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1 Introduction

Invariant theory started in the 19th century as the study of invariant algebraic
forms. Many important theorems were proved by mathematicians while they
were studying invariant theory. For example, Hilbert proved his basis theorem
and the Nulstellensatz while working on invariant theory. Over the years several
discoveries in this field form the basis of algebraic geometry as we know it today.
In this paper we will take a step back and look at invariant theory through the
lens of polynomials. Through this we will give an elementary introduction to in-
variant theory. In particular, we do not presume prior knowledge of group thory.

We will begin by introducing polynomials in n variables and examine their
properties in comparison to polynomials in one variable. Furthermore we will
look at ideals and discuss how we can construct and characterize them given a
certain set of polynomials. We then construct a division algorithm for multi-
variate polynomials and afterwards we will study Dickson’s lemma. This lemma
describes how we can finitely generate a monomial ideal and forms the crux of
Hilbert’s basis theorem. Hilbert’s basis theorem is an important result as it
generalizes the results of Dickson’s lemma towards all ideals. Additionally we
introduce Grobner bases in the proof of this theorem. Together with the divi-
sion algorithm these bases form a powerful tool to characterize polynomials of
an ideal.

We move on to symmetric polynomials and begin with introducing the el-
ementary symmetric polynomials. These polynomials form the building blocks
for all symmetric polynomials and we will show this in the fundamental theo-
rem of symmetric polynomials. Furthermore we will look at ways to determine
whether a polynomials is symmetric using the division algorithm. Finally we
will introduce the power sums and examine how they are related the elementary
symmetric polynomials.

In the last chapter we will generalize the notion of symmetric polynomials,
towards invariant polynomials of finite matrix groups. Here we will examine the
sets that contain these invariant polynomials and determine how we can char-
acterize their elements. Furthermore we will introduce the Reynolds operator.
This operator allows us to generate invariant polynomials and additionally we
can generate all invariant polynomials using this powerful tool.

This thesis is based on the book Ideals, Varieties and Algorithms by Cox,
Little and O’Shea[l]. In particular I made use of chapters 1,2 and 7.

2 Polynomials, ideals and orderings

In this chapter we will discuss polynomials in n variables and some basic alge-
braic objects related to polynomials, namely ideals. Furthermore we will discuss
orderings on polynomials in n variables and examine how this affects the division
algorithm in multiple variables.



2.1 Polynomials in n variables

Before we can discuss polynomials however, we need to know what a field is.
Broadly speaking a field is a set on which addition, subtraction, multiplication
and division, as we know it, is defined. Common examples of fields are the real
numbers R and complex numbers C. On the other hand the integers Z are not
a field as division is not properly defined. A formal definition may be found at
[2, Def 1.1.1]

Now that we have defined fields we can look at polynomials. We will start
with the most elementary form a polynomial can take, namely a monomial.

Definition 2.1 A monomial in x1, x2,..., Ty i a product of the form

Qn

[e5] a2
Tq To™ oo Xy,

where the exponents «; are nonnegative. The total degree of this monomial is
gien by ay +as + -+ + ay

We usually shorten this notation by representing the exponents with the
n-tuple & = (@, @a, ..., a2). Thus the above monomial is written as.

(0%

=t xd?. i

n
The total degree is then given by |a| = a1 + as + -+ + ay,.

In general a polynomial is not just given by a single monomial, but a linear
combination of monomials with coefficients in k. To be more precise a polyno-
mial is defined as follows.

Definition 2.2 A polyomial f over the field k in n variables is a linear combi-
nation of monomials with coefficients in k. We will write it as follows

f:Zaaxo‘, aq €k
(e}

where we sum over a finite number of n-tuples . The set of all these polyno-
mials is called k[z1, 29, ..., Tp].

It is easy to show that the sum and product of a polynomial is again a
polynomial. Furthermore we say that the polynomial f divides a polynomial
g, if there exists a polynomial h € k[zy,xo,...,z,] such that g = fh. In fact
klx1,xa, ..., x,] acts almost like a field, except for the existence of multiplicative
inverse e.g. 1/x“ is not a polynomial. This kind of a structure is called a
commutative ring and thus we will call k[z1, 22, ..., Z,] a polynomial ring.

For polynomials in a small number of variables we will usually leave out the
indices. So for example we will use k[z,y, z] for 3 variables.

Similar to how we can talk about the total degree of a monomial, we can
talk about the total degree of a polynomial.

Definition 2.3 Let f =" a.x® be a nonzero polynomial in k[xy,x2, ..., Ty].
The total degree of the polynomial deg(f) is the mazimal |a| such that a,, is
nonzero. The degree of the zero polynomial is undefined.



Note that for a polynomial in multiple variables the total degree is not
uniquely determined. Consider for example the polynomial,

7
f= —§x1y4 + 3%y + 42

of total degree 5. Here both the first and second term have maximal total degree.
This is not possible for polynomials in one variable, as terms of the same degree
can simply be added up. In chapter 2.3 we will discuss this further.

Let us introduce the affine space now

Definition 2.4 Let n be a positive integer and k field. The n-dimensional
affine space over k is defined as

kn:{(a1?a2a"'7an) | a/laa2a---7an€k}

The most common example of an affine space is the n-dimensional Euclidean

space R™

The affine space allows us to identify a polynomial f = 3" _ a,z® as a func-
tion from k™ — k. Evaluating the polynomial at a point (by,ba,...,b,) of k™ is
equivalent to making the substitution x; — b; for all ¢ = 1,2,...,n. Since the
coefficients a, are elements of k, we find that f(b1,bs,...,b,) € k and thus the
function is well-defined. This has interesting consequences for the zero function,
the function such that f(ay,as,...,a,) = 0for all (a1, as,...,a,) € k™. Namely
this function is not necessary the zero polynomial, the polynomial whose coef-
ficients are equal to zero, for all fields. Consider for example a field with only
two elements {0, 1} with the property that 14+ 1 = 0. It is an easy exercise to
confirm that this forms a field and it is usually denoted as Fy. For this let us
examine the polynomial zy(z +y) € Falx, y]. Now zy is equal to zero whenever
x or y are zero, but setting them both to one implies that = + y is zero. Thus
our nonzero polynomial gives us the zero function on F3.

The following proposition gives us a solution to this problem, namely work-
ing on an infinite field k.

Proposition 2.5 Let k be an in infinite field, then f € klxy,xa,...,2,] is
the zero polynomaal if and only if f : k™ — k is the zero function.

Proof It is obvious that the zero polynomial gives us the zero function, so

we have to show that f is the zero polynomial whenever f(ai,as,...,a,) for all
(a1,az2,...,a,) € k™. For this we will use induction on the number of variables
n.

Let n =1 and f € k[x] such that it vanishes at all points of k. Note that a
nonzero polynomial in k[z] of degree m has at most m distinct roots. A proof
can be found in [2, Thm 3.1.8]. Since f is the zero function it follows that
f(a) =0 for all @ € k. Hence f has infinitely many distinct roots, since k& is
infinite. From this we can conclude that f must be the zero polynomial.

Now let the proposition hold for n—1 and let f € k[x1,x2,...,x,] such that
it vanishes at all points of k™. By factoring out x,, out of the terms we can write

f as follows,
m

F=Y gi(w1,2a,. .. 20 1) - i,
=0



where m is the total degree of f and g; are polynomials in k[x1,za, ..., 2Z,_1].

We will show that g; is the zero polynomial for all ¢, which results in f
being the zero polynomial. We fix (a1,as,...,a,-1) € k"1 arbitrarily and
this reduces our polynomial to f(a1,as,...,an-1,2,) € k[x,]. Since f is the
zero function it vanishes for all a,, € k[z,]. Furthermore since the proposi-
tion holds for n = 1 we find that f(ai,as,...,an—1,%,) is the zero polynomial
and its coefficients are zero. Using the formula for f we find that the coef-
ficients for f(a1,as9,...,an—1,2,) are the polynomials g;(ai,as,...,a,—1) for
all i. Since we chose (ai,as,...,a,_1) € k"1 arbitrarily we find that every
gi(x1,22,...,T,_1) vanishes for all points in k" ~!. Hence each g;(z1,Z2,...,Tn_1)
is the zero function on k"~!. Using our induction hypothesis we can conclude
that g; is the zero polynomial in k[z1,xs,...,2,_1] for all i. Every coeflicient
in f is thus zero and so f is the zero polynomial. O

One immediate consequence of this proposition is that two polynomials are
equal when their functions are equal.

Corollary 2.6 Let k be an infinite field and let f,g9 € klx1,xa,...,2,]. Then
f=ginklxy,xa,...,x,] if and only if f,g: k™ — k are the same function.

Proof Let f,g € k[x1,x2,...,x,] have the same function on k™. Then f — g
gives us the zero function and by proposition 2.5 we have that f — g is the

zero polynomial. Hence f = g in k[x1, 2, ..., 2,]. The converse of the proof is
trivial. 0
2.2 Ideals

So far we have only looked at polynomials themselves and not any algebraic
objects related to them. We will start with the most basic object.

Definition 2.7 A subset I C k[z1,22,...,2,] is called an ideal if it satisfies:

1.0el
2. If f,g € I then we have that f +g € I
3. If f €1 then for all h € klx1,xa,...,2,] we have that fh € T

Given a collection of polynomials {f1, fa, ..., fm} it is possible for us to con-
struct an ideal with these polynomials.

Definition 2.8 Let fi, fa,..., fm be polynomials in klx1,xa,...,2,]. We call
the set

(fi, forooos fm) = {Zhifi|hlah2a---ahm € k[xl,$2a---axn]}
i1

the ideal generated by f1, fo,..., fm.

As the name implies this set forms an ideal. To see this note that 0 €
(f1, f2,---, fm) if we set h; = 0 for all i. Furthermore let f = Zﬁlpiﬁ and



g=>"1", qfi be elements of this set. Then f+g=> 1", (p; + ¢:)fi and fh =
S (hpi)fi, for all b € k[z1, 22, ..., x,], are again elements of (f1, fa, ..., fm)-

Let us examine a polynomial f in this ideal. Given how we defined this ideal
we can write f as

f=hfi+thafo+ - +hnfm

thus the collection f1, fo, ..., fi, divides f and in a similar way every polynomial
in (f1, f2,... fm) can be described this way. Thus we can describe (f1, fa,... fm)
as the ideal that contains all polynomials that can be divided by fi, fa,..., fm-
If we want to determine whether a polynomial f is an element of {fi, f2, ... fim),
the natural solution would be to divide by f1, fo,..., f;n. This however is not
as easy as it seems and we will examine it further in chpater 2.3 and 2.4.
Another question we could ask ourselves is whether a given ideal I can always
be generated by a finite set of polynomials {f1, f2, ..., fm}. In this case we call
{f1, f2,--., fm} a basis of I and as it turns out every ideal has such a basis. We
will discuss this further in chapter 2.5, where we prove Hilbert’s basis theorem.

2.3 Monomial orderings

Division of polynomials in k[x1,xo,...,z,] brings several issues to the table,
that we would not encounter in k[x]. For one we can order polynomials by
degree in k[x]. This allows us to systematically work through the division.

Let us for example divide f = 32* — 222 4+ 1 by g = 22 — 1. If we order the
polynomials by degree, we see that the leading term of ¢ divides 3z* = 322 - 22.
So we subtract 3x2g from f, which gives us —5z2 + 1. Repeating this process
until the degree of f is lower than 2, gives us f = (322 — 5)(2% +1) — 4.

