
UTRECHT UNIVERSITY

DEPARTMENT OF MATHEMATICS

MASTER THESIS

Implementing Deep Neural Networks to
Improve the Financial Market Model in

the Uniform Calculation Method

Author:
Tianyi Chen
5670500

Supervisors:
Dr. K. Dajani

Drs. H. J. M. de Bock
C. Dekker

Second reader:
Dr. M. C. J. Bootsma

July 5, 2019

iii

Abstract
In the Netherlands, the pension system is a large and highly-developed financial
sector. However, it remains a challenging and serious issue for pension funds to
provide accurate pension forecasting and sufficient pension communication, and
the consequence of a wrong estimate of pension entitlements can be destructive for
participants. To empower the pension participants to obtain insights in expected
incomes and get engaged in active retirement planning, the Uniform Calculation
Method (Uniforme Rekenmethodiek, URM) was issued by DNB in 2015 and has
come in force since the beginning of 2019. All the pension service providers in the
Netherlands are required to implement URM to estimate the pension entitlements so
as to determine the risk attitude and provide the participants with accurate pension
communication.

In this thesis, the overall goal is to investigate if deep neural networks can be con-
structed and implemented to improve the financial market model in URM so as
to help provide better financial forecasting and pension planning. Thus, both the
financial market model in URM and a set of DNNs are developed to generate fore-
casting scenarios. Accordingly, the pension entitlement development curves are es-
timated, and a comparison as well as an evaluation can be conducted to answer the
research question. Based on the chosen experimental settings and the considered
training, validation and test periods, the conclusion is that the DNN models imple-
mented in this thesis can outperform the URM model and provide relatively more
accurate pension communication, even though the accuracy still needs to be further
improved.

v

Acknowledgements
This research project is conducted in the form of an internship at the Dutch com-
pany RiskCo B.V. in Utrecht as the final requirement to obtain the Master’s degree
in Mathematics at Utrecht University.

First of all, I would like to thank my UU supervisor Karma Dajani, who referred me
to RiskCo, supervised my work, helped me whenever I had problems and encour-
aged me during the whole thesis project. Professor Karma is also the supervisor of
my bachelor thesis, and I am grateful for the time, support, patience and care she
has devoted to my study for all these years.

Then, I would like to thank my RiskCo supervisor Bert de Bock for not only offering
me this valuable opportunity to write my thesis during the internship at RiskCo, but
also supporting me, supervising me, giving me professional feedback and helping
me practice multiple presentations in every stage of the project.

I would also like to specifically thank the other RiskCo supervisor Connor Dekker,
who was always there and was always patient when I needed help. He offered me
immediate feedback and detailed advice during all these months. Without his help
I would not have been able to finish this thesis project.

Further, I would like to thank my colleagues at RiskCo for all the assistance and care.
It has been a great memory to work there and I have gained not only experience but
also friendship.

Finally, I would like to show my appreciation to my family, friends, boyfriend as well
as all the extraordinary classmates and professors that I have met, without whom I
could not have made it this far in my study.

vii

Contents

Abstract iii

Acknowledgements v

1 Introduction 1
1.1 RiskCo B.V. 1
1.2 Background . 2
1.3 Research Questions . 2
1.4 Overview of Methodology . 2
1.5 Outline . 3

2 Dutch Pension System and URM 5
2.1 Dutch Pension System . 5

2.1.1 Three-Pillar System . 5
State Pension (AOW) . 5
Collective Pension Schemes . 6
Individual Pension Products . 6

2.1.2 Pension Schemes . 6
2.1.3 Pension Regulation and Communication 6

2.2 Uniform Calculation Method (URM) . 7

3 Overview of Approaches to Time Series Forecasting 9
3.1 Classical Method . 9

3.1.1 Persistence Forecasting Models 9
3.1.2 Stochastic Differential Equations (SDE) 9
3.1.3 Vector Autoregressive (VAR) Models 9

3.2 Deep Neural Network . 10

4 Foundation for Stochastic Calculus 11
4.1 Brownian Motion . 11
4.2 Stochastic Calculus . 14

5 Model in Uniform Calculation Method 21

6 Foundation for Deep Learning 27
6.1 Introduction to Deep Learning . 27
6.2 Backpropagation Algorithm . 32
6.3 Challenges and Techniques . 35

6.3.1 Learning Slowdown Problem . 36
6.3.2 Overfitting Problem and Regularization 36
6.3.3 Unstable Gradient Problem . 39
6.3.4 Hyperparameter Tuning . 41

6.4 Convolutional Neural Network . 42
6.5 Recurrent Neural Network . 45

viii

6.5.1 Long Short-Term Memory Neural Network 46

7 Methodology and Deep Neural Network Models 49
7.1 Methodology . 49

7.1.1 Overview of Models . 49
7.1.2 Processing of Data . 50
7.1.3 Pipeline . 50

7.2 Deep Neural Network Models . 51
7.2.1 Annual Input Data and Multivariate Deep Neural Networks . . 51
7.2.2 Univariate Deep Neural Networks with Monthly Input Data . . 51

8 Experimental Setup and Results 53
8.1 Experimental Setup . 53

8.1.1 Data . 53
8.1.2 Annuity Assumptions . 54
8.1.3 Software and Hardware . 54

8.2 Hyperparameters of DNNs . 55
8.2.1 DNN for Interest Rates . 55
8.2.2 DNN for Stock Prices . 57

8.3 Predictions . 59
8.3.1 Results Regarding Treasury Rates 59
8.3.2 Results Regarding Stock Market 62
8.3.3 Results Regarding Pension Annuities 64

9 Conclusion 67

10 Discussion and Future Work 69

A Initial Values In URM 71

ix

List of Figures

1.1 Illustration of the URM workflow. 3

2.1 The three pillars in the Dutch pension system. 5
2.2 An example of the navigation metaphors used in communication ma-

terials [26]. 7
2.3 The pension entitlement development curve expected to be generated

with the URM scenario set [19]. 8

6.1 A perceptron with three inputs x1, x2 and x3 [16]. 28
6.2 The shape of the sigmoid function σ(z) [16]. 29
6.3 The shape of the step function as the activation function of percep-

trons [16]. 29
6.4 The shape of tanh function [16]. 30
6.5 The shape of rectifying function [16]. 30
6.6 An example of a CNN with 5× 5 local receptive fields and a stride

length of 1 [16]. 43
6.7 An example of the 2× 2 max-pooling procedure [16]. 44
6.8 An illustration of RNN without the output neurons [5]. 45
6.9 A diagram of LSTM neural network [5]. 46

7.1 There are three categories of models implemented in this research,
each of which is compared with the other two for the evaluation of
performance. 49

7.2 The basic structure of the model of univariate DNNs with monthly
input data. 52

8.1 The architecture of the DNN for interest rates. The tuple for the input
and output size represents (width, height, depth) or (width, height)
when there are only two entries. In our case of one-dimensional time
series, width is None. 56

8.2 The architecture of the DNN for stock prices. The tuple for the input
and output size represents (width, height, depth) or (width, height)
when there are only two entries. In our case of one-dimensional time
series, width is None. 58

8.3 The average and standard deviation of critical parameters 59
8.4 The monthly predictions of 10-year treasury rates generated by the

DNN for interest rates during the validation and test periods. 60
8.5 The annual predictions of interest rates corresponding to the 50th per-

centile of RMSEs generated by different models. 61
8.6 The annual predictions of bond returns corresponding to the 50th per-

centile of RMSEs generated by different models. 62
8.7 The 2000 scenarios of annual stock returns generated by the financial

market model in URM during the validation and test periods. 62

x

8.8 The monthly prediction of stock prices generated by the DNN model
for stock prices during the validation and test periods. 63

8.9 The annual prediction of stock prices corresponding to the 50th per-
centile of RMSEs generated by different models. 63

8.10 The annuity development curves predicted by the model in URM. . . . 64
8.11 The three scenarios of pension annuities generated by the URM model. 64
8.12 The annuity development curves predicted by the DNN models. . . . 65
8.13 The annuity development curves predicted by different models. 65
8.14 The three scenarios of pension annuities generated by the DNN model. 66

A.1 The real-world data (blue) and fitted (green) yield curves of instanta-
neous forward rates. 71

xi

List of Tables

5.1 Parameters estimated for the Netherlands in the financial market model
in URM [3] . 25

8.1 Some Hyperparameters in the DNN for Interest Rates 55
8.2 Summary of the DNN for Interest Rates 55
8.3 Some Hyperparameters in the DNN for Stock Prices 57
8.4 Summary of the DNN for Stock Prices 57
8.5 Validation and test errors regarding annual interest rates 61
8.6 Validation and test errors regarding annual bond returns 62
8.7 Validation and test errors regarding annual stock returns 64
8.8 Validation errors regarding annuity development curves 66

A.1 The estimated initial values in URM . 72

1

Chapter 1

Introduction

This research thesis project is conducted in the form of an internship at RiskCo B.V. in
Utrecht, the Netherlands. This chapter starts with a general introduction to the com-
pany. Then, the relevant background is briefly described, and the research questions
are addressed. Accordingly, an overview of the methodology is provided without
detail to help capture the entire perspective of the research. In the end, the outline
of the thesis report is presented.

1.1 RiskCo B.V.

RiskCo B.V., founded in 2002, is a consultancy firm working on the intersection of
business, actuary and IT in the financial world. The company started as the distrib-
utor of ProductXpress, a workbench for financial product development and calcu-
lations, and extended his offerings in, among others, the areas of data quality and
reporting for regulators.

The company can be characterized by:

• Performing projects for Life Insurance companies and Pension Funds, for the
liabilities and assets parts of the Balance sheet.

• Strategic partner of DXC for the implementation of the DXC ProductXpress
calculation tool, their most important IT platform for large scale calculations.

• 120 academics trained in mathematics, finance, business studies, economics,
econometrics, physics, software development and artificial intelligence.

• Offices in the Netherlands, Portugal and the Philippines.

• Performed projects in 16 jurisdictions in Europe, Asia, Australia, Africa & the
Americas.

• Part of Praxis IFM.

Examples of projects are:

• Development and implementation of a platform for reporting the liabilities to
DNB, for a Dutch system administrator for pension funds;

• Reserve calculations and capital requirements calculations under Solvency II
(Redesign of IT landscape for a Dutch insurance company);

• Implementation of product calculation engines for new or existing administra-
tion systems, quotation systems and financial planners;

2 Chapter 1. Introduction

• Investment rule optimizations for banks; using replicating portfolios;

• Multiple data quality audits, using the RiskCo methodology on pension fund
administrations;

• Implementation of the rules and calculations for illustration and administra-
tion purposes of hundreds of products across many lines of business for a very
large international insurance company.

In the Netherlands RiskCo worked among other things for ASR, A&O services,
Klaverblad, PGGM, Nationale Nederlanden, Vivat and Delta Lloyd. Worldwide the
US based insurance company METLIFE is a customer. In 2017 and 2018, Aon Hewitt
Benefits Administration and InAdmin NV from APG were taken over by RiskCo.

1.2 Background

In the Netherlands, the pension system is a large and highly-developed financial
sector. According to the OECD report in 2018, the pension assets in the Netherlands
worth 184% of GDP, which leads the Netherlands to rank the second among all of
the 36 OECD countries [17]. There are three pillars in the Dutch pension system,
namely, state pension, collective pension schemes and individual pension products.
More than 90% of the Dutch citizens participate in the collective pension schemes
which are administrated by pension fund service providers [20]. Thus, the pension
accrual from the second pillar, collective pension schemes, is an important compo-
nent of the participants’ retirement income.

The consequence of a wrong estimate of the pension entitlements from the second
pillar can be destructive. The participants may not be able to conduct effective re-
tirement planning before the retirement and may be confronted with unexpected
financial dilemmas after the retirement. Therefore, accurate pension forecasting and
sufficient pension communication are necessary.

To empower the pension participants to obtain insights in expected incomes and get
engaged in active retirement planning, the Uniform Calculation Method (Uniforme
Rekenmethodiek, URM) was issued by DNB in 2015 and has come in force since
the beginning of 2019 [2]. All the pension service providers in the Netherlands are
required to implement URM to estimate the pension entitlements so as to determine
the risk attitude and provide the participants with accurate pension communication.

1.3 Research Questions

The overall goal of this thesis is to investigate if deep neural networks can be con-
structed and implemented to improve the financial market model in URM so as to
help provide better financial forecasting and pension planning.

1.4 Overview of Methodology

In this thesis we focus on constructing and refining deep neural networks (DNNs),
which can consist of convolutional layers and recurrent layers. We build the baseline
model, the URM financial market model and the deep learning neural network in

1.5. Outline 3

Python. Then, together with assumptions such as investment strategies and life ex-
pectancy for a virtual participant, we can forecast the individual pension entitlement
development using each of the model and then do backtest. That is, after getting the
real-world pension entitlement development based on the real-world data, we can
compute and compare the mean squared errors between the real-world data and the
forecasts generated by the different models, and we can reach the conclusion if our
model can outperform the baseline model as well as URM model. The naive method
is used as the baseline model to check the triviality of URM model and deep learning
model.

FIGURE 1.1: Illustration of the URM workflow.

1.5 Outline

This thesis consists of three parts.

The first part is devoted to background introduction and literature overview. In
chapter 2, the Dutch pension system, relevant context and specifically URM are
briefly introduced. In chapter 3, the research question is framed in detail. Chap-
ter 4 is about an overview of approaches to time series forecasting including the
classical methods and the technique of deep neural networks.

The second part is devoted to the introduction to URM. In chapter 5, the mathe-
matical foundations for stochastic calculus is given for the later introduction to the
financial market model in URM. In chapter 6, the regulations and financial market
model in URM are elaborated.

The third part is mainly about the deep learning model and the methodology of the
research project. In chapter 7, the foundations for deep learning is presented. In
chapter 8, the methodology of the research and the architecture of the deep learning
model are elaborated. In chapter 9, the results including the evaluations of all con-
cerned models are given. In chapter 10, the conclusion of this thesis is presented.
Last but not least, chapter 11 is devoted to further discussion and future work.

5

Chapter 2

Dutch Pension System and URM

In this chapter, the Dutch pension system, relevant context and specifically URM
are briefly introduced. The main references in this chapter include an overview ar-
ticle The Dutch Pension System issued by the the Dutch Association of Industry-wide
Pension Funds (VB) [20] and the webpage article Rekenmethodieken voor weergave van
ouderdomspensioen in scenario’s by the Dutch Central Bank (DNB) [2].

2.1 Dutch Pension System

2.1.1 Three-Pillar System

The Dutch pension system consists of three main pillars, namely, the state pension
(AOW), the collective pension schemes and the individual pension products.

FIGURE 2.1: The three pillars in the Dutch pension system.

State Pension (AOW)

The first pillar in the Dutch pension system is the state pension, which is the so-
called General Old Age Pension Act (Algemene Ouderdomswet, AOW). The state
pension provides a basic income which is related to the statutory minimum wage
for the Dutch residences who reach the legal retirement age 1. The state pension is
mostly funded by contributions from the workforce in the Netherlands, which is the
so-called pay-as-you-go system. Additional funding for the state pension is from
government public funds. The first pillar of the Dutch pension system provides the
residences with the basic guarantee of retirement income.

1The retirement age is not constant and is currently 66 years and 4 months [23]

6 Chapter 2. Dutch Pension System and URM

Collective Pension Schemes

The second pillar in the Dutch pension system is the collective pension schemes,
which is the focus of this thesis. In the Netherlands, more than 90% of the res-
idents participate in the collective pension schemes and accrue additional retire-
ment incomes [26]. These pension schemes are mostly managed by occupational
or company-based pension funds but also in some cases by insurance companies. If
required by the industry or the company where the participants work for, then it is
mandatory for the participants to contribute a certain amount of premium monthly
or annually. After retirement, the participants can receive pension entitlements de-
pending on the pension agreements made with the pension providers.

Individual Pension Products

The third pillar in the Dutch pension system is the individual pension products,
which is mainly used as a substitution or supplement of the second pillar. Self-
employed residents or employees who do not participate in the collective pension
schemes usually purchase products in the third pillar. Personal investments and
savings are also a part of the third pillar.

2.1.2 Pension Schemes

The two most important pension schemes in the Netherlands are Defined Benefits
(DB) schemes and Defined Contribution (DC) schemes. In DB schemes, the pension
benefits or entitlements are predefined, whereas the pension contribution or pre-
mium varies. In DC system, the contribution is specified, but the benefit can vary
depending on the result of the pension providers’ investments. In this thesis we
focus on the DC scheme to see how the entitlement can be estimated based on the
financial market forecast.

