
University of Utrecht

TWIN Mathematics and Physics

Bachelor Thesis

Identifying stock market bubbles

Author:
C.A.H. Vermeulen
5732115

Supervisor:
Karma Dajani

A mathematical approach to predicting the stock market

June 16, 2019



Abstract

In this thesis we look at a mathematical way of noticing changes in the financial market.
Big changes would result in economic bubbles. With the use of Python and Mathematica we
simulated stocks, compared calculated option prices to real data and calculated the implied
volatility and the illiquidity parameter. We did this not with the use of the ordinary Black-
Scholes model, but with the use of the lesser known Kou model. In contrary to the Black-
Scholes model the Kou model incorporates sudden changes of a stock price in this model, which
we call jumps. We found that the Kou model is also as good as or even better approximation
for the stock market than the Black-Scholes model. The illiquidity parameter is a self made
parameter representing the time it takes to sell or buy something without causing its price to
change. This stands closely connected with crises and when calculated from the Kou model,
laid next to the graph of the SP500 index price shows signs of destabilization and uncertainty
which leads to a crash in the stock market.
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1 Introduction

There has always been a need for predictions in our world. Humanity does not want their future
to depend on fate. We want to make our own future through any means necessary. This also
happened, and is still happening, in the world of finance and stock markets. Through predictions
we can make money, if you play your cards right. Knowing more than the others is an advantage
what many people seek to find. But in a world so volatile as the financial world models for pre-
dictions can never fully determine what will happen next. There are occasions caused by human
emotions that leads to uncertainty and panic. If this happens on a large scale the financial market
will notice some irregularities, which can form an economic bubble.

In this thesis we are going to look at two stock predicting models, namely the Merton model
and the Kou model. Our focus will be more on the latter because of its and ability to explain two
major empirical phenomena that occur in the distribution of stocks and that the model is fairly
new which makes the research more challenging. We will show a comparison of these two models
and aim to draw some conclusions.

In chapters 3 to 6 we will provide the necessary mathematical background needed for develop-
ing an understanding of how and why these models work. This is needed otherwise we cannot
substantiate our inferences. Both models mentioned before are build up from stochastic processes,
especially by a Brownian motion, and rely on the Itô calculus for giving a sensible expression.

After this we are going to derive the Merton and Kou model in chapters 7 to 9, two alterna-
tives to price options in the stock market. Using as base the geometric Brownian motion and the
famous Black-Scholes equation, we are going to add ”jumps”, hoping for a more precise approxi-
mation of options.

At last in chapter 10, we finally come to the aim of this thesis. Showing the results we got
from implementing these models in Python with the use of collected data we are going to calculate
a parameter which will us something about bid ask spread. Through the mean squared error func-
tion we will derive this ”illiquidity” parameter which can be seen as a financial trouble parameter.
It is a trend that this becomes big before a economic bubble. So if everything goes right we will
have with certainty a parameter that can predict an economic bubble
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2 Background on the stock market

In this thesis we are going to use some terms which will be unknown for some readers. In this
chapter these terms will be discussed and explained for a better understanding of this thesis and
the stock market in its entirety.

Options
An option is a contract which gives the buyer of this contract the right to sell or buy an underlying
asset, which is most of the time a stock, at a specified strike price before or on a specified time
(expiration time). It depends on the kind of option which gives the owner of the contract to buy
or sell a certain stock. A call option gives the owner the right to buy an asset at a specific price,
where a put option gives the owner the right to sell an asset at a specific price. Hereby has the
seller of the contract the obligation to fulfill the transaction if the buyer chooses to ”exercise” his
right.

Bid and Ask prices
The bid and ask prices are related to the option price. people are trading stocks and thereby
trading options continuously. The price a seller wants for his option is in a sane world always
higher than the price a buyer is willing to pay for an option. So in the financial world we talk
about bid and ask prices. The bid price is the highest price that a buyer is willing to pay, whereas
the ask price is the lowest price that the seller is willing to accept for his assets.

Volatility
The volatility will be frequently used in formulas for option and/or stock pricing. The volatility or
σ is the degree of variation a trading price has over time as measured by the standard deviation.
The higher the volatility of a certain option, the more uncertain you are about the future of the
price. Frequently traded assets thereby have low volatility because of the low risk whereas not
frequently traded assets have high volatility.
In chapters 7 to 9 we will consider Implied volatility. This means that the volatility is being de-
rived from the market price of an option, using the option price, index price and strike price of the
option. This can be used to look forward in time, predicting which way an asset is leaning towards.

Liquidity
Lastly, liquidity or its counterpart illiquidity, represents how fast you can buy or sell an asset with-
out causing a drastic change in the asset’s price. For an asset to be very liquid, selling quickly will
not reduce the price much. But to sell an illiquid asset quickly, you need to cut its price by some
amount, otherwise it would difficult to sell. Liquidity could be used to represent in which state
the market is in. Especially when you look at economic bubbles it is good to look at the liquidity
of the market. When the economy is good and prosperous the liquidity of a market is low. But
when people are frightened and the faith in the economy declines, people tend to sell everything
they got before their assets will be worth nothing. If everyone does this panic move, the market
becomes illiquid, due to the overkill of certain assets in the market. This also happened in 2008
when the housing market in America collapsed causing people to dump all their shares, trying to
make a little bit of cash before they get worthless.

4



3 Conditional Expectation

In this chapter we look at the conditional expectation which is an extension of the expectation value
of a certain random variable. It will give the estimated average value of the random variable under
certain conditions. Formally, we consider a random variable X defined on a probability space. If X
is G-measurable then we can easily determine X with the information G provides. If X is indepen-
dent of G then information of G is not enough to evaluate X. In the intermediate case we can use G
to estimate X but not evaluate precisely. The conditional expectation of X given G is this estimate.

3.1 Basic definitions

Definition 3.1 (Conditional expectation given an event) Consider a random variable X,
which is either non-negative or integrable, on a probability space (Ω,F , P ) and an event A ∈ F ,
with strictly positive probability P(A) > 0, then the conditional expectation of X given A is defined
by,

E[X|A] =
E[IAX]

P(A)
=

∫
A
XdP

P(A)
(1)

Definition 3.2 (Conditional expectation given a σ-algebra G) Consider a probability space
and let G be a sub-σ-algebra of F , and X be a random variable, either non-negative or integrable.
The conditional expectation of X given Gis then a new random variable E[X|G] satisfying the
following conditions:

1. E[X|G] is G-measurable

2.
∫
A
E[X|G]dP =

∫
A
XdP

Theorem 3.3 Given a probability space and let G and H be sub-σ-algebras of a σ-algebra F . Then
the following hold:

1. (Linearity) For constants a,b
E[aX + bY |G] = aE[X|G] + bE[Y |G]

2. (Taking out what is known)If X is G-measurable
E[XY |G] = XE[Y |G]

3. (Tower property) IF H ⊂ G
E[E[X|G]|H] = E[H]

4. (Average of average)
E[E[X|G]] = E[X]

5. (Independence)If X is independent of G
E[X|G] = E[X]

6. (Positivity) If X ≥ 0
E[X|G] ≥ 0

7. (Jensen’s inequality) If φ is convex
E[φ(X)|G] ≥ φ(E[X|G])

Definition 3.4 (Conditional expectation given a random variable) Given X, Y random vari-
ables on a probability space (Ω,F , P ). Then we define the conditional expectation of X given the
sub-σ-algebra of Y, σ(Y ), as E[X|Y ].This is then σ(Y )-measurable and with the assumption that
X is integrable satisfies for any A ∈ σ(Y ),∫

A

E[X|Y ]dP =

∫
A

XdP (2)
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3.2 Notes

If we now go back to probability theory, a conditional expectation is itself a random variable
and measurable with respect to the σ-algebra generated by the condition. This way of looking is
necessary for the conditional expectations that arise in martingale theory, which we will discuss
shortly in Chapter 4.
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4 Stochastic processes

In this chapter we discuss stochastic processes and their fundamental importance for financial
mathematics. A stochastic process or otherwise referred to as a random process is a collection
of random variables indexed by some mathematical set and can be divided in discrete-time or
continuous-time.

Definition 4.1 (Stochastic Process) 1. A stochastic process is a sequence of random vari-
able Xt : Ω → R parameterized by time t belonging to an index set I ⊂ R. In other words,
when a stochastic process X : I × Ω → R is given, X(t, ·) = Xt : Ω → R is a measurable
mapping for each t ∈ I.

2. If I is a discrete set, then a process {Xt}t∈I is called a discrete time stochastic process, and
if I is an interval then {Xt}t∈I is called a continuous time stochastic process.

3. For each ω ∈ Ω the mapping t 7→ Xt(ω) is called a sample path.

4. If almost all sample paths of a continuous time process are continuous, then we call the
process a continuous process.

5. The filtration Ft generated by a process Xt, i.e., Ft = σ({Xs : 0 ≤ s ≤ t}) is called a natural
filtration for Xt.

If we talk about stochastic processes in the future, we always imply that it is defined on some
probability space (Ω,F , P )

Definition 4.2 (Adapted process) Consider a filtration {Ft}t∈I and a stochastic process {Xt}t∈A.
If Xt is measurable with respect to Ft for every t, then {Xt}t∈I is said to be adapted to the filtration
{Ft}t∈I .

