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Introduction

In this thesis we will take a look at the de Rham cohomology of Lie groups. For general
smooth manifolds this cohomology is often hard to determine, however for compact Lie
groups we will show that this can be made a lot simpler. The group structure of a Lie
group plays an important role in this, among other things it allows us to define so called
‘left-invariant forms’ on the manifold. We will see that the complex of these forms is closely
related to the exterior algebra of the Lie algebra. Using this, the cohomology can essentially
be calculated completely by using the algebraic structure of the Lie algebra.

The thesis is split into four parts. Before the first part, we give a short overview of
various properties of Lie groups and Lie algebras, that we will need for later. In Part I we
will show the relationship that we described above. The first step will be to show that the
cohomology induced by the complex of left-invariant forms of a Lie group G, is naturally
isomorphic to a suitable cohomology defined in terms of the space Λkg∗. Here g denotes the
Lie algebra of G. The next step is then to show that this cohomology of left-invariant forms
is actually the same as the (de Rham) cohomology of all forms. For this we will have to make
the assumption that G is compact. That will then conclude the first part. The main source
for Part I is the article written by Chevalley and Eilenberg, [2]. This article was published
in 1948, and as far as we know it is the first one describe this method in full detail.

The second part of the thesis will be a short intermezzo, where we introduce the concepts
of tensor products and exterior algebras of vector spaces. We will need this for the other
two parts, and especially for the final part.

In Part III then, we will look at a first application of the theory developed in the first part.
We will start by discussing bi-invariant forms, forms that are both left- and right-invariant.
The induced cohomology of these forms will also turn out to be isomorphic to the de Rham
cohomology. Actually, we will see something even stronger, namely that every equivalence
class of the de Rham cohomology contains exactly one bi-invariant form. We will use this
fact to prove the famous Hodge decomposition theorem in the case of compact, connected
Lie groups. To do this, we will have to introduce a Riemannian structure on G, which can
then be used to define the Hodge Laplacian ∆ : Ωk(G) → Ωk(G). The theorem then states
that every cohomology class contains exactly one harmonic form, i.e. a form ω such that
∆ω = 0. We will prove this by showing that the harmonic forms correspond exactly to the
bi-invariant ones. This is a fact that was actually proved by H. Hodge himself, in his book
[8]. However, since the lack of modern notation makes the theorem in this book almost
completely unrecognizable to its modern day formulation, we do not use it as a source here.
The main source that we will be using for this part is the book written by S. Helgason, [7].

In the final part we will take a closer look at the space Λkg∗, and the ‘cohomology’ that we
will define on it. The space is sometimes referred to as the Koszul complex, and it is therefore
fitting that we use an article written by J. Koszul himself, [10], as the primary source for this
part. The main thing we will try to show is a theorem originally proven by Heinz Hopf in
1941 (see [9]), that states that the cohomology of every compact Lie group is isomorphic to
the cohomology of the (cartesian) product of a certain number of odd-dimensional spheres.
Hopf proved the theorem by using the structure of the group itself, we will prove it by using
the structure of the Lie algebra. This shows a nice application of the work we have done in
Part I, and is arguably a bit more elegant.
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In the thesis, we will here and there refer to some theory about representations (of Lie
groups). We do not use any of this to prove crucial results, but nevertheless we have included
a brief introduction to representations in the Appendix, for the interested reader.

0.1 Preliminaries

For this thesis, we will assume that the reader has a fair knowledge of (smooth) manifolds,
as well as some background in functional analysis and topology. In this section we will list
some general results, in order to re-familiarize the reader with them and to introduce the
notation that we will be using throughout the thesis. If necessary, everything discussed here
can be found in [12], which is an excellent introduction into the theory of smooth manifolds.
More advanced discussions can also be found in the book by Bott&Tu, [1].

With M we will always mean a smooth manifold, and unless otherwise stated, its dimen-
sion will be denoted by n. For every point p ∈M , there is a tangent space TpM , consisting
of tangent vectors X ∈ TpM . The bundle over M of these tangent spaces is denoted by TM ,

a vector field ~X is then a smooth section of this bundle. The space of all vector fields on
M is denoted by X(M). At every point p, ~Xp is an element of TpM . If f : M → N is some
smooth map between two manifolds, then it induces a tangent map Tpf : TpM → Tf(p)N for
every p. In literature, one can also see the notation (df)p for this map.

