

UTRECHT UNIVERSITY
Master Thesis

Customisation of enterprise software
using the RE4SA model

Author: Tjerk Spijkman

Internal Supervisors: prof. dr. Sjaak Brinkkemper, dr. Fabiano Dalpiaz

External Supervisor: Anne-Fleur Hemmer.

Business Informatics, Faculty of Science

Department of Information and Computing Sciences

July 2019

Table of Contents

Chapter 1 Introduction ... 1

1.1 Problem Statement .. 1

1.2 Research Objective ... 4

Chapter 2 Research Approach ... 5

2.1 Research Questions .. 5

2.2 Research Structure ... 6

2.2.1 Problem Investigation ... 6

2.2.2 Treatment Design .. 7

2.2.3 Treatment Validation .. 7

2.2.4 Treatment Implementation ... 8

2.3 Case Company – Forza IT Group ... 8

2.4 Case Software – JD Edwards & SCANMAN Add-on .. 9

Chapter 3 Theoretical Foundation ... 10

3.1 ERP Customisation .. 10

3.2 Requirements Engineering ... 12

3.2.1 User Stories ... 12

3.2.2 Epic Stories .. 15

3.2.3 Jobs to be done ... 16

3.2.4 The Reference Method for User Stories.. 17

3.3 Software Architecture documentation... 19

3.4 The RE4SA Model ... 20

3.4.1 Connection of the RE4SA Concepts in an Example ... 22

3.5 Ontology Tooling .. 24

3.5.1 The REVV Tool ... 25

3.5.2 The Interactive Narrator Tool & Visual Narrator tool ... 25

3.5.3 Ontology Tooling in the Scope of this Research .. 26

Chapter 4 RE4SA for Enterprise Software .. 27

4.1 Requirements Engineering ... 27

4.2 Software Architecture .. 28

4.3 RE4SA Method for Enterprise Application Software .. 30

4.3.1 SWOT Analysis ... 30

4.3.2 Creating the Situational RE4SA Method.. 31

Chapter 5 Case Studies on customisation .. 35

5.1 Case Study Protocol .. 35

5.2 Architecture Recovery .. 36

5.3 Case Study 1: Tracing Customer Requirements to the Software Architecture 37

5.4 Case study 2: Customised Voucher Match Report ... 38

5.5 Case study 3: Version Update ... 42

5.6 Case study 4: Recreation of the Case Software for a Different ES 44

5.7 Case Study Reflection ... 45

Chapter 6 Evaluation ... 46

6.1 Expert interviews .. 46

6.2 Content Metrics .. 48

6.2.1 Case Study Content Metrics .. 48

6.2.2 Feature Diagram Metrics ... 49

6.3 Lessons learned .. 51

Chapter 7 Discussion & Conclusions .. 54

7.1 Research questions ... 54

7.2 Validity threats ... 56

7.3 Future research .. 57

References: ... 59

Appendix ... 66

1

Chapter 1

Introduction

1.1 Problem Statement

Enterprise application software, is a type of software that is ready-made and designed to be easily

implemented in existing systems. While there is no universally accepted definition of an enterprise

application, enterprise applications typically meet one or more of the following characteristics

(Hohmann, 2003):

• They are designed to support the needs of a business, at either a departmental or larger

organizational unit;

• They are relatively expensive to build or license ($50,000 - $5,000,000+);

• They have complex deployment and operational requirements;

• While they can be operated as an independent application, they needs of the business

are often best served when they are integrated with other enterprise applications.

In Enterprise application software, like enterprise resource planning (ERP) software,

customisations are often necessary to increase the value for customers and to ensure that the ERP

meets the company’s needs (Zhang, Lee, Huang, Zhang & Huang, 2005). Panorama consulting

(2014) reports that for ERP systems, 90% of the systems have at least minor customization. A

glossary of the important terms used in this research can be found in Appendix B.

As the software is updated it might include some of the functionalities that were previously added

through the customisations. This means that functionalities might be duplicated, or that the ERP

needs to be customised again. Light (2001), found that customisations require additional

maintenance, which in turn leads to additional maintenance challenges. For example, source code

for the customisations might be lost over time, customisations need to be re-written, re-tested

and re-implemented. One cause of additional maintenance is that the user exits (points in the

software to which add-ons are linked) that add-ons rely on might change in an update of the

software (Ng, 2012). This means the add-on needs to be changed to work on the new version,

ensuring that customisations work on a new version of the software is known as retrofitting.

Software customisation can be divided in three categories, functionalities can be:

1. Modified: changes made to existing functionalities in the software product; for example if

the software only supports a single type of currency like dollars, this currency can be

modified to better fit the context.

2. Extended: additional functionalities added to an existing module; for example if the

finance module only supports manual invoice processing, this functionality can be

extended to support automatic invoice processing.

3. Introduced: additional modules added to the software product; for example introducing

satellite localisation of employees or products to an enterprise software.

Light (2001) identified the first scenario as the biggest maintenance risk. An architecture, inspired

by documentation of JDE (Oracle, 2015) is displayed in Figure 1. This figure visualizes how these

categories could impact the software architecture. It also shows a scenario where part of the Real

2

Estate functionality that was originally added as a customisation is now included in the new

version of the ERP system (4). This can create conflicts between the customisation and the ERP

software, and the company now needs to make a choice to lose some of the functionality of the

customisation, not update the ERP, or have the customisation altered to work with the newest

ERP release.

Figure 1 – Categories of customisations and updates in software architecture of enterprise

application software.

It is often difficult to localise where exactly these incompatibilities will arise when a software

update is released. These difficulties occur as the documentation to see which aspects are

visualised is limited or non-existent. This means developers often have to scan the source code to

detect changes. Furthermore it is not always clear on which software elements one specific

module is dependant. In this study the requirements engineering for software architecture

(RE4SA) model will be applied in order to improve the documentation, development and

maintenance of enterprise application software.

The RE4SA model shows how different abstraction levels in requirements engineering relate to

software architecture concepts (Jansen & van Rhijn, 2016). The RE4SA model shows the relation

between the epic story & user story concepts on the requirements engineering side, and the

module and feature concepts from Software Architecture (Figure 2). This model will be discussed

in more detail in chapter 3.3.

3

Figure 2 – The requirements engineering for software architecture (RE4SA) model

(Molenaar, et.al. 2019)

User stories have become a very popular method for requirements engineering (Kassab, 2015;

Lucassen, Dalpiaz, van der Werf, & Brinkkemper, 2016b; Cao & Ramesh, 2008), in a survey with

247 participants, Kassab (2015) found that User Stories had an adoption rate of around 45% in

2013. User stories are defined by Cohn (2004) as a description of a functionality that will be

valuable to a user or purchaser. This functionality often matches a certain feature in a software

product, for example in the user story “As a student, I want to save my files as pdf, so that I can

hand them in in the correct format” could match a “save as” feature within a “document

management” module. Cohn (2004) defined three aspects that user stories are composed of:

 A written description of the story used for planning and as a reminder

 Conversations about the story that serve to flesh out the details of the story

 Tests that convey and document details and that can be used to determine when a story

is complete.

User stories are mainly used in agile development methods, but also have a place in other

methods. Lucassen, Dalpiaz, Werf, and Brinkkemper, (2016b) found in a survey with 182 valid

responses, that 99% of respondents indicate that they used user stories when they work with

scrum. For waterfall methods only 21% of the respondents that work with the waterfall method

used user stories.

An Epic story contextualises high-level jobs that a product needs to fulfil (Klement, 2006). Klement

introduced the template as Job Story, however due to the existing notion of epics in Scrum

development they were renamed to epic story for research within Utrecht University. An epic

story has a larger scope than a user story and can be split into two or more user stories. (Cohn,

2004) Epic stories can be created to represent a module that should be included in the software,

once work begins on this module the epic story can be refined by creating the corresponding user

stories.

4

On the software architecture side, the RE4SA model uses modules and features. The modules can

be visualised in a functional architecture diagram (FAD) (Brinkkemper & Pachidi, 2010) which

shows how the modules interact with one-another and what their functionalities are within a

software product. On the more detailed level, the model uses feature diagrams (Jansen & van

Rhijn, 2016) to show all user visible elements (features) in the software, and the hierarchy of the

features.

1.2 Research Objective

The RE4SA model (Figure 2) will be applied to the enterprise application software case in an

attempt to improve the documentation, development and maintenance of customisations. User

stories could potentially improve these elements because they document more than what is

expected from a customization; User stories document who it is for, what is expected from the

system and why it is important (Lucassen, Dalpiaz, van der Werf & Brinkkemper, 2016b). This

provides more information for developers to base the customisations on, but still let them decide

how to develop the functionality. The tested method can also improve the traceability of

customisations through the creation of a clear overview of concepts using ontology tooling. This

can help detect possible conflicts in features when a new update of the ERP is released, providing

information that can detect which customisations require attention based on the new

functionalities included in the update.

In this research a method will be constructed that includes the use of user stories and epics for

the creation and maintenance of customisations in enterprise application software. This method

will then be evaluated based on a case study.

5

Chapter 2

Research Approach

This chapter will focus on the approach chosen for this research. First the main research question

is introduced. This is followed by a set of six sub-questions that together should provide an answer

to the main research question. Next, the research method for the project is elaborated. Then the

case company Forza IT Group, the case software JD Edwards and the SCANMAN customisation will

be introduced.

2.1 Research Questions

Based on the problem statement and research objective stated in chapter 1, a main research

question is formed that should provide a (partial) solution to the challenges in customisation of

enterprise application software. Such a question is often too broad in scope to give a clear answer.

Therefore, a set of sub questions is created to guide the research, and as a whole provide an

answer to the main research question. The main research question that will be answered in this

study is:

RQ: “How can the RE4SA model be applied for customisation of enterprise

application software, and what are its benefits”.

The research question is broad in scope as the application can be done for different scenarios

within enterprise application software, and these scenarios might have different benefits.

Therefore the first sub question is similar but with a much narrower scope:

SQ1: “How can RE4SA be applied for customisation of enterprise application

software?”

In this question it will be important to analyse how the different aspects of the RE4SA model can

be applied to the creation and implementation of customisations in enterprise application

software. This part will consider the literature about user stories & epics, and look at the creation

process of an ERP customisation. A Product deliverable diagram (PDD) will be applied to this

scenario to see how the RE4SA model can be implemented in the customisation of an ERP system.

SQ2: “How can RE4SA be applied for release updates of (customised) enterprise

application software?”

The second question will be a continuation of the first question. And will adapt the method

modelled in the first sub question to be used when the enterprise application software is updated.

As discussed in the problem statement, a release update can cause issues in the customisations

and require manual actions to ensure that customisations function.

SQ3: “How can ontology tooling assist release upgrades and customization in

enterprise application software?”

The third question will analyse the benefit that ontology tooling can have within the method

defined in the first two questions. This research question is based on the assumption that ontology

tooling can provide visualisations that can be utilized to improve interpretation of a complete set

of user stories.

6

SQ4: “How can RE4SA be applied to improve internal (developers) and external

(customers) communication and documentation in enterprise application

software?”

The fourth question looks at a different aspect introduced through the RE4SA method. By applying

user stories and epics in the implementation, customisation and maintenance of enterprise

application software the way of communication and documentation is also changed. The aim is to

detect how this change impacts internal documentation and communication with developers, and

external documentation and communication with customers.

SQ5: “How can method fragments of RE4SA be integrated into the process used

in the case company?”

The fifth question compares the process used in Forza IT Group for implementation, customisation

and maintenance of the ERP to the method that is analysed in the first two questions. Besides

comparing the steps and analysing differences, fragments of the method suggested for the RE4SA

model will be integrated into the process used by Forza to create a new method.

SQ6: “How effective is the situational method for the customisation of

enterprise software”

The final sub question is an evaluation of the method created in SQ5, this evaluation will be done

through expert interviews based on the case studies in which the method has been applied.

2.2 Research Structure

To solve practical problems the engineering cycle in the design science method by Wieringa (2014)

can be applied. Design science is the investigation of artifacts in context (Hevner, March, Park, &

Ram, 2004), in this research we will investigate the use of a method based on the RE4SA model in

the context of enterprise application software, or more specifically ERP customisation. The

engineering cycle (Figure 3) has four phases: it starts with investigation of the problem, followed

by design of a treatment / solution, which is then validated and implemented. The outcome of the

final phase, can be evaluated and be the start of a new iteration of the engineering cycle.

Figure 3 – The engineering cycle by Wieringa (2014)

2.2.1 Problem Investigation

In this phase SQ 1-4 will be investigated. In this study the problem that we will try to solve is that

managing requirements is a difficult task, and poor requirement management is the most

important cause of project failure (Smith, Bieg & Cabrey, 2014). While the RE4SA model is a

promising treatment, it is unclear if it can be effectively deployed in the context of customisation

of enterprise software. In this phase a literature study will be performed to detect what the

7

challenges are for ERP customisation, and identification of the current state of the aspects in the

RE4SA model. This will first be done in a general context, and will then be specified to analyse how

it could fit within the enterprise application software context.

The functionalities of the ERP system and customisations will also need to be analysed to get an

overview of the context in which the RE4SA model will be applied. This will be done through a

literature search, existing documentation of JD Edwards (ERP system), documentation available at

the case company and through manual analysis.

2.2.2 Treatment Design

Once the problem is sufficiently investigated and enough knowledge is gathered, a treatment will

be designed, in the engineering cycle this is an artifact such as an algorithm, method, technique

or framework that interacts with the problem context (Wieringa & Morali, 2012). The treatment

in this study, will be a method in which we apply the RE4SA model to the current customisation

method used at the case company. This phase will lead to an answer to SQ5.

2.2.3 Treatment Validation

Once the treatment is designed it should be validated to ensure that it contributes to the

stakeholder goals before implementing it. There are different factors that need to be validated

before the treatment can be considered to be representative for the population of interest. In this

research we will consider three of the four types of validity threats included in the experiment

principles model by Wohlin (2012) shown in Figure 4, specifically Internal validity, construct

validity and external validity.

Figure 4 – Experiment principles by Wohlin (2012).

The four validity threats as defined by Wohlin (2012) are:

1. Conclusion validity: This validity is concerned with the relationship between the

treatment and outcome, and requires a statistical significance in the results. As we will

perform a case study and qualitative evaluation instead of quantitative evaluation this

validity is deemed not relevant for this study.

8

2. Internal Validity: This validity is about ensuring that the outcome is the result of the

treatment and not the result of a factor that we do not control or have not measured.

3. Construct validity: This validity is concerned with the relation between cause and

effect. In order to adhere to this requirement we need to ensure that the treatment

corresponds to the cause and that the outcome of the study reflects the effect we are

interested in.

4. External Validity: In this threat we consider whether or not the results from the case

study represent can be generalised outside of the scope of this research. So in other

words we will discuss if the results are relevant for cases different from the one

considered in the case study.

These impacts validity threats will be minimised through the creation of a case study protocol,

based on guidelines available in literature. In the final chapter of the thesis, the remaining validity

threats will be discussed.

2.2.4 Treatment Implementation

In the implementation phase we apply the treatment to the problem context. In this research we

will apply the method created as an answer to SQ5 in four case studies provided by Forza IT Group.

The first and second case study will be a retrospective case study, each based on one project

already finished by Forza IT Group. This first case study matches the field study type (Stol &

Fitzgerald, 2018), which means that the natural setting is intruded on in the least amount possible

to maximise the realism of the setting. The third and fourth case study will be an action research,

this matches the field experiment study type. In action research the researcher intervenes in a

setting in an attempt to improve the current situation by making changes, observing the resulting

situation and making further changes. This means there will be some level of intrusion but it allows

for a better way to evaluate the method compared to the first case study. By performing both

these case studies, this research will obtain results for both fields in the natural settings quadrant

identified by Stol and Fitzgerald (2018), this will provide real world data for the effectiveness of

the RE4SA model.

Using the created method the requirements of the case will be documented using epic stories and

user stories. The software architecture of the SCANMAN in the context of this case will be

documented using functional architecture diagram and feature diagram notations. All these

concepts are further explained in chapter 3.

2.3 Case Company – Forza IT Group

The research project is supported by Forza IT Group, a company that specialises in services relating

to Oracle NetSuite, Oracle JD Edwards and cloud applications.

Forza provides support for the implementation of ERP systems, application management and

create and maintain customisations for customers. When they implement software at a customer,

they specify the required configuration and customisation for the context of that customer. This

means that each customer gets a personalised version of JD Edwards to suit their needs. Forza

also develops products that extend the functionality of the Oracle ERP systems.

Forza will be a valuable source of information for this research. They will provide information

about their current method, documentation on previous and ongoing projects, practical expertise

in the context area and expert opinions on the suggestions in this study. The working environment

9

for this research will be mostly within Forza IT Group, this results in constant communication with

employees to obtain information and opinions from them, and a form of quality control for the

research. They also provide their company knowledge, and access to the Oracle Support website

for information about new releases and online documentation of Oracle products. Their internal

knowledge will be crucial to determine how the RE4SA model can be applied to enterprise

application software, and will be necessary for modelling their internal process. However, since

this information is only accessible from the intranet of Forza, and in some cases can be

confidential, not everything will be included in this thesis. When a specific part is deemed relevant

for the purposes of the research, it will be discussed whether it can be included, and in what form

(e.g. anonymised, partially, not at all).

2.4 Case Software – JD Edwards & SCANMAN Add-on

JD Edwards was an ERP software company founded in 1977, they were purchased by PeopleSoft,

Inc. in 2003, which in turn was purchased by Oracle in 2005. The JD Edwards ERP is still sold and

supported by Oracle, has a broad scale of functionalities and is used in more than 10,000

companies (idatalabs.com, 2018). Oracle describes the software as follows:

“JD Edwards EnterpriseOne offers a powerful, fully integrated ERP software

suite that provides more choice of databases and deployment options, including

on premise, private cloud, public cloud or hybrid cloud for maximized flexibility

and low TCO. With over 80 application modules, end-user reporting, and

personalization capabilities, JD Edwards EnterpriseOne combines business

value, standards-based technology, and deep industry functionality into a

solution that will transform your business. In addition to an array of out-

of-the-box mobile applications, JD Edwards EnterpriseOne leverages Oracle’s

Mobile Platform to accelerate business execution and provide a complete

enterprise mobile solution from deploying to building and extending mobile

applications.” (Oracle, 2016)

As mentioned in the first chapter, ERP systems are often customised to add functionalities

required by the customer. One such customisation of JD Edwards is SCANMAN. This add-on

increases the efficiency for the financial processes, as it automates invoices processing in JD

Edwards. It then provides a workflow for approval of payments. SCANMAN is fully integrated

within JDE, and requires no external applications. SCANMAN uses OCR to automatically scan and

process values from received invoices. These are then presented to users for verification, after

which they can enter the approval process.

The JD Edwards ERP system, and the SCANMAN customisation will be the main focus for the

context of this research.

10

Chapter 3

Theoretical Foundation

For the literature review there are five different categories in which the findings can be split. The

chapter will start with an overview of literature findings in the context of ERP customisations. Next

the Requirements engineering section of the RE4SA model is reviewed, which covers user stories,

epic stories and jobs to be done. This is followed by a review of the software architecture concepts

included in the RE4SA model. Once all these concepts are discussed, we can finally discuss the

model as a whole and this is done through an example to show how the different aspects of the

model are interlinked. Finally ontology tooling is discussed to see how it can be used in a method

based on the RE4SA model.

The literature review is done using the snowballing method (Wohlin, 2014). This method refers to

using the reference list of a paper, and the referenced by lists to identify additional papers that

are relevant for the research. This literature review was started by collecting the papers on user

stories and the Grimm project by going through the papers by Lucassen, Dalpiaz, Brinkkemper,

and scanning the papers they referenced. An unpublished book (Brinkkemper, S., Dalpiaz, F., &

Lucassen, G., 2018) written by students as part of a university course on user stories was also used

as a starting point for the snowball method. Other papers outside the snowball literature search

were also used, for example papers that were recommended by others, or literature used in

university courses.

3.1 ERP Customisation

An Enterprise Resource Planning (ERP) system is used to store information that was previously

fragmented in many different systems in a single comprehensive data repository (Laudon &

Laudon, 2017) and can be defined as:

“Software providing integrated functions for major business functions such as

production, distribution, sales, finance and human resources management.”

(Chaffey, 2009)

An ERP combines the different sources of information of a business and integrates it into a single

collection of inter-linked processes that makes up the business. For example, a purchase in the

order entry module passes the order to the manufacturing application, which sends a materials

request to the supply-chain module which gets the parts from suppliers and uses a logistics

module to get them to the factory (Gupta, 2000). The major goal of an ERP system is to increase

operating efficiency and decreasing costs (Seo, 2013; Nah, Lau & Kuang, 2001; Beheshti, 2006).

Additionally Light (2005) identified the following reasons for adoption of ERP packages:

 Correction of existing problems;

 Predictability;

 Business benefits;

 Social influences;

While an ERP can improve the business processes of a company, it also requires a big investment

of time and money to implement it. ERP implementations often take longer than their estimated

schedule and end up at a higher cost than estimated (Ehie & Madsen, 2005; Helo, Anussornnitisarn

& Phusavat, 2008). When an implementation fails, this can have high impact on the company and

going back is extremely difficult (Bingi, Sharma & Godla, 1999). An example of such a failed

11

implementation is FoxMeyer Drug, a $5 billion pharmaceutical company that went bankrupt after

a failed implementation of SAP. Implementation of an ERP system comes with a large amount of

change for the organisation, they need to reengineer their business processes to align with the

ERP, train employees, and integrate the ERP in the company culture. Other research also reports

on the risks of ERP failure:

 "Many ERP systems still face resistance, and ultimately, failure" (Aladwani 2001)

 "Between 50 percent and 75 percent of U.S. firms experience some degree of failure …

One recent survey revealed that 65 percent of executives believe ERP implementation has

at least a moderate chance of hurting their business." (Umble & Umble 2002)

 "Three quarters of the ERP projects are considered failures and many ERP projects ended

catastrophically" (Rasmy et al 2005)

 "Failure rates estimated to be as high as 50% of all ERP implementations" (Muscatello &

Parente 2006)

There are different stages in the implementation of an ERP system, Ehie and Madsen (2005)

suggest a five-stage implementation process based on a literature review they performed. These

stages are:

 Project preparation stage: The planning phase in which a project team is formed, targets

and objectives are set;

 Business blueprint stage: The current processes are analysed to select the ERP system that

best fits the company, and a project team is trained in the configuration and functionality

of that ERP;

 Realization stage: The actual implementation, customisation and data conversion is done

in this phase;

 Final preparation stage: The process is integrated, the system is tested, and end users are

trained to use the ERP;

 “Go live” and support stage: The ERP is used in daily activities and is improved and

expanded.

Although an ERP, and Enterprise Application Software in general have the benefit of providing a

standard solution in the software landscape when compared to custom software, they still need

to be customised to meet the company’s needs (Zhang et al., 2005). We define customisation as

follows based on the definition by Light (2001):

“Customization is any change or addition to the functionality available in the standard software

product.”

The need for customisation can also been seen in the price of ERP implementation. According to

Shin (2006) the majority (up to 60%) of ERP project cost is devoted to setup, installation and

customization of the software, services typically provided by outside consultants (Dolmetsch et

al., 1998; Österle, et al. 2000). The Financial Time (2003) reports an even higher rate for

implementation factors:

“Prof Brynjolfsson and colleagues found that of the $20m total cost of an

enterprise resource planning (ERP) system, only about $3m goes to the software

supplier and perhaps $1m towards the acquisition of new computers. The $16m

12

balance is spent on business process redesign, external consultants, training and

managerial time” (Financial Time, 2003)

This shows that customisation of an ERP plays a big role in the use of the software within a

company. These customisations also introduce new challenges. Light (2001) identified different

levels of maintenance needs based on the type of customization. Customisations that change the

existing functionality and code of an ERP are most likely to cause conflict in future updates of the

ERP. For added functionalities, it is important that the link between the customisation and the ERP

is maintained throughout different versions of the software. For automation of processes, and

changes in the reports generated, the maintenance need is expected to be lower.

Updates of the ERP software can cause certain customised functionalities to stop working.

Hohmann (2003) calls these “ripple upgrades”, which he defines as “an upgrade that forces you

to upgrade otherwise stable system components”. For example the update of an ERP might

change the way taxes are calculated to improve performance, which in turn causes issues for

customisations that rely on this information.

Somers and Nelson (2001) note minimizing customisation as a factor for successful ERP

implementations. Based on a survey they observed that 41% of companies re-engineer their

business to fit the application, 37% choose applications that fit their needs and make small

customisations, and 5% customise the application to fit their business. Somers and Nelson (2001)

mention that customization should only be requested when essential or help achieve competitive

advantage, because they often increase the cost of the system, increase implementation time,

and limit the benefit from software maintenance and upgrades. The customisation in the paper

by Somers and Nelson seems to only consider modifications. Add-ons might be valuable in cases

when modifications is not recommended, as they have a reduced risk at increasing maintenance

and upgrade costs. Furthermore, add-ons are often supported by the software vendor that

provides the add-on.

The combination of the high costs of ERP implementation and customisation, and the high risk of

failure, show that improvements to the process are desirable. In the next paragraph, we will

consider user stories, epic stories and software architecture. Then in chapter 4 these concepts will

be analysed for usability within the ERP context.

3.2 Requirements Engineering

3.2.1 User Stories

User stories date back to 1999, where Beck described them as:

“The amount of a use case that will fit on an index card” (Beck, 1999)

In this paper he also suggests to make shorter development cycles in improve development. The

definition for user stories by Cohn (2004) in his book “User stories applied for agile software

development” details the following aspects of a user story:

 A written description of the story used for planning and as a reminder

 Conversations about the story that serve to flesh out the details of the story

 Tests that convey and document details and that can be used to determine when a story

is complete

13

Cohn notes that the acceptance tests should be written by the customer whenever possible, since

they are the ones that have a desired functionality in mind. In his book, Cohn also lists the

following advantages for the use of user stories compared to other requirement elicitation

techniques. User stories:

 Emphasize verbal communication;

 Are comprehensible by everyone;

 Are the right size for planning;

 Work for iterative development;

 Encourage deferring detail;

 Support opportunistic design;

 Encourage participatory design;

 Build up tacit knowledge.

The requirements engineering technique of user stories has gotten more popular over the years,

in 2013 user stories were used in 45% of software companies compared to 32% in 2008 and 1% in

2003 (Kassab, 2015). Lucassen et al. (2016b) found that in practise 70% of the practitioners that

use user stories, make use of the Connextra template. This template is as follows:

“As a <Role>, I want to <Goal>, so that <Benefit>.”

Cohn (2004), suggests that the benefit part of this template is optional. However, Lucassen et al.

(2016b) found that this part of the story is essential to their respondents. The benefit part answers

why a functionality is required. The main benefits that Lucassen et al. found for the why are: it

alleviates confusion among stakeholders, reduces the amount of discussion necessary, and

provides developers with autonomy in their work. Figure 5 shows the Connextra template as a

conceptual model, this model shows that a user story has one role, one means (goal) and no, or

multiple ends (benefit).

Figure 5 – linguistic model of the Connextra user story template (Lucassen et al., 2015)

An example of a user story that uses the Connextra template is:

14

“As a financial manager, I want to send an invoice to a colleague for acceptance,

so that I can process the invoice.”

Based on the book by Cohn (2004), Figure 6 shows an activity flow with the activities required for

the creation and use of user stories. The process starts with deciding which roles should be

included, this is often done through brainstorming and conversations with the customer. Once the

roles have been decided, user stories need to be gathered, this can be done through interviews,

questionnaires, observation and similar techniques. When the set of user stories is gathered,

acceptance criteria need to be specified, Cohn suggests that the customer should specify these

tests. After this, the effort to perform the tasks required to satisfy the user story should be

estimated. Once this is all done, a release can be planned, the team selects a set of user stories

that should be processed and decides on a release window.

The process in the previous paragraph explained the activities Cohn (2004) identified for applying

user stories. In chapter X, a more specified method for the enterprise application software context

will be discussed.

