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This research proposes methods to get insights from limited data from sports tal-
ents. Since the data is limited, the focus is on comparing talents. Data from Dutch
handball talents is used as a case to create and test the methods. The research covers
three main phases; data preparation, data analysis and data visualization. Substan-
tiated with theory from the literature, we outline procedures for every phase. For
the first phase we propose a way to estimate missing values by using multiple linear
regression in combination with clustering. In the second phase, we propose a near-
est neighbors regression approach to find the best distance range to compare talents.
In the last phase, we show a way of visualizing comparable talents using the spi-
der plot, to present insights to sports scouts and coaches. Based on the results from
the methods we tested with the handball data, we conclude that the approach from
phase 1 works sufficiently in the case we tested, but that it does not necessarily work
for other cases or other variables due to limited data, which is a limitation. Further-
more, we consider both approaches in phases 2 and 3 applicable in the handball case.
However, to improve the reliability, the methods could be tested more extensively
with other data in a future research.
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Chapter 1

Introduction

1.1 Research context

Due to the great results of the Dutch women’s handball selection in the last five years
(semi-finals and finals in the European and World Championships and semi-finals in
the Olympic Games in 2016), the Dutch Handball Federation (NHV) is growing (Wa-
terval, 2017). Furthermore, the Dutch men’s selection qualified themselves for the
European Championships for the very first time in 2020 (HandbalNL, 2019). These
successes are also due to the HandbalAcademie that the NHV has set up in 2006.
The aim of the HandbalAcademie is to prepare handball talents to start playing for
the national A-selection of The Netherlands, the national youth selections and main
European teams.

For individual athletes from the aforementioned Dutch teams, data is collected.
Examples of the collected data are results from physical tests like sprinting and
jumping tests and data about the mental condition of the talents. Most of this data
is collected at the location of the NHV1.

The NHV is looking for a way to make the scouting and training of talents more
effective by using data analytics. Currently, the federation does not use the informa-
tion of current or former talents when looking for new talents. Therefore, the focus
in this research project is on finding a way to help the scouts and coaches use the
available data to make their daily activities easier.

1.2 Problem statement

As mentioned, quite some data is collected and the NHV would like to use this data
more effectively. The main challenge is however, that data is not always collected
consistently, meaning that not all talents performed the same or all physical tests and
that not all tests are performed at the same moment during the year for example.
Between different handball teams, there are differences in what kind of data they
do and do not collect. The result of this is that the data has many missing values.
Furthermore, results of tests of the men are gathered even less consistently. This
means that there is imbalance of men and women in the data as well.

1Sportcentrum Papendal, Papendallaan 9, 6816 VD, Arnhem
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1.3 Research objective and scope

With the challenge described in the previous section, the goal of this research is to
find a method to handle the limited data to still be able to give relevant advice to the
Dutch Handball Federation. Although the data is limited, there are still numerous
ways of giving advice by using the data. For that reason, the scope of the research is
set to comparing talents. With comparing talents, we mean both comparing young
players with current talents as well as comparing talents within the same group or
team. Therefore, the specific research objective is to find a method to compare talents
to be able to give advice on talent selection and training, with the limited data.

1.4 Relevance

The relevance of this research can be split in two parts. On the one hand, it could be
relevant in data mining. An approach in which small data is sufficient to still be able
to give relevant advice could be used in different domains where data is limited. On
the other hand, it could be relevant in sports and talent development more specifi-
cally. Small or upcoming sports, where data has not been collected consistently and
for a long time yet, could benefit from this research.

1.5 Thesis structure

This section explains what the structure of this thesis looks like. Chapter 2 discusses
the research approach. In this chapter, we will mention the research questions, the
main steps we took and we will provide details about which tools we used. Chap-
ter 3 gives a theoretical background of the techniques we used throughout the re-
search. We will discuss the algorithms, k-fold cross validation and we will give
information about relevant other studies on sport data and talent development. In
Chapter 4 we will provide more information about the data we received from the
Dutch Handball Federation and we will explain what we did with the data before
we could compare the talents. Chapter 5 discusses the method that can be used to
find the best models to compare talents. In this chapter we will also give the results
of applying the method to the handball data. In Chapter 6 we will describe possibil-
ities of visualizing the results obtained when the best model of Chapter 5 is used to
compare talents. Lastly, Chapter 7 gives a conclusion and discusses the limitations
and possible future research of this study.
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Chapter 2

Research approach

This Chapter mentions the research question in Section 2.1. Furthermore, in Sec-
tion 2.2, the main phases of this study and the tools we used throughout the research
will be discussed.

2.1 Research question

As mentioned in Chapter 1, the Dutch Handball Federation is growing and they are
looking for ways to use their data. We also mentioned that the scope of this research
is set to comparing talents. Therefore, the research question is the following:

How can data analytics be used to assist scouts and coaches in finding and training sports
talents in order to make more effective choices?

In the previous chapter we also stated the main problem. The data is limited and,
therefore, the focus is on how we can answer the research question with this kind of
data.

The main research question will be answered by answering the following four
sub-questions:

• Sub-question 1: What data pre-processing needs to be done before the data
analytics process can start?

• Sub-question 2: How can scouts be supported when looking for the best per-
forming sports players?

• Sub-question 3: How can coaches be supported when training their sports
talents?

• Sub-question 4: Which way of presenting the information to the scouts and
coaches will be effective?

Sub-question 1 is the approach that needs to be taken before valuable information
can be found in the data. Sub-question 2 and 3 are about how valuable information
can be found in the data. By answering the fourth sub-question we will get a way of
presenting the valuable information to the different stakeholders.

2.2 Research methods

This section describes the research methods. First, we will discuss the main phases
of this research in Section 2.2.1. Second, we will give details about the tools used
during the research in Section 2.2.2.
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2.2.1 The main phases

This section describes the main phases that this research was divided into to answer
the research question. In the main phases, we will answer the different sub-question
as outlined in Section 2.1. Figure 2.1 illustrates the flow of the three main phases. The
figure also shows that throughout all steps in the research, choices were based on
theoretical background knowledge gathered during literature reviews. During the
project we had contact moments with the domain expert1 once in the two or three
weeks to discuss and validate results. The motivation of this research came from
the Dutch Handball Federation. However, we consider the methods we proposed
in the different phases to be applicable in other upcoming sports and other domains
where talents can be compared. Therefore, we consider this research as a handball
case study to answer the research question. The next paragraphs give an overview
of the phases.

Data preparation Data analysis Data visualization

Sub-question 1 Sub-question 2 & 3 Sub-question 4

Theoretical background

1 2 3

FIGURE 2.1: The main phases of the research.

Phase 1 - data preparation

The first main phase is data preparation and this phase is related to sub-question
1. In the beginning of this phase, we received the data from the Dutch Handball
Federation from their talent tracking system. An important part of this phase was to
inspect the data well together with the domain expert, to be able to select meaningful
variables, to transform these variables and to fill the missing values that were left.
There were quite some missing values for a certain variable. Therefore, we decided
to handle these using predictive analytics instead of applying simple mean imputa-
tion for example. We tried many different regression models and chose the best one,
meaning we performed exhaustive search. Although exhaustive search might not
be the most efficient way of finding the best model, we considered it to be applicable
in this case since the data set was not that big and the goal was not to find the fastest
way of finding the best model. The results of these models were validated with the
domain expert. What we did exactly during this phase is described in Chapter 4.

Phase 2 - data analysis

The second main phase is data analysis and this phase is related to sub-questions
2 and 3. During this phase we performed exhaustive search again to find the best

1Edwin Kippers, he is the assistant national coach of the Dutch men’s handball selection.
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model. Again we considered this applicable in this research since the goal was not
to find an efficient way of finding the best model. We used a k-nearest neighbors
regression approach to find the best performing model to compare talents. However,
instead of looking at the k neighbors, we looked at the neighbors in a certain distance
range. We considered this to be more applicable with the handball data and for
this research, since we are focusing on limited data. Data points that are within
the k number of neighbors can still be quite different if the data point is an outlier.
Therefore, we tried to overcome this by looking at neighbors within a distance range
only. To find the best performing model, we proposed to look at the five or ten
best performing models on the training data and apply this model on the test data
to find the best and most constant performing model. Since a big model base is
created during this phase, we also propose to use this model base in another way to
try to predict separate variables. What we did exactly during this phase and which
algorithms we used is described in Chapter 5.

Phase 3 - data visualization

The third main phase is data visualization and this phase is related to sub-question
4. To find a way of visualizing the kind of data we got from phase 1 and 2 (multidi-
mensional data), we looked into other studies. We found a visualization called the
spider plot. A plot like this is applicable in different ways to give scouts and coaches
insights about their talents. What we did exactly during this phase is described in
Chapter 6.

2.2.2 The software

In this research we used the R programming language in all three phases. The R-
version we used was 3.5.1, and we used RStudio (version 1.1.463) as the develop-
ment environment. There are many packages available that facilitate data analytics
in R. Table A.1 in Appendix A lists the packages that were used in this research and
explains for which purposes they were used.
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Chapter 3

Background

In this chapter we will first give a theoretical background of the machine learning
algorithms we used throughout the research (Section 3.1) and about k-fold cross val-
idation (Section 3.2). After that, we will provide some information about relevant
other studies on sport data and talent development (Section 3.3).

3.1 Machine learning algorithms

Several machine learning algorithms are used in this research. We focus on two dif-
ferent types; supervised learning algorithms and unsupervised learning algorithms.
Figure 3.1 shows the different types and algorithms used in this research1. Sec-
tion 3.1.1 discusses supervised learning and describes the specific algorithms used
in this research. Section 3.1.2 discusses unsupervised learning and describes the un-
supervised algorithm used in this research.

Machine learning

Regression Clustering

Unsupervised learning
algorithms

Supervised learning
algorithms

- k-nearest neighbors
- Linear regression

- k-means

FIGURE 3.1: The types of algorithms used during the research.

3.1.1 Supervised learning

The first category of algorithms we discuss is supervised learning algorithms. These
algorithms can be applied in cases where a response variable is known, as described
in Chapter 6 of Machine Learning Using R by Ramasubramanian and Singh (2019).
The goal of these kind of algorithms is to learn with the available data to be able to

1The figure does not show all the different algorithm categories, but only the ones used in this
research.
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give a prediction of the response variable. The response variable can be either con-
tinuous or categorical. If the response variable is categorical, the challenge is called
a classification task. If the response variable is continuous, the challenge is called a
regression task. In this research, we have problems regarding continuous variables.
In the following two sections we will describe the two algorithms used; multiple lin-
ear regression and the k-nearest neighbors algorithm. The third paragraph discusses
which performance measures could be used in regression tasks.

Multiple Linear regression

One way of estimating continuous variables from other variables is using linear re-
gression. The variable to be predicted can be called the dependent variable or the
response variable and the variables predicting this response variable can be called
the independent variables, the predictor variables or the regressor variables (Mont-
gomery, Peck, and Vining, 2015). The goal of regression analysis is to find relation-
ships between the variables. An example is shown in Figure 3.2 and Figure 3.3.
The left figure shows the result of throwing a ball from a standing position plotted
against the result of throwing a ball when jumping. There is a clear relationship be-
tween the two variables. The right figure shows the same data, but now a regression
line is drawn through the points. This line (or model) has a regression formula of
the form:

y = β0 + β1x + ε

In this equation, y represents the response variable, β0 is the intercept (the value
where the line crosses the y-axis) and ε is the difference between the real data point
and the regression line. Furthermore, β1 is the coefficient of the predictor variable
x, and represents the change in y for a change of one unit in x. This is an example
of simple linear regression. In multiple linear regression, we try to predict the value
of the response variable with several predictor variables (Norouzian and Asadpour,
2012). Multiple linear regression models have equations with the following form:

y = β0 + β1x1 + ... + βqxq + ε
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ter diagram with a

regression line.