This is not so simple in k[zq,22,...,2,] as the notion of ordering is not
as straightforward as we have seen in chapter 2.1. To define an ordering on
klx1,x2,...,2,] let us consider a monomial . This monomial is represented
by its exponent vector o = (v, g, . .., @) which is an element of ZZ,. In this
way we can represent every monomial with an element of ZZ, so any ordering on
7%, automatically induces an ordering on our monomials. So for any ordering
the statement a > 3, is equivalent to z® > 7.

We want our orderings to satisfy several conditions to make sure we can work
with them. Since we want to compare our monomials, we want our ordering to
be a total order. For two distinct a and (3 in a total order we have that either
a > f or B > « holds. While this might seem obvious not every ordering is a
total order. Consider for example the ordering by subsets for sets. Then neither
{a} C {8} nor {5} C {a} holds for distinct o and 8. Another property of total
orders is transitivity, that is to say that a > 7 whenever we have that a >
and > 7.

Furthermore we want for all o, 8,7 € Z%, that a > § implies o+~ > B+7.
Since we are working with monomials and want to divide, we want an ordering
to be preserved after multiplication with another monomial. This condition
arises from the fact that we get - 27 = 2“7 after multiplication. So we want
that 2217 > 27 whenever 2® > 2”. We will not have to worry about sums
of monomials, since we simply add up the coefficients if the orders coincide.

Lastly we want our total order to be a well-order. That is to say for every
nonempty subset S C ZZ, there exists a least element o € .S, such that for every
a € S not equal to o we have a > o. The reason for this is that a well-order



has the following property that comes in handy.

Lemma 2.9 A total order > on a set X is a well-order if and only if every
decreasing sequence ag > a1 > ag > ... eventually terminates.

Proof We first assume that > is a well-order. Let ag > a1 > as > ... be
a decreasing sequence and denote with S = {a;|i € Z>o} the subset that con-
tains this sequence. This set is nonempty since ag € S and thus has a least
element s. Let m be the smallest integer such that a,, = s. Then for every
m’ > m we have that a,,y > a,,, since a,, = s is the least element. This leads
to a contradiction so every sequence terminates.

For the converse we will use contraposition. Assume that > is not a well-
order. Thus every non-empty subset has no least element and let S be one of
these subsets. Choose an element ag € S. Since this is not the least element we
can find another element a; such that ag > a1. Again a; is not a least element
so we can repeat this process over and over. This gives us an infinitely strictly
decreasing sequence

ag > ap > ag > ...

and this concludes our proof O

We will make use of this property in algorithms, to make sure that they termi-
nate at some point.
To recap this all we arrive at the following definition.

Definition 2.10 A monomial ordering > on k[zy1,2a,...,xy] is a relation >
on L%, satisfying the following conditions:

1. > is a total order on Z%,,

2. Foralla, B,y €LY, if > [ thena+v > B+

3. > is a well-order on ZZ,,

The most prominent monomial ordering we will use is lexicographical order-
ing or lex order for short.

Definition 2.11 Let a = (a1, Qa,...,a,) and B = (81, Ba, ..., Bn) be in ZL,,.
We say that o >icq B in lex order whenever the leftmost nonzero entry of f— «
is negative. We will write x® >, ©° whenever a > f3.

We will look at some examples:
1. (2,0,2) >er (1,5,3) since § —a = (—1,5,1)
2. (3,2,4) >1ex (3,0,1) since § — a = (0,—2,3)
In this way naturally we find that x1 >e; To >ieq -+ >lex Tn Since
(1,0,0,...,0) >jex (0,1,0,...,0) >e0 -+ >ex (0,0,0,...,1)

If we are working in k[x,y, z] or some other ring where we use no subscripts we
uphold alphabetical order. So  >jcp ¥ >iex 2.

We still must check whether lex ordering satisfies the conditions of a mono-
mial ordering.



Proposition 2.12 Lex ordering on Z% is a monomial ordering.

Proof That lex order is a total order follows from the definition and the fact
that ordering on Z>¢ is a well-order. Now let o, 5,7 € Z%, such that o > S.
Then after adding v to both o and 3, we have that (8 +7) — (a+7) = 8 — a.
So the leftmost nonzero entry stays the same and thus a +~v > g+~

To show that lex ordering is a well-order we assume that there exists a

strictly infinite decreasing sequence
Qo >lex 1 >lex X2 Zlex - - -

It follows that the first entry of the «; is decreasing by definition of the lex order.
Since Z>( is a well-ordering the first entry cannot form an infinite decreasing
sequence. So there exists a k € Z>( such that for all [ > k the first entry in oy
repeats. We can then begin at «; for [ > k and repeat this procedure for the
second entry. After repeating this procedure n times we thus find an m € Zx,
such that the sequence terminates at a.,,. By lemma 2.9 we can conclude that
>1ee 18 a well-order and thus a monomial order. O

We will briefly go over some alternatives to lex order. While we will primarily
use lex order in the proofs, we could just as well have used different monomial
orders.

An example of such an order is graded lexicographic order, or grlex order in
short. For this order we first sort the monomials by total degree and then use
lex order whenever several monomials have the same degree. Similar to grlex
order we have graded reverse lexicographic orderor grevlex order. Here we also
first sort monomials by order, but for monomials of the same total degree we
favour the rightmost smallest power.

To see how this works in practice let us consider the following polynomial
f =223+ 2y?2? — 42223 — 2 € k[z,y, z]. In lex order we would sort this as

=223 —42%2% + ay?2% — 2

In grlex order however the second and third term have highest degree and thus
the order would be
f =422 + zy?2® + 22% — 2

Similar to grlex order, grevlex order favours the second and third term. However

xy?2? > grevies 2223, since 22 has a lower power than z3. So we get

f=ay?2? — 42223 +22° — 2

Before we move on the division algorithm let us first introduce some termi-
nology.

Definition 2.13 Let f = ) aqxz® be a polynomial in k[zy,x2,. .., xy,]. Fur-
thermore let > be a monomial order.

1. The multidegree of f is given by multideg(f) = max{a € Z%,|as # 0}.
2. The leading monomial of f is given by LM(f) = gmuitides(f),



3. The leading coefficient of f is given by LC(f) = amuitideg(f)-
4. The leading term of f is given by LT(f) = LC(f) - LM(f).

For the multidegree we also have the following identities.

Lemma 2.14 Let f,g € k[z1,22,...,2,] be nonzero polynomials. Then we
have

1. multideg(fg) = multideg(f) + multideg(g).

2. If f4+ g # 0, then multideg(f + ¢g) < max(multideg(f), multideg(g)).
Equality occurs whenever multideg(f) # multideg(g).

Proof For the first identity note that

gmultidea(f9) — 1M( fg) = LM(f) - LM(g)
_ xmultideg(f) . xmultideg(g) _ xmultideg(f)+mllltideg(9)

so multideg(fg) = multideg(f) + multideg(g).

For the second identity let multideg(f) = multideg(g). Since their leading
monomials have the same multidegree, we can simply add their coefficients which
gives us

LT(f 4 g) = (LC(f) + LC(g)) - g™uitides(f)

If LC(f) is equal to —LC(g) then the leading term of f + g vanishes and thus
multideg(f 4+ ¢g) < multideg(f) = max(multideg(f), multideg(g)). Otherwise we
get an equality. In the case that the multidegree of f and g differ, the leading
coefficient of f + g is simply the leading coeflicient of the polynomial whose

multidegree is highest. Hence we get an equality 0
2.4 A division algorithm in k[z, zo,. .., x,]

Now that we have monomial orderings we can begin to formulate a division
algorithm in k[z1, 2, ...,2,]. Returning to our problem raised in chapter 2.2,
we want to know whether a polynomial f € k[z1,22,...,2,] is an element
of the ideal (f1, fo,..., fm). For this we want to divide by fi, fa,... fm €
klz1,22,...,2,] and write f in the form

f=hifi+thafot+ - +hpfm+r

with hy,ho, ... hy € k21, 29,. .., 2,] suitably chosen and r € k[zy, 22, ..., 2]
a remainder.

Similar to division in k[z] we want to systematically eliminate leading terms
by multiplying our f;’s with suitable monomials, such that the leading terms
cancel. We will go over some examples to examine how this differs from the
case in k[x] and then state the algorithm.

For our first example let us divide f = zy?> +3y +1 by f; = zy + 1 and
fo = y+ 1. Furthermore we will order fi, fo as F = (f1, f2) We will use lex
order and let z > y. Here the leading term of f is given by LT(f) = x%?, and

10



is divisible by both LT(f1) = zy and LT(f2) = y. Since we listed f; first we will
divide f by y - f1. This then gives us

w +3y+1—y-fi=2y+1

The leading term is now given by LT(2y + 1) = 2y. Since we can not divide this
by the leading term of f; we will use fs. Thus we get that

Q+1—2 fo=—1

Now neither LT(f1) nor LT(f3) divide —1, so our remainder is given by r = —1.
Hence dividing f by fi; and f5 gives us

f=y-(ey+1)+2-(y+1)—-1

For another example we will look at f = 2%y + xy? + y? and divide it by
fi=zy—1and f» = y> — 1. Again we will use lex order = > y and order our
division by F = (f1, f2). The first two steps follow as before and we obtain

x2y+xy2+y—z-f1:zy2+z+y2
it r+yi -y fi=r+yi+y

Now both LT(f;) = zy and LT(f2) = y? do not divide LT(z + y?> + y) = =.
In the one dimensional case the algorithm would terminate at this point, since
every other term in the polynomials has lower degree than the leading term
and thus cannot be divided. However in our case we find that y? is divisible by
LT(f2) = y?. So we simply set x as the remainder r and continue our algorithm.
This leaves us with the polynomial y? + y. We divide by f» and obtain

v Hry—fo=y+1

Which leaves us with y 4+ 1. Since we cannot divide this polynomial any further
we add this to our remainder » = x and ultimately our remainder is given by
r =z +y+ 1. So after division we obtain

Pytayry-—r=@+y) - (@y-)+1-(" - D+aet+y+1

These two examples give a clear picture of how the division algorithm works.
One important property of the algorithm is that the remainder is not divisible
by any of the polynomials by which we are dividing.

Theorem 2.15 (The division algorithm in k[z,zs,...,2,]) Let > be a
monomial order on Z%, and let F = (f1, fo,..., fs) be an ordered s-tuple of
polynomials in k[xy1, T2, ..., x,]). Then every f € k[xq, 2, ..., x,] can be written
as

f=afi+tefo+-+qfs+r

where ¢;,v € k[x1,x9,...,2,]. Furthermore r is either 0 or a it is a linear
combination of monomials with coefficients in k, which are not divisible by any

11



of LT(f1),LT(f2),...,LT(fs). We call v a remainder of f by division by F.
Furthermore if q; f; # 0 then

multidegree( ) > multidegree(q; f;)

Proof The proof and a detailed explanation of the algorithm is given in [1,
p.64] O

One major way in which this division algorithm differs from the one-dimensional
case, is that the remainder in k[z1,x9,...,x,] is not uniquely determined. For
this we return to our example f = 22y+2y?+1y? with fi = zy—1and f» = y>—1.
Once more we use lex order x < y, but this time we will order our polynomials
as F' = (fa2, f1). So we divide by f, first if possible. The division is then given
by

Py+ay’ +y’ - i =ay’ o+ oy
i +r+yi—a- fo =2+
20+ 1y - r =2

v —fa=1
l—>r=2x+1

where every line with an arrow denotes a step in the algorithm where the leading
term cannot be divided by f; and fs. Thus our polynomial f is given by

Py+ryi+yi=a-(ay-D+(@+1)- P2 -1)+22+1

Now our remainder is different than before. Thus we see that our remainder is
dependent on the way we order our division.