4.1 Martingales

Definition 4.3 (Martingale) Suppose that a stochastic process {Xt}t∈I is adapted to a filtration
{Ft}t∈I , and that Xt is integrable for every t, i.e., E[|Xt|] <∞. If

Xs = E[Xt|Fs] (3)

for arbitrary s ≤ t, then {Xt}t∈I is called a martingale with respect to {Ft}t∈I . If

Xs ≤ [Xt|Fs] (4)

for s ≤ t, then it is called sub-martingale, and if

Xs ≥ [Xt|Fs] (5)

for s ≤ t, then it is a super-martingale.

Theorem 4.4 If {Xt}t≥0 is a martingale with respect to a filtration {Ft}t∈I , where F0 = {∅,Ω},
then E[Xt] = E[X0] for every t.
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4.2 Random walks

A random walk is a particular stochastic process which is at the foundation of our search to the
optimal model for the stock market. Random walks are as followed defined:

Definition 4.5 Let Zn, n ≥ 1, be a sequence of i.i.d. random variables defined on a probability
space (Ω,F ,P) such that P(Zn = 1) = p and P(Zn = −1) = 1 − p for some 0 ≤ p ≤ 1. A
one-dimensional random walk X0, X1, · · · is defined by X0 = 0, Xn = Z1 + · · · + Zn, n ≥ 1. Let
F0 be the trivial σ-algebra {∅,Ω} and let Fn = σ(Z1, · · · , Zn) be the sub-σ-algebra generated by
Z1, · · · , Zn. If p = 1

2 , the process {Xn}n≥0 is called a symmetric random walk.

Definition 4.6 A stochastic process {Xt}t≥0 is called a Lévy process if it satisfies the following
conditions

1. X0 = 0 almost surely

2. All increments Xt −Xs are independent of Ft for any 0 ≤ s < t ≤ T . Xt has independent
increments.

3. For any s < t the increment Xt − Xs is equal in distribution as Xt−s, Xt has stationary
increments

4. For every o ≤ t ≤ T and ε > 0: limh→0 P (|Xt+h −Xt| > ε) = 0

with the meaning of stationary increments is that the probability distribution of a increments only
depends on the length such that every increment with the same length is evenly distributed.

Theorem 4.7 (Quadratic Variation) Let {Xt}0≤t≤T be a continuous martingale. The quadratic
variation process of Xt, denoted by [X,X]t or [X]t, is defined by:

[X,X]t = lim
n→∞

n∑
j=1

|Xtj −Xtj−1 |2 (6)

The convergence used for the quadratic variation is the convergence in mean square, otherwise
called the L2-convergence. In the next chapter we will calculate the quadratic variation of the
Brownian Motion. We can base on that outcome a ”new” calculus, namely Itô calculus.
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5 Brownian Motion

In this chapter we look at the concept of Brownian motion and how it is defined and how it can be
used for our purposes in the stock market. Brownian motion is a common phenomenon in physics
and nature. In mathematics it is described by the Wiener process; a continuous-time stochastic
process. That is why we write ”Wt” for Brownian motion in further definitions and proofs.

5.1 Basic principles

To obtain the Brownian motion as a stochastic process we take the limit of the scaled random walk
as n → ∞. The Brownian motion retains the same properties as the random walk, and we will
define it as a stochastic process Wt, t ≥ 0 with the following properties:

1. Wt is a almost surely continuous function

2. Wt has independent increments

3. Each of these increments is normally distributed: Wt −Ws N(0, t− s) (for 0 ≤ s ≤ t)

If additional P (W0 = 0) = 1 applies then the Brownian motion is called standard.

Theorem 5.1 (Quadratic Variation of Brownian Motion) Let Wt be a Brownian motion.
Then [W,W ]t = t almost surely for all t ≥ 0.

Here [W,W ]t is defined as in theorem 4.7.

Proof Let Wt be a Brownian motion, and define the partition 0 < t1 < · · · < tn < t. We
define the sampled quadratic variation corresponding with this partition as

n−1∑
j=0

(W (tj+1)−W (tj))
2 (7)

We need to show that this sampled quadratic variation converges to t as n→∞. We know already
that

E[(W (tj+1)−W (tj))
2] = V ar[W (tj+1)−W (tj)] = tj+1 − tj (8)

Without further showing we know that

V ar[(W (tj+1)−W (tj))
2] = 2(tj+1 − tj)2 (9)

If we now take a standard normal random variable as

Yj+1 =
W (tj+1)−W (tj+1)
√
tj+1 − tj

(10)

And let us choose a large value for n and take tj = jT
n , such that tj+1 − tj = T

n for all j. Then

we can use the law of large numbers which implies that
∑n−1
j=0

Y 2
j+1

n converges to EY 2
j+1 as n→∞,

which will become 1. So we get

lim
n→∞

n−1∑
j=0

(W (tj+1)−W (tj))
2 = lim

n→∞
T ∗

Y 2
j+1

n
= T ∗ EY 2

j+1 = T (11)

So here comes the almost surely term in the theorem. Every term (W (tj+1) − W (tj))
2 in the

summation can be different from tj+1 − tj but if we sum over a lot of terms they average out to
zero.
This proof can also be summarized by

dW (t)dW (t) = dt (12)

and this result will be used in the next chapters
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6 Itô Calculus

In this chapter we look at the calculus named after Kiyoshi Itô which is often used in financial
mathematics, and plays a big role in the derivation of the Black-Scholes formula. The most useful
fact derived by Itô is the Itô formula, or Itô lemma, which approximates a function depending on
time and Brownian motion in the same way as the Taylor series expansion. The only difference
between these approximations is that in closeness of approximation the second order of the Brow-
nian Motion will remain rather then be discarded. This will be proven with the approximation of
the quadratic variation of the Brownian motion.

If we look at a normal second order Taylor expansion for a differentiable function for both t
and Wt, with Wt a Brownian motion we have

df(t, x) =
∂f

∂t
dt+

∂f

∂x
dx+

1

2
(
∂2f

∂x2
dx2 + 2

∂2f

∂x∂t
dxdt+

∂2f

∂t2
dt2) + · · · (13)

We now ignore all terms which have a order of dt-terms higher than 1, using also the fact that
continuously differentiable functions have bounded variation, which makes the quadratic varia-
tion zero. Using also the fact that due to quadratic variation of a Brownian motion we have,
dW (t)dW (t) = dt, we will get,

df(t,Wt) =
∂f

∂t
dt+

∂f

∂Wt
dWt +

1

2

∂2f

∂W 2
t

dt (14)

This is called the Itô-Doeblin formula in differential form.

Definition 6.1 (Itô-Doeblin formula for Brownian motion) Let f(t,x) be a continuous func-
tion with partial derivatives ft(t, x), fx(t, x)andfxx(t, x) defined and continuous. Then with Wt a
Brownian motion and T ≥ 0

f(T,W (T )) = f(0,W (0)) +

∫ T

0

ft(t,W (t))dt+

∫ T

0

fx(t,W (t))dW (t) +

∫ T

0

fxx(t,W (t))dt (15)

Definition 6.2 (Itô Process) Let W(t) be a Brownian motion and let {Ft}t≥0 be an associated
filtration. An Itô process is then a stochastic process of the form

X(t) = X(0) +

∫ t

0

∆(u)dW (u) +

∫ t

0

Θ(u)du (16)

where X(0) is nonrandom, and ∆(t) and Θ(t) are adapted stochastic processes to {Ft}t≥0.
For simpler notation we write the Itô process in differential form

dXt = ∆(t)dW (t) + Θ(t)dt (17)

6.1 Lévy Characterization

A different way to characterize Brownian motions, named after the mathematician Lévy, uses mar-
tingale theory. The theorem is as followed

Theorem 6.3 (Lévy Characterization, one dimension) Given a stochastic process {Xt}t≥0
and the filtration {Ft}t≥0, the process Xt is a Brownian motion if and only if all of the following
conditions hold:

1. X0 = 0 with probability 1.

2. {Xt}t≥0 is almost surely a continuous martingale with respect to {Ft}t≥0.

3. The quadratic variation [X,X]t = t.
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7 Option pricing of the stock market

We first need to understand the concept of option pricing and the mathematics behind it before
we can go to the more advanced models that we are going to use for calculations. Option pricing
is an important way for an investor to determine what the worth of a stock is. So we are going
to look at a more basic way of simulating stocks, namely by the use of the geometric Brownian
motion and the Black-Scholes-Merton formula.

Definition 7.1 (Geometric Brownian Motion) A stochastic process {St}t≥0, usually the stock
price, is said to follow a Geometric Brownian Motion if it satisfies the stochastic differential equa-
tion

dSt = St(µdt+ σdWt), (18)

with µ a drift term and σ is the volatility. The solution of this differential equation, for t ≥ 0, is
given by:

St = S0e
(µ−σ22 )t+σWt (19)

In figure 1 we plotted several paths which follow the geometric Brownian motion. It is clear to see
that the paths are continuous and tend a little bit upward, because of the drift is set to σ = 0.3.

Figure 1: Monte Carlo simulated paths for geometric Brownian motion

Note: In the description of the figure stands λ = 0. This is the parameter that represents the
number of jumps per time-interval and setting it to zero reduces any jump-diffusion model to the
geometric Brownian motion. This comes from the fact that a jump-diffusion model is a geometric
Brownian motion with some stochastic jump process added, but will be discussed in next chapter.