Role modelling
Gather user

stories
Acceptance

testing
Estimate stories

Plan a release
based on stories

Figure 6 – activity flow for the creation of user stories

In order to be valuable, user stories need to be of an adequate quality. However, the available

methods for assessing and improving user story quality is limited (Lucassen et al., 2015). The

INVEST (Independent-Negotiable-Valuable-Estimable-Small-Testable) heuristics by Wake (2003)

can be used to assess the quality of a user story. These heuristics are used to test whether:

 The user stories do not overlap in concept,

 The user stories are not too specific in detailing how to achieve the result,

 The user stories have value for the customer,

 The level of effort for handling the user stories is estimable,

 The user stories are not too big in scope,

 The user stories can be tested to determine if the results meet the requirements.

In 2015, Lucassen et al. introduced the Quality User Story framework (QUS). This framework as

seen in Figure 7 considers 14 criteria to assess user stories, in syntactic, semantic and pragmatic

categories. They also introduced a natural language processing tool (NLP) that can analyse a set of

user stories based on the QUS framework, called Automatic Quality User Story Artisan (AQUSA).

This tool can uncover up to 90% of easily preventable defects in user stories (Lucassen, Dalpiaz,

van der Werf, & Brinkkemper, 2016a).

15

Figure 7- Quality User Story (QUS) Framework (Lucassen et al., 2015)

3.2.2 Epic Stories

An Epic story is a user story that is too big to be implemented and can be deconstructed in multiple

smaller user stories (Cohn, 2004), this is also represented in the conceptual model of the user story

Figure 5. Epics can be useful for describing a functionality on a bigger scale than user stories, and

as a placeholder for a functionality that still needs to be defined. It could also be used to create a

group of user stories to adhere to a single epic. Klement (2013) introduced the epic story template:

 “When <problematic situation>, I want <motivation>, so that <expected

outcome>.“

For this template Lucassen et al. (2018) also defined a conceptual model similar to that of the

Connextra template (Figure 5) this conceptual model is shown in Figure 8.

Figure 8 – Linguistic model of epic stories (Lucassen et al., 2018)

Klement (2013) notes that this epic story format prevents assumptions made in a user story, and

keeps the options open to define a solution. An example of an epic in the SCANMAN context could

be:

16

“When I approve invoices, I want to quickly have access to all the information

for invoices that I need to approve, so that I can work more efficiently. “

This epic could have multiple subtasks, if it was used during the development of SCANMAN, it

would have to be decomposed into multiple smaller US that can be implemented. For example

one of the smaller user stories could be:

“As a financial manager, I want to filter the invoices to see only those that

require my attention, so that I don’t waste time on invoices that are not my

responsibility.”

This decomposition should be done in collaboration between team members to discuss different

possibilities and to make sure that all relevant aspects of the epic are covered by the set of user

stories.

3.2.3 Jobs to be done

On a higher level than Epics are Jobs to be done (JTBD theory). A Job to be done represents the

customers overall goal for wanting a change in his or her situation. A Job to be done is often

written as:

“Help me <verb> <noun phrase>”.

 Klement defines these jobs to be done as:

“A Job to be done is the process a consumer goes through whenever she aims

to transform her existing life-situation into a preferred one, but cannot because

there are constraints that stop her.” (Klement, 2016)

People often hire products to do a specific job for them (Christensen, Cook, & Hall, 2005), this is

also the case for a software product. For example, a job to be done in the context of the SCANMAN

customisation could be:

“Help me spend less time on invoice processing.”

Klement (2016) mentions that innovators often think they are studying customer needs, when

they are actually observing what they don’t like about the products they currently use. By creating

a Job to be done, the customer’s goals are considered instead of their frustrations. Furthermore,

the increase in available data causes firms to focus on correlations. A job to be done helps to shift

this focus from the correlations to what the customer hopes to accomplish (Christensen, Hall,

Dillon, & Duncan, 2016). According to Klement (2016), using the job to be done as the basis of a

new product, designers can prevent limiting themselves to the needs and expectations that are

linked to current products. This should allow for more innovation in the solution that fulfils the

customers goal.

Blessinga (2018), included these Jobs to be done in his thesis as an extension of the RE4SA model,

however for the purpose of this research they were deemed to be out of scope. Since the

application already exists in a customisation scenario, the job to be done should already be

determined for the initial application design. When a new job would be included in the existing

software, this will likely lead to scope drift of the application, and would likely be more suited to

be a new product in the company’s portfolio.

17

3.2.4 The Reference Method for User Stories

The concepts described above can be used to change the development process of software. One

such method, the Reference Method for User Stories (Figure 9) is defined by Bik, Lucassen &

Brinkkemper (2017). This method starts with gathering requirements, based on the gathered

requirements user stories and epics (which are later split into user stories) are written and

validated. The method then assigns an indication of how much effort they will take to develop and

a selection of user stories is made to plan the next sprint, after which development can begin. This

method only includes the user story and epics concepts, but not the Jobs-to-be-done or the

software architecture side of the RE4SA model. Therefore this method can serve as a baseline for

the method that will be created to answer sub-research question five.

18

Figure 9 – The Reference Method for User Stories (Bik et al., 2017)

19

3.3 Software Architecture documentation

Bass, Clements & Kazman (2013) define Software architecture as:

 “The set of structures needed to reason about the system, which comprise

software elements, relations among them, and properties of both.”

Software architecture enables communication between stakeholders, and helps ensure

modularity in software development. In software architecture, a module is a part of the software

with a well-defined functionality that can be developed independently (Parnas, 1972). Examples

of modules could be the filtering or save management modules. Brinkkemper and Pachidi (2010)

presented the Functional Architecture Model (FAM), which is a method to model the functionality

of a software product, consisting of its main functions and supportive operations. The FAM created

for an ERP by Brinkkemper and Pachidi can be seen in Figure 10.

Figure 10 – Functional Architecture of an ERP product (Brinkkemper and Pachidi, 2010)

Brinkkemper and Pachidi (2010) also describe the Functional Architecture Diagram (FAD) (Figure

11), which contains modules that resemble the functions of a software product. These functions

are implemented in the form of modules, and the interactions between modules can be seen in a

FAD by flows. The FAD visualises how the product will be used, and it indicates which modules

need to be created for the intended functionality of the product.

20

Figure 11 – Functional Architecture Diagram (FAD) of an Authoring module (Brinkkemper and

Pachidi, 2010)

A feature is a smaller scale element in software architecture and can be defined as:

 “A prominent or distinctive user-visible aspect, quality, or characteristic of a

software system or systems” (Kang, Cohen, Hess, Novak, & Peterson, 1990).

In the module “document management” one of the features could be “save as pdf”. Features can

be modelled with a feature diagram, this model is a hierarchically arranged set of features

(Riebisch, Streitferdt, & Pashov, 2004), and displays if features are mandatory or optional. This

model gives an overview of all features that need to be included in a module.

Figure 12 – Example of a feature diagram (Jansen & van Rhijn, 2016)

3.4 The RE4SA Model

As described in chapter 1, the Requirements Engineering for Software Architecture (RE4SA) looks

at the correlation between concepts in the requirements engineering and software architecture

domains. The importance of the relation between requirements and software architecture is

discussed by Nuseibeh (2001), he introduced the twin peaks model that describes how

requirements and software architecture are interlinked and should be consistent. The work on the

21

twin peaks model is continued by Lucassen et al. (2015), who state that this is link is important for

handling the ever changing requirements set of a software product. The requirements of a

software product are continuously generated because the product is provided to multiple

customers. Since the requirements are constantly being generated, this also has impacts on the

software architecture, which is extended to fulfil the new requirements. The RE4SA model (Figure

13) describes the relationship between specific concepts in both requirements engineering (RE)

and software architecture (SA). By linking these concepts, traceability is created between the

concepts. This traceability supports the maintainability, changeability, and sustainability of a

software system and its artifacts (Gayer et al, 2016). It should also be effective for handling new

requirements, as they can easily be placed in the software architecture.

Blessinga (2018) & Van de Keuken (2017), also found that project briefs as defined by Intercom,

(Traynor, 2016) are a vital addition to the RE4SA model for ensuring an exhaustive design. The

template for the project briefs can be seen in Figure 14.

Figure 13 – RE4SA model (Molenaar et al. ,2019)

22

Figure 14 – Project brief template, adapted from Traynor (2016)

The RE4SA model is currently being researched within Utrecht University, as a part of the GRIMM

project. The GRIMM research is an attempt to help practitioners use user stories, provide a

framework for user stories and to analyse their usefulness (Lucassen, 2016). The GRIMM research

group consists of; a project group of (master) students, and two professors at Utrecht University

researching different aspects of the RE4SA model. As discussed previously, this research will test

if the model is applicable in the context of ERP customisation, providing a multi-case study to

provide findings for the application of the model in practise.

Geneca, a software publishing firm, published findings on a study of software development

(Geneca, 2017). They found that 75% of their 600 respondents say their projects were doomed

from the start, they also report that 78% of the respondents feel that the business is out of sync

with project requirements and business stakeholders need to be more involved in the

requirements process. Applying the RE4SA model could help improve requirements, and involve

stakeholders, and hopefully results in a lower percentage of failed software projects.

3.4.1 Connection of the RE4SA Concepts in an Example

In order to demonstrate the idea behind the RE4SA method, an example of how the RE4SA might

be applied to a route planning tool will be described. As an input for the RE4SA method we can

use the job-to-be-done, this shows us what we’re trying to achieve by creating a new application.

The job-to-be-done in this context could be:

“Help me plan a route”

From this point the designers and developers should communicate with stakeholders to elicit

requirements and decide what needs to be included in the application. Based on their findings

they can create epic stories and user stories to document these requirements. In order to keep

this example simple, only one epic- and user story will be discussed, in an actual project there

would be a collection of both. One of the epic stories the developers found is:

“When I plan my trip, I want a planned route so that I can find my destination”

23

From the set of epics, the developers can model the modules in the application through a

Functional Architecture Diagram (Brinkkemper & Pachidi, 2010). Blessinga (2018), found in his

thesis that an epic story can indeed be linked to a module and form the foundation for the creation

of a software architecture. The Epic story presented above can be traced to the circled “route

planner” module in Figure 15.

Figure 15 – Functional Architecture Diagram based on Maps

These modules as seen in the figure above all contain features that can be determined from the

set of user stories gathered during requirement elicitation. The user story we will consider in this

example is:

“As a consultant, I want the fastest route to my destination, so that I can

efficiently visit customers”

Just as the epic stories can be linked to the modules in the software, the user stories can be linked

to features. The feature model below shows where the user story is linked to a specific feature.

24

Figure 16 – Partial feature diagram of the “route planner” module

In this research the RE4SA model will be applied in a similar way to investigate its use in the context

of enterprise application customisation.

3.5 Ontology Tooling

Ontologies are meant to specify content-specific agreements for knowledge sharing. A popular

definition for ontology is the one by Grüber (1995) as:

“An ontology is an explicit specification of a conceptualization: the objects

concepts, and other entities that are assumed to exist in some area of interest

and the relationships that hold among them”

This is a general term for an ontology, and details design choices for the terminology and concepts

used in a single area of interest. This could be any area from the concepts used in a certain research

project, or a company. The benefit of an ontology is that it can visualise a domain and support

conversations. Martens specified the term Product Domain Ontology (PDO) to describe the

ontology of a specific software product:

"A Product Domain Ontology is a domain ontology that explicitly specifies the

conceptualization of a certain software product." (Martens, 2016)

This specialisation of an ontology is especially useful in the context of this research, as it can

theoretically support user stories by visualising the concepts mentioned in a set of user stories of

a software product. This is further enabled through natural language processing tools that are

currently being developed as part of the GRIMM project, including the REVV tool (Dalpiaz, van der

Schalk, & Lucassen, 2018) and Visual Narrator Tool (Lucassen, Robeer, Dalpiaz, van der Werf, &

Brinkkemper, 2017b). In the following sections we will discuss the following ontology tools:

 The REVV Tool: a tool for ambiguity detection within an ontology

 Visual narrator tool: a tool that extracts a conceptual model from a set of user stories

25

 The Interactive Narrator Tool: a tool that combines the conceptual model extracted by

the visual narrator tool with data from an issue tracking application (like JIRA)

3.5.1 The REVV Tool

The Requirement Engineer Verification and Validation (REVV) tool, aims to give an overview of

ambiguities and missing requirements in a set of user stories. The REVV tool creates a conceptual

model of the set of user stories, and presents this in a Venn diagram from the viewpoint of each

role in the user story set. The algorithm tags possible synonyms, which can aid in both improving

user stories by removing ambiguity and identifying missing requirements. Additionally it can

improve the Product Domain Ontology by ensuring a single term is used for a single concept. By

applying the REVV tool in a situational RE4SA method, we can improve the quality of the user story

set, which in turn should improve the naming of features.

Figure 17 – The REVV tool with three roles and ambiguous terms (Dalpiaz et. al, 2018)

3.5.2 The Interactive Narrator Tool & Visual Narrator tool

Based on a set user stories, the Interactive Narrator tool can extract all relevant entities and the

relationships between these from the user story set (Slob, Dalpiaz, Brinkkemper, & Lucassen,

2018). The interactive narrator tool utilizes the concept model extracted from a set of user stories

by the visual narrator tool. The interactive narrator tool then combines this information with data

from an issue tracker, such as epics, themes, and sprints.

This is then represented as seen in Figure 18, where the entities are shown as nodes, and the

relationships are labelled based on the nouns and verbs in the user stories. The interactive

narrator tool allows users to inspect the model interactively, and includes zoom and filter

functionalities. The goal for the tool is to support practitioners in the creation and communicating

26

about high-quality user stories. This tool could be used to support users in getting an overview of

the user story set, and help with the detection of missing user stories, or erroneous user stories.

If this tool were to be included in the situational method it could improve the user story sets, and

result in a more complete feature diagram to form a basis for development. This could limit the

number of missed requirements and functionalities.

Figure 18 – The Interactive Narrator tool (Slob, et al., 2018)

3.5.3 Ontology Tooling in the Scope of this Research

Although ontology tooling could be a valuable asset to applying the RE4SA model, due to a limited

number of available tools, and current issues with the tools discussed above, it will not be possible

to include ontology tooling in the case studies for this research. While they will not be included in

this research, ontology tooling could provide additional benefits for future applications of the

RE4SA model.

27

Chapter 4

RE4SA for Enterprise Software

In this chapter the RE4SA model will be analysed to see if it can be applied to enterprise application

software. This will be based on the findings in literature discussed in chapter 3, information gained

from interviews and internal documents at Forza and their customers. This chapter will first

discuss the use of user stories and epic stories to document requirements and contrast this to how

requirements are currently documented. Then the benefits of software architecture based on the

RE4SA model will be discussed. The model will then be considered in this context by applying a

SWOT analysis. Finally the method used by Forza will be modelled in a product deliverable diagram

(PDD), and how the concepts of the RE4SA model can be introduced in this method.

4.1 Requirements Engineering

Research has long since shown that poor requirements engineering can lead to problems in system

design. Jenkins (1984) found that over half of the systems they investigated had to revisit the

requirements at some stage of design, PMI (Smith, Bieg, & Cabrey, 2014) reported in 2014 that

47% of unsuccessful projects fail due to poor requirements management. These issues are the

cause for 5.1% of wasted money on projects and programs (Smith et al., 2014). Alvarez & Urla

(2002) state that for both system build and ERP selection accurate determination of requirements

is important to both researchers and practitioners.

One difficulty in requirements engineering is that requirements are spread over many sources,
such as multiple problem owners, stakeholders, documents and other systems. There are also
many techniques to elicit requirements (Zowghi & Coulin, 2005) for example interviews,
questionnaires, focus groups, task analysis, observation, prototyping. For documentation of
requirements there are also multiple methods (Cziharz, Hruschka, Queins, & Weyer, 2005), like
user stories, scenario modelling, information structure modelling, goal modelling, and
unstructured documentation.

Because there are many different information sources, techniques, and documentation methods,
there is no specific method that is used in practice. It can differ for each company, and even within
a company due to differences in individual approaches. There are models that provide a method
for requirements engineering, for example Daneva (2004) used the Accelerated SAP model to
evaluate requirements engineering practises for 67 subprojects, based on this evaluation she
discussed 14 lessons learned about requirements engineering in ERP systems. The first lesson
identified by Daneva (2004), is to reduce barriers to cooperation, for this suggestion the RE4SA
concepts can prove very useful as they use a natural language description of the problems. This
issue can also be mitigated by visualising the design in an ontology and in the software
architecture. A high number of companies, including Forza, use JIRA to keep track of open tasks,
issues and features to be developed. JIRA already allows for the use of user stories, and epic stories
could be used as an alternative to the SCRUM epics.

In the interviews it appeared that there was no specific way of documenting requirements at
Forza, and it was mentioned that it depended on the person, and on the project. The interviewees
were enthusiastic about the use of user stories and epic stories in the context of ERP
customisation. However, it does appear that jobs to be done are not really suited to the
implementation of enterprise software, as the application is already made to fulfil one or more

28

jobs. For example the job mentioned in 3.2.3 for SCANMAN (“Help me spend less time on invoice
processing.”) is already considered when the customer chooses to order the add-on. This means
that the Jobs to be done would only be relevant when a new add-on is created, but not when an
existing add-on or enterprise system is implemented. When new jobs are identified during an
implementation, it can be very beneficial to keep these documented so they can be used to come
up with new software products to add to the company portfolio.

New epic stories can still arise during implementation when the customers want to find a solution
to a problematic situation that falls in the context of the problem solved by software but is not
included, for example a prepare for audit module. User stories can effectively show the smaller
scale customisations that need to be done, for example when a customer wants to be able to edit
a field in a view that is not initially supported.

4.2 Software Architecture

There is very little literature on software architecture in ERP systems. Somers and Nelson (2001)

include the architecture in their overview of critical success factor for ERP implementation, and

mention that architecture considerations should occur early in the implementation process. They

state that this is important in ensuring compatibility of existing tools and identification of addons

such as data warehouses. Rozansky & Woods (2012), explain that as software systems get bigger,

good software architecture design facilitates more effective collaboration, allowing bigger teams

to work on an application under the supervision of a software architect. Enterprise software are

generally large software systems with many functions, which would indicate that software

architecture is important for these systems. Oracle describes the JDE EnterpriseOne architecture

as:

“A complete suite of modular, preintegrated, industry-specific business

applications designed for rapid deployment, ease of administration, and low

total cost of ownership. It is ideally suited for organizations that manufacture,

construct, distribute, service, or manage products or physical assets.

JD Edwards EnterpriseOne Tools is the runtime architecture and integrated

development environment at the heart of the EnterpriseOne architecture. JD

Edwards EnterpriseOne Tools is the technology layer that integrates with

database systems, web application servers, reporting tools, and other third-

party solutions. JD Edwards EnterpriseOne Tools provides an abstraction layer

that allows the JD Edwards EnterpriseOne applications to function without a

direct dependency on the platforms and middleware beneath them.” (Oracle,

2015)

The only publicly available architecture figure for JDE that could be located is an overview of the

application suites in JDE (Figure 19). This is one possible way to show the functional design of the

system on a high level of abstraction, functional architecture diagrams would also show the

interactions between the modules within one application suite, and between the application

suites. Feature diagrams could show the features of the application suites on a much higher level

of detail.

29

Figure 19 – JD Edwards EnterpriseOne Application Suites (Oracle, 2015)

While software architecture is getting more mature, in practise there is room for improvement in

the documentation of software architecture (Clements et al. 2003). Designing a good architecture

can be a challenge, and architectures should be documented from different viewpoints (Bass et

al., 2013; Clements et al. 2003; Rozansky & Woods, 2012). The viewpoint catalogue by Rozansky

and Woods (2012) can be seen in Table 1. While the software architecture concepts included in

the RE4SA model cover the functional viewpoint, and the user stories and epic stories cover the

context viewpoint, the other viewpoints are not included in the RE4SA model. This means that

other documentation might need to be created to create a full overview of a systems architecture.

Viewpoint Definition

Context Describes the relationships, dependencies and
interactions between the system and its
environment.

Functional Describes the system’s runtime functional
elements, their responsibilities, interfaces,
and primary interactions.

Information Describes the way that the system stores,
manipulates, manages, and distributes
information.

Concurrency Describes the concurrency structure of the
system and maps functional elements to
concurrency units to clearly identify the parts

30

of the system that can execute concurrently
and how this is coordinated and controlled.

Development Describes the architecture that supports the
software development process.

Deployment Describes the environment into which the
system will be deployed and the dependencies
that the system has on elements of it.

Operational Describes how the system will be operated,
administered, and supported when it is
running in its production environment

Table 1 – Viewpoint catalogue by Rozanski & Woods (2015)

Keeping track of the software architecture can be especially valuable in the context of

customisations of enterprise software, as it can create a clear view of what is actually changed for

the specific customer. For each customer a template with the feature diagram for the application

can be used as a starting point, and the customisations for the customer can be added to this

template in a different colour. This overview can be very useful to make retrofitting more efficient,

instead of detecting the customisations from tags in the code or by manually looking through

documentation of the issues, a feature diagram can directly show which customisations have been

made and might need to be included in a version upgrade.

When a new module is identified and should be added to the application, it’s interactions with the

existing modules can be shown by including it in a Functional Architecture Diagram. This allows

developers to see how the new module uses information already contained in existing modules

and helps them develop the new module more efficiently. When a new module needs to be

developed for a customer, this module should also be considered for inclusion in a new version

update of the application.

4.3 RE4SA Method for Enterprise Application Software

In this paragraph, the model as a whole will be discussed. First, the use of a method using the

RE4SA model will be discussed through a SWOT analysis. Next, the method currently used at the

case company will be modelled using a PDD, and analysed to see how parts of the RE4SA model

can be integrated in the current method to try and improve it. This method will then be used in

the next chapter to perform the case studies.

4.3.1 SWOT Analysis

In a SWOT (Strengths, Weaknesses, Opportunities and Threats) analysis, a company or product is

analysed to detect both internal (Strengths & Weaknesses) and external (Opportunities & Threats)

positives and negatives. In this section we have considered the SWOT concepts from the viewpoint

of the RE4SA method, this means the internal factors will detail the positives and negatives of the

method, and external factors will consider the use of other methods in the same company. This

SWOT Analysis is based on theory, and was done to identify both positive and negative aspects

before starting on the case studies. The results of this analysis can be found in the table below.

31

Strengths Weaknesses

 More documentation, in the same format
for every project.

 Software architecture allows for more
efficient coding and communication

 More room for interpretation of
requirements allows consideration of
context.

 Natural language based requirements.

 Natural language reduces barrier to
cooperation.

 Easier communication with customers

 Single structured method for every project.

 Increase developer motivation by making
them part of the story as opposed to giving
them a task list.

 More effective creation process due to
higher focus on requirements gathering.

 Traceability between user stories, epics,
modules and features.

 More goal focused.

 More time spent on documentation.

 More time spent on gathering
requirements.

 Granularity issues can make it difficult to
decide what is a module / feature or epic
story / user story. (See barista problem (
Blessinga, 2018))

 Natural language format can cause
ambiguities.

 New employees need to learn the method

 The method is new and not thoroughly
tested, so benefits might turn out lower
than expected.

 The RE4SA method might not include
enough details on the how of a solution, as
it focuses on who, what and why.

Opportunities Threats

 Use upcoming NLP techniques that support
user stories.

 Ability to assess the quality of requirements
(QUS / AQUSA).

 Automatic generation of artifacts from code
(currently being researched).

 Crowd sourcing requirement elicitation
through user stories (currently being
researched).

 As it is an active field of research new
findings and opportunities will be reported
over time.

 Other methods might provide better results.

 Employees might prefer other methods,
causing adoption failure.

 The focus on FAD and feature models might
limit the use of other visualisations for
modules and features.

Table 2 – SWOT analysis of a method based on RE4SA

4.3.2 Creating the Situational RE4SA Method.

In order to design the method that will be tested in the case studies, it was first necessary to get

an overview of the method currently used at the case company, Forza IT group. In order to model

the current method, staff members involved in the process were asked for their insight using semi-

structured interviews. In total ten interviews were conducted to determine the current method,

these covered the following functions:

 Two developers

 Three functional consultants

 One technical consultant

 Two project managers

 Two customers

In these interviews the interviewees were asked to define the kinds of customisations done for

customers, preferably with examples. They were also asked about their current process for

creation of customisations, and of implementations in general, what information they were

supplied in such cases, and their opinions on the RE4SA model in this context.

After the interviews, internal documentation was analysed to further gather information about

the current method. Based on this information, the method was modelled using a product

deliverable diagram (PDD). A PDD combines a UML activity diagram and UML class diagram. In a

PDD the processes are modelled on the left and the deliverables on the right side (van de Weerd

& Brinkkemper, 2009). The PDD is explained in two tables, one describes the activities, and the

other table describes the concepts. The customisation section of the current method can be seen

in Figure 20. For the PDD tables, see appendix C.

32

Figure 20 – partial PDD of the current customisation method at Forza IT group.

After the current method was modelled, it was verified with three employees at the case

company, and modified to what is seen in Figure 20. From this point, it became possible to analyse

where in the current method fragments of the RE4SA method could be integrated. Based on

findings in the interviews and analysis of the current method, it was concluded that the RE4SA

33

model would not be suited for the implementation process. The implementation process is mostly

a configuration using pre-existing options, in this scenario the specific settings are deemed more

efficient than figuring out what the customer wants from the product. For the customisation

however, the RE4SA concepts can be integrated, since for developing new functionality, the

advantages listed in the SWOT analysis can potentially improve the method.

In order to integrate the RE4SA method into the current method, the situational method

engineering approach for method construction (Van de Weerd & Brinkkemper, 2009) was applied.

This means that we analyse the current method to see where the needs are for improvement, and

then consider how method fragments from the candidate method (RE4SA) can be implemented

to meet these needs. From the inclusion of these method fragments, a new method is assembled.

This means that the proposed method is based on the current method, minimising the required

change in business processes.

As mentioned before, the RE4SA fragments should be included in the customisation section of the

method. This means that the analysis will focus on locating what fragments of the current

customisation method should be replaced with fragments based on the method formalised by

Blessinga (2018).

The high level version of the resulting RE4SA method designed for the case company can be seen

in Figure 21, with the blue coloured activities representing introduced activities. The more detailed

version of the proposed method and the accompanying tables can be found in Appendix D. This

method will be used in the case studies described in the next chapter to obtain real world data

which can show the effectiveness of the RE4SA method. The biggest changes to the current

method are in the creation of the functional design, as this will be done through the RE4SA

concepts. Furthermore, we introduced the option to move towards development sprints to

further utilise the possibilities of user stories. In smaller scale customisations, the user story set

could simply include all user stories.

34

Figure 21 – The situational RE4SA method (short version).

35

Chapter 5

Case Studies on customisation

In this chapter, the main findings of four case studies will be discussed. First the reconstruction of

the software architecture will be discussed, as having an up to date functional architecture of the

current standard version was required to perform the case studies. Then the case study protocol

will be discussed at a high level, for the specific information of the protocol refer to Appendix E.

For each of the four cases some of the key findings will then be discussed, the case study reports

will be included in Appendix F.

5.1 Case Study Protocol

In order to ensure that the case studies are valuable and their results are as accurate as possible,

a case study protocol was set up (Appendix E). This case study protocol is based on the guidelines

described by Runeson and Höst (2009), and is written based on the template defined by Pervan

and Maimbo (2005). Besides the qualitative data gained from the interviews with employees

(Chapter 6), the case studies will also result in content metrics, as described in the case study

protocol.

A total of four case studies were performed, two of these were based on projects that were

already completed and were based on the available documentation. The other two case studies

focused on project that were still ongoing during the case study, for these cases the current

method and situational case study method were performed side by side with the current method

being leading in development.

The case study is multi-case theory testing, to identify how the RE4SA model can be applied, and

to analyse the benefits of applying the model in the context of enterprise software customisation,

and management. Each of the case studies de-scribes the application of the model to a project for

the SCANMAN software product. By performing these case studies we test the applicability of the

model for a range of cases, and use the outcomes as an input for expert evaluations of the model.