This problem causes some further complications when we look at finitely
generated ideals. If we examine a polynomial f € (f1, fa,..., fm), then we can
write it as f = q1f1 + q2f2 + -+ Q'mf'rn = Q1f1 + Qsz + -+ qum + 0. So
clearly a polynomial g lies in this ideal whenever its remainder by division on
f1, fo, ..., fm is zero. This is however not a sufficient condition as the ordering
of our division influences the remainder. This best shown through the following
example:

Let f = 2y — 2 € k[x,y] and we divide this by f; = zy — 1 and fo = y? — 1.
Using lex order z > y and dividing by F = (fi, f2) gives us

ay? —z =y (zy—1)+0-(y* 1) + (-2 +y)
If we reverse the order and divide by F = (fa, f1), then we get
vy —z=2-(Y* 1) +0-(zy—1)+0

Obviously we can conclude that f € (f1, f2) from the second division, but we
cannot infer this from the first division.

Clearly the division algorithm in k[z1,x2,...,2,] is not as nice as in k[z].
In chapter 2.6 we will look at ways to solve the problems that we have shown
here. As it turns out we can resolve these issues by working in a specific basis
called a Grébner basis.

12



2.5 Dickson’s lemma and Hilbert’s basis theorem

One of the other questions we raised in chapter 2.2, was whether we could find a
finite basis {f1, f2, ..., fm} for every ideal I in k[x1, o, ..., 2,]. In this chapter
we will provide the solution to this question and lay the groundwork for Grobner
bases.

To solve this question we make use of the fact that every nonzero polynomial
fin k1, za,...,2,] has a unique leading term LT(f), once we fix a monomial
order. Naturally an ideal generated by monomials, would be an appropriate
place to start. So let us define monomial ideals in k[z1, 22, ..., z,].

Definition 2.16 We call an ideal I C kl[zy,22,...,2,] a monomial ideal, if
there exists a subset A C ZZ%, such that I contains all polynomials which are
finite sums of the form Y. - 4 hat® with hy, € k[x1,22,...,2,]. We denote this
with I = (% |« € A).

acA

Note that we do not require A to be a finite subset, so I is a priori not finitely
generated. An example of a monomial ideal is given by I = (zy3, 2%yz, 2%) C
klx,y, 2]

The following lemma tells us how we can characterize elements of a mono-
mial ideal.

Lemma 2.17 Let I = (z®|a € A) be a monomial ideal. Then a monomial

2P is an element of I if and only if there exists an o € A such that £® divides
B
xP.

Proof If z” is divisible by z® for some o € A, then by definition of an ideal
28 € I. For the converse let 2 € I and given by 2° = Oy h;z®®) | where
h; € k[xy,za,...,2,) and a(i) € A. We can then write each h; as a sum of its
monomials, which gets us

S

P = i: hixa(i) - Z Z ci,jxﬁ(i’j)xa(i) — Zci,jxﬂ(i,j)gga(i)
i=1 J ()

=1

After collecting every term of the same multidegree, the terms of the right hand
side of the equation are divisible by some (). Thus the left hand side 2 must
also be divisible by z®(®). O

We can expand this idea further and show that a given polynomial f lies in
a monomial ideal whenever its monomials lie in 1.

Lemma 2.18 Let I be a monomial ideal and let f € kl[x1,2a,...,2x,]. Then the
following are equivalent:

1. fel

2. Every term of f lies in I

3. f is a k-linear combination of the monomials in I

Proof The implications 3.) = 2.) = 1.) and 2.) = 3.) are obvious. We will
prove the implication 1.) = 3.).
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Let f € I be given by f = >7 hiz®® where h; € k[z1,2o,...,x,] and
a(i) € A. If we expand a term in f in the same manner as in lemma 2.17 we

get
ha®(®) = Z ijﬁ(iyj)xa(i)
J

Since %) ¢ I divides 272" we get by lemma 2.17 that the monomial
xB3) () Jies in I. So f is a k-linear combination of monomials in I. This
completes our proof. O

From this we can immediately see that a monomial ideal is uniquely deter-
mined by its monomials. Hence

Corollary 2.19 Two monomial ideals are the same if and only if they con-
tain the same monomials.

The main result we are concerned with regards to monomial ideals in k[x1, x2, . ..

is to prove that they are finitely generated

Theorem 2.20 (Dickson’s lemma) Let I = (z*|a € A C k[z1,22,...,2,]) be
a monomial ideal. Then I can be written in the form I = (:170‘(1), z*@ ,xa(m)>
where

a(l),a(2),...,a(m) € A.

Proof We will use a proof by induction on the number of variables, n. Let
n = 1. Then I is generated by the monomials ¢, where o € A C Z>o. Let
be the smallest element of A. Then since § < « for all & € Z>(, we have that
xlﬁ divides all generators z§. From this we can conlude that I = (z7).

Now assume the theorem holds for 1,2,...,n — 1. To clear up the notation
we will work in k[z1, 22, ..., 2p—_1,y]. This way we can write monomials as x®y*,
where o € Z2;" and s € Z>o.

Now let I C k[x1,22,...,Zn_1,y] be a monomial ideal. We denote with
J the ideal generated by the monomials x®, with the property that x“y® € I
for some s > 0. Because J lies in k[z1, 9, ...,2,_1] our inductive hypothesis
holds. Thus we can find finitely many monomials z*(®) that generate J, so
J = (zoM) @) gy,

By definition of J we find for all ¢ that x"‘(i)ys’? € I for some s; > 0. Now let s
be the largest among the s;. Then for each 0 > [ > n—1 we will construct ideals
Ji C klry,29,...,2,_1] generated by the monomials z?, such that z%y' € I.
We can apply our inductive hypothesis again to find monomials 2% () such that
Jp = (o) gea@) o gea(s)y,

We claim that I is generated by the following monomials:

From J :x®My™ z0@ym . geym
From JO :mOtO(l)u ‘ra0(2)7 e 7{1/'&0(50)
D41(51)

From Jy :z®tMy 201 @y o Y

From Jm71 :mamfl(l)ym_17 xarn—l(Q)ym_l’ e ‘,L.Ozrnfl(snzfl)ym_l
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The important thing to note is that every monomial in I is divisible by one of
these monomials. To prove this let 2°y9 € I. For ¢ > m there exists an i, such
that z*®y™ divides 2Py? by the construction of J. In the case that ¢ < m we
can once more find an i, such that 2% (Dy? divides 2°y? by the construction of
Jq. Using lemma 2.17 we find that the above ideal generates an ideal with the
same monomials as I and by Corollary 2.19 it follows that these are the same
ideal. This proves our claim.

Now the only thing left is to prove that we can generate I using a finites
set of generators in a given set of generators. We will switch back to variables
in x1,22,...,2T,, so our ideal is given by I = (z®|a € A) C k[x1,x9,...,x,].
Thus we need to show that I is generated by finitely many monomials =%, where
a € A. We have shown that I = (1) 282 280)) for some %) € I.
Since 2% lies in I there exists some z®(*) with a(i) € A, such that z*(*) divides
2P by lemma 2.17. Now let f € I = (z#®), 2P 28()) be nonzero. Then
we can write it as follows

S

f= 28: fia®) = i:fixy(i)wa(i) = Z(fix"/(i))xa(i)
=0 i=0

=0

Thus we have that I C (z*™M),a*®?) . 22(5)) and we can conclude that I =
(M) @) o)), O

This theorem allows us to answer the question raised in chapter 2.4 for mono-
mial ideals. Namely

Proposition 2.21 Let [ = (xo‘(l)wo‘@), . ,xa(s)> be a monomial ideal. Then
a polynomial f lies in I if and only if the remainder of f on division by
22 @) pe(8) s zero.

Proof Obviously if the remainder of f on division by z®M) g2 zo()
is zero, then f lies in I. So let us assume that f € I = (1) 222 ze@),
If we divide f by z®M) 2@ 22() the division algorithm gives us

f=hiz®® 4 @ 4 h2®) 4

where 7 is some remainder. By Lemma 2.18 we then have that » € I and thus
there exists an #® € I that divides r by lemma 2.17. Since the z*(?) generate
I, there is some () that divides z®. Since r is not divisible by any z®®, it
follows that r must be zero. O

For a general ideal I we still have to do some work, as we can only apply
Dickson’s lemma on monomial ideals. As we have stated before each polynomial
f € I has a unique leading term LT(f), once we fix a monomial order. Thus we
can construct a monomial using these leading terms as follows.

Definition 2.22 Let I C k[z1,x2,...,2y] be an ideal other than {0} and fix
a monomial ordering on k[xi,xa,...,x,]. Then:

1. We denote by LT(I) the set of leading terms of nonzero polynomials in I.
So
LT(I) = {cx® | there exists f € I such that LT(f) = cx®}
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2. We denote by (LT(I)) the ideal generated by the elements of LT(I)

One might think that for a finitely generated ideal I = (fy, fa,..., fm), we
find that (LT(f1),LT(f2),...,LT(fm)) and (LT(I)) are the same ideal. While by
definition LT(f;) € LT(I) C (LT(I)) implies that (LT(f1),LT(f2),...,LT(fm)) C
(LT(I)). The converse inclusion does not always hold.

Consider for example the ideal I = (f, fo) generated by f; = 2% — 22y and
fo = 2%y + x — 2y%. Using lex ordering in k[, y], we find that

- (2Py +x—20%) —y- (23 - 2x) = 22
and so x? € I. Its leading term x? = LT(2?) is thus an element of (LT(I)). On
the other hand 2 is not divisible by LT(f;) = 2® or LT(f2) = 22y, so by lemma
2.17 we find that 2% ¢ (LT(f1),LT(f2)).

We will adress this problem once we tackle Grobner bases in the next chap-
ter. For now we want to prove that (LT(I)) is a monomial ideal. This allows us
to find a finite basis for it using Dickson’s lemma.

Proposition 2.23 Let I C k[z1,22,...,2,] be an ideal different from {0}.
Then we find that:

1. (LT(I)) is a monomial ideal
2. There exists g1, 92, - - -, gm € I such that (LT(I)) = (LT(¢g1),LT(g2), - - -, LT(gm))

Proof 1) Let (LM(g)|g € I/{0}) be the monomial generated by the leading
monomials of nonzero polynomials g in I. Since LT(g) = LC(g) - LM(g) is an
element of (LM(g)|g € I/{0}), we have that (LT(I)) C (LM(g) | g € 1/{0}). Di-
viding by the leading coefficient gives us the reverse inclusion and thus (LT(I)) =
(LM(g) | g € I/{0}). So (LT(I)) is a monomial ideal.

2) Since (LT(I)) is a monomial ideal, we can use Dickson’s lemma to find
91,92, - -, 9m € I such that (I) = (LM(g1),LM(g2),...,LM(gm)). It easily follows
then that (I) = (LT(g1),LT(g2),--.,LT(gm)). This completes our proof O

Together with the division algorithm this allows us to find a finite basis for
any ideal I.

Theorem 2.24 (Hilbert basis theorem) FEvery ideal I C kl[z1,x2,...,2,)]
has a finite basis. In other words I = (g1, g2, ..., 9m) for some g1,92,...,Gm € I.

Proof If I = {0} we simply take {0} to be our generating set, so let I be
a nontrivial ideal.