2.1.3 Pension Regulation and Communication

In the Netherlands, there are two regulators in charge of supervising pension providers,
namely, the Dutch Central Bank (de Nederlandsche Bank, DNB) and the Dutch Au-
thority for the Financial Markets (de Autoriteit Financiële Markten, AFM). DNB is
responsible for examining if the financial position of the pension funds is healthy
and sustainable according to the new Financial Assessment Framework (nieuwe Fi-
nancieel Toetsingskader, nFTK) and other regulations. AFM is responsible for mon-
itoring if the pension funds are behaving legally and performing normally as well
as if the investment supports and information are provided to the participants accu-
rately and timely according to pension communication regulations.

Pension communication is essential for retirement planning. Participants should be
informed of an accurate expected retirement income from the second pillar to see if
they need to make supplements via the third pillar in order to cover the expected
expenses after retirement. Various types of communication materials, such as let-
ters, emails and brochures, can be offered by the pension providers to inform the
participants of the retirement accrual [26]. As shown in figure 2.2, some navigation
metaphors are applied to help better illustrate the information.

2.2. Uniform Calculation Method (URM) 7

FIGURE 2.2: An example of the navigation metaphors used in com-
munication materials [26].

Insufficient or inaccurate pension communication can lead to incorrect retirement
planning and cause unpleasant financial dilemmas and unexpected drops in the
life quality at the time of retirement. To empower the pension participants to ob-
tain insights in expected incomes and get engaged in active retirement planning, the
Uniform Calculation Method (Uniforme Rekenmethodiek, URM) has come in force
in the pension forecast and communication since the beginning of 2019, which is
briefly introduced in the next section.

2.2 Uniform Calculation Method (URM)

As indicated in the name, the Uniform Calculation Method is a methodology to esti-
mate the future pension entitlements and to generate uniform scenario sets that can
be implemented by all the pension administrators in the Netherlands. URM was is-
sued by DNB in 2015 and has become mandatory for all the pension providers since
the beginning of 2019 [2]. The goal of URM is to enhance the pension communica-
tion and to accurately inform the participants the amount of pension benefits they
are expected to receive after their retirement. Besides, URM can also assist the pen-
sion providers to determine the risk attitude.

A scenario set including 2,000 scenarios for 60 projection years is published by DNB
every quarter. It is regulated that three scenarios have to be taken into considera-
tion, namely, the 50th percentile as the expected scenario, the 95th percentile as the
optimistic scenario and the 5th percentile as the pessimistic scenario. Based on the
URM scenario set and certain assumptions such as a certain starting value of the
pension fund and a specific investment strategy, a pension entitlement development
curve can be obtained to illustrate the changes of an individual participant’s annual
entitlement during his or her lifetime, as shown in the concept figure 2.3.

8 Chapter 2. Dutch Pension System and URM

FIGURE 2.3: The pension entitlement development curve expected to
be generated with the URM scenario set [19].

There are many aspects in URM, including the premium policy, investment policy,
financial market, changes in pension scheme, demographic assumptions, etc. How-
ever, the lion’s share of the mathematics-related part in URM is about forecasting
the financial market, including estimating the future interest rates, bond returns and
stock returns, which is a time series forecasting model. For many other aspects such
as asset strategies, life expectancy and so forth, some regulations or laws that are not
closely related to mathematics are issued and assumptions are directly offered. In
this thesis, we focus on the financial market model in URM, specifically, the nom-
inal interest rates, nominal bond returns and nominal stock returns. Because the
construction and forecast of inflation rates can be a wide research topic that is con-
ducted by another separate research project at RiskCo B.V., in this thesis project only
the evaluation towards the nominal terms are considered.

9

Chapter 3

Overview of Approaches to Time
Series Forecasting

A time series refers to a sequence of data points ordered in discrete or continuous
time. In data analysis, time series forecasting is one of the most important topics,
which is to apply the previously observed data to predict the future data. Financial
market forecasting, the core of this thesis, is a typical time series forecasting problem.
In this chapter, we briefly overview various approaches to time series forecasting.

3.1 Classical Method

3.1.1 Persistence Forecasting Models

In the persistence forecasting models, the data points in the past are directly used
as the forecast for the future. This kind of models are considered to be the simplest
and are conventionally used as a baseline model. Any model that cannot perform
better than the persistence forecasting models is regarded as trivial. In this thesis,
the baseline model is a persistence forecasting model that uses the last previously
observed data point as the forecast.

3.1.2 Stochastic Differential Equations (SDE)

The stochastic differential equations (SDE) are differential equations incorporating
one or more stochastic terms, which is well established and widely implemented
in scientific research. The financial market model in URM is developed intensively
based on the theory in stochastic calculus, which is elaborated in chapter 4 and 5.

3.1.3 Vector Autoregressive (VAR) Models

The vector autoregressive (VAR) model is one of the most popular approaches for
generating macroeconomics scenarios in industry. A VAR model expresses a stochas-
tic process in terms of its delayed version. It describes the correlation between
variables as well as the autocorrelation, which is the correlation between variables
through time. A pth-order VAR model refers to the VAR model with p lags in time,
and it can be formulated as

Yt = α +
p

∑
i=1

ΓiYt−i + et,

10 Chapter 3. Overview of Approaches to Time Series Forecasting

where Yt is a n-vector for n variables, α is a constant n-vector of offsets, Γi is the n× n
autoregressive matrix and et is the n-vector of errors that satisfies certain conditions
[24].

3.2 Deep Neural Network

All the aforementioned models have been intensively applied and well studied.
However, in the recent few years, attention has been focused on and breakthroughs
have been continuously made in deep learning, a relatively new field. Even though
there are already certain mathematical foundations, various powerful algorithms
and many advanced publications from research institutes and companies like Google
and Uber, more companies like investment banks or trading firms might have cho-
sen to keep their researches confidential, so not many open source deep learning
models that can be directly applied in industry are available. Thus, considering the
great potential of deep learning, the relatively large possibility for innovation in this
field and the current competition regarding applying AI techniques, it is promising
to apply deep learning to improve URM. The theory of deep learning is elaborated
in chapter 6.

11

Chapter 4

Foundation for Stochastic Calculus

In this chapter, the mathematical foundation for stochastic calculus is given for the
later introduction to the financial market model in URM. The main reference of this
chapter is Stochastic Calculus for Finance II by Steven E. Shreve [21].

4.1 Brownian Motion

Definition 4.1.1 (Brownian motion). Let (Ω,F , P) be a probability space. Given t ≥ 0,
assume for each ω ∈ Ω there exists a continuous function W(t) that depends on ω with
initial value W(0) = 0. Then W(t) of t ≥ 0 is a Brownian motion, if for all time partitions
0 = t0 < t1 < ... < tm it is satisfied by all the increments

W(ti+1)−W(ti), ∀i = 0, 1, ..., m− 1

that (i) all the increments are independent
and (ii) each of the increment has the normal distribution N(0, ti+1 − ti).

Definition 4.1.2 (Filtration for Brownian motion). Assume W(t) for t ≥ 0 is a Brownian
motion defined on the probability space (Ω,F , P). Then a collection of σ-algebras F (t) for
t ≥ 0 is a filtration for W(t) if the following properties are all satisfied:
(i) for 0 ≤ s < t, F (s) ⊆ F (t);
(ii) ∀t ≥ 0, W(t) is F (t)-measurable;
(iii) for 0 ≤ s < t, W(t)−W(s) is independent of F (s).

Theorem 4.1.1. Brownian motion is a martingale.

Proof. For 0 ≤ s ≤ t,

E[W(t)|F (s)] = E[(W(t)−W(s)) + W(s)|F (s)]
= E[W(t)−W(s)|F (s)] + E[W(s)|F (s)]

According to definition 4.1.1, W(t)−W(s) is independent ofF (s), and W(s) isF (s)-
measurable, so we have

E[W(t)−W(s)|F (s)] = E[W(t)−W(s)] = 0,

E[W(s)|F (s)] = W(s).

Thus,
E[W(t)|F (s)] = W(s).

By definition, W(0) = 0, which is the initial information we know for sure, so we get

E[W(t)] = E[W(t)|F (0)] = W(0) = 0.

12 Chapter 4. Foundation for Stochastic Calculus

Definition 4.1.3 (Quadratic variation). Assume function f (t) is defined for 0 ≤ t ≤ T.
Then the quadratic variation of f up to T is

[f , f](T) = lim
||Π||→0

n−1

∑
j=0

[f (tj+1)− f (tj)]
2,

where Π = {t0, t1, ..., tn} is the time partition with 0 < t0 < t1 < ... < tn = T and
||Π|| = maxj=0,...,n−1(tj+1 − tj).

Theorem 4.1.2. If W(t) is a Brownian motion, then its quadratic variation up to time T is
[W, W](T) = T, ∀T ≥ 0, with L2-convergence.

Proof. Taking a partition Π = {t0 = 0, t1, ..., tn = T} of [0, T], we can define

QΠ =
n−1

∑
j=0

(W(tj+1)−W(tj))
2,

which is a random variable that depends on the realization of the Brownian motion
path. By definition, we can denote the quadratic variation as

[W, W](T) = lim
||Π||→0

Q(Π).

Now our goal is to show that as ||Π|| → 0, the expectation of QΠ is T, and the
variance of QΠ vanishes.
By definition,

E[(W(tj+1)−W(tj))
2] = Var[W(tj+1)−W(tj)] + E[W(tj+1)−W(tj)]

2

= tj+1 − tj + 0

= tj+1 − tj.

Then, we obtain the expectation of QΠ,

EQΠ =
n−1

∑
j=0

E[(W(tj+1)−W(tj))
2] =

n−1

∑
j=0

(tj+1 − tj) = T.

To get the variance of QΠ, we have

Var[(W(tj+1)−W(tj))
2] = E

[(
(W(tj+1)−W(tj))

2 −E[(W(tj+1)−W(tj))
2]
)2]

= E
[(

(W(tj+1)−W(tj))
2 − (tj+1 − tj)

)2]
= E

[
(W(tj+1)−W(tj))

4
]
− 2(tj+1 − tj)E

[
(W(tj+1)−W(tj))

2
]

+ (tj+1 − tj)
2

= E
[
(W(tj+1)−W(tj))

4
]
− 2(tj+1 − tj)(tj+1 − tj) + (tj+1 − tj)

2

= E
[
(W(tj+1)−W(tj))

4
]
− (tj+1 − tj)

2

4.1. Brownian Motion 13

By definition, W(tj+1) −W(tj) ∼ N(0, tj+1 − tj), so we can directly know that its
fourth moment is

E
[(

W(tj+1)−W(tj)
)4]

= 3(tj+1 − tj)
2.

Thus, we get

Var[(W(tj+1)−W(tj))
2] = 3(tj+1 − tj)

2 − (tj+1 − tj)
2 = 2(tj+1 − tj)

2

Then we can obtain the variance of QΠ,

Var(QΠ) =
n−1

∑
j=0

Var[(W(tj+1)−W(tj))
2] =

n−1

∑
j=0

2(tj+1 − tj)
2

≤
n−1

∑
j=0

2||Π||(tj+1 − tj) = 2||Π||T.

Thus, as ||Π|| → 0 we have Var(QΠ) converging to 0, which leads to

[W, W](T) = T. (4.1)

According to Theorem 4.1.2 we know that up to some time T1 the quadratic varia-
tion of the Brownian motion is T1, and up to some time T2 such that 0 < T1 < T2,
the quadratic variation is T2, so the quadratic variation accumulated during [T1, T2]
is T2 − T1. Thus, we can get the conclusion that “Brownian motion accumulates
quadratic variation at rate one per unit time” [21].
Equation 4.1 can be written in the differential form as

dW(t)dW(t) = dt.

To extend our differential multiplication table, we also want to evaluate dW(t)dt,
dtdW(t) and dtdt. Taking a partition Π = {t0 = 0, t1, ..., tn}, then we can denote the
maximum step size as ||Π|| = maxj=0,...,n−1(tj+1 − tj). Firstly, we have

lim
||Π||→0

∣∣∣ n−1

∑
j=0

(tj+1 − tj)(W(tj+1)−W(tj))
∣∣∣

≤ lim
||Π||→0

max |W(tj+1)−W(tj)|
n−1

∑
j=0

(tj+1 − tj)

= lim
||Π||→0

max |W(tj+1)−W(tj)| · T

= 0 · T = 0.

(4.2)

Thus, we have

lim
||Π||→0

n−1

∑
j=0

(tj+1 − tj)(W(tj+1)−W(tj)) = 0,

which can be written in the differential form as dW(t)dt = dtdW(t) = 0.

14 Chapter 4. Foundation for Stochastic Calculus

Besides, we have

lim
||Π||→0

n−1

∑
j=0

(tj+1 − tj)
2

≤ lim
||Π||→0

max |tj+1 − tj|
n−1

∑
j=0

(tj+1 − tj)

= lim
||Π||→0

||Π|| · T = 0,

(4.3)

which can be written in the differential form as dtdt = 0.
In conclusion, we have the following differential multiplication table:

dW(t)dW(t) = dt, dW(t)dt = dtdW(t) = 0, dtdt = 0. (4.4)

4.2 Stochastic Calculus

Definition 4.2.1 (Itô’s integral). Let {W(t) : t ≥ 0} be a Brownian motion with a fil-
tration {F (t) : t ≥ 0}. Let {∆(t) : t ≥ 0} be an adapted stochastic process. Then Itô’s
integral is defined as

I(t) =
∫ t

0
∆(s)dW(s).

We first define Itô’s integrals for simple integrands ∆(t), and then extend the results
to the ones with general integrands.
Taking a partition Π = {t0 = 0, t1, ..., tn = T} of [0, T], now we consider a simple
process {∆(t) : 0 ≤ t ≤ T} which is constant on each subinterval [tj, tj+1).
In this case, if tk ≤ t ≤ tk+1, the Itô’s integral can be rewritten as

I(t) =
k−1

∑
j=0

∆(tj)[W(tj+1)−W(tj)] + ∆(tk)[W(t)−W(tk)], (4.5)

which refers to the Itô’s integral with simple integrands.

Theorem 4.2.1. The Itô’s integral with simple integrands, as defined by equation 4.5, is a
martingale.

Proof. Given 0 ≤ s ≤ t ≤ T, our goal is to show E[I(t)|F (s)] = I(s). Let Π be
a partition of [0, T]. Assume s ∈ [tl , tl+1) and t ∈ [tk, tk+1) with tl < tk, so that s
and t are in different subintervals of Π. If s and t are in the same subinterval, the
proof should be simpler, so here we only consider the more complicated case with
tl ≤ s < tl+1 ≤ tk ≤ t < tk+1. In this case, equation 4.5 can be rewritten as

I(t) =
l−1

∑
j=0

∆(tj)[W(tj+1)−W(tj)] + ∆(tl)[W(tl+1)−W(tl)]

+
k−1

∑
j=l+1

∆(tj)[W(tj+1)−W(tj)] + ∆(tk)[W(t)−W(tk)]

Now we take conditional expectation for each of these four terms in the right-hand
side of the above equation in order to check the martingale property. As for the first

4.2. Stochastic Calculus 15

term, because ∑l−1
j=0 ∆(tj)[W(tj+1)−W(tj)] is F (s)-measurable, we have

E
[l−1

∑
j=0

∆(tj)[W(tj+1)−W(tj)]|F (s)
]
=

l−1

∑
j=0

∆(tj)[W(tj+1)−W(tj)]. (4.6)

As for the second term, because ∆(tl) as well as W(tl) are F (s)-measurable and the
Brownian motion W is a martingale by theorem 1, we have

E[∆(tl)[W(tl+1)−W(tl)]|F (s)] = ∆(tl)E[W(tl+1)−W(tl)|F (s)]
= ∆(tl)

(
E[W(tl+1)|F (s)]−E[W(tl)|F (s)]

)
= ∆(tl)

(
W(s)−W(tl)

) (4.7)

As for the summands in the third term, because F (tj) ⊆ F (s), we can apply the
tower property to get

E
[
∆(tj)[W(tj+1)−W(tj)]|F (s)

]
= E

[
E
[
∆(tj)[W(tj+1)−W(tj)]|F (tj)

]
|F (s)

]
= E

[
∆(tj)

(
E[W(tj+1)|F (tj)]−W(tj)

)
|F (s)

]
= E

[
∆(tj)

(
W(tj)−W(tj)

)
|F (s)

]
= 0.

Hence, the third term as the summation of all the above summands should also
vanish, that is,

k−1

∑
j=l+1

∆(tj)[W(tj+1)−W(tj)] = 0. (4.8)

Similarly, we can also apply the tower property to the fourth term,

E
[
∆(tk)[W(t)−W(tk)]|F (s)

]
= E

[
E
[
∆(tk)[W(t)−W(tk)]|F (tk)

]
|F (s)

]
= E

[
∆(tk)

(
E[W(t)|F (tk)]−W(tk)

)
|F (s)

]
= E

[
∆(tk)

(
W(tk)−W(tk)

)
|F (s)

]
= 0.