An overview of the interviews per case can be seen in Table 3. For the case studies, the design

phase of the method defined in 4.3.2 was applied, and the process was analysed. The outputs of

these case studies will be evaluated in chapter 6, and the case study reports can be found in

appendix F.

Case
study

Description Number of
interviews

Roles

1 Customisation on
feature level

2 Developer, C&C expert

2 Customisation on
module & feature level

3 Functional consultant (x2), developer

3 Version update 3 Developer (x2), management

4 Recreation of the ES
addon

3 Project manager, functional consultant,
developer

Table 3 – Overview of interviewee’s per case

36

5.2 Architecture Recovery

For the case studies it was necessary to first recover the functional software architecture of

SCANMAN. This was done through reverse engineering the implemented version of SCANMAN.

Reverse engineering is the process of analysing a subject system to identify the

components, interrelationships and create representations of the system at a

higher level of abstraction. (Chikofsky & Cross, 1990)

This reverse engineering was done through an analysis of the user manual, current version of the

application, input from employees, and other available documentation. Sticking to the concepts

of the RE4SA model, the architecture was visualised in a functional architecture model (FAM)

(Brinkkemper and Pachidi, 2010) and a feature diagram (Jansen & van Rhijn, 2016). These

recreated architecture models are supposed to function as a template that can be used when a

clients version is changed from the standard version, or to identify focus areas for certain scenarios

(e.g. an update of the ERP at a customer). Figure 22 gives an indication of how we can reconstruct

the software architecture based on the user interface.

Figure 22 – Architecture reconstruction based on the user interface

After gaining context information about SCANMAN, the application was analysed and the

interactive functions were modelled in a feature diagram, using Eclipse and the feature IDE plugin

(Eclipse, 2019; FeatureIDE, 2019). Both the user visible features of SCANMAN, and the features of

JDE on which SCANMAN relies were modelled. This resulted in a feature diagram containing more

than 1300 features. In order to give provide business value with such a large figure, it was

necessary to find a way in which the information could effectively be conveyed and to prevent

information overload. This was done using the following visualisation techniques / choices:

 Collapse and expand features: Using the eclipse platform, users can collapse and expand

the branches of the feature tree that are important for them. This causes the model to

adhere to the Information-Seeking Mantra (Schneiderman, 2003): overview first, zoom

and filter then details on demand.

 Colour coding to highlight and categorize features: this allows viewers to quickly identify

the features that are important for their use case when they open the model. The colours

were chosen based on how much they needed to stand out, but the choice was limited as

37

FeatureIDE only supports ten colours. It should not matter which colours are used, as long

as the model is consistent, and a description of what the colours signify is documented.

o Customisations will be colour coded using red, to have increased visibility in the

overview, allowing a quick insight in which features were changed or added for a

specific installation.

o Features that were part of JDE on which SCANMAN is reliant were colour coded

cyan. This can be important to detect which features should be checked for

compatibility when JDE releases a new version.

o Features that did not work during the analysis were colour coded orange, these

features might be reliant on context missing during the analysis, or require

bugfixes.

o For the admin setup, options that are valid for all categories are modelled on the

same level, and colour coded light grey (this colour is chosen as it does not need

to stand out in the overview of features, as opposed to customisations)

 When relevant, non-interactive features were modelled as abstract features to group a set

of features to prevent explosive expanding of the model

5.3 Case Study 1: Tracing Customer Requirements to the Software Architecture

The first case study was chosen because it was fairly recent, and had a clear documentation of the

requirements of the client. This project was a small scale customisation for a customer that had

only just bought SCANMAN. They supplied a list of 46 requirements, which were rewritten as 32

functional user stories, and 7 quality requirements. Only two of their requirements (or 3 user

stories) required development as they were not currently in the standard version. Due to the

small-scale of the requirements, all documentation was done on a user story level, and no new

epic stories were formulated. All functional user stories that were already fulfilled in the standard

version were matched to the feature diagram, and these were colour coded (Figure 23). This

visualisation could be used to show the customer how their requirements are already met, and by

which feature.

38

Figure 23 – Visualisation of matching a requirement to an existing feature based on concept

matching

Due to the large size of the feature diagram, providing the developer or customer with the full

feature diagram is not very effective. This because the relevant information is hard to find in the

total model, colour coding does make this process somewhat more effective as the search & zoom

tactic can be used. However, providing sections of the relevant parts of the model can be an

effective way for communication, in Figure 23 the feature diagram is used to locate requested

functionality and displayed in a fragment of the feature diagram. This provides a limitation of the

information overload, and highlights the important information.

For the new functionalities, the feature diagram could be used to locate an appropriate position

to include the new features in the application. The process is similar to the matching of

requirements to features. In order to do this, we use the wording in the requirement to locate

the relevant modules and features. An example of this can be seen in Figure 24.

Figure 24 – Placement of new features from a user story based on concept matching

5.4 Case study 2: Customised Voucher Match Report

The second retroactive case study is a retroactive application of the situational method on the

customisation for a different customer. This case study was chosen because, as opposed to the

first case study, this case has a new functionality that is on an epic story level. Information was

gained from staff members at Forza, JIRA issues and from observing a knowledge transfer session.

This case study resulted in 7 unlinked user stories, and 1 epic story that contained 7 user stories

(14 user stories total). As opposed to case study 1, we only considered new functionalities in this

case. The epic story for this case is:

39

When I receive an invoice that does not match an existing purchase order, I want

to receive a report when it exceeds the tolerance set in the ERP, so that the

invoice can be rejected.

The epic story details the error detection of a voucher match process. While the application would

already automatically reject invoices when they don’t match the purchase order, it would not

explain the reasoning for rejecting such an invoice. The new functionality is the generation of a

report of the rejected invoice, it will detail on what line item the issue is, and what the status of

the VMA check is. For example, it will report “matched out of tolerance” when the difference

between amounts is bigger than the tolerance set up in the ERP.

Mapping the epic story, and its user stories to the architecture revealed a limitation of the feature

diagram. Since the feature diagram only models the user visible features, the customisation was

modelled as part of the reporting module. However, most of the changes in the ERP to generate

this report are done in the background, and are not visible to the users. This means that a

developer unfamiliar with the customer environment can see that this customer specific report is

generated, but where the logic to generate the report is located is not visible in the model.

The added module contained 23 features (Figure 25), while we had only 7 USs in the ES. We

identified a set of explanations for the difference in the number of user stories and features:

 Features can be added based on gut feeling from the developer

 Features might have been considered ‘common knowledge’ and therefore do not need a

user story to be included in the solution

 The included information fields already existed within the ERP so all relevant fields might

have been selected instead of only the fields required for the use case

 Limited context knowledge for the case study might have caused missing user stories

40

Figure 25 – Feature diagram of the added module

In this case study we extended the colour coding to the FAD so that we can provide an overview

of which modules are modified. This supports the information seeking mantra as it allows the user

to see which module is changed and more easily locate the customised features in the feature

diagram. However, in doing this we were had to deal with the “barista problem” as described by

Blessinga (2018). This barista problem describes the granularity issue in using ES and US (and jobs-

to-be-done), as an ES can be written as a US by changing the wording slightly. This is complicated

as on the software architecture side we can have multiple levels of both (sub)features and

(sub)modules. It remains up to the requirements engineer to decide what is on the epic story level,

and what is on the user story level. Blessinga suggested to determine the level of granularity of a

user story as it is the most specific level of detail, and scaling up from there.

However, in this case our issue was on the software architecture side. In order to support the

information seeking mantra, we wanted to allow for effective drill down from the high level FAD,

to locating the customised feature. One such customised feature was on the sixth level of depth

in the feature diagram (including modules). This made it hard to locate when moving from the FAD

to the feature diagram, as even the smallest submodule (which could also be considered a feature

based on the granularity decision) contained 194 features. In order to guide the user to this feature

we first considered including this in the colour coding of the feature diagram. However, this

solution would cause an exponential increase in colour coded aspects in the feature diagram and

would diminish the highlighting ability. Therefore the solution we came up with was to add

additional levels to the FAD to support the drilldown navigation. Although this meant that we

modelled aspects that we considered features in a FAD, it was done based on the following

reasoning:

41

Using the proper level of granularity for US and ES remains a difficult task.

However, since each of the figures is a different view of the same information,

it should not be an issue if certain aspects are contained in multiple views. These

views can be added when they are needed.

The drill-down navigation through the different levels can be seen in Figure 26. The third FAD was

added for the purpose of locating this customised feature without having to go through all

features. Currently this drill down view can only be achieved by transitioning from figure to figure

based on the naming, ideally this would all be possible through a single interface which

automatically links the RE and SA elements. To reflect on the barista problem here, it is up to the

requirements engineer & software architect to decide whether an element is a (sub) module /

feature. For this case study we decided to model aspects that we considered features in a FAD.

Figure 26 – Drill down navigation to locate customised feature.

42

Figure 26 also includes a module that is colour coded orange, this was done because it is a JDE

functionality on which a customisation relies, but was not changed. For this we considered three

different options:

 It could be kept cyan as it wasn’t changed and is part of JDE functionality and this would

match the legend, but would not highlight the module as a potential risk.

 It could be colour coded red, as it is linked to a customisation. This would catch the

attention, but would not match the legend.

 It was colour coded orange as this colour is often associated with warning signs. While this

might lose clarity on whether or not it is a JDE element, as it is not coded cyan, this was

deemed less important than the increased attention from the colour choice.

5.5 Case study 3: Version Update

For the third case study the situational method was applied to an ongoing project for the new

version update of SCANMAN. The version update collects requirements from many different

customers that are to be included in the standard version of the case software. Some of these

additions are already developed in specific customer environments as customisation, and need to

be moved to the ‘standard’ software product. This is another scenario in which the SA models can

be applied to identify the location of these customisations.

For the update the requirements were obtained through analysis of the issues and comments

logged in the JIRA for the update. Based on these issues, and by attending meetings within the

project team, a total of 3 epic stories and 40 user stories were formulated. In total the updated

software architecture contained 104 new features, and 4 new modules (of which 3 were sub-

modules). The difference in ES and modules can easily be located, as the QA epic:

When there is an issue with an invoice, I want a way to ask another JDE user a

question, so that the issue can be resolved by the relevant user, or additional

information can be supplied.

Was solved by adding two new modules, one submodule for an invoice specific QA form within

the workbench, and a module that provides an overview of all QA forms which was added to the

high level FAD.

Like in the previous case study, we did not have a 1:1 relation between user stories and features

but a 1:2.6 ratio. The reasons for this can be the same as hypothesised in case study 3. In this case

we also found a few examples in which a user story is solved by a collection of features, as seen in

Figure 27. The ratio being different than the expected 1:1 (Brinkkemper et al., 2019) is not

necessarily a sign of bad requirements engineering or development, but instead is linked to the

goal focus of user stories. Since developers have more freedom in determining a solution to fulfil

the requirements, they might come up with innovative solutions by reusing existing features, or

solving the requirement through a combination of features.

43

Figure 27 – An example of a user story that is fulfilled by a combination of two features

In order to create the project briefs, we would need to identify the related epic stories for each of

the ESs. However, in the release update this is a bit problematic, as existing modules do not have

a documented epic story. This meant that it would be necessary to recover the requirements for

each module in the software, which would require a high amount of manual work for very little

payoff. Therefore the problem was instead solved by relying on the link between ESs and modules

as described in the RE4SA model. So instead of listing relevant ESs in the project brief, we just

included the relevant modules in that section. This still enables detection of relevant parts of the

software of which we need to be aware, but removes the need to completely recover the

requirements for sections of the software that already exist.

When the new features were mapped on the feature diagram, we detected aspects that were not

(correctly) modelled in the recovered architecture (in 5.1). This implies that by applying the RE4SA

situational method over multiple projects or iterations of a single software product, we can

improve the software architecture. In applying this method, we can ensure that the difference

between the architecture models, and the actual software architecture is minimised. This also

leads to alignment between the software architecture and requirements which should facilitate

cooperation between software project management, and software architects.

44

5.6 Case study 4: Recreation of the Case Software for a Different ES

For the final case study we applied the method to a somewhat different case. The case study

focused on the recreation of the functionalities of the case software (SCANMAN) in a different

enterprise software environment (Oracle NetSuite). This case was selected as it could allow for

comparison of the architecture of this intended solution to the architecture that was created in

the earlier cases. Furthermore it would allow for a broader generalisation of the research, as we

broaden the scope by applying the situational method to a project which customises an enterprise

software product through an add-on solution, instead of customising an add-on solution and ERP

for customer specific needs.

During this case study an initial design was created for the NetSuite add-on. In total this design

consisted of 10 ESs, and 70 USs. Which were translated to 10 modules and 69 features for the

intended software architecture of the design. The reason for the near 1:1 ratio of the concepts in

this case study, is most likely because we compare it to the intended design instead of the actual

architecture like in the other cases. The actual architecture could not be used for the comparison,

as the add-on has not yet been created as of the time of writing. The findings of this case study do

however indicate that the method can be applied to transform RE concepts into an intended

architecture, on which the development can be based. During development, certain features will

likely be changed, added or requirements will be solved through different means. Therefore, the

intended architecture should be updated after development to reflect the actual architecture.

The design for this case study is supposed to fulfil the same business requirements as the JDE

SCANMAN application. However, this design only has about 5% of the features of the

reconstructed architecture of JDE SCANMAN (excluding the linked JDE features). There are

multiple hypothesised causes for the difference:

 Since we defined the architecture up front, the design is likely more modular and loosely

coupled which could result in a more efficient application that needs fewer features to

achieve the requirements

 The design only describes the minimal viable product, while the JDE version has been used

and expanded over the lifetime of the product.

 The compared numbers are for an intended and an actual architecture. The number of

features for the actual implemented NetSuite add-on might result in a higher number of

features. For example, the NetSuite UI elements will also be included if we recover the SA

based on the UI.

The SCANMAN for NetSuite app is still pending development as of the time of writing. Therefore,

it is impossible to include the comparison of the actual SCANMAN NetSuite architecture to actual

SCANMAN JDE architecture in this thesis.

45

5.7 Case Study Reflection

Overall, the situational method was effectively applied in each of the case studies, and resulted in

a clear documentation and extensive functional architecture. While it did take a high amount of

time to recover the architecture, once this initial recovery was done, updating the architecture for

the case studies was quickly done. For the fourth case, the architecture construction from scratch

was effective, as it could directly be translated from the identified requirements. This indicates

that the situational method or a similar method could be effective for both new and existing

software products throughout their lifetime, but does take a time commitment if the product is

already created but lacks a software architecture documentation. It should be considered here

that the case software is part of an ERP application, which makes it likely to have more features

then other applications as there are many low level features (table fields etc.).

Case User stories Features Epic stories Modules

1 32 21 0 0

2 14 28 1 1

3 40 104 3 4

4 70 69 10 10

Table 4 – cardinalities of RE4SA concepts in the cases

46

Chapter 6

Evaluation

The case studies have been evaluated through expert interviews with employees of Forza IT group,

who were involved with the projects of the case studies. In this chapter the findings of these

interviews will be discussed. Additionally the case studies were analysed to obtain a number of

content metrics. The extended introduction of the protocol, and the question list can be found in

appendix E.

6.1 Expert interviews

Each of the cases was evaluated in two or three expert interviews with experts involved with the

projects of the case studies (11 total, see table 3 for details). No expert was interviewed for more

than one case study. The experts had varying roles, so that the results would not be limited to a

single viewpoint. For the evaluation interviews, the experts were first presented with an

explanation of the RE4SA model through the maps example, and then the results of the case

studies. After this they were asked a total of 11 questions (and 5 sub questions). The interviews

were semi structured in order to allow for further questions when interesting topics were raised

by the interviewees, or to ask for more information.

The experts had limited knowledge and experience with user stories, three of the experts had

worked with user stories before. This limited knowledge is likely because the company currently

doesn’t use user stories. However, one of their new partners does and through this partnership,

user stories are also known within the organisation from another source than this research.

Despite the limited knowledge, overall opinions were very positive. All experts felt that the

documentation through the RE4SA concepts adequately captured customer requirements and

provide a very detailed overview of the software product. They also thought that the situational

method would be suited to working with changes in customer requirements, as the modular

nature allows for additions where needed. The experts viewed the resulting documentation as

very detailed. Compared to current documentation it is more thorough and also captures the why,

and not just the how of the solutions.

While all but two interviewees thought that the situational method outputs contained enough

information to start development, they did mention that it would most likely be dependent on the

developer and his familiarity with the software product. The developers that were interviewed did

think the information would be enough for them. It was also mentioned that it would likely be less

effective if development was outsourced, which ties into the familiarity aspect, but could also be

dependent on the cultural challenges that often accompany outsourcing. This issue could

potentially be mitigated by enforcing the solution identified in the intended architecture (through

feature diagrams). This topic would be interesting for future research, but was out of scope for

the case studies in this research.

Having the software architecture models available was positively received by all the interviewees,

but their expected use cases for the models differed. The interviewees mentioned it was very nice

to have an overview of the software product, and how the modules are linked. For new employees

the SA models could help get an overview of the product and its features. Functional experts liked

being able to zoom from the high level FAD to the detail level of the feature diagram, as they are

47

generally focused on the interaction of modules. The developers mentioned that since they often

work at a feature level, zooming out from this to the module overview would help them keep the

bigger picture in mind. This contrast in identified use, implies that it should facilitate internal

communication, as it helps functional experts to have a view of the details, and developers to see

the high-level overview.

The SA models could also be used in locating where new features should be placed, as a checklist

to see if every feature is included in the actual product, for testing purposes, determining risk for

customizations and detecting dependencies with other elements. One use case that was rated to

be especially useful by all 11 experts, is to identify customer specific alterations to the software as

seen in case 1 and 2. One of the developers mentioned that every time the customers’

environment was accessed, it was unknown what changes had been made in that environment.

And that having a SA on a customer level (extending a template from the standard version) would

save a lot of time. However, in order for the SA models to be useful, they need to be kept up to

date.

Figure 27 – Some of the mentioned usecases for the SA models.

The interviewees were asked whether or not they would use the architecture in communication

with customers. The response to this question was split, with four of the experts feeling like the

models were too complex for communication with customers. They felt that in order to use the

architecture models in communication with customers would require additional preparation of

the models so only specific parts are shown (similar to the case study figures). The other opinions

were more positive, and identified use cases in which they would use the SA models. For example,

to ensure that ensure they are talking about the same aspects, to explain a customer how the

software works, or to ensure that the features fulfil requirements. It was also mentioned that the

figures could be used to visualise and communicate the impact and risks of a requested

customisation.

The project briefs were rated as a nice to have by four of the experts, while all others rated it as a

must have. These results support the findings by Blessinga (2018) and van de Keuken (2017) that

project briefs, or a similar document providing extra context should be included when the RE4SA

model is used in practise. The experts that rated them as nice to have did mention they were

important, however not especially in their tasks but for different roles in the organisation.

Software

architecture use

cases

Testing purposes

Checklist

Detecting dependencies

Communicate
customisation risks

Ensure everyone knows the
specific element discussed

Detect customer
specific features

Show which features fulfill a
requirement

48

Although all experts said that the situational method would be an improvement over the current

method, they also acknowledged some disadvantages of the method when prompted:

 Requires discipline and time to keep up to date, and if not kept up to date the

documentation loses a lot of value.

 Due to the size of the application, the feature diagram can be overwhelming which could

limit its acceptance within the organisation.

 Increases the time spent on documentation, which frontloads more work, but (hopefully)

reduces the need for rework and improves the level of documentation.

 Developers might feel limited by the solutions mapped in the feature diagram. This could

however be mitigated by communicating clearly that it is only a suggestion.

 Enforcing the use of the method and ensuring that all employees have the required skills

to create the documentation as described in this research, might prove challenging. It

would require both support from the management layers and the operational layers of the

company.

6.2 Content Metrics

The content metrics section is split in two parts, the first part will discuss the content metrics for

the cases, and the second part will be an analysis based on the complete feature diagram. The

content metrics can potentially be used for hypothesis forming for future research, and can be

used in other research as a dataset for a larger scale empirical research. For the feature diagram

analysis, a template was applied that was used in a different GRIMM research group project, this

ensures that the research data can be a resource for related future research on content metrics.

6.2.1 Case Study Content Metrics

The first and simplest of the content metrics is the cardinality between the RE4SA metrics. Here

we considered the ratio between user stories and features, and the ratio between epic stories and

modules (Table 5). This indicates that there is not necessarily a 1:1 relation between either of the

concept combinations. There are cases where we have more US than features, and the other way

around. In the case studies we already hypothesised some explanations for this. Modules and epic

stories are closer to the 1:1 relation with only one exception, however due to the lower number

of ES (compared to US) the sample size is also smaller which makes the results less generalizable.

The ES: US ratio, can differ from the total US divided by total ES, because there are US that are

linked to existing modules in some of the cases. The average amount of user stories per epic in

the cases was 7.6; and the average number of features per module 20.3

Case User
stories (US)

Features US :
Features

Epic
stories (ES)

ES:
US

Modules ES:
Modules

Module:
Features

1 32 21 1.5 : 1 0 N/A 0 N/A N/A

2 14 28 1 : 2 1 1: 7 1 1 : 1 1 : 28

3 40 104 1 : 2.6 3 1: 8 4 1 : 1.3 1 : 26

4 70 69 1.01 : 1 10 1: 7 10 1 : 1 1 : 6.9

Table 5 – cardinalities of RE4SA concepts in the cases extended

While we have disproven the assumption that there would be a 1:1 relation between the

requirements and architecture concepts, this does not necessarily take away value of the RE4SA

model. One of the advantages of user stories compared to other requirements management

49

techniques is that they are goal focused. This goal focus means that we do not care how

requirements are met, as long as the stakeholder can achieve the intended goals. If we extend

this, we can also say that it doesn’t matter how many features are required as long as we reach

the goals. One example of this, is the QA module from case 3, from the requirement we could

assume that some form of internal chat would be required. However, in the end this was

implemented as an overview of all questions and answers for an invoice, allowing other users to

access the communication which facilitates knowledge sharing. So while it did take more than a

single feature, there are also benefits as it provides more value to the users.

6.2.2 Feature Diagram Metrics

An analysis on the complete feature diagram was also performed, for this the analysis is based on

the 3.8 version of SCANMAN and the relevant JDE modules, as this is the most up to date feature

diagram of the software. In total this update added 4 modules, 93 atomic features and 10

composite features. Including these new functionalities, SCANMAN has a total of 66 (sub)

modules, 135 composite features and 1399 atomic features. For each of the (sub) modules the

average and standard deviation of the degree and depth were calculated, the explanation of these

terms can be found in Table 6. These concept metrics are based on the Quality in Use Integrated

Measurement (QUIM) model by Seffah et al. (2006), these metrics can help determine usability

aspects of GUI style applications. Figure 28 visualises the degree and depth of a feature diagram.

The values were averaged over all modules to obtain the average values for the application. The

metrics can be seen in Table 7.

Concept metric term Description

Composite feature A composite feature, is a feature that contains one or more sub-features

Atomic feature An atomic feature is a feature that does not contain any sub-features.
These are the final nodes of a feature tree.

Degree The degree details how many features a modules or composite feature
contains. For an example see Figure 28

Depth The depth of a feature is the number of composite features between the
module and the atomic feature. For an example see Figure 28

Table 6 – Explanation of concept metric terms used in this research

50

Figure 28 – Example of the content metrics

Metric Value

Number of modules 11

Number of submodules 55

Average atomic features per (sub) module 20,6

Average degree 9,2

Max degree 323

Min degree 1

Average standard deviation of degree 9,8

Average degree without grids 5,0

Average standard deviation of degree without grids 2,2

Average depth 2,1

Max depth 6

Min depth 1

Average standard deviation of depth 0,4

 Table 7 – content metrics on degree and depth of the feature diagram (all modules)

The standard deviation of degree is rather high. This implies that there is a big difference in the

degree between modules. This can be explained due to the nature of the software product, as it

stores a lot of information, there are modules that contain a high number of features and show

different elements in a grid (e.g. the View approved invoices in Figure 28). If we were to ignore

these grids both the average degree and standard deviation of degree is a lot lower, and likely

better comparable to other software products.

While the content metrics for SCANMAN can’t necessarily be used to define specific aspects of the

software product, hopefully the data for this software product and other software products will

allow us to define specific characteristics of software based on the feature diagrams. For example,

51

we hypothesise that a low level of depth is likely to indicate that a software product is relatively

user friendly, as it requires less clicks to get to a desired features. Or a high degree might indicate

information overload, as a lot of features are offered at the same time. Due to confidentiality

reasons, not all metrics will be made available in this thesis. However these could be made

available on a case to case basis, please contact the author if you are interested in the data.

6.3 Lessons learned

By applying the RE4SA model in the case studies and performing the evaluation, a number of

findings could be generalised to indicate some of the lessons that were learned. These lessons

were collected in the following table, and should be useful to anyone who intends to apply the

RE4SA model, and to guide future research. The lessons have been grouped based on the RE4SA

concepts they refer to.

Lessons learned

User stories & Features

1 User stories leading, feature diagram suggestive:
It needs to be stressed in communication with developers that the user stories are the
main focus and that the feature diagram is only a suggestion. Otherwise the developers
will feel restricted, and you lose part of the goal focus that user stories achieve. This does
mean that the feature diagram needs to be updated to reflect the actual architecture
after development

2 Tracing requirements to features:
User stories from a customer can be traced to features in the feature diagram to show
that their requirement is already met (and how). This can be assisted through concept
recognition, where certain terms in

3 Placing new features:
New features could be placed in a logical location for the software by first considering the
different modules that could contain the new feature, and then looking at existing
features within those modules to see if any are similar to the new features. Candidate
modules can be identified by looking at the concepts in the user story.

4 Feature & user story cardinality:
Cardinality of features and user stories can differ. Sometimes a feature is described in
multiple user stories, for example when different roles want the same thing. In other
scenarios a combination of multiple features can fulfil a single user story.

5 Undocumented features:
Not all features are described in user stories, this can be because some features are
common sense and defining user stories for these can be redundant. For example when
a user story defines a customer profile, it can be deemed unnecessary to create a user
story to describe the need for a username. Alternatively, a developer might add features
that are not described in a user story because he thinks it is important.

Features

6 Customer specific feature diagrams:
The feature model could be easily duplicated within the Eclipse modelling tool. This
means that it is little effort to create customer specific feature diagrams. These customer
specific environments provide a lot of value, as they efficiently document customisations.

7 Feature diagram comprehension:

52

As feature diagrams grow in size they become harder to comprehend which limits their
use in communication. This can be mitigated by using only the relevant section of the
feature diagram so the information is in a comprehensible format.

Features & modules

8 Colour coding features or modules:
Colour coding can assist in guiding the viewer to relevant features or modules. Colour
coding is especially useful to visualise aspects that deviate for an existing software
product (e.g. customised or new). Colour coding can also partly solve the issue that the
feature diagram becomes incomprehensible due to its size.

9 Iterative SA refinement:
Applying the situational RE4SA method in multiple projects for a software product allows
for refinement of the software architecture models. This means over time the accuracy
of the model compared to the actual implementation improves.

10 Consistency in functional SA documentation:
By creating/updating the feature diagram and functional architecture diagram in parallel
the models can be made more consistent and be tested for completeness. This includes
ensuring elements have the same names in different models, and are at the same level of
depth.

11 Update intended to actual architecture:
The feature diagram should be updated after development to properly reflect the actual
architecture as opposed to the intended architecture.

12 Drill-down navigation:
In order to properly support the information seeking mantra through drill-down
navigation, it would be needed to link the different functional architecture views to each
other. However, without tool support this would take a huge amount of manual work.

13 Zoom out navigation:
While the drill-down navigation might be the most common use case for functional
experts, developers might benefit more from being able to zoom-out starting at the
feature level. This would allow them to obtain an overview of the functionalities instead
of only working on the low-level details.