We fix a monomial ordering and let (LT(I)) be the resulting ideal of leading
terms. By proposition 2.23 we can find ¢1,¢2,...,9m € I, such that (LT(I)) =
(LT(¢g1),LT(92), .-, LT(gm)). We will show that I = (g1,92,...,Gm)-

Obviously we have that (g1,g2,...,9m) C I since all g; € I. We use the
division algorithm to divide f by ¢1,92, ..., gm and we find that

f=higi +haga+ -+ hnGm + 7
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where 7 is some remainder. Note that we can write r as

T:f—hlgl—hQQQ—"'—hmngI

So if r # 0, then LT(r) is an element of (LT(I)) = (LT(¢1),LT(g2),-..,LT(gm))-
Using lemma 2.17 we find that r is divisible by some LT(g;). This leads to a
contradiction since r is a remainder and hence r» must be zero. This reduces our
equation of f to

f=higi +haga+ -+ hmgm

This is an element of (g1, g2, - - ., gm), S0 we can conclude that I C (g1, 92, ..., Gm)-
This completes our proof (I

2.6 Grobner bases

The basis {g1, 92, - - ., gm } generated in the proof of theorem 2.24 has the addi-
tional property, namely that (LT(I)) = (LT(g1),LT(g2),-..,LT(gm)). Since this
does not hold for every basis of an ideal, we will call the bases that have this
property Grobner bases.

Definition 2.25 Fix a monomial order on kl[ri,x2,...,2,]. We call a set
G = {91,92,---,9m} of an ideal I C k[zy,xa,...,x,], different from {0}, a
Grobner basis if

(LT(I)) = (LT(¢g1), LT(g2), - - -, LT(gm))

For the ideal {0} we define the empty set () to be the Grébner basis.

From the proof of theorem 2.24 we can immediately infer the following corol-
lary

Corollary 2.26 Fix a monomial order. Then every ideal I C klx1, 22, ..., 2]
has a Grébner basis. Furthermore every Grobner base for I is a basis of I.

Proof Let I be a nonzero ideal. The set G = {g1,92,...,9m} constructed
in the proof theorem 2.24 is a Grobner basis of I and by the same arguments in
the proof it is also a basis of I. ([l

The reason why Grébner bases are so important, is that they have the fol-
lowing property regarding the division algorithm

Proposition 2.27 Let I C k[xy,za,...,x,] be an ideal and let G = {g1,92, -, gm }
be a Grobner basis for 1. For any given [ € k[xy,xa,...,x,], there exists a
unique r € klx1,xa, ..., x,] which satisfies the following properties:

1. No term of r is divisible by any of the LT(g1),LT(g2), .- -, LT(gm)
2. There exists a g € I, such that f =g+

In particular r is the remainder of f by division by G. This is independent of
how we list the elements of G.

Proof The division algorithm gives us that f = hi1g1 + hogo + -+ + ApmgGm + 1
and thus r satisfies 1). Furthermore since G is a basis of I, it follows that
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g =hi1g1 + haga + -+ + hmgm € I. This satisfies 2) and proves the existence of
r.

For uniqueness assume that f = g +r = ¢’ +  satisfies 1) and 2). By
the definition of an ideal we have that r — ' = ¢’ — g € I. Since r # 7/, it
follows that LT(r —7’) € (LT(I)) = (LT(91),LT(g2),...,LT(gm)). However using
lemma 2.17 we have that LT(r — ') is divisible by some LT(g;). This leads to a
contradiction, since no terms of r, 1’ are divisible by LT(g1),LT(g2), .-, LT(gm)-
So r — 7’ is zero and r is unique.

The final part of the proposition follows from the uniqueness of r (Il
This proposition allows us to answer the question whether a polynomial
f € k[z1,za,...,x,] is an element of an ideal I.

Corollary 2.28 Let I C k[x1,22,...,2,] be an ideal and G = {g1,92,.-.,9m}
a Grébner basis for it. Then a given polynomial f € k[xy,xa,...,xy] lies in I
if and only if the remainder of f by division by G is zero.

Proof We have shown already that f € [ if its remainder is zero. For the
converse note that f = f 4+ 0. Since f € I we satisfy the conditions of Proposi-
tion 2.27. Hence 0 is the remainder of f on division by G. (]

Thus if we want to check whether a polynomial f lies in an ideal I, we simply
need to compute its remainder with respect to the Grébner basis G of the ideal.
We will denote this remainder in the following way

Definition 2.29 Let F = (f1, fo,. .-, fm) be an ordered m-tuple. We will de-
note the remainder of f on division by F with ?F. If F is a Grobner basis of an
tdeal then we can treat F' as a set without an order, as fF 18 uniquely determined.

For example take F = (232 — yz,y?*2% + 2) C k[x,y, 2] with lex order. Than we
have that »
o1y223 = —gy2?

since the division algorithm gives us that

xhy?23 = ay?2? - (232 — y2) Fayz - (YRR 4 2) — ay2?

One concern we have not adressed so far, is that we need to find a Grébner
basis to fully utilize the division algorithm. One way to do this is by using the
Buchberger algorithm. For this we make use of S-polynomials

Definition 2.30 Let f,g € k[z1, 22, ...,zy] be polynomials. Then:

1. If multideg(f) = « and multideg(g) = B, then we let v = (y1,72,- -+ »Vn)
where v; = max(«y, 8;) for all i. We call 7 the least common multiple of
LM(f) and LM(g). We denote this by x7¥ = lem(LM(f), LM(g))

2. We define the S-polynomial of f and g as follows

z” z

Sty i

)Y
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The S-polynomials are defined in such a way that the leading terms of f and g
cancel out. To see this, let us consider f = 2%y — 2z and g = Tzy> +y in klz, 1]
with lex order. Then ~ is given by v = (2, 3), so

22y 22y
S = Cf .
1
=y f-zweg
1
= —Qxyz - ?zy
We have seen before that for an ideal (fi, fa, ..., fm) We can find polynomials

such that their leading terms are not elements of (LT(f1),LT(f2),...,LT(fm)).
By applying the S-polynomials repeatedly on the f; we can expand our basis
and additionally the basis we construct in this way turns out to be a Grébner
basis. We do this via the following algorithm which was developed by Buch-
berger.

Theorem 2.31 (Buchberger’s algorithm) Let I = (f1, fo,..., fm) # {0}
be a polynomial ideal. Then a Grébner basis for I can be constructed in a finite
number of steps via the following algorithm:

Input : F = (f1,fo,---, fs)
Output : a Grobuer basis G = (g1, g2, ..., g¢) for I, with F C G

G:=F
REPEAT
G =G
FOR each pair {p,q},p # q in G’ DO
r:=S(p,q)
IF » #0 THEN G := G U {r}
UNTIL G = G’
RETURN G
Proof A proof can be found in [1, p.91] |

Buchberger introduced this algorithm in his PhD thesis[3] to compute Grobner
bases, which he also introduced in his thesis. In fact Grobner bases are named
after his thesis adviser Wolfgang Grébner.

3 Symmetric polynomials
In this chapter we will take a look at symmetric polynomials. We will look at the
elementary symmetric polynomials and show that we can write all symmetric

polynomials as a linear combination of the elementary polynomials. Further-
more we will consider power sums and show how they relate to the elementary
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symmetric polynomials. We will find that they are related by Newton’s indentity
and prove this identity.

3.1 Elementary symmetric polynomials

Symmetric polynomials are something common to mathematics and we prob-
ably know some in one form of another. Consider for example the equation
22 +y% + 22 — r? that describes a sphere of radius r. Changing the order of the
variables does not change the equation. Hence this polynomial is symmetric. In
general a symmetric polynomial is defined as.

Definition 3.1 We call a polynomial f € k[x1,xa,...,x,] symmetric if
flxr,xe, .. xn) = f(z),,2),,...,2j,)
holds for every permutation (z1,%2,...,Tn) — (Tj, Tjy, -, T;5,)

The most important examples of symmetric polynomials, as we will see, are
the elementary symmetric polynomials.

Definition 3.2 Given k[x1,xo, ..., x,] a polynomial ring. The elementary sym-
metric polynomials 01,09, ...,0, € klx1,29,...,2,] are given by.

or=x1+x2+- - +x,

02 = E Ljy Ly

J1<j2

Om = E Ljy Ly - T,

J1<j2<<Jm

Op = T1X2...Tp

In other words o, is a sum of monomials of products of m distinct variables.
While these polynomials are called symmetric it is a priori not obvious that
they are symmetric. To prove this we will first prove the following lemma.

Lemma 3.3 Let 0'”) be the j-th elementary symmetric polynomial in

J
L1, X9y ooy Tje1,Tit1,-- -, Ty for j < m. Furthermore let o9 = 1 and 07(;) = 0.

Then the following equation o; = O'J(»i) + xiaé?l holds for all i, j

Proof We can write o; as follows

0 = E xklxk2...xkj

k1<k2<---<kj

= E ThyThy -+ Thy T E ThyThy - - - Thy

k1<ko<---<kj k1<ko<---<kj
Vi, ki #j 3, ki=j
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Note that all the terms in the first sum do not contain x; and are all the products
of j distinct variables. Hence the firt term is simply aj@. Furthermore since
every term of the second sum contains x;, we can factor this out leaving us with

E ThyThy -+ Thy T E ThyThy -+ - Tk

k1<ko<---<kj k1<ko<---<kj
Vi, ki#j i, ki=j
= O'(i) +x;- Tk, T x
— Y5 J kitky « - Lk; 4
k1<ko<---<kj_1
Vi, ki#j
_ () (1)
=0; + ;0,7

. i
where we use the same argumentation for o'? " once we factor out x;. Hence

j—1
o = cr]@ + xiayjl g

We can now prove that elementary symmetric polynomials are indeed sym-
metric.

Theorem 3.4 The elementary symmetric polynomials o1,02,...,0, are sym-
metric in k[z1,za,...,Ty]

Proof We will introduce a new variable X and consider the following poly-
nomial

fX)=(X —21)(X —x3) ... (X — ) (1)
with roots in x1,xs, ..., x,. Using induction we claim that this is equal to
fX)=X"—o X" '+ + (-1)" o1 X + (-1)"0, (2)

Obviously this equation holds for n = 1, so let us assume it holds for n — 1.
Expanding equation (1) and using the induction hypothesis gives us

FX) =(X —21)(X —2) ... (X — 25-1)(X — 2)
=(X" VX e (S R0, X ()" )X - )
=X" — oV X" T (21200, X2 4 (1) (Y, X
— 2 X (1) 22,0 X 4 (1) 0 X 4 (1)
=X" - X" ()" o 1 X 4 (D)0,

Here we used lemma 3.3 for the last equality and thus we find that the equations
(1) and (2) are equivalent.

Now if we perform a permutation on the variables x1,xs,...,x, only the
order of the factors in equation (1) changes, so f remains unchanged. Hence the
coefficients (—1)™0o,, in equation (2) remain the same and thus the polynomials
01,09,...,0, are symmetric O

3.2 The fundamental theorem of symmetric polynomials

The elementary symmetric polynomials allow us to make several constructions,
for one products and sums of the elementary symmetric polynomials are sym-
metric. This allows us to easily make symmetric polynomials, for example in
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klz,y, 2]

o309 — 03 = 22y’ 2 4+ 2Py + ay?2? — 2? — 2wy — w2 —y® — 2z — 22

is symmetric. An interesting question we could aks ourselves is whether every
symmetric polynomial can be expressed in terms of the elementary symmetric
polynomials? Not only is this possible, but it turns out we can do this in a
unique manner for every symmetric polynomial.