(4.9)

By summing up equation 4.6, 4.7, 4.8 and 4.9, we get the conditional expectation
E[I(t)|F (s)],

E[I(t)|F (s)] =
l−1

∑
j=0

∆(tj)[W(tj+1)−W(tj)] + ∆(tl)
(
W(s)−W(tl)

)
+ 0 + 0

= I(s),

which shows that the Itô’s integral with simple integrands as defined by equation
4.5 is a martingale.

As defined in 4.5, we know I(0) = 0, which is the initial information we know for
sure, so we can get the expectation of I(t),

E[I(t)] = E[I(t)|F (0)] = I(0) = 0.

16 Chapter 4. Foundation for Stochastic Calculus

Then, to obtain the variance of I(t), we need to focus on VarI(t) = EI2(t), which is
evaluated in the following theorem.

Theorem 4.2.2. The Itô’s integral with simple integrands as defined by equation 4.5 has the
variance

EI2(t) = E

∫ t

0
∆2(s)ds. (4.10)

Proof. For simplicity, we denote the Brownian increments as

Dj = W(tj+1)−W(tj), ∀j = 0, ..., k− 1,

Dk = W(t)−W(tk).

In this way, equation 4.5 can be rewritten as

I(t) =
k

∑
j=0

∆(tj)Dj,

so we have

I2(t) =
k

∑
j=0

∆2(tj)D2
j + 2 ∑

0≤i<j≤k
∆(ti)∆(tj)DiDj.

Our goal is to show that the expectation of the second term vanishes and the expec-
tation of the first term is equal to the right-hand side of equation 4.10.
In the second term, given i < j, ∆(ti)∆(tj)Di is F (tj)-measurable, Dj is independent
of F (tj), and the Brownian increment Dj has expectation 0, so we have

E[∆(ti)∆(tj)DiDj] = E[∆(ti)∆(tj)Di] ·E[Dj] = E[∆(ti)∆(tj)Di] · 0 = 0,

which leads to
E
[
2 ∑

0≤i<j≤k
∆(ti)∆(tj)DiDj

]
= 0.

Thus,

EI2(t) = E
[k

∑
j=0

∆2(tj)D2
j

]
=

k

∑
j=0

E[∆2(tj)D2
j]

=
k

∑
j=0

E∆2(tj) ·ED2
j

=
k−1

∑
j=0

E∆2(tj)(tj+1 − tj) + E∆2(tk)(t− tk)

=
k−1

∑
j=0

E

∫ tj+1

tj

∆2(s)ds + E

∫ t

tk

∆2(s)ds

= E

∫ t

0
∆2(s)ds,

4.2. Stochastic Calculus 17

where we have applied the facts that ∆(tj)
2 and D2

j are independent, Dj = W(tj+1)−
W(tj) has the distribution N(0, tj+1− tj), ∀j, and simple integrands ∆(t) are constant
on the subintervals.

Beside variance, another important quantity for Itô’s integral is quadratic variation,
which is evaluated in the following theorem.

Theorem 4.2.3. The Itô’s integral with simple integrands as defined by equation 4.5 has the
quadratic variation

[I, I](T) =
∫ T

0
∆2(t)dt.

Proof. Taking a partition Π = {t0 = 0, t1, ..., tn = T} of [0, T]. Our goal is to first
compute the quadratic variation accumulated on one subinterval [tj, tj+1] on which
∆(t) is constant, and then sum over all the subintervals to get the total quadratic
variation accumulated up to time T.
Take one of the subintervals [tj, tj+1], on which ∆(t) is constant. We further take
partition points inside of this subinterval.

tj = s0 < s1 < ... < sm = tj+1, (4.11)

so the quadratic variation accumulated on the subinterval [tj, tj+1] can be written as

lim
m→∞

m−1

∑
i=0

[I(si+1)− I(si)]
2 = lim

m→∞

m−1

∑
i=0

[∆(tj)(W(si+1)−W(si))]
2

= lim
m→∞

∆2(tj)
m−1

∑
i=0

(W(si+1)−W(si))
2

= ∆2(tj)(tj+1 − tj)

=
∫ tj+1

tj

∆2(u)du,

where we have applied the fact that the quadratic variation of the Brownian motion
W(t) accumulated on the subinterval [tj, tj+1] is by definition

lim
m→∞

m−1

∑
i=0

(W(si+1)−W(si))
2 = tj+1 − tj.

Thus, by summing up the quadratic variations over all of the subintervals we get

[I, I](T) =
∫ T

0
∆2(t)dt.

Now we can extend the above results to the Itô’s integrals with general integrands,
i.e., ∆(t) in equation 4.2.1 can be any stochastic process that satisfies the “square-
integrability condition” [21]:

E

∫ T

0
∆2(t)dt < ∞. (4.12)

Theorem 4.2.4. The Itô’s integral I(t) with general integrands ∆(t) of 0 < t < T that
satisfies 4.12 has the following properties:

18 Chapter 4. Foundation for Stochastic Calculus

(i) I(t) is a martingale;
(ii) The variance of I(t) is EI2(t) = E

∫ t
0 ∆2(s)ds;

(iii) The quadratic variation of I(t) is [I, I](t) =
∫ t

0 ∆2(s)ds.

The above properties can be extended from theorem 4.2.1, 4.2.2 and 4.2.3 by imple-
menting the standard machine from measure theory [22], which will not be elabo-
rated here.

Definition 4.2.2 (Itô process). Assume W(t) is a Brownian motion with a filtration F (t)
of t ≥ 0. Then an Itô process is a random variable of the following form:

X(t) = X(0) +
∫ t

0
∆(s)dW(s) +

∫ t

0
Θ(s)ds,

where X(0) is nonrandom and ∆(t) as well as Θ(t) are adapted stochastic processes.

Lemma 4.2.1. Assume X(t) of t ≥ 0 is an Itô process, then its quadratic variation is

[X, X](T) =
∫ T

0
∆2(t)dt

Informal proof. The formal proof can be found in [21]. Here we provide an informal
proof by applying the differential multiplication results dW(t)dW(t) = t, dW(t)dt =
dtdW(t) = 0 and dtdt = 0. In this form, we have

dX(t)dX(t) = ∆2(t)dW(t)dW(t) + 2∆(t)Θ(t)dW(t)dt + Θ2(t)dtdt

= ∆2(t)dt.

Theorem 4.2.5 (Itô-Doeblin formula for an Itô process). Assume X(t) for t ≥ 0 is an Itô
process as defined in definition 4.2.2 and f (t, x) is a function with defined and continuous
partial derivatives ft(t, x), fx(t, x) and fxx(t, x). Then, ∀T ≥ 0, we have

f (T, X(T))

= f (0, X(0)) +
∫ T

0
ft(t, X(t))dt +

∫ T

0
fx(t, X(t))dX(t)

+
1
2

∫ T

0
fxx(t, X(t))d[X, X](t)

= f (0, X(0)) +
∫ T

0
ft(t, X(t))dt +

∫ T

0
fx(t, X(t))∆(t)dW(t)

+
∫ T

0
fx(t, X(t))Θ(t)dt +

1
2

∫ T

0
fxx(t, X(t))∆2(t)dt.

As the result is straightforward to understand, the rigorous proof is not provided
here and can be found in [21] instead. For simplicity, the result can be rewritten in
the differential form as follows:

d f (t, X(t)) = ft(t, X(t))dt + fx(t, X(t))dX(t) +
1
2

fxx(t, X(t))dX(t)dX(t)

= ft(t, X(t))dt + fx(t, X(t))∆(t)dW(t) + fx(t, X(t))Θ(t)dt +
1
2

fxx(t, X(t))∆2dt

Definition 4.2.3 (Multivariable Brownian motion). Let W1(t), ..., Wd(t) be a series of
one-dimensional Brownian motion which satisfies that Wi(t) and Wj(t) are independent if

4.2. Stochastic Calculus 19

i 6= j. Then the process W(t) = (W1(t), ..., Wd(t)) is a d-dimensional Brownian motion.
There exists a filtration F (t) associated with W(t) that satisfies
(i) for 0 ≤ s < t, F (s) ⊆ F (t);
(ii) ∀t ≥ 0, W(t) is F (t)-measurable;
(iii) for 0 ≤ s < t, W(t)−W(s) is independent of F (s).

Now we can generalize the Itô-Doeblin formula in theorem 4.2.5 to the case with
multidimensional Brownian motions.

Theorem 4.2.6 (Two-dimensional Itô-Doeblin formula). Assume X(t) and Y(t) for
t ≥ 0 are two It0̂ processes and f (t, x, y) is a function with defined and continuous par-
tial derivatives ft, fx, fy, fxx, fxy, fyx and fyy. Then, in the differential form the Itô-Doeblin
formula is

d f (t, X(t), Y(t)) = ft(t, X(t), Y(t))dt + fx(t, X(t), Y(t))dX(t) + fy(t, X(t), Y(t))dY(t)

+
1
2

fxx(t, X(t), Y(t))dX(t)dX(t) + fxy(t, X(t), Y(t))dX(t)dY(t)

+
1
2

fyy(t, X(t), Y(t))dY(t)dY(t).

Note that here we can introduce an Itô product rule.

Corollary 4.2.1. Assume X(t) and Y(t) are Itô processes. Then in the differential form we
have

d(X(t)Y(t)) = X(t)dY(t) + Y(t)dX(t) + dX(t)dY(t).

Again, the rigorous proof for the above two results are not provided here and can be
found in [21].

Definition 4.2.4 (Stochastic differential equation). A stochastic differential equation is
an equation of the form

dX(t) = β(t, X(t))dt + γ(t, X(t))dW(t),

where X(t)is a stochastic process and the given functions β(t, X(t)) and γ(t, X(t)) are
referred to the “drift" and “diffusion", respectively.

Normally, given certain conditions including the initial condition X(0), we can solve
the stochastic differential equations. Nevertheless it can be hard to solve them to
obtain a closed-form solution. One of the most important stochastic models is given
in the following example.

Example 4.2.1 (Geometric Brownian motion). The stochastic differential equation for
geometric Brownian motion is

dS(t) = αS(t)dt + σS(t)dW(t),

which has the solution

S(t) = S(0) exp{σW(t) + (α− 1
2

σ2)t}.

21

Chapter 5

Model in Uniform Calculation
Method

In this chapter, the financial market model in URM is elaborated. As we mainly fo-
cus on the nominal term structures, the real term structures are omitted from this
introduction. The main reference of this chapter is the CPB (Netherlands Bureau for
Economic Policy Analysis) background document A Financial Market Model for the
Netherlands by Nick Draper in 2014 [3].

This model estimates the interest rate, bond market and stock market in the Nether-
lands. The interest rate is modelled with two state variables, namely, X1t and X2t,
which are incorporated in a 2-vector Xt. The state variables can be interpreted as the
uncertainty and dynamics of the real interest rate and the instantaneous expected
inflation. They follow a mean-reverting process around zero and are defined as

dXt = −KXtdt + Σ′XdZt
1,

where K is a 2× 2 matrix, Σ′X = [I2×202×2] 2, and Z is a 4-dimensional Brownian
motion which drives the uncertainty in the market regarding the real interest rate,
instantaneous expected inflation, unexpected inflation ad stock return3. We can ex-
press the two state variables separately as

dX1t = −K11X1tdt− K12X2tdt + dZ1t,

dX2t = −K21X1tdt− K22X2tdt + dZ2t.

Then, the instantaneous nominal interest rate Rt is modelled as

Rt = R0 + R′1Xt,

where the parameter R0 is the value of the initial nominal interest rate, and R1 is a
2-vector.

A risk premium is the excess return obtained by the investor for taking risks. The
risk premium Λt is modelled as

Λt = Λ0 + Λ1Xt, (5.1)

1In this chapter, the prime symbol denotes the matrix transposition, for example, A′ = AT .
2Σ′X=

[
1 0 0 0
0 1 0 0

]
.

3Even though the last two entries Z3t and Z4t are cancelled out due to Σ′X while modelling the state
variables, they are taken into consideration later while modelling the stock prices.

22 Chapter 5. Model in Uniform Calculation Method

where Λ0 is a 2-vector and Λ1 is a 2× 2 matrix. we can express the two terms in Λt
separately as

Λ1t = Λ0(1) + Λ1(11)X1t + Λ1(12)X2t,

Λ2t = Λ0(2) + Λ1(21)X1t + Λ1(22)X2t.

The present value of a future cash flow, such as the prices of stocks and zero coupon
bonds, can be computed by multiplying the future value by a discount factor and
then taking the expectation. The nominal stochastic discount factor4 φt can be mod-
eled as

dφt

φt
= −Rtdt−Λ′tdZt, (5.2)

where Λt is extended to the 4-vector [Λ1t, Λ2t, 0, 0]′ to match the dimension of Zt.
The stock index S is modelled by a geometric Brownian motion,

dSt

St
= (Rt + ηS)dt + σ′SdZt, (5.3)

where the parameter σ′S ∈ R4, S0 = 1 and ηS denotes the equity risk premium,
namely, the risk premium of investments in the stock market.

In this thesis, the following discrete approximation of the stochastic differential equa-
tion 5.3 is implemented to compute the stock returns in the URM model,

S(ti+1)

S(ti)
= exp{(Rt + ηS −

1
2

σ′SσS)∆t + σ′SV}, (5.4)

where V ′ = [V1, V2, V3, V4] is a 4-vector consisting of 4 independent normal random
variables Vi ∼ N(0, ∆t), ∀i ∈ {1, 2, 3, 4}.

Note that there are some parameter restrictions imposed on the model. We have the
fundamental pricing equation for the stock index

EdφS = 0, (5.5)

which formulates that the expected value of the discounted stock price does not
change over time.
According to corollary 4.2.1,

dφS
φS

=
dφ

φ
+

dS
S

+
dφ

φ
· dS

S
= (−Rtdt−Λ′tdZt) + ((Rt + ηS)dt + σ′SdZt)

+ (−Rtdt−Λ′tdZt) · ((Rt + ηS)dt + σ′SdZt).

According to the differential multiplication from 4.4, we further have

dφS
φS

= (ηS −Λ′tσ
′
S)dt− (Λ′t − σ′S)dZt.

4The “nominal” here emphasizes that the discount factor is modelled with the instantaneous nom-
inal interest rate Rt.

Chapter 5. Model in Uniform Calculation Method 23

Taking the expectation and using equation 5.5, we get the restriction

ηS = Λ′tσS. (5.6)

Substituting equation 5.1 into 5.6, we obtain

ηS = Λ′0σS + X′tΛ
′
1σS,

which implies Λ′0σS = ηS and σ′SΛ1 = 0.

We have the fundamental pricing equation for a nominal zero coupon bond

EdφP = 0,

which means that the expected value of the discounted nominal bond price does not
change over time. According to corollary 4.2.1,

EdφP = E[Pdφ + φdP + dφ · dP] = 0. (5.7)

Assume the nominal zero coupon bond price is a function of time and the state of
economy, i.e., P = P(X, t), then by Itô-Doeblin formula as in theorem 4.2.5 we have
5

dP = P′XdX + Ptdt +
1
2

dX′PXX′dX

= P′X(−KXtdt + Σ′XdZt) + Ptdt +
1
2

dZ′tΣXPXX′Σ′XdZt

= [P′X(−KXt) + Pt +
1
2

ΣXPXX′Σ′X]dt + P′XΣ′XdZt.

(5.8)

Substituting equation 5.2 and 5.8 into 5.7, we know that the dt term should vanish
to keep the expectation zero, that is,

P′X(−KXt) + Pt +
1
2

tr(ΣXPXX′Σ′X)− PRt − P′XΣ′XΛt = 0. (5.9)

Below we shall show that a solution of this partial differential equation is of the form

P(Xt, t, t + τ) = exp(A(τ) + B(τ)′Xt), (5.10)

where τ is the duration to maturity and is defined as τ = T − t with T the maturity
time.

Now we try to obtain the explicit expressions of function A(τ) and B(τ). From
equation 5.10 we can get

1
P

PX = B,

1
P

PXX′ = BB′,

5Note that in this chapter the prime symbol denotes the matrix transposition, for example, A′ = AT .
Here, PX , PXX and Pt denote the first derivative of P regarding X, the second derivative pf P regarding
X and the first derivative of P regarding t, respectively. Consistent with earlier, Xt and Zt are not
derivatives, and they simply denote that the state variables and the associated Brownian motion are
time-dependent. Besides, ΣX is not a derivative either, and it is defined as the matrix [I2×202×2]

′ earlier.

24 Chapter 5. Model in Uniform Calculation Method

1
P

Pt = −
1
P

Pτ = −Ȧ− Ḃ′Xt,

where Ȧ denotes the derivative
dA
dτ

and Ḃ denotes the derivative
dB
dτ

.
Note that the third equation is from the fact that dτ = −dt. Substituting the above
derivatives into equation 5.9 we can get

B′(−KXt) + (−Ȧ− Ḃ′Xt) +
1
2

tr(ΣXBB′Σ′X)− R0 − R′1Xt − B′Σ′X(Λ0 + Λ1Xt) = 0,

where tr(ΣXBB′Σ′X) = tr(B′Σ′XΣXB) = B′Σ′XΣXB.