In multiple linear regression, a situation called multicollinearity can occur. This
means that there is a linear relationship between two or more of the predictor vari-
ables (Adeboye, Fagoyinbo, and Olatayo, 2014). This is not really a problem when
the goal of multiple linear regression is just to predict the dependent variable, ac-
cording to Adeboye et al. (2014) and Paul (2006). However, the phenomenon can
be a problem if we want to understand how the separate predictor variables influ-
ence the response variable. Paul (2006) also describes how multicollinearity can be
detected. One of the methods is calculating the variance inflation factor (VIF). The
VIF measures how much the variance of a regression coefficient increases due to
multicollinearity, as explained by Alibuhtto and Peiris (2015). Both Paul (2006) and
Alibuhtto et al. (2015) appoint that a VIF of above 5 or 10 for one or more predictors
indicates multicollinearity.

Cook’s Distance Data sets can contain observations that are extreme. These obser-
vations might influence regression models a lot (Montgomery et al., 2015). Stevens
(1984) discusses several measures that can detect these influential data points. One
of them is Cook’s Distance. This measure looks at the change in regression coeffi-
cients if a certain data point is left out. This is done for every data point in the data
set. To choose which of the data points are too influential, a cutoff level of 4

n can be
used for example (Meer, Te Grotenhuis, and Pelzer, 2010), where n represents the
number of data points. Data points that have a Cook’s Distance that exceeds this
cutoff level can be seen as influential and the decision can be made to remove this
observation from the model.

Other linear regression assumptions We already mentioned that it is necessary to
check for multicollinearity when performing multiple linear regression. Apart from
this, there are other assumptions that should be reviewed when creating a linear
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regression model. These are described by Elliot and Tranmer (2008) in the following
way:

1. The residuals have a constant variance along values of the dependent variable.
This is called homoscedasticity.

2. There are no extreme values in the data.

3. The residuals are normally distributed.

4. The residuals are not related to the independent variables.

5. The residuals are not correlated with each other.

Table 3.1 shows how the assumptions can be checked. It is clear from the ta-
ble that the assumptions can be checked by looking at several plots or tests. This
is also described by Elliot et al. (2008). The Breusch-Pagan test is a test to check
whether there is constant error variance, and therefore homoscedasticity, proposed
by Breusch and Pagan (1979). Outliers can be found by using the Bonferroni in-
equality test as described by Cook and Weisberg (1982). The Durbin-Watson is a test
to check whether the residuals of a regression model are independent (Durbin and
Watson, 1950).

TABLE 3.1: Ways to check the five linear regression assumptions.

Assumption Plot Ways to check
1 Residuals vs. predicted values The residuals should be

equally spread around y = 0,
Breusch-Pagan test

2 Residuals vs. predicted values Observations with a stan-
dardized residual or a pre-
dicted value of more than 3
or less than -3 can be seen as
outliers, Bonferroni p-values

3 Quantile-Quantile
plot/histogram

The residuals should be close
to the diagonal line in the Q-
Q plot

4 Residuals vs. predicted values There should be no patterns
visible

5 - Durbin-Watson test

k-Nearest Neighbors

The second algorithm we used is the k-Nearest Neighbors algorithm (kNN). This
algorithm can predict both categorical variables (classification) and continuous vari-
ables (regression) (Imandoust and Bolandraftar, 2013). In this research, kNN regres-
sion has been applied only. The idea of the kNN algorithm is to find the k most sim-
ilar data points to a new data point, and use the values of the similar data points to
estimate the value of the new data point (Zhang, Li, Zong, Zhu, and Cheng, 2017).
In kNN regression, a way of predicting the value of new data points is by calcu-
lating the average value of the k nearest instances (Imandoust et al., 2013; Goyal,
Chandra, and Singh, 2014). As Goyal et al. (2014) mention, the kNN algorithm is a
non-parametric algorithm. This means that it does not make any assumptions about
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the distribution in the data.

Figure 3.4 illustrates the idea of the kNN algorithm. If instance 1 is the new data
point, and we want to find the two closest instances (k = 2) based on variables x1
and x2, then we will find that instances 2 and 3 are the closest to 1. We can now
estimate variable x3 for instance 1 by taking the average of variable x3 of instances 2
and 3.

FIGURE 3.4: Finding the k nearest data points to a given data point.

What is clear from this example as well as from different other studies, is that
there are three aspects that could change the outcome of an example like this (Goyal
et al., 2014; Zhang et al., 2017; Punch, Goodman, Pei, Chia-Shun, Hovland, and En-
body, 1993). Firstly, this is the value of k; the number of other data points we look at
when predicting the value of a new instance. Secondly, the features to look at when
finding the nearest neighbors. Punch et al. (1993) mentions that if there are many
features, selecting important features only can optimize the performance of the al-
gorithm. Lastly, the distance metric used to find the nearest neighbors can determine
the outcome.

Mulak and Talhar (2013) analyzed three different distance metrics for kNN clas-
sification which can also be used in kNN regression. The metrics they describe are
the Euclidean distance, the Chebychev distance and the Manhattan distance. They
calculate the distances between points as follows:

• Euclidean distance: The root square differences between two coordinates:√
∑m

k=1(xik − xjk)2, k is the kth variable, m is the number of variables, xik is the
value of variable k for data point i, xjk is the value of variable k for data point j.

• Chebychev distance: The absolute magnitude of the differences between two
coordinates:
maxk |xik − xjk|, k is the kth variable, xik is the value of variable k for data point
i, xjk is the value of variable k for data point j.
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• Manhattan distance: The differences between two coordinates:
∑m

k=1 |xik − xjk|, k is the kth variable, m is the number of variables, xik is the
value of variable k for data point i, xjk is the value of variable k for data point j.

Most studies and theoretical articles state that the Euclidean distance is the most
commonly used distance metric. This is for example stated by Imandoust et al. (2013)
and Goyal et al. (2014).

If variables have different ranges, it is necessary to standardize these variables,
otherwise the variables with big scales will have a bigger impact than the variables
with a smaller scale when selecting the neighbors (Shalabi, Shaaban, and Kasasbeh,
2006). There are several ways to standardize variables to comparable scales. One
way Shalabi et al. (2006) mention is z-score normalization. The standardized value
of a certain variable can be calculated as follows:

xinorm =
(xi − x̄)

σx

In this formula, xi is the ith value of variable x, x̄ is the mean of variable x and σx
is the standard deviation of variable x. As mentioned by Abdi (2010), the calculated
z-scores of variables have a mean of 0 and a standard deviation of 1.

Fixed-radius near neighbors search Instead of using kNN to predict values of new
data points based on the k neighbors of a certain data point, the distance between
points principle can also be used to find the closest points of a certain data point,
to compare data points. This can be called nearest neighbor search and the nearest
neighbor search problem can be described as finding these nearest neighbors effi-
ciently (Muja and Lowe, 2009). Instead of finding the fixed number of k neighbors,
it is also possible to look at all neighbors within a certain distance from a data point.
This can be called fixed-radius near neighbors search, as described by Dickerson and
Drysdale (1990).

Performance measures

To compare models created with the supervised algorithms mentioned in this section
to estimate continuous variables, several performance measures can be considered.
This section describes the measures that were found in other studies and used in this
research.

Two well-known measures are the mean absolute error (MAE) and the root mean
square error (RMSE) (Chai and Draxler, 2014; Galdi and Tagliaferri, 2019). Those
measures can be calculated as follows:

MAE =
1
n ∑n

i=1 |ŷi − yi|

RMSE =

√
1
n ∑n

i=1(ŷi − yi)2

n is the number of predictions, ŷi is the ith prediction and yi is the observed
value of the ith observation. The difference between both measures is that the MAE
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weighs each error the same, while the RMSE gives more weight to bigger errors.

Both the RMSE and the MAE have the same scale as the data. However, some-
times it might be more convenient to use a scale-independent measure. An exam-
ple is when we want to compare results on different variables or if we want to get
an overall performance of models where different variables are included. Galdi et
al. (2019) name two of those scale-independent metrics; the relative absolute error
(RAE) and the relative squared error (RSE). Those measures can be calculated as fol-
lows:

RAE =
∑n

i=1 |ŷi − yi|
∑n

i=1 |ȳi − yi|

RSE =
∑n

i=1(ŷi − yi)
2

∑n
i=1(ȳi − yi)2

In this formula, ȳ is the mean of the observed values.

Another metric to measure the performance of linear models that predict contin-
uous variables is R2 (Alexander, Tropsha, and Winkler, 2015; Healy, 1984). R2 is also
called the coefficient of determination and is a measure of variation explained by the
regressor (Montgomery et al., 2015). Both Alexander et al. (2015) and Healy (1984)
mention that there are several definitions of R2. The former gives a definition that is
appropriate for different predictive models. The formula they give is the following:

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − ȳi)2

Healy (1984) mentions that R2 can be misleading when more predictors are added
to the model. This should therefore be taken into account when the R2 measure is
used to compare models with different predictors. Moreover, Alexander et al. (2015)
give a note on that the goal of prediction models is mainly to get a good accuracy
and not a rate of how well it explains the variation in a chosen data set. Therefore,
they recommend using a measure like the RMSE to check the model’s usefulness as
well.

3.1.2 Unsupervised learning

The second category of algorithms discussed is unsupervised learning algorithms.
These algorithms can be applied in cases where a response variable is not known,
as described in Chapter 6 of Machine Learning Using R by Ramasubramanian et al.
(2019). The algorithms try to find similarities between data points. One category
of unsupervised learning is cluster analysis. In this research we used the k-means
clustering algorithm. This algorithm will be discussed in the following section.

k-means

The k-means clustering algorithm is a well-known algorithm used to find k clusters
that are preferably not overlapping (Wu, 2012). In the book, Wu (2012) describes the
main steps of the k-means algorithm as follows:

1. k initial centroids have to be chosen;
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2. The distance from each data point to each cluster centroid is determined;

3. Each data point is assigned to the closest cluster centroid;

4. The centroid of each cluster will be recalculated to the mean of the data points
belonging to the cluster centroid;

5. The above steps are repeated until the cluster centroids do not change anymore
(convergence).

According to Jain (2010) there are three different parameters that can be tuned
in the algorithm. First of all, this is the value of k which represents the number of
clusters. An easy method of choosing a value of k is to try the algorithm a number of
times and choosing the k that leads to the smallest error. The second parameter is the
distance function. Just like with kNN, different distance measures can be used. A
commonly used distance measure is the Euclidean distance, as described in the kNN
paragraph of Section 3.1.1. Since this algorithm is also based on the distance between
data points, the data should be standardized, just like for the kNN algorithm. The
third parameter Jain (2010) mentions, is the cluster initialization. In the first step,
random clusters are chosen. Each time the algorithm runs, different cluster centroids
can be chosen, which means that the algorithm will return different results each time.
Just like for the value of k, the algorithm can be executed several times with different
initializations to find a good initialization.

Performance measures

To compare different clustering models like k-means, several indices can be con-
sidered. One of the indices mentioned by Maulik and Bandyopadhyay (2002) and
Rendón, Abundez, Arizmendi, and Quiroz (2011) is the Davies-Bouldin (DB) index.
With this index, it is possible to compare models with different values for k. Rendón
et al. (2011) give the following formula:

DB =
1
c ∑c

i=1 maxi 6=j
d(Xi) + d(Xj)

d(ci, cj)

In this formula, c is the total number of clusters, d(Xi) are the distances from
samples in cluster i to the centroid of cluster i and d(ci, cj) is the distance between
the centroid of cluster i and the centroid of cluster j. As mentioned by both Abdi
(2010) and Rendón et al. (2011), a smaller DB value is preferred over a bigger DB
value.