Theorem 3.5 (The fundamental theorem of symmetric polynomials)
Every symmetric polynomial can be written uniquely as a polynomial in the el-
ementary symmetric polynomials

Proof We will use lex order with z; > xg > -+ > x,. Let f € k[z1,z2,...,2,]
be a nonzero symmetric polynomial. We will denote its leading term with
LT(f) = az® and let the exponent « be given by o = (a1,a2,...,a,). We
claim that ay > ag > -+ > «a,, and use a proof by contradiction. Assume that
a1 > «; for some i and let o be the vector we get by switching a;41 and
a;. We denote this by o = (..., 41, 04,...). It follows that az® is a term of
fl. . g1, q4,...), since ax® is a term of f. Since f is symmetric we have that
f(. a1, qi,...) = f and thus az® is a term of f. By lex order o > a so
ax® is the leading term of f, which leads to a contradiction. This proves our
claim.
We will introduce the following polynomial

h — O_(lxl—ago_éxg—ag O_Oénilfano_a"
RV i o
This polynomial is symmetric and it has an interesting property with regards
to its leading term. For this we would like to note that LT(op,) = 2122 ... 2y
in our lex order. Computing the leading term of A then gets us
LT(h) = LT(o0 ™ 20927 oo “moom)
=LT(01)' " *LT(02)** " ...LT(0p—1)*" '~ “"LT(0,)*"
=20 T2 (p1we) T (T2 1) O (2 )

— 01 .02 Qn __ O
=z'zy? Tyt =2

hence ah has the same leading term as f and thus we can subtract the polyno-
mials. If this gives us the zero polynomial then we have found a decomposition
in 01,09,...,0,, so let us assume that f; = f —ah # 0. Since this is again a
symmetric polynomial we can find a h; in the same way as before and repeat
this process over and over. This gives us a chain of f, fi, f2,... and since we
subtract the leading term at each step we find that

multideg(f) > multideg(f1) > multideg(fz) > ...

Since the lex order is a well-ordering this chain must terminate for some m,
hence f,,+1 = 0. From this we get that

f:ah+a1h1+a2h2+-~-+amhm

so f can be written as a polynomial in the elementary symmetric polynomials.
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We now have to show that can be done uniquely. Solet g1, g2 € k[y1, Y2, - - -, Yn]
be polynomials such that f = g1(01,02,...,00) = g2(01,02,...,0,). We need
to prove that g1 = g2 in k[y1,y2,...,Yn], so we will consider the polynomial
g=01— g2 Ink[zy,2a,...,2,] we have that g(o1,09,...,0,) =0, so if we can
show that ¢ = 0 in k[y1, Y2, ..., yn] we have proved uniqueness. Now assume
that ¢ # 0. If we examine a monomial y® of g, then in g(o1,09,...,0,) the
leading term is given by x§'Te2tFenggetasttan | gan We can compute
this similar to how we computed the leading term of h. Note that the map

(0&1,(12,...,05")+—>(051+a2+~-~+057,,a2+013+~~-+Oén,...,04n)

is injective, so every monomial of g has a distinct leading term in g(o1, 02, ..., 0p).
From this we can conclude that the leading term of the largest monomial, by
lex order, cannot be cancelled, hence g(o1,02,...,0,) # 0. This contradiction
completes the proof of the theorem. (I

An alternative proof for this theorem may be found in [4, Lem 3.1.14]. This
proof uses Galois theory and is smaller in size. However it does not provide
an algorithm with which we can compute a decomposition. Let us use this
algorithm on an example. Consider in k[z, y, z] the polynomial

3

f= fz3y — 2z 4+ :172y2 + 2222 — Y — zz3 — y3z + y222 — yzS

The leading term is given by —23y = —LT(0}032), so
fi = [+ 0i0o = 32%y* + 5xyz + 32222 + Sxy® + bryz? + 3222
Now the leading term is 3z2y? = 3LT(02), which gives us
fa=[f—o03 = —a’yz —ay’z —ay2®
This simply leaves us to
fs=Jfe+o1053=0
Hence we have
f=—0loy + 05— 0103
as an expression of f into the elementary symmetric polynomials.
Note that while we have used lex order in the proof and in this example, but
we could have used any other monomial order as well. This can be seen in this

proof [5, Thm 1.1.1] of the fundamental theorem, where the author used grlex
order.

3.3 Finding symmetric polynomials

The fundamental theorem presupposes that we are working with a symmetric
polynomial, but a priori we have no way of knowing whether a given polyno-
mial is symmetric or not. As it turns out combining the division algorithm with
Grobner bases, gives us a powerful tool to check for symmetry. We do this as
follows.

Proposition 3.6 Fiz a monomial order in k[x1,xa, ..., Tn,Y1,Y2s - -, Yn] such
that any monomial containing one of x1, s, ..., T, 18 greater than all monomials
in k[y1,y2, ..., Yn). Let G be a Gréobner basis of (01 —y1,02—Y2, ..., 0n—Yn) C

, —G
klz1,2Z2, o s TnyY1,Y2, -« Yn). Given y € k[zy,xa,...,x,], let g = f be the
remainder by division on G. Then:
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1. f is symmetric if and only if g € kly1,y2, .., Yn]

2. If f is symmetric, then f = g(o1,02,...,0n) is the unique expression of
f as a polynomial in the elementary symmetric polynomials

Proof Let [ € k[z1,22,...,2,]) and g € k[z1,22,...,Zn, Y1, Y2, .., Yn] its re-
mainder on division by G = {g1,¢2,...,92} as above. So

f=A1g1+Asgo+ -+ Age +9g

for some Ay, Ag, ..., Ay € k1,22, ..., Tn,Y1,Y2,-- -, Yn]. We can assume g; # 0
for all 4.

Let us first assume that g € k[y1,y2,...,yn]. We will use the substitution
y; — oy for all 4. Since f is a polynomial in x1,zo, ..., z, it stays unaffected.
Note that every polynomial in (y; — o1, Y2 — 02,...,Yn — 0n) gOes to zero under
this substitution. In particular since g1, gs, ..., g, form a Grobner basis of this

ideal, they all go to zero under this substitution. This reduces our equation for

f to

f 29(0170—27'“;0—71)

so f is symmetric.

Now let f € k[z1,22,...,2,] be symmetric, so f = g(o1,09,...,0,) for
some g € kly1,y2,-..,yn]. We want to prove that this g is the remainder of f
on division by G. Note that in k[z1,2z2,...,2Zpn, Y1, Y2, ..., Ys] We can expand a
monomial in o1, 09,...,0, as follows.

a1 L2 Qn

g 0 °...0 "= (yl - (yl - Ul))al (y2 - (y2 - 02))a2 ce (yn - (yn - O'n))an
= y?lySQ -~-yf:" + Bl(yl - 01) + BQ(y2 - 02) +o 4+ Bn(yn - Un)

for some By, Bsa,...,B, € k[z1,2Z2,...,Zn,y1,Y2,---,Yn]. Substituting this in
g(o1,09,...,0,) then gives us

9(0—130—27 s van) = g(y17y27 e ,yn)+Cl(y1_01)"‘02(3/2_0'2)"" : —I—Cn(yn—an)

where C1,Cy,...,Cy, € k[x1,T2,...,Tn,Y1,Y2, .., Yn] are suitably chosen poly-
nomials. Using the fact that f = g(o1,09,...,0,) we get that

F=9Wi,y2, - yn) + Ci(y1 — 01) + Co(y2 — 02) + - + Cpu(yn, — o)

Now we have to show that g is the remainder of f on division by G.

For this we need to show that ¢ is not divisible by LT(g;) for all 4. As-
sume that there is an ¢ such that LT(g;) divides g. Since g is a polyno-
mial in k[y1,y2, ..., yn], it follows by our ordering that LT(g;) contains none
of x1,x9,...,x,. Thus g; € kly1,y2,...,yn]. We have earlier seen that g; goes
to zero under the substitution y; — o;, since g; € {(y1 —01,y2 — 02, ..., Yn — On).
Hence g;(01,09,...,0,) = 0 is a symmetric polynomial. By the uniqueness of
theorem 3.5 it follows that g; = 0. This leads to a contradiction, since g; # 0.
Hence LT(g;) does not divide g for all i. Since G is a Grobuner basis proposition
2.27 we find that g is the remainder of f by division on G. This proves that the
remainder is an element of k[y1,ya, ..., y,] if f is symmetric.

The second part of the proposition from the arguments above. [
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3.4 Correspondence between o; <> s;

When working with symmetric polynomials it is often helpful to work with ho-
mogeneous polynomials. These are defined as follows.

Definition 3.7 A polynomial f € k[z1,2a,...,2,] is homogeneous of total de-
gree m if every term of f has total degree m.

The elementary symmetric polynomials are prime examples of homogeneous
polynomials, as each term in o; has degree ¢. One important observation to
make is that each polynomial can be written uniquely in its homogeneous poly-
nomials. For f € k[zy,xs,...,2,] let the m-the homogeneous component be
the polynomial that is the sum of all terms with total degree m. We denote this
polynomial with f,,, and then f =3 fn.

The following proposition establishes a link between symmetric polynomials
and their homogeneous components.

Proposition 3.8 A polynomial f € k[xy,2a,...,x,] is symmetric if and only
if all its homogeneous components are symmetric.

Proof Obviously a polynomial is symmetric if its homogeneous components
are symmetric, so let f be a symmetric polynomial. Note that a permutation

(x1,22,...,2n) = (2j,,%j,,...,2;,) takes a monomial of total degree m to a
monomial with the same total degree. Since f(z1,22,...,2n) = f(2j,,jp,- -, T5,)
it follows that its homogeneous components must be symmetric. O

From this proposition we can conclude that whenever we work with sym-
metric polynomials, we can assume that it is homogeneous.
One important group of homogeneous polynomials is the power sums

- Jo... J
sj=xptrpt+ oy

Since the power sums are symmetric we can write them as a polynomial in the
elementary symmetric polynomials. Furthermore it turns out that every sym-
metric polynomial can also be written as sum in the power sums. To prove this
we make use of the following identity.

Lemma 3.9 (Newtons identity) Let z1,zs,...,2, be variables. Then the
following holds for all j > 1

§j —018j—1+ -+ (—1)j_10j_181 + (—1)jj0'j =0

Proof We will prove this using induction on n. Note that g = 1 and o; = 0 for
all < 0 or ¢ > n. We first consider the case j = 1. The equation then reduces
to sy — (=1)!-1-015 = 81 — 0y = 0, since s; = oy for all n. In particular the
case n = 1 is equivalent to this case, since all o; vanish except for .

Thus let j > 1 from now on. Furthermore let the identity hold for 1,2,...,n—
1. We will write the equation as the following sum ch;é(—1)ksj,kak+(—1)jjoj.