Because both the stochastic term and the non-stochastic term have to be zero, we get

Ȧ(τ) = −R0 − (Λ′0ΣX)B(τ) +
1
2

B′(τ)Σ′XΣXB(τ),

Ḃ(τ) = −R1 − (K′ + Λ′1ΣX)B(τ).

By definition of the zero coupon bond, we know the bond price should be 1 when the
duration to maturity τ = 0, that is, P(Xt, t, t) = 1, which leads to A(0) = B(0) = 0.
The solution to the above differential equations can be obtained,

B(τ) = (K′ + Λ′1ΣX)
−1[exp(−(K′ + Λ′1ΣX)τ)− I2×2]R1,

A(τ) =
∫ τ

0
Ȧ(s)ds.

Thus, we solve the function A and B in the closed form for the nominal zero coupon
bond index as described in equation 5.10.

Assume the portfolio is permanently rebalanced so that the duration to maturity τ
of the bonds that are invested is kept constant. In this case, we denote the nominal
bond price with constant maturity τ as Pτ. substituting Pτ

t = −Pτ
τ into equation 5.8

we obtain
dPτ = [Pτ′

X (−KXt) +
1
2

ΣXPτ
XX′Σ

′
X]dt + Pτ′

X Σ′XdZt,

which leads to
dPτ

Pτ
= [−B′KXt +

1
2

B′Σ′XΣXB]dt + B′Σ′XdZt. (5.11)

According to the fundamental pricing equation 5.7, we have the restriction

− B′KXt +
1
2

B′Σ′XΣXB− Rt − B′Σ′XΛt = 0. (5.12)

Thus, substituting equation 5.12 into 5.11, we arrive at the “funds price dynamics
equation”,

dPτ

Pτ
= [Rt + B′Σ′XΛt]dt + B′Σ′XdZt. (5.13)

In this thesis, the long-term interest rate is approximated by the long-term treasury
rate, which means that we can compute the annual nominal interest rate from the
nominal bond prices. Assume only the bonds with duration to maturity τ are in-

vested, then the corresponding annual interest rate can be computed as (
1
P
)

1
τ − 1.

Chapter 5. Model in Uniform Calculation Method 25

The following discrete approximation of equation 5.13 is implemented to compute
the bond returns in the URM model,

Pτ(ti+1)

Pτ(ti)
= exp{(Rt + B′Σ′XΛt −

1
2

B′Σ′XΣXB)∆t + B′Σ′XV}, (5.14)

where V is the 4-vector as designated in equation 5.4.

Thereby we have introduced all the quantities that are relevant for the pension es-
timation for this thesis, namely, instantaneous interest rate, stock market and bond
market.

The parameters are then calibrated based on the data from [25]. Two possible sets of
parameters can be concluded in Table 5.1.

TABLE 5.1: Parameters estimated for the Netherlands in the financial
market model in URM [3]

Parameter Estimate (SD) Estimate (SD)
Nominal interest rate Rt
R0 2.40% (6.06%) 2.53% (4.86%)
R1(1) -1.48% (0.22%) 1.29% (0.32%)
R1(2) 0.53% (0.56%) 0.91% (0.41%)
State variables Xt
κ11 0.08 (0.11) 0.35 (0.19)
κ22 0.35 (0.18) 0.08 (0.10)
κ21 -0.19 (0.08) -0.20 (0.17)

Stock return process
dSt

St
ηS 4.52% (3.73%) 4.54% (3.73%)
σS(1) -0.53% (1.44%) -0.32% (1.59%)
σS(2) -0.76% (1.54%) 0.88% (1.52%)
σS(3) -2.11% (1.51%) -2.09% (1.52%)
σS(4) 16.59% (0.96%) 16.60% (0.95%)
Prices of risk Λt
Λ0(1) 0.403 (0.333) -0.200 (0.313)
Λ0(2) 0.039 (0.270) -0.347 (0.266)
Λ1(1,1) 0.149 (0.156) 0.135 (0.218)
Λ1(1,2) -0.381 (0.039) -0.080 (0.150)
Λ1(2,1) 0.089 (0.075) 0.401 (0.183)
Λ1(2,2) -0.083 (0.129) -0.068 (0.121)

27

Chapter 6

Foundation for Deep Learning

In this chapter, the foundation for deep learning is presented. Firstly, the basic con-
cepts in deep learning theory and artificial neural networks are introduced, followed
by the elaboration of the backpropagation algorithm, one of the most important
underlying mechanisms of deep learning. Then, major challenges and techniques
in deep learning are discussed. As the focus of this thesis project, the convolu-
tional neural network and recurrent neural network are presented in detail. Last but
not least, an innovative and successful neural network architecture named encoder-
decoder architecture is briefly addressed. The main references of this chapter include
Neural Networks and Deep Learning by Michael A. Nielsen [16] and Deep Learning by
Ian Goodfellow, et al. [5].

6.1 Introduction to Deep Learning

Artificial intelligence has been a thriving topic nowadays, and lying in the heart is
the active research field of machine learning, which is the scientific study of building
a model by learning model parameters from data of previous observations in order
to make predictions or classifications for future or further data. There are mainly
two categories of machine learning tasks, namely, supervised and unsupervised
learning. Supervised machine learning aims to learn a function that maps the given
input-output data pairs, i.e., labels. Typical supervised learning includes regression
and classification. Unsupervised learning refers to the learning tasks without labels,
such as denoising and imputation of missing values. There are many machine learn-
ing techniques that are heavily applied in industries, including logistic regression,
nearest neighbor classification, support vector machines, decision trees and random
forest, etc. Specifically, a rapid increase in implementing deep learning theory has
been seen since the last decade.

The idea of deep learning is to develop non-task-specific algorithms to enable com-
puters to automate the process of learning tasks without requiring rule-based hard
coding based on the expertise in the relevant field or too much human intervention
to manipulate the data. Inspired by the biological nervous system, artificial neural
networks are constructed to carry out the deep learning theory. The basic architec-
ture of deep neural network is introduced below.

Definition 6.1.1 (Artificial neuron). Artificial neurons are the basic elements of artificial
neural networks. A neural network consists of several layers of artificial neurons, each of
which maps from one or several inputs to an output.

Definition 6.1.2 (Perceptron). A perceptron is a type of neuron mapping from one or sev-
eral binary inputs to a single binary output. The output of a perceptron is determined by the

28 Chapter 6. Foundation for Deep Learning

weighted sum of inputs ∑j wjxj + b with bias b and weights wi corresponding to inputs xi
in the following way:

output =
{

0 if ∑j wjxj + b ≤ 0,
1 if ∑j wjxj + b > 0.

Example 6.1.1. To illustrate the usage of perceptrons, we construct a decision-making model
consisting of one perceptron [16]. Assume we decide if we go to a concert by weighing up the
following three factors:

1. Is the band holding the concert of interest?
2. Is the ticket of the concert within budget?
3. Is the venue of the concert easily reachable?

We can use three binary variables x1, x2 and x3 to represent the above three factor, respec-
tively. If the response to a factor is “yes", then the corresponding variable is set to be 1,
otherwise 0. Based on our preference regarding the significance of each of the three factors,
we can set the values of the corresponding weights w1, w2 and w3. Based on our general
motivation level of going to a concert, we can set the value of the associated bias b.

Suppose we feel the first factor is the most important one, while the second is the least we
care about, then we may set the three weights to be w1 = 4, w2 = 1 and w3 = 2. Besides,
if we are enthusiastic about going to concerts in general, then we may set the bias to be a
relatively small number such as b = −3. In the case that the band holding the concert is of
interest, the ticket is within in budget, whereas the venue is not easily reachable, the output
can be computed to be equal to 1, as 4× 1 + 1× 1 + 2× 0− 3 = 2 > 0.

This perceptron with three inputs x1, x2 and x3 can be illustrated in figure 6.1.

FIGURE 6.1: A perceptron with three inputs x1, x2 and x3 [16].

If our network consists of perceptrons, then inputs and outputs have to be binary,
and changes in weights and bias may cause a complete flip in the output, which
imposes limitations to the network and difficulties in training robustly. To solve this
problem, other types of neurons are defined.

Definition 6.1.3 (Sigmoid neuron). A sigmoid neuron is a type of neuron mapping from
one or several input values in the range of [0, 1] to a single output value in the range of
(0, 1). The output of a sigmoid neuron is determined by the sigmoid function σ acting on the
weighted sum of inputs z = ∑j wjxj + b in the following way:

σ(z) ≡ 1
1 + e−z =

1
1 + exp(−∑j wjxj − b)

,

where the sigmoid function has the following shape:

6.1. Introduction to Deep Learning 29

FIGURE 6.2: The shape of the sigmoid function σ(z) [16].

Definition 6.1.4 (Activation function). In an artificial neuron, the activation function is
a function acting on the weighted sum of inputs z = ∑j wjxj + b of this neuron so as to
compute the output of the neuron.

The sigmoid function is one of the most used activation functions. By definition 6.1.2
and 6.1.4, the activation function a(z) of the aforementioned perceptrons is actually
a step function

a(z) =
{

0 if z ≤ 0,
1 if z > 0,

which has the following shape:

FIGURE 6.3: The shape of the step function as the activation function
of perceptrons [16].

Besides perceptrons and sigmoid neurons, there are also other basic and popular
artificial neurons with alternative activation functions.

Definition 6.1.5 (Tanh neuron). Tanh neuron is a type of neuron with tanh function as its
activation function, which is defined by

tanh(z) ≡ ez − e−z

ez + e−z ,

where z = ∑j wjxj + b is the weighted sum of inputs.

It follows that

σ(z) =
1 + tanh(z/2)

2
,

which infers that tanh function can be obtained by rescaling sigmoid function. The
shape of tanh function is also consistent with this observation:

30 Chapter 6. Foundation for Deep Learning

FIGURE 6.4: The shape of tanh function [16].

Definition 6.1.6 (Rectified linear neuron/unit (ReLU)). Rectified linear neuron/unit
(ReLU) is a type of neuron with rectifying function as its activation function, which is de-
fined by

output = max(0, z) = max(0, ∑
j

wjxj + b).

The shape of the rectifying function is

FIGURE 6.5: The shape of rectifying function [16].

Neurons are organized in layers in neural networks. In general, there are three cat-
egories of layers in one neural network, namely, one input layer, one or multiple
hidden layers and one output layer. The input layer is the first layer that consists of
input neurons. The output layer is the last layer that consists of output neurons. The
hidden layers simply refer to all the layers between the input layer and output layer.
Softmax layer is a type of commonly-used output layer.

Definition 6.1.7 (Softmax layer). Softmax layer is a type of output layer with softmax
function as its activation function, which is defined as

aL
j =

ezL
j

∑k ezL
k

with aL
j and zL

j denoting the activation and the weighted sum of inputs of the jth neuron in
the output layer L, respectively.

An outstanding property of softmax layer is that the outputs are all lying in the range
of (0, 1] and summed up to 1, which resembles a probability distribution.

After building up the architecture of the neural network, we need to find a method
to compare and evaluate the generated outputs with the given labels, which leads to
the introduction of cost functions.

6.1. Introduction to Deep Learning 31

Definition 6.1.8 (Cost function). A cost function C(w, b) is defined as a function of all
the weights w and biases b in a neural network, and it reflects the deviation of the generated
outputs a from the given labels y(x). There are two requirements for the cost function:
(i) C(w, b) decreases as outputs get closer to labels on average over all the training points;
(ii) the cost function C of the neural network is an average of the costs Cx over each of the

training data points x, i.e., C =
1
n ∑x Cx, where n is the total number of training points.

Just like the activation functions, there are also multiple frequently-used cost func-
tions, each of which has its own advantages under certain conditions.

Definition 6.1.9 (Quadratic cost function). The quadratic cost function is defined as

C(w, b) =
1

2n ∑
x
‖y(x)− a‖2,

where n is the number of training inputs x, y(x) is the vector of the true label corresponding
to the input x, and a is the vector of the output generated by the neural network. For the

quadratic cost function, Cx =
1
2
‖y(x)− a‖2.

The quadratic cost function is also known as the mean squared error (MSE). Such
cost functions are used by the machine as an indicator that steers the training and
guides the tuning of the parameters in the network. The general idea is to change the
weights and biases in such a way that the value of the cost function can be decreased,
which leads to gradient descent, the central algorithm in deep learning theory.

Definition 6.1.10 (Gradient). The gradient of the cost function C is defined as the vector

∇C ≡
(∂C

∂v1
, ...,

∂C
∂vn

)T
,

where vi for i = 1, ..., n denote all the parameters including weights and biases in the neural
network.

Definition 6.1.11 (Gradient descent). Gradient descent is an algorithm that requires the
computer to repeatedly compute the gradient of the cost function and then change the param-
eters in the neural network in the opposite direction of∇C according to the following update
rule:

wk → w′k = wk − η
∂C
∂wk

,

bl → b′l = bl − η
∂C
∂bl

,

where wk denote all the weights, bl denote all the biases, C is the cost function and η > 0 is
a positive constant known as the learning rate.

Theorem 6.1.1. The gradient descent algorithm as described in definition 6.1.11 can de-
crease the value of the cost function.

Proof. Assume in the neural network the cost function is C and all the parameters
including weights and biases are incorporated in the vector v. By calculus we have

∆C ≈ ∇C · ∆v,

where ∆ f denotes a small change in the function f .

32 Chapter 6. Foundation for Deep Learning

Suppose we change the parameters in the opposite direction from∇C, which can be
denoted as

∆v = −η∇C,

where η > 0 is a constant.
Then we have

∆C ≈ −η∇C · ∇C = −η‖∇C‖2 ≤ 0,

which indicates that the value of the cost function decreases.

Gradient descent requires the computer to compute the gradient of cost∇Cx for each

of the training data x and then take the average ∇C =
1
n ∑x∇Cx. This can be quite

time-consuming and can cause the parameters not to be updated frequently enough.
In practice, a modified algorithm called stochastic gradient decent is implemented
instead to speed up learning.

Definition 6.1.12 (Stochastic gradient descent). Stochastic gradient descent is to ran-
domly split the training set into many mini-batches, compute the average gradient of cost
within each batch instead of the entire training set, and then update the parameters after
going through each batch.

In the next section the algorithm of computing the gradients of the cost function is
discussed.

6.2 Backpropagation Algorithm

The workhorse of deep learning is the backpropagation algorithm, which is a break-
through regarding computing the gradients of cost functions and making the real-
ization of gradient descent feasible.

To neatly introduce the backpropagation algorithm, we first set the notations in the
neural network. We use wl

jk to denote the weight of the input from the kth neuron in
the (l − 1)th layer to the jth neuron in the lth layer. We use bl

j, al
j and zl

j to denote the
bias, the activation and the weighted sum of the jth neuron in the lth layer, respec-
tively.

Then, taking the sigmoid function σ as the activation function, we have

al
j = σ(zl

j) = σ
(

∑
k

wl
jkal−1

k + bl
j

)
, (6.1)

where the sum is over all the neurons in the (l − 1)th layer that connect to this jth

neuron in the lth layer.

For simplicity, we rewrite all the quantites in the matrix form. We use wl to denote
the weight matrix that incorporates all the weights of the inputs from the (l − 1)th

layer to the lth layer. The (j, k)th entry of the weight matrix wl is defined to be wl
jk.

Moreover, we use bl , al and zl to denote the weight vector, the bias vector and the
vector of weighted sum in the lth layer, in which bl

j, al
j and zl

j are the jth entry, respec-
tively. Besides, the vectorization of the function can be denoted as σ(v)j = σ(vj),
that is, the function σ on the vector v is applied to every element vj of the vector.

6.2. Backpropagation Algorithm 33

Thus, we can rewrite equation 6.1 in the matrix form as

al = σ(zl) = σ(wlal−1 + bl).

The vectorization of the expression is more compact and straightforward. More-
over, in practice, matrix operations can be implemented fast in the matrix libraries
in Python. A less common but important matrix operation in backpropagation is the
Hadamard product.

Definition 6.2.1 (Hadamard product). The Hadamard product is the elementwise multi-
plication between vectors of the same dimension, which can be denoted as

(v� u)j = vjuj,

where v and u are two vectors of the same dimension.

The backpropagation algorithm enables the computation of gradients of the cost
function Cx for each individual training input x, so below in this section we denote
the cost function associated with each training input Cx as C for simplicity. Back-
propagation consists of four fundamental equations, in which a central quantity, the
error δl

j of the jth neuron in the lth layer, is defined as

δl
j ≡

∂C
∂zl

j
,

where C is the cost function and z is the weighted sum of inputs.

Theorem 6.2.1 (BP1). The error δL in the output layer L can be computed by

δL = ∇aC� σ′(zL).

Proof.

δL
j =

∂C
∂zL

j
= ∑

k

∂C
∂aL

k

∂aL
k

∂zL
j
=

∂C
∂aL

j

∂aL
j

∂zL
j
=

∂C
∂aL

j
σ′(zL

j).