3.2 k-fold cross validation

During the research, different models with different parameters are tested and com-
pared several times. k-fold cross validation is a way of assessing the performance
of predictive models (Rohani, Taki, and Abdollahpour, 2018). It can be used to se-
lect parameters. The procedure in k-fold cross validation is described in many re-
searches. Rohani et al. (2018) and Anguita, Ghio, Ridella, and Sterpi (2009) explain
the procedure as follows:

1. The data is split in k subsets;

2. k− 1 subsets are used to train a specific model;
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3. The subset left is used to test the model;

4. Step 2 and 3 are repeated until each subset has been used as a test set once.

A rule-of-thumb is to use values for k of 5 or 10 (Anguita et al., 2009).

Varma and Simon (2006) describes that cross-validation can be used to select
models. However, the test error can be biased. A way to overcome this is by leaving
a few data points separately as a test set. The remaining data will be the input for
cross-validation.

3.3 Sport data

The sports industry is an industry where a lot of data can be collected, and where
this data can be used to improve teams or individual athletes just to make the differ-
ence compared to their competitors. Within teams, this can be done by selecting the
right players. This is where talent identification can be very useful. There are quite
some studies from recent years where data is used to determine whether someone
is a talent in a certain sport and what kind of measures determine that someone is a
talent.

An example is a study by Musa, Taha, Majeed, and Abdullah (2019). In their
research, they first cluster their available data using k-means to create two types of
performances in archers. After this, they try classification techniques like kNN and
logistic regression to find out which technique classifies the archers the best accord-
ing to their cluster. The authors followed this procedure for four different groups of
variables; bio-physiological variables like heart rate when in rest, psychological vari-
ables like confidence, anthropometry measurements like height and arm span, and
fitness performance like the vertical jump. For each of the groups of variables, Musa
et al. (2019) found that there were some variables that had different average values in
the clusters that were determined in the beginning. Furthermore, they analyzed the
classification results of all techniques in all four groups of measurements to find out
which algorithm could predict the class most accurately to be able to identify talents.

Another research in which test results are used to identify the most potential
sport for a school child is done by Papić, Rogulj, and Pleština (2009). They created a
web-based application with fuzzy logic. They mainly used the knowledge of experts
to find out which values for certain tests are important for a specific sport.

Lastly, a research by Mohamed, Vaeyens, Matthys, Multael, Lefevre, Lenoir,
and Philppaerts (2009) investigates which physical characteristics and which per-
formance measures could identify handball talents to create a talent identification
model. In their study, Mohamed et al. (2009) found that height, running speed and
agility are important features to check to identify handball talents.

The studies mentioned in this section are all dealing with discovering values of
measurements that could identify whether someone is a talent or not. However, the
studies that we found were not dealing with the comparison of actual single talents.
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Chapter 4

Data description and preparation

The goal of this chapter is to answer the first sub-question: What data pre-processing
needs to be done before the data analytics process can start? Before answering this
question, this chapter will give a description of the data in Section 4.1. Section 4.2
discusses which data we selected and how we handled the missing values.

4.1 Data description

The data for this research is data collected from “Het TalentVolgSysteem” (TVS), a
talent tracking system that the NHV uses to track the progress and developments
of handball talents. The data is an export from the system per 13-03-2019. The raw
database consists of seven data tables. Appendix B shows the logical database struc-
ture. The collected data tables will now be described.

Talents This is a table with 3,440 rows and 18 columns. Each row represents a
talent, meaning that there are 3,440 unique talents in the system at the moment of
data collection. Every talent has a unique talent number, a date of registration and
a date of deregistration if available. Furthermore, the data table contains a name,
a date of birth (if available), the gender, and information about for which team(s) a
talent plays. The last columns give information (if available) about their position in
the field and whether the talent is right or left handed. The table also has an id, but
since the talent number is also a unique identifier, this id column will be deleted.
The resulting table has 3,440 rows and 17 columns.

Assessment This is a table with 637 rows and 46 columns. Each row represents
an assessment of a talent by either the talent themselves or a scout. There are as-
sessments of 345 unique talents in the period from 18-10-2017 until 02-03-2019. Each
assessment has an id and the talent number of the talent being assessed is known.
There is also a column with the identifier of the person (scout or talent themselves)
assessing the talent. The majority of the columns represent grades on five differ-
ent categories. The categories are: offensive, defensive, physical, performance and
others. Each category is divided in grades of 1 until 3 on four or five more specific
sub-categories, and a remark for that category. Moreover, there is a column for the
average grade scored on a certain category and a column that represents the number
of sub-categories that were filled in for an assessment.

Measurement types This is a table with 885 rows and 42 columns. Each row is
a type of measurement for a certain group. However, the relevant information for
a type of measurement is the same for every unique group. Therefore, to use this
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table, it is cleaned up by removing the group column, and only keeping the dis-
tinct measurement types. The result is a table with 19 rows and 40 columns. Each
row represents a measurement type. The measurement types are divided into six
measurement categories; condition, functional movement, physical, power, speed,
TRIMP (Training Impulse) and endurance/recovery. Each category has 1 until 5
measurement types with their own code. The majority of the columns (with names
T01 until T34) contain information on how to read the measurement_results ta-
ble. There is a physical measurement where T01 until T03 represent length, weight
and fat percentage respectively. This means that the values W01 until W03 in the
measurement_results table represent length, weight and fat percentage as well.

Measurement results This is a table with 8,641 rows and 38 columns. Each row
represents the results of one kind of measurement or test for one talent. There are
columns W01 until W34 that contain values. To see what a number in one of these
columns represents, the measurement_types table should be used as described in the
previous paragraph. There are 740 unique talents that have results for at least one
type of measurement. The tests saved in the data table were taken in a period from
01-01-2007 until 21-02-2019. The remaining column is the unique talent number of
the talent who performed the test.

Training types This is a table with 1,114 rows and 6 columns. Each row is a type of
activity for a certain group. However, the relevant information for a type of activity
is the same for every unique group. Therefore, to use this table, it is cleaned up by
removing the group column, and only keeping the distinct training types. The result
is a table with 11 rows and 4 columns. Each row represents a type of activity. The
activity types are divided into three categories; training, match and others. Each
category has 2 until 7 sub-categories. There is a column with a code that can be used
when looking at the training_log table, to see what kind of training was logged.

Training logs This is a table with 140,841 rows and 16 columns. Each row has an
id and represents a log of an activity for a certain talent. The talents are identified
by their unique talent number. One of the columns represents the morning pulse.
However, this is only measured for about a tenth of the logs. To see from what kind
of activity the log is, the code can be used to find more information about the activity
in the training_types table. The columns with the RPE grade, the duration and the
feeling about an activity are the most important. RPE stands for Rated Perceived
Exertion and it is a scale from 1 through 10 to measure the intensity of an exercise.
The column with information about the feeling also has a scale from 1 through 10.
The activities were logged in a period from 29-09-2005 until 12-03-2019.

Profile of mood states This is a table with 17,718 rows and 15 columns. Each row
in this table has an id and gives information about how a talent is feeling and what
their mental condition is, according to 11 categories. The categories are: sleep, stress,
muscular pain, tiredness, nutrition, training performance, training hard, fun, moti-
vation, self confidence and concentration. The values are on a scale from 1 through
5. A 0 is shown if a category was not filled in. A lower number means that a talent
had a better feeling about a certain aspect. There are 728 unique talents that gave
information about their mental condition. The talents are identified by their unique
talent number. The mental condition was tracked during a period from 04-09-2011
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until 12-03-2019.

With information from these tables, a final data table for analysis was created.
Section 4.2 discusses how we got to this final data table.

4.2 Data preparation

To create the final data table, two main steps were taken. Firstly, the physical tests
to be included in the final data set had to be chosen. Secondly, the missing values
in the data had to be handled as much as possible. The following sections explain
these steps in more depth.

4.2.1 Data selection

The data can be split in subjective data and objective data. The subjective data is
the data according to perceptions of the talents or coaches and the objective data are
results from physical tests. The goal table for analysis in this research is a table with
a talent on each row and information about these talents in the columns. How the
information for the columns was created will now be discussed for the subjective
and objective data.

Subjective data There are three types of subjective data that we looked into during
this research. They include data from the assessments, data from the training logs
and data from the mood of talents. How these data types were combined into one
cell of information for the final data table is described in Table 4.1.

TABLE 4.1: Subjective data: types and transformations.

Category Transformation Number of
features

Assessments The average score for each of the main assess-
ment categories were averaged if there were
several assessments, resulting in five features.
There is also an average of these averages, and
the average age for all the assessments was
recorded.

7

Training logs The average daily load of activities of the tal-
ent was calculated by multiplying the RPE
grade with the duration and dividing the sum
of the daily loads by the number of activities.
The grades for the feeling feature the talent
filled in for each activity were added up and
averaged as well. The average age during all
the logs was also used as a feature for a talent

3

Profile of mood
states

The average score for each of the eleven cat-
egories were averaged for all the mood states
of a certain talent, resulting in eleven features.
There is also an average of these averages, and
the average age for all the mood states was
recorded.

13
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Objective data We inspected the physical tests data and found that some tests were
performed more regularly than others. A description of the most common tests can
be found in Table 4.2. If a talent performed a certain test more than once, the best
result of the last two years1 was used as information for the final data table. The last
column in the table gives the number of features that the test resulted in. Next to the
features in the description, this number also includes a feature with the age of the
talent at the time the test was performed.

TABLE 4.2: Objective data: the most commonly performed physical
tests.

Category Test Description Number of
features

Physical Length and
weight

Length in centimeters and weight in
kilograms.

3

Strength
Throwing
speed

Throwing speed in kilometers per hour
when jumping, when standing and
when running.

4

Jumping Vertical jump in centimeters with the
left leg, right leg or both legs, and long
jump in centimeters with the left leg,
right leg or both legs.

7

Speed
Sprinting The time in seconds to sprint 5 meter,

10 meter, 15 meter and 20 meter starting
with the left or right leg.

9

T-test The time in seconds to run a T-shape
between cones starting with the left or
right leg.

3

Pro-agility
test

The time in seconds to run 5 meter, turn
and run 10 meter, turn and run 5 meter.

2

Condition
YO-YO
test2

The score of the number of running two
20 meter shuttles followed by a break of
10 seconds.

2

Interval
shuttle run
test

The number of 20 meter shuttles run in
blocks of 4, 5, 6 or 8 shuttles with 15 sec-
onds of rest halfway through the block
and at the end of a block.

2

During the data selection process we tried to keep the the number of talents in
the final data table as high as possible with the number of missing entries for these
talents as low as possible. We divided the talents into four groups as follows:

1. Professional players: These talents play for the A-selection.

2. Potentially professional players: These are talents that play for Dutch selec-
tion teams, but not yet for the A-selection (B-selection, under 16/18/21, Hand-
balAcademie).

3. The bench: These are talents that have been playing for one of the selections
before, but stopped for some reason.

1For this research, the last two years was a date between 23-05-2017 and 23-05-2019.
2YO-YO Intermittent Recovery test Level 1.
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4. The remaining groups: These are talents from regional handball schools for
example.