7.1 Black-Scholes Model

The first model we are going to look at is the Black-Scholes model. This model is the foundation
of all other stock market models and is used to determine call and put options.
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Definition 7.2 (Black-Scholes-Merton Formula) The price of a European call option at time
0 ≤ t ≤ T with expiry T and strike price K is given by

Ct = StN(d1)−KE−r(T−t)N(d2) (20)

where N(x) is the cumulative standard normal distribution. For the European put option

Pt = KE−r(T−t)N(−d2)− StN(−d1) (21)

Where

d1 =
ln(StK ) + (r + σ2)(T − t)

σ(T − t)
, d2 =

ln(StK ) + (r − σ2)(T − t)
σ(T − t)

(22)

Despite the success of the Black-Scholes model, it is certainly not perfect. There are some em-
pirical phenomena which cannot be explained by this model. First there is the volatility ”smile”.
This curve occur when solving the implied volatility through backwards calculating. However if
the Black-Scholes model would be correct, the implied volatility has to be constant over time. The
second phenomena we see is the asymmetric leptokurtic features of the distribution of the options.
This means that this distribution is skewed to the left, has a higher peak and two heavier tails
than the normal distribution has. These two phenomena will be discussed in next chapter with
included figures for a better understanding.
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8 Jump diffusion model

Before we look at the model we are going to use for modelling the illiquidity parameter, we will
look at its predecessor which came first with the notion that stock prices can ”jump”. In previous
chapter we discussed the important Black-Scholes model. This model is often also credited to
Robert C. Merton due his research in expanding the mathematical understanding of the option-
pricing. Merton proposed to add jump-diffusions to the geometric Brownian Motion which led to
the beginning of jump-diffusion models and a new way of interpreting the stock market.

8.1 Merton model

The Merton Model is one of the simplest cases of a jump-diffusion model. In fact it is a combination
of a Brownian Motion with a compound Poisson process. So we get a model which has an occasional
jump and is continuous between the jump times. We start with the stochastic differential equation
of Merton’s jump-diffusion model

dS(t)

S(t−)
= µdt+ σdW (t) + d

N(t)∑
i=1

Y (i) (23)

The jumps displayed by Yi are normally distributed, with a Poisson points process giving the
frequency of a jump. It is not in our eyes an exciting model, for the jumps are, like the geometric
Brownian motion, normally distributed and is the distribution function of the whole model simpler
to calculate. We will look at the Kou model which will give us more of a challenge.

8.2 Kou Model

In this section we focus on the financial model proposed and named after Steven Kou. First men-
tioned in 2002, Kou proposed a different model for option-pricing than the more widely used models
like the Black-Scholes model plus a jump-diffusion part. Instead of having a normal distribution,
he looked at an asymmetric double exponential distribution for the jump that is added. According
to Kou it will be the solution for some big problems we encounter by approximating the option
prices. These are namely the leptokurtic feature of the prices and the famous volatility ”smile”.
In this chapter we will not go in depth in these phenomena but show how this model explains both.

Our main goal is showing the usefulness of the Kou model, because we are going to use this model
in the next chapter to numerically approximate options and compare the results with real-life data.
We define the following differential equation,

dS(t)

S(t−)
= µdt+ σdW (t) + d(

N(t)∑
i=1

(Vi − 1)) (24)

Here W (t) represents the standard Brownian Motion, µ the drift, N(t) a Poisson process with
rate λ and {Vi} a sequence of i.i.d. non-negative random variables such that ln(V i) follows an
asymmetric double exponential distribution,with the density,

fY (y) = p ∗ η1e−η1yI{y≥0} + q ∗ η2e−η2yI{y<0},

η1 > 1, η2 > 0, p, q ≥ 0, p+ q = 1

It is helpful to have a solution for the differential equation given by 24. We must modify the
Itô-Doeblin formula, so it accepts jump processes. Let us first recall an Itô process given by 6.2.
We add a right-continuous jump term J to this process to obtain a jump process, setting,

X(t) = X(0) + I(t) +R(t) + J(t) (25)
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with I(t) =
∫ t
0

∆(u)dW (u) and (t) =
∫ t
0

Θ(u)du. The continuous part of X(t) is then defined as,

Xc(t) = X(0) + I(t) +R(t)

dXc(t) = ∆(t)dW (t) + Θ(t)dt
(26)

which is the jump process reduced to the Itô process. This is already defined in chapter 6 and
using the Itô-Doeblin formula on this continuous part, we can write,

f(Xc(t)) = f(Xc(0)) +

∫ t

0

f ′(Xc(u))dXc(u) +
1

2

∫ t

0

f ′′(Xc(u))∆2(u)du (27)

Between jumps, the jump part is equal to zero, so we have dX(t) = dXc(t) and thus because when
there is a jump in X from X(s−) to X(s) there is also a jump in f(X) from f(X(s−)) to f(X(s)).
So between jumps it is fair to say that df(X(s)) = df(Xc(s)). When we integrate these differential
from 0 to t, we must add all jumps together that occur in this time-interval. Therefor we state the
following theorem.

Theorem 8.1 (Lévy-Itô formula for a jump process) For a given jump-process given by

Xt = X0 +

∫ t

0

Θ(u)du+

∫ t

0

∆dW (u) +

N(t)∑
i=1

∆Ji, (28)

where bt and σt are continuous processes, then for f(x) a function for which the first and second
derivatives are defined and continuous, then,

f(X(t)) = f(X(0)) +

∫ t

0

f ′(X(u))dXc(u) +
1

2

∫ t

0

f ′′(Xc(u))∆2(u)du

+
∑

0<s≤t

[f(X(s))− f(X(s−))]
(29)

If a jump occurs at time s, we write f(X(s))− f(X(s−)) = ∆f(X(s)) and if there is no jump at
time s, we write of course f(X(s))− f(X(s−)) = 0. We can combine these to get,

f(X(s))− f(X(s−)) = ∆f(X(s))∆N(s), (30)

here N(s) is a Poisson process and ∆N(s) is 1 if N has a jump at time s and 0 otherwise. Using
this notation we can rewrite the theorem above to,

f(X(t)) = f(X(0)) +

∫ t

0

f ′(X(u))dXc(u) +
1

2

∫ t

0

f ′′(Xc(u))∆2(u)du

+
∑

0<s≤t

[∆f(X(s))∆N(s)]

= f(X(0)) +

∫ t

0

f ′(X(u))dXc(u) +
1

2

∫ t

0

f ′′(Xc(u))∆2(u)du

+

∫ t

0

[∆f(X(s))∆N(s)]

(31)

Now in differential form, this becomes,

df(X(t)) = f ′(X(t))dXc(t) +
1

2
f ′′(Xc(t))∆2(t)dt

+ [∆f(X(t))∆N(t)]

= f ′(X(t))dXc(t) +
1

2
f ′′(Xc(t))∆2(t)dt

+ f(X(t))− f(X(t−))

. (32)
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Now for our case, if we integrate function 23, we get the a price process of the form,

S(t) = S(0) +

∫ t

0

S(u)µdu+

∫ t

0

S(u)σdW (u) +

N(t)∑
i=1

S(i−) ∗ (V (i)− 1), (33)

where we used that S(u) and S(u−) only differ finitely many times, and when we integrate with
respect to du, the differences do not matter anymore. Furthermore we notice that the first three
elements are together the continuous part and the last element is the jump. Thus a way to rewrite
23 is,

dS(t) = S(t−)µdt+ S(t−)σdW (t) + (S(t−) ∗ (V (t)− 1))∆N(t), (34)

Implementing expression 33 in the Itô-Doeblin formula differential for a jump process gives,

df(S(t)) =
∂f(S(t))

∂t
dt+ µS(t)

∂f(S(t))

∂x
dt+

σ2S(t)2

2

∂2f(S(t))

∂S(t)2
dt+ σS(t)

∂f(S(t))

∂S(t)
dWt

+ [f(S(t−) + S(t−) ∗ (V (t)− 1))− f(S(t−))]

. (35)

Substituting f(S(t)) = ln(S(t)) gives:

d(ln(S(t))) = µSt
1

S(t)
dt− σ2S(t)2

2

1

S(t)2
dt+ σS(t)

1

S(t)
dW (t) + ln(S(t−)) + ln(V (t))− ln(S(t−))

(36)
which if we simplify and integrating (summing for the jumps) both sides, from 0 to t, results in
the following equation:

ln(S(t)) = ln(S(0)) + (µ− σ2

2
)t+ σW (t) +

N(t)∑
i=1

ln(V (i)) (37)

or

S(t) = S(0)e(µ−
σ2

2 )t+σW (t)+
∑N(t)
i=1 Y (i) (38)

with Y (i) = ln(V (i))
In figure 2 we plotted some paths of 38 with the parameters S0 = 1, µ = 0.3, σ = 0.3, η1 =
0.4, η2 = 0.2, λ = 3, T = 1. You can clearly see the jumps happening, with bigger jumps upward
than downward (η1 > η2), and with an average of λ = 3 jumps for the whole time-interval. The
difference with the geometric Brownian motion paths are nice and clear to see.
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Figure 2: Monte Carlo simulated paths for the Kou model

8.3 Improvement

A jump-diffusion model solves two empirical phenomena we encounter in the behaviour of the stocks
in the stock market. These are the leptokurticity of the return distribution and the volatility smile.
A lot of research has been done on these two phenomena trying to understand and to correct the
already existing models.