Theorem 6.2.2 (BP2). The error δl in the lth layer can be computed through the value of the
error δl+1 in the next layer as

δl = ((wl+1)Tδl+1)� σ′(zl).

Proof.

δl
j =

∂C
∂zl

j
= ∑

k

∂C
∂zl+1

k

∂zl+1
k

∂zl
j

= ∑
k

∂zl+1
k

∂zl
j

δl+1
k .

We have
zl+1

k = ∑
j

wl+1
kj al

j + bl+1
k = ∑

j
wl+1

kj σ(zl
j) + bl+1

k ,

∂zl+1
k

∂zl
j

= wl+1
kj σ′(zl

j).

Thus, we finish proving
δl = ∑

k
wl+1

kj δl+1
k σ′(zl

j).

34 Chapter 6. Foundation for Deep Learning

Theorem 6.2.3 (BP3). The partial derivative of the cost with respect to the biases in the
network can be computed by

∂C
∂b

= δ.

Proof.
∂C
∂bl

j
= ∑

k

∂C
∂zl

k

∂zl
k

∂bl
j
=

∂C
∂zl

j

∂zl
j

∂bl
j
= δl

j .

Theorem 6.2.4 (BP4). The partial derivative of the cost with respect to the weights in the
network can be computed by

∂C
∂wl

jk
= al−1

k δl
j .

Proof.
∂C

∂wl
jk
=

∂C
∂zl

j

∂zl
j

∂wl
jk
= δl

j

∂zl
j

∂wl
jk
= al−1

k δl
j .

The main idea of backpropagation is to obtain the gradients through computing
the error δ backward through the layers from the output layer. Based on the four
fundamental equations, we can write out the backpropagation algorithm 1.

Algorithm 1 Backpropagation algorithm [16]

1: Input x: set the corresponding activation a1 for the input layer
2: Feedforward: for each l = 2, 3, ..., L compute zl = wlal−1 + bl and al = σ(zl).
3: Output error δL: compute the vector δL = ∇aC� σ′(zL).
4: Backpropagate the error: For each l = L − 1, L − 2, ..., 2 compute δl =

((wl+1)Tδl+1)� σ′(zl).

5: Output: the gradient of the cost function is given by
∂C

∂wjkl
= al−1

k δl
j and

∂C
∂bl

j
= δl

j .

Algorithm 2 Stochastic gradient descent (SGD) [16]

1: Input a mini-batch of m training examples
2: For each training example x:
3: Input x: set the corresponding activation a1 for the input layer
4: Feedforward: for each l = 2, 3, ..., L compute zx,l = wlax,l−1 + bl and ax,l =

σ(zx,l).
5: Output error δx,L: compute the vector δx,L = ∇aCx � σ′(zx,L).
6: Backpropagate the error: for each l = L − 1, L − 2, ..., 2 compute δx,l =

((wl+1)Tδx,l+1)� σ′(zx,l).
7: Gradient descent: for each l = L− 1, L− 2, ..., 2 update the weights according

to the rule wl → wl − η

m ∑x δx,l(ax,l−1)T, and the biases according to the rule

bl → bl − η

m ∑x δx,l .

6.3. Challenges and Techniques 35

The algorithm 1 computes gradients of the cost function C = Cx for each individual
training input x, which is usually combined with the algorithm 2 of stochastic gra-
dient descent (SGD) in practice.

Definition 6.2.2 (Epoch). An epoch is defined as one round of passing through all the
training data.

Thus, when we train the neural network, there should be an outer loop generating
batches and another outer loop going through a certain number of epochs.

As an alternative to the most basic and common method of SGD, another popu-
lar method for stochastic optimization is adaptive moment estimation (Adam) [11],
which is briefly introduced here. As indicated by the name, this optimization method
computes adaptive learning rates for each parameter by taking advantage of the first
and second moments of gradients. Despite the surging popularity of Adam, it re-
mains controversial if Adam keeps outperforming SGD [10], and the choice regard-
ing the optimization methods can depend on the specific settings and the empirical
results.

Algorithm 3 Adaptive moment estimation (Adam) [11]
Note that g2

t denotes gt � gt, βt
1 and βt

2 denote β1 and β2 to the power t, and all the
operations on vectors are element-wise.

1: Set hyperparameters:
2: α: Stepsize
3: β1, β2 ∈ [0, 1): Exponential decay rates for the moment estimates
4: C(θ): Cost function
5: Initialize:
6: θ0: Initial parameter vector
7: m0 ← 0: Initial 1st moment vector
8: v0 ← 0: Initial 2nd moment vector
9: t← 0: Initial timestep

10: While θt not converged do:
11: t← t + 1
12: gt ← ∇θCt(θt−1) (Get gradients at timestep t)
13: mt ← β1 ·mt−1 + (1− β1) · gt (Update biased first moment estimate)
14: vt ← β2 · vt−1 + (1− β2) · g2

t ((Update biased second raw moment estimate)
15: m̂t ← mt/(1− βt

1) (Compute bias-corrected first moment estimate)
16: v̂t ← vt/(1− βt

2) (Compute bias-corrected second raw moment estimate)
17: θt ← θt−1 − α · m̂t/(

√
v̂t + ε) (Update parameters)

18: End while
19: Return θt

6.3 Challenges and Techniques

In this section, we briefly discuss several common problems encountered while build-
ing a neural network as well as multiple powerful techniques that have been heavily
implemented to help solve the problems.

36 Chapter 6. Foundation for Deep Learning

6.3.1 Learning Slowdown Problem

Learning slowdown of a neural network refers to the problem that the parameters
are updated very slowly and the error of the outcomes are not decreased rapidly
enough during training. There can be multiple reasons that cause the learning slow-
down problem, whereas in this section we mainly focus on the selection of activation
and cost functions.

Assume a neural network consists of layers of sigmoid neurons as defined in 6.1.3,
and the quadratic cost function as defined in definition 6.1.9 is applied. Then the
gradients of the cost function can be explicitly written out as

∂C
∂w

= (a− y)σ′(z)x,

∂C
∂b

= (a− y)σ′(z).

We can see that the term σ′(z) appears in both of the equations. By definition of the
sigmoid function, when the weighted input z is close to 0 or 1, σ′(z) is close to 0,

which causes
∂C
∂w

and
∂C
∂b

to vanish. In this case, the learning slowdown occurs. To
fix this problem, alternative activation and cost functions can be considered. Here
as an example we introduce the commonly-used cross-entropy cost function.

Definition 6.3.1 (Cross-entropy cost function). The cross-entropy cost function is defined
as

C = − 1
n ∑

x
∑

j
[yj ln aL

j + (1− yj) ln(1− aL
j)].

Assume a neural network consists of layers of sigmoid neurons and the cross-entropy
cost function is applied. We have

∂C
∂wj

= − 1
n ∑

x

(y
σ(z)

− (1− y)
1− σ(z)

) ∂σ

∂wj

=
1
n ∑

x

σ′(z)xj

σ(z)(1− σ(z))
(σ(z)− y)

=
1
n ∑

x
xj(σ(z)− y),

where we have used the fact that σ′(z) = σ(z)(1− σ(z)). Similarly,

∂C
∂bj

=
1
n ∑

x
(σ(z)− y).

We can see that σ′(z) is not involved in the expressions of gradients, so it is harder for
the gradients in this network to vanish than in the previous one with the quadratic
cost function, which helps mitigate the learning slowdown problem.

6.3.2 Overfitting Problem and Regularization

Overfitting is one of the major problems in training modern neural networks. It
refers to the phenomenon that the neural network fits to the peculiarities of the
training data too much to be able to make a generalization to the test data or any

6.3. Challenges and Techniques 37

further unseen data. One of the solution to overfitting is to apply the techniques of
regularization. In this section, four categories of regularization methods are briefly
introduced, namely, early stopping, L1 and L2 regularization, dropout and artificial
expansion of training data.

In scientific researches, test data set should not be used during the training process,
and should only be used after the model is finalized in order to evaluate the final
performance of the model. However, we can separate a subset from the training
set as the validation data set in order to monitor the performance of the network
and help tune hyperparameters during training. Empirically, when the network is
trained for too many epochs, the training error will keep decreasing, the network
tends to get overfitting on the training data, and the test error will keep increasing
due to the incapability of generalization. To resolve this problem, the technique of
early stopping is introduced.

Definition 6.3.2 (Early stopping). Early stopping refers to the strategy that the error on
the validation data is monitored and the training process is stopped before the validation error
stops decreasing.

In practice, while applying early stopping, the exact moment to stop training de-
pends on the specific learning task and the researcher’s personal preference of adopt-
ing aggressive strategies or not.
Besides early stopping, another essential technique is regularization, which is basi-
cally adding a regularization term on top of the original cost function to punish large
weights.

Definition 6.3.3 (L2 regularization). L2 regularization is to change the original cost func-
tion C0 to

C = C0 +
λ

2n ∑
w

w2,

where λ > 0 is a constant known as the regularization parameter, n is the number of the
training data points and w incorporates all the weight terms.

After regularizing the cost function, we have the new gradients

∂C
∂w

=
∂C0

∂w
+

λ

n
w,

∂C
∂b

=
∂C0

∂b
.

According to the gradient descent algorithm, the parameters should be updated fol-
lowing

w→ (1− ηλ

n
)w− η

∂C0

∂w
,

b→ b− η
∂C0

∂b
.

Assume the training data set is split into multiple mini-batches of size m. According
to stochastic gradient descent, the parameters should be updated following

w→ (1− ηλ

n
)w− η

m ∑
x

∂C0,x

∂w
,

38 Chapter 6. Foundation for Deep Learning

b→ b− η

m ∑
x

∂C0

∂b
,

where C0,x is the original cost function for training data point x and the sums are
over every batch. Comparing with the original unregularized updating rule, there

is an extra term 1− ηλ

n
multiplying to the weights, which is known as the weight

decay factor.

Similarly, another technique of regularization can be introduced.

Definition 6.3.4 (L1 regularization). L1 regularization is to change the original cost func-
tion C0 to

C = C0 +
λ

n ∑
w
|w|,

where λ > 0 is a constant known as the regularization parameter, n is the number of the
training data points and w incorporates all the weight terms.

In this case, we have the new gradients

∂C
∂w

=
∂C0

∂w
+

λ

n
sgn(w),

∂C
∂b

=
∂C0

∂b
,

where sgn(w) is the sign function of w.
Then the parameter updating rule is

w→ w− ηλ

n
sgn(w)− η

∂C0

∂w
,

b→ b− η
∂C0

∂b
.

It is hard to prove that L1 and L2 regularization can help reduce overfitting, even
though empirically this is the case in general. A persuading and concrete expla-
nation is that by punishing the large weights the complexity is also lowered in the
network, which helps with generalization.

Besides modifying the cost function, there are also techniques focusing on the archi-
tecture of the network.

Definition 6.3.5 (Dropout). While implementing dropout with the hyperparameter of prob-
ability p, each of the neurons in the hidden layers of the network can be temporarily deleted
with probability p at the beginning of the training over a mini-batch, then the remaining
weights and biases can be updated during the training. After going through a mini-batch,
the deleted neurons are restored, all of the neurons in the hidden layers can be temporarily
deleted with probability p again, and the remaining parameters can be updated during the
training over another batch. This process is repeated until running through the predesig-
nated amount of epochs.

Empirically, the technique of dropout can reduce overfitting. One of the explana-
tions is that the process of dropping different sets of neurons and training with
different temporary networks can help avoid the overfitting effect in each of the
large number of networks, which resembles a powerful averaging scheme. Another

6.3. Challenges and Techniques 39

heuristic explanation is that dropout can prevent the co-adaptations among neurons
and try to avoid the presence of any individual neuron to become too significant,
which helps improve the robustness of the whole neural network.

Furthermore, to artificially expand the training data set is also a successful technique
to reduce overfitting. While in general it can be relatively expensive to collect a
larger amount of training data points, there are some approaches helping generate
nontrivial new training data based on the originally collected training data. For
example, in the image recognition problem, the existing images can be translated,
twisted or rotated to some limited extent to artificially generate new training data.

6.3.3 Unstable Gradient Problem

The unstable gradient problem is a generalization and extension of the aforemen-
tioned learning slowdown problem, which can be categorized into the vanishing
and exploding gradient problem.

Definition 6.3.6 (Vanishing gradient problem). Vanishing gradient refers to the prob-
lem that gradients get overly small in the earlier hidden layers while the backpropagation is
conducted, which causes the parameter updating in the earlier layers to be too slow.

Definition 6.3.7 (Exploding gradient problem). Exploding gradient refers to the problem
that gradients increase exponentially in the earlier hidden layers while the backpropagation
is conducted, which causes the parameter learning in the earlier layers to be too unstable.

To understand the unstable gradient problem, a simple and straightforward example
is give below.

Example 6.3.1. Assume there is a network with one input layer, three hidden layers and one
output layer, each of which consists of only one sigmoid neuron. We denote the weight, bias,
weighted sum and outcome associated with the neuron in the lth layer as wl , bl , zl and al .
Assume a small change ∆b1 is made in the bias b1, then this will lead to a change in the final
cost function, so we have

∂C
∂b1
≈ ∆C

∆b1
,

which indicates that the changes caused by ∆b1 can be tracked in each layer in between.
Firstly, ∆b1 directly causes a change in the output ∆a1,

∆a1 ≈
∂a1

∂b1
∆b1

=
∂σ(w1a0 + b1)

∂b1
∆b1

= σ′(z1)∆b1,

(6.2)

where σ′(z1) denotes
∂C
∂b1

.

Then, ∆a1 causes a change in the weighted sum input to the next layer, so we have

∆z2 ≈
∂z2

∂a1
∆a1

=
∂(w2a1 + b2)

∂a1
∆a1

= w2∆a1.

(6.3)

40 Chapter 6. Foundation for Deep Learning

By substituting equation 6.2 into equation 6.3, we can express how the change ∆z2 is caused
by the change ∆b1,

∆z2 ≈ w2σ′(z1)∆b1.

Similarly, the change ∆z2 will cause a change ∆a2, and ∆a2 will further cause ∆z3, and so
on, until propagating through the whole network, so ∆C can be expressed as

∆C ≈ σ′(z1)w2σ′(z2)w3σ′(z3)w4σ′(z4)
∂C
∂a4

∆b1.

Thus, the gradient can be written out as

∂C
∂b1

= σ′(z1)w2σ′(z2)w3σ′(z3)w4σ′(z4)
∂C
∂a4

. (6.4)

To explain why the vanishing gradient problem occurs, we can compare the gradients in dif-
ferent layers.

In the same fashion, we can also write out

∂C
∂b3

= σ′(z3)w4σ′(z4)
∂C
∂a4

. (6.5)

Equation 6.4 and 6.5 share the common terms w4σ′(z4)
∂C
∂a4

. Now we need to estimate the

value of the terms wlσ
′(zl).

For sigmoid function, by definition 6.2, we know its derivative satisfies |σ′(zl)| < 1/4.
Assume a standard approach of weight initialization is implemented, in which the weights
are randomly drawn from a standard normal distribution before training, so it is mostly
likely that the weights satisfy |wl | < 1. Therefore, the terms wlσ

′(zl) usually satisfy
|wlσ

′(zl)| < 1.

Thus, as
∂C
∂b1

has two extra wlσ
′(zl) terms comparing to

∂C
∂b3

, it is likely that
∂C
∂b1

is a factor

of 16 smaller than
∂C
∂b3

, which displays how the gradient vanishing problem has occurred in

this network.

A rigorous proof is not given here, but from the above example we can argue that
the gradients in the earlier layers are built on top of those in the later layers. De-
pending on the activation function and weight initialization, if the extra terms in
the earlier layers compared to the later layers are smaller than 1, then it is likely
that the gradient can keep decreasing from layer to layer while the change is being
propagated backward in the network; if the extra terms are larger than 1 instead,
then the gradient can keep increasing backward in the network. The former is the
so-called vanishing gradient problem, and the latter is the exploding gradient prob-
lem. We can see that the unstable gradient is a fundamental problem related to the
backpropagation in the gradient-based learning for neural networks, and it can be
more serious and much easier to be triggered in more complex and deeper neural
networks.

6.3. Challenges and Techniques 41

One possible technique that can be implemented to mitigate the unstable gradient
problem is batch normalization. It was firstly published in the paper Batch Normal-
ization: Accelerating Deep Network Training by Reducing Internal Covariate Shift [9] by
Google in 2015.

Definition 6.3.8 (Batch normalization). Batch normalization refers to a type of technique
that normalizes the input {x1,2,...,m} to certain layers across each batch according to algo-
rithm 4. Batch normalization can be seen as a function BNγ,β(xi) with two parameters γ
and β which are learnt through the backpropagation.

Algorithm 4 Batch normalization algorithm [9]

1: Obtain B = {x1,2,...,m}: obtain and store m values of a specific activation x in a
mini-batch of m training examples.