The group number of each talent was added to the data table as a feature. The
created data table with all available talents and all collected information had 3,440
rows and a total of 69 columns of which 55 columns with information from the sub-
jective and objective data and 14 columns with information about a talent like the
talent number as the unique identifier, date of birth, date of registration and date of
deregistration, gender, position and the group a talent plays for.

With this data table, the next step was to create a final data table with as few
missing cells as possible. Since the talents in group 4 mainly have data for the sub-
jective data types, they were removed as a first step. The resulting data table has 639
talents left. This data table has still a lot of missing values for some of the talents and
some of the features. Only 89 of the talents left have assessment data. We decided to
remove the assessment data from the final data table. Moreover, although the mood
and perceptions of talents can be an important factor in the performance of players
as also described in Section 3.3, we decided to limit this research to the objective data
types only, since it might be hard to compare the performance of talents based on av-
erage grades of how someone is feeling. Therefore, to limit the missing values and
in consultation with Edwin Kippers from the NHV, we decided that the following
tests in these five main categories are the most important:

• Throwing speed:

– In a standing position
– When jumping

• Jumping:

– Vertical jump with both legs
– Long jump with both legs

• Sprinting:

– The best result of the 20 meter sprint test starting with either the left or
right leg

• Agility:

– The best result of the T-test starting with either the left or right leg

• Condition:

– The YO-YO test

Of the 639 talents left, there were 155 talents that performed the throwing speed
tests, the jumping tests and the 20 meter sprint test3. Only fourteen of these talents
are men. Therefore, to do fair analyses, we decided to only look at the female talents.
This means that there are 141 talents left in the final data table. Each of these talents
performed the throwing speed tests, the jumping tests and the 20 meter sprint test.
95 of these talents performed the T-test and 85 of these talents performed the YO-YO
test. Although there are still quite some missing cells for these last two tests, we
decide to include them in the final data table. The reason for this is that including
the agility and condition tests gives a more complete view of a handball talent.

3The T-test and the YO-YO test will be discussed in Section 4.2.2.
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4.2.2 Handling missing values

In the previous section we stated that the agility and condition tests are important to
include to get a more complete view of the performance of a talent. Therefore, this
section discusses the steps taken to limit the missing values for these categories.

Agility

There are results from two types of agility tests that talents in the final data set com-
pleted. These are the results from the T-test as described by Semenick (1990) and re-
sults from the Pro-Agility test as described by Harman and Garhammer (2008). Both
tests require talents to run a certain distance in certain directions between cones. The
results include the number of seconds from the start until the talent reaches the final
cone. There are 26 talents of the final 141 talents who performed both agility tests.

In consultation with Edwin Kippers from the handball federation, it was agreed
that it was most convenient to convert the results from the Pro-Agility test to the
T-test, since the T-test is the test they are conducting nowadays. After inspecting the
data, it seemed that there was no strong correlation between both tests. Therefore,
we looked at how the remaining variables in the final data table could predict the
result of the T-test.

As mentioned in Section 4.2.1, from the 141 talents in the final data table, there
are 95 talents that performed the T-test at least once at a certain age. We decided
to divide the ages of performing the different tests into three different categories.
The categories correspond to the age categories of the different national handball
selections and are the following:

1. The age of 17 or younger

2. The age between 17 and 19

3. The age above 19

Each test category (throwing a ball, jumping, sprinting and the T-test) could have
been performed at different ages, so, each test category got its own age category
variable. To fairly compare several models, we used the same data to train and test
different models. 95 talents is a limited number of talents and certain observations
in this data partition can have a big effect on the performance of final models. To
find those data points, we followed the process illustrated in Figure 4.1. Firstly, we
determined that the T-test is the dependent variable and that the other tests and the
age categories are the independent variables. In step 3, we fitted a linear regression
model with the chosen variables. With this model we created a Cook’s Distance plot
to find the influential observations. We removed the observations that were clearly
influential and fitted the linear regression model again. After a few iterations we
found that the influential observations found with the Cook’s Distance plot were
not very extreme anymore. We found fifteen influential data points, and the remain-
ing 80 observations were used to train and test different models. At the end of this
section, we will describe what we did with the influential observations.
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FIGURE 4.1: The process of finding and eliminating influential obser-
vations.

We will now describe how we used the remaining 80 observations to create a final
model. To evaluate different models, we kept a test set of 15% of the data separate
(12 observations). The training set of 68 observations was used to train models with
different parameter settings in 10-fold cross validation. From all models trained, we
recorded the following measures:

• RMSE of the full model on the training set:√
∑n

i=1(Pi −Oi)
2

n
, Pi = predicted value, Oi = observed value, n = number of

observations.

• MAE of the full model on the training set:
1
n ∑n

i=1 |Pi −Oi|, Pi predicted value, Oi = observed value, n = number of ob-
servations.

• R2 of the full model on the training set:
Collected from the linear model summary in R.

• Adjusted R2 of the full model on the training set:
Collected from the linear model summary in R.

• Average RMSE of the cross validation models:
Collected from the cross validation result in R.

• Average MAE of the cross validation models:
Collected from the cross validation result in R.

• Average R2 of the cross validation models:
Collected from the cross validation result in R.

Multiple linear regression The supervised learning algorithm we tested was mul-
tiple linear regression. All different tests (throwing when standing and when jump-
ing, vertical jump, long jump and 20 meter sprint) and the age category of each test
category can be used in all possible combinations in the regression formula. With
eight variables, this means that there are 255 combinations (and thus, 255 formulas)
to start with. With each formula, we fitted a linear model with all 80 observations
and checked whether this model was significant (α = 0.05), whether all separate
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coefficients were significant and whether the R2-value was higher than 0.5. Combi-
nations of variables that met these conditions were used with the 10-fold cross val-
idation for regression with the 68 observations from the training set. 10-fold cross
validation was performed as described in Section 3.2. This resulted in different mod-
els from which we recorded the performance measures.

Clustering and multiple linear regression The second group of different models
used to predict the T-test result was created by first clustering the data and subse-
quently performing multiple linear regression. The procedure followed was mainly
the same as described in the previous paragraph. However, an extra variable was
added to the regression formula; the cluster an observation belongs to. The differ-
ences in models in the linear regression of the previous paragraph were only in the
regression formulas. Since with this method we first cluster the data, we got two ad-
ditional parameters we needed to set. Firstly, the number of clusters to calculate and
secondly, the variables to cluster on. We clustered the data with the k-means cluster-
ing algorithm as described in Section 3.1.2. To properly do this, we first standardized
the data by calculating the z-score. We tried values for k ranging from 2 through 20
(19 values) and for every value of k we clustered the data on each of the combina-
tions possible (31 combinations) on the five test results (throwing when standing
and when jumping, vertical jump, long jump and sprint test). For each k and each
combination of the five tests, we fitted a linear model with all 80 observations. We
again tried all combinations of the eight variables in the regression formula4. This
means that there were 19× 31× 255 = 150,195 possible models. For each of the re-
sulting models, we checked whether this model was significant (α = 0.05), whether
all separate coefficients were significant and whether the R2-value was higher than
0.5. Combinations of variables that met these conditions were used with the 10-fold
cross validation for regression with the 68 observations from the training set. 10-fold
cross validation was performed as described in Section 3.2. This resulted in different
models from which we recorded the performance measures.

Once we trained the possible models and collected the performance measures,
we looked at the five best models based on the average RMSE value of the cross
validation models. For these five different models, the RMSE, the MAE and the R2-
value on the separate test set of 12 observations were calculated. The RMSE and the
MAE were calculated as described above and the R2 of the test set was calculated
with the R2-formula in the performance measures paragraph in Section 3.1.1. The
results are shown in Figures 4.2, 4.3 and 4.4. Table 4.3 shows the models correspond-
ing to the model names in the figure.

4The cluster variable always had to be in the regression formula, since the result would otherwise
be the same as for the multiple linear regression as described in the previous paragraph.



4.2. Data preparation 25

0.0

0.1

0.2
re

gr
es

si
e8

cl
us

R
eg

re
ss

ie
34

0
cl

us
R

eg
re

ss
ie

34
4

cl
us

R
eg

re
ss

ie
78

9
cl

us
R

eg
re

ss
ie

11
48

Model

R
M

S
E Category

Cross−validation
Test data
Training data

FIGURE 4.2: The RMSE of the regression models on the training set,
cross validation and the test set.
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FIGURE 4.4: The R2 of the regression models on the training set, cross
validation and the test set.

TABLE 4.3: The models corresponding to the model names in Fig-
ures 4.2, 4.3 and 4.4.

Code k Clustering variables Regression variables
regressie8 - - Throwing when standing,

long jump, sprint
clusRegressie340 3 Throwing when standing,

vertical jump
Vertical jump, sprint,
sprinting age category,
cluster

clusRegressie344 3 Vertical jump Vertical jump, long jump,
sprint, throwing age cate-
gory, cluster

clusRegressie789 5 Throwing when standing,
sprint

Long jump, sprint, cluster

clusRegressie1148 8 Vertical jump Throwing when standing,
sprint, throwing age cate-
gory, cluster
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From the figures it is clear that both clusRegressie340 and clusRegressie1148 per-
form most constantly on all three measures. The differences in performance of both
models are not big. Therefore, we looked into the clustering performance of the
models. We calculated the DB index of both clusterings on all 80 observations using
the clusterSim-package in R. Table 4.4 shows the index values for both models. As
mentioned in the performance measures paragraph in Section 3.1.2, a smaller DB
index value is preferred over a bigger DB index value. Therefore, we decided to
choose clusRegressie340 to estimate the T-test result of talents who did not perform
the T-test. Table 4.5 shows the performance of this model. With the performance
on the complete data we mean the performance when the model is built on the data
with the 80 observations.

TABLE 4.4: The DB index for the most constant performing models.

Model DB index
clusRegressie340 1.61

clusRegressie1148 3.78

Measure Complete data Training set Cross-validation Test set
RMSE 0.156 0.163 0.157 0.158
MAE 0.121 0.130 0.132 0.125

R2 0.671 0.636 0.678 0.636

TABLE 4.5: The performance of the final model to estimate the T-test
result.

The final regression formula is the following:

T-test = 6.23828− 0.06767× vertical jump + 0.13497× sprint− 0.09520×
sprintingAgeCategory + 0.09543× cluster

In Appendix C.1 we present the regression summary. Moreover, in the multi-
ple linear regression paragraph in Section 3.1.1 we mentioned that it is necessary to
check some assumptions before we can deploy the model. The results of testing the
assumptions for the model above can be found in Appendix C.1. The conclusion is
that all assumptions are satisfied.

Influential observations The goal of the process we just described, is to estimate
the T-test value of talents in the final data table, who did not perform a T-test. There
were 46 talents who did not perform the specific test. As mentioned in the beginning
of this section, we kept fifteen influential observations separately. For each talent,
we wanted to check whether we could use the model created as described above, or
whether we should use the influential observations to estimate the T-test result. We
did this following the process in Figure 4.5. The first step is to find the optimal near-
est neighbors distance. This can be done by following the method in Chapter 5. In
the case of this example, the optimal nearest neighbors distance was 1.71 and it was
found using all test results except the T-test result in a training set of 101 talents and
a test set of 40 talents. In step two we looked for the nearest neighbors within the
chosen distance for every new data point of which we wanted to estimate the T-test
result. Since we looked at the neighbors within the distance only, it meant that for
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each new data point, the number of neighbors taken into account could be different.
For each neighbor of a certain new data point, we checked whether it was an influ-
ential data point, or a data point which was used to built the regression model as
described above. The percentage influential data points in the set of neighbors was
calculated. After this, we checked for each new data point whether this percentage
was below or above a chosen threshold. The threshold we considered was 50%. This
meant that if the percentage influential observations of all neighbors was 50% or
less, the regression model was used and if the percentage influential observations
was above 50% a model where the influential observations were included was used.
The outcome was that the percentage of influential neighbors was 50% or more in
4 of the 46 cases and that for the remaining 42 talents, the percentage of influential
neighbors was below 50%.