The space of all differential k-forms on M will be denoted by Ωk(M). An element of this
space will generally be denoted by ω. For every p, ωp will then be an element of Λk(TpM)∗,
the space of all alternating, k-linear functions (TpM)k → R. On the space of differential
forms we have the wedge product ∧ : Ωk(M)×Ωl(M)→ Ωk(M)k+l(M), this makes the space
Ω•(M) = ⊕kΩk(M) into a graded algebra. It satisfies graded commutativity,

ω ∧ η = (−1)klη ∧ ω, (1)

if ω ∈ Ωk(M), η ∈ Ωl(M).

Definition 0.1.1. A (real) algebra A is a real vector space, endowed with a bilinear multi-
plication A×A → A.

On Ωk(M), we have the de Rahm derivative or exterior derivative d : Ωk(M)→ Ωk+1(M).
Since d ◦ d = 0, the spaces Ωk(M) together with d = dk form a complex, for which we can
define the k-th de Rahm cohomology as the quotient

Hk
dR(M) := Ker(dk+1)/Im(dk)

The wedge product also induces a graded algebra structure on the cohomology, this
is possible because the d-operator satisfies the properties of an anti-derivation, meaning
d(ω ∧ η) = dω ∧ η + (−1)kω ∧ dη, where ω and η are as above.

Let X and Y be two topological spaces. We call two functions f, g : X → Y homotopic
if there exists a continuous map F : R ×X → Y such that F (0, · ) = f , F (1, · ) = g. We
will be needing the following theorem, that the reader should already be familiar with.
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Theorem 0.1.2. Let M , N smooth manifolds, and f, g : M → N two smooth maps that are
homotopic. Then there exist a linear map H such that we can write

f ∗ω − g∗ω = dH(ω) +H(dω),

for all ω ∈ Ωk(G). In particular, it follows that the maps f ∗, g∗ : Hk
dR(N) → Hk

dR(M),
induced by the pullbacks of f and g, are equal.

Finally, if V is a vector space (vector spaces in this thesis will always be assumed to be
over R), then by V ∗ we denote its dual space. If γ : V → W is a linear map between vector
spaces, then its dual map W ∗ → V ∗ will be denoted by γ∗.
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0.2 Basics of Lie groups and Lie algebras

In this section we will give a short introduction to some of the basic properties of Lie groups.
Some of these might already be familiar to the reader, while others will be completely
new. Nevertheless, we won’t provide detailed proofs for most of theorems, mainly because
the proofs are almost always quite elementary. We refer to [13] (or basically any other
introductory text on Lie groups) for a more thorough treatment.

First we recall the definition of a Lie group.

Definition 0.2.1. We call a smooth manifold G a Lie group if it is equipped with a group
structure, in such a way that the maps (x, y) 7→ xy and x 7→ x−1 are smooth.

If G1 and G2 are Lie groups, the product G1 × G2 with component-wise multiplication
is again a Lie group. Using the group structure of G, for every element g ∈ G we can define
the left-multiplication lg : G → G as the map given by lg(x) = gx, for x ∈ G. This will be
a smooth map, and since its inverse is given by lg−1 , it is actually a diffeomorphism G with
itself. We can also define the right-multiplication rg in a similar way.

Since it is a diffeomorphism, the push-forward (lg)∗ : X(G)→ X(G) of lg is well-defined.

It is given on a vector field ~X by(
(lg)∗X

)
h

= Tg−1h(lg)(Xg−1h),

for g, h ∈ G. This allows the next definition.

Definition 0.2.2. We call a vector field ~X ∈ X(G) left-invariant if (lg)∗ ~X = ~X for all
g ∈ G. The space of all left-invariant vector fields is denoted by XL(G)

The following theorem is an important first step towards showing the relationship between
the complex of left-invariant forms and the exterior algebra Λkg∗, that we mentioned in the
introduction.

Theorem 0.2.3. Let G be a Lie group. Then the map ev : XL(G) → TeG, v 7→ v(e) is a
linear isomorphism.