8.3.1 Leptokurticity

When looking at the return distribution of stocks or options we see something different from the
normal distribution of the Black-Scholes equation based on a Brownian motion. We actually en-
counter asymmetric leptokurtic features. Leptokurticity is a form of kurtosis, which describes the
shape of a probability distribution. ”Lepto-” means ”slender”, and is exactly what we see in the
return distribution. This distribution is more skewed to the left, has a higher tail and most im-
portantly heavier/fatter tails than the normal distribution. In figure 3 we plotted with the use
of the distribution of the Kou model found in chapter 9, the Kou distribution and normal dis-
tribution (with the mean and variance of the Kou model). The parameters are: t = 1/250 year,
σ = 0.2, µ = 0.15, λ = 10, p = 0.30, η1 = 50, η2 = 25,
The leptokurtic features are quite evident when looking at the figure. We see a higher peak, more
slender distribution, and the tails are heavier, especially the left tail.

8.3.2 Volatility smile

In an ideal world, were the Black-Scholes model is a perfect model for the stock market, volatility
will be constant. If you take different options, all at the same point in their life time, with different
strikes but with the same expiration time, their volatilities should be the same. What in the real
world happens is that the different volatilities form a curve, the volatility ”smile”. This means that
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Figure 3: The Kou model distribution (smooth line) and the normal distribution (striped line)
plotted with the same mean and variance in Mathematica

the implied volatility is a convex function of the strike prices. Due to the lack of different option
data we could not produce our own volatility ”smile”. We show in figure 4 a implied volatility
smile generated by a Wolfram Alpha demonstration with the use of the Merton jump diffusion
model [15]. We see that, for an increasing strike price, the implied volatility follows a curve, which
resembles a smile.

Figure 4: The implied volatility plotted against the strike price divided by the current/spot price.
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9 Numerical approach

In this chapter we take a look at the computations and functions needed for eventually using it for
our goal of simulating stocks. We need the cumulative density function of the stock using the Kou
model. This is actually hard to accomplish because of the fact that there is no closed function of
the addition of a normal distributed variable with an asymmetric double exponential distributed
variable. Thus we introduce some other functions, especially the Hh-function, defined in equation
70, to make up for this.

We follow the same path that Kou took for obtaining an expression for calculating a call op-
tion which follows the Kou model, that we calculate in 9.2. Thus we used two papers of his and
combined this to give a good overview but we will not go deep into some derivations or made-up
functions. Because that is not very interesting to discuss in this paper, and a link to Kou’s paper
will be provided, [6] [7].

9.1 How are we going to predict a economic bubble

The big question is now ”how are we going to predict an economic bubble?”. We first need a lot
of data, especially data from a time period which contains an economic bubble. This data is not
obtainable on the internet because we need level 1 data. This stands for the best bid/ask option
price at any given time. The best bid price is the highest price a buyer is willing to pay for an
option whereas the best ask price is the lowest price that a seller is willing to offer for an option.
Companies pay around ten to fifteen thousand euros per year for level 1 data, but fortunately I
got a small piece of the vast amount of bid/ask prices from my nephew. This could then be used
for some calculations and the results will be shown in chapter 10.

All this programming and calculating is done to obtain in the end a parameter called, the illiq-
uidity parameter. We talked about illiquidity in chapter 2, and this parameter represents a sort
of destabilization of the stock market. The way this parameter is calculated is by minimizing
the ”predicted” bid/ask price against the ”real” bid/ask price. The ”predicted” bid/ask price is
calculated by the use of a distortion function.

There are many different distortion functions out there that can be used. Some of them have
very different outcomes which are not preferred but there are still a lot to choose from. A ques-
tion that then arises is, ”which one is the best to use?”. The mathematicians Madan and Cerny
concluded that different distortion functions provide relatively similar results and give good ap-
proximations for bid and ask prices [14]. There is still further research needed on this topic, but
for our thesis we make use of the minmaxvar distortion function. This function is obtained by first
using the maxvar procedure and then the minvar procedure. Without showing a more detailed
derivation we will give the minmaxvar as,

Ψγ(u) = 1− (1− u
1

1+γ )1+γ , u ∈ [0, 1], γ ≥ 0 (39)

For an expression of the bid/ask prices, we first define the expectation value of a random variable
with distribution function Ψγ(FX)(x),

E[X] =

∫ ∞
−∞

xdΨγ(FX(x)), (40)

in other words it is the expected value of X under a new probability measure Pγ(X), having density
ψγ(FX)(x) (the pdf), the derivative of Ψγ(FX)(x) (the cdf) to u, with respected to the original
measure P. It is actually the same as the definition of the continuous case for the expectation
value, namely,

E[X] =

∫ ∞
−∞

xf(x)dx =

∫ ∞
−∞

xdF (x) (41)
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but now we have distorted the cumulative distribution function, and the integral still the Riemann-
Stieltjes integral. The bid price is essentially the price that a seller gets for selling an asset to the
market. It is the maximum a buyer is willing to pay for it. For bid price b, the buyer is satisfied
when X− b, where X is the cash flow of the asset, is profitable. We say that X− b is acceptable at
the level of γ, therefore the bid price is obtained, by setting the expectation value bigger or equal
to zero, ∫ ∞

−∞
xdΨγ(FX−b(x)) ≥ 0⇐⇒ −b+

∫ ∞
−∞

xdΨγ(FX(x)) ≥ 0 (42)

Thus taking the maximum gives us a function,

bγ(X) =

∫ ∞
−∞

xdΨγ(FX(x)), (43)

so we see that the bid price is the distorted expectation of the cash flow X. In our thesis we only
look at call options so we calculate only the bid/ask prices for these kind of option. The derivations
for the put options go the same way. For a call option we know that the payoff is given by,

CT = max{(ST −K), 0} (44)

Inserting this in the expression for the bid price gives us the following integral, where due to the
definition of CT the integration interval is reduced to [0,∞],

bγ(C) =

∫ ∞
0

xdΨγ(FCT (x))

=

∫ ∞
K

(x−K)dΨγ(FST (x)),

(45)

using now integration by parts gives us,

bγ(C) = (x−K)(Ψγ(FST (x))− 1)|∞K +

∫ ∞
K

(1−Ψγ(FST (x)))d(x−K), (46)

here the first term vanishes if we insert the boundaries, so we are left with, the expression for a
bid price,

bγ(C) =

∫ ∞
K

(1−Ψγ(FST (x)))d(x−K) (47)

We do the same for the ask price, where the ask price is the minimum price a seller is willing to
receive, or in other words what a trader needs to pay for it to purchase. The seller always wants
profit so a−X, where X is the cash flow, needs to be profitable, so we get,∫ ∞

−∞
xdΨγ(Fa−X(x)) ≥ 0⇐⇒ a+

∫ ∞
−∞

xdΨγ(F−X(x)) ≥ 0 (48)

Taking the minimum of this inequality, we are left with,

aγ(X) = −
∫ ∞
−∞

xdΨγ(F−X(x)) (49)

so the ask price is the negative of the distorted expectation of the cash flow −X. It is strange to
see that it seems that the strike price is negative and thus less than the bid price, which in practice
is always the opposite. Further calculations will show that the negative sign will disappear. We
first note that for a call option and x > 0,

F−C(x) = P(−(ST −K) ≤ x) = P((ST −K) ≥ −x)

= P(ST ≥ K − x) = 1− P(ST ≤ K − x) = 1− FST (K − x)
(50)
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Because the distribution FX in the formula for the ask price has a negative stochastic process, we
integrate from ∞ to 0,

aγ(X) = −
∫ 0

−∞
xdΨγ(F−CT (x))

= −
∫ 0

−∞
xdΨγ(1− FST (K − x))

= −
∫ ∞
0

xdΨγ(1− FST (K + x))

= −
∫ ∞
K

(x−K)dΨγ(1− FST (x))

= −(x−K)(Ψγ(1− FST (x)))|∞K +

∫ ∞
K

Ψγ(1− FST (x))d(x−K)

=

∫ ∞
K

Ψγ(1− FST (x))dx,

(51)

using again integration by parts and inserting the boundaries will give us,

aγ(X) = −(x−K)(Ψγ(1− FST (x)))|∞K +

∫ ∞
K

Ψγ(1− FST (x))d(x−K)

=

∫ ∞
K

Ψγ(1− FST (x))dx

(52)

Thus,

bγ(C) =

∫ ∞
K

(1−Ψγ(FSt(x)))dx

aγ(C) =

∫ ∞
K

Ψγ(1− FSt(x))dx

(53)

The goal then is, is to fit these predictions for the bid and ask prices to the real data by minimizing
the difference for γ. This is done by minimizing the total squared error,

TSE(γ) =

τ∑
i=1

((bidi − bi,γ)2 + (aski − ai,γ)2) (54)

Then minimizing this for γ ≥ 0 will give us the illiquidity parameter and tells us in essence how
far away the predicted prices from the actual prices lay. When in investors panic and dump all
their assets onto the market, the bid and ask prices will drop drastically, increasing γ.

9.2 Kou distribution calculation

The Kou model is hard to calculate. This comes from the fact that it is based on two different
distributions which cannot really be united. Fortunately there is a function that can unite these
and is called the Hh function, a special function of mathematical physics.
This derivation comes from Kou himself [6] and will be used to find an expression for the distribution
function. First we begin with an expression for the calculation of a call option. This is defined as,

Φ(µ, σ, λ, p, η1, η2, a, T ) := P[Z(t) ≥ a] (55)

With Z(t) = µt+ σW (t) +
∑N(t)
i=1 Yi.

