5 3 0 8
HAVO 224 1229 295 1748
VWO 1 21 33 55
Total 230 1253 328 1811

(j) Confusion matrix for a weighted NN model in test
version 517

Reference

Predictions VMBO HAVO VWO Total

VMBO 5 3 0 8
HAVO 224 1229 295 1748
VWO 1 21 33 55
Total 230 1253 328 1811

(k) Confusion matrix for an unweighted RF model in test
version 517

Reference

Predictions VMBO HAVO VWO Total

VMBO 5 3 0 8
HAVO 224 1229 295 1748
VWO 1 21 33 55
Total 230 1253 328 1811

(l) Confusion matrix for an unweighted NN model in test
version 517

Reference

Predictions VMBO HAVO VWO Total

VMBO 0 0 0 0
HAVO 1 29 33 63
VWO 4 241 1023 1268
Total 5 270 1056 1331

(m) Confusion matrix for a weighted RF model in test
version 518

Reference

Predictions VMBO HAVO VWO Total

VMBO 0 0 0 0
HAVO 1 29 33 63
VWO 4 241 1023 1268
Total 5 270 1056 1331

(n) Confusion matrix for a weighted NN model in test
version 518

Reference

Predictions VMBO HAVO VWO Total

VMBO 0 0 0 0
HAVO 1 29 33 63
VWO 4 241 1023 1268
Total 5 270 1056 1331

(o) Confusion matrix for an unweighted RF model in test
version 518

Reference

Predictions VMBO HAVO VWO Total

VMBO 0 0 0 0
HAVO 1 29 33 63
VWO 4 241 1023 1268
Total 5 270 1056 1331

(p) Confusion matrix for an unweighted NN model in test
version 518
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