Proof. For a left-invariant vector field Ỹ it holds that Ỹg = Te(lg)Ỹe (for any g ∈ G). It
follows that Ỹ is completely determined by its value in e, from which we conclude that the
map ev must be injective. We will now prove surjectivity. Let X ∈ TeG. Define the vector
field X̃ by

X̃g := (lg)∗X = TelgX. (2)

One can show that this indeed defines a smooth vector field. Since by the chain rule we
have that Te(lgh) = Te(lg) ◦ Te(lh) for g, h ∈ G, it quickly follows that X̃ is left-invariant.
Since it clearly holds that X̃e = X, we see that ev is surjective, and since it is also clearly
linear, it is therefore a linear isomorphism between XL(G) and TeG.

From now on we will always write X̃ for the left-variant vector field induced by an element
X ∈ TeG, as in equation (2). We will now introduce the important exponential map.
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Definition 0.2.4. The exponential map exp : TeG→ G is defined by

exp(X) = αX(1),

where αX is defined to be the maximal integral curve of X̃, the left-invariant vector field
induced by X.

One can show that the maximal integral curve of a left-invariant vector field on a Lie group
is always defined on all of R, which makes the definition above possible. The exponential
map has the following properties.

Lemma 0.2.5. For all s, t ∈ R, X ∈ TeG:

(i) exp(sX) = αX(s).

(ii) exp(s+ t)X = exp(sX) exp(tX).

Also, exp is a smooth map, and a local diffeomorphism around 0. Its tangent map at the
origin, T0 exp, is the identity on TeG.

Proof. See Lemma 3.6 in [13].

The next Lemma will be important later on.

Lemma 0.2.6. Let X ∈ g, X̃ the induced left-invariant vector field. Denote by φt the flow
of X̃. Then

φt(g) = (rexp tX)(g).

Proof. The crucial remark is that if α is an integral curve of X̃, then lg ◦α is also an integral
curve, this follows by using the chain rule. The curve t 7→ lg(exp tX), is therefore an integral
curve of X, starting at g. By uniqueness of integral curves, it is thus equal to φt(g). Since
lg(exp tX) = rexp tX(g), the proof is then complete.

We will now start discussing the Lie algebra of a Lie group G. For x ∈ G, define the
conjugation map Cx : G→ G as the map g 7→ xgx−1 = lx◦rx−1(g). Since it is the composition
of diffeomorphisms, this will also be a diffeomorphism. Since we have Cx(e) = e, it therefore
follows that TeCx ∈ GL(TeG).

Definition 0.2.7. For x ∈ G, define the map Ad(x) ∈ GL(TeG) by Ad(x) := TeCx

We call the map Ad : G→ GL(TeG) the adjoint representation of G. Note that Ad(e) is
the identity map on TeG. Since the tangent space of GL(TeG) at the identity, TIGL(TeG),
is equal to End(TeG) the following definition makes sense.

Definition 0.2.8. We define the (linear) map ad : TeG→ End(TeG) by ad := TeAd.

Using the chain rule, we see that for X ∈ TeG we have

ad(X) = d
dt

∣∣
t=0

Ad(exp tX). (3)
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Definition 0.2.9. Let X, Y ∈ TeG. We define the Lie bracket [X, Y ] ∈ TeG by

[X, Y ] := ad(X)Y.

It can be shown that the map (X, Y ) 7→ [X, Y ] is bilinear and anti-symmetric. It also
satisfies the Jacobi identity,

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0.

This makes TeG, together with the Lie bracket [. , .], into a Lie algebra, which from now on
we will denote by g.

Definition 0.2.10. A Lie algebra a is vector space together with a bilinear map [. , .] :
a× a→ a that for all X, Y, Z ∈ a satisfies:

1. [X, Y ] = −[Y,X].

2. [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0.

Remark. In literature one will sometimes see different definitions of the Lie bracket. For
example, one can define the Lie bracket of vector fields by [ ~X, ~Y ]p(f) = ~Xp(~Y f) − ~Yp( ~Xf)
for all f ∈ C∞(G), and use the isomorphism between TeG and XL(G) to induce a Lie bracket
on TeG. One can show that this definition is equivalent to the one we have given here.

Definition 0.2.11. A Lie group homomorphism is a smooth map between two Lie groups,
that is also a group homomorphism

Definition 0.2.12. Let a, b be two Lie algebras. A linear map ρ : a → b is called a Lie
algebra homomorphism if it satisfies

ρ([X, Y ]a) = [ρ(X), ρ(Y )]b.

Lemma 0.2.13. Let ϕ : G→ H be a Lie group homomorphism. Then the tangent map Teϕ
is a Lie algebra homomorphism between the associated Lie algebras g and h

Proof. Lemma 4.10 in [13].