2: Compute mini-batch mean: µB ←
1
m ∑m

i=1 xi.

3: Compute mini-batch variance: σ2
B ←

1
m ∑m

i=1(xi − µB)
2

4: Normalize: x̂i ←
xi − µB√

σ2
B + ε

, with ε a constant added to the mini-batch variance

for numerical stability.
5: Scale and shift: yi ← γx̂i + β ≡ BNγ,β(xi), ∀i = 1, 2, ..., m.
6: Output: {yi = BNγ,β(xi), ∀i = 1, 2, ..., m}

A more general solution is to carefully tune the activation function so that the extra
terms in the gradients of earlier layers can be quite close to 1, which can hardly hap-
pen empirically. Thus, modern deep neural networks with gradient-based learning
strategy in general are suffering from the unstable gradient problem.

6.3.4 Hyperparameter Tuning

As we have discussed in the last section, various problems can be arisen during the
training of neural networks. Moreover, there is a large hyperparameter space, in-
cluding the structure of the architecture, width and depth of the network, activation
function, cost function, size of mini-batch, number of training epochs, weight ini-
tialization, learning rate, regularization technique, regularization parameters, and
so forth. Thus, the initialization of neural networks is usually very difficult, and it
takes efforts to get non-trivial learning and outcomes that are better than chance or
those from the baseline models. After constructing a non-trivial network, it is also
challenging to improve the performance of the network and achieve hyperparam-
eter optimization, which is a huge research topic in deep learning that has not yet
been solved.

Depending on the specific learning task and neural network, the hyperparameter
tuning strategy can vary a lot. Besides, it also depends on the personal preference of
the practitioners. In this thesis, neural networks are applied in financial modelling.
There are some heuristics rather than strict workflows to follow as suggestions while
setting the hyperparameters.

As earlier mentioned, the first goal is to get non-trivial learning and outcomes. To
speed up this difficult and almost random initial searching session, we can narrow

42 Chapter 6. Foundation for Deep Learning

down the learning task and shorten the training process. For instance, in our case
of forecasting the interest rate during 12 projection years, we can start with a simple
shallow network with 4 projection years, and we then train it with a large amount
of mini-batches and a small number of epochs to monitor the validation error fre-
quently enough and to avoid the non-trivial learning to last for too long. After this
first goal is achieved, we can refine all the hyperparameters to improve the perfor-
mance. In this section only the selection regarding learning rate and regularization
parameter are discussed as examples.

As shown in the updating rule of gradient descent in definition 6.1.11, learning rate
η decides the size of the change in parameters. If the learning rate is too large, then
the change in parameters is huge per step and it is hard to specifically reach the
point in the parameter space corresponding to the minimal gradient. Oppositely, if
the learning rate is too small, then the change in parameters is subtle per step and
it may take too long to achieve obvious gradient descent. Thus, we need to get the
biggest learning rate that can still allow the gradual gradient descent and that will
not cause dramatic oscillations in costs. An approach in selecting the learning rate
is to get the rate of the appropriate order first and then refine it to be as large as
possible.

L2 and L1 regularization are commonly implemented in neural networks to reduce
overfitting, which introduces another hyperparameter, namely, regularization pa-
rameter λ. By the definition 6.3.3 and 6.3.4 of L2 and L1 regularization, we can see
that λ decides how much the large weights are punished. We can select the learning
rate without regularization, then tune the regularization parameter λ, and refine the
learning rate again.

Besides the above basic examples regarding selecting learning rate and regulariza-
tion parameter, there are more advanced techniques and many other hyperparame-
ters to be determined. A book for hyperparameter optimization is Neural Networks:
Tricks of the Trade [15], which is a collection of important papers in this field, includ-
ing Practical recommendations for gradient-based training of deep architectures [1] and
Efficient BackProp [13].

6.4 Convolutional Neural Network

There are two categories of neural networks, feedforward and recurrent neural net-
works. In a feedforward neural network, the output from one layer is fed as input
to the next layer(s), during which the information can only be fed forward. Instead,
if there are feedback loops in a network, during which the information is fed from
the later layers to the earlier layers, then it is a recurrent neural network.

The most basic feedforward network is fully-connected neural network.

Definition 6.4.1 (Fully-connected neural network). A fully-connected neural network is
a feedforward network in which every two neurons in every two adjacent layers are connected
with each other.

A more complicated feedforward network is convolutional neural network (CNN),
in which there are three essential ideas, namely, local receptive fields, shared weights
and pooling. Unlike in the fully-connected neuron network, the input layer can have

6.4. Convolutional Neural Network 43

multi-dimensions, and a hidden neuron is connected with a small region of adjacent
neurons.

Definition 6.4.2 (Local receptive field). The local receptive field of a hidden neuron is the
small region of input neurons that are connected with the hidden neuron.

The size of the local receptive field is one hyperparameter that needs to be consid-
ered. The local receptive field can be slid along the input layer to be connected to
different hidden neurons in the next layer, which introduces another hyperparame-
ter.

Definition 6.4.3 (Stride length). Stride length is the number of input neurons that the
local receptive field can be slid along the input layer per step.

Example 6.4.1. We take a basic example in image recognition. The input layer consists of
28× 28 neurons to hold the input information of an image with 28× 28 pixels. Assume
the first hidden layer is a convolutional layer. The size of the local receptive field is set as
5× 5 and the stride length is 1. As shown in figure 6.6, the local receptive field can be slid
across the input neurons and is connected to a hidden neuron per step. In this case, the
corresponding first hidden layer consists of 24× 24 hidden neurons.

(A) The first local receptive field is connected with the first hid-
den neuron in the next layer.

(B) The first local receptive field is slid for one stride length to
form the next local receptive field which is connected with the

second hidden neuron in the next layer.

FIGURE 6.6: An example of a CNN with 5× 5 local receptive fields
and a stride length of 1 [16].

Unlike in the fully-connected neural network where the weights and bias associated
with neurons are usually different from each other, in a CNN all the hidden neurons
share the same set of weights and bias.

44 Chapter 6. Foundation for Deep Learning

Definition 6.4.4 (Shared weights and bias). Assume the lth layer is a convolutional layer
in a neural network. Assume the size of the local receptive field is M × M and the stride
length is 1. Then the output al

j,k from the j, kth neural in the lth layer can be expressed as

al
j,k = σ

(
bl +

M

∑
n=0

M

∑
m=0

wl
n,mal−1

j+n,k+m

)
,

where σ denotes the activation function associated with the j, kth neural in the lth layer, the
set of weights wl

n,m is called the shared weights, and bl is the shared bias. The shared weights
and bias together define a mapping from the two layers, which is known as the feature map,
filter or kernel.

Just like in the human cognitive neural system, there can also be multiple channels
processing information separately in the artificial neural system, so the number of
channels is also a hyperparameter to be determined. For instance, in a learning
task of colorful image recognition, there can be three channels of input correspond-
ing to three numbers of pixels. Besides the input layer, the hidden layers can also
consist of multiple channels, which requires multiple feature maps. Since the infor-
mation output from a convolutional layer can be complex, a pooling layer is usually
implemented right after the convolutional layer. There are many types of pooling
procedures, among which the max-pooling and L2 pooling are introduced below.

Definition 6.4.5 (Max-pooling). The M × M max-pooling procedure outputs the maxi-
mum activation in each of the M×M regions in the previous layer.

FIGURE 6.7: An example of the 2× 2 max-pooling procedure [16].

Definition 6.4.6 (Average-pooling). The average pooling procedure outputs the average
activation in each of the M×M regions in the previous layer.

Convolutional layers and pooling layers together form a convolutional neural net-
work. The major characteristic of the CNN is to incorporate the spatial structure of
the input information. By implementing pooling layers as well as shared weights
and bias, the complexity of the network is limited, which helps speed up the train-
ing session and reduce the overfitting impact.

However, sometimes it can be helpful to preserve the size of the input data, so the
technique of zero padding as described in definition 6.4.7 is implemented.

6.5. Recurrent Neural Network 45

Definition 6.4.7 (Zero padding). Zero padding is the technique that adds 0s to the end or
the surrounding of the output data of the current layer so that the output data can be of the
same size as the input data that is input into this current layer.

In practice, besides the 2D or 3D CNN applied to attack the image recognition prob-
lem, 1D CNN is also widely used to forecast time series, which is a simple variation
of the 2D CNN illustrated in the above examples.

6.5 Recurrent Neural Network

Besides the above feedforward neural networks, we have also mentioned of the re-
current neural networks (RNNs). In this chapter, we introduce this type of neural
networks and especially the long short-term memory neural networks (LSTMs).

Definition 6.5.1 (Recurrent Neural Network). The recurrent neural network (RNN) is a
category of neural networks in which there are recurrent connections between hidden neurons
so that an internal state can be setup to store memory and the dynamic behavior over time
can be exhibited.

A simplistic illustration of RNN is shown in figure 6.8. The time-dependent input
x is passed forward to the hidden neurons and incorporated into the values in the
hidden neurons, namely, the state h, and the state h can be further passed forward
through time. In short, in an RNN the state depends on both the input and the
previous state, i.e., h(t) = f (h(t−1), x(t)). The final output from the RNN can then be
computed based on the state, which is not shown in the figure here.

FIGURE 6.8: An illustration of RNN without the output neurons [5].

Unlike in the feedforward neural networks, in RNNs the outputs are determined not
only by the activations from previous layers, but also by the activations from earlier
times [16]. Due to this temporal characteristic, RNNs are commonly implemented
to conduct learning tasks related to time series, such as machine translation, speech
recognition and time-series data analysis.

However, one major problem with RNN is the aforementioned vanishing gradient
problem, because the gradient needs to be propagated backwards not only in spatial
layers but also in temporal steps in an RNN. This problem is extremely serious if
there is a long-term dependency of the output on the input information, i.e., a large
gap in time steps between the output and the relevant input information. As we
have argued before, even though theoretically it is possible to carefully tune the hy-
perparameters to fall into a small range so that the the gradient can backpropagate
without changing its scales exponentially, in practice it is hardly feasible to solve the
unstable gradient problem in this way. This drawback is discussed in an early pub-
lication by Hochreiter in 1991 [7].

46 Chapter 6. Foundation for Deep Learning

To effectively reduce the problem of unstable gradient in RNNs, Hochreiter and his
professor Schmidhuber designed a variation of RNNs, the long short-term memory
neural network (LSTM), in 1997 [8], which was improved by many researchers later.
In the recent few years, the LSTM network has become an essential element in many
breakthrough products such as Google Translate and Siri from Apple. As one of the
most successful and widely-applied RNNs, the LSTM is chosen to be implemented
in this thesis research project, and is also the focus of this chapter.

6.5.1 Long Short-Term Memory Neural Network

In the LSTM, the core neurons are known as LSTM cells, which have an internal
recurrence and can store an internal state variable st corresponding to each time step
t as a function of the previous state st−1. Besides, there are also three categories
of hidden layers which are called gates to control the flow of data, that is, input
gates, output gates and forget gates. A simple diagram of a LSTM block is illustrated
in figure 6.9, in which × and + denotes the operations of Hadamard product and
summation, respectively.

FIGURE 6.9: A diagram of LSTM neural network [5].

There are three main stages in LSTM networks, namely, the stage of input, the stage
of the forget gate and state loop, and the stage of output gate [18, 5].

Assume a time series xt is the input of the LSTM neural network. The stage of input
consists of two hidden layers, the layer to scale the input information and the layer

6.5. Recurrent Neural Network 47

of input gate. Firstly, the input is processed by the scaling layer to generate the
output with values in (0, 1),

g = tanh(bg + xtUg + ht−1Vg),

where ht−1 is the final output from the whole LSTM network for time step t− 1, bg

is the bias associated with the input-squashing neurons, and Ug and Vg denote the
weight regarding input and weight regarding the previous final output, respectively.

The input data is also processed by the input gate to generate the output

i = σ(bi + xtUi + ht−1Vi),

where bi is the bias associated with the input gate, and Ui and Vi denote the weight
regarding input and weight regarding the previous final output, respectively.

The output from the first stage is the Hadamard product of the output g and i, that
is, g� i. This stage decides what new information should be stored in the cell state.

In the second stage, the input is processed by the forget gate to generate the output
with values in (0, 1),

f = σ(b f + xtU f + ht−1V f),

where b f is the bias associated with the forget gate, and U f and V f denote the weight
regarding input and weight regarding the previous final output, respectively. The
hidden layer of forget gate takes the current input and the previous output in order
to control what information that is already stored in the cell state should be forgot-
ten.

Then the output from this stage is the updated value of the state variable

st = st−1 � f + g� i.

As indicated in the above equations, if f is close to 0, then the previous state can be
forgotten at the current time step; if f is close 1, then the previous state can be stored
and passed through to set the new state.

In the third stage, the input is processed by the output gate to generate the output
with values in (0, 1),

o = σ(bo + xtUo + ht−1Vo),

where bo is the bias associated with the output gate, and Uo and Vo denote the weight
regarding input and weight regarding the previous final output, respectively. The
layer of output gate determines what information should be output.

In the end, the final output from the whole LSTM network at time t is

ht = tanh(st)� o,

which is a filtered and rescaled version of the information stored in the current cell
state.

48 Chapter 6. Foundation for Deep Learning

The structure of LSTM ensures that the amount of the information in the system can
be controlled and the problem of long-term dependencies can be resolved. Thus,
LSTM is capable of remembering information and dealing with data in a long time
duration with little unstable gradient problem.

49

Chapter 7

Methodology and Deep Neural
Network Models

In this chapter, the methodology of this thesis and the structure of the model con-
sisting of deep neural networks are elaborated.

7.1 Methodology

7.1.1 Overview of Models

The goal of this thesis is to construct a model of deep neural networks to improve
the financial market model in URM. Thus, there are three categories of models im-
plemented in Python in this research, namely, the persistence forecasting model, the
financial market model applied in URM, and the model consisting of deep neural
networks, as shown in figure 7.1. The output of all three models is then provided
to an annuity generator so that the pension entitlement development curves can be
computed and compared.

FIGURE 7.1: There are three categories of models implemented in this
research, each of which is compared with the other two for the evalu-

ation of performance.

The persistence forecasting model simply takes the last observed historical data
point as the constant forecast for the future, which serves as a naive baseline model
to check the triviality of the model in URM and the deep neural networks. The con-
stant monthly predictions can then be annualized and compared with the other two
models.

The second model we implement is the financial market model of URM as discussed
in chapter 5. The estimated values of the time-independent parameters used in this
thesis are the first set of results presented in table 5.1, which is obtained in the CPB
background paper [3]. However, we need to also estimate the values of four time-
dependent parameters, that is, the initial values of the state variables X1 and X2 as

50 Chapter 7. Methodology and Deep Neural Network Models

well as the values of the parameters Λ0(1) and Λ0(2) need to be calibrated according
to the financial market at the time right before the starting point of the simulation,
which is discussed in appendix A. The URM model can directly predict the annual
long-term interest rates, annual bond returns and annual stock returns, from which
the annuity development curve can be indirectly computed. Specifically, three rep-
resentative scenarios are studied, that is, the three scenarios corresponding to the
95th-, 50th- and 5th-percentile final annuities are studied as the optimistic, expected
and pessimistic scenarios [12].

The last model we implement is the deep neural network model. The architecture
of the deep neural networks consists of both convolutional and LSTM layers, which
is elaborated in section 8.2. The deep neural networks can directly make monthly
predictions of interest rates and stock prices, from which the annual predictions of
interest rates, bond returns and stock returns as well as annuity development curves
can be computed.

7.1.2 Processing of Data

The monthly historical data of 10-year treasury rates and stock prices is split into
three data sets, namely, the training set, validation set and test set, which corre-
spond to the time periods of the training period, validation period and test period,
respectively. The test set is used for the final evaluation, so it is stored aside and
not applied until all the models are finalized and the experiment is at the last stage.
Instead, the validation set is used as the substitution of the test set while training to
keep monitoring the performance of the models and to help guide the refinement of
the models. The data in the training period is further prepared into small samples,
each of which includes a list of input data and the corresponding label. The train-
ing data is used to obtain the persistence forecast during the validation period, to
estimate the initial values of the parameters for the model in URM, and to train the
deep neural networks.

7.1.3 Pipeline

The first step is to compare the monthly predictions directly generated by DNNs
and the persistence forecasting model in order to train the DNNs to outperform
the persistence model, which is elaborated as follows. The monthly prediction of
interest rates and stock prices generated by the persistence forecasting model are
compared with the real-world data, and the rooted mean squared errors (RMSEs)
are computed. These RMSEs are set as the baselines. In the same way, the RMSEs re-
garding the predictions of monthly interest rates and monthly stock prices generated
by the DNNs can also be computed. The DNNs can only be saved if their RMSEs are
lower than the baselines, otherwise the architecture along with the trained parame-
ters are abandoned. By training the deep neural networks to get the RMSEs lower
than those from the persistence forecasting model and applying regularization tech-
niques to reduce overfitting, we can obtain a DNN model that is likely to outperform
the baseline model in the test period.