C = e−rTE∗[(ST −K)+] (56)

C = E∗[e−rT (ST −K) ∗ IST≥K ] (57)
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C = E∗[e−rTST ∗ IST≥K ]−Ke−rTP∗[St ≥ K] (58)

Hereby is E∗ defined with the risk neutral probability measure P∗. That is why the substituting
takes place of µ = r − λζ
For the calculation of the first term on the right hand side of the equation, we need to make a
change of measure. So we introduce a new probability P̃,

dP̃
dP∗

= e−rT
S(T )

S(0)
= e−rT e(r−

σ2

2 −λζ)T+σW (T )+
∑N(T )
i=1 Yi (59)

This is well-defined, because E∗[e−rt S(t)S(0) ] = 1 Now we by the theorem of Girsanov for jump

processes, W̃ (t) := W (t)− σt is a new Brownian motion under the measure P̃

X(t) = (r − 1

2
σ2 − λζ)t+ σW (t) +

N(T )∑
i=1

Yi

= (r +
1

2
σ2 − λζ)t+ σW̃ (t) +

N(T )∑
i=1

Yi

(60)

Due to the change of probability measure, some variables changes. First the Poisson process rate
becomes: λ̃ = λE∗[eYi ] = λ(1 + ζ). The new density of the jump process becomes,

1

E∗[eY ]
eY fY (y) =

1

E∗[eY ]
eypη1e

−η1yIy≥0 +
1

E∗[eY ]
eyqη2e

η2yIy<0

= p
1

E∗[eY ]

η1
η1 − 1

(η1 − 1)e−(η1−1)yIy≥0 + q
1

E∗[eY ]

η2
η2 + 1

(η2 + 1)e(η2+1)yIy<0

(61)

For this still to be a double exponential density we must make the substitutions: η̃1 = η1− 1, η̃2 =
η2 + 1,

p̃ = p[
pη1
η1 − 1

+
qη2

η2 + 1
]−1

η1
η1 − 1

(62)

q̃ = q[
pη1
η1 − 1

+
qη2
η2 + 1

]−1
η2

η2 + 1
(63)

So we had,
E∗[e−rTS(T ) ∗ IS(T )≥K ] (64)

= S(0)E∗[e−rT
S(T )

S(0)
∗ IS(T )≥K ] (65)

= S(0)P̃[S(T ) ≥ K] (66)

= S(0)Φ(r +
1

2
σ2 − λζ, σ, λ̃, p̃, η̃1, η̃2, ln(

K

S(0)
), T ) (67)

So we now need to calculate Φ. We first need to decompose the jump variable Yi, as:

n∑
i=1

Yi =

{∑k
i=1 ξ

+, with Pn,k, for k = 1, 2, . . . , n

−
∑k
i=1 ξ

−, with Qn,k, for k = 1, 2, . . . , n

Here ξ+ and ξ− are i.i.d. exponential random variables, representing respectively a jump up and
jump down, with rate η1 and η2, and occur with probabilities Pn,k and Qn,k. We will give a
representation for Pn,k and Qn,k without going further into it.

Pn,k =

n−1∑
i=k

(
n− k − 1

i− k

)(
n

i

)
(

η1
η1 + η2

)i−k(
η2

η1 + η2
)n−ipiqn−i (68)
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Qn,k =

n−1∑
i=k

(
n− k − 1

i− k

)(
n

i

)
(

η1
η1 + η2

)n−i(
η2

η1 + η2
)i−kpn−iqi (69)

We now introduce a new function, taken from the handbook of mathematical function of Abramowitz
and Stegun [8]

Definition 9.1 (Hh function) For every n ≥ 0, the Hh function is a non-increasing function
defined by:

Hhn(x) =

∫ ∞
x

Hhn−1(y)dy =
1

n!

∫ ∞
x

(t− x)ne
−t2
2 dt, n = 0, 1, 2, . . . (70)

Hh−1(x) = e−x
2/2, Hh0(x) =

√
2πN(−x) (71)

where N(x) is again the cumulative normal distribution function.

An approximation of the Hh function which makes it implementing in python easier and the
computation time shorter is given by,

Hhn(x) = 2−n/2
√
πe−x

2/2 ∗ (
1F1( 1

2n+ 1
2 ,

1
2 ,

1
2x

2)
√

2Γ(1 + 1
2n)

− x 1F1( 1
2n+ 1, 32 ,

1
2x

2)

Γ( 1
2 + 1

2n)
) (72)

where 1F1 ∗ (a, b, c) is a confluent hypergeometric function, and Γ(x) the gamma function, both
functions already implemented in a Python library, which makes the coding more pleasant.
We will see when we calculate the probability that it is important to evaluate the integral In(c, α, β, δ),

In(c, α, β, δ) :=

∫ ∞
c

eαxHhn(βx− δ)dx, n ≥ 0, (73)

for α, β, c ∈ R

In(c, α, β, δ) =

− e
αc

α

∑n
i=0(βα )n−iHhi(βc− δ) + (βα )n+1

√
2π
β e

αδ
β + α2

2β2N(−βc+ δ + α
β ), if β > 0 and α 6= 0

− e
αc

α

∑n
i=0(βα )n−iHhi(βc− δ)− (βα )n+1

√
2π
β e

αδ
β + α2

2β2N(βc− δ − α
β ), if β < 0 and α < 0

We now have everything we the calculation of Φ. With the use of pin := P(N(T ) = n) = e−()n/n!
we make a decomposition for P (Z(T ) ≥ a) with Z(T ) = µT + σ

√
TZ +

∑n
i=1 Yi, with Z a normal

random variable with distribution N(0, σ2). This decomposition is then,

P(Z(T ) ≥ a) =

∞∑
n=0

πnP(µT + σ
√
TZ +

n∑
i=1

Yi ≥ a)

= π0P(µT + σ
√
TZ ≥ a)

+

∞∑
n=1

πn

n∑
k=1

Pn,kP(µT + σ
√
TZ +

k∑
i=1

ξ+i ≥ a)

+

∞∑
n=1

πn

n∑
k=1

Qn,kP(µT + σ
√
TZ −

k∑
i=1

ξ−i ≥ a)

(74)

First we need to know the probability density function of our variables. Because we have two
different variables with different densities which are also independent we can use convolution of
functions the calculate the density. We take for the density of Z +

∑n
i=1 ξ

+,

fZ+
∑n
i=1 ξ

+(t) =

∫ ∞
−∞

f∑n
i=1 ξ

+(t− x)fZ(x)dx

= e−tη1(η1)n
∫ t

−∞

exη1(t− x)n−1

(n− 1)!

1

σ
√

2π
e

−x2

2σ2 dx

= e−tη1(η1)ne
(ση1)2

2

∫ t

−∞

(t− x)n−1

(n− 1)!

1

σ
√

2π
e

−(x−σ2η1)2

2σ2 dx

(75)

22



substituting y = (x− σ2η1)/σ gives

fZ+
∑n
i=1 ξ

+(t) = e−tη1(η1)ne
(ση1)2

2

∫ t/σ−ση1

−∞

(tσ − y − ση1)n−1

(n− 1)!

1

σ
√

2π
e

−y2

2σ2 dy

=
e

(ση1)2

2

√
2π

(σn−1ηn1 )e−tη1Hhn−1(−t/σ + ση1)

(76)

The derivation of fZ−
∑n
i=1 ξ

−(t) is the same. Our last step is now integrating the obtained proba-

bility density function which will give us an expression for P (Z +
∑n
i=1 ξ

+ ≥ x)

P (Z+

n∑
i=1

ξ+ ≥ x) =
e

(ση1)2

2

√
2π

(σn−1ηn1 )

∫ ∞
x

e−tη1Hhn−1(−t/σ+ση1)dt =
e

(ση1)2

2

√
2π

(σn−1ηn1 )In−1(x,−η1,−1/σ,−ση1)

(77)
And also for this the computation is the same for P (Z −

∑n
i=1 ξ

− ≥ x)
These computations were made for a normal random variable with distribution N(0, σ2), but now
if you take into account the drift and volatility, we get essentially a normal random variable with
distribution N(µT, σ2T ). Having this all in the back of our heads we finally get an expression for
P (Z(T ) ≥ a),with Z(T ) given, which we can use for our programming, we have

P (Z(T ) ≥ a) =
e

(ση1)2T
2

σ
√

2πT

∞∑
n=1

πn

n∑
k=1

Pn,k(σ
√
Tη1)kIk−1(a− µT,−eta1,−

1

σ
√
T
,−ση1

√
T )

+
e

(ση2)2T
2

σ
√

2πT

∞∑
n=1

πn

n∑
k=1

Qn,k(σ
√
Tη2)kIk−1(a− µT, eta2,

1

σ
√
T
,−ση2

√
T )

+ π0N(−a− µT
σ
√
T

)

(78)

So we have the following expression for a call option given the Kou model,

C(0) = S(0)Φ(r +
1

2
σ2 − λζ, σ, λ̃, p̃, η̃1, η̃2, log(

K

S(0)
), T )

−Ke−rTΦ(r − 1

2
σ2 − λζ, σ, λ, p, η1, η2, log(

K

S(0)
), T )

(79)

and for a call option at any time, 0 ≤ t < T ,

C(t) = S(t)Φ(r +
1

2
σ2 − λζ, σ, λ̃, p̃, η̃1, η̃2, log(

K

S(t)
), T − t)

−Ke−r(T−t)Φ(r − 1

2
σ2 − λζ, σ, λ, p, η1, η2, log(

K

S(t)
), T − t)

(80)
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10 Results

It took some time implementing the Kou model in python, which was my preferred program to use
for this thesis. At first I looked at simulating plain stock for a certain drift and volatility, after that
I needed data for the more advanced calculations, like the implied volatility. Not knowing that
the data is not obtainable on the internet, my nephew who works at a financial company provided
me with a chunk of level 1 data. This contained daily bid ask prices of the SP 100, the stock
market index which is like the average of the 100 biggest companies with common stock listed on
the NASDAQ and NYSE stock market. Although it was not much I could do some programming
and get nice results.