Definition 0.2.14. By Ge we denote the subgroup of G generated by elements of the form
exp(X) for X ∈ g. It is called the component of the identity of G.

The following theorem will be important for applications.

Theorem 0.2.15. If G is connected, then Ge = G.

Proof. See Lemma 5.8 in [13]. The proof involves showing that Ge is both an open and
closed subset of G, from which the statement follows. The converse implication is actually
also shown, but we do not need it here.
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Part I

Left-invariant forms and cohomology

In the previous chapter we established a linear isomorphism between the space of left-
invariant vector fields of a Lie group G, and its Lie algebra g. In this section we will
follow a similar procedure to relate the space of left-invariant k-forms on G to the space
of k-linear alternating functions on g. In other words, we will establish an isomorphism
Ωk
L(G) ∼= Λkg∗, where Ωk

L(G) denotes the space of left-invariant k-forms. The main goal of
this chapter will then be to prove that the complex of left-invariant forms induces the same
cohomology as the de Rham complex of all forms, provided that G is compact. We will also
define a suitable ‘exterior differential’ on Λg∗, that will give us an isomorphism between the
De Rham cohomology Hk

dR(G) and the ‘cohomology’ of g. This very useful result essentially
means that we can compute the De Rham cohomology of a compact Lie group by using
purely the algebraic structure of its Lie algebra. This fact will be exploited in later chapters.

The following sections are primarily based on the article by Chevalley and Eilenberg [2],
that was written in 1948. However, they use some results from homology theory and since
we want to avoid this, some of the proofs have been significantly modified. Moreover, we
try to avoid speaking about representations, and therefore the formulation of most theorems
differs form the original formulation.

1.1 Left-invariant forms and the Lie algebra

We start with a definition.

Definition 1.1.1. We call a k-form ω ∈ Ωk(G) left-invariant if (lg)
∗ω = ω, for any g ∈ G

(recall that lg : G→ G denotes the left-multiplication on G, i.e. lg(x) = gx). The set of all
left-invariant k-forms on G is denoted by Ωk

L(G).
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Proposition 1.1.2. The map ev : Ωk
L(G) −→ Λkg∗, ev(ω) = ωe is an isomorphism of vector

spaces.

Proof. Since for any left invariant form ω ∈ Ωk
L(G), and vectors v1, ..., vk ∈ TgG, it holds

that
ωg(v1, ..., vk) = (lg−1)∗(ωg)(v1, ..vk) = ωe(Tg(lg−1)k(v1, ..., vk)),

it follows that ω is entirely defined by its value at e. So ev is injective.
For surjectivity, let f ∈ Λkg∗. Now define (ω)g(v1, ..., vk) := f(Tg(lg−1)k(v1, ...vk)), for

v1, ..., vk ∈ TgG. This defines a k-form on G. Since

(lh)
∗(ω)g(v1, ..., vk) = (ω)hg(Tg(lh)(...)) = f(Thg(lg−1h−1) ◦ Tg(lh)(...)) = f(Tg(lg−1)(...)),

where the last equality follows from the chain rule, we conclude that ω is left invariant. Also
clearly (ω)e = f .

To see that ω is a smooth form, note that the map v 7→ Tg(lg−1)v is smooth as a map
G→ TG, since it is obtained by differentiating the smooth map (x, y) 7→ lx−1(y) with respect
to y at y = g, in the direction of v ∈ TgG. It follows that the map x 7→ (ω)x is smooth, and
this implies that ω is a smooth k-form. Therefore ev is a bijection between Ωk

L(G) and Λkg∗,
and since it is clearly linear, it is a linear isomorphism.

We now turn our attention to the complex of left-invariant forms. We want to show that
these form a sub-complex of the complex of all forms. To do this, we need to check that
the exterior derivative d : Ωk(G)→ Ωk+1(G) preserves left-invariance, that is, it should map
Ωk
L(G) to Ωk+1

L (G). This is a simple consequence of the fact that d commutes with pullbacks,
in particular therefore (lg)

∗(dω) = d(lg)
∗ω. It follows that by restricting d to left-invariant

forms, we obtain an exterior derivative Ωk
L(G) → Ωk+1

L (G), which we will also denote by d.
With this, we can define the k-th cohomology group of left-invariant forms, Hk

L(G), as the
usual cohomology of this complex.