Using the identity o; = o™ + xno(n) where the superscript (n) denotes we

J j—1
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(n)

omit x,, from lemma 3.3 and the following identity s; = S; + ), we can write

the sum as follows

j—1 j—1
S (1)Fsjpon + (1 5oy = 3 (=1 (s, + a0 + w0l + (~1)75(08" + 2o t™)
k=0 k=0

i
= D0 kol 4 adF ) 4 s 0l))

+ (150 + 2,08M)

. . . j—1 n n
Note that by our induction hypothesis > 7_,(—1 )’C ¢ ) ( )+ (~1)3j ) =01is
the case n — 1. This simplifies our sum to

j—1
SV @l + 2l o+ aasal) + (<1 jwaoly
k=0

The second simplification we make is with regards to the first and second term
of ther sum. If we compute the first term at some k and the second term at
k + 1, their sum will vanish

e B e B e
This leaves us only with the first term for ¥ = j — 1 and the second term
for kK = 0. Note that 0_1 = 0, so the second term and third term vanish at
k = 0. Thus we are left with the first term at k = j — 1 which is given by

(—1)7- xna]( ™). This gives us the following sum

|
—

J
(—1)’6.13”85»’6)’60'2_1 +(_ ) xn ( ) ( 1) ]an j( )1

k=0
Jj—1
- (_1)kx"8§i)kag—l + (1) (.] - I)ZEHO'( )1
k=1
J—1
=2, (=1) | D (-)E s or 4 (1)U - )0
k=1

Here the sum inside the brackets is the case for j — 1 and n — 1, hence by our
induction hypothesis this sum vanishes. With this we complete our proof [

We can now move on to prove our main theorem.
Theorem 3.10 If k is a field containing the rational number Q, then every
symmetric polynomial in k[x1,xa, ..., x,] can be written as a polynomials in the
POWET SUMS S1,52, - Sy
Proof We will prove this theorem using induction. For n = 1 we simply have
that 01 = s1. We will assume the claim is true for 1,2, ..., 5 —1. Using Newtons

identity from lemma 3.9 we get that

41 -
oj = (=1) 13(8j —o1sj1+ o+ (1) loys1)
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Here we can divide by j since Q is contained within our field. Then by our

inductive hypothesis we have that o1,09,...,0, can be written in the power
sums. Thus substitung it in the above equations we find that o; is a polynomial
in sq,82,...,5; ([l

4 Ring of invariants of finite groups

In this chapter we will generalize the notion of symmetric polynomials. We will
introduce finite matrix groups and examine which polynomials stay invariant
under their group action. Furthermore we will look at ways to generate invariant
polynomials.

For this chapter we will assume our fields £ to contain the rational numbers
@. Such fields are said to be of characteristic zero.

4.1 Finite matrix groups

Let us examine the power sum ss(z1,22,...,2,) = o3 + 23 + --- + 22 from

chapter 3.4. We have already seen that this polynomial is symmetric, but it is

also invariant under different transformations. Consider for example the linear

map z; — —x; for all i. Then clearly we have that so(—x1, —x2,...,—z,) =

sa(x1,x9, ..., &y ), thus the power sum sy is invariant under this linear map.
Thus we will consider the following set

Definition 4.1 Let GL(n,k) be the set of invertible n x n matrices with en-
tries in k.

This set is called the general linear group and has a few interesting properties.
Using linear algebra we can easily find that GL(n, k) is closed under matrix
multiplication and that every matrix A € GL(n, k) has an inverse which lies in
GL(n, k). Thus the n x n identity matrix I, = A- A™! is also an element of
GL(n, k).

Most importantly for every A € GL(n, k) there is a corresponding invertible
linear map L, : k™ — k™ via matrix multiplication. In fact it can be shown that
every linear map can be represented by a matrix A [6, p.210]. Hence GL(n, k)
is a natural environment for us to work in.

More specifically we are interested in the following subsets

Definition 4.2 We call a nonempty subset G C GL(n, k) a finite matriz group
if it is closed under matriz multiplication and finite. We call the number of
elements in G the order of G and denote it with |G]|.

An example of a finite matrix group is the set {I,,} that merely contains the
identity matrix. For a less trivial example consider a matrix A € GL(n, k) such
that A™ = I,, for some positive integer m. The set C,, = {I,, A, A%,..., Am~1}
generated by A is a finite matrix group. It is closed under multiplication and
of order m. Namely for every k > m we have that

Ak _ Akfn*m LA Akfn*m . (Am)n — Akrfn*m c Cm

for some positive integer n. This group is called a cyclic group of order m.
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For example one can easily see that the matrix

A= ((1) (1)) € GL(2, k)

forms the cyclic group Cy = {I2, A} of order 2.

Another important example of a finite matrix group are the permutation
matrices. We have already encountered permutations when working with sym-
metric polynomials in chapter 4.1. Consider now for example a permutation
o which sends (z1,22,...,2n) = (To(1)sTo(2),- -1 To(n)), Where the subscript
i gets permuted to the subscript o(i). Thus the permutation matrix for o
is given by the matrix M,, which corresponds to the linear map that takes

(1,22, .., 2n) 10 (To(1), To(2)s - - > Ta(n))- SO
Ty Ta(1)
M, - T2 _ Ts(2)
Tn To(n)

It is easy to show that o(i)-th column is given by the i-th column of I,,, so we
leave this as an exercise for the reader.

As there are n! possible ways to permute n variables, it follows that there
are n! permutation matrices. Furthermore the permutation matrices are closed
under matrix multiplication via

MT 'MU = MO’T

where o7 takes i to o(7(i)). To see this we will examine how the vector ), z;e;
changes under M, - M,, where e1,eo, ..., e, is the standard basis of k". If we
apply M, we get that My - (D, zie;) = ), To(i)€i, since the i-th column of I, is
located at the o(i)-th column of M,. By this same argument we get that z,(;e;
gets mapped to z,((;))e; under M. Thus M, - M, = M, and the permutation
matrices are closed under multiplication. Hence this set forms a finite matrix
group in GL(n, k) and we will denote this group by S,,.

To end this chapter we would like to highlight some properties of finite ma-
trix groups

Proposition 4.3 Let G C GL(n,k) be a finite matriz group. Then the fol-
lowing holds:

1. I,eG
2. If A € G, then there exists a positive integer m such that A™ = I,
3. IfAcG, then A= € G

Proof Let A € G and assume that 2) holds. Since G is closed under multipli-
cation we have that I,, = A™ € G. So 1) holds.

To prove 2), note that {4, A% ...} C G since G is closed. Furthermore we
have that A* = AJ for some i > j, since G is finite. We can multiply both sides
by A=J because A is invertible. Thus we find that A*~/ = I,, and this proves
2).

From 2) we find that I,, = A™ = Am~1. A= A-Am"1. So A~ = A™~1 € G,
since G is closed under multiplication. This concludes our proof (Il
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4.2 Rings of invariants

We have looked at finite matrix groups and we would like to relate them to
polynomials. To do this, we let A = (a;;) € GL(n, k) and we examine the linear

map corresponding to this matrix. This maps the element (x1,z2,...,z,) in
k™ to (@111 + @122 + -+ + @1pTn, - -y Q1T + Q2o + <+ + App Ty ), which is
again an element of k™. Thus for any polynomial f € k[x1,za,...,2,], we find

that the polynomial
9(171, L2y 79377,) = f(allxl +a12T2+: - +a10Tn,y - -, An1T1+HAp2T2+- - '+annxn)

is again a polynomial in k[z1, 2, ..., z,]. We will shorten notation by denoting
the column vector of x1,zs,...,z, by x. This reduces our equation to

9(x) = f(A-x)

We are interested in polynomials that are invariant under these maps. We define
this as follows.

Definition 4.4 Let G C GL(n,k) be a finite matriz group. We say that a
polynomial [ € klxy,xa,...,x,] is invariant under G if

f(z) = f(A-x)

for all A € G. The set that contains all polynomials invariant under G is de-
noted by k[z1,xa, ..., 7,]°.

One example of invariant polynomials that we have already encountered, are
the symmetrical polynomials. Indeed all symmetric polynomials are invariant
under the permutation matrices S,, C GL(n, k). Thus we get that

klxzy,xa, ..., x,])°" = {All symmetric polynomials in k[x1, zs, ..., z,]}

Furthermore from theorem 3.5 we know that every symmetric polynomial can
be expressed as a polynomial in the elementary symmetric polynomials with
coefficients in k. Hence we get

klxy, xo,. .. ,xn]S" = klo1,09,...,04)

Additionally this decomposition is unique.

The question we ask ourselves is whether all invariants k[z1,za,...,2,
share these properties. One property that they all share is their algebraic struc-
ture

}G

Proposition 4.5 Let G C GL(n,k). The set k[x1,2a,...,7,]¢ contains the
constant polynomaials and is closed under addition and multiplication.

Proof Let f be a constant polynomial, thus f(x) = f holds for all x € k™. So
we get that f(A-x) = f = f(x) for all A € G and hence f € k[z1,z2,...,2,]%.
Now let f,g € k[z1,22,...,2,]¢ and let A € G. Then we have that

(f+9)(A-x) = f(A-x)+g(A-x) = f(z) +g(z) = (f +9)(x)
(f9)(A-x) = f(A-x)g9(A-x) = f(2)g(z) = (fg)(x)
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Hence f + g and fg are elements of k[x1, 2, ..., 2,]¢. This concludes our proof
O

Together with addition and multiplication the set k[x1,z2,...,2,]¢ thus forms
a commutative ring. Since k[z1, 2o, ..., 2,]% is a subset of k[z1, xa,...,x,], we
do not have to check for associativity and the other related properties as these
hold in k[z1,xa,...,2,]. So in particular we call k[xy, 22, ..., 2,]¢ a subring of
k:[a:l, T2y ,.’lﬁn].

One property of symmetric polynomials was that their homogeneous compo-
nents were also symmetrical polynomials as shown in proposition 3.9. A similar
result holds for invariant polynomials of any finite matrix group

Proposition 4.6 Let G C GL(n,k) be a finite matriz group. Then a poly-
nomials [ is invariant under G if and only if its homogeneous components are
invariant under G.

Proof We will prove this in a similar way as in the proof of proposition 3.9. Let
A = (ai;) € Gandlet 27'z2 ... a2l be a monomial of degree m = iy +ig+- - -+ip.
Under matrix multiplication this monomial gets mapped to

(allﬂfl + aijgro + -+ ll1nl‘n)i1 - (anlzl + Apoxo + -+ annxn)i" (1)

We will use induction on n to prove that every term in (a1121 + @122 + -+ +
a1y )" has total degree iy.

This obviously holds for n = 1, so let it hold for 1,2,...,k—1 and let n = k.
Using the binomial theorem we get that

(((1111’1 + a9 + - + al(n—l)mnfl) + alnxn)il

11 .
Z _ o
= Z <Jl> (@121 + @122y + -+ + ar (1) Tn—1)’ (@10 20) " 7
7=0

By our induction hypothesis every term of (a1171 + a1222 + - - -+ a1(n—1)Tn—1)’
has total degree j, so every term in the sum has degree i;. We can repeat this
argument for all 4; and thus we can conclude that every term in equation (1)
has total degree m.

Now let f € k[z1, 29, ..., 7,]¢. Via matrix multiplication A maps every term
of total degree m to a sum of terms with total degree m. Since f(4-x) = f(x),
it follows that the m-th homogeneous component is also invariant under G.

The converse is trivial and we conclude this proof O

This proposition allows us to determine whether a polynomial is invariant, by
examing its homogeneous components. This will prove to be useful, when we
determine the generators of k[x1, 2o, ..., 2,]% in chapter 4.3.

Another way to determine whether a polynomial is invariant under G, is to
check whether it is invariant under the generators of G. We will prove this in
the following lemma.