14 Version update:
Added features and modules can be modelled in the FAD and feature diagrams. By colour
coding the new elements, it can easily be seen which additions were made in the update.
This can be used to create the release notes, and to identify in which update a feature /
module has been added

Modules & epic stories

15 Related modules instead of epic stories in project briefs:
When there are no epic stories available for already created modules, these module
names can be used in the relevant epic stories section of the project brief. This prevents
the need for requirement recovery in order to use the method.

User stories, epic stories, features & modules

16 Identification of new features / modules in SA creation:
During the creation of the software architecture new features and modules can be
identified, by using the link between software architecture and requirements,
requirements can be recovered based on the architecture.

17 Barista problem:
Using the proper level of granularity for US and ES remains a difficult task (Blessinga,
2018). This problem was extended to a SA level (what is a composite feature or a sub-
module). However, since each of the figures is a different view of the same information,

53

it should not be an issue if certain aspects are contained in multiple views. These views
can be added when they are needed.

18 Minimal yet thorough documentation:
Applying the situational method led to more detailed documentation, while still
minimizing the amount of text necessary. By utilizing the requirements for documentation
purposes we can keep track of the “who, what and why” of a solution. While the SA keeps
track of the “how”.

19 Facilitate communication between functional experts and developers:
As a result of lessons 12 & 13, we can support a shared context knowledge between
developers and functional experts. As developers can zoom out from their normal focus
on the feature level, and functional experts can zoom in from their normal focus on
module level.

20 Customisation risk assessment:
By utilizing the software architecture models, the risk of a requested customisation can
be assessed. This can be done by analysing the information requirements from the
modules, and the hierarchy of the suggested customisation in the feature diagram.

Table 8 – Lessons learned from the case studies

54

Chapter 7

Discussion & Conclusions

In this final chapter, conclusions are drawn from the research, the research questions are

answered based on the findings. Furthermore, we will address validity threats and discuss

interesting topics for future research.

In this research, a method based on the RE4SA model was applied in a total of four enterprise

system customisation case studies. For each of these cases we could successfully apply the case

study method, and received positive expert feedback. The method resulted in a more detailed

documentation of the requirements, increased goal focus and provides both a high level and

detailed overview. One of the benefits of a method based on the RE4SA model, is that it allows for

the use of software architecture models in practise. Over time it also allows us to achieve

alignment between software product management and software architecture, as the software

architecture is based on the requirements. Furthermore we have found some initial proof that the

RE4SA concepts could facilitate communication with customers.

7.1 Research questions

Before we can provide an answer to the main research question “How can the RE4SA model be

applied for customisation of enterprise application software, and what are its benefits”, we should

first consider the sub questions that were formulated in chapter 2.1.

SQ1: “How can RE4SA be applied for customisation of enterprise application

software?”

Customisation differentiates itself from other software application development, in that we

already have a “standard” version of the software. This “standard” version is then changed to

meet customer specific needs, this means that there are multiple versions of the same software

product. In chapter 4.3 we defined the situational method that would be used for the case studies.

In this method we introduced the RE4SA concepts in the functional design phase of a

customisation, and in the development of a customisation. While this does have the prerequisite

that a software architecture of the “standard” version is available, there are not many different

requirements to integrate the RE4SA model into a method. Agile development is preferable, but

not required to work with the method. Furthermore, employees might need to be trained in the

use of user stories, epic stories and functional software architecture if they are not familiar with

these concepts.

Once the SA template of the “standard” version is available, this can be extended to create a clear

view of a customer specific environment. In order to visualise this, we applied colour coding to

allow for quick identification of non-standard features or modules. Colour coding seemed to work

for the purposes of this research, and help with placing attention on the relevant aspects.

However, we do acknowledge that other visualisation techniques might also be effective and hope

to do more research on this. Applying the RE4SA model to customisations will result in a model of

each customer specific implementation, allow for detection of dependencies of customisations,

and save developers time in scanning code to detect customisations.

55

SQ2: “How can RE4SA be applied for release updates of (customised) enterprise

application software?”

We investigated this sub question in the third case study, in 5.5. A release update can be done

using the same method defined for customisations, only instead of changing a customer’s

environment, the “standard” version is changed to include new features / modules. Furthermore,

the SA models of the new version can be utilised to show an overview of new features / modules

and be utilized for the creation of release notes.

It can also be combined with the customer specific models discussed before, in this way we can

detect dependencies for the new features and investigate if these have been customised at a

customer. If a dependency of the new feature / module is customised this is likely to cause issues

and the risks should be assessed before upgrading the software.

SQ3: “How can ontology tooling assist release upgrades and customization in

enterprise application software?”

As discussed in chapter 3.5.4, due to software limitations the ontology tooling section of this

research was left out of scope aside from the literature research. We do see promise in generating

ontologies for a project as a way to support application of the RE4SA model. In the earlier phases

of the research, experts were enthusiastic about the demos of the tools described in 3.5.

SQ4: “How can RE4SA be applied to improve internal (developers) and external

(customers) communication and documentation in enterprise application

software?”

While this research is somewhat limited in scope to answer this question, as all of the case studies

were performed based on the case company. This means that our only comparison for this sub

question is the current documentation at Forza. Besides the comparison we did obtain expert

opinions on the communication and documentation through the expert interviews detailed in 6.1.

All of the experts thought that the case study documentation would be an improvement over

current documentation standards. The RE artifacts of the case study are more detailed and contain

more context information than the current documentation standards. The inclusion of SA artifacts

supports the high level overview of the application, and zoom to low level details of the

application. This should also improve internal communication as developers can use the models

to zoom out to the high level view, and functional experts to zoom in on the detailed level,

providing a common knowledge.

For customer communication we obtained differing viewpoints, while some experts said they

would definitely use the artifacts in customer communication, others were more reserved. In this

research we focused on the practitioners’ viewpoint, for future research it would be important to

investigate the customer viewpoint.

SQ5: “How can method fragments of RE4SA be integrated into the process used

in the case company?”

In the creation of the situational method (chapter 4.3), we changed the current method to include

the creation of the RE4SA concepts. The biggest changes were in the creation of a functional

design, as the creation of the RE4SA concepts falls within this activity. Besides the functional

56

design creation, we introduced the artifacts as inputs for the development, and added an activity

to change the intended architecture to match the actual architecture after development. In

general, we tried to make few changes to the current method while introducing the RE4SA method

fragments.

SQ6: “How effective is the situational method for the customisation of

enterprise software”

While the case studies are in a proof of concept stage in this research, all experts reacted positively

to the outputs (6.1). Furthermore, we identified lessons learned that can help use the model in

the enterprise software context (6.3) The results of the research were often discussed with

management at the case company, and they see a lot of promise to the suggested method. In the

future the researcher will be working with the case company to further improve and integrate the

situational method in the company culture.

RQ: “How can the RE4SA model be applied for customisation of enterprise

application software, and what are its benefits”.

Finally, after discussing and answering the sub-questions, an answer can be provided for the main

research question. Applying the RE4SA model can be done by introducing the concepts in a

company, and including creation of the RE4SA artefacts in the functional design phase. These can

then be used as an input for development. Benefits and use cases of applying the RE4SA model

for customisation of enterprise software are listed in the lessons learned table in chapter 6.3, and

include the following aspects:

 Provide a high-level overview of the software and requirements, a detailed low-level

overview of the software and requirements and allow to shift between these views.

 By providing both a high- and low-level overview facilitates communication between

functional experts, and developers.

 Results in a detailed documentation of both the requirements and the solution to the

requirements

 Applying the RE4SA model allows keeping up-to-date software architecture.

 Can be used to keep track customisations in a specific software environment.

 Allows for risk assessment of requested customisations.

 Can be used to keep track of new functionalities added in a version update.

 Achieve alignment between requirements and software architecture.

 Results in efficient yet detailed documentation well suited for agile development.

7.2 Validity threats

In order to minimalize the validity threats of this research we set up a case study protocol

(Appendix E) before starting work on the case studies. This protocol was based on the guidelines

by Runeson and Höst (2009). A total of four case studies were performed to ensure data

triangulation. Furthermore, this research was built on previous findings on the RE4SA model and

its concepts (Blessinga, 2018; Brinkkemper et al. 2019; Lucassen et al, 2018; van de Keuken, 2017).

However, due to the nature of case studies there are a number of validity threats that should be

addressed to inform the readers about aspects that should be taken into account for the

generalisability of this research. Firstly, as mentioned in the expert interviews section, the experts

57

had limited experience with user stories. This could cause validity threats as they might have a

more favourable opinion because they were shown ‘something new’. This is somewhat limited as

it has also been introduced from a second source aside from this research (the partnership).

Furthermore, the effectiveness of user stories has been proven in previous research, and by the

high adoption numbers. It is also possible that due to general human resistance to change, the

reactions were less positive than if they had been familiar with US’s (but this seems slightly

doubtful due to the positive reactions).

Secondly, although we used data triangulation to make the results more reliable, all of the cases

were still based on a single software product, and a single company. This might have caused some

confounding factors to impact the findings. No specific confounding factors were identified that

might have caused the findings for each case, and the research findings have commonalities with

findings in other research within the GRIMM research group.

Thirdly, the research was done in combination with an internship, and the experts knew the

interviewer and that they were part of a study. This might have led to more positive reactions due

to social conventions.

Finally, Forza did not have a completely structured method for their projects. While they did have

a certain way of working, this was not formalised and had some slight differences between

projects. This could have led to more positive interview reactions since any structured method

might be an improvement.

7.3 Future research

While we did obtain proof that the RE4SA model can be applied effectively in the multi-case study,

additional case studies and similar research will help provide more evidence for the findings of

this research. Similar findings would also help dismiss the validity threats discussed in the previous

section, and thus improve the generalisability of this research.

Additional evidence, content metrics and ontology tools

Besides additional evidence from case studies and practice reports, we also identified a number

of open research directions. The content metrics could lead to interesting insights in the use of

feature diagrams if a larger data set can be obtained. Eventually these metrics could possibly allow

evaluation of software based on the feature diagrams.

In this research the scope was mostly focused on the design phase, in future research this could

be continued by analysing development in a method that applies the RE4SA model, and comparing

the process to development without the RE4SA concepts.

No-code & citizen development

At the case company a no-code platform was recently introduced for a specific set of projects, this

could also be an interesting venue for further testing of the situational method, and to link the

RE4SA concepts to citizen development. Due to the natural language format of user stories, and

the findings on crowdsourced user stories by Menkveld, Brinkkemper & Dalpiaz (2019) this could

be an effective way to support citizen development. We do however feel that the software

architecture might be difficult to grasp for citizen developers, but this should be researched and

not just assumed.

58

Outsourced development utilizing feature diagrams

In the interviews, areas for future research were also identified. One area would be to evaluate

the use of feature diagrams for detailing outsourced software development. We hypothesised that

enforcing a feature diagram could ensure that the outsourced development matches the

expectations. By internalising the creation of the software architecture based on the requirements

and then supplying this as a design outline to an outsourced company could improve these results.

The effects of making use of software architecture in practise could also be further investigated.

Software tools

We also identified the possibility to support the RE4SA model through software tools. Due to

limitations the ontology tools were left out of scope for this research, but we still believe the

approach to be promising and would like to perform more focused research on this topic.

Additionally, it might be possible to automatically generate the architecture models based on the

requirements or other artefacts through natural language processing. This would greatly reduce

the amount of manual work required for architecture recovery which could increase the adoption

of a method based on the RE4SA model. If the RE4SA concepts can be linked to one another in a

tool, it would be possible to fully utilize the traceability between the RE and SA concepts.

Automatic reporting

Finally, recent research on automation of medical reporting through speech and action

recognition has been performed (Maas et al., 2019). In this Care2Report research, the researcher

were able to generate documentation of medical consultations, detecting symptoms, doctor

evaluations and treatment plans. For future research, we would like to apply their research to the

RE4SA context. If this is successful it is possible to automatically generate requirements

documentation from an interview with a customer.

59

References:

Aladwani, A. (2001), "Change management strategies for successful ERP implementation",

Business Process Management Journal, Vol. 7 No. 3, pp. 266275

Bass, L., Clements, P., & Kazman, R. (2013). Software architecture in practice (3rd ed). Upper

Saddle River, NJ: Addison-Wesley.

Beck, K. (1999). Embracing change with extreme programming. Computer, 32(10), 70–77.

https://doi.org/10.1109/2.796139

Beheshti, H. M. (2006). What managers should know about ERP/ERP II. Management Research

News, 29(4), 184-193.

Bik, N., Lucassen, G., & Brinkkemper, S. (2017). A Reference Method for User Story Requirements

in Agile Systems Development. In 2017 IEEE 25th International Requirements Engineering

Conference Workshops (REW) (pp. 292–298). Lisbon, Portugal: IEEE.

https://doi.org/10.1109/REW.2017.83

Bingi, P., Sharma, M. K., & Godla, J. K. (1999). Critical Issues Affecting an ERP Implementation.

Information Systems Management, 16(3), 7–14.

https://doi.org/10.1201/1078/43197.16.3.19990601/31310.2

Blessinga, R. (2018). Designing the Automated Greenhouse. Utrecht University.

Brinkkemper, S., & Pachidi, S. (2010). Functional Architecture Modeling for the Software Product

Industry. In M. A. Babar & I. Gorton (Red.), Software Architecture (Vol. 6285, pp. 198–213). Berlin,

Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-15114-9_16

Brinkkemper, S., Dalpiaz, F., & Lucassen, G. (2018 - unpublished) Draft manuscript: User Stories –

Fundamentals of Software Specification

Canal, C., Murillo, J. M., & Poizat, P. (2006). Software Adaptation. L’objet, 12(1), 9–31.

https://doi.org/10.3166/objet.12.1.9-31

Cao, L., & Ramesh, B. (2008). Agile Requirements Engineering Practices: An Empirical Study. IEEE

Software, 25(1), 60–67. https://doi.org/10.1109/MS.2008.1

Chaffey, D. (2009). E-business and e-commerce management: strategy, implementation and

practice (4th ed). Harlow, England ; New York: FT Prentice Hall.

Chikofsky, E. J., & Cross, J. H. (1990). Reverse engineering and design recovery: a taxonomy. IEEE

Software, 7(1), 13–17. https://doi.org/10.1109/52.43044

Christensen, C. M., Cook, S., & Hall, T. (2005). Marketing Malpractice. Harvard business review,

83(12), 74–83.

Christensen, C. M., Hall, T., Dillon, K., & Duncan, D. S. (2016). Know Your Customers’ “Jobs to Be

Done”, 10.

Clements, P., Garlan, D., Little, R., Nord, R., & Stafford, J. (2003). Documenting software

architectures: views and beyond. In 25th International Conference on Software Engineering, 2003.

Proceedings. (pp. 740–741). Portland, OR, USA: IEEE. https://doi.org/10.1109/ICSE.2003.1201264

https://doi.org/10.1109/2.796139
https://doi.org/10.1109/REW.2017.83
https://doi.org/10.1007/978-3-642-15114-9_16
https://doi.org/10.3166/objet.12.1.9-31

60

Cohn, M. (2004). User Stories Applied - For Agile Software Development. Addison Wesley Longman

Publishing Co.

Cziharz, T., Hruschka, P., Queins, S., & Weyer, T. (2005). Handbook of Requirements Modeling

According to the IREB Standard, 115.

Dalpiaz, F., & Brinkkemper, S. (2018). Agile Requirements Engineering with User Stories. In 2018

IEEE 26th International Requirements Engineering Conference (RE) (pp. 506–507). Banff, AB: IEEE.

https://doi.org/10.1109/RE.2018.00075

Dalpiaz, F., van der Schalk, I., & Lucassen, G. (2018). Pinpointing Ambiguity and Incompleteness in

Requirements Engineering via Information Visualization and NLP. In Requirements Engineering:

Foundation for Software Quality (Vol. 10753, pp. 119–135). Cham: Springer International

Publishing. https://doi.org/10.1007/978-3-319-77243-1_8

Daneva, M. (2004). ERP requirements engineering practice: lessons learned. IEEE Software, 21(2),

26–33. https://doi.org/10.1109/MS.2004.1270758

Dolmetsch R., Huber, T., Fleisch E. & Österle, H. (1998). ‘Accelerated SAP: 4 case studies’, Institute

for Information Management, University of St. Gallen, Switzerland

Ehie, I. C., & Madsen, M. (2005). Identifying critical issues in enterprise resource planning (ERP)

implementation. Computers in Industry, 56(6), 545-557.

Financial Times (2003) Buried treasure. Article by Simon London. Financial Times, 10 December.

(As referred by Chaffey, 2009)

Gayer, S., Herrmann, A., Keuler, T., Riebisch, M., & Antonino, P. O. (2016). Lightweight Traceability

for the Agile Architect. Computer, 49(5), 64–71. https://doi.org/10.1109/MC.2016.150

Gupta, A. (2000). Enterprise resource planning: the emerging organizational value systems.

Industrial Management & Data Systems, 100(3), 114–118.

https://doi.org/10.1108/02635570010286131

Helo, P., Anussornnitisarn, P., & Phusavat, K. (2008). Expectation and reality in ERP

implementation: Consultant and solution provider perspective. Industrial Management & Data

Systems, 108(8), 1045-1059

Hevner, March, Park, & Ram. (2004). Design Science in Information Systems Research. MIS

Quarterly, 28(1), 75. https://doi.org/10.2307/25148625

Hohmann, L. (2003). Beyond software architecture: creating and sustaining winning solutions.

Addison-Wesley Longman Publishing Co., Inc..

Jansen, N., van Rhijn, J. (2016). Utrecht Architecture Description Language. (unpublished?)

Jenkins, A. M., Naumann, J. D., & Wetherbe, J. C. (1984). Empirical investigation of systems

development practices and results. Information & Management, 7(2), 73–82.

https://doi.org/10.1016/0378-7206(84)90012-0

Kang, K. C., Cohen, S. G., Hess, J. A., Novak, W. E., & Peterson, A. S. (1990). Feature-Oriented

Domain Analysis (FODA) Feasibility Study: Fort Belvoir, VA: Defense Technical Information Center.

https://doi.org/10.21236/ADA235785

https://doi.org/10.1007/978-3-319-77243-1_8
https://doi.org/10.1109/MC.2016.150
https://doi.org/10.1108/02635570010286131

61

Kassab, M. (2015). The changing landscape of requirements engineering practices over the past

decade. In 2015 IEEE Fifth International Workshop on Empirical Requirements Engineering

(EmpiRE) (pp. 1–8). Ottawa, ON, Canada: IEEE.

Klement, A. (2016). When coffee and kale compete. CreateSpace Independent Publishing Platform

Laudon, K. C., & Laudon, J. P. (2017). Management information systems: managing the digital firm.

(15th ed). Pearson.

Light, B. (2001). The maintenance implications of the customization of ERP software. Journal of

software maintenance and evolution: research and practice, 13(6), 415-429.

Light, B. A., & Papazafeiropoulou, A. (2004). Reasons behind ERP package adoption: a diffusion of

innovations perspective. 12th European Conference on Information Systems, Turku, Finland.

Light, B. (2005). Potential pitfalls in packaged software adoption. Communications of the ACM,

48(5), 119-121.

Lucassen, G., van de Keuken, M., Dalpiaz, F., Brinkkemper, S., Sloof, G. W., & Schlingmann, J. (2018,

March). Jobs-to-be-Done Oriented Requirements Engineering: A Method for Defining Job Stories.

In International Working Conference on Requirements Engineering: Foundation for Software

Quality (pp. 227-243). Springer, Cham.

Lucassen, G., Dalpiaz, F., van der Werf, J. M. E., & Brinkkemper, S. (2017a). Improving user story

practice with the Grimm Method: A multiple case study in the software industry. In International

Working Conference on Requirements Engineering: Foundation for Software Quality (pp. 235-

252). Springer, Cham.

Lucassen, G., Robeer, M., Dalpiaz, F., van der Werf, J. M. E. M., & Brinkkemper, S. (2017b).

Extracting conceptual models from user stories with Visual Narrator. Requirements Engineering,

22(3), 339–358. https://doi.org/10.1007/s00766-017-0270-1

Lucassen, G., Dalpiaz, F., van der Werf, J. M. E., & Brinkkemper, S. (2016a). Improving agile

requirements: the quality user story framework and tool. Requirements Engineering, 21(3), 383-

403.

Lucassen, G., Dalpiaz, F., Werf, J. M. E. M. van der, & Brinkkemper, S. (2016b). The Use and

Effectiveness of User Stories in Practice. In M. Daneva & O. Pastor (Red.), Requirements

Engineering: Foundation for Software Quality (Vol. 9619, pp. 205–222).

Lucassen, G., Dalpiaz, F., Werf, J. M. van der, & Brinkkemper, S. (2015). Bridging the Twin Peaks --

The Case of the Software Industry. 2015 IEEE/ACM 5th International Workshop on the Twin Peaks

of Requirements and Architecture, 24–28. https://doi.org/10.1109/TwinPeaks.2015.13

Maas, L., Geurtsen, M., Nouwt, F., Schouten, S., van de Water, R., van Dulmen, S., olde Hartman,

T., Noordman, J., Dalpiaz, F., van Deemter, K., Brinkkemper, S., (2019). The Care2Report System:

Automated Medical Reporting as an Integrated Solution to Reduce Administrative Burden in

Healthcare. Unpublished paper submission.

Molenaar, S., Brinkkemper, S., Menkveld, A., Smudde, T., Blessinga, R., Dalpiaz, F., (2019). On the

Nature of Links between Requirements and Architectures: Case Studies on User Story Utilization

in Agile Development. (currently) Unpublished RE4SA submission for IEEE: RE next 2019

https://doi.org/10.1109/TwinPeaks.2015.13

62

Moon, Y. B. (2007). Enterprise Resource Planning (ERP): a review of the literature. International

Journal of Management and Enterprise Development, 4(3), 235.

https://doi.org/10.1504/IJMED.2007.012679

Muscatello, J.R. & Parente, D.H. (2006), "Enterprise resource planning (ERP): a

postimplementation crosscase analysis", Information Resources Management Journal, Vol. 19

No. 3,pp.6180.

Nah, F. F., Lau, J. L., & Kuang, J. (2001). Critical factors for successful implementation of enterprise

systems. Business Process Management Journal, 7(3), 285-296

Ng, C. S.-P. (2012). A Case on ERP Custom Add-On in Taiwan: Implications to System Fit,

Acceptance and Maintenance Costs. International Journal of Enterprise Information Systems, 8(4),

44–62. https://doi.org/10.4018/jeis.2012100102

Nuseibeh, B. (2001). Weaving together requirements and architectures. Computer, 34(3), 115–

119. https://doi.org/10.1109/2.910904

Österle, H., Feisch, E. & Alt, R. (2000), Business Networking:Shaping Enterprise Relationships on

the Internet. New York: Springer.

Parnas, D. L. (1972). On the Criteria To Be Used in Decomposing Systems into Modules, 15(12), 6.

Pervan G, Maimbo H (2005) Designing a case study protocol for application in IS research, The

Ninth Pacific Conference on Information Systems pp 1281–1292

Rasmy, M., Tharwat, A. & Ashraf, S. (2005), "Enterprise resource planning (ERP) implementation

in the Egyptian organizational context",

Riebisch, M., Streitferdt, D., & Pashov, I. (2004). Modeling Variability for Object-Oriented Product

Lines. In F. Buschmann, A. P. Buchmann, & M. A. Cilia (Red.), Object-Oriented Technology. ECOOP

2003 Workshop Reader (Vol. 3013, pp. 165–178). Berlin, Heidelberg: Springer Berlin Heidelberg.

https://doi.org/10.1007/978-3-540-25934-3_16

Rozanski, N., & Woods, E. (2012). Software systems architecture: working with stakeholders using

viewpoints and perspectives second edition. Upper Saddle River, NJ: Addison-Wesley.

Runeson, P., & Höst, M. (2009). Guidelines for conducting and reporting case study research in

software engineering. Empirical Software Engineering, 14(2), 131–164.

https://doi.org/10.1007/s10664-008-9102-8

Seffah, A., Donyaee, M., Kline, R. B., & Padda, H. K. (2006). Usability measurement and metrics: A

consolidated model. Software quality journal, 14(2), 159-178.

Seo, G. (2013). Challenges in implementing enterprise resource planning (ERP) system in large

organizations: similarities and differences between corporate and university environment

Shin, I. (2006). Adoption of Enterprise Application Software and Firm Performance. Small Business

Economics, 26(3), 241–256. https://doi.org/10.1007/s11187-005-0215-9

https://doi.org/10.1504/IJMED.2007.012679
https://doi.org/10.4018/jeis.2012100102
https://doi.org/10.1109/2.910904
https://doi.org/10.1007/978-3-540-25934-3_16
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1007/s11187-005-0215-9

63

Shneiderman, B. (2003). The eyes have it: A task by data type taxonomy for information

visualizations. In The Craft of Information Visualization (pp. 364-371). Morgan Kaufmann.

Slob, G.-J., Dalpiaz, F., Brinkkemper, S., & Lucassen, G. (2018). The Interactive Narrator Tool:

Effective Requirements Exploration and Discussion through Visualization, 6.

Smith, A., Bieg, D., & Cabrey, T. (2014). Requirements management. PMI’s Pulse of the Profession:

Requirements Management — A Core Competency for Project and Program Success

Somers, T. M., & Nelson, K. (2001). The Impact of Critical Success Factors across the Stages of

Enterprise Resource Planning Implementations. Th Hawaii International Conference on System

Sciences, 10.

Stol, K.-J., & Fitzgerald, B. (2018). The ABC of Software Engineering Research. ACM Transactions

on Software Engineering and Methodology, 27(3), 1–51. https://doi.org/10.1145/3241743

Traynor, D. (2016). Intercom on Jobs-to-be-done. Book retrieved from interface.com

Umble, E. & Umble, M. (2002), "Avoiding ERP implementation failure", Industrial Management,

Vol. 44 No. 1, pp. 2534.

van de Keuken, M. (2017). Using Job Stories and Jobs-to-be-Done in software requirements

engineering.

van de Weerd, I., & Brinkkemper, S. (2009). Meta-modeling for situational analysis and design

methods. In Handbook of research on modern systems analysis and design technologies and

applications (pp. 35–54). IGI Global.

Wake, B. (2003). INVEST in Good Stories: The Series, 41.

Wieringa, R., & Moralı, A. (2012). Technical Action Research as a Validation Method in Information

Systems Design Science. In K. Peffers, M. Rothenberger, & B. Kuechler (Red.), Design Science

Research in Information Systems. Advances in Theory and Practice (Vol. 7286, pp. 220–238).

Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-29863-9_17

Wieringa, R. J. (2014). Design Science Methodology for Information Systems and Software

Engineering. Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-

43839-8

Wohlin, C. (2012). Experimentation in software engineering. New York: Springer.

Wohlin, C. (2014). Guidelines for snowballing in systematic literature studies and a replication in

software engineering. In Proceedings of the 18th International Conference on Evaluation and

Assessment in Software Engineering - EASE ’14 (pp. 1–10). London, England, United Kingdom: ACM

Press. https://doi.org/10.1145/2601248.2601268

Zhang, Z., Lee, M. K., Huang, P., Zhang, L., & Huang, X. (2005). A framework of ERP systems

implementation success in China: An empirical study. International Journal of Production

Economics, 98(1), 56-80.