7.2. Deep Neural Network Models 51

The second step is to compare the annual predictions generated by DNNs and the
model in URM. We compute the annual interest rates, annual bond returns and an-
nual stock returns based on the aforementioned monthly predictions from DNNs,
compare them with the real-world data, and compute the RMSEs. Then, we generate
the annual predictions from the model in URM, comprare them with the real-world
data, and compute the RMSEs. If the RMSEs from DNNs are significantly lower than
those from the model in URM, then it is likely that the DNNs can also outperform
the model in URM during the test period. If the RMSEs from DNNs are not lower
than those from the model in URM, then we need to return to step one, lower the
baseline, i.e., lower the values of the RMSEs that decide if the DNNs can be saved
or discarded, so that we can get another set of DNNs. We repeat these two steps
until we obtain a set of DNNs that is likely to outperform the model in URM during
the test period. If this never happens, then we take the models that can generate the
least RMSEs that we can obtain.

In the test stage of the experiment, we use the saved models to generate predictions
during the test period, compute RMSEs by comparing with the real-world data, and
evaluate if the models of DNNs outperform the model in URM.

7.2 Deep Neural Network Models

The deep neural network models in this research are univariate models with monthly
data as input, where ‘univariate’ refers that the interest rates and stock prices are sep-
arately predicted in two classes of models. However, during the research, univari-
ate and multivariate models with annual data as input have also been considered
whereas not chosen in the end, which is briefly explained in this section.

7.2.1 Annual Input Data and Multivariate Deep Neural Networks

Even though it is easy to access the annual historical data of interest rates, bond re-
turns and stock returns, and it is convenient to generate annual predictions so as to
directly compare with those predicted by the model in URM without annulizing any
quantity, the annual historical data is rather sparse. Empirically, the more training
data points there are, the better DNNs can be trained [16], so in the end the monthly
input data is used to remarkably enlarge the data set.

During the research, a simple multivariate model with annual input data is con-
structed and compared with a univariate model with annual input data. While it
could be possible to take advantage of the correlations among several input time se-
ries, it is challenging for the neural network to distinguish different variables among
the multiple input time series, that is, the output predictions of different variables
end up with having similar values and being in the same order of magnitude.

Hence, the annual input data is not adopted, nor are the multivarate models.

7.2.2 Univariate Deep Neural Networks with Monthly Input Data

The model of univariate DNNs with monthly input data consists of two separate
DNN models, one for predicting interest rates and the other for stock prices. As

52 Chapter 7. Methodology and Deep Neural Network Models

aforementioned, the annual predictions of interest rates, bond returns and stock re-
turns can be computed based on the monthly predictions and are input into an an-
nuity generator to generate the annuity development curves, which is illustrated in
figure 7.2. The architectures and hyperparameters of the DNNs for interest rates and
for stock prices are reported in the next chapter.

FIGURE 7.2: The basic structure of the model of univariate DNNs
with monthly input data.

53

Chapter 8

Experimental Setup and Results

In this chapter the experimental setup and results are reported. In section 8.1, the
experimental setup including the historical data and other assumptions are elabo-
rated. In section 8.2, the architectures and hyperparameters of the DNNs for interest
rates and for stock prices are reported. In section 8.3, the experimental results are
analyzed qualitatively and quantitatively.

8.1 Experimental Setup

8.1.1 Data

In this thesis, the monthly U.S. financial data during 1958 to 2018 is applied because
of the accessibility and representability. The interest rates are the 10-year treasury
constant maturity rate published by the Federal Reserve Bank of St. Louis1, based
on which the bond returns can be computed. The stock prices and stock returns
are computed based on the close prices of the S&P 500 index published by Yahoo
Finance2. The initial values of several parameters are estimated based on the yield
curves of the US treasury collected from the website of the Federal Reserve Bank of
St. Louis3.

The length of the validation period is simply set as the same as that of the test pe-
riod in this thesis. As the length of the whole studied period is 61 years, we take the
length of the test and validation periods to be around 10 years. If the length of the
test and validation periods is less than 10 years, then this is not a long-term hori-
zon that pension funds should have. Instead, if the length of the test and validation
periods is taken to be much more than 10 years, then the training set will be much
less than 2/3 of the whole data set, which may cause an insufficient training set. In
this thesis, the length of the test and validation periods is set to be 12 years, because
in this way the special case of the financial crisis in 2008 can be included in the test
period, which helps better reflect the general performance regarding prediction of
each model.

Both the real-world data and the output from the DNN models are monthly time
series of 10-year treasury rates and stock prices. To compare them with the annual
predictions generated by the model in URM, we need to conduct the following con-
versions for the real-world data and predictions from DNN models. Assume the

1https://fred.stlouisfed.org/series/GS10
2https://finance.yahoo.com/quote/%5EGSPC/history?period1=-378694800&period2=1546297200

&interval=1mo&filter=history&frequency=1mo
3https://fred.stlouisfed.org/categories/115

54 Chapter 8. Experimental Setup and Results

monthly data of annual interest rates during year t is {m1, m2, ..., m12}, then the an-
nual interest rate y(t) for this year can be estimated by

y(t) = (1 + m1)
1

12 (1 + m2)
1

12 ...(1 + m12)
1
12 − 1.

Then, we can approximate the annual bond returns of the 10-year treasury by

P(ti+1)− P(ti)

P(ti)
≈ y(ti)∆t + τ(y(ti+1)− y(ti)),

where P(t) denotes the nominal bond prices of the 10-year treasury at year t, τ de-
notes the duration to maturity which is taken as 10 in the case of 10-year treasury,
and ∆t = ti+1 − ti is taken as 1 in our case for annual bond returns.

Regarding the data for stock market, assume the monthly data of stock prices during
year t is {n1, n2, ..., n12} and the stock price during the last month before year t is n0,
then the annual stock return z(t) for this year can be computed by

z(t) =
n1

n0

n2

n1
...

n12

n11
− 1 =

n12

n0
− 1.

8.1.2 Annuity Assumptions

We assume the premium is invested in two categories, stock market and 10-year
bond. The portfolio is rebalanced every year to keep the maturity of the bond con-
stant, and every year the percentages of the capital invested to the stock market and
to the 10-year bond are both set as 50%. Assume the starting capital in the pension
account of the participant is 100,000 euro in total, and the defined contribution is
10,000 euro per year.

For simplicity, assume the first half of the test and validation periods is devoted to
the pre-retirement investment, the other half is the period of getting pension entitle-
ments after retirement, and the age of retirement is 65. In our case that the length of
the test/validation period is set as 12 years, we assume that the starting point of the
simulation for the participant is at the age of 65− 12/2 = 59, and the period during
which the participant retires and can obtain pension annuity is from the age of 65 to
65 + 12/2 = 71.

8.1.3 Software and Hardware

In this thesis all the models are implemented in Python. Specifically, the DNNs
are built with the high-level neural networks library of Keras running on top of
the low-level open source library TensorFlow, and the DNNs are trained in Google
Colaboratory using GPU as the hardware accelerator.

8.2. Hyperparameters of DNNs 55

8.2 Hyperparameters of DNNs

8.2.1 DNN for Interest Rates

The architecture, width and associated activation functions in the DNN for interest
rates are listed in table 8.1.

TABLE 8.1: Some Hyperparameters in the DNN for Interest Rates

Layers Type of Layer Number of
Neurons

Activation
Function

1 Input Layer 12 N/A
2 Batch Normalization N/A N/A
3 Dense 64 ReLU4

4 Conv1D 704 Tanh
5 Average Pooling 1D N/A ReLU
6 Flatten N/A N/A
7 Repeat Vector N/A N/A
8 LSTM 128 ReLU
9 Dense 64 ReLU
10 Dense 1 ReLU
11 Flatten 1 N/A

Besides, in the one-dimensional convolutional layer, the number of the filters is set
to be 64, the size of the filter is set to be 2, the stride length is set to be 1, and zero
padding is applied. In the average pooling layer, the pool size is set to be 25. In the
LSTM layer, the dropout technique is implemented with the dropout probability set
to be 0.5. While training this DNN, the number of epochs is set to be 100, and the
batch size is set to be 6. The method of optimization that is implemented is Adam,
with the commonly-applied default setting α = 0.001, β1 = 0.9, β2 = 0.999 and
ε = 10−8.
The DNN for interest rates is summarized in table 8.2 and visualized in figure 8.1.
The output shape refers to the size of the matrices.

TABLE 8.2: Summary of the DNN for Interest Rates

Layers Type of Layer Output
Shape

Number of
parameters

1 Input Layer (12,1) 0
2 Batch Normalization (12,1) 4
3 Dense (12,64) 128
4 Conv1D (11,64) 8256
5 AveragePooling1D (5,64) 0
6 Flatten (320) 0
7 RepeatVector (2, 320) 0
8 LSTM (2, 128) 229888
9 Dense (2, 64) 8256
10 Dense (2,1) 65
11 Flatten (2) 0

4ReLU refers to the rectified linear neuron, as defined in definition 6.1.6.
5For the definitions of the terms mentioned in this part, please refer to section 6.4.

56 Chapter 8. Experimental Setup and Results

FIGURE 8.1: The architecture of the DNN for interest rates. The tu-
ple for the input and output size represents (width, height, depth) or
(width, height) when there are only two entries. In our case of one-

dimensional time series, width is None.

8.2. Hyperparameters of DNNs 57

8.2.2 DNN for Stock Prices

The architecture, width and associated activation functions in the DNN for stock
prices are listed in table 8.3.

TABLE 8.3: Some Hyperparameters in the DNN for Stock Prices

Layers Type of Layer Number of
Neurons

Activation
Function

1 Input Layer 12 N/A
2 Dense 64 ReLU
3 Batch Normalization N/A N/A
4 Conv1D 704 ReLU
5 Average Pooling 1D N/A ReLU
6 Flatten N/A N/A
7 Repeat Vector N/A N/A
8 LSTM 128 ReLU
9 Dense 64 ReLU
10 Dense 1 ReLU
11 Flatten 1 N/A

Besides, in the one-dimensional convolutional layer, the number of the filters is set
to be 64, the size of the filters is set to be 2, the stride length is set to be 1, and the zero
padding is applied. In the average pooling layer, the pool size is set to be 2. In the
LSTM layer, the dropout technique is implemented with the dropout probability set
to be 0.5. While training the DNN, the number of epochs is set to be 50, and the batch
size is set to be 6. The method of optimization that is implemented is Adam, with
the commonly-applied default setting α = 0.001, β1 = 0.9, β2 = 0.999 and ε = 10−8.

The DNN for stock prices is summarized in table 8.4 and visualized in figure 8.2.

TABLE 8.4: Summary of the DNN for Stock Prices

Layers Type of Layer Output
Shape

Number of
parameters

1 Input Layer (12,1) 0
2 Dense (12,64) 128
3 Batch Normalization (12,64) 256
4 Conv1D (11,64) 8256
5 AveragePooling1D (5,64) 0
6 Flatten (320) 0
7 RepeatVector (2, 320) 0
8 LSTM (2, 128) 229888
9 Dense (2, 64) 8256
10 Dense (2,1) 65
11 Flatten (2) 0

58 Chapter 8. Experimental Setup and Results

FIGURE 8.2: The architecture of the DNN for stock prices. The tu-
ple for the input and output size represents (width, height, depth) or
(width, height) when there are only two entries. In our case of one-

dimensional time series, width is None.

8.3. Predictions 59

8.3 Predictions

In this section, the results from the persistence forecasting model, the model in URM
and the DNN models are presented.

The results are plotted for both the validation period and the test period, starting
from the first year in the corresponding period without showing the initial values.
That is, the starting point of each quantity is the last historical data point before the
validation or test period, so it is not shown in the figure; the values at year 0 in each
of the figures correspond to the first predictions at the first conjecture year of the
validation or test period.

8.3.1 Results Regarding Treasury Rates

The model in URM generates 2000 scenarios of annual predictions regarding 10-year
treasury rates and bond returns for both the validation and test periods. As shown
in figure 8.3, the real-world data is contained by the range of the 2000 scenarios.

(A) Interest rates on validation period (B) Interest rates on test period

(C) Bond returns on validation period (D) Bond returns on test period

FIGURE 8.3: The 2000 scenarios of annual predictions of the 10-year
treasury rates and bond returns generated by the financial market

model in URM during the validation and test periods.

60 Chapter 8. Experimental Setup and Results

To reduce the impacts caused by peculiarities, we obtain 10 sets of different DNN
models, which are separately trained with the same architecture and hyperparame-
ters as specified in section 8.2.1. These DNN models end up obtaining different pa-
rameters, because different random seeds are implemented for initialization. Each of
the 10 DNN models regarding interest rates generates one prediction of the monthly
10-year treasury rates, as shown in figure 8.4. The overall trends of the treasury
rates predicted by DNNs conform with that of the real-world data during the early
stage of the validation period. However, the predictions tend to fluctuate around
some constant values after around 60 months during the validation period and al-
most throughout the whole test period. Attempts on mitigating this problem are not
successful, and a possible cause would perhaps be the insufficiency of the training
data, which impedes the comprehensive learning of the complicated behavior of the
treasury rates and limits the ability of the model to make long-term predictions.

(A) During validation period (B) During test period

FIGURE 8.4: The monthly predictions of 10-year treasury rates gen-
erated by the DNN for interest rates during the validation and test

periods.

The monthly predictions of 10-year treasury rates generated by the DNNs are con-
verted into annual interest rates to compare with the predictions from the other mod-
els. The naive model of persistence forecast provides one deterministic prediction.
For each of the 2000 scenarios generated by the model in URM, the Rooted Mean
Squared Error (RMSE) is computed by comparing the predicted time series to the
real-world data. The 50th percentile among all the RMSEs is selected, and the time
series of annual interest rates corresponding to the 50th percentile of the RMSEs is
obtained. In the same way, the 50th percentile of RMSEs and the corresponding an-
nual interest rate are obtained from the 10 scenarios generated by the DNN models.
Together with the real-world data and persistence forecast, the annual predictions
of interest rates correspnding to the 50th percentile of RMSEs generated from the
model in URM and the DNN models are plotted in figure 8.5.

8.3. Predictions 61

(A) During validation period (B) During test period

FIGURE 8.5: The annual predictions of interest rates corresponding to
the 50th percentile of RMSEs generated by different models.

The 50th-percentile and average RMSEs regarding the predictions of annual interest
rates are listed in table 8.5. A lower error of a prediction indicates a smaller deviation
from the real-world data. Both the average error and the 50th-percentile error can
reflect the overall performance of the corresponding model. The validation errors
provide a view of how well the models fit initially, and the test errors are relatively
more important regarding the final evaluation, which reflects the generalization per-
formance and the prediction ability of the models.

According to the errors listed in the table 8.5, during the validation period, the per-
sistence model performs the worst, the model in URM significantly outperforms
the persistence model, and a further considerable improvement is seen in the DNN
models in general. During the test period, the performance of the persistence fore-
cast is relatively close to that of the model in URM, and the DNN models slightly
outperform the the other two types of models.

TABLE 8.5: Validation and test errors regarding annual interest rates

Period Type Persistence URM DNN
Val Errors Average 0.02683 0.01871 0.007578

50th-percentile 0.02683 0.01780 0.006853
Test Errors Average 0.01937 0.02123 0.01753

50th-percentile 0.01937 0.01903 0.01728

From the monthly data or predictions of the 10-year treasury rates we can also com-
pute the annual bond returns. As before, for each type of the models, the RMSE
regarding each scenario of the annual bond returns can be obtained, and the 50th
percentile is selected. The bond returns corresponding to the 50th-percentile error is
plotted in figure 8.6.

62 Chapter 8. Experimental Setup and Results

(A) During validation period (B) During test period

FIGURE 8.6: The annual predictions of bond returns corresponding
to the 50th percentile of RMSEs generated by different models.

According to the errors listed in table 8.6, during the validation period, the model
in URM significantly outperforms the persistence model, and the errors of the DNN
models almost halve those of the URM model. During the test period, however,
the persistence model slightly outperforms the URM model, and the DNN models
generate much better performance than the other two in general.

TABLE 8.6: Validation and test errors regarding annual bond returns

Period Type Persistence URM DNN
Val Errors Average 0.1513 0.1379 0.05927

50th-percentile 0.1513 0.1036 0.05641
Test Errors Average 0.09178 0.1034 0.05502

50th-percentile 0.09178 0.1023 0.05481

8.3.2 Results Regarding Stock Market

The model in URM also generates 2000 scenarios of annual predictions regarding
stock returns. As shown in figure 8.7, in general, for most of the time steps, the
real-world data is well contained in the range of the 2000 scenarios.

(A) During validation period (B) During test period

FIGURE 8.7: The 2000 scenarios of annual stock returns generated by
the financial market model in URM during the validation and test

periods.