Lemma 4.7 Let G C GL(n, k) be a finite matrix group. We say that Ay, Aa, ..., Ay €
G generates G, if every A € G can be written as

A=DB;By - By
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where B; € {A1,As,...,An} for all i. Then f € k[xi,zo,...,2,] lies in
k[z1, w2, ...,2,]¢ if and only if f is invariant under the generators of G, so

fl@)=fAr @)= f(A2 @) = = f(An - @)

Proof We will first prove that f is invariant under the product of matrices
B1Bs- - - By, if it is invariant under By, Bs ..., B,s. Using induction this obviously
holds for s = 1. We assume it holds for 1,2,...,k — 1, then for s = k we have
that

J((B1 By Bi)-x) = [(Bi By By 1) - (B %)) = f(By ) = [(x)

Now assume that f is invariant under the generators Aj, As, ..., A, of G.
Let A be an element of G. Then we can write it as A = By Bs--- By with
B; € {Ay, As, ..., Ay} Since f is invariant under all A;, it follows immediately
that f is invariant under A and thus f € k[zy,29,...,2,]¢. The converse is
trivial and this concludes our proof O

To see how this lemma works in action we will consider the following matrix

group
+1 0 +i 0
Gs_{(o j:l)’(o ii)}gGL(Q’C)

of order 8. For the readers familiar with group theory, this group is isomorphic
to Z2 x Z*. Tt is easy to see that this group is generated by the matrices

6567

Thus according to lemma 4.7 a polynomial f € C[z,y] is invariant under Gy if
and only if the following holds

f(aay) = f(vay) = f(x,zy)

If we write f as follows f =", amz®y!, then first equality is given by
fla,y) = fiz,y) <= apay' = (ix)ky!

k,l k,l
<= E aklxkyl = E aklika:kyl
k,l k,l

So we get that ay; = ax;i*. Since this only holds whenever k is a multiple of 4,
it follows that aj; vanishes otherwise. Thus x always has a power that divides
4. The same holds for y, when we repeat this process for f(x,y) = f(z,iy). So
we can find a unique polynomial g € C[z, y] such that

fla,y) = g(zt,y")
Furthermore every polynomial of this form is invariant under Gg, so we get that

Clz,y]%® = Clz*, y"]
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From this we can gather that every polynomial f that is invariant under G,
can be written uniquely as a polynomial in 2* and y*.

Another interesting example is given by the finite matrix group

oo et s

of order 4. This group is isomorphic to Z? x Z2. This group is generated by the

matrices
-1 0 0 1
0 —-1)’\1 0

so by lemma 4.7 we find that any invariant polynomial f € k[z,y] obeys the

equation f(z,y) = f(—z,—y) = f(y,z). For f =3, ai;x'y?, the first equality
then implies that

Zaijl'iyj = Zaij(_x)i(_y)j = Zaij(—l)iﬂxiyj
i,5 i,j i,J

So a;; = 0 whenever i+ j is odd. It follows if f is an invariant polynomial, that
every monomial 'y’ in f has the form

ig_ 2yt = ()™ (y?)! if i,j are even
vy 2mHly 2L — (p2ym (y2)lgy  if i,j are odd

Thus we find that f is polynomial in 22, %%, and zy, since all its monomial are
polynomials in these invariants. So f € k[z?,y?, zy].

As an aside this ring of invariants differs from the rings we have seen so far,
since we cannot write every invariant polynomial uniquely in terms of z2,y?,
and zy. Take for example the polynomial z2y*, which is clearly invariant under
the map (z,y) — (—z, —y). Then we have that

a?yt =a?- (y*)? = (y)®

This stems from the fact that 22 - y? = (zy)?%.

Getting back to our original problem at hand, we still have the equality
flz,y) = f(y,x) to examine. It follows from this equation that every invariant
polynomial is also symmetric. We have already seen that our invariant poly-
nomials lie in k[z2, y?, zy], so we have to reduce this ring to its symmetrical
polynomials. Let f = >, aijr(2?) (y*) (zy)* be an invariant polynomial in
k[z?,y?, zy]. Then we have that

flzy) = f(y,z) = Z aijk(xz)i(UQ)j(my)k = Z aijk(xQ)j(y2)i(y$)k

.,k .5,k
<= a1 (02 (¥?) = aji(2?) (y?)?  for all i,]
< Qijk = Qjik for
In the case that i = j we simply find that (22)!(y?)? = (22y?)" = (zy)%, so the
monomials are polynomials in xy. On the other hand for ¢ < j we have that
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A5k = Ajik, SO

k(@) (%) (2y)* + aji (@) () (2y)"
=aii(zy)" ()" (y*) + () (y°)")
—auk(xy)k( )iz )

i (ay) " (@ Py
So the monomials in 4 and j form a polynomial in zy and 22 + 2. Thus a
polynomial f that is invariant under Vj can be expressed as a polynomial in xy
and 22 + y2. This happens uniquely as there is no algebraic relation between

only xzy and x? + y2. Conversely every polynomial in k[z? + y?, zy] is clearly
invariant under V4. So we can conclude that

klz,y]"* = k[2? + v, zy]

4.3 Generators for rings of invariants

In this chapter we will determine how we can generate the ring of invariants
k[z1,m2,...,7,]¢ for a finite matrix group G C GL(n, k). So far we have used
that we can write certain polynomials as a polynomial in fi, fo,..., f;. To
expand on this we define as follows

Definition 4.8 Given fi, fa, ..., fm € k1,22, ..., 2,], we denote by k[f1, fa, ...
the subset of k[x1,xa, ..., 2, that contains all polynomial expressions in f1, fa, ...

with coefficients in k.

In other words it contains all polynomials f € k[z1,z2,...,z,] that can be
written as

F=9(f1,f2,-- fm)

with ¢ a polynomial in m variables and coefficients in k.

This set forms a subring of k[x1, xa, ..., x,] as it is closed under addition and
multiplication and contains the constant polynomials. Thus k[fi, fa, ..., fm] is
the subring generated by fi, fo,..., fm. One detail we have to keep in mind is
that this is different from the ideal (f1, f2,..., fm), despite the fact that they
are both generated by f1, fa, ..., fm. As an example consider the ring k[z?] and
the ideal (x2). Then k[z?] is not a subset of (2?), since the constant polynomials
are not elements of (z2). Furthermore the converse inclusion does not hold as
23 = 2% -z € (x?), but there is no m € Zx such that (z2)™ = 3.

One important object that we make use of to determine k[xy, za,...,z,]
is the Reynolds operator

G

Definition 4.9 Given a finite matriz group G C GL(n,k), the Reynolds op-
erator of G is defined by the map Rg : klxi,za,...,2,] — kX1, 2a,...,2,]
given by

Ra(f)(x) Z f(A-x

‘G| Aco
for f(x) € klz1,z2,...,2p).
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We do not have to worry about division by |G|, as our field k has character-
istic zero. The Reynolds operator has a few interesting properties that we will
take a look at

Proposition 4.10 Let Rg be the Reynolds operator of a finite matrixz group
G C GL(n,k). Then Rg has the following properties:

1. Rg is k-linear in f

2. If f € k[z1,m2,...,2,), then Rg(f) € klx1,29,...,2,]¢

3. If f € k[xy,29,...,2,]%, then Ro(f) = f

Proof For (1), let a,b be elements of k and f, g polynomials in k[xy, za, ..., 2,].
Then we have that

R (af +bg)(x > (af +bg)(A-x)
|G|Aec
_ 1 Zaf(A~x)+bg(A-x)
Gl \ =
(A- 9(B-
=16 20 X*\Gu;eg *)

= aR¢(f)(x) + bRa(g)(x)

Thus we find that Rg(af + bg) = aRa(f) + bRc(g), so Rg is k-linear in f
To prove (2), let B € G. Then we want to prove that Rg(f)(Bx) =
R (f)(x). By the definition of the Reynolds operator we get that

Ra(f)(Bx) > f(A-Bx)=—= > f(AB-x)
IGI hpere lGl hpere

The important thing to note here is that for each A € G the product AB
produces a unique element in G. If we assume that AB = A’B, then we can
multiply both sides by B~! and we get that A = A’. Since this produces |G|
distinct elements we can conclude that

G ={AB|A€c G}

Hence it does not matter whether we sum over f(A - x) or f(AB - x), as we
produce the same terms albeit possibly in a different order. This gives us that

|G| > f(ABx) |G| > f(Ax) = Re(f)(x)
Aea AeG
Thus Rg(f)(Bx) = Re(f)(x) and we can conclude that Rg(f) € k[x1, z2, ..., 2,]C.
At last, if f € k[zy,22,...,2,]%, then it simply follows that
Ra(f)(x) > f(A-x) > fx
‘G| Ace |G| b

because f is invariant. This proves (3) and finishes our proof O
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As shown we can use the Reynolds operator to produce invariant polynomi-
als. For an example we will consider the cyclic group Cy C GL(2, k) of order 4

generated by
0 -1
=)

By lemma 4.7 we know that the ring of invariants contains all polynomials f
of the form f(x,y) = f(—y,x). It is easy to see that the Reynolds operator is
given by

R (H)w,9) = 1(1@9) + F(~3,2) + F(~2.~9) + [y, ~))
By Proposition 4.10 we can then find some invariants of k[z,y]“* by
Re,(2)(r,) = 107 42+ (~9) + (~2)%) = 3 (&> +47)
Re, (wy)(z,y) = 7 (zy + (—y)z + (—2)(=y) + y(=z)) = 0

Re,(zy°)(z,y) = —(2y® + (—y)2° + (—2)(—y)* + y(—2)°) = *%(Isy —zy°)

Il S A i S Y > Y

Re, () = 20272 + (9% + (-2 (~) + 42 () = 2%

Hence we find that 2 4 y?, 2%y — xy®, 2%y € k[z,y]* and as we will find out
these invariants generate k[z,y]“*.

We have shown earlier that a monomial z® will be sent to a homogeneous
polynomial of total degree |«|, under matrix multiplication. Thus if we apply the
Reynolds operator on a monomial we find that Rg(z®) is a homogeneous invari-
ant of total degree |a|. Furthermore we can finitely generate k[zi, xo, ..., 2,]¢
with these invariants and we will show this through a theorem of Emmy Noether.
For this we first need the following lemma

Lemma 4.11 Let x1,xo,...,x, be variables. Then we have that

(x1+ a2+ Fa,)" = Z aq®

lal=m
where a,, 1S a positive integer.

Proof Let a@ = (a1,9,...,0,) € Z%, and let |a] = m. Then we define
the multinomial coeflicient as

m\ m!
al) arlag). ..
and we claim that

m\ [ a1 + Qo a1 +oag + -+ ap
o) \og s an,

The right side here is composed of a product of binomial coefficients. If we write
out the right hand side using the definition of the binomial coefficient we get
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that

a1 (o1 +ag o1 +ag -+ ap
a s a,

:1.(a1+a2)!_(a1+a2+a3)! (a1 +ag+ -+ ap)!
011!042! (011 + 052)!043! o (Oél + a9+ -+ Oén_l)!Oén!
1 1 (a1 +ag+ -+ ap)!

T arlag! ag! !

(ataz+-Fap)! m!

B arlas! . . ay! T aglasg! . ap!

Here we make use of the fact that the numerators and the denominators cancel
each other out telescopically. This proves our claim and since the binomial
coefficients are positive integers, it follows that the multinomial coefficient is
also a positive integer.