Find the optimal
nearest

neighbors
distance

Find the nearest
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new data point
based on the

optimal distance

21

Calculate the
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influential

observations in
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influential
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FIGURE 4.5: Choosing the model to use when trying to estimate a
variable of new data.

For the 42 talents we used the regression model as described in the previous para-
graph. For the four other cases we had to look for a different model. We followed a
similar procedure as the regression model without the influential observations. First
of all, the data was split into a training set and a test set again to evaluate different
models. We got a training set of 80 observations and a test set of 15 observations.
Again, we tried all possible combinations of features in regression formulas for the
normal multiple linear regression, which means that there were 255 different mod-
els. We also performed the clustering before the multiple linear regression with the
same combinations of parameter settings as before, which means that there were
150,195 different clustering with multiple linear regression models. The same re-
quirements were used to decide whether a model could be used in the 10-fold cross
validation step. The five best performing models based on the RMSE were tested
with the test set of 15 observations. Figures 4.6, 4.7 and 4.8 show the performances
regarding the RMSE, the MAE and the R2 respectively.
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TABLE 4.6: The models corresponding to the model names in Fig-
ures 4.6, 4.7 and 4.8.

Code k Clustering variables Regression variables
clusRegressie12 2 Throwing when jumping,

long jump
Throwing when standing,
throwing when jumping,
sprint, cluster

clusRegressie15 2 Throwing when jumping,
sprint

Throwing when standing,
sprint, cluster

clusRegressie18 2 Throwing when standing,
long jump

Throwing when standing,
throwing when jumping,
sprint, cluster

clusRegressie302 9 Throwing when standing,
long jump, sprint

Throwing when standing,
throwing when jumping,
sprint, cluster

clusRegressie347 12 Throwing when jumping,
throwing when standing,
vertical jump, long jump,
sprint

Throwing when standing,
vertical jump, sprint,
jumping age category,
cluster

From the figures it is clear that mainly clusRegressie12 and clusRegressie18 per-
form most constant regarding the RMSE and the MAE measures. The only differ-
ence between both models is the variables that we clustered on; with clusRegressie12
we clustered on the throwing when jumping and the long jump variables, and with
clusRegressie18 we clustered on the throwing when standing and long jump vari-
ables. Regarding the R2, the measure is higher on the test set for both models. We
also checked the DB index of both models again. The indices are shown in Table 4.7.
Since clusRegressie12 performs a little better on all measures on all data sets (except
for the R2 on the cross validation set which is a little better with clusRegressie18), and
because the models’ DB index is a bit smaller, we decided to use the clusRegressie12
model to estimate the T-test value of the four cases where the percentage of influen-
tial neighbors was above the threshold of 50%. Table 4.8 shows the performance of
this final model.

TABLE 4.7: The DB index for the most constant performing models,
inclueding the influential observations.

Model DB index
clusRegressie12 1.61
clusRegressie18 1.71

Measure Complete data Training set Cross-validation Test set
RMSE 0.212 0.213 0.220 0.210
MAE 0.169 0.169 0.177 0.174

R2 0.552 0.522 0.532 0.645

TABLE 4.8: The performance of the final model to estimate the T-
test result of observations whose percentage influential observations

is higher than the threshold.

The final regression formula is the following:
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T-test = 6.57899− 0.13908× throwingStanding + 0.15075× throwingJumping +
0.17429× sprint− 0.19955× cluster

In Appendix C.2 we present the regression summary. Moreover, in the multi-
ple linear regression paragraph in Section 3.1.1 we mentioned that it is necessary to
check some assumptions before we can deploy the model. The results of testing the
assumptions for the model above can be found in Appendix C.2. The conclusion is
that all assumptions are satisfied.

Condition

There are results from two types of condition tests that talents in the final data set
completed. These are the results from the YO-YO Intermittent Recovery test Level
1 as described by Bangsbo, Iaia, and Krustrup (2008) and results from the Interval
Shuttle Run test as described by Lemmink, Verheijen, and Visscher (2004). Together
with Edwin Kippers from the handball federation, we decided to try to estimate the
YO-YO test result, since this is the test they are performing nowadays. We performed
similar analyses as we did for the T-test. Unfortunately, due to the limited data, we
did not get results that were satisfactory.

4.2.3 Conclusion

As soon as the test variables were selected and the missing data of the results from
the T-test were handled, we got the final data table for analysis in this research. The
final data table consists of fourteen columns and 141 rows. The first column is the
unique talent number of each talent. The remaining columns are in three categories,
namely: physical test results, age when the test was taken and the age category
when the test was taken. From the T-test result we do not have an age variable. This
is because we only know the age for a part of the talents. Table 4.9 gives descriptive
statistics of the physical test variables. Appendix D shows the complete information
of all thirteen variables.

TABLE 4.9: Descriptive statistics of the physical tests in the final data table.

Test Minimum Maximum Mean Median Standard
deviation

Skewness

Throw jumping (km/h) 58.33 105.00 83.76 84.67 8.6767791 -0.29969420
Throw standing (km/h) 56.67 96.00 78.33 79.00 7.8764698 -0.42862161
Vertical jump (cm) 20.97 60.00 35.94 34.90 8.0421036 0.56961147
Long jump (cm) 155.67 267.50 214.44 218.00 24.9381297 -0.18991300
T-test (s) 5.51 7.19 6.25 6.23 0.2976720 0.3103657
Sprint 20m (s) 2.92 3.68 3.22 3.21 0.1301325 0.59357458
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Chapter 5

Comparing talents

The final data table that was created in the previous chapter can be used for analysis.
The goal in this case is to be able to give sports scouts and coaches advice by com-
paring sports talents. Thereby, we will answer the second and third sub-questions:
How can scouts be supported when looking for the best performing sports players
and how can coaches be supported when training their sports talents? With com-
paring talents, we mean both comparing young players with current talents as well
as comparing talents within the same group or team, as mentioned in Section 1.3.
In this chapter we will first describe the method in Section 5.1 and subsequently we
will describe the results of applying the method to the handball case in Section 5.2.

5.1 The method

This section describes the idea in general. The method is based on the kNN regres-
sion algorithm and the goal is to find the best nearest neighbors model for a given
data set. The process is separated in four main steps. Section 5.1.1 will describe
these steps. Instead of just finding a model to compare talents with, models that can
predict certain variables well might be created. Section 5.1.2 describes how this can
be done.

5.1.1 Finding the best model to compare talents

The following paragraphs discuss the four steps that can be followed to find the best
performing model to compare talents with.

Step 1 - Preparing the data

The input data for this method is a data table with a person on each row and re-
sults or characteristics (as numeric variables) of a person in each column. Figure 5.1
shows the procedure in the first step. As mentioned in the paragraph about kNN in
Section 3.1.1, it is necessary to standardize the data to create comparable scales for
each variable (1). This can be done by calculating the z-score for each cell as follows:

xinorm =
(xi − x̄)

σx

In this formula, xi is the ith value of variable x, x̄ is the mean of variable x and σx
is the standard deviation of variable x.

As soon as the data is standardized, the data needs to be split in a training set
and a test set to be able to test models that perform well on the training data, on data
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it has not seen before (2). A percentage of the total data can randomly chosen as a
test set. However, since this is a kNN procedure, it is recommended to keep an eye
on which data points are chosen to be in the test set to prevent the test set to have
data points that have big distances from the training set only. We take this measure
in this case since with the limited data this chance exists. As mentioned in the kNN
paragraph in Section 3.1.1 the calculated z-scores have a mean of 0. Therefore, a way
of supervising which data points could be chosen to be in the test set is by choosing
from the data points that have standardized values between -1 and 1 for all or almost
all variables. From the set of data points that meet these requirements a test set can
be created by randomly selecting a number of data points.

As soon as the standardized data is split in a training and a test set, the people
in the standardized training set can be selected from the original (unstandardized)
data table (3). This is the unstandardized training set. This training set has to be
standardized again by calculating the z-score for each variable for each person in
the training set (4). Since the test set should be seen as data where the model is
not built upon and we want to pretend it is new and unseen data, it is necessary
to standardize the test set with the parameters of the training set (the mean and
the standard deviation of each variable) (5). This can be done by taking the original,
unstandardized data of the people in the test set from the original data table and then
by calculating the z-scores with the parameters from the training set. The output of
this first step is a standardized training set and a standardized test set.

Standardize the
data

Create a training
and a test set

from the
unstandardized

data

31

Standardize the
training set

4

Standardize the
test set with the

training set
parameters

5

Choose average
observations for

the test set

2

FIGURE 5.1: Comparing talents - step 1.

Step 2 - Choosing different model parameters

Figure 5.2 shows the sub-steps in the second step. In the kNN paragraph in Sec-
tion 3.1.1 we mentioned three different aspects (parameters) that can change the
outcome of a model; the value for k or the distance range (1), the distance measure
(2) and the set of variables to find neighbors with (3). Different combinations of
these parameters create different models. The more different values for each param-
eter we want to test, the more different models will be created. As an example we
can try the following parameters:

• The neighbors:

– k: We can choose values of k ranging from 1 through 5, then we will get 5
possibilities.

– Distance range: We can choose maximal distances ranging from 0.6 through
1 with steps of 0.1, then we will get 5 possibilities.

• Distance measure: We can choose the Euclidean distance to measure the dis-
tance between data points.

• Set of variables: If we have two variables and we want to try every possible
combination of one or more of these variables, we get three possibilities.
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In the situation described above, we will get a total of 5 (either values for k or
maximal distance) * 1 (distance measure) * 3 (combinations of features) = 15 differ-
ent models.
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21
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variables

3

FIGURE 5.2: Comparing talents - step 2.

Step 3 - Calculating the results of different models

Figure 5.3 shows the sub-steps of the third step. In this step, for each of the param-
eter settings (1), we will create a data table with the observed results (standardized)
from the training set and additional columns for estimations for each variable and
additional columns for the differences between the observed values and the esti-
mated values (2). Table 5.1 gives an example of the described data table. This data
table should be copied as many times as the number of different models we would
like to test. In the example from Section 5.1.1 this means that we will get 15 data
tables. Since we try all possible combinations, it means that an exhaustive search is
implemented. The next step is to fill in the blanks of the data tables. For every row
(3) we will look for the nearest neighbors based on the chosen distance measure and
based on the variables to look at in the specific model (4). In the example in the table
below it is possible to look at three different combinations of variables; x1 only, x2
only, or both x1 and x2. If we are looking for the neighbors based on x1 only, we
will still estimate both x1 and x2 for each row. If values for k are specified, we will
look for the k neighbors of a certain row. If values of distances (d) are specified, we
will look at all the neighbors that are d away from the data point or closer. In this
case each row can have different numbers of neighbors. We can now estimate the
x1 value for the first row by for example taking the average of the x1 values of the
neighbors (5). This should be done 15 times; once for each model. The result is 15
data tables with results of applying a model to the training set. For each of the data
tables we can calculate the RMSE by averaging the RMSE values of all variables (6).
There will be 15 RMSE values that correspond to the performance of the 15 models
trained on the training set.

TABLE 5.1: An example of a data table used for every combination of
parameters.