Zowghi, D., & Coulin, C. (2005). Requirements Elicitation: A Survey of Techniques, Approaches, and

Tools. In A. Aurum & C. Wohlin (Red.), Engineering and Managing Software Requirements (pp. 19–

46). Berlin/Heidelberg: Springer-Verlag. https://doi.org/10.1007/3-540-28244-0_2

https://doi.org/10.1145/3241743
https://doi.org/10.1007/978-3-662-43839-8
https://doi.org/10.1007/978-3-662-43839-8
https://doi.org/10.1145/2601248.2601268

64

Grey-literature

Eclipse (2019). Eclipse modelling project. https://www.eclipse.org/modeling/

FeatureIDE (2019). FeatureIDE: An extensible framework for feature-oriented software

development https://featureide.github.io/

Forza (2018). About Forza IT Group https://www.forzaconsulting.eu/en/about-us/forza-

consulting/ & SCANMAN https://www.forzaconsulting.eu/en/service/solutions/scanman/

Oracle (2015). Overview of the JD Edwards EnterpriseOne Architecture

https://docs.oracle.com/cd/E24902_01/doc.91/e50711/ch_ov.htm#EOIHS107

Oracle (2016). JD Edwards EnterpriseOne Product Line https://www.oracle.com/us/assets/jde-

product-line-2823274.pdf

Idatalabs (2018). JD Edwards Market Share and Competitors in ERP

https://idatalabs.com/tech/products/jd-edwards

Klement (2013). Replacing The User Story With The Job Story https://jtbd.info/replacing-the-

user-story-with-the-job-story-af7cdee10c27

Lucassen, G. (2016c). GRIMM method brochure. https://garmlucassen.nl/

Panorama (2014) Biggest ERP Customization Challenges. https://www.panorama-

consulting.com/tuesday-poll-erp-customizations/

Techopedia (2018). What is User Exit? - Definition from Techopedia. Accessed at December 5

2018, https://www.techopedia.com/definition/16457/user-exit

Techterms (2018) add-on definition, accessed at December 5, 2018

https://techterms.com/definition/addon

Wikipedia (2018) Upgrade, accessed at December 12, https://en.wikipedia.org/wiki/Upgrade

Wikipedia (2018), Implementation, accessed at January 14,

https://en.wikipedia.org/wiki/Implementation

Geneca (2017) Why up to 75% of software projects will fail, accessed at December 12, 2018

https://www.geneca.com/why-up-to-75-of-software-projects-will-fail/

Atlassian (2018) Defining a project, accessed at January 14, 2019

https://confluence.atlassian.com/adminjiraserver/defining-a-project-938847066.html

https://www.eclipse.org/modeling/
https://featureide.github.io/
https://www.forzaconsulting.eu/en/about-us/forza-consulting/
https://www.forzaconsulting.eu/en/about-us/forza-consulting/
https://www.forzaconsulting.eu/en/service/solutions/scanman/
https://docs.oracle.com/cd/E24902_01/doc.91/e50711/ch_ov.htm#EOIHS107
https://www.oracle.com/us/assets/jde-product-line-2823274.pdf
https://www.oracle.com/us/assets/jde-product-line-2823274.pdf
https://idatalabs.com/tech/products/jd-edwards
https://jtbd.info/replacing-the-user-story-with-the-job-story-af7cdee10c27
https://jtbd.info/replacing-the-user-story-with-the-job-story-af7cdee10c27
https://garmlucassen.nl/
https://www.techopedia.com/definition/16457/user-exit
https://techterms.com/definition/addon
https://en.wikipedia.org/wiki/Upgrade
https://en.wikipedia.org/wiki/Implementation
https://www.geneca.com/why-up-to-75-of-software-projects-will-fail/

Appendix

A. Paper submission based on this research

Specification of Requirements and Software

Architecture for the Customisation of Enterprise

Software:
A multi-case study based on the RE4SA model

Tjerk Spijkman, Sjaak Brinkkemper, Fabiano Dalpiaz, Anne-Fleur Hemmer, Richard van de Bospoort

Abstract— Most failed software projects can be traced to bad

requirements management. Additionally there is a big gap be-

tween state of the art and practice in software architecture. For

enterprise software customisation all common software develop-

ment problems exist, as well as additional challenges. Instead of

one standard software product, vendors often have to deal with

customised versions with additional maintenance challenges. In

this research we apply the Requirements Engineering for Software

Architecture (RE4SA) model in a multi-case study to show how the

requirements engineering and software architecture disciplines

can be linked, and in doing so provide improvements to both. By

applying this model in a multi-case study on enterprise software

customisation, we achieve improvements in requirements manage-

ment, documentation and ensuring alignment between the soft-

ware architecture and requirements.

Index Terms— Requirements engineering, Software

architecture, Case study, Enterprise software, Software products,

Customization.

I. INTRODUCTION

Requirements engineering (RE) is one of the key processes

in the creation and customization of software products, as it ad-

dresses the critical problem of designing the right software for

the customer [1]. Poor requirement management can complicate

software development projects, and lead to project failure. In

2014, PMI conducted a study which showed that 47% of all pro-

ject failures can be linked to poor requirements management [2].

By placing appropriate focus on requirements engineering, it is

possible to prevent project failure, manage project time-frames,

effectively plan releases, facilitate communication, and ensure

that a solution meets the stakeholder’s expectations [1-3].

The second concept that we will focus on in this research is

software architecture (SA). Bass, Clements and Kazman define

software architecture as a representation of a system in which

there is a mapping of functionality onto software components,

and a concern for the human interaction [4]. Bass et al. also state

that software architecture constitutes a common language for all

stakeholders, and captures design decisions in the early stages of

a software product. As software products get bigger, good ar-

chitecture design is required to ensure a loose coupling within

the software, and to facilitate more effective collaboration [5].

Good architecture documentation is often scarce in practice, and

there is a gap between state of the art and state of the practice in

software architecture [6]. This indicates an opportunity to im-

prove the use of software architecture in practice.

While these two concepts might seem unrelated at first

glance, Nuseibeh introduced the twin peaks model in 2001,

where he linked the software requirements to architecture in or-

der to improve both disciplines in a project and to more effec-

tively suit agile development [7]. Applying the model results in

progressively more detail in both the requirements and architec-

ture, this allows for both to evolve incrementally. Lucassen et al.

extend this approach and introduce the reciprocal twin peaks

(RTP) model, and discuss how to achieve alignment between RE

and SA in practice [8]. They also discuss how this approach is

different for product software compared to tailor-made software,

as they receive many requirements from different customers.

These requirements can lead to multiple different implemen-

tations of a standard enterprise software product. In 2013, Pano-

rama consulting [9] reported that 90% of enterprise software has

at least minor customisations. There are different categories of

customisation. Software can be modified, by changing existing

functionality; Extended by adding functionality to an existing

module; or additional modules can be added to the software

product. These customisations can cause issues when a new ver-

sion of an extension is deployed, or when the enterprise software

is updated. Fig. 1 shows an example architecture with each of

the customisation categories.

One promising approach to achieve alignment between RE

and SA, is the RE4SA model as seen in Fig.2 [10]. This model

implies a link between specific concepts in requirements engi-

neering and software architecture. The RE4SA model, and its

sub concepts are an active field of research at Utrecht University,

where both (Masters) students and professors are researching

different aspects of the model. Although initial findings on the

use of this model are promising, there is a lack of evidence for

its effectiveness in practice. In this research we have used the

RE4SA model as a basis for a situational method [11], which

was tested by performing a multi-case study on four cases of a

specific product software solution.

This research focuses specifically on the RE4SA model ap-

plied to enterprise software, as these have to deal with additional

challenges. They often lack architectural design and documenta-

tion, receive many requirements from different customers, and

have differences in customer specific implementations [8, 12].

Fig. 1. Customisation categories for a software product

There is a lack of literature on the customisation of enterprise

software. With this research we attempt to fill this gap, by testing

the RE4SA model and report on its use in practise. We share the

results of our case studies, and in doing so propose an improve-

ment to current processes, provide an effective way for require-

ments management and leverage the opportunities for applying

functional software architecture in practise.

The rest of this paper will be structured as follows; in section

II we will cover the RE4SA model in more detail. Section III

will introduce the context of the case study. In section IV we will

describe the main findings of the case studies. Section V will

detail the findings from expert evaluations of the case studies. In

Section VI we list the lessons learned during the case studies.

Finally, in section VII we will discuss the findings, and future

research directions.

II. THE RE4SA MODEL

The Requirements Engineering for Software Architecture

(RE4SA) model aims to align the RE and SA disciplines, similar

to the Reciprocal Twin Peaks model [8]. It differs however in

the approach, instead of linking the responsibilities of actors

within the RE and SA disciplines, the RE4SA model links spe-

cific concepts in both areas. This allows us to base the software

architecture directly on the requirements gathered for the prod-

uct, and ensure that the requirements are met by the software.

Additionally this traceability between RE and SA is expected to

facilitate communication between team members, and custom-

ers.

Fig. 2. The Requirements Engineering for Software Archi-

tecture (RE4SA) model [10].

A. Explanation of the Model

The model is especially promising because it utilizes user

stories, a form of requirements that is widely used in practice

[13, 14]. Due to the adoption of user stories in practice, this

model allows for the use of available documentation to keep an

up to date software architecture. In this model we link epic sto-

ries (ES) [15] to modules [16] in the software, and user stories

(US) [17] to features [16]. ES can be used to detail the require-

ments that should be solved in functional modules of a software

product, while US can be used to detail the requirements for

more specific features within a module.

The model has a number of expected benefits; it is expected

to facilitate alignment between RE and SA, communication and

collaboration, help with release planning, prevent architectural

drift, provide traceability from requirements to solutions and

provide thorough yet minimal documentation. By utilizing the

link between RE and SA, parts of either discipline can be used

to improve the other. In the context of enterprise software, we

can visualize where customer specific changes are located in the

software, saving time when a later project (for example an up-

date) at the same client. Having an overview of dependencies for

a customisation, can provide valuable information in the risk as-

sessment for adding a customisation. In this context we can also

apply the model to plan future releases.

B. An Example of the RE4SA Model

In order to give a clear view on the RE4SA model, we will

discuss an example of how all these concepts are linked. This

example is based on the case study findings, and highlights a

small section of the software product analysed for the case stud-

ies.

Consider the following epic story for an invoice automation

application: “When there is an issue with an invoice, I want a

way to contact another user, so that the issue can be resolved by

the relevant user.” This requirement was solved in a “QA Form”

module in the application. Each epic story contains multiple user

stories, one such US for this example could be: “As an approver,

I want to set a subject for my question, so that the person who I

ask the question can quickly see what it is about.” Which can be

solved through a “set subject” feature in the QA module. The

RE4SA model with the concepts for this example can be seen in

Fig. 3, this figure only shows a fragment of the architecture and

the requirements to illustrate the concept.

Fig. 3. RE4SA applied to the SCANMAN QA example.

III. CASE STUDY CONTEXT

For this research a case study was performed in which we

analysed four different cases within a single company. The case

study protocol was based on the guidelines as described by

Runeson and Höst [18]. For each of the cases we applied the

RE4SA model in a situational method. The results from these

cases were then evaluated. In this section we discuss the goals

for the case studies, and introduce the case company and the soft-

ware product that is central for each of the cases.

The goal of the case studies was to identify how the RE4SA

model can be applied, and to analyse the benefits of applying the

model in the context of enterprise software customisation, and

management. Each of the case studies describes the application

of the model to a project for the SCANMAN software product.

For each of the cases, we created all of the RE4SA concepts

based on available documentation and evaluated this through ex-

pert interviews. By performing these case studies we test the ap-

plicability of the model for a range of cases, and use the out-

comes as an input for expert evaluations of the model. Through

the case studies and evaluation, we wanted to test if the RE4SA

model can be applied:

 for multiple projects of a single software product;

 to effectively and efficiently document requirements

and software architecture;

 to provide an overview of customer specific functional-

ities in an environment;

 to facilitate communication between functional and

technical experts.

Case

study

Description inter-

views

Roles

1 Customisation

on feature level

2 Developer, C&C

expert

2 Customisation

on module &

feature level

3 Functional

consultant (x2),

developer

3 Version update 3 Developer (x2),

management

4 Recreation of

the ES addon

3 Project manager,

functional

consultant,

developer

Table 3 – Overview of case studies

A. The Company

Forza IT group is a company that is mainly focused on sup-

porting their customers in using Oracle enterprise software. The

company has offices in Soest, The Netherlands and in Sofia, Bul-

garia. They provide consultancy services, perform ERP imple-

mentations, and develop extensions to the enterprise software.

This means they are involved in both the RE and SA fields, as

they set up the ERP environment to match the customers’ re-

quirements, and occasionally have to make changes to the soft-

ware so that it matches the customers’ business processes. Be-

sides the standard Oracle software, they also develop their own

add on solutions to the software to extend the functionality of the

ERP.

B. The Software

One of Forza’s most successful add-ons is SCANMAN.

SCANMAN is an invoice automation application that is fully

integrated within the JD Edwards (JDE) ERP system. SCAN-

MAN uses Optical Character Recognition (OCR) to scan incom-

ing invoices, and to automatically enter these values into JDE.

These values can then be validated, and the add-on also adds an

acceptance flow to JDE, in which users can accept or reject an

invoice.

For SCANMAN, Forza obtains a high number of requests

for functionality/features from customers. In most cases, these

new functionalities/features become part of the standard version

of SCANMAN, but some of the additions are customer specific.

Especially these customer specific functionalities cause addi-

tional challenges. These customisations need to be retrofitted in

upgrades, can cause conflicts with new version of the ERP, and

cause other maintenance issues. For example, during an upgrade,

it first needs to be identified what customer specific changes

were made, and then the decision to recreate the customisation

or leave it out needs to be made based on the circumstances.

Here it would be very beneficial to have an overview of the soft-

ware architecture so that identifying customizations can be made

easier.

IV. CASE STUDY FINDINGS

In this section we will describe the context, and the main

findings for each of the four cases. As a prerequisite for the cases

we first had to recover the software architecture of the current

version of SCANMAN, and the functionalities of JDE that it re-

lies on. This recovery was done manually by the researchers,

through analysis of the tool, documentation and user guides.

This resulted in a functional architecture diagram (FAD), and

feature diagram. The FAD shows the modules of the application,

and how these interact [16]. The feature diagram shows the user-

visible aspects of the software system, and was recovered by

modelling all aspects of the GUI [19]. Since the feature diagram

was recovered from the GUI, the features are likely at a more

detailed level than feature diagrams created to define function-

alities of a software design. The recovered architecture con-

tained 62 (sub-) modules, and the feature model contained 1340

features. These were extended for the case studies.

A. Case Study 1: Tracing Customer Requirements to the

Software Architecture

In this retrospective case study we applied the situational

method to a requirement set compiled by a new SCANMAN

customer. The set of 46 requirements were rewritten to 32 func-

tional user stories, and 7 quality requirements. Only two of the

requirements detailed functionality that was not in the current

software. None of the requirements were on an ES or module

level, so only the lower half of the RE4SA model was used.

For this case study we traced each of the requirements to the

corresponding features and marked these green. This colour cod-

ing allowed for quick identification of the relevant features,

which was a necessity due to the high number of total features.

The new features were added to the feature diagram and colour

coded red to signify that they were customer specific additions.

The RE4SA model proved useful for deciding the appropriate

location for the new features, since we could use the user stories

to locate relevant features as seen in Fig. 4.

Fig. 4. New feature placement, based on a user story.

In this case we found that once the “standard” feature

diagram is made, this can easily be copied and extended to

capture the customer specific environment. The traceability

between requirements and architecture can be utilitzed to detect

logical placement for new features. Since the feature diagram is

rather complex and has a high number of features, this

complicates the use of the model for communication. However,

by collapsing irrelevant modules, or using only a small section

of the model, like in Fig. 4 can mitigate this issue and makes the

model useful for communication purposes. Furthermore, colour

coding specific elements, like customer specific features makes

it possible to easily spot important features in the model.

B. Case Study 2: Customer specific module and features

The second retrospective case was chosen because it had a

customization that was on the ES / module level. For this case

all JIRA issues concerning the specific customer were analysed

and transformed to user stories. This resulted in 1 new ES, and

14 US, these numbers are lower than those of case 1 because

only new functionalities were included in the JIRA tickets, and

not existing ones like those matched in the first case.

The ES that was written for this case was “When I receive

an invoice that does not match an existing purchase order, I

want to receive a report when it exceeds the tolerance set in the

ERP, so that the invoice can be rejected.” This resulted in the

user visible sub-module VMA comparison report. This shows

us one limitation of the feature diagram, as it only models the

features visible to the user, and not the processes “in the

background” that are required to generate the report. The ES for

this case contained 7 user stories, and the VMA report consists

of 23 features. This difference in cardinality can have a number

of possible reasons: The included information field already

existed within the ERP so all relevant fields might be selected

which results in a higher number of fields than required, due to

limited context knowledge for the case study some customer

requirements could have been missed in the US, or some

features might be considered 'common knowledge’ and do not

need a user story to be included in the solution.

In this case we extended the colour coding to the FAD, this

allows for a quick overview of which modules have been altered

for the customer environment, and this information can be used

to facilitate the information seeking mantra [21]. The colour

coded FAD for this case, with drill-down navigation to the fea-

ture level can be seen in Fig. 5. Where red was used to signify

customised modules, cyan for JDE modules that the application

relies on, and orange as a warning because that JDE module is

required specifically for a modification.

The colour coding allows for zooming from the FAD for the

high level modules to sub module(s) to features in the feature

diagram. This drill down navigation is currently only possible by

manually opening views based on the naming in other views.

Ideally this process would be facilitated through a tool which

links all the models together, allowing for navigation by zoom

on click.

Fig. 5. Colour coded Software architecture, with drill-down

navigation capability

C. Case Study 3: Version Update

For the third case study we applied the situational method

side by side with the current method for an ongoing project. The

version update collects requirements from many different cus-

tomers that are to be included in the standard version. Some of

these additions are already developed in specific customer envi-

ronments and need to be moved to the ‘standard’ software prod-

uct.

For the update case study, a total of 3 ES (one of these is the

QA functionality from Fig. 3.) containing 16, 2 and 6 US respec-

tively were documented. Additionally 18 US that extend already

existing modules were identified, which did not belong to an

epic story due to this. For the project briefs we had a challenge

to solve, as the relevant ES section couldn’t be used since the ES

for existing modules were never created. To mitigate this issue,

we decided to apply the RE4SA model, and considered the link

between ES and modules. This meant that instead of having to

recover ES for existing modules, we could just list the relevant

modules in the project briefs.

While we had a total of 3 ES and 40 US, the feature diagram

was updated with 104 new features and the FAD was updated

with one new module and three submodules. The difference in

ES and module is because two modules were added for the QA

epic, a QA overview & specific QA module, this indicates that

we either forgot to formulate an ES, or it was added due to goal

focused nature of the requirements. For the US to feature cardi-

nality of 1:2.6 there are multiple possible explanations: like in

case 2 some features were added based on ‘common sense’ (e.g.

fields in the reports), developers might have added unrequested

features, and some user stories can be solved by a collection of

features. An example of this can be seen in Fig. 6, this is not

inherently a bad thing, as it ties into the US principle of being

goal focused [17]. This principle implies that we don’t care how

we get to our goal, as long as we can get there. Fig. 6 also shows

an example of ‘common sense’ features in the sub-features of

the “show QA history” feature.

Fig. 6. A single user story which is solved by two combined

features.

As the software architecture is revised for new versions and

customisations, this also allows for improvements to the archi-

tecture models. While adding the new features to the feature di-

agram, it was noticed that some existing functionalities were

not yet included in the reconstructed architecture. For example,

in this update new features were added to the invoice pro-

cessing module, however in the process of adding these fea-

tures to the feature diagram it appeared that the invoice pro-

cessing module had not been included in the feature diagram

yet. Because these new features extended a module that was

not mapped, this error in the feature diagram could be detected

and fixed. This implies that the use of the situational RE4SA

method in multiple projects also allows for refinement of the

architecture model, and increases the accuracy of the models

over time.

The case study report was used as a basis for the update

notes of the version update. The software architecture provided

a quick overview of all added functionalities, which was a lot

less effort to analyse than all the logged JIRA issues. By using

cut-outs of the relevant parts of the feature diagram (like Fig.

6), it becomes possible to detect the new functions within the

software, and combined with a short textual explanation can

provide enough information for the update notes.

D. Case Study 4: Recreation of SCANMAN for NetSuite

The fourth case study is somewhat different than the others,

as it is not focused on the JDE version of SCANMAN, but on

recreating the functionality of SCANMAN in NetSuite, another

Oracle enterprise application. For this case study we used the

software architecture and documentation of the JDE version to

discover the core functionalities and to decide what needed to be

included for the first version of SCANMAN NetSuite. This case

can still be seen as an customisation, as it extends the function-

ality of NetSuite.

The design for a first version of the NetSuite add-on con-

sisted of a total of 10 ES, and 70 US. This resulted in 10 modules

and 69 features. The reason why we mostly have a 1:1 relation

between the RE and SA concepts, is because this case study is

based on the intended architecture, instead of the actual architec-

ture (like in the other 3 cases). The reason for not using the actual

architecture, is that the project is still in progress as of the time

of writing. This does indicate that the RE4SA model can be ap-

plied to transform the RE sections to an intended architecture.

The developer can then refine this intended architecture with the

‘common sense’ features, and the developer’s own additions or

alternative solutions to the requirements. Afterwards the in-

tended architecture needs to be updated to reflect the actual ar-

chitecture.

The initial design for the NetSuite version only has about 5%

of features compared to the JDE version. This can be explained,

as the initial design only consists of the must haves of the appli-

cation. It also describes the intended architecture (Fig. 6.) as op-

posed to the actual architecture (based on GUI) which will most

likely have more features. Finally, the difference could be due to

the software architecture being created before the application,

which would result in a more efficient solution.

Case 1 2 3 4

User stories (US) 32 14 40 70

Features 21 28 104 69

US: Features 1.5: 1 1: 2 1: 2.6 1 : 1

Epic stories (ES) 0 1 3 10

ES: US N/A 1: 7 1: 8 1: 7

Modules 0 1 4 10

ES: Modules N/A 1: 1 1: 1.3 1: 1

Modules: Features N/A 1: 28 1: 26 1: 6.9

Table I – Cardinalities of the RE4SA concepts in the cases

E. Case study metrics

To obtain insight on the cardinality of the RE4SA metrics,

we noted all the values and calculated the ratio’s between the

connected concepts. These can be seen in Table I, the values in-

dicate there is not necessarily a 1:1 relation between the RE and

SA concepts. There are cases where we have more US than fea-

tures, and the other way around. Modules and epic stories are

closer to the 1:1 relation with only one exception, however due

to the lower number of ES, the sample size is also smaller which

makes the results less generalizable. The ES: US ratio, can differ

from the total US divided by total ES, because there are US that

are linked to existing modules in the cases. The average amount

of user stories per epic in the cases was 7.6; and the average

number of features per module 20.3.

Fig. 7. FAD of the SCANMAN NetSuite intended architecture

We also analysed the complete feature diagram of the appli-

cation after the update described in case 3. For this the metrics

are based on the Quality in Use Integrated Measurement

(QUIM) model by Seffah et al. [22] The values from the QUIM

model can help determine usability aspects of GUI style appli-

cations. The results of this analysis can be seen in Table II. These

metrics can be used in future research to determine usability as-

pects of an application based on the feature diagram.

Table II – Feature diagram metrics

Metric Value

Number of modules 11

Number of submodules 55

Average atomic features per (sub) module 20,6

Average degree 9.2

Max degree 323

Min degree 1

Average standard deviation of degree 9.8

Average degree without grids 5.0

Average standard deviation of degree without

grids

2.2

Average depth 2.1

Max depth 6

Min depth 1

Average standard deviation of depth 0.4

Fig. 8. Visualisation of the feature diagram metrics

V. CASE STUDY EVALUATION & LESSONS LEARNED

A. Expert interviews

The case studies were evaluated through interviews with ex-

perts involved with the project of the case studies. These experts

have different roles within the teams and company; developers,

functional consultants, project managers and C&C experts were

interviewed. In each of the evaluations, a semi-structured inter-

view was used, the experts were first presented with the results

of the case study, and then asked ten questions to obtain their

opinion on the cases and situational method. In this section we

will discuss the findings of these interviews.

All of the experts said they had limited knowledge and expe-

rience with user stories, since the company does not currently

use them. And only one of the experts had worked with user sto-

ries before. However, even with this limited knowledge, opin-

ions were very positive, all interviewees felt that the RE4SA

concepts adequately captured the customers’ requirements, that

they provide a very detailed overview, and could effectively be

applied for changes in requirements. Only one interviewee

doubted if they contain enough information for a developer. The

other interviewees did think the concepts gave enough infor-

mation, but were unsure if it would work properly if develop-

ment was completely outsourced, as this often requires stricter

guidelines since outsourced workers lack context information

for projects. It was mentioned by multiple interviewees that it

would be dependent on the skills and experience of the devel-

oper. The interviewed developers all thought the documentation

would contain enough information for development, however,

one of the developers mentioned that not all requirements can be

captured before starting development.

All interviewees were positive about the software architec-

ture figures, but their expected use cases for the figures differed.

Most experts said the figures gave a clear overview of the soft-

ware, and thought that it would be useful for new employees to

learn about the application. Other use cases that were mentioned

are: as a checklist, for testing purposes, detecting dependencies

with other elements.

When asked if it would be used in communication with cus-

tomers, the opinions were split, some interviewees said they

would use (parts of) the SA in communication to show the way

the application works, ensure they are talking about the same as-

pects, or ensure that the features fulfil requirements. It was also

mentioned that the figures could be used to visualise and com-

municate the risks of a requested customisation. The other inter-

viewees thought the figures would be too complicated for use in

customer communications, the feature diagram was seen as only

useful in this scenario if cut-outs were used as opposed to the

full diagram.

When presented with the scenario where customer specific

customizations were colour coded, all experts agreed that it

would be very useful to have. One of the interviewee’s men-

tioned that every time the customers’ environment was accessed,

it was unknown what changes had been made in that environ-

ment. And that having a SA on a customer level (extending a

template from the standard version) would save a lot of time.

While all experts thought the situational method would be an

improvement over the current method, they also acknowledged

some disadvantages of the method. Three of them mentioned

that while the RE4SA concepts provide a very detailed overview

of the application, they would quickly become useless if they are

not kept up to date. Due to the size of the application, the feature

diagram can be overwhelming which could limit the acceptance

for using it. It would also increase time spent on documentation,

frontloading more effort but (hopefully) reducing the need for

rework and improving available documentation. Finally, it could

be that developers feel limited due to the specific solutions

mapped in the feature diagram of the intended architecture. This

could be mitigated by communicating clearly that the initial fea-

ture diagram is only a suggestion.

B. Lessons learned

From the combination of performing and evaluating the case

studies we’ve gained some insights in the use of the RE4SA

model. The most important lessons that we’ve learned from per-

forming the multi-case study are presented in table III. The les-

sons have been grouped based on the RE4SA concepts they refer

to.

Lesson learned

User stories & features
1 User stories leading, feature diagram suggestive:

It needs to be stressed in communication with developers that the

user stories are the main focus and that the feature diagram is

only a suggestion. Otherwise the developers will feel restricted,

and you lose part of the goal focus that user stories achieve. This

does mean that the feature diagram needs to be updated to reflect

the actual architecture after development
2 Tracing requirements to features:

User stories from a customer can be traced to features in the

feature diagram to show that their requirement is already met

(and how). This can be assisted through concept recognition,

where certain terms in
3 Placing new features:

New features could be placed in a logical location for the

software by first considering the different modules that could

contain the new feature, and then looking at existing features

within those modules to see if any are similar to the new features.

Candidate modules can be identified by looking at the concepts

in the user story.
4 Feature & user story cardinality:

Cardinality of features and user stories can differ. Sometimes a

feature is described in multiple user stories, for example when

different roles want the same thing. In other scenarios a

combination of multiple features can fulfil a single user story.
5 Undocumented features:

Not all features are described in user stories, this can be because

some features are common sense and defining user stories for

these can be redundant. For example when a user story defines a

customer profile, it can be deemed unnecessary to create a user

story to describe the need for a username. Alternatively, a

developer might add features that are not described in a user

story because he thinks it is important.

Features
6 Customer specific feature diagrams:

The feature model could be easily duplicated within the Eclipse

modelling tool [23]. This means that it is little effort to create

customer specific feature diagrams. These customer specific

environments provide a lot of value, as they efficiently document

customisations.
7 Feature diagram comprehension:

As feature diagrams grow in size they become harder to

comprehend which limits their use in communication. This can

be mitigated by using only the relevant section of the feature

diagram so the information is in a comprehensible format.