We now claim that a, = (Zj) and thus

(T1 4 T2+ +ap)" = Z (z)ma

loe|=m

We will prove this using induction on n. This obviously holds for n = 1 and in
the case of n = 2 this is simply the binomial theorem. So assume it holds for
n=12,...,k—1 and let n = k. Then using the binomial theorem we find that

m

(@1 +z2+- - Fap_1)+ap)" = Z <2;i> ot (x1 + o+ Fxpog) T

(677 =0
We can now apply our induction hypothesis which gives us

(xl + gt mkil)m—ak _ Z <ma—(k§1k> l‘(X(k)

|a(R) |=m—ay

where a%) Z];Bl denotes the exponent vector a = (a1, o, ..., ax) where we
omit the k-th exponent. One important detail to note is that the coefficient in
this sum is a multinomial coefficient. If we insert this into our equation we then
get the following equation

> (M)ar | X (M)

|a®) |=m—ay,
m
Z Z m m — ok v (k)
ap o
4 =m—0g

NO)

Now note that z3*x = 2 and that the product of the coefficients is given

by

m m—ap\ m! (m — ag)* B m! _(m
oy ak) apl(m —ag) arlas! . ..ap_1! arlas!. .. ayg! o
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Thus we can conclude that
- m\ (m— « (k)
- &k ap o _ m «
> ox (M ()= X (1)
ap=0|a(k) |=m—ay
and this completes our proof. O

We will now state the theorem

Theorem 4.12 Given a finite matriz group G C GL(n, k), let 2, 2P, ... xPm
be monomials with total degree lower than |G|. Then

klz1,x, ..., 2,]% = k[Rg(2”!), Ra(zP?), ..., Ra(z”)] = k[Ra(z”) | || < |G|]

More specifically k[xy, xa, ..., 1,|¢ is finitely generated by homogeneous invari-
ants.

Proof Let f € k[z1,22,...,2,]¢ be given by f = Y caz®. By proposition
4.10 we have that

f=Ra(f) = Re <Z Ca$a> =Y caRa(z®)

[0 [0

Thus we can write every invariant polynomial as a linear combination of the
Ri(z®). So the only thing that is left is to prove that we can express the
Rg(x®) as a polynomial in the Rg(z?) for |8] < |G|.

For this we will make use of the identity shown in lemma 4.11. For this
we need some notation, so let A = (a;;) € G and we will denote the i-th row
of A with A;. This gives us that A; - x = a;121 + a2 + - -+ + a;px, and for
a=(a1,az,...,0,) € ZZ, we have that

(A-x)*= (41 - %) (Ag -x)* ... (4 - x)
The Reynolds operator is thus given by
1
Ro(e®) = = 37 (A-x)°
e

We will introduce new variables w1, us, . . ., 4, and make the substition z;
u; A; - X in the identity of lemma 4.11. This gives us the equation

(1 A1 - x+ugAo - x4+ uy A, - x)" = Z aa(A - x)%u®
|a]=m
We can now sum over all A € G and this gives us

S = Z(u1A1-x+u2A2-x+--~+unAn-x)m
AeG

= Z Qo (Z(AQ()“) u®
la|=m AeG

= Z bo R (z®)u®

la]=m
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with by = a|G|. Here the last sum contains all Rg(x®) with || = m and the
variables uq,us, ..., u, ensure that no two terms cancel eachother out.
Furthermore S, is the m-th of the |G| objects

UA:UlAl'X+’UJ2A2'X+"'+UHAH'X

which are indexed by A € G. Since S, is a power sum it is symmetric in the
Ua, thus by theorem 3.10 we write it as a polynomial in Sy, S2,...,S|g|- So

S = F(S1, S5, ..., S|c|)

where F' is a polynomial with coefficients in k. We can substitute into our
equation which give us

Z boRa(x)u® = F( Z bgRe (2 )u”, Z bgRa (2P )P, ..., Z bsRe (% )u?)
lo|=m |Bl=1 |B1=2 1B=IG|

If we expand the right hand side and equate the coefficients of u®, then we find
that every b, Rg(x®) is a polynomial in the Rg(z”). These have total degree
less than |G| and furthermore the coefficient b, = a,|G| is nonzero, since our
field k is of characteristic zero. Hence we can conclude our proof. O

With this theorem we find that we can finitely generate the ring of invariants.
Furthermore we can find such a basis by applying the Reynolds operator on all
monomials with total degree less or equal to |G|.

Let us return to the cyclic group Cy C GL(2,k) of order 4 from before.
Theorem 4.12 then tells us that we can find the ring of invariants if we compute
Re, (x'y?) for all i + j < 4. Then we get the following results:

a'y’ | Re,(a'y’) | 2"y’ | Ro,(z'y)
x 0 xy? 0
0 Y3 0
2 | L@ +y?) | ot (a4 yh)
Y 0 By | 2@y + 2yP)
2| L@+ ?) | a2y 222
z3 0 zy? | —3(2Py + xy®)
%y 0 vt | s+

Thus k[z,y]* is generated by 22y, 22 +y?, 23y + 23> and 2* + y*. However we
have that 2* + y* = (22 4+ y?)? — 22%y%. So we can write our ring of invariants

as
J

Elz,y]9 = klz?y?, 2 + y?, 23y + 2]

For another example consider the cyclic group C3 C GL(2,k) of order 3

generated by
0 -1
=)

The Reynolds operator is then given by

Reuf(@,0) = 5((@9) + =y, = 9) + f(=a +y,—2))

and we get the following results when we compute R¢,(x'y’) for i + j < 3:
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a'y’ Ro, (z'y7) 'y Ro, (z'y7) z'y? Ro, (z'y7)
x 0 Ty %(zQ —zy+y%) | 2%y %(—x?’ + 322y — %)
y 0 y? | 5@ —zy+y®) | xy? | 3(—2® 4 3xy® —oP)
2 | 2P —ay+yt) | AP z?y — xy? y* —(z*y — xy?)

Here we find another relation between these polynomials namely
(—2® + 3xy® — ¢°) — (=2® + 32%y — y°) = 3(a®y — 29?)
Thus the ring of invariants is given by

K[z, y)% = kl2® — oy + v, —2® + 3ay® — y°, —2® + 322y — o]

Given a finite matrix group G we now know that we can find a finite basis
such that k[xy, 2, ..., 2,]% = k[f1, f2,-- ., fm]. One question we can ask our-
selves is whether we can determine if a polynomial f lies in k[f1, fa,... fm]- The
following proposition answers this question in a way similar to proposition 3.6.
Furthermore it also shows us a way to write f as a polynomial in fi, fo,..., fm

Proposition 4.13 Let f1, fa,..., fm € k[x1,22,...,2,] be given. Fix a mono-
mial order in k[x1, %2, ..., TnyY1,Y2, - - -, Ym] Such that any monomial containing
one of x1, T2, ..., Ty is greater than all monomials in k[y1,ya, ..., Ym]. Let G be
a Grébner basis of the ideal {(f1—y1, ..., fm—Ym) C k[T1, T2y, Tny Y1, Y25 -« -, YU -

Given f € k[z1,m2,...,7,) and let g = f be a remainder of f on division by
G. Then we have that:

1. f € k[f1’f27"'7fm] Zfa’nd 0’ﬂly nge k[yhyQa"'ayn]

2. Iff € k[flana"'vme then f = g(flan?"'?fm) is an express/éon Off
as a polynomial in f1, fo, ..., fm

Proof Let f € k[z1,22,...,z,], then its division by G = {g1,92,...,9s} is
given by
f=A1g1+ Ao+ -+ A9, + 9

where Ay, As, ..., As,g € klx1, T, ..., Tn, Y1, Y2y - - Y-

Let us first assume that g € k[y1, 99, . . ., Ym]. Then we apply the substitution
y; — f; for all i. This does not affect f as it is a polynomial in x1,xs,...,xy.
Note that every polynomial in (f; — y1,..., fin — Ym) vanishes under this sub-
stition. Since the polynomials g1, g2, ..., gn lie in this ideal they vanish as well,
which reduces our equation to f = g(f1, fo, ..., fm)- So f € k[f1, fo,.-., fm]-

Conversely, assume that f = h(f1, f2,..., fm). Similar to our proof in propo-
sition 3.6 we rewrite our equation to

F=Ci(fi—y)+Ca(fo—w2) +- -+ Cs(frn — Ym) + M (Y1, 92, - -, Ym)

We need to show that h is the remainder of f on division by G. For this we
consider G' = GNkly1,y2,- .-, Ym], as this gives us the elements in G that only
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contain y1,y2, - .., Ym. We then have that G’ = {g1, g2, . . ., g+ } where we relabel
if necessary and t < s. We then divide h on G’ which gives us

h=DBigi+Bago+ -+ Bigt +¢

where By, Ba,...,Bs,g;€ k[y1,92,...,ym]. We can substitute this back into
our equation which gives us

f=C(Hh-n)+C(fa—y2)+ -+ ClL(fmn —Ym) + 9

Since each g; lies in (f1 —y1, ..., fmn — Ym), We can write them as polynomials in
fi—=v1,..., frmm — Ym. If we can prove that ¢’ is the remainder of f on division
by G, then the remainder lies in k[y1,yo, ..., Ym]-

By proposition 2.27 we know that ¢’ is a remainder of f on division by
G if no LT(g;) divides a term of g, as G is a Grdébner basis. Assume that
there is a g; such that LT(g;) divides a term of ¢’. Then LT(g;) involves only
Y1, Y2, -« - s Ym, since ¢’ lies in k[y1,y2, - . ., Ym]. Since any monomial that contains
one of x1,za,...,x, is greater than all monomials in k[y1, y2, . . ., Ym], it follows
that g; € k[y1,¥2,-..,Ym]. Thus g; is also an element of G’. But ¢’ is a remainder
on division by G’, so this leads to a contradiction as LT(g;) cannot divide any
terms of ¢’. Hence ¢’ is the remainder of f by division on G.

The second part follows immediately from the above arguments and we con-
clude our proof O

5 Conclusion

In the first chapter we have introduced polynomials in n variables and looked
at their differences with regards to polynomials in one variable. The key differ-
ence was the fact that there is no canonical ordering on multivariate polynomials
and this introduced several problems that we otherwise would not have to worry
about. We solved this problem by introducing monomial orderings and this fur-
ther allowed us to construct a division algorithm in k[z1, zo, ..., 2,]. By the end
of the chapter we proved Hilbert’s basis theorem, which is a major result as it
answers the question whether every ideal is finitely generated. Furthermore we
introduced Grébner bases, which combined with the division algorithm allows
us to determine whether a given polynomial lies in a ideal 1.

In the second chapter we introduced symmetric polynomials. We have stud-
ied the elementary symmetric polynomials and determined whether we can ex-
press all symmetric polynomials as a polynomial in the elementary symmetric
polynomials in the fundamental theorem. Furthermore, in the proof of this
theorem we described an algorithm for this decomposition. Then by using di-
vision on a Grobner basis G, we found a way to check whether a polynomial
is symmetric or not. At last we discussed Newton’s identity, which gave us a
correspondence between symmetric polynomials and the power sums.

In the final chapter we generalized and we looked at polynomials invariant
under finite matrix groups. We examined their ring of invariants by computing
various examples and looked at how we could characterize them. We found that
a polynomial lies in this ring, whenever it is invariant under the generators of
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the matrix group. After this we examined how we could generate the ring of in-
variants and we introduced the Reynolds operator as a solution. We found that
the Reynolds operator produced invariant polynomials. But most importantly,
we found through Emmy Noether’s theorem, that we could generate the ring of
invariants by applying the Reynolds operator on certain monomials. To close
this chapter we looked at an alternative way to determine whether a polynomial
lies in the ring of invariants, similar to how we did with symmetric polynomials.
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