ID x1 observed x1 estimated x1 error x2 observed x2 estimated x2 error
1 0.60 - - 1.10 - -
2 0.50 - - 1.15 - -
3 0.75 - - 0.95 - -
4 0.60 - - 1.30 - -
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Step 4 - Finding the best model

Figure 5.4 shows the sub-steps of the last step. In the previous step, we found the
performance of the specified models. The next step is to find the best and most
constant performing model. This can be done by choosing the model which has the
smallest RMSE (1), and testing these parameters with the test set. Testing with the
test set can be done by creating a data table similar to the ones in the previous step
(2) and then for each talent (3) we will find the closest data points in the test set from
the data points in the training set using the parameters in the chosen model (4). The
average of each variable of the neighbors can be used as the estimation again (5).
The risk of choosing only the best model on the training set with small data is that
it might perform quite different on the test set. A way to overcome this risk is by
taking not just the best performing model on the training set, but the five or ten
best performing models for example. These five or ten models should then be tested
with the test set and the RMSE of these model should be calculated (6). The model
performing similarly on the test data compared to the training data, can be chosen
as the final model (7).
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5.1.2 Find the best models to predict variables

In the previous section we described the steps to find the best model to compare
talents. During step 3, many different models are trained. Of every single model
the error will be calculated. This means that a big model base is created in which
not every model is based on finding the neighbors based on all variables. Therefore,
it might be possible that some models predict certain variables well. Whether this
is the case for a certain variable, can be checked by following a similar process to
step 4 in the previous section. Instead of choosing the models with the smallest
overall error, we can look at errors of a certain variable in models where that variable
is not taken into account when finding the neighbors. Again we can for example
choose the five or ten best models and test these models on the test set. The best
and most constant performing model can be chosen. It is possible that the best and
most constant performing model is not performing sufficiently to actually predict
the variable. Whether a model is sufficient or not can be discussed with a domain
expert.

5.2 The results

To find the best and most constant performing model to compare handball talents,
we applied the method described in Section 5.1.1. This section describes how we
created a training set and a test set in Section 5.2.1, which models we tried in Sec-
tion 5.2.2 and what the results were in Section 5.2.3. Furthermore, we discuss which
models can possibly be used to predict certain variables in Section 5.2.4.

5.2.1 The data preparation

Before we could try different models, we had to split the data in a training and a
test set. We followed the procedure in step 1 from the previous section. We decided
to use around 25%-30% of the 141 talents as test data. We standardized the data set
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with 141 talents and decided to choose talents who had standardized values between
-1 and 1 for five out of six variables. There were 65 talents who met this condition
and we randomly chose 40 of them to be in the test set. We used the unstandardized
data of the 101 talents in the training set and the 40 talents in the test set, because as
described in the previous section, we want to standardize these data sets separately.
We standardized the 101 training samples and we used the mean and standard devi-
ation of each variable to standardize the test data. The result is two data sets which
are both standardized and ready to be used to train and test different models.

5.2.2 The chosen model parameters

We had to decide which models we wanted to try with the training data, as explained
in step 2 in the previous section. Table 5.2 shows which model parameters we chose.
What is clear from the table is that we decided to use different distance ranges to
find the neighbors instead of a value of k to find the neighbors. In total, we tried
281 distance ranges. In this research we only used the Euclidean distance to find
the distance between data points since this is the most commonly used metric as
described in Section 3.1.1. However, it is possible to check if there are any differences
in outcome when another distance measure is tried. For the variables parameter we
chose all possible combinations of the six variables. This means that there were 63
possibilities. We tried each possible combination of parameters. Therefore, the total
number of models we trained was: 281× 1× 63 = 17,703. We believed that except
for the distance metric, we tried all important parameter settings.

TABLE 5.2: The chosen model parameters and the total number of
models trained.

Parameter Chosen values Number of models
Distance range 0.2 through 3.0 in steps of 0.01 281
Distance measure Euclidean distance 1
Variables Throwing when standing, throwing

when jumping, vertical jump, long
jump, sprint, T-test

63

5.2.3 The results of the best models

From all the 17,703 different models, we calculated the estimation for each variable
for each talent using the procedure in step 3 in the previous section. From every
model we calculated the average RMSE value of all six variables. As described in
step 4 of the previous section, we can choose the ten best performing models on the
training data to find out which model is performing most constant. In the case of the
handball data, the best overall results were obtained with models that were quite
similar. The results of the best models on the training data regarding the average
standardized RMSE are shown in Figure 5.5. On the x-axis we show the model.
The part before the hyphen corresponds to the distance range in the model and the
part after the hyphen corresponds to the variables that were looked at. Variable
combinations 63 and 62 are the following:

• 62: Throwing when standing, vertical jump, long jump, T-test, sprint

• 63: Throwing when jumping, throwing when standing, vertical jump, long
jump, T-test, sprint
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As shown in the bar plot in the figure, all top ten models performed quite similar
on the training data. There were only some very small differences. The differences
of performance of the models on the test data were not as big either. However, the
most right model in the figure (1.6-62) performed worse on the test set compared
to the models where all variables (combination 63) were taken into account to find
the neighbors. To pick the final best model, we looked at those nine best models.
Model 1.87-63 is the best performing model on the training set and the second best
performing model on the test set. Therefore, we decided to choose this models as the
final best model to compare talents with. This means that we will look at a Euclidean
distance of 1.87 when searching for the neighbors, and we will look at all features
(throwing when standing, throwing when jumping, vertical jump, long jump, T-test,
sprint). This model has an RMSE on the complete data of 0.3855604.

Since the best models had distance ranges that were close to each other, we con-
cluded that we did not have to look any further at smaller distance ranges than 0.2
or bigger distance ranges than 3.0.
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FIGURE 5.5: The ten best models on the training data regarding the
RMSE.

Table 5.3 shows the RMSE values on the training set, on the test set and on the
complete data for each separate variable of the chosen model.
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TABLE 5.3: The RMSE on the training set, the test set and the complete
data of the best model of the separate variables.

Feature RMSE training RMSE test RMSE complete
Throwing when jumping 3.094571 1.845691 3.074837
Throwing when standing 3.238799 2.856922 3.309062

Vertical jump 2.957705 2.679951 2.821639
Long jump 9.706269 8.404966 8.979888

T-test 0.1433081 0.1118249 0.1317311
Sprint 0.05494259 0.04093093 0.050151

The final model can be used by scouts and coaches to compare their talents. The
scouts can use the model to compare young players with current talents to find
promising players based on the physical tests. The coaches can use the model to
compare talents within groups to find points of improvement for each talent. We
will give a more extensive answer to the second and third sub-questions of how the
scouts and coaches can actually put the model into practice in Chapter 6.

5.2.4 The results of predicting variables

As discussed in Section 5.1.2, many models are created and it might be possible
that some models predict certain variables well. We checked this for each of the six
variables in the handball case and the results are listed in the following paragraphs.
For each variable we looked at the ten best performing models where the specific
variable was not taken into account and we tested these models on the test set. We
analyzed these models and we will give a conclusion about whether the model per-
forms sufficiently or not as well.

Throwing when jumping

Figure 5.6 shows the performance on the training and test set of the ten best per-
forming models to predict the throwing when jumping test. The x-axis represents
the model codes again, where the part before the hyphen is the distance range and
the part after the hyphen is the combination of variables taken into account when
searching for the neighbors1. Two different combinations of features were found in
the ten best performing models. They are the following:

• 12: Throwing when standing, vertical jump

• 32: Throwing when standing, vertical jump, long jump

From the figure it is clear that the performance on the training data is very sim-
ilar for all models. Regarding the test set, we see that there are two models where
the RMSE value is higher. These are the models with the lowest nearest neighbor
distance ranges and variable combination 12. Therefore, we can say that variable
combination 32 and a distance range between 1.14 and 1.21 is the best option to pre-
dict the throwing when jumping test with this split of the data in training data and
test data and this nearest neighbors approach. If we apply the best model on the
training data (1.19-32), on the complete data, we get an RMSE value of 4.59 km/h.

1This is also the case for the figures in the next paragraphs.
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In Section 4.2.3 we calculated that the throwing when jumping test has values
between 58.33 km/h and 105.00 km/h with a mean of 83.76 km/h.
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FIGURE 5.6: The RMSE on the training data and the test data to pre-
dict the throwing when jumping test with different models.

Throwing when standing

Figure 5.7 shows the performance on the training and test set of the ten best perform-
ing models to predict the throwing when standing test. Two different combinations
of features were found in the ten best performing models. They are the following:

• 1: Throwing when jumping

• 10: Throwing when jumping, T-test

From the figure it is clear that the performance on the training data and the test
data is very similar for all models. Although the models are very comparable, model
0.61-1 is quite different from the other models and the RMSE value on the training
data of this model is a little worse than from the other models. Therefore we can
say that variable combination 10 and a distance range between 1.04 and 1.12 is the
best option to predict the throwing when standing test with this split of the data in
training data and test data and this nearest neighbors approach. If we apply the best
model on the training data (1.08-10), on the complete data, we get an RMSE value of
4.36 km/h.

In Section 4.2.3 we calculated that the throwing when standing test has values
between 56.67 km/h and 96.00 km/h with a mean of 78.33 km/h.



44 Chapter 5. Comparing talents

0

1

2

3

4

0.
61

−1
1.

11
−1

0
1.

09
−1

0
1.

07
−1

0
1.

1−
10

1.
05

−1
0

1.
12

−1
0

1.
06

−1
0

1.
04

−1
0

1.
08

−1
0

Model

R
M

S
E Category

Test data
Training data

FIGURE 5.7: The RMSE on the training data and the test data to pre-
dict the throwing when standing test with different models.

Vertical jump

Figure 5.8 shows the performance on the training and test set of the ten best perform-
ing models to predict the vertical jump test. Two different combinations of features
were found in the ten best performing models. They are the following:

• 41: Long jump, T-test, sprint

• 51: Throwing when jumping, long jump, T-test, sprint

From the figure it is clear that the performance on the training data is very sim-
ilar for all models. Regarding the test set, we see that there are three models where
the RMSE value is higher. These are the models with the lowest nearest neighbor
distance ranges and variable combination 41. Therefore, we can say that variable
combination 51 and a distance range between 1.67 and 1.82 is the best option to pre-
dict the vertical jump test with this split of the data in training data and test data and
this nearest neighbors approach. If we apply the best model of these models on the
training data (1.82-51), on the complete data, we get an RMSE value of 6.79 cm.

In Section 4.2.3 we calculated that the vertical jump test has values between 20.97
cm and 60.00 cm with a mean of 35.94 cm.
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FIGURE 5.8: The RMSE on the training data and the test data to pre-
dict the vertical jump test with different models.

Long jump

Figure 5.9 shows the performance on the training and test set of the ten best perform-
ing models to predict the long jump test. Three different combinations of features
were found in the ten best performing models. They are the following:

• 28: Throwing when jumping, vertical jump, sprint

• 34: Throwing when standing, vertical jump, sprint

• 44: Throwing when jumping, throwing when standing, vertical jump, sprint

From the figure it is clear that the performance on the training data is very simi-
lar for all models. Regarding the test set, we see that there are four models where the
RMSE value is lower. These are the models with variable combination 28. Therefore,
we can say that variable combination 28 and a distance range between 1.32 and 1.35
is the best option to predict the long jump test with this split of the data in training
data and test data and this nearest neighbors approach. If we apply the best model
of these models on the training data (1.33-28), on the complete data, we get an RMSE
value of 20.09 cm.

In Section 4.2.3 we calculated that the long jump test has values between 155.67
cm and 267.50 cm with a mean of 214.44 cm.
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FIGURE 5.9: The RMSE on the training data and the test data to pre-
dict the long jump test with different models.