Feature & modules
8 Colour coding features or modules:

Colour coding can assist in guiding the viewer to relevant

features or modules. Colour coding is especially useful to

visualise aspects that deviate for an existing software product

(e.g. customised or new). Colour coding can also partly solve the

issue that the feature diagram becomes incomprehensible due to

its size.
9 Iterative SA refinement:

Applying the situational RE4SA method in multiple projects for

a software product allows for refinement of the software

architecture models. This means over time the accuracy of the

model compared to the actual implementation improves.
10 Consistency in functional SA documentation:

By creating/updating the feature diagram and functional

architecture diagram in parallel the models can be made more

consistent and be tested for completeness. This includes ensuring

elements have the same names in different models, and are at the

same level of depth.
11 Update intended to actual architecture:

The feature diagram should be updated after development to

properly reflect the actual architecture as opposed to the intended

architecture.
12 Drill-down navigation:

In order to properly support the information seeking mantra [23]

through drill-down navigation, it would be needed to link the

different functional architecture views to each other. However,

without tool support this would take a huge amount of manual

work.
13 Zoom out navigation:

While the drill-down navigation might be the most common use

case for functional experts, developers might benefit more from

being able to zoom-out starting at the feature level. This would

allow them to obtain an overview of the functionalities instead

of only working on the low-level details.
14 Version update:

Added features and modules can be modelled in the FAD and

feature diagrams. By colour coding the new elements, it can

easily be seen which additions were made in the update. This can

be used to create the release notes, and to identify in which

update a feature / module has been added

User stories, epic stories, features & modules
15 Identification of new features / modules in SA creation:

During the creation of the software architecture new features and

modules can be identified, by using the link between software

architecture and requirements, requirements can be recovered

based on the architecture.
16 Barista problem:

Using the proper level of granularity for US and ES remains a

difficult task [9]. This problem was extended to a SA level (what

is a composite feature or a sub-module). However, since each of

the figures is a different view of the same information, it should

not be an issue if certain aspects are contained in multiple views.

These views can be added when they are needed.
17 Minimal yet thorough documentation:

Applying the situational method led to more detailed

documentation, while still minimizing the amount of text

necessary. By utilizing the requirements for documentation

purposes we can keep track of the “who, what and why” of a

solution. While the SA keeps track of the “how”.
18 Facilitate communication between functional experts and

developers:

As a result of lessons 12 & 13, we can support a shared context

knowledge between developers and functional experts. As

developers can zoom out from their normal focus on the feature

level, and functional experts can zoom in from their normal focus

on module level.
19 Customisation risk assessment:

By utilizing the software architecture models, the risk of a

requested customisation can be assessed. This can be done by

analysing the information requirements from the modules, and

the hierarchy of the suggested customisation in the feature

diagram.

Table III – Lessons learned

VI. DISCUSSION AND FUTURE RESEARCH

In this research, we have carried out a multi-case study where

we applied the RE4SA model to a customisation scenario of En-

terprise Software. We have shown that the RE4SA model can be

applied to link requirements to the software architecture, and en-

sure that these match one another. By updating the SA based on

new requirements, we can ensure alignment between the require-

ments and architecture. The situational method enables the com-

pany to keep an up to date architecture of the software product

in a way that minimizes required effort.

We have successfully applied the method to each of the cases

and received positive expert feedback. Through this multi-case

study we have provided evidence for the use of the RE4SA

model in Enterprise Software customisation and management.

Application of the RE4SA model improved the design process

by increasing the goal focus of requirements, providing a clear

overview of customer specific environments, and providing an

overview of the location of features and modules in a new soft-

ware version. Colour coding was applied in the first three cases

and allows us to emphasise certain features or models. This was

especially useful to visualize customizations, and new features.

Furthermore, applying the model results in efficient yet detailed

documentation, and we have found some initial proof that it

could be used to improve communication with customers.

We also obtained additional proof for some of the hypotheses

by Molenaar et al [10]. Case 1 shows that the RE4SA model can

support placement of new functionalities in the software. The

identified use cases for the SA aspects in the expert evaluation

also provides evidence for the hypothesis that the model can be

used to guide and support testing activities. Finally the version

update case shows that the model can potentially be used for re-

lease planning.

In this research the hypothesis [10] that there would be a 1:1

relationship between USs and features seems not to hold true.

This can be explained as multiple roles might require a specific

feature, which would result in multiple USs per feature. Multiple

features could also solve a single US as seen in Fig. 6. For the

cardinality between ES and modules our findings were more

consistent with the expected cardinality, as in two cases there

was a 1:1 relationship and in one there was a 1:1.25 relationship.

A. Validity threats

We have tried to minimalize the validity threats by following

the case study guidelines [18], building on previous research [10,

15, 21], and performing four case studies, which should increase

the precision due to data triangulation [18]. However, as with all

case studies, there are validity threats that limit the generaliza-

bility of our research. All of the cases were focused on a single

enterprise software application, and focused on single company.

Forza IT group provided all available documentation, and time

of experts which facilitated the research, however since the re-

search was done in combination with an internship this might

lead to a bias in the results. Since the interviewees all knew the

interviewer, and that they were part of a study, might have led to

more positive reactions. As mentioned in the expert interviews

section, the experts had limited experience with user stories.

This could cause validity threats as they might have a more fa-

vourable opinion because they were shown ‘something new’.

This is somewhat limited as it has also been introduced from a

second source aside from this research (the partnership). Fur-

thermore, the effectiveness of user stories has been proven in

previous research, and by the high adoption numbers. It is also

possible that due to general human resistance to change, the re-

actions were less positive than if they had been familiar with

US’s. Finally, as Forza did not have a completely structured

method for their projects. This could have led to more positive

interview reactions since any structured method might be an im-

provement.

B. Future research

While we have obtained proof that the RE4SA can be applied

effectively in this case study, it would be very beneficial to have

more research and case studies available to provide additional

evidence for the findings in this research. One particularly inter-

esting aspect that we would like to perform more research on, is

how effective the RE4SA concepts are in communication with

customers, as the findings in this research were all based on

views from the practitioners. Furthermore, our scope was mostly

on the design phase, this research could be continued by apply-

ing the model with a higher focus on the requirements elicitation,

and development phases.

For outsourcing development, designing the solution with

the RE4SA model and enforcing the creation of features as de-

scribed in the feature diagram might lead to effective results.

Outsourcing development often has the issue that the developers

lack context information of the application and possibly end up

creating the wrong solutions. Further research on application of

the RE4SA model on outsourced development could provide

proof for this hypothesis.

We also identified a possibility to support the RE4SA model

through software tools. By linking all concepts in a tool, the

amount of manual work required to use the method can be min-

imized and the traceability between the RE and SA disciplines

can be fully utilized. Utilizing natural language processing it

might also be possible to automate creation of the SA based on

a requirements set.

Finally, we would like to investigate automation of require-

ments reporting through speech and action recognition, similar

to the research on automation of medical reporting in Care2Re-

port [24].

ACKNOWLEDGMENT

We would like to thank the GRIMM research group at

Utrecht University for their feedback and comments throughout

the research. We would also like to thank Forza IT group for

their assistance, input on the research, and access to artifacts and

experts.

REFERENCES

[1] A. Aurum and C. Wohlin, “Requirements Engineering: Setting

the Context”, in Engineering and Managing Software

Requirements, A. Aurum and C. Wohlin, Red. Berlin/Heidelberg:

Springer-Verlag, 2005, pp. 1–15.

[2] A. Smith, D. Bieg, and T. Cabrey, “PMI’s pulse of the profession

indepth report: Requirements management–a core competency

for project and program success,” Project Management Institute,

Newtown Square, PA, 2014

[3] D. M. Fernández e.a., “Naming the pain in requirements

engineering: Contemporary problems, causes, and effects in

practice”, Empirical Software Engineering, vol. 22, nr. 5, pp.

2298–2338, okt. 2017.

[4] P. Clements, D. Garlan, R. Little, R. Nord, and J. Stafford,

“Documenting software architectures: views and beyond”, in 25th

International Conference on Software Engineering, 2003.

Proceedings., Portland, OR, USA, 2003, pp. 740–741.

[5] N. Rozanski and E. Woods, Software systems architecture:

working with stakeholders using viewpoints and perspectives.

Upper Saddle River, NJ: Addison-Wesley, 2012.

[6] M. Lindvall and D. Muthig, “Bridging the Software Architecture

Gap”, Computer, vol. 41, nr. 6, pp. 98–101, jun. 2008.

[7] B. Nuseibeh, “Weaving together requirements and architectures”,

Computer, vol. 34, nr. 3, pp. 115–119, mrt. 2001.

[8] G. Lucassen, F. Dalpiaz, J. M. van der Werf, and S. Brinkkemper,

“Bridging the Twin Peaks -- The Case of the Software Industry”,

in 2015 IEEE/ACM 5th International Workshop on the Twin

Peaks of Requirements and Architecture, Florence, Italy, 2015,

pp. 24–28.

[9] Panorama, “Biggest ERP Customization Challenges.” 2014 ERP

report retrieved from: https://www.panorama-

consulting.com/tuesday-poll-erp-customizations/

[10] S. Molenaar, S. Brinkkemper, A. Menkveld, T. Smudde, R.

Blessinga, F. Dalpiaz. “On the Nature of Links between

Requirements and Architectures: Case Studies on User Story

Utilization in Agile Development,” unpublished.

[11] I. van de Weerd and S. Brinkkemper, ‘Meta-modeling for

situational analysis and design methods’, in Handbook of research

on modern systems analysis and design technologies and

applications, IGI Global, 2009, pp. 35–54.

[12] S. A. Fricker, ‘Software Product Management’, in Software for

People, A. Maedche, A. Botzenhardt, and L. Neer, Eds. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2012, pp. 53–81.

[13] M. Kassab, ‘The changing landscape of requirements engineering

practices over the past decade’, in 2015 IEEE Fifth International

Workshop on Empirical Requirements Engineering (EmpiRE),

Ottawa, ON, Canada, 2015, pp. 1–8.

[14] G. Lucassen, F. Dalpiaz, J. M. E. M. van der Werf, and S.

Brinkkemper, ‘The Use and Effectiveness of User Stories in

Practice’, in Requirements Engineering: Foundation for Software

Quality, vol. 9619, M. Daneva and O. Pastor, Eds. Cham:

Springer International Publishing, 2016, pp. 205–222.

[15] G. Lucassen, M. van de Keuken, F. Dalpiaz, S. Brinkkemper,

G.W. Sloof and J. Schlingmann, “Jobs-to-be-Done Oriented

Requirements Engineering: A Method for Defining Job Stories.”,

in International Working Conference on Requirements

Engineering: Foundation for Software Quality: Cham: Springer

International Publishing, 2018, pp. 235-252.

[16] S. Brinkkemper and S. Pachidi, ‘Functional Architecture

Modeling for the Software Product Industry’, in Software

Architecture, vol. 6285, M. A. Babar and I. Gorton, Eds. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2010, pp. 198–213.

[17] M. Cohn, User Stories Applied: for Agile Software Development.

Redwood City, CA, USA: Addison Wesley Professional, 2004.

[18] P. Runeson and M. Höst, ‘Guidelines for conducting and

reporting case study research in software engineering’, Empirical

Software Engineering, vol. 14, no. 2, pp. 131–164, Apr. 2009.

[19] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S.

Peterson, ‘Feature-Oriented Domain Analysis (FODA)

Feasibility Study’:, Defense Technical Information Center, Fort

Belvoir, VA, Nov. 1990.

[20] D. Traynor, ‘Intercom on Jobs-to-be-done.’ Book retrieved from

interface.com

[21] B. Shneiderman, ‘A Task by Data Type Taxonomy for

Information Visualizations’. In The craft of information

visualization. Morgan Kaufmann, 2003, pp. 364-371

[22] Seffah, A., Donyaee, M., Kline, R. B., & Padda, H. K. “Usability

measurement and metrics: A consolidated model.” Software

quality journal, 14(2), 2006, pp. 159-178.

[23] Eclipse modelling tool , 2019

https://www.eclipse.org/downloads/packages/release/kepler/sr2/

eclipse-modeling-tools

[24] Maas, L., Geurtsen, M., Nouwt, F., Schouten, S., van de Water,

R., van Dulmen, S., olde Hartman, T., Noordman, J., Dalpiaz, F.,

van Deemter, K., Brinkkemper, S., “The Care2Report System:

Automated Medical Reporting as an Integrated Solution to

Reduce Administrative Burden in Healthcare. Unpublished paper

submission.” unpublished, 2019.

https://www.panorama-consulting.com/tuesday-poll-erp-customizations/
https://www.panorama-consulting.com/tuesday-poll-erp-customizations/
https://www.eclipse.org/downloads/packages/release/kepler/sr2/eclipse-modeling-tools
https://www.eclipse.org/downloads/packages/release/kepler/sr2/eclipse-modeling-tools

B. Glossary

Term Definition used in this research

Module
A module is a part of the software with a well-
defined functionality that can be developed
independently (Parnas, 1972).

Feature

A feature is a smaller scale element in software
architecture and can be defined as “A
prominent or distinctive user-visible aspect,
quality, or characteristic of a software system
or systems” (Kang, Cohen, Hess, Novak, &
Peterson, 1990).

Customisation

Customisation is meant to describe changes or
additions to the functionality available in the
standard software (Light 2001). In this
research, customisation is the collective term
for modification, add-ons and other types of
changes to software to fit the context of a
customer.

Add-on

An add-on is a software extension that adds
extra functionalities to a program. It may
extend certain functions within the program,
add new items to the program's interface, or
give the program additional capabilities.
(Techterms.com)
An add-on system consists of modules of
program codes that are plugged into the ERP
system’s user exits. (Ng, 2012)

Modification

Changes made to existing functionalities in the
software product, these are the changes Light
(2001), identified as the biggest maintenance
risk.

Implementation

Implementation in the information technology
context refers to the post-sales process of
guiding a client from purchase to use of the
software or hardware that was purchased
(Wikipedia, 2019).
ERP implementation has a life cycle that starts
with the decision to use the application and
ends with the go live stage. (Moon, 2007)

Update
Release of a new version of software. For
example JDE Edwards version 9.2

Upgrade

An upgrade is generally a replacement of
hardware, software or firmware with a newer
or better version, in order to bring the system
up to date or to improve its characteristics.
(Wikipedia, 2018)

Retrofit
Recreation of existing customisations when
software is upgraded. This way it is ensured
that no functionality is lost in an upgrade.

User exits

User exits are routines that allow for the
addition of customized programs without
affecting the standard program and its
features. When executing a software package
for a certain predefined event, a program may
invoke a subroutine. If a user exit is defined,
the default subroutine can be replaced with
one customized by the package client to add
customized functionality. (techopedia, 2018)

Enterprise application software

A type of software that is ready-made and
designed to be easily implemented in existing
systems. Enterprise applications typically meet
one or more of the following characteristics:
• They are designed to support the needs of a
business, at either a departmental or larger
organizational unit;
• They are relatively expensive to build or
license ($50,000 - $5,000,000+);
• They have complex deployment and
operational requirements;
• While they can be operated as an
independent application, they needs of the
business are often best served when they are
integrated with other enterprise applications
(Hohmann, 2003)

Enterprise resource planning

Software providing integrated functions for
major business functions such as production,
distribution, sales, finance and human
resources management.” (Chaffey, 2009)

User story
A description of a functionality that will be
valuable to a user or purchaser (Cohn, 2004)

Epic story
An Epic is a user story that is too big to be
implemented and can be deconstructed in
multiple smaller user stories (Cohn, 2004)

Functional architecture diagram

A Functional Architecture Diagram
(FAD) contains modules that resemble the
functions of a software product. (Brinkkemper
& Pachidi, 2010)

C. Current method PDD

The non-customisation sections of the PDD have been left out of this appendix, as they contain

confidential information that is out of scope for this research.

Activity table of the SCANMAN implementation and customisation process.

Activity Sub activity Description

Support

If no other customisation is required by the
customer, they move to the support process.
In this they can still receive support when they
need it for the time determined in the SALES
AGREEMENT

Customisation design

Customisation
request

If the customer requires additional
functionalities, they will communicate this to
the project manager.

Gather requirements

When a customer places a request for
additional customisation, the project manager
will contact the customer to gather
requirements

Discuss feasibility

When the project manager has a clear
overview of the customers’ requirements, he
will discuss this with relevant staff:
- Developers are consulted to determine if

the requested customisation is possible,
- the SCANMAN committee is consulted to

see if it matches the goals of the
application

- Sales department is consulted to
determine if the customer needs to sign a
SALES AGREEMENT for the development
of the customisation.

If the request is not feasible the customer will
be contacted and the request will be revised

Create JIRA ticket

The project manager will create a JIRA TICKET
and assigns this to the relevant employee that
needs to create the functional design for the
customisation.

Create functional
design

The functional consultant creates a functional
design for the customisation. Once the design
is created this is discussed with the customer
to see if he approves of the solution.

Customisation signoff
The project manager discusses the designed
customisation with the customer and obtains
a CUSTOMER SIGNOFF.

Customisation
development

Develop
customisation

The developer creates the CUSTOMISATION
based on the FUNCTIONAL CUSTOMISATION
DESIGN.

Request testing in
JIRA

The developer assigns the JIRA ticket for the
customisation to someone in quality control to
have it tested.

Test solution

The quality control employee tests the
customisation to see if it meets the
requirements and if the test scenarios can be
completed. If the testing is unsuccessful the

ticket is reassigned to the developer with an
overview of the test scenarios that failed, the
developer can then restart the development.

Validate
customisation

The SCANMAN committee validates the
customisation to see if they approve and
decides if it can be implemented at the
customer.

Inform customer

The project manager informs the customer of
the solution and creates a deployment plan for
the customisation to the customers test
environment.

Deploy to test
environment

The technical consultant deploys the
customisation to the customers test
environment.

Test solution

The quality control employee repeats the tests
for the customisation on the customers test
environment. The testing verifies if the
customisation performs as expected in the
customers’ environment.

Plan deployment
The project manager contacts the customer to
plan the deployment of the customisation to
the production environment of the customer.

Deploy to PD
environment

The technical consultant moves the
customisation to the customers production
environment according to the DEPLOYMENT
PLAN

Share development
with team

Once the development is completed and
accepted, the project manager shares
knowledge gained and the new customisation
with the rest of the SCANMAN team.

Discuss fit for future
release

Finally, the SCANMAN committee discusses
whether or not the customisation should
become part of the standard package in a
future release.

Concept table of the SCANMAN implementation and customisation process.

Concept Description

TEST RESULT
A collection of the results of the TEST
SCENARIOs.

TEST SCENARIO

A scenario used to test a specific functionality
of the application. The scenario has specific
expected results and indicates if this
succeeded or failed.

CUSTOMISATION REQUEST

The customer wants a specific functionality to
be included in the application, and will place a
CUSTOMISATION REQUEST. This can be done
through email, meetings or telephone.

REQUIREMENTS TEMPLATE

The template used to document
CUSTOMISATION REQUESTs includes
information on the goals of the customer and
the requirements.

JIRA TICKET

A ticket in JIRA that details a certain issue that
needs to be resolved. In this context, there is a
JIRA for general development, and one for
customer specific development. A JIRA TICKET
is assigned to the staff member that needs to
act on it.

ATTACHMENT
A file that is (optionally) added to a JIRA
TICKET, for example a screenshot included in a
bug report ticket.

FUNCTIONAL CUSTOMISATION DESIGN

The FUNCTIONAL CUSTOMISATION DESIGN
for a specific customisation that can be used
by developers to see what they need to
develop. It is currently done in a free format
depending on the staff and project.

CUSTOMER SIGNOFF

A formal agreement by the customer
confirming that they approve of the solution
proposed in the FUNCTIONAL
CUSTOMISATION DESIGN.

CUSTOMISATION
The actual developed customisation to fulfil
the CUSTOMISATION REQUEST.

CUSTOMISATION EVALUATION
In this evaluation the CUSTOMISATION is
evaluated to determine if it matches with the
FUNCTIONAL CUSTOMISATION DESIGN.

DEPLOYMENT PLAN
A plan for determining the process for
deployment of the customisation in the
customer’s environment.

CUSTOMISATION DEPLOYMENT
The actual deployment of the customisation in
the customer’s environment.

CUSTOMISATION REPORT
A report that documents the functional design
and customisation specific details, to be used
for future reference.

RELEASE PLAN
A RELEASE PLAN that details what functionality
should be included in a specific future release
of the application.

D. RE4SA situational method PDD

Activity table of the RE4SA situational method

Activity Sub activity Description

Customisation design

Customisation
request

If the customer requires additional
functionalities, they will communicate this
to the project manager. In the case that a
request is deemed not feasible, the project
manager will communicate with the
customer to either reject the request, or
change the request to something that is
feasible.

Elicit requirements

Domain experts are interviewed to create
the INTERVIEW TRANSCRIPT / NOTES and
DOMAIN KNOWLEDGE DOCUMENTATION is
gathered so that the REQUIREMENTS can be
gathered from these sources.

Discuss feasibility

When the project manager has a clear
overview of the customers’ requirements,
he will discuss the feasibility with relevant
staff:
- Developers are consulted to determine

if the requested customisation is
possible,

- the SCANMAN committee is consulted
to see if it matches the goals of the
application

- Sales department is consulted to
determine if the customer needs to sign
a SALES AGREEMENT for the
development of the customisation.

If the request is not feasible the customer
will be contacted and the request will be
revised

Epic story formulation
(Customisation design)

Identify problematic
situations

Based on the gathered REQUIREMENTs the
PROBLEMATIC SITUATIONs that need to be
solved are identified and included in the first
section of an EPIC STORY.

Identify functional
motivation

For each PROBLEMATIC SITUATION a
functional MOTIVATION is described. This
MOTIVATION describes the change that is
needed to solve the problematic situation.

Identify expected
outcome

For each of the PROBLEMATIC SITUATIONs
an expected OUTCOME is identified. This
sketches the situation that is to be achieved.

Write project brief

Project briefs are created for each EPIC
STORY, describing the problem to be solved,
the related EPIC STORIES, the SUCCES
MEASURES and the scope.

Create Epic in JIRA
For the EPIC STORIES a JIRA EPIC is created,
which is assigned to the employee who
should work on it.

Remove inconsistent
stories

The EPIC STORIES are compared to check for
inconsistencies, like duplicate or
contradictory stories. If these are detected
they are removed.

User story formulation
(Customisation design)

Define granularity

The minimum required granularity is set for
the definition of USER STORIES, this is the
level of detail in which a USER STORY can’t
be broken up into multiple stories. Stories
that can be broken up should be formulated
as an EPIC STORY instead.

Write user stories
For each EPIC STORY, USER STORIES are
written to describe the goals of the different
stakeholders.

Review user stories
and epic stories

The EPIC STORIES and USER STORIES are
reviewed to see if the USER STORIES capture
all elements of the EPIC STORIES, and to see
if they adhere to the Quality user stories
framework. This step can be supported
through the use of ontology models
generated from the user stories.

Functional architecture
diagram creation
(Customisation design)

Create module for
each epic story

A MODULE (or submodule) will be designed
for each EPIC STORY. The MODULE has to
provide a solution to the PROBLEMATIC
SITUATION. The MOTIVATION component is
used to see what functional name the
MODULE should be given.

Add modules to
functional
architecture diagram

The new modules are added to the existing
functional architecture diagram at the
correct level.

Create features for
user stories

The requirements in the user stories are
mapped to new features that fulfil these
requirements.

Add features to
feature diagram

The new features are added to the
functional architecture diagram and colour
coded appropriately. The resulting feature
diagram shows the intended architecture.

Identify epic
dependencies

Based on the OUTCOME and PROBLEMATIC
SITUATION of each MODULEs EPIC STORY,
identify dependencies between MODULEs.

Model information
flows

Based on the OUTCOME and PROBLEMATIC
SITUATION of each EPIC STORY, identify and
connect MODULEs with INFORMATION
FLOWs. This step can be supported by
ontology models generated from the user
stories

Compare functional
architecture to US &
ES

The intended architecture that was defined,
is checked against the requirements to
decide if they match.

Analyse
requirements
satisfaction

Considering the REQUIREMENTs, the model
is analysed to see if all have been considered
and satisfied. If this is not the case, another
iteration of customisation design is started,
improving the current version.

Customisation design
Customisation
signoff

The project manager discusses the designed
customisation with the customer and
obtains a CUSTOMER SIGNOFF.

Customisation
development

Select user stories for
development

A set of USER STORIES is selected for the
first development cycle. This is based on the
expected effort of the USER STORIES and
their priority.

Develop user stories

The USER STORY SET is considered, and
FEATURES that provide a solution for each
USER STORY are developed. These solutions
are collected in the CUSTOMISATION that is
being developed.

Test solution

The quality control employee tests the
customisation to see if it meets the
requirements and if the test scenarios can
be completed. If the testing is unsuccessful
the ticket is reassigned to the developer
with an overview of the test scenarios that
failed, the developer can then restart the
development.

Update feature
diagram

When the testing is successful and the
FEATUREs are considered to be high enough
quality to be included, the FEATURE
DIAGRAM is updated to include the new
FEATURES, colour coded to easily detect
which features are part of customisation
instead of the standard package.

Validate
customisation

The SCANMAN committee validates the
customisation to see if they approve and
decides if it can be implemented at the
customer.

Inform customer

The project manager informs the customer
of the solution and creates a deployment
plan for the customisation to the customers
test environment.

Deploy to test
environment

The technical consultant deploys the
customisation to the customers test
environment.

Test solution
The quality control employee repeats the
tests for the customisation on the
customers test environment. The testing

verifies if the customisation performs as
expected in the customers’ environment.

Plan deployment

The project manager contacts the customer
to plan the deployment of the
customisation to the production
environment of the customer.

Deploy to PD
environment

The technical consultant moves the
customisation to the customers production
environment according to the DEPLOYMENT
PLAN

Share development
with team

Once the development is completed and
accepted, the project manager shares
knowledge gained and the new
customisation with the rest of the
SCANMAN team.

Discuss fit for future
release

Finally, the SCANMAN committee discusses
whether or not the customisation should
become part of the standard package in a
future release.

Support

If no other customisation is required by the
customer, they move to the support
process. In this they can still receive support
when they need it for the time determined
in the sales agreement.

Concept table of the RE4SA situational method

Concept Definition

CUSTOMISATION REQUEST

The customer wants a specific functionality to
be included in the application, and will place a
CUSTOMISATION REQUEST. This can be done
through email, meetings or telephone.

INTERVIEW TRANSCRIPT / NOTES A recording or set of notes from which the
requirements can be extracted

DOMAIN KNOWLEDGE DOCUMENTATION The documents that contain context
information about the customer’s processes
and practices from which requirements can be
extracted. These documents can be in various
forms, like manuals, webpages, project
documents etc.

REQUIREMENT A requirement is a functional description of a
new functionality that is desired by a
stakeholder.

PROBLEMATIC SITUATION The first part of an EPIC STORY that provides
the contextual starting point to understand
why the actor has a motivation and goal. It
should describe a situation which confronts
the actor with a concrete problem. (Lucassen
et al., 2018; Klement, 2013)

FUNCTIONAL MOTIVATION The second part of an EPIC STORY provides the
central element of motivation. It should
capture the change that needs to occur to
reach the expected outcome, the
FUNCTIONAL MOTIVATION generally already
implies a solution to alleviate the problematic
situation. (Lucassen et al., 2018)

EXPECTED OUTCOME The EXPECTED OUTCOME sketches the desired
to-be situation that the actor wants to achieve
by satisfying the motivation. The EXPECTED
OUTCOME conveys additional context needed
to satisfy the motivation in the right way.
(Lucassen et al., 2018)

EPIC STORY An EPIC STORY a formulated requirement on a
high level than a USER STORY consisting of a
PROBLEMATIC SITUATION, a FUNCTIONAL
MOTIVATION, and an EXPECTED OUTCOME

PROJECT BRIEF A PROJECT BRIEF is a one-page document that
describes the problem to be solved, scope,
relevant EPIC STORIES and the SUCCES
MEASUREs.