10.1 Implied volatility

For the calculation of option prices you need volatility. Because of the fact that volatility changes
over time and is not constant, contrary to the assumption in the Black-Scholes model, we need
to calculate the implied volatility. This is done by solving the expression of a call option for σ.
Normally this is done with the use of the Black-Scholes model but for a better approximation we
used the Kou model. Solving the expression given by (80), resulted in the following figure, For

100 200 300 400 500

0.1

0.2

0.3

0.4

0.5

0.6

Figure 5: Implied volatility from the Kou model

some reason the Black-Scholes implied volatility gave exactly the same graph as the Kou implied
volatility, so we included only one graph. What we see, is a curve in the implied volatility and
more erratic for increasing t on the x-axes. This can be explained because of the root finding
technique. When t tends more to the right, the time between t and the expiration time, T − t,
becomes smaller, and gives more room for σ to be a solution for solving (80).

Unfortunately I had not the time or the resources to try to manufacture the illiquidity param-
eter in Python but the result would have looked something like this, Figures 6 and 7 come from
the literature [1] that helped me the most during my thesis and where I got the inspiration from
to investigate this matter. What you see in is the two year time elapse from 2008 to 2010, when
the American housing bubble took place.

We see some differences between the illiquidity parameters calculated by the two different models.
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Figure 6: The daily illiquidity parameter with the SP 500 index

Figure 7: The daily illiquidity parameter for the Kou model and the Black-Scholes model

First we see that the graph is much smoother if you use the Kou model. This comes from the fact
that the Kou model does take into account the jumps which are proved to occur in the movement
of assets. The Black-Scholes model does not take this into account and therefor has to compensate
this which makes it more erratic. The second difference, is that the illiquidity parameter based
on Kou starts high whereas for the Black-Scholes stays constant for a period of time. This can be
explained due to an incident that happened on the 9th of August 2007. That day BNP Paribas
announced that it ceased paying off redemption’s on investments funds due to problems in the
housing market. This was a moment that made the investors realize that their derivative contracts
(like options) were worth a lot less than they had imagined. Hence an increase for Kou’s illiquidity
parameter, but the Black-Scholes one does not show a sign, which we think comes from the effect
that it cannot incorporate sudden changes (jumps) in the market.

After a couple of months the market started to calm down after the news of BNP Paribas, but
then the bankruptcy of the Lehman Brothers happened. In June they already reported a second-
quarter loss of $2.8billion, and on 15th of September 2008 the Lehman Brothers went bankrupt.
This results for both models a big increase in the illiquidity parameter, because everybody lost
their faith in the banks. Till that moment the banks were considered ”too big to fail”, but with the
report of the bankruptcy of the Lehman Brothers, panic got the better of investors and everyone
wanted to dump their contracts. At the last moment most banks were saved by the government

25



but the damage was already done.
After the first peak, there are two smaller ones. These come from the financial uncertainty around
the big companies General Motors and Chrysler. Due to their actions and the fact that the Amer-
ican and Canadian governments had to give a financial bailout of $85 billion in order to help the
organizations to restructure, the uncertainty in the market started to increase again.

10.2 Conclusions and outlook

Figures 6 and 7 are obtained the same way as we tried to accomplish during this thesis, but failed
to do so. But we can say with certainty that the illiquidity parameter has some representation of
the destabilization or uncertainty of the financial market. The events that led to the housing crisis
of 2008 can be found in the parameter, but there is more research needed for saying that it can
truly predict a economic bubble.

The difference between the Black-Scholes model and the Kou model is not really noticeable, the
implied volatilities look the same, and we notice when we program both models in Python (code
included in the appendix), that both are a fairly good approximation for the pricing of options.
What we could do in the future is looking at fitting the jump up and jump down parameters with
their respective probabilities such that the Kou model becomes a better approximation for the
option prices.

There are also other improvements we can accomplish in this research. First, we need to look
at other historical economic bubble and check if the same thing happens to the illiquidity param-
eter as we suspect. Then through time we can say that the method holds. Second, we need more
data to compare results. The data we worked with had only 100 options with daily prices. These
prices actually change within millisecond, so we also need more computing power. Our code took
22 hour for the calculation of the implied volatility, so finding the illiquidity parameter would take
days. A computer that can process big data is essential in this branch.

Our own contribution came mostly from the coding which provided me with more insight in
stock market and the Kou model. To try to model the Kou model took more time than imagined
and that took the place of the time we could spend on the literature. We did not even come
to the calculation of the illiquidity parameter, which in our eyes was the main goal but was in
the end a bridge too far. The research for the Kou model and the additional knowledge needed
for understanding the background information is too much spread out, because of the fact that
it is not a fairly known model. The bid and ask prices calculations are part of a new theory of
Conic Finance, not discussed in this thesis, which goes even further into the pricing of bid and ask
option prices. We would recommend to look into this to anyone that is interested in this branch
of financial mathematics.
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12 Appendix

12.1 Python code for the simulation of call options and implied volatil-
ities

Listing 1: Insert code directly in your document

import numpy as np
import pandas as pd
import matp lo t l i b . pyplot as p l t
from s c ipy . s t a t s import norm
import math
from mpmath import hyp1f1 , gamma

df = pd . r e ad ex c e l ( r ’C:\ Users \Gebruiker \Documents\Un i v e r s i t e i t \ S c r i p t i e \data\sp100dataCALL400000 . x l sx ’ ) #for an e a r l i e r ver s ion o f Excel , you may need to use the f i l e ex t ens ion o f ’ x l s ’
d f f = pd . r e ad ex c e l ( r ’C:\ Users \Gebruiker \Documents\Un i v e r s i t e i t \ S c r i p t i e \data \ˆOEXaangepast . x l sx ’ )
ddf = pd . r e ad ex c e l ( r ’C:\ Users \Gebruiker \Documents\Un i v e r s i t e i t \ S c r i p t i e \data\ he e l v e e l da t a . x l sx ’ )
data = df . va lue s
data1 = d f f . va lue s
data2 = ddf . va lue s
s tock = data1 [ : , [ 1 , 7 ] ]
b idask = data [ : , [ 2 , 3 , 4 , 6 ] ]

x = np . arange ( s tock [ : , 1 ] . s i z e , dtype=int )
K = np . f u l l l i k e (x , 400 . 0 )
s t = ( stock [ : , 0 ] / 1 0 0 0 0 0 0 ) . astype ( f loat )
op t i onp r i c e = ( bidask [ : , 1 ]+ bidask [ : , 2 ] ) / 2
sigma = np . t i l e ( 0 . 001 , s tock [ : , 1 ] . s i z e )
rnt = np . t i l e ( 0 . 1 /100 . 0 , s tock [ : , 1 ] . s i z e )
T t = np . t i l e ( 0 . 5 , s tock [ : , 1 ] . s i z e )
T t = ( stock [ : , 1 ] / 3 6 5 . 0 ) . astype ( f loat )

et1 = np . t i l e ( 1 0 . 0 , s tock [ : , 1 ] . s i z e )
et2 = np . t i l e ( 5 . 0 , s tock [ : , 1 ] . s i z e )
lab = np . t i l e ( 1 . 0 , s tock [ : , 1 ] . s i z e )
pp = np . t i l e ( 0 . 4 , s tock [ : , 1 ] . s i z e )

tau = np . l og (K/ s t )
P impl ied = np . z e r o s ( s t . s i z e )

for i in range ( s t . s i z e ) :
a = 0 .0
b = 1 .0
n = 10

for k in range (n ) :
sigma [ i ] = ( a+b)/2
d 1 = (math . l og ( s t [ i ] /K[ i ] )+( rente [ i ]+( sigma [ i ]∗∗2 )/2 )∗T t [ i ] ) / ( sigma [ i ] ∗ ( np . s q r t ( T t [ i ] ) ) )
d 2 = (math . l og ( s t [ i ] /K[ i ] )+( rente [ i ]−( sigma [ i ]∗∗2 )/2 )∗T t [ i ] ) / ( sigma [ i ] ∗ ( np . s q r t ( T t [ i ] ) ) )
P impl ied [ i ] = s t [ i ]∗norm . cd f ( d 1 ) − K[ i ]∗math . exp(− r ente [ i ]∗ T t [ i ] ) ∗ norm . cd f ( d 2 )
i f op t i onp r i c e [ i ]−P impl ied [ i ] < 0 :

a = a
b = ( a+b)/2

else :
a = ( a+b)/2
b = b

i f sigma [ i ] > (1−2∗∗(−n+2)) :
sigma [ i ] = None

i f sigma [ i ] < 2∗∗(−n+2):
sigma [ i ] = None

zeta = pp∗ eta1 /( eta1 − 1) + (1 − pp)∗ eta2 /( eta2 + 1) − 1
temp1 = rente + ( sigma ∗∗2)/2 − lambda∗ zeta
temp2 = temp1 − sigma ∗∗2
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vo = 100
def f a c t (n ) :