Sprint

Figure 5.10 shows the performance on the training and test set of the ten best per-
forming models to predict the sprint test. Three different combinations of features
were found in the ten best performing models. They are the following:

• 19: Long jump, T-test

• 38: Vertical jump, long jump, T-test

• 52: Throwing when standing, vertical jump, long jump, T-test

From the figure it is clear that the performance on the training data is very sim-
ilar for all models. Regarding the test set, we see that there are five models where
the RMSE value is the lowest. These are the models with variable combination 38.
Therefore, we can say that variable combination 38 and a distance range between
1.33 and 1.37 is the best option to predict the sprint test with this split of the data in
training data and test data and this nearest neighbors approach. If we apply the best
model of these models on the training data (1.37-38), on the complete data, we get
an RMSE value of 0.09 seconds.

In Section 4.2.3 we calculated that the sprint test has values between 2.92 seconds
and 3.68 seconds with a mean of 3.22 seconds.
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FIGURE 5.10: The RMSE on the training data and the test data to
predict the sprint test with different models.

T-test

Figure 5.11 shows the performance on the training and test set of the ten best per-
forming models to predict the T-test. Three different combinations of features were
found in the ten best performing models. They are the following:

• 18: Vertical jump, sprint

• 34: Throwing when standing, vertical jump, sprint

• 39: Vertical jump, long jump, sprint

From the figure it is clear that the performance on the training data is very sim-
ilar for all models. Regarding the test set, we see that there are six models where
the RMSE value is the lowest. These are the models with variable combination 34.
Therefore, we can say that variable combination 34 and a distance range between
1.30 and 1.36 is the best option to predict the T-test with this split of the data in
training data and test data and this nearest neighbors approach. If we apply the best
model of these models on the training data (1.31-34), on the complete data, we get
an RMSE value of 0.21 seconds.

In Section 4.2.3 we calculated that the sprint test has values between 5.51 seconds
and 7.19 seconds with a mean of 6.25 seconds.
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FIGURE 5.11: The RMSE on the training data and the test data to
predict the T-test with different models.

Conclusion

In the previous paragraphs we calculated the RMSE values to predict the separate
physical tests. It is a challenge to give conclusions about whether these best models
are really performing well enough to make good predictions. However, we can give
some remarks on how the models perform compared to each other. Firstly, we saw
that minimum, maximum and average value of the throwing when jumping and
throwing when standing tests were bigger than the minimum, maximum and aver-
age value of the vertical jump test. In Section 4.2.3 we also saw that the standard
deviations of these variables are comparable. The fact that the RMSE value of the
model to predict the vertical jump (6.79) is quite a bit higher compared to the RMSE
values of the models to predict the throwing when jumping test and the throwing
when standing test (4.59, 4.36 resp.), could tell us that the vertical jump is harder to
predict with a kNN model like this. Secondly, the RMSE value of predicting the T-
test on the complete data set was 0.21. This is comparable to the results of estimating
the T-test in Section 4.2.2 including the influential observations.

Although the performances of the models might not be that good, the predictions
can still be used by the handball federation. For a certain talent in a certain team, it
is possible to check how someone should approximately perform when compared to
other talents in the team. Furthermore, as more data will be collected in the coming
years, it is likely that the models will improve in accuracy.
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Chapter 6

Visualization

The goal of this chapter is to answer the fourth sub-question: which way of pre-
senting the information to the scouts and coaches will be effective? In the previous
chapters we decided to compare talents on six different variables. This means that
we have multivariate data. It can be a challenge to visualize these kinds of data
without getting messy figures. Therefore, we will answer this sub-question by look-
ing into the literature to find ways of visualizing multivariate data. We will discuss
the results of this literature study in Section 6.1. Section 6.2 shows some examples
of applying the visualization method to the handball case. With these examples, we
will also give a more extensive answer to the second and third sub-questions.

6.1 Visualizing multivariate data

This section discusses one option of visualizing data observations of three or more
variables, that was found in other studies. We will discuss this option, the spider
plot, in Section 6.1.1.

6.1.1 Spider plot

In this section we will discuss the spider plot or the radar chart. There are studies
where spider plots are used to do comparisons. We will describe the use of the spi-
der plot by giving three examples of studies where spider plots were used. The first
research was about comparing performances of several aspects of airplanes. This
study was done by Joshi, Tidwell, Crossley, and Ramakrishnan (2004). The second
research was about comparing several sensory attributes in different beers. This
study was done by Vázquez-Araújo, Parker, and Woods (2013). The last study we
looked into is a research about comparing health care aspects in different groups.
This research was done by Saary (2008). All three publications have in common that
they used a spider plot to visualize single groups or data points to visualize their
data.

Saary (2008) describes the radar plot as a circular graph with a spoke from the
middle for each variable. Each variable can have its own scale. If a data point is
plotted on the spokes, it is possible to connect the dots of one observation to create a
polygon to be able to clearly superpose different observations in the circular graph.
Next to plotting single observations, it is also possible to plot means of groups of
observations for example. An example of a spider plot with several observations
is shown in Figure 6.1. In the figure, three different students are compared on five
different subjects. The corners of the plot represent maximum values of the subjects.
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FIGURE 6.1: Spider plot example.

6.2 Visualizing the handball data

In Section 6.1 we discussed a way to visualize multivariate data points; the spider
plot. In the following sections we will give a few examples of how this plot can be
used in the handball case. In the plots in the different sections, the pink plot is always
the player we compared to some other talents. Furthermore, the talent labeled with
"1" is always the talent the player looks most alike and the talent labeled with "2"
is the talent that the player looks second most alike and so on. The maximum and
minimum values of the axes are the maximum and minimum values of the group in
which we compare talents.

6.2.1 Comparing new players with current talents

In handball as well as in other sports, scouts look for promising players to add them
to their selection or to train them to get ready to be in their selection. Figure 6.2
shows an example in which we compared one player with all 141 talents in the
current handball talents data set using the model parameters determined in Sec-
tion 5.2.3. There are three talents within the distance range of 1.87 from the potential
talent. It is clear that this player performs similar to these talents. This is obvious,
since we look for similar talents in the table with quite some talents. We also see
that the player is most similar to the talent performing best on the vertical jump test
(compared to the talents drawn in the chart). Lastly, we can see that on most of the
axes, the player performs a little above average, or even best on the T-test. A scout
might conclude from this that the player is worth selecting. However, a scout might
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also want to create another plot where the player is compared to the whole group
for example, to really see their position within the complete set of handball talents.
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FIGURE 6.2: Comparing a new player with current talents.

6.2.2 Comparing talents within a group

A second example is one more for coaches within a certain team. In Figure 6.3 we
compared one talent in the A-selection to the other talents in the A-selection using
the model parameters determined in Section 5.2.3. The differences between the tal-
ents seem to be a bit bigger than in the previous section. There can be a few reasons
for this. Firstly, we only look at one selection, which means we have less talents to
compare with. Secondly, since we look at the A-selection only, it is likely that the
maximum and minimum values of the axes are closer to each other. When we look
at the positions of the points on the axes, we see that the talents perform quite on
average. When we look at the pink talent we compared specifically, we see that she
could mainly improve on two points; the T-test and the vertical jump. The coach
might decide to specifically work on that with the talent.
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FIGURE 6.3: Comparing a talent with talents within the same group.

6.2.3 Comparing talents with groups

In the previous paragraphs we compared single talents with other single talents.
However, since we are using a neighbors distance range, it is possible that the num-
ber of comparable talents is big. A spider plot will become unclear when too many
different observations are superposed. Therefore, it is recommended to limit the
number of talents in the plot. We propose this number to be no more than four
or five talents. A way to still compare one talent to other talents in a group, is by
creating segments in the group. Figure 6.4 shows an example where one talent is
compared to a group split in three segments. The maximum segment is determined
by looking at the 33% of best performing players, the minimum segment is deter-
mined by looking at the 33% of least performing players and the average segment
is determined by looking at the 33% of average performing players. We can see that
the single talent perform similar to the maximum segment regarding the throwing
when jumping test and the sprint test. Regarding the throwing when standing, the
T-test and the vertical jump test, the talent seems to perform similar to the minimum
segment. Lastly, regarding the long jump, the talent performs quite on average.
From a plot like this we can conclude that the talent could start to improve on some
of the physical tests to get closer to the average or maximum segment.
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FIGURE 6.4: Comparing a talent with a group.

6.2.4 Comparing talents with talents in specific positions

The last example of the spider plot is one where we compare talents that are within
the same position in the field. Figure 6.5 gives an example where one talent is com-
pared to talents that play in the same position. Again, we used the model parameters
we found in the previous chapter. We can see that the superposed shapes are a little
similar. This might indicate that this is typical for the certain position. However, we
are not sure about this until we compare this to other positions.
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Chapter 7

Conclusion and discussion

This research was divided in three main phases. In this chapter we will first de-
scribe the main findings in each phase in Section 7.1. Secondly, we will discuss the
limitations of the research and possible future research in Section 7.2.

7.1 Conclusion

In the previous chapters, we discussed how to get insights from limited data from
sports talents. By doing this, we tried to answer the main research question:

Main: How can data analytics be used to assist scouts and coaches in finding and training
sports talents in order to make more effective choices?

We answered this question by looking at three main phases corresponding to
four sub-questions. For each phase we proposed a method to handle the data. We
created these methods by looking into data from the handball case. Furthermore, we
applied the methods to the handball data to test them. This section will describe the
main findings for each phase.

1: What data pre-processing needs to be done before the data analytics process can start?

In this phase we proposed a method to fill in values of variables that have a lack of
data, but that are still considered important by the domain expert. By trying many
different models, we found that performing multiple linear regression performs bet-
ter when one of the independent variables is the cluster class of an observation when
the data was first clustered using k-means. Furthermore, the final model improved
when the influential observations were removed. Although we considered the fi-
nal model to be performing sufficiently with this limited data for the T-test, we also
found that this method was not performing sufficiently with the YO-YO test, which
had even more missing values. Therefore, we conclude from this research and from
this case, that the method could be useful in other cases as well, but that the perfor-
mance depends on the type of variable and that it might depend on the number of
missing values.

2: How can scouts be supported when looking for the best performing sports players? and
How can coaches be supported when training their sports talents?

We answered these two sub-questions by finding a method to find the best model
to compare talents. The goal of the method we proposed, is to find comparable
talents and not to make very precise predictions, since this is a big challenge with
the limited data. The method we proposed is based on nearest neighbors regression
with a distance range to find the neighbors. With the method we tried to find the best
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distance range and variable combination to compare talents with. The best model
to compare talents, can be useful for both the scouts and the coaches. Young talents
can be found by comparing them with current talents, and talents within teams can
be compared to find points of improvement for each talent. Although this method
is already applicable to data sets with a limited number of rows, it is also easy to
adjust the model and make even better comparisons when more data is collected
and more talents are included in the data set. Furthermore, since the performance of
many models is discovered in the process, we also propose a way of using this model
base to find models that can predict certain variables well. In the handball case we
found that some variables are easier to predict with this method than others. We also
found that the method works comparable to the multiple linear regression model
with the cluster class and without removing the influential observations to predict
the T-test from the first phase. The predictions can now be used to see how a talent
should approximately perform compared to their comparable talents. As more data
is collected in the future, it is likely that the accuracy of the models improve.

3: Which way of presenting the information to the scouts and coaches will be effective?