SUCCESS MEASURE A criteria that needs to be met in order to
consider the problem as solved.

JIRA EPIC An entry in a JIRA PROJECT, which describes an
EPIC STORY. It contains a summary, assignee,
description, priority and a sprint.

JIRA PROJECT A project in JIRA that collects issues. A project
can be used to coordinate the development of
a product, and track its progress.

USER STORY A description of a functionality that will be
valuable to a user or purchaser (Cohn, 2004).
A USER STORY is a formulated requirement
that consists of a role, action, and benefit.

FEATURE A prominent or distinctive user-visible aspect,
quality, or characteristic of a software system.
(Kang et. al, 1990)

MODULE A part of the software with a well-defined
functionality that can be developed
independently (Parnas, 1972).

MODULE INPUT The MODULE INPUT is a visualisation of the
incoming information flow for a MODULE in
the FUNCTIONAL ARCHITECTURE DIAGRAM

MODULE OUTPUT A visualisation of the outgoing information
flow for a MODULE in the FUNCTIONAL
ARCHITECTURE DIAGRAM

INFORMATION FLOW The relation between two modules, containing
both MODULE INPUTs and MODULE OUTPUTs.

FUNCTIONAL ARCHITECTURE DIAGRAM A FUNCTIONAL ARCHITECTURE DIAGRAM

(FAD) contains MODULEs that resemble the
functions of a software product. (Brinkkemper
& Pachidi, 2010)

FUNCTIONAL ARCHITECTURE The FUNCTIONAL ARCHITECTURE represents
at a high level the software product's major
functions from a usage perspective, and
specifies the interactions of functions,
internally between each other and externally
with other products. The FUNCTIONAL
ARCHITECTURE consists of at least a
FUNCTIONAL ARCHITECUTRE DIAGRAM and a
FEATURE DIAGRAM. It can also contain
different documentation describing functions,
or other models.

FEATURE DIAGRAM Features can be modelled with a FEATURE
DIAGRAM, this model is a hierarchically
arranged set of features (Riebisch, Streitferdt,
& Pashov, 2004), and displays if features are
mandatory or optional. This model gives an
overview of all features that need to be
included in a module.

CUSTOMER SIGNOFF

A formal agreement by the customer
confirming that they approve of the solution
proposed in the FUNCTIONAL
CUSTOMISATION DESIGN.

CUSTOMISATION
The actual developed customisation to fulfil
the CUSTOMISATION REQUEST.

CUSTOMISATION EVALUATION
In this evaluation the CUSTOMISATION is
evaluated to determine if it matches with the
FUNCTIONAL CUSTOMISATION DESIGN.

TEST RESULT
A collection of the results of the TEST
SCENARIOs.

TEST SCENARIO

A scenario used to test a specific functionality
of the application. The scenario has specific
expected results and indicates if this
succeeded or failed.

DEPLOYMENT PLAN
A plan for determining the process for
deployment of the customisation in the
customer’s environment.

CUSTOMISATION DEPLOYMENT
The deployment of a customisation to the
customer’s environment.

SCANMAN INSTALLATION

The specific version of SCANMAN that is
installed in the customers’ environment
configured and possibly customised for that
customer.

CUSTOMISATION EVALUATION
In this evaluation the CUSTOMISATION is
evaluated to determine if it fulfils the
REQUIREMENTS.

CUSTOMISATION REPORT
A report that documents the functional design
and customisation specific details, to be used
for future reference.

RELEASE PLAN
A RELEASE PLAN that details what functionality
should be included in a specific future release
of the application.

E. Case study protocol

Preamble

The purpose for the case study, is threefold. Firstly, we aim to obtain some real world data for the

use of the RE4SA model in practice. In order to achieve this, the situational method was designed

that uses fragments of RE4SA and introduces them in the method currently used at the case

company. This method will be used to perform the case studies and get data on how the outputs

will function, and how they are received. Secondly, the findings from the different cases will allow

for refinements to the method, as we detect flaws in the initial design. Thirdly, to obtain opinions

from practitioners on the concepts of the RE4SA method. This will also give us an indication for

the chance that the model will actually be implemented by a company.

The results of the case studies will be published as a part of a master thesis for the Business

Informatics master at Utrecht University. Data will be anonymised so that the client organisations

can’t be identified. Interviews will be summarised for the findings, and these summaries will be

included in the appendix of the thesis. No names will be included in this summary, except for the

case company name (not names of individuals who work at the company). When people outside

of the case company are interviewed, a short generalised introduction of the company will be

included in the introduction of the interview (e.g. Company B is a company that specialises in

software development, the interviewee is a product manager at this company). Interviews will be

recorded for personal use only, data might be extrapolated from the answers. (E.g. 60% of

interviewees were positive about the outcomes of the situational method)

General

In the case study, two types of cases will be investigated. The first type is a retroactive case study,

which means the method will be applied to data contained in documentation of completed

projects. These cases will be evaluated with employees that were involved with the project, and

when possible with the customer that initiated the project. The second type is a field study, where

the situational method will be applied to an ongoing project, and will be presented as an

alternative documentation / design method. In the field studies, the current method and the

situational method will both be performed in parallel to obtain representative information for

comparison of the methods, and outputs.

Procedures

Retroactive case study: for the retroactive case study, the following steps will be completed

1. Case selection: The cases that are selected need to fulfil a couple of criteria, first they must

detail cases in which customisation was performed. Second, they have to be documented

in enough detail to perform a case study without having to guess the inputs (or knowledge

needs to be available through employees). Additionally, recent projects will be prioritised,

because they will be the more representative for the current method than older projects,

as the current method has likely been improved / changed.

2. Obtain case information: The documentation available for the case will be analysed to

determine what the requirements for the customer were, and the JIRA issues for these

projects will be considered. When possible employees will be asked for additional

information.

3. Complete all steps of the design section of the situational method. This results in a

functional design report, containing:

 An explanation of the customisation request,

 An description of the source of the requirements,

 A set of epic stories,

 A project brief for each epic story,

 A set of user stories for each epic story,

 A functional architecture diagram

 A feature diagram

4. Evaluate the report with two to three people involved in the project, with different roles

within the project. When possible, the customer will also be contacted for an evaluation

of the design. This evaluation will be done using a semi-structured interview. A summary

of the interviews will be created that contains the most important findings, this summary

will be included in the appendix of the thesis.

5. Analyse the findings of the case study, this includes the findings from the evaluation, and

the relation of the concepts (e.g is there a feature for each user story, how many user

stories on average per epic story, etc.)

Field study: for the field study cases, the following steps will be completed

1. Case selection: The cases selected for the field study, should be ongoing projects. They will

be selected by discussing the options with steering group and product manager of the case

company. Cases are required to involve some development of customisations, a case with

just the implementation is not interesting for the study.

2. Obtain case information: Case information will be obtained by attending meetings

relevant to the ongoing project, and by discussing the project with employees that are

involved in the project. If possible, the customer will also be contacted to give more

information on the customisation request.

3. Complete all steps of the design section of the situational method. This results in a

functional design report, containing:

 An explanation of the customisation request,

 An description of the source of the requirements,

 A set of epic stories,

 A project brief for each epic story,

 A set of user stories for each epic story,

 A functional architecture diagram

 A feature diagram

Note: For the case study it will most likely not be possible to perform development process

as suggested in the situational method, as the method is still in the investigation / testing

phase. Performing multiple projects using this new development method, will put the

company’s projects at risk as employees are not yet trained to work with user stories,

sprints etc.

4. Evaluate the report with two to three people involved in the project, with different roles

within the project. When possible, the customer will also be contacted for an evaluation

of the design. This evaluation will be done using a semi-structured interview. A summary

of the interviews will be created that contains the most important findings, this summary

will be included in the appendix of the thesis.

5. Analyse the findings of the case study, this includes the findings from the evaluation, and

the relation of the concepts (e.g is there a feature for each user story, how many user

stories on average per epic story, etc.)

6. Verify the intended architecture created in step 3, with the actual developed solution. If

the RE4SA outputs were used in the development, this can be used to test how different

the intended architecture is compared to the actual architecture. If the outputs were not

used, it will be used to see which of the user stories are solved by the actual solution.

Research instruments

The research instruments will be a semi-structured interview, and the outputs of the case study

in which the situational method is applied.

Semi-structured interview:

The semi structured interview will contain a list of questions that should be asked in each of the

interviews to evaluate the method and obtain opinions from the staff members. The interview is

kept semi-structured, in order to allow for more in depth conversation and to ask more about

statements made by the interviewee. This means in each of the interviews the following questions

will be asked, but not necessarily in the same order, and based on the conversation additional

questions might be asked.

The interview will start with a short introduction of the research and an explanation of how the

gathered data will be used. The participant will then be presented with the collection of artefacts

created in the case study, and an explanation of the intended use. After they have had the chance

to look at the epic stories, user stories, feature diagram and functional architecture they will be

asked to answer the following questions and prompted for further information when relevant (and

why?):

 Questions:

1. Are you familiar with user stories?

a. Have you worked with user stories before?

2. Do you think this way of documenting requirements captures the customer’s wishes?

3. Do you think these documents contain enough information to start development?

a. (If no) What other information would be needed?

4. How would you use the software architecture figures in your job?

a. Would you use this in communication scenarios with customers?

b. Would it be beneficial when you have to do another customisation for a customer

at a later time?

5. Do you think the link between the epic stories and modules makes sense for the creation

of a functional design?

6. Do you think this way of documenting a functional design allows developers more freedom

in developing solutions?

7. Do you think the project briefs are necessary, or would just the architecture models and

requirement set contain enough information?

8. Do you think the suggested design and development method would be an improvement

over the current process?

9. Do you think the use of the user stories, and epics would make communication with

customers easier?

10. Compared to the current method, what benefits of the suggested method can you think

of?

a. And disadvantages?

11. Do you think using user stories and epic stories will improve working with changes in the

requirement set?

Consent form

Thank you for your willingness to participate in this research. The goal of this interview is to get

the required data to evaluate the use of the RE4SA (requirements engineering for software

architecture) model. A sound recording will be made for the interview, in order to ensure that no

information is missed, this recording will only be used for the purposes of this specific research.

The information gained from this interview will be anonymised, summarized and included in the

appendix of my thesis. Some of your answers will also be used to generate statistics (e.g. 60% of

participants think the documents contain enough information to start development.). The

obtained data will only be used for the purposes of this research.

Participating in this research is voluntary. All information gathered will be used confidentially. You

can stop the experiment at any time and withdraw your permission given in this form. If you have

any questions after the experiment feel free to contact me (tjerk.spijkman@forzaconsulting.eu)

Data analysis guidelines

Data analysis guidelines

The case study evaluation will predominantly result in qualitative information, this means that

most findings will be based on opinions from interviewees. However, the architecture will also be

analysed to obtain content metrics. The following metrics will be extracted:

 Number of modules

 Number of composite features

 Number of atomic features

 Average atomic features per submodule

 Average degree

 Average depth

 Ratio of epic stories to user stories (multiplicity)

 Ratio of modules to features

 Ratio of features to user stories

mailto:tjerk.spijkman@forzaconsulting.eu

F. Case study reports

Case study 1: Tracing Customer Requirements to the Software Architecture

1 Customisation request:

The customisation request stemmed from the implementation of the standard version of

SCANMAN JDE at a new customer. This customer had a list of requirements that needed to be met

by SCANMAN based on their agreement with the sales department. This case study is a retroactive

case study, which means that the requirements were already documented, and a solution was

already developed. However, this solution will only be considered at the end of the case study,

and will not be used to formulate the ES / US set.

2 Elicit requirements:

The customer supplied a list of requirements and already prioritised them on mandatory and

preferred. This list of 46 requirements are analysed to formulate ES and US, which will then be

used to check against the current implementation. These requirements will be compared to the

current implementation to see if there are features / modules that already fulfil the requirements.

3 Epic story formulation:

None of the requirements were determined to be on a higher level than user story, so no epic

stories were formulated.

4 Project briefs

Since there are no new epic stories formulated, no new project briefs were created.

5 User stories

The list of 46 requirements led to 7 non-functional user stories, 32 functional user stories 2 of

which require new functions not included in the standard version, and 2 of the requirements were

rejected. The user stories were linked to the features in the feature diagram template that was

reconstructed for the case studies. The two user stories that could not be linked to existing

features were marked yellow in the table

Non-functional:

1. As a manager, I want the application to support processing more than 40.000 invoices, so

that I can ensure that we can process all invoices we receive.

2. As a manager, I want to retain invoices for seven years, so that I can access them at all

times they are relevant.

3. As a manager, I want to ensure that the application integrates with JD Edwards 9.2, so

that it matches our current business practices.

4. As a manager, I want to ensure that the application does not require specific hardware

for scanning, so that we don’t need to replace our current hardware.

5. As a manager, I want to ensure that the application works without being reliant on

browser plugins, so that it works in all scenarios

6. As a manager, I want to ensure that the applications works on all modern browsers

(Firefox, Chrome, Safari, IE, Edge), so that employees can use their preferred browser

without impacting their work.

7. As a manager, I want to have a separate environment for testing / development, so that

it does not impact my production environment.

Functional:

 User story Corresponding
feature

1 As a manager, I want to extract invoice data via OCR from scanned
images, so I don’t have to hire people to do this manually.

Scan with OCR

2 As a AP clerk, I want to extract invoice data via OCR from scanned
images, so I only have to confirm the values instead of adding them
manually.

Scan with OCR

3 As a manager, I want to extract invoice data from PDF formatted
invoices, so I can process the most common format for invoices.

Process PDF
format

4 As a manager, I want to ensure that invoices which don’t match a
purchase order are held in an error / hold queue, so that they can be
reviewed manually.

Error detection

5 As a manager, I want to ensure that invoices that contain data errors are
held in an error / hold queue, so that they can be reviewed manually.

Error detection

6 As an AP clerk, I want to see which invoices contain data errors, so that I
can review them manually.

Show only
entries with
error status

7 As an AP clerk, I want to be able to open the invoice image in a pop-out
window, so that I can view it on a second screen and efficiently multi-
task.

Open invoice in
new window

8 As a manager, I want to see who approved an invoice, so that I can
contact the correct employee when an invoice is approved that
should’ve been rejected.

Show approver
number / name

9 As a manager, I want to see any changes made to an invoice, so that I
can recover previous versions.

SCANMAN
audit trail

10 As an AP clerk, I want to view the invoice from within JDE, so that I can
use the image when I verify invoices in the workbench without having to
switch between applications.

Show invoice in
viewer

11 As an approver, I want to view the invoice from within JDE when I’m
approving invoices, so that I can review the image when I suspect an
error in the values.

Show invoice in
viewer

12 As an approver, I want to change the invoice GL dates when I approve an
invoice, so that I can choose the appropriate date for the invoice to be
processed (1.13).

No
corresponding
feature

13 As an AP clerk, I want to select a GL accounts from a list when I need to
insert it, so that I don’t need to memorise all GL accounts.

Visual assist
account
selection

14 As a manager, I want to support 3-way invoice matching, so that I can
leverage all the information we have for an invoice.

Automated 3-
way match

15 As a manager, I want to support 2-way invoice matching, so that I can
compare the values on an invoice to a purchase order.

Automated
voucher match

16 As a manager, I want to support invoice handling for invoices that don’t
have a PO, so those invoices can be processed.

Work with
voucher JE
redistribution

17 As a manager, I want to set up an approval route, so that non-PO invoices
are approved by multiple approvers in a set order

Setup workflow
route selection

18 As an approver, I want to have an approval route, so that invoices that I
approve are automatically forwarded to the next approver.

Setup workflow
route selection

19 As an approver, I want to apply each line item to a GL account, so that
each item can be mapped to the appropriate account

Edit line item

20 As an approver, I want to see a notification for invoices that need my
approval, so that I know which invoices need my attention

Open WF
reminder menu

21 As a manager, I want to set a limit on the gross amount that can be
approved on an account basis, so that I can manage risks and approval
privileges.

Setup workflow
approval

22 As a manager, I want to set up an approval flow based on the total
amount of an invoice, so that I can assure high cost invoices are given
enough attention.

Setup workflow
approval

23 As an approver, I want to forward an invoice to the creator of the
purchase order, so that he can confirm the invoice matches his
intentions.

Forward
referral (JDE)

24 As a manager, I want to use approval routes that are defined in JDE, so
that I don’t need to recreate all these approval routes.

Setup workflow
approval

25 As a manager, I want to be able to set up automatic re-routing for an
invoice if it has not been approved within a certain time, so that invoices
don’t stay unsolved for a long time. 1.25

No
corresponding
feature

26 As an approver, I want to receive reminders for invoices that are close to
automatically re-routing, so that I can prevent invoice escalation and
assure I complete my tasks. 1.25

No
corresponding
feature

27 As a manager, I want to delegate approval tasks to a different employee,
so that the process still functions when someone is sick or on holiday

Setup
delegation

28 As an approver, I want to delegate my approval tasks to a colleague, so
that I don’t return from absence to be greeted by a huge backlog.

Setup
delegation

29 As an approver, I want to be able to add a comment to an invoice, so
that I can elaborate and document why I made a decision.

Edit remark

30 As a manager, I want to be able to track the approval process, so that I
can ensure the process goes as planned.

Data browser /
approved
invoices

31 As a manager, I want to generate customised reports, so that I can easily
obtain the information that is relevant for me.

Filter / export
grid data

32 As a manager, I want to export reports in CSV format, so that I can
perform data analysis using Excel

Export as csv

33 As a manager, I want to generate statistics for the invoice process, so
that I can measure our performance.

Supplier ledger
inquiry.

Not accepted

As a manager, I want to extract invoice data from text and/or excel formatted invoices, so I can

process all formats

The invoice document standard is to use pdf or XML format, excel and word formats

can be saved as PDF to enable processing in SCANMAN

As a manager, I want to enable staff to create internal invoices, so that cheque requisitions can be

replaced.

 Out of scope for the application.

6 Architecture

Since no epics were identified, no changes were made to the functional architecture diagram. The

features identified as solution to the already solved requirements were coloured green in a copy

of the feature diagram, and the new features that are part of the customisation for this customer

were added in red.

Sections of the feature diagram where new features (red) are to be added.

7 Evaluation

This case study was easy to perform, as the requirements were delivered by the customer in a

clear format. The requirements were documented in a table format, with the requirements

already prioritised in mandatory and preferred by the customer. Each of the requirements was

described in 2-3 lines of text. These requirements could then be transformed into user stories,

since this was a retroactive case study, the “so that” part of the user stories was mostly inferred

and not formulated by the actual customer.

Matching the user stories to features in the feature diagram was easy to do. When no feature

could be located that fulfilled the requirement in the user story, it was concluded that a new

feature was required to satisfy the customer. In total 2 of the requirements formulated by the

customer needed development, resulting in three new features. This suggests that only three user

stories, and an updated version of the feature diagram would be needed to start development.

Existing documentation of one of the two requirements could be located, this document contains

three pages of text (1178 words). In this case study, the user stories that needed development

would require about ~100 words, and the two figures. Since the development was still in progress,

the location of the solution in the architecture could not be compared.

Not all questions of the interview protocol could be asked in the evaluation of this case, as some

of them are focused on the epic stories / module level, which was not applicable in this specific

case. In order to still obtain the interviewee’s opinion on these questions, they were presented

with some of the deliverables of the other case studies.

Case study 2: Customised Voucher Match Report

1 Customisation request:

The customisation request stemmed from the implementation of the standard version of

SCANMAN JDE at a new customer. The customer had some requirements for the application that

it currently did not fulfil. The customer required a new way to automatically match invoices to

vouchers, and some additional changes. This case was chosen as it had development on an ES /

module level, and relatively high amount of customisation.

2 Elicit requirements:

Since this case study is done retroactively, obtaining the requirements was done by analysing the

documentation, observation of a knowledge transfer session and issues logged on Jira. The

created functionality was reverse engineered to obtain the set of requirements for this case study.

Since the documentation was limited to issues logged in Jira, they only describe functionality that

was not included when the issue was logged. This means that opposed to the other retrospective

case study, no requirements were matched to existing features except when they were added to

the standard version.

3 Epic story formulation:

When I receive an invoice that does not match an existing purchase order, I want to receive a

report when it exceeds the tolerance set in the ERP, so that the invoice can be rejected.

4 Project briefs

VMA comparison report

When I receive an invoice that does not match an existing purchase order, I want to receive a

report when it exceeds the tolerance set in the ERP, so that the invoice can be rejected.

What problem are we solving and why?

When a purchase order is available in the ERP, this means that it is acknowledged that an invoice

will come in for a certain product at a certain price. If this is tested, and the invoice is different

from the purchase order, this indicates a possible error in either value. Currently someone has to

manually check both files and look long enough until they either find an error in one of the files,

or in the ERP entries. The VMA comparison tool and its report will allow users to quickly read what

the error is, and in which section of a document it occurs.

Relevant epic stories / modules

Supplier ledger inquiry

Reports

Purchase order

Voucher processing

Invoice line items

Success criteria:

 The tool recognizes when there is a difference between the invoice and PO, and runs when

this difference is detected.

 The tool generates a report that shows in which lines of the PO and invoice a difference

occurs.

 The tool generates a report that shows how big the differences are between the PO and

invoice.

 The tool can be set up to ignore differences if they fall within tolerances.

5 User stories

1. As a manager, I want to ensure that all verified invoices contain a invoice number, so that

no invoices can enter the approval process without an invoice number

2. As an approver, I want to be able to access the speed status change when I redistribute

vouchers, so that I can update the pay item status for distributed vouchers.

3. As a manager, I want to use logged vouchers in the voucher match automation, so that

received invoices can automatically be set to on hold when the invoiced goods are not

received yet.

4. As a manager, I want to track freight costs of each invoice, so that transport costs can be

properly monitored.

5. As an AP clerk, I want to be able to sort the worklist using any of the available columns,

so that I can easily find the invoices I need.

6. As a manager, I want to ensure that record reservations are only active when an invoice

is in edit mode, so that the reservation time of a record is minimized and other users can

pick it up as soon as possible.

7. As a manager, I want to see the due date of a record in the redistribution application, so

that I can redistribute records based on when they are due.

When I receive an invoice that does not match an existing purchase order, I want to receive a

report when it exceeds the tolerance set in the ERP, so that the invoice can be rejected.

1. As a manager, I want to set percentage tolerances for matching a invoice to its purchase

order, so that only invoices that differ more than the percentage are rejected.

2. As a manager, I want to set amount tolerances for matching an invoice to its purchase

order, so that only invoices that are below this amount can be processed without a

manual check.

3. As an AP clerk, I want to see why the invoice was rejected, so that I can review the

rejected invoice and see if I can fix the issue manually.

4. As an AP clerk, I want to see what the difference is between the PO amount and the

invoice amount, so that I can see how big the difference is.

5. As an AP clerk, I want to see the amount of the invoice, so that I can check if the ERP

value amount matches the invoice.

6. As an AP clerk, I want to see the amount of the PO, so that I can check if the ERP value

matches the PO.

7. As an AP clerk, I want to see the invoice ID, so that I can locate the invoice when I need

to further act on the matching issue.

6 Architecture

Functional architecture diagrams

SCANMAN Workflow

SCANMAN workbench

SCANMAN setup

SCANMAN processing options

Feature diagrams:

VMA comparison report

Processing options

Tolerance rules

Voucher redistribution

Cancel record reservation

7 Evaluation

The MVM comparison report (which is the biggest customisation in this case study) relies on some

standard JDE functionality. To properly colour code this was a difficult task, as there were multiple

options that had to be considered:

 All standard JDE functions were colour coded cyan in the feature diagram, which would

indicate that the amount tolerance should also be colour coded cyan. However, since the

customised functionality relies on this specific part of the module, it could be beneficial to

colour it differently in order to have it jump out compared to the other JDE components

which is what we want to achieve.

 Since it is linked to a customisation, it could be colour coded red. This would achieve the

goal of catching the attention in the feature diagram. However, it would also be untrue to

the legend for the figure, as these features were not modified, but only used.

 Therefore it was finally decided to use orange colour coding for these features, this colour

is often associated with warning signs. While it might lose a bit of clarity on whether or

not it is a JDE element (as it is not colour coded cyan) this was deemed less important than

having the increased attention that comes with this colour choice.

It could also be decided that this information reliance can be detected from the information flow

between the modules in the FAD, and therefore does not need to be included in the feature

diagram. But in this case it seemed important enough to highlight, as this allows to detect that

updates/ changes in these features from a new JDE version can cause issues in the customisation.

The feature diagram is limited in that it only shows the user interactable features, for this case this

shows in the VMA match report. Only this report is a user visible addition, however all the

technical changes required to generate this report are not included in the feature diagram since

they are not user visible. These user hidden customisations are not visualised in a feature diagram.

The VMA match report has a higher number of features than user stories (23 features, 7 US). This

has a number of possible explanation: It could be that all relevant fields were selected from a list

of existing categories, which would result in a higher number of features than considering which

fields are a must have for a user. Another explanation could be that due to case study limitations

context information was not considered during the user story creation, which was considered in

the actual functionality creation.

Although the feature diagram becomes hard to comprehend in full due to the size of the

application, and number of features, colour coding the FAD can help us locate where customised

features are. By checking the FAD, it becomes possible to see which modules in the feature

diagram should be checked to detect what customer specific changes were made, which allows

the user to quickly zoom to the relevant section of the feature diagram. For example, the user

could see in the top level FAD that the setup was customised, then in the SCANMAN setup FAD it

shows that the SCANMAN related configuration was altered.

Tooling support to automatically allow for drill down navigation between the different FAD’s and

into sections of the feature diagrams would be very useful. This was now done by linking them in

PowerPoint for a proof of concept, but this is not sustainable in a work environment. In order to

most effectively make use of the RE4SA concepts it would be needed to automate the connections

between the different concepts, where clicking on a module would lead to its submodules or its

features depending on the levels of depth. In this case this would be particularly useful due to the

depth of the customised process options.

Case study 3: Version update

1 Customisation request:

While this case does not directly describe a customisation for a single customer, it does detail a

version update. This update collects requirements from many different customers that are to be

included in the standard version of SCANMAN. This case will provide further evidence of using the

situational RE4SA method for designing additional functionality of the case software which should

prevent the need for customer specific customisation.

2 Elicit requirements:

The requirements were obtained through analysis of all the issues and comments logged in the

product JIRA for version 3.8. These issues, designs, comments and solutions were used to

formulate the epic stories and user stories. The issues originate from multiple sources: specific

customer requests deemed to be an overall product improvement, internal suggestions and bug

reports. Since the RE4SA model is focused on creation of new functionality, bug reports were not

included in this case study.

3 Epic story formulation:

When <problematic situation>, I want <motivation>, so that <expected outcome>

When there is an issue with an invoice, I want a way to contact another JDE user, so that the issue

can be resolved by the relevant user.

When invoices are approved (or rejected), I want them to be added to an overview, so

that I can keep track of invoices that completed the approval process

When invoices are not approved after a set amount of days, I want to automatically re-assign /

escalate these invoices, so that I can ensure they are handled in time

4 Project briefs

4.1 Question and Answer

When there is an issue with an invoice, I want a way to ask another JDE user a

question, so that the issue can be resolved by the relevant user, or additional

information can be supplied.

What problem are we solving and why?

Communication between JDE users is mostly done outside of JDE. For example through email,

chat, phone calls etc. It would be valuable to facilitate the asking and answering of questions

within JDE, so users can immediately post a question without interrupting their work. This way

less questions go unasked, and the knowledge in the answers is stored within JDE.

Relevant epics / modules

Workbench (worklist / Invoice header fields (verification) / user information / invoice amounts /

invoice viewer)

Voucher approval

How will we measure success?

 The application allows users to ask a specific user a question

 The application notifies users when a question is asked of them

 The application allows users to answer a question

 The application notifies users when their question is answered

4.2 Invoice reporting

When invoices are approved (or rejected), I want them to be added to an

overview, so that I can keep track of invoices that completed the approval

process

What problem are we solving and why?