i f n == 0 :
return 1

else :
return n ∗ f a c t (n−1)

f a c t o r i a l = np . z e r o s ( vo ) . astype (np . object )
for i in range ( vo ) :

f a c t o r i a l [ i ] = f a c t ( i )

def nCk(n , k ) :
return f a c t o r i a l [ n ] / ( f a c t o r i a l [ k ]∗ f a c t o r i a l [ n−k ] )

nck=np . z e r o s ( ( vo , vo ) )
for i in range ( vo ) :

for j in range ( i +1):
nck [ i , j ] = nCk( i , j )

def Hhfunction (x , n ) :
return np . array (2∗∗(−n/2)∗np . s q r t (np . p i )∗np . e∗∗((−x ∗∗2)/2)∗ ( hyp1f1 ( (1/2)∗n+(1/2) , (1/2) , (1/2)∗ x ∗∗2)/(np . s q r t (2)∗gamma(1+(1/2)∗n ) ) − x∗hyp1f1 ( (1/2)∗n+1 ,(3/2) , (1/2)∗x∗∗2)/gamma((1/2)+(1/2)∗n ) ) , dtype=object )

c1 = tau − temp1∗T t
c2 = tau − temp2∗T t
a11 = −(eta1 [1 ]−1)
a12 = ( eta2 [1 ]+1)
a21 = −eta1 [ 1 ]
a22 = eta2 [ 1 ]

imatr ix11 = np . z e r o s ( ( 16 , s t . s i z e ) )
imatr ix12 = np . z e r o s ( ( 16 , s t . s i z e ) )
imatr ix21 = np . z e r o s ( ( 16 , s t . s i z e ) )
imatr ix22 = np . z e r o s ( ( 16 , s t . s i z e ) )

Hh11function = np . z e r o s ( 1 6 ) . astype (np . object )
Hh12function = np . z e r o s ( 1 6 ) . astype (np . object )
Hh21function = np . z e r o s ( 1 6 ) . astype (np . object )
Hh22function = np . z e r o s ( 1 6 ) . astype (np . object )
Hhl = np . frompyfunc ( Hhfunction , 2 , 1 )

def Pn1(n , i , p , et1 , et2 ) :
i f ( i == n and n >= 1 ) :

return (p)∗∗n
else :

po = 0 .0
for j in range ( i , n ) :

po += (p∗∗( j ))∗((1−p )∗∗ (n−j ) )∗ nck [ n−i −1, j−i ]∗ nck [ n , i ] ∗ ( et1 /( et1+et2 ) )∗∗ ( j−i ) \\
∗ ( et2 /( et1+et2 ) )∗∗ ( n−j )

return po

def Qn1(n , i , p , et1 , et2 ) :
i f ( i == n and n >= 1 ) :

return (1−p)∗∗n
else :

pu = 0 .0
for j in range ( i , n ) :

pu += (1−p)∗∗ j ∗(p )∗∗ (n−j )∗ nck [ n−i −1, j−i ]∗ nck [ n , i ] ∗ ( et2 /( et1+et2 ) )∗∗ ( j−i ) \\
∗ ( et1 /( et2+et1 ) )∗∗ ( n−j )

return pu

def pin (n , l ,T) :
return np . e∗∗(−( l ∗T) ) ∗ ( ( l ∗T)∗∗n)/ f a c t o r i a l [ n ]

pmatrix1 = np . z e r o s ( ( 16 , 1 6 ) )
pmatrix2 = np . z e r o s ( ( 16 , 1 6 ) )
qmatrix1 = np . z e r o s ( ( 16 , 1 6 ) )
qmatrix2 = np . z e r o s ( ( 16 , 1 6 ) )
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pip1 = np . z e r o s ( 1 6 ) . astype (np . object )
pip2 = np . z e r o s ( 1 6 ) . astype (np . object )

for n in range ( 1 5 ) :
pip1 [ n ] = pin (n , ( lambda∗(1+ zeta ) ) , T t )
pip2 [ n ] = pin (n , lambda , T t )
for i in range ( 1 6 ) :

pmatrix1 [ n , i ] = Pn1(n , i , pp [ 1 ] ∗ eta1 [1 ] / ( (1+ zeta [ 1 ] ) ∗ ( eta1 [1 ] −1) ) , eta1 [1 ]−1 , eta2 [1 ]+1)
pmatrix2 [ n , i ] = Pn1(n , i , pp [ 1 ] , eta1 [ 1 ] , eta2 [ 1 ] )
qmatrix1 [ n , i ] = Qn1(n , i , pp [ 1 ] ∗ eta1 [1 ] / ( (1+ zeta [ 1 ] ) ∗ ( eta1 [1 ] −1) ) , eta1 [1 ]−1 , eta2 [1 ]+1)
qmatrix2 [ n , i ] = Qn1(n , i , pp [ 1 ] , eta1 [ 1 ] , eta2 [ 1 ] )

simga = np . z e r o s ( s t . s i z e )

b1 = −1/(sigma∗np . s q r t ( T t ) )
b2 = 1/( sigma∗np . s q r t ( T t ) )
g11 = −sigma∗np . s q r t ( T t )∗ ( eta1−1)
g12 = −sigma∗np . s q r t ( T t )∗ ( eta2+1)
g21 = −sigma∗np . s q r t ( T t )∗ eta1
g22 = −sigma∗np . s q r t ( T t )∗ eta2

for n in range ( 1 6 ) :
Hh11function [ n ] = Hhl ( b1∗c1−g11 , n)
Hh12function [ n ] = Hhl ( b2∗c1−g12 , n)
Hh21function [ n ] = Hhl ( b1∗c2−g21 , n)
Hh22function [ n ] = Hhl ( b2∗c2−g22 , n)

for x in range ( s t . s i z e ) :
for n in range ( 0 , 1 5 ) :

j11 = 0 .0
j12 = 0 .0
j21 = 0 .0
j22 = 0 .0
for i in range (0 , n ) :

jo11 = (b1 [ x ] / a11 )∗∗ (n−1− i )∗Hh11function [ i ] [ x ]
j11 += jo11
jo12 = (b2 [ x ] / a12 )∗∗ (n−1− i )∗Hh12function [ i ] [ x ]
j12 += jo12
jo21 = (b1 [ x ] / a21 )∗∗ (n−1− i )∗Hh21function [ i ] [ x ]
j21 += jo21
jo22 = (b2 [ x ] / a22 )∗∗ (n−1− i )∗Hh22function [ i ] [ x ]
j22 += jo22

imatr ix11 [ n , x ] = −((np . e ∗∗( a11∗ c1 [ x ] ) ) / a11 )∗ j 11 − \\
( ( b1 [ x ] / a11 )∗∗ ( n+1))∗(np . s q r t (2∗np . p i )/ b1 [ x ] ) ∗ np . e ∗∗ ( ( a11∗g11 [ x ] / b1 [ x ] )+ ( 1 . 0 / 2 . 0 )∗ ( a11/b1 [ x ] )∗∗2 )∗ norm . cd f ( b1 [ x ]∗ c1 [ x]−g11 [ x]−( a11/b1 [ x ] ) )
imatr ix12 [ n , x ] = −((np . e ∗∗( a12∗ c1 [ x ] ) ) / a12 )∗ j 12 + \\
( ( b2 [ x ] / a12 )∗∗ ( n+1))∗(np . s q r t (2∗np . p i )/ b2 [ x ] ) ∗ np . e ∗∗ ( ( a12∗g12 [ x ] / b2 [ x ] )+ ( 1 . 0 / 2 . 0 )∗ ( a12/b2 [ x ] )∗∗2 )∗ norm . cd f (−b2 [ x ]∗ c1 [ x]+g12 [ x ]+( a12/b2 [ x ] ) )
imatr ix21 [ n , x ] = −((np . e ∗∗( a21∗ c2 [ x ] ) ) / a21 )∗ j 21 − \\
( ( b1 [ x ] / a21 )∗∗ ( n+1))∗(np . s q r t (2∗np . p i )/ b1 [ x ] ) ∗ np . e ∗∗ ( ( a21∗g21 [ x ] / b1 [ x ] )+ ( 1 . 0 / 2 . 0 )∗ ( a21/b1 [ x ] )∗∗2 )∗ norm . cd f ( b1 [ x ]∗ c2 [ x]−g21 [ x]−( a21/b1 [ x ] ) )
imatr ix22 [ n , x ] = −((np . e ∗∗( a22∗ c2 [ x ] ) ) / a22 )∗ j 22 + \\
( ( b2 [ x ] / a22 )∗∗ ( n+1))∗(np . s q r t (2∗np . p i )/ b2 [ x ] ) ∗ np . e ∗∗ ( ( a22∗g22 [ x ] / b2 [ x ] )+ ( 1 . 0 / 2 . 0 )∗ ( a22/b2 [ x ] )∗∗2 )∗ norm . cd f (−b2 [ x ]∗ c2 [ x]+g22 [ x ]+( a22/b2 [ x ] ) )