8.3. Predictions 63

The DNN model regarding interest rates can generate predictions of monthly stock
prices, as shown in figure 8.8. The predictions are in general monotone if not con-
sidering the small local fluctuations, so they cannot accurately reflect the changes in
the real-world stock prices. However, the scenarios of predictions have an accept-
able range of values during the validation period, and the trends of the predictions
conform with that of the real-world data for most of the part during the test period.

(A) During validation period (B) During test period

FIGURE 8.8: The monthly prediction of stock prices generated by the
DNN model for stock prices during the validation and test periods.

From the monthly data or predictions of stock prices we can also compute the annual
stock returns. As before, for each type of the models, the RMSE regarding each sce-
nario of the annual stock returns can be obtained, and the 50th percentile is selected.
The stock returns corresponding to the 50th-percentile error is plotted in figure 8.9.

(A) During validation period (B) During test period

FIGURE 8.9: The annual prediction of stock prices corresponding to
the 50th percentile of RMSEs generated by different models.

The short-term changes in stock prices are widely deemed hardly predictable [14].
According to the errors listed in table 8.7, during the validation period, the per-
sistence model outperforms the model in URM, and the DNN models significantly
outperform the persistence model in general. During the test period, the persistence
model considerably outperforms the model in URM, and the DNN models slightly
outperform the persistence model.

64 Chapter 8. Experimental Setup and Results

TABLE 8.7: Validation and test errors regarding annual stock returns

Period Type Persistence URM DNN
Val Errors Average 0.2211 0.2520 0.1888

50th-percentile 0.2211 0.2471 0.1880
Test Errors Average 0.1828 0.2541 0.1717

50th-percentile 0.1828 0.2775 0.1685

8.3.3 Results Regarding Pension Annuities

Based on the annual data and predictions of interest rates, bond returns and stock
returns, and together with the annuity assumptions as specified in section 8.1.2, the
annuity development curves can be generated for all the scenarios. According to
the 95th, 50th and 5th percentiles of the final annuities, i.e., each of the annuities
accumulated right before the retirement age, we can obtain three special scenarios,
namely, the optimistic, expected and pessimistic scenarios.

The three special scenarios of annuity development curves that are generated by
the model in URM are plotted in figure 8.10. During the validation period, the real-
world data is relatively close to the expected scenario and well contained in between
the optimistic and pessimistic scenarios. However, during the test period, the real-
world data is slightly below the pessimistic scenario.

(A) During validation period (B) During test period

FIGURE 8.10: The annuity development curves predicted by the
model in URM.

The three special scenarios of annuities generated by the URM model for the test
period can be illustrated in the pension communication materials in the form of the
navigation metaphor as shown in figure 8.11.

FIGURE 8.11: The three scenarios of pension annuities generated by
the URM model.

8.3. Predictions 65

Similarly, the three special scenarios of annuity development curves that are gener-
ated by the DNN models are plotted in figure 8.12. During the validation period,
the real-world annuity is significantly higher than the three scenarios of predictions,
which is mainly caused by the general low stock prices predicted by the DNN mod-
els. During the test period, however, the real-world annuity is lower than the three
scenarios of predictions, which is mainly caused by the almost-constant high interest
rates predicted by the DNN models.

(A) During validation period (B) During test period

FIGURE 8.12: The annuity development curves predicted by the
DNN models.

To visualize the differences, the expected predictions generated by different mod-
els are plotted in figure 8.13. During the validation period, the persistence forecast
and the expected scenario generated by the model in URM are close to the real-world
data, while the expected scenario generated by the DNN models performs the worst,
almost 15,000 euro lower than the real-world scenario all the way through the an-
nuity development curve. During the test period, the expected scenarios from all
the models are higher than the real-world data, among which the expected annuity
development curve generated by DNN models is the closest to the real-world data.

(A) During validation period (B) During test period

FIGURE 8.13: The annuity development curves predicted by different
models.

66 Chapter 8. Experimental Setup and Results

The three special scenarios of annuities generated by the DNN model for the test
period can be illustrated in the pension communication materials in the form of the
navigation metaphor as shown in figure 8.14.

FIGURE 8.14: The three scenarios of pension annuities generated by
the DNN model.

To more strictly compare and evaluate the general performance of different models,
the average errors and the errors associated to the expected scenarios should be both
reported, as listed in table 8.8. According to the errors, during the validation period,
the persistence forecast has the best performance, and the DNN models perform the
worst6. However, during the test period, the persistence forecast performs the worst,
and DNN models considerably outperform the other two types of models regarding
all of the three special scenarios and the average performance.

TABLE 8.8: Validation errors regarding annuity development curves

Period Type Persistence URM DNN
Average 3388.57 9728.71 15098.28

Val Errors Optimistic 3388.57 13633.01 10334.94
Expected 3388.57 8486.95 15775.63
Pessimistic 3388.57 13838.31 18894.57
Average 21978.35 13735.16 9270.02

Test Errors Optimistic 21978.35 28497.25 15564.00
Expected 21978.35 13294.37 8888.95
Pessimistic 21978.35 7928.38 4961.51

6Note that during the validation period, the DNN models in general have the lowest RMSEs re-
garding interest rates, bond returns and stock returns, but the DNN models in general have the highest
RMSEs regarding the annuity. An explanation could be that in the persistence model and URM model
the impacts of the deviations from the real-world data regarding interest rates, stock returns and bond
returns cancel out with each other more than in the DNN models, so that the deviation regarding the
annuity is smaller in the persistence model and URM model. For example, during the validation pe-
riod, the persistence model forecasts higher bond returns than the real-world data, whereas forecasts
lower stock returns than they should have been, and these two deviations cancel out with each to some
extent while computing the annuity so that there is not a big deviation regarding the predicted annuity.

67

Chapter 9

Conclusion

In this chapter the conclusion based on the experimental results reported in chapter
8 is summarized.

In this thesis, the experiment is conducted with the historical data from 1958 to 2018,
and the final performance is evaluated during the 12-year test period of 2007 to
2018. The financial market model in URM is implemented to generate 2000 sce-
narios of nominal variables. Additionally, we construct a model consisting of two
DNNs to forecast the financial market, among which one DNN model is developed
to forecast the 10-year treasury rates and the other is for the stock prices. 10 sce-
narios of interest rates, bond returns and stock returns can be generated by 10 sets
of separately-trained DNN models. The annual predictions regarding interest rates,
bond returns and stock returns generated by the model in URM, the DNN models
and the persistence forecasting model are compared and evaluated, where RMSE is
applied as the metric of measuring the deviation of the predicted time series from
the real-world data. Accordingly, the pension entitlement development curves can
be computed based on the aforementioned predictions, and three special scenarios,
namely, the optimistic, expected and pessimistic scenarios are analyzed for each type
of the models.

During the test period, regarding the annual predictions of interest rates, bond re-
turns and stock returns, on average the DNN models keep outperforming both the
model in URM and the persistence model. As for the annuity development curves,
the average test error and the test errors of the three special scenarios generated
from the DNN models are all considerably lower than those from the URM model
and the persistence forecasting model, which indicates that the DNN models in gen-
eral and on average provide more accurate predictions of pension annuity develop-
ment curve compared to the model in URM and the persistence forecasting model.
However, by figure 8.10, 8.12 and 8.13, none of the models can actually provide an
expected scenario that is fairly close to the real-world data and acceptable optimistic
and pessimistic scenarios that can cover the range of the real-world data.

In this thesis, the research question is to investigate the possibility of developing a
model of deep neural networks to improve the URM model. Based on the current
experimental settings and the considered training, validation and test periods, the
conclusion is that the DNN models implemented in this thesis can outperform the
URM model and provide relatively more accurate pension communication, even
though the accuracy still needs to be further improved.

69

Chapter 10

Discussion and Future Work

In this chapter, the limitations of this thesis are discussed and possible future work
is presented.

Above all, the lack of the historical data limits the learning of the DNN models. With
a few decades to a century of financial market data, it can be rather challenging to
provide a sufficient amount of training data and to obtain accurate long-term predic-
tions. Additionally, it is also well-known that the financial market has complicated
behaviors, which makes it even harder to fully train the DNNs with the sparse data
set.

Moreover, a longer period of historical data is required to conduct a more compre-
hensive comparison and evaluation. In the set of the URM scenarios published by
DNB for each quarter, there are 60 projection years. However, due to the insuffi-
ciency of the historical financial data, it is hardly possible to train the DNN models
well and at the same time to evaluate them with a test period of 60 years.

Besides, one of the biggest concerns while implementing deep learning is regarding
its accountability. While the technique of deep learning focuses on empowering ma-
chines to automatically learn the patterns and generate classifications or predictions
without expertise in the relevant field or too much human interventions of manip-
ulating the data, the complexity of the DNNs learnt by machines turns out to go
beyond the understanding of human most of the time. When taking crucial tasks or
making critical decisions, especially in the public sector, it can be controversial for
the policy makers to implement DNNs without providing full accountability, even
with persuasive results obtained by DNNs. Since the application of deep learning
has been surging since that last decade, more regulations and techniques for evalu-
ation are urgently needed in the near future [27].

One possibility of the future work is to further investigate the forecast from the per-
spective of financial and non-financial assumptions. In the URM model, the be-
haviour of the financial market is assumed to be relatively constant by using a large
amount of time-independent parameters. It is promising to improve the URM model
by implementing a more dynamic model with more time-dependent variables. Re-
garding the other assumptions that are not in term of the financial market, such as
the premium policy, investment policy and the starting capital in the pension ac-
count of the participants, more detailed assumptions can be made to generate more
realistic simulations.

Another direction of the future work could be investigating the possibility of con-
structing a skillful multivariate DNN model which takes multiple types of financial

70 Chapter 10. Discussion and Future Work

time series as input. This thesis fails to develop such a multivariate model, but it
should be very promising once it is realized, since it can take advantage of the cor-
relations among time series, which is extra information that can be learnt from.

Last but not least, it could be possible to develop a generative model to artificially
expand the financial data set. In the field of image recognition, the Generative Ad-
versarial Networks (GANs) has already been implemented to automatically gener-
ate images [6]. However, it can be rather challenging to develop effective generative
algorithms for time series, especially financial market data.

71

Appendix A

Initial Values In URM

As mentioned in section 7.1.1, the initial values of the state variables X1 and X2 as
well as the values of the parameters Λ0(1) and Λ0(2) need to be calibrated according
to the financial market at the time right before the starting point of the simulation.
The estimation of the initial values follows the document [4] published by Commis-
sion Parameters.

According to equation 5.10, the instantaneous nominal yield of a bond with duration
τ is

−d ln P(Xt, t, t + τ)

dt
= −Ȧ(τ)− Ḃ(τ)′Xt. (A.1)

The yield curves of instantaneous forward rates are downloaded from the website
of the European Central Bank1, and the function A.1 is fit into the data in order to
get the estimation of the initial values. In this thesis, the validation period is from
1995 to 2006, and the test period is from 2007 to 2018. Therefore, to find the initial
values in URM during the validation period, we need to obtain the real-world data
on the last day available before the year of 1995, which is December 30th of 1994;
and to find the initial values in URM during the test period, we need to obtain the
real-world data on the last day available before the year of 2007, which is December
29th of 2006. The estimation results are shown in figure A.1 and table A.1.

(A) For the validation period
(B) For the test period

FIGURE A.1: The real-world data (blue) and fitted (green) yield
curves of instantaneous forward rates.

1https://www.ecb.europa.eu/stats/financial_markets_and_interest_rates/euro_area_yield_curves/html
/index.en.html

72 Appendix A. Initial Values In URM

TABLE A.1: The estimated initial values in URM

Period Initial X1 Initial X2 Λ0(1) Λ0(2)
Val -4.0546860 -2.1863728 0.2212900 0.2307591
Test -2.1426647 -0.1706859 0.1498258 0.1367757

73

Bibliography

[1] Yoshua Bengio. Practical recommendations for gradient-based training of deep
architectures. In Neural networks: Tricks of the trade, pages 437–478. Springer,
2012.

[2] DNB. Rekenmethodieken voor weergave van ouderdomspensioen in sce-
nario’s.

[3] Nick Draper. A financial market model for the netherlands. 2014.
[4] GMM Gelauff, Th E Nijman, OCHM Sleijpen, and OW Steenbeek. Advies com-

missie parameters.
[5] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press,

2016.
[6] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-

Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adver-
sarial nets. In Advances in neural information processing systems, pages 2672–2680,
2014.

[7] Sepp Hochreiter. Untersuchungen zu dynamischen neuronalen netzen.
Diploma, Technische Universität München, 91(1), 1991.

[8] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

[9] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. arXiv preprint
arXiv:1502.03167, 2015.

[10] Nitish Shirish Keskar and Richard Socher. Improving generalization perfor-
mance by switching from adam to sgd. arXiv preprint arXiv:1712.07628, 2017.

[11] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980, 2014.

[12] Wouter Koolmees. Regeling van de minister van sociale zaken en werkgele-
genheid van 13 april 2018, nr. 2018-0000071068, tot vaststelling van de
rekenmethodieken voor weergave van ouderdomspensioen in scenario’s.
STAATSCOURANT Nr.22286, 2018.

[13] Yann A LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Müller. Ef-
ficient backprop. In Neural networks: Tricks of the trade, pages 9–48. Springer,
2012.

[14] Burton Gordon Malkiel and Kerin McCue. A random walk down Wall Street,
volume 332. Norton New York, 1985.

[15] Grégoire Montavon, Geneviève Orr, and Klaus-Robert Müller. Neural networks:
tricks of the trade, volume 7700. springer, 2012.

[16] Michael A Nielsen. Neural networks and deep learning, volume 25. Determination
press USA, 2015.

[17] OECD. Pension markets in focus 2018.
[18] Christopher Olah. Understanding lstm networks, 2015.
[19] Fabian Polman and Connor Dekker. Riskco meeting slides: Uniforme reken-

methodiek (urm). 2017.
[20] Sibylle JM Reichert. The dutch pension system, an overview of the key aspects.

74 BIBLIOGRAPHY

Brussels, Belgium: the Dutch Association of Industry-wide Pension Funds and the
Dutch association of Company Pension Funds, 2014.

[21] Steven E Shreve. Stochastic calculus for finance II: Continuous-time models, vol-
ume 11. Springer Science & Business Media, 2004.

[22] Peter JC Spreij. Measure theoretic probability. UvA Course Notes, 2012.
[23] SVB. Aow pension, 2019.
[24] Iris Theeuwes. Review of discount rates for the valuation of pension liabilities.

Master’s Thesis Tu/e, 2018.
[25] Rob Van den Goorbergh, Roderick Molenaar, Onno W Steenbeek, and Peter

Vlaar. Risk models with jumps and time-varying second moments. 2011.
[26] AM van Hekken. Check This! Empowering people to plan for retirement. The role of

persuasive message strategies and readability. PhD thesis, [Sl: sn], 2018.
[27] Meredith Whittaker, Kate Crawford, Roel Dobbe, Genevieve Fried, Elizabeth

Kaziunas, Varoon Mathur, Sarah Mysers West, Rashida Richardson, Jason
Schultz, and Oscar Schwartz. AI now report 2018. AI Now Institute at New
York University, 2018.

	Abstract
	Acknowledgements
	Introduction
	RiskCo B.V.
	Background
	Research Questions
	Overview of Methodology
	Outline

	Dutch Pension System and URM
	Dutch Pension System
	Three-Pillar System
	State Pension (AOW)
	Collective Pension Schemes
	Individual Pension Products

	Pension Schemes
	Pension Regulation and Communication

	Uniform Calculation Method (URM)

	Overview of Approaches to Time Series Forecasting
	Classical Method
	Persistence Forecasting Models
	Stochastic Differential Equations (SDE)
	Vector Autoregressive (VAR) Models

	Deep Neural Network

	Foundation for Stochastic Calculus
	Brownian Motion
	Stochastic Calculus

	Model in Uniform Calculation Method
	Foundation for Deep Learning
	Introduction to Deep Learning
	Backpropagation Algorithm
	Challenges and Techniques
	Learning Slowdown Problem
	Overfitting Problem and Regularization
	Unstable Gradient Problem
	Hyperparameter Tuning

	Convolutional Neural Network
	Recurrent Neural Network
	Long Short-Term Memory Neural Network

	Methodology and Deep Neural Network Models
	Methodology
	Overview of Models
	Processing of Data
	Pipeline

	Deep Neural Network Models
	Annual Input Data and Multivariate Deep Neural Networks
	Univariate Deep Neural Networks with Monthly Input Data

	Experimental Setup and Results
	Experimental Setup
	Data
	Annuity Assumptions
	Software and Hardware

	Hyperparameters of DNNs
	DNN for Interest Rates
	DNN for Stock Prices

	Predictions
	Results Regarding Treasury Rates
	Results Regarding Stock Market
	Results Regarding Pension Annuities

	Conclusion
	Discussion and Future Work
	Initial Values In URM