Management needs to keep track of invoices, and an overview is required for them to obtain

information about the invoices. For example if an employee has rejected all invoices they received

in the last three weeks, management needs to be able to find this information so they can contact

the employee and obtain more information about the situation.

 Relevant epic stories / modules

Invoice approval

Approval assignment

How will we measure success?

 A report can be generated, which shows invoice acceptance metrics (# accepted, rejected,

open, invoice amounts, etc.) on a specific user basis.

 A report can be generated, which shows an overview of all monthly invoices and their

status plus the number of invoices in each status.

4.3 Invoice escalation

When invoices are not approved after a set amount of days, I want to

automatically re-assign / escalate these invoices, so that I can ensure they are

handled in time

What problem are we solving, and why?

Sometimes invoices are kept in the backlog for too long, this causes issues as invoices are not paid

and suppliers might get annoyed. The escalation module will allow managers to set up escalation

paths, which ensure that if an invoice is not approved in time, a different employee will receive

the invoice and it can still be handled.

 Relevant epic stories / modules

Invoice approval

Approval assignment

How will we measure success?

 The application escalates invoices to a specified user when the escalation date has passed.

 The application sends notifications as set up, when closing in on the escalation date.

 The application tracks which escalations have occurred.

5 User stories

5.1 When there is an issue with an invoice, I want a way to contact another JDE user, so that the

issue can be resolved by the relevant user.

1. As an approver, I want to ask a question to the person who verified the invoice, so that I

can ask them to have another look at invoices that have mismatches.

2. As an approver, I want to set a subject for my question, so that the person who I ask the

question can quickly see what it is about.

3. As an AP clerk, I want to receive an email notification when someone asks me a question,

so that I know when my input is required

4. As an AP clerk, I want to see the original file relevant to the question, so that I can easily

see which entry the question refers to.

5. As a manager, I want to be able to see all questions and answers in an overview, so that I

can track which users use it, and what kind of questions are asked.

6. As an AP clerk, I want to see if my answers to questions have been read, so that I know

when the issue is concluded

7. As an approver, I want to receive an email notification when my question is answered, so

that I know when I can further process the invoice

8. As an approver, I want to be able to react to an answer, so that the Q&A can be continued

until my issue is solved.

9. As an approver, I want to edit my question, so that I can add further info or remove errors.

10. As an approver, I want to be able to delete my question, so that an issue that has been

solved before receiving an answer can be removed.

11. As an AP clerk, I want to edit my answer, so that I can add more information after

committing my first answer.

12. As an AP clerk, I want to be referred to the relevant worklist entry for a question, so that I

can obtain the information I need to answer the question.

13. As an approver, I want to add an attachment to my question, so that I can effectively

communicate what I’m asking about.

14. As an AP clerk, I want to add an image to my answer, so that I can visualise my answer

15. As an AP clerk, I want to see the timestamp of my answer, so that I can show that I

answered a question before it was edited.

16. As an AP clerk, I want to see who asked the question, so that I can contact them outside

JDE when it is more appropriate to answer in person.

5.2 When invoices are approved (or rejected), I want them to be added to an overview, so that I

can keep track of invoices that completed the approval process

1. As a manager, I want to receive reports that show key information for approved invoices,

so that I don’t have to manually check all approved invoices.

2. As a manager, I want to receive reports that show information about the status for open

invoices, so that I can have an overview of all invoices that haven’t been processed.

5.3 When invoices are not approved after a set amount of days, I want to automatically re-assign /

escalate these invoices, so that I can ensure they are handled in time.

1. As a manager, I want to be able to set up automatic re-routing for an invoice if it has not

been approved within a certain time, so that invoices don’t stay unsolved for a long time.

2. As an approver, I want to receive reminders for invoices that are close to automatically re-

routing, so that I can prevent invoice escalation and assure I complete my tasks.

3. As a manager, I want to set up escalation profiles, so that I can reuse specific settings for

invoice escalation.

4. As a manager, I want to edit escalation profiles, so that I can change profiles as processes

or needs change.

5. As a manager, I want to receive reports of escalations that occur, so that I can contact

the employees that have not met their deadline.

6. As a manager, I want to see an overview of escalation rules that are set up, so that I can

see what options are available.

User stories not belonging to a new epic

1. As an AP clerk, I want to set the frequency of notification emails, so that my mailbox

doesn’t get spammed with notifications

2. As an approver, I want to set the frequency of notification emails, so that my mailbox

doesn’t get spammed with notifications

3. As an approver, I want to have the OCR recognize the currency used in the invoice, so that

I don’t have to do this manually.

4. As a manager, I want SCANMAN to use the appropriate values for the currency, so that

limits set up in the application are checked against the converted value and not against

the absolute value.

5. As a manager, I want to search suppliers in a customisable way, so that I can manually set

up search categories for my suppliers.

6. As a manager, I want to automatically approve an invoice if it is below a certain value, so

that small expenses can be automated without requiring manual labour.

7. As a manager, I want to ensure that record reservations are only active when an invoice is

in edit mode, so that the reservation time of a record is minimized and other users can

pick it up as soon as possible.

8. As an AP clerk, I want to retain manual edited values on an invoice when it is rejected, so

that I don’t have to start the verification process from scratch.

9. As a manager, I want to ensure that no invoices can be processed that have a General

Ledger date in a period that is already processed, so that I can ensure payment for all

processed invoices.

10. As an approver, I want to disable approval actions for invoices that have already been

approved, so that I can easily see that the invoice is already approved.

11. As a manager, I want to be able to re-assign an invoice, so that I can send it to the correct

user if I make a mistake in the initial assignment

12. As a manager, I want to set up approval for invoices that correctly match an approved

purchase order, so that I can assure that the invoice meets all conditions for payment.

13. As a manager, I want to ensure that invoices enter an approval route after manual voucher

match, so that I can assure that the invoices go through the correct approval procedure.

14. As an AP clerk, I want to be able to enter an approval route after matching an invoice to a

PO, so that the invoice enters the correct approval process, and doesn’t remain

unapproved.

15. As a manager, I want to have the invoices matched to tax areas, so that they can

automatically be assigned the correct tax code.

16. As a manager, I want to ensure that approvals can only be delegated to employees with

appropriate approval limits, so that employees don’t approve invoices above their

restrictions, and that all delegated invoices can be processed.

6 Architecture

6.1 Functional architecture diagram Update

6.2 Feature diagram update

Orange - to be removed? (based on comments on the Jira)

Green - new features

Grey - shared features for that level of degree

New workflow processing options

G/L date settings

New SCANMAN reports

Delegation verification

New User Defined Codes, allows custom set up for search types

Q&A form functionality and Invoice re-assignment

Record reservation minimisation

New invoice processing / OCR functions

Disable invoice approval actions

Automatic approval escalation

7 Evaluation

Most of the time spent on this case study was to properly analyse the JIRA issues to detect what

exactly changed in this version update. This was then formulated in 3 epics and 40 user stories. In

total the feature diagram was updated with 70 new features, and the FAD was updated with 4

new modules. There are multiple explanations why the feature to user story relationship is 1.75

to 1, the first explanation is that some features are added based on common sense, and do not

have to be documented in user stories. For example on the new report information per invoice

feature, many of the specific fields that are included in the report were not documented in the

user stories.

A second reason, is that in this case the development was not completely based on the user

stories, but mostly on the issues (from which the user stories are derived). This means that the

internal validity on this case study is relatively low, and that the cardinality relationship could be

different if the developers had used the user stories instead of the JIRA issues.

The third reason, is that some user stories can be solved by a collection of features, for example

the user story:

“ As an approver, I want to be able to react to an answer, so that the Q&A can

be continued until my issue is solved.”

Was solved by a combination of the QA history feature (which allows users to see previous

questions and answers) and the send question feature, to add a new question to this overview.

This can be linked to the increased goal focus, and developer freedom that are the result of user

stories.

During the creation of project briefs for the new epic stories in this system update, it was found

that the relevant epic stories section was difficult to include as these epics were never created.

This would either create a lot of extra work to recreate all the epic stories for the application, or

mean that the information would not be available in later stages. In order to solve this issue, the

relationship between epic stories and modules was utilised. Instead of recovering the epics that

did not exist, the module names were utilised to show which existing parts of the software the

new epic was reliant on. When the information flows had to be modelled for the FAD update, this

information served the same use as the relevant epics in the NetSuite case study.

As the software architecture is revised for new versions and customisations, this also allows for

improvements to the architecture models. While adding the new features to the feature diagram,

it was noticed that some existing functionalities were not yet included in the reconstructed

architecture. For example, in this update new features were added to the invoice processing

module, however in the process of adding these features to the feature diagram it appeared that

the invoice processing module had not been included in the feature diagram yet. Because these

new features extended a module that was not mapped, this error in the feature diagram could be

detected and fixed. Using the situational RE4SA method in multiple projects also allows for

refinement of the architecture model, and increases the accuracy of the models over time.

Case study 4: Recreation of the Case Software for a Different ES

1 Customisation request:

In this case the customisation request for NetSuite came from Forza internally. The goal is to create

a solution that can solve the same business function that the company provides through

SCANMAN for JD Edwards.

This means that the current JDE application needs to be considered to identify the problematic

situations that it solves, and to decide whether they should and can be re-created in NetSuite.

Since the development language in NetSuite is Java, and in JDE it is mostly based on event rules.

2 Elicit requirements:

The requirements were mostly obtained from the internal staff who are experienced in SCANMAN,

documentation available of SCANMAN and the knowledge gained when reverse engineering the

application. Furthermore a design for the NetSuite application was already in progress, and was

used to determine the epic stories and user stories.

3 Epic story formulation:

The epic stories in this document have been numbered in the order that they were added.

Requirements change and get added over time, since the numbers are referenced to in later steps

it would take a lot of effort to change the references every time an epic / user stories is added at

a later time. Each of the epic stories are written in the following format:

When <problematic situation>, I want <motivation>, so that <expected outcome>

1. When I automatically process an invoice, I want to ensure that the values are correct, so

that I can prevent errors occurring in our accounts payable invoice processing.

2. When I have to approve invoices, I want to have an overview of all invoices that are

relevant to me, so that I can see what I need to do.

3. When I receive an invoice, I want it to automatically be added to my ERP environment, so

that I don’t have to keep track of files or do it manually.

4. When I have to verify an invoice, I want to see a scanned version of the invoice, so that I

can compare the values.

5. When I receive an invoice, I want to have it matched to the relevant purchase order if

one exists, so that the values can be compared for consistency.

6. When invoices are approved (or rejected), I want them to be added to an overview, so

that I can keep track of processed invoices.

7. When I approve an invoice, I want to assign it to another user, so that the next person in

the approval flow can approve or reject it.

8. When I verify an invoice, I want to be able to edit fields, so that inconsistencies can be

removed.

9. When I have to approve an invoice, I want to see the information I need to decide

whether to approve the invoice or not, so that I can make a valid decision.

10. When an invoice is fully approved, I want the payment of the invoice to be processed, so

that the accounts payable invoice handling process can be completed.

4 Project Briefs

4.1 Project Brief: Scanned invoice handling

When I automatically process an invoice, I want to ensure that the values are

correct, so that I can prevent errors occurring in our accounts payable invoice

processing.

What problem are we solving, and why?

Character recognition is at a stage where it is difficult to ensure that all of the values extracted

from a document are correct. Especially when invoices have exceptions, like handwritten values,

inconsistent placement of values etc. A user would want to have the assurance that the automatic

processing doesn’t make mistakes, the ability to verify that the values are correct manually, or

that possible errors fall within acceptable margins.

Relevant epic stories

3 When I receive an invoice, I want it to automatically be added to my ERP environment, so that I

don’t have to keep track of files or do it manually.

4 When I have to verify an invoice, I want to see a scanned version of the invoice, so that I can

compare the values.

8 When I verify an invoice, I want to be able to edit fields, so that inconsistencies can be removed.

How will we measure success?

The application fulfils at least one of the following:

1. The OCR application makes no mistakes when it processes an invoice.

2. The application can provide a reliable estimate on how correct its interpretation is, and

can compare this to a value set by the user.

3. The application requires manual verification of the generated values.

 All received invoices are processed

4.2 Project Brief: Invoice overview

When I have to approve invoices, I want to have an overview of all invoices that

are relevant to me, so that I can see what I need to do.

What problem are we solving, and why?

Employees might not be aware of what their task list is, and can have trouble locating the invoices

they need to approve. Therefore, it is important that the application can filter out all the relevant

invoices that require a specific user’s attention.

Relevant epic stories

3 When I receive an invoice, I want it to automatically be added to my ERP environment, so that I

don’t have to keep track of files or do it manually.

4 When I have to verify an invoice, I want to see a scanned version of the invoice, so that I can

compare the values.

6 When I finish approving invoices, I want to receive a report of all the invoices that were

processed, so that I can keep track of the total expenses that have been processed

7 When I approve an invoice, I want to assign it to another user, so that the next person in the

approval flow can approve or reject it.

How will we measure success?

 All invoices that require the user’s attention are collected

 All collected invoices are presented in a single view

4.3 Project Brief: ERP integration

When I receive an invoice, I want it to automatically be added to my ERP

environment, so that I don’t have to keep track of files or do it manually.

What problem are we solving, and why?

Received invoices that need to be added manually to the system, might be lost when the email is

buried in a mail box, or a file isn’t uploaded. If this is processed automatically, it removes the

chance for human error and increases the efficiency of the process.

Relevant epic stories:

1 When I automatically process an invoice, I want to ensure that the values are correct, so that I

can prevent errors occurring in our accounts payable invoice processing.

2 When I have to approve invoices, I want to have an overview of all invoices that are relevant to

me, so that I can see what I need to do.

4 When I have to verify an invoice, I want to see a scanned version of the invoice, so that I can

compare the values.

5 When I receive an invoice, I want to have it matched to the relevant purchase order if one exists,

so that the values can be compared for consistency.

How will we measure success?

 The application can process invoices from at least two different sources.

 The application can process invoices that are in pdf, xml or doc format.

4.4 Project Brief: Invoice viewer

When I have to verify an invoice, I want to see a scanned version of the invoice,

so that I can compare the values.

What problem are we solving, and why?

An AP clerk needs to verify whether or not the values scanned by the OCR are the same as the

original invoice. Therefore, it is desirable for the AP clerk to have access to the OCR information,

the original invoice and the option to change the values.

Relevant epic stories:

1 When I automatically process an invoice, I want to ensure that the values are correct, so that I

can prevent errors occurring in our accounts payable invoice processing.

How will we measure success?

 The application can show the original values of the invoice, the scanned values and

allows the user to change values. Preferably all on a single screen.

 All the fields that are scanned by the OCR should be included in the verification form.

4.5 Project Brief: Match to purchase order

When I receive an invoice, I want to have it matched to the relevant purchase

order if one exists, so that the values can be compared for consistency.

What problem are we solving, and why?

If the ERP already contains a purchase order for the invoice, this information can be used to

confirm the values that the OCR recognizes from the invoice. When there is a discrepancy, there

is a chance that either the OCR made a mistake, or the value on the invoice / purchase order is

incorrect. This will most likely need manual checking.

Relevant epic stories:

1 When I automatically process an invoice, I want to ensure that the values are correct, so that I

can prevent errors occurring in our accounts payable invoice processing.

3 When I receive an invoice, I want it to automatically be added to my ERP environment, so that I

don’t have to keep track of files or do it manually.

How will we measure success?

 The application can compare values between a scanned invoice, and a existing purchase

order.

 A tolerance can be set that notifies the user when a discrepancy between PO and invoice

is bigger than this tolerance.

4.6 Project Brief: Expense report

When invoices are approved (or rejected), I want them to be added to an

overview, so that I can keep track of invoices that completed the approval

process

What problem are we solving and why?

Management needs to keep track of invoices, and an overview is required for them to obtain

information about the invoices. For example if an employee has rejected all invoices they received

in the last three weeks, management needs to be able to find this information so they can contact

the employee and obtain more information about the situation.

Relevant epic stories:

2 When I have to approve invoices, I want to have an overview of all invoices that are relevant to

me, so that I can see what I need to do.

7 When I approve an invoice, I want to assign it to another user, so that the next person in the

approval flow can approve or reject it

10 When an invoice is fully approved, I want the payment of the invoice to be processed, so that

the accounts payable invoice handling process can be completed.

How will we measure success?

 An overview of invoices that have completed the entire approval flow is generated

 Information about the invoices is generated and visualised

o Ratio of approved to rejected invoices

o Stats per employee

4.7 Project Brief: Approval assignment

When I approve an invoice, I want to assign it to another user, so that the next

person in the approval flow can approve or reject it.

What problem are we solving and why?

Most companies have an approval flow, this means that more than one employee needs to

approve an invoice. Often this has to be in a specific order of people. This needs to be supported

in the application.

Relevant epic stories:

2 When I have to approve invoices, I want to have an overview of all invoices that are relevant to

me, so that I can see what I need to do.

9 When I have to approve an invoice, I want to see the information I need to decide whether to

approve the invoice or not, so that I can make a valid decision

10 When an invoice is fully approved, I want the payment of the invoice to be processed, so that

the accounts payable invoice handling process can be completed.

How will we measure success?

 When an approval flow can be set-up, by configuring an automatic flow (person 1 -> 2 ->

3) Or by allowing a user to assign it to someone after they complete their approval.

 The employee who gets an invoice assigned to them, has to be able to see that it

requires their attention.

4.8 Project Brief: Invoice verification

When I verify an invoice, I want to be able to edit fields, so that inconsistencies

can be removed.

What problem are we solving and why?

Scanned values and actual values might differ. It needs to be possible to manually verify and edit

values, so that the correct values can be processed.

Relevant epic stories

4 When I have to verify an invoice, I want to see a scanned version of the invoice, so that I can

compare the values.

4.9 Project Brief: Invoice approval

When I have to approve an invoice, I want to see the information I need to

decide whether to approve the invoice or not, so that I can make a valid decision.

What problem are we solving and why?

An invoice can be approved or rejected based on specific criteria. In this project brief, we attempt

to create an overview of the information that the approver needs to decide whether to approve

or reject an invoice.

Relevant epic stories

2 When I have to approve invoices, I want to have an overview of all invoices that are relevant to

me, so that I can see what I need to do.

7 When I approve an invoice, I want to assign it to another user, so that the next person in the

approval flow can approve or reject it.

How will we measure success?

 A financial expert should approve of the information included in the application.

 The fields displayed should be configurable by the user.

4.10 Project Brief: Payment handling

When an invoice is fully approved, I want the payment of the invoice to be

processed, so that the accounts payable invoice handling process can be

completed.

What problem are we solving and why?

An invoice that is fully approved is still not completely processed. As long as the invoice is not paid,

the company that sent the invoice will not be satisfied. Once an invoice is fully approved for

payment, this payment should also be handled at the designated date.

Related epic stories:

6 When I finish approving invoices, I want to receive a report of all the invoices that were

processed, so that I can keep track of the total expenses that have been processed

7 When I approve an invoice, I want to assign it to another user, so that the next person in the

approval flow can approve or reject it.

How will we measure success?

 An invoice that has completed the approval flow is added to the payment handling

process

 An invoice that is in the payment handling process, is processed at the specified payment

date

5 User stories:

For the writing of user stories, the following roles were identified and considered:

 AP clerk: (Scans, verifies and codes the invoice before it goes to the company)
 Approver: (Approves or rejects invoices)
 (Financial) Manager: (Is responsible for the payment of invoices, and will check if

anything goes wrong in the invoice project)
 QA tester: Has to be able to test the application so that it can be assured that it works as

intended

For each of the epic stories identified in step 3, as many user stories as possible are written to

include all the requirements for each of the epics.

5.1 When I automatically process an invoice, I want to ensure that the values are correct, so that

I can prevent errors occurring in our accounts payable invoice processing.

1. As an approver, I want to see that the invoice was verified, so that I know that there

should be no inconsistencies.

2. As an AP clerk, I want to have the values on the invoice scanned, so that I don’t have to

add them manually.

3. As an AP clerk, I want to see confidence rating that the OCR scanned all values correctly,

so that I can decide how much effort I need to spend validating the values.

4. As a QA tester, I want to see the confidence rating of the OCR, so that I can evaluate if it

matches my manual analysis.

5. As a manager, I want to make sure that all received invoices are processed, so that I

don’t have to tell clients we lost their invoice.

6. As a manager, I want to make sure that files other than invoices are not added to the ERP

as an invoice, so that I can ensure that all “invoices” in the ERP are actually invoices.

7. As an AP clerk, I want to automatically add invoices received by email to the ERP, so that

I don’t have to manually download the attachment and upload it to the ERP

8. As an AP clerk, I want to automatically add invoices that are placed in a folder to the ERP,

so that I automatically store them in a set location

9. As an AP clerk, I want to be able to manually upload invoices, so that I can use this

method when the other options fail.

10. As a manager, I want to ensure that invoices that are in both the invoice folder and

mailbox are combined into a single entry, so that they don’t get added as two separate

invoices.

11. As a QA tester, I want to manually upload invoices, so that I can more easily test specific

scenarios

5.2 When I have to approve invoices, I want to have an overview of all invoices that are relevant

to me, so that I can see what I need to do.

1. As an approver, I want to sort invoices from oldest to newest, so that I can focus on

emptying my backlog.

2. As an approver, I want to sort invoices from newest to oldest, so that I can keep track of

new invoices that need my attention.

3. As an approver, I want to search for invoices on invoice ID, so that I can help a colleague

when he has an issue or find an invoice specified in a ticket.

4. As an approver, I want to filter invoices on the error status, so that I can resolve invoices

that have an error in the approval process.

5. As an approver, I want to filter invoices with unapproved status, so that I can work on

approving these invoices.

6. As an approver, I want to filter invoices with approved status, so that I can edit them

when I realise I made an error in my approval.

7. As an approver, I want to sort invoices on due date, so that I can approve the invoices

that are nearly due.

8. As a manager, I want to sort invoices on gross amount, so that big expenses can be

processed first.

9. As a manager, I want to filter invoices on rejected status, so that I can contact the client

and solve the issue.

10. As a manager, I want to filter invoices on assignee, so that I can see the number of

processed and open invoices of a specific approver.

11. As a manager, I want to filter on assignee ID, so that I can check each entry of my

assignee list and see the status of each assignee

12. As a manager, I want to search for invoices on company, so that I can easily find an

invoice when communicating with a client.

5.3 When I receive an invoice, I want it to automatically be added to my ERP environment, so that

I don’t have to keep track of files or do it manually.

1. As a manager, I want files to be transferred to my ERP system, so I have all the relevant

information in one secure location

2. As a AP clerk, I want the values that I verified to be transferred to NetSuite, so that

approvers can complete their tasks.

5.4 When I have to verify an invoice, I want to see a scanned version of the invoice, so that I can

compare the values.

1. As an AP clerk, I want to see what fields the OCR scanned, so that I can easily identify

which sections of the invoice the generated fields are based on.

2. As an AP clerk, I want to zoom in / out on the invoice, so it is easier to read and compare

values.

3. As an AP clerk, I want to open the pdf reader in another window, so that I can display it

on my second screen and optimise my workspace.

5.5 When I receive an invoice, I want to have it matched to the relevant purchase order if one

exists, so that the values can be compared for consistency.

1. As an approver, I want to be notified when an invoice I need to approve deviates from

the purchase order, so that I can analyse what causes this difference

2. As an approver, I want to be notified when an invoices matches a purchase order, so that

I can quickly accept it since it was already approved as a purchase order.

3. As a manager, I want to have the tool compare an incoming invoice to an existing

purchase order, so that the invoice is checked against the values of a purchase order

5.6 When invoices are approved (or rejected), I want them to be added to an overview, so that I

can keep track of invoices that completed the approval process

1. As a manager, I want to see statistics of the completed invoices, so that I can easily

detect where my attention is required

2. As a manager, I want to see statistics about specific employees, so that I can use this

information to evaluate my employees.

3. As a manager, I want to be able to generate reports based on selected variables, so that I

can more easily monitor the processes.

4. As a QA tester, I want to see an overview of completed invoices, so that I can test

whether or not the process is completed.

5.7 When I approve an invoice, I want to assign it to another user, so that the next person in the

approval flow can approve or reject it.

1. As an approver, I want to add a note to an invoice, so that I can include my reasoning for

a decision.

2. As an approver, I want an easy way to assign it to the correct user, so that I don’t have to

remember who exactly I need to assign it to, or know all user id’s by heart.

3. As a manager, I want to set up approval routes, so that a standard approval flow can be

set-up for specific situations.

5.8 When I verify an invoice, I want to be able to edit fields, so that inconsistencies can be

removed.

1. As an approver, I want to ensure that all required values are included when an invoice is

verified, so that no uncomplete invoices enter the approval flow.

2. As an approver, I want to see the amount to be paid without tax, so that I can see the

amount of money it costs after deducting tax.

3. As an approver, I want to automatically calculate the exchange rate, so that I can use up

to date exchange rates when approving foreign invoices.

4. As an AP clerk, I want to be able to edit values, so that I can remove inconsistencies

between the invoice and the imported values.

5. As an AP clerk, I want to edit the currency used, so that I can ensure that it matches the

currency on the invoice

6. As an AP clerk, I want to be able to edit the amount per line of the invoice, so that wrong

amounts can be replaced with the correct value

7. As an AP clerk, I want the gross amount to be checked against the sum of line amounts,

so that I can’t verify the invoice when the values don’t match

8. As an AP clerk, I want to see which fields require additional attention after I edit a field,

so that I can prevent errors.

9. As an AP clerk, I want to be able to mark an invoice as erroneous, So that I’m not forced

to forward invoices to approvers that are not correct.

10. As an AP clerk, I want to be able to edit the tax rate, so that I can change this when the

field is scanned wrong, or when an item has a different tax rate.

11. As an AP clerk, I want to be able to use a tax code, so that I can easily handle the tax use

in an invoice by using the correct pre-set.

12. As an AP clerk, I want to edit the subsidiary, so that I can match it to the invoice

13. As an AP clerk, I want to edit the vendor name, so that I can match it to the invoice

14. As an AP clerk, I want to edit the vendor bank account, so that I can match it to the

invoice

15. As an AP clerk, I want to edit the vendor email, so that I can match it to the invoice

16. As an AP clerk, I want to edit the purchase order ID, so that I can match it to the invoice

17. As an AP clerk, I want to edit the tax amount on an invoice, so that I can match it to the

invoice.

18. As a manager, I want to customise which fields are verified, so that I can adapt the

application to my business processes.

19. As an AP clerk, I want to see an overview of all invoices that I need to verify, so that I can

keep track of my open tasks.

5.9 When I have to approve an invoice, I want to see the information I need to decide whether to

approve the invoice or not, so that I can make a valid decision.

1. As an approver, I want to see when the gross amount is different than the sum of

amounts, so that I know to check all amounts on the invoice.

2. As an approver, I want to be able to send a notification to the client, so that I can inform

them that there is an issue with the invoice.

3. As an approver, I want to see the amount for the invoice, so that I can use it to decide if

the invoice should be approved

4. As an approver, I want to see the amount without tax, so that I can see how much the

cost is after deduction

5. As an approver, I want to see the tax amount, so that I can see how much is deductible

6. As an approver, I want to be able to see the original invoice file, so that I can reference it

for more context information.

7. As an approver, I want to automatically calculate the exchange rate, so that I can use up

to date exchange rates when approving foreign invoices.

8. As an approver, I want to be able to edit values, so that I can replace incorrect values

with the correct value before I approve the invoice.

9. As a manager, I want to be able to undo data edits, so that previous versions can be

restored.

10. As a manager, I want to customise the information fields that are shown, so that I can

adapt the application to my business processes.

5.10 When an invoice is fully approved, I want the payment of the invoice to be processed, so that

the accounts payable invoice handling process can be completed.

1. As a manager, I want to ensure that approved invoices are paid at a specific date, so that

I can manage our monthly expenses

2. As a manager, I want to manually confirm the payment of invoices over a specified

amount, so that I can personally keep up with big invoices.

3. As a QA tester, I want to disable the outgoing transactions, so that I can test the process

without fully processing invoices.

6 Architecture:

Functional architecture diagram

Feature diagram