bt11 = np . e ∗∗ ( ( sigma ∗( eta1 −1))∗∗2 ∗( T t /2 ) )/ ( sigma∗np . s q r t (2∗np . p i ∗T t ) )
bt12 = np . e ∗∗ ( ( sigma ∗( eta2 +1))∗∗2 ∗( T t /2 ) )/ ( sigma∗np . s q r t (2∗np . p i ∗T t ) )
bt21 = np . e ∗∗ ( ( sigma∗ eta1 )∗∗2 ∗( T t /2 ) )/ ( sigma∗np . s q r t (2∗np . p i ∗T t ) )
bt22 = np . e ∗∗ ( ( sigma∗ eta2 )∗∗2 ∗( T t /2 ) )/ ( sigma∗np . s q r t (2∗np . p i ∗T t ) )

def cd i s t 1 (mu, et1 , et2 , la , p , s i g , aa ,T, i ) :
f f = 0 .0
gg = 0 .0
for n in range ( 1 , 1 5 ) :

for k in range (1 , n+1):
f f += bt11 [ i ]∗ pip1 [ n ] [ i ]∗ pmatrix1 [ n , k ] ∗ ( ( s i g ∗np . sq r t (T)∗ et1 )∗∗k )∗ imatr ix11 [ k−1, i ]
gg += bt12 [ i ]∗ pip1 [ n ] [ i ]∗ qmatrix1 [ n , k ] ∗ ( ( s i g ∗np . sq r t (T)∗ et2 )∗∗k )∗ imatr ix12 [ k−1, i ]

return f f + gg + np . e∗∗(− l a ∗T)∗norm . cd f (−(aa−mu∗T)/( s i g ∗np . sq r t (T) ) )
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def cd i s t 2 (mu, et1 , et2 , la , p , s i g , aa ,T, i ) :
hh = 0 .0
i i = 0 .0
for n in range ( 1 , 1 5 ) :

for k in range (1 , n+1):
hh += bt21 [ i ]∗ pip2 [ n ] [ i ]∗ pmatrix2 [ n , k ] ∗ ( ( s i g ∗np . sq r t (T)∗ et1 )∗∗k )∗ imatr ix21 [ k−1, i ]
i i += bt22 [ i ]∗ pip2 [ n ] [ i ]∗ qmatrix2 [ n , k ] ∗ ( ( s i g ∗np . sq r t (T)∗ et2 )∗∗k )∗ imatr ix22 [ k−1, i ]

return hh + i i + np . e∗∗(− l a ∗T)∗norm . cd f (−(aa−mu∗T)/( s i g ∗np . s q r t (T) ) )

def c a l l p r i c e ( et1 , et2 , la , p , s i g , rr , st , k , t , i ) :
return s t ∗ \\
cd i s t 1 ( temp1 [ i ] , et1 −1, et2+1, l a ∗(1+ zeta [ i ] ) , pp [ i ]∗ et1 /((1+ zeta [ i ] ) ∗ ( et1 −1)) , s i g , np . l og (k/ s t ) , t , i ) \\
− k∗np . e∗∗(− r r ∗ t )∗ cd i s t 2 ( temp2 [ i ] , et1 , et2 , la , pp [ i ] , s i g , np . l og (k/ s t ) , t , i )

c a l l p r i j s = np . z e r o s ( s t . s i z e )

for i in range ( s t . s i z e ) :
i f math . i snan ( sigma [ i ] ) :

c a l l p r i j s [ i ] = None
else :

c a l l p r i j s [ i ] = c a l l p r i c e ( et1 [ i ] , e t2 [ i ] , lab [ i ] , pp [ i ] , sigma [ i ] , rnt [ i ] , s t [ i ] ,K[ i ] , T t [ i ] , i )
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12.2 Mathematical definitions and theorems

Theorem 12.1 (Filtration) Let Ω be a measurable space with a σ-algebra F . Consider a col-
lection of sub-σ-algebras {Ft}t∈I of F, indexed by I ⊂ R. (For example, I = {0, 1, · · · , n}, I =,
I = [0, T ] and I = [0,∞). The parameter or index t represents time in general.) If Fs ⊂ Ft ⊂ F
for s, t ∈ I such that s ≤ t, then {Ft}t∈I is called a filtration. Unless stated otherwise, we assume
that 0 is the smallest element in I and F0 = {Ø,Ω}

Theorem 12.2 (Poisson distribution) Let X be a random variable. Then X is said to be Pois-
son distributed when the probability distribution with parameter λ is given by,

P (X = n) =
λn

n!
e−λ (81)

Theorem 12.3 (Poisson point process) Take the sequence {τi} with i ≥ 1 of independent ex-
ponential random variables, all with the mean 1

λ and let Sn =
∑n
k=1 τk. Then the process,

N(t) =
∑
n≥1

It ≥ Sn (82)

is called a Poisson process and counts the number of occurrences or ”jumps” that occur at or before
time t.

Theorem 12.4 (Gamma Density) For a random variable Sn defined as: Sn =
∑n
i=1 xi, with

xi a random variable with an exponential distribution, f(t) = λe−λt, t ≥ 0. Then Sn has the
gamma density, given by,

gn(s) =
(λs)n−1

(n− 1)!
λe−λs, s ≥ 0 (83)

Proof
We proof this by induction. We first establish the base case, n = 0, we get,

g1(s) = λe−λs, s ≥ 0 (84)

This proves that for n = 0 the gamma density is reduced to the exponential distribution. Now we
look at Sn+1 = Sn+xn+1. Using convolution because of the fact that Sn and xn+1 are independent
we get,

gn+1(s) =

∫ s

0

gn(y)fxn+1(s− y)dy

=

∫ s

0

(λy)n−1

(n− 1)!
λe−λy ∗ λe−λ(z−y)

=
λn+1e−λs

(n− 1)!

∫ s

0

yn−1dy

=
λn+1e−λs

(n− 1)!

sn

n
=

(λs)n

(n)!
λe−λs = gn+1(s)

(85)

Definition 12.5 (Almost surely) When in probability theory an event is said to happen almost
surely, it means that it happens with probability one. In another words, the set of all possible
exceptions may be non-empty, but the set has zero probability.

12.3 Black-Scholes option price

Given the Black-Scholes PDE, we need to find the solution for a call and/or put option

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0 (86)
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This needs to hold for S > 0, t ∈ [0, T ) with S the stock price, t the time, T expiration time and
V the option price.
First we use some transformations, namely: x = ln( SK ), τ = T − t ∈ [0, T ] and a new function
Z(x, τ) = V (Kex, T − τ), which gives the PDE:

∂Z

∂τ
− 1

2
σ2 ∂

2Z

∂x2
+ (

σ2

2
− r)∂Z

∂x
+ rZ = 0 (87)

Now we need to transform to the heat equation for ”easier” calculation. The new function is:
u(x, τ) = eαx+βτZ(x, τ), and α, β ∈ R are chosen so that the PDE for u will become the heat
equation. The PDE for u:

∂u

∂τ
− σ2

2

∂2u

∂x2
+A

∂u

∂x
+Bu = 0 (88)

with

A = ασ2 +
σ2

2
− r, B = (1 + α)r − β − α2σ2 + ασ2

2
(89)

For the PDE for u to become the heat equation, we need A = B = 0, so we set

α =
r

σ2
− 1

2
, β =

r

2
+
σ2

8
+

r2

2σ2
(90)

So the solution for u(x, τ) for the PDE is given by the Green formula

u(x, τ) =
1√

2σ2πτ

∫ ∞
∞

e−
(x−s)2

2σ2τ u(s, 0)ds. (91)

The initial condition for u is:

u(x, 0) = eαxV (Kex, T ) =

{
eαx(S −K) ifx > 0

0 otherwise
(92)

Putting functions 91 and 92 together, gives us,

u(x, τ) =
1√

2σ2πτ

∫ ∞
∞

e−
(x−s)2

2σ2τ eαs(S −K)ds. (93)

We can write this in terms of N(y) = 1√
2π

∫ y
−∞ e−x

2/2dx, the cumulative distribution function

of a normalized normal distribution. Then with backwards substitutions to V (S, t), we get the
following expression,

V (S, t) = SN(d1)−Ke−r(T−t)N(d2), (94)

where N is defined as above, and d1 = ln(S/K)+(r−σ2/2)(T−t)
σ
√
T−t and d2 = d1 − σ

√
T − t

33



References

[1] Azar Karimov, Identifying Stock Market Bubbles: Modeling Illiquidity Premium and Bid-Ask
Prices of Financial Securities, 2017. ISBN 978-3-319-65008-1.

[2] Steven E. Shreve, Stochastic Calculus for Finance II: Continuous-Time Models, 2004. ISBN
978-0-387-40101-0.

[3] Geon H. Choe, Stochastic Analysis for Finance with Simulations, 2016. ISBN 978-3-319-25589-
7.

[4] Rama Cont, Peter Tankov, Financial Modelling with Jump Processes, 2004. ISBN 978-1-584-
88413-2

[5] Peter Tankov, Ekaterina Voltchkova, Jump-diffusion models: a practitioner’s guide, Banque
et Marchés, No. 99, March-April 2009.

[6] S.G. Kou, A Jump-Diffusion Model for Option Pricing, Management Science. Vol. 48, 1086-
1101, 2002.

[7] S.G. Kou, Hui Wang, Option Pricing Under a Double Exponential Jump Diffusion Model,
Management Science. Vol. 50, 1178-1192, 2004.

[8] M. Abramowitz, I. Stegun, Handbook of Mathematical Functions, 1964. ISBN 978-1-614-27617-
3

[9] Paul Glasserman, Monte Carlo Methods in Financial Engineering, 2004. ISBN 978-0-387-
00451-8
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