For the third phase we recommended to use a spider plot as a way of visualizing the
performance of talents. With this plot, it is easy to superpose the performance of a
few talents to see their similarities, but also their differences. In this phase we saw
that this visualization can be helpful for both scouts and coaches to see this in one
glance. However, we also stated that the number of plotted talents should not be too
big, since this would create messy charts. Therefore, we proposed that if a talent is
compared to more than 4 talents, the averages of these talents is plotted as one group.
Furthermore, if a talent is compared to a certain group, we recommend to divide this
group into three segments, where one segment represents the best talents, another
segment represents the average talents, and the last segment represents the least
performing talents. This can be done within teams, but also for a certain position for
example.

7.2 Discussion

In this section we will first discuss limitations of this research in Section 7.2.1. Fur-
thermore, we will give ideas of how this research can be extended in Section 7.2.2.

7.2.1 Limitations

This study has a few limitations. Our goal was to find ways of creating insights
with limited data, and we accomplished this by finding a method to compare tal-
ents. However, during the research we found that the data is still quite limited to
make real precise predictions for some variables. We believe that this is due to the
data having not too many observations that are complete. Therefore, we also had to
limit the case study to female handball talents only. However, we do not consider
this last fact to be a big problem, since we could still test all methods with this data.
Lastly, also due to the limited data we only looked into physical tests to compare
talents. However, as also described in Section 3.3, to really get a complete picture,
other aspects like mental skills could be taken into account as well.

Other limitations of this study mainly concern the fact that we did not test the
methods several times. In the first phase we tested the method for two variables
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and in the second phase we did not check whether the approach of using a distance
range to find the neighbors instead of a fixed number of neighbors actually works
better in this case. Lastly, when answering the last sub-question, we discussed the
proposed visualization method with one domain expert.

7.2.2 Future research

We discussed the limitations in the previous section. To avoid those limitations,
some future research possibilities will be discussed in this section.

Regarding the limitations about not testing the methods multiple times from the
previous section, there are possibilities for further research. We could for example
test the method of filling the missing values for other variables as well and we can
compare results from using a distance range or a fixed number of neighbors to sup-
port the methods we proposed in phase 2. Another idea for the future might be to
test the complete method of finding models to compare talents with on another data
set. This could for example be a data set of another upcoming sport. Lastly, it is
possible to do a survey or interviews with multiple scouts and coaches.

Moreover, in the first phase, we chose some important variables together with the
domain expert. However, we did not check whether these variables are, according
to the data, indeed important indicators of someone being a real talent or not. In the
future, a way to find this out could be investigated.
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Appendix A

The R-packages used during the
research

TABLE A.1: The R-packages used during the research.

Package Version Use
dplyr 0.7.8 Manipulating data frames

lubridate 1.7.4 Dealing with dates
olsrr 0.5.1 Determining the Cook’s distance
e1071 1.7-0 Determining the skewness of a variable
FNN 1.1 Finding the k nearest neighbors

reshape 0.8.7 Transforming the data for bar plots
caret 6.0-80 Applying train control for cross validation and calculating

the RMSE
fractal 2.0-4 Finding the nearest neighbors within a certain distance

clusterSim 0.47-1 Calculating the DB index
MLmetrics 1.1.1 Calculating the RRSE

car 3.0-0 Calculating different test values to check regression as-
sumptions

fmsb 0.6.3 Creating spider plots
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Appendix B

The data

This section shows what kind of data is saved in each of the tables, and how the
tables are structured. The following data tables were collected during the project:

• Talents - 3,440 rows, 18 columns.

• Assessment - 637 rows, 46 columns.

• Measurement_types - 885 rows, 42 columns.

• Measurement_results - 8,641 rows, 38 columns.

• Training_types - 1,114 rows, 6 columns.

• Training_logs - 140,841 rows, 16 columns.

• Profile_of_mood_states - 17,718 rows, 15 columns.

The data tables form a database with a logical structure as modeled in Figure B.1.
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FIGURE B.1: Logical database structure.
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Appendix C

Linear regression summary and
assumptions

C.1 Multiple linear regression without the influential obser-
vations

In this section we present the regression summary and we will check the regression
assumptions of the multiple linear regression model where we excluded the influ-
ential observations.

C.1.1 Regression summary

Table C.1 shows the regression coefficients and the p-values of the multiple regres-
sion model where we included the influential observations. Table C.2 presents the
R-squared and the p-value of the full regression model.

TABLE C.1: Coefficients and p-values of the variables in the regres-
sion model.

Variable Coefficient p-value
Intercept 6.23828 < 2× 10−16

Vertical jump -0.06767 3.79× 10−3

Sprint 0.13497 1.32× 10−7

Sprinting age category -0.09520 1.23× 10−3

Cluster 0.09543 2.10× 10−5

TABLE C.2: P-value and R-squared of the full model.

Measure Value
P-value 2.2× 10−16

R-squared 0.6711

C.1.2 Regression assumptions

In this section we will check the linear regression assumptions of the multiple linear
regression model without the influential observations from Section 4.2.2. First we
will check the multicollinearity phenomenon in this model. We calculated the vari-
ance inflation factors (VIF) for the independent variables in the model using R. They
are the following:

• Vertical jump: 1.568425
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• Sprint: 1.640513

• Sprinting age category: 1.054328

• Cluster: 1.018185

All factors are clearly below 5. Therefore, we can assume that there is no multi-
collinearity in the model.

In the next sections, we will use the plots and tests described in Section 3.1.1 to
validate the assumptions.

C.1.3 Homoscedasticity

Figure C.1 shows the residuals against the fitted values plot. If the homoscedasticity
assumption is met, the data points should be equally spread around the y = 0 line.
There might be a little variance as shown by the red line, but not too much. This
assumption can also be checked using the Breusch-Pagan test which we calculated
using R. The null hypothesis of this test is that there is constant variance, and there-
fore homoscedasticity. The p-value we got from this test was 0.5515213, meaning
that we can not reject the null hypothesis. Together with the conclusion from the
figure that there might be a little variance but not too much, we assumed that the
homoscedasticity assumption is satisfied.
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FIGURE C.1: Residuals vs. fitted values - linear model without influ-
ential observations.

C.1.4 No extreme values

In Figure C.1 we see that there are a few deviating values, but that overall the resid-
uals are more close to each other. This assumption can also be checked using the
Bonferroni p-values. We calculated these p-values using R. For each residual, the
null hypothesis is that the residual is not an outlier. The result of using this test is
that there were no residuals with a Bonferroni p-value smaller than 0.05. This means
that this assumption is satisfied.

C.1.5 Normally distributed residuals

Figure C.2 shows the Quantile-Quantile plot of the residuals. The assumption is met
when the residuals are close to the diagonal line. This is the case in this example. The
normality assumption can also be substantiated by looking at the histogram with the
distribution of the residuals in Figure C.3. In this figure we also see that he residuals
are normally distributed. Therefore, this assumption is satisfied.
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C.1.6 The residuals are not related to the independent variables

In Figure C.1 we do not see any relationships or patterns. Therefore the assumption
that the residuals are not related to the independent variables is satisfied.

C.1.7 The residuals are not correlated with each other

This assumption can be checked using the Durbin Watson test. The null hypothesis
of this test is that the residuals are not correlated. The p-value we got from this test
was 0.82, meaning that we can not reject the null hypothesis. This means that this
assumption is satisfied.

C.2 Multiple linear regression including the influential ob-
servations

In this section we present the regression summary and we will check the regression
assumptions of the multiple linear regression model where we included the influen-
tial observations.

C.2.1 Regression summary

Table C.3 shows the regression coefficients and the p-values of the multiple regres-
sion model where we included the influential observations. Table C.4 presents the
R-squared and the p-value of the full regression model.
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TABLE C.3: Coefficients and p-values of the variables in the regres-
sion model, including the influential observations.

Variable Coefficient p-value
Intercept 6.57899 < 2× 10−16

Throwing when standing -0.13908 2.52× 10−4

Throwing when jumping 0.15075 4.73× 10−4

Sprint 0.17429 5.1× 10−10

Cluster -0.19955 3.37× 10−3

TABLE C.4: P-value and R-squared of the full model, including the
influential observations.

Measure Value
P-value 5.528× 10−15

R-squared 0.5515

C.2.2 Regression assumptions

In this section we will check the linear regression assumptions of the multiple linear
regression model including the influential observations from Section 4.2.2. First we
will check the multicollinearity phenomenon in this model. We calculated the vari-
ance inflation factors (VIF) for the independent variables in the model using R. They
are the following:

• Throwing when standing: 2.642591

• Throwing when jumping: 3.426829

• Sprint: 1.241279

• Cluster: 1.966819

All factors are below 5. Therefore, we can assume that there is no multicollinear-
ity in the model.

In the next sections, we will use the plots and tests described in Section 3.1.1 to
validate the assumptions.

C.2.3 Homoscedasticity

Figure C.4 shows the residuals against the fitted values plot. If the homoscedasticity
assumption is met, the data points should be equally spread around the y = 0 line.
There might be a little variance as shown by the red line, but not too much. This
assumption can also be checked using the Breusch-Pagan test which we calculated
using R. The null hypothesis of this test is that there is constant variance, and there-
fore homoscedasticity. The p-value we got from this test was 0.8223801, meaning
that we can not reject the null hypothesis. Together with the conclusion from the
figure that there might be a little variance but not too much, we assumed that the
homoscedasticity assumption is satisfied.
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FIGURE C.4: Residuals vs. fitted values - linear model including in-
fluential observations.

C.2.4 No extreme values

In Figure C.4 we see that there are a few deviating values, but that overall the resid-
uals are more close to each other. This assumption can also be checked using the
Bonferroni p-values. We calculated these p-values using R. For each residual, the
null hypothesis is that the residual is not an outlier. The result of using this test is
that there were no residuals with a Bonferroni p-value smaller than 0.05. This means
that this assumption is satisfied.

C.2.5 Normally distributed residuals

Figure C.5 shows the Quantile-Quantile plot of the residuals. The assumption is met
when the residuals are close to the diagonal line. This is the case in this example. The
normality assumption can also be substantiated by looking at the histogram with the
distribution of the residuals in Figure C.6. In this figure we also see that he residuals
are normally distributed. Therefore, this assumption is satisfied.
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C.2.6 The residuals are not related to the independent variables

In Figure C.4 we do not see any relationships or patterns. Therefore the assumption
that the residuals are not related to the independent variables is satisfied.

C.2.7 The residuals are not correlated with each other

This assumption can be checked using the Durbin Watson test. The null hypothesis
of this test is that the residuals are not correlated. The p-value we got from this test
was 0.198, meaning that we can not reject the null hypothesis. This means that this
assumption is satisfied.
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Appendix D

The final data table for analysis

TABLE D.1: Descriptive statistics of the physical tests and ages in the final data table.

Test Minimum Maximum Mean Median Standard
deviation

Skewness

Age throwing 13.00 21.00 17.06 17.00 1.6310462 -0.08806145
Throw jumping (km/h) 58.33 105.00 83.76 84.67 8.6767791 -0.29969420
Throw standing (km/h) 56.67 96.00 78.33 79.00 7.8764698 -0.42862161
Age jumping 13.50 26.00 17.41 17.17 2.1449106 1.07822915
Vertical jump (cm) 20.97 60.00 35.94 34.90 8.0421036 0.56961147
Long jump (cm) 155.67 267.50 214.44 218.00 24.9381297 -0.18991300
T-test (s) 5.51 7.19 6.25 6.23 0.2976720 0.3103657
Age sprinting 14.00 26.00 17.35 17.00 2.1501942 1.18216100
Sprint 20m (s) 2.92 3.68 3.22 3.21 0.1301325 0.59357458

TABLE D.2: The number of talents in each age category of each phys-
ical test type.

Age category #1 #2 #3
Throwing 74 59 8
Jumping 69 53 19
Sprinting 75 47 19
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