As stated before, we want to relate this cohomology of left-invariant forms to a suitable
cohomology defined in terms of the Lie algebra, which we will call the Lie algebra cohomology.
For this we will need the following proposition:

Proposition 1.1.3. For ω ∈ Ωk
L(G) and smooth left-invariant vector fields X0, X1, ...Xk

on G, we have the following formula for the exterior derivative (the hats indicate that the
variable should be left out):

dω(X0, ..., Xk) =
∑
i<j

(−1)i+j ω([Xi, Xj], X0, ..., X̂i, ..., X̂j, ...Xk). (1.1)

Proof. Recall that for any k-form ω ∈ Ωk(G) , we have (see [3]):

dω(X0, ..., Xk) =
∑
i<j

(−1)i+j ω([Xi, Xj], X0, ..., X̂i, ..., X̂j, ...Xk)

+
k∑
i=0

(−1)iXi(ω(X0, ..., X̂i, ..., Xk)).
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We will prove that the terms of the second sum on the right hand side are equal to zero for
a left-invariant form ω ∈ Ωk

L(G). Note that we have ωg(X1, ..., Xk) = (lg−1)∗ωg(X1, ..., Xk) =
ωe(Tg(lg−1)k(X1, ...Xk)) = ωe(X1, ...Xk), since the vector fields are left-invariant. This shows
that ω(X1, ..., Xk) is a constant function, hence Xi(ω(X1, ..., Xk)) = 0. This hold for all i, so
it follows that the second sum of the right hand side is indeed equal to zero.

From this proposition and the fact that there exists a left-invariant global frame on G,
it immediately follows that for tangent vectors x0, x1, ..., xk ∈ TeG, we have

(dω)e(x0, ..., xk) =
∑
i<j

(−1)i+j ω([xi, xj], x0, ..., x̂i, ..., x̂j, ...xk).

Motivated by this, we define an ‘exterior derivative’ on Λkg∗. We will denote it by δ, and
for f ∈ Λkg∗ and x0, ..., xk ∈ g we simply define it as

δf(x0, ..., xk) =
∑
i<j

(−1)i+j f([xi, xj], x0, ..., x̂i, ..., x̂j, ...xk). (1.2)

Note that this indeed defines a linear map Λkg∗ → Λk+1g∗. We will now check that
it satisfies the following two properties, that are comparable to properties satisfied by the
exterior derivative.

Proposition 1.1.4. For δ as defined above, we have for f1 ∈ Λkg∗, f2 ∈ Λmg∗ the following:

(i) δ(f1 ∧ f2) = (δf1) ∧ f2 + (−1)kf1 ∧ (δf2).

(ii) δ(δf1) = 0.

Proof. (i) and (ii) can be proved by induction on k, by basically purely algebraic considera-
tions. This is done in [2, p. 105]

With item (ii) of the previous proposition, we can define the k-th cohomology group of g
essentially analogous to how we defined it for G. So let Zk(g) := {f ∈ Λkg∗ | δf = 0} and
Bk(g) := {f ∈ Λkg∗ | f = δh, for some h ∈ Λk−1g∗}. Then define Hk(g) = Zk(g)/Bk(g).

We can now state the following theorem, which is an easy consequence of Proposition
1.1.2 and the remark after 1.1.3.

Theorem 1.1.5. For a Lie group G with Lie algebra g, the map ev : Ωk
L(G)→ Λkg∗ induces

a linear isomorphism

Hk
L(G) ∼= Hk(g).

Since the wedge-product of two left-invariant forms is again left-invariant, the space
Ω•L(G) := ⊕kΩk

L(G) has the structure of a graded algebra. It follows that the space H•L(G) :=
⊕kHk

L(G) is also a graded algebra. Similarly, since Λg∗ := ⊕kΛkg∗ is a graded algebra, the
same thing holds for H∗(g) := Hk(g). Here we have used assertion (i) of Proposition 1.1.4.
It is easy to see that the map ev : Ω•L(G)→ Λg∗ is a homomorphism of algebras (it holds that
ev(ω∧η) = ev(ω)∧ev(η)). The theorem above then implies that ev induces the isomorphism
of graded algebras

H•L(G) ' H∗(g).
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1.2 Relating the deRham cohomology to the

cohomology of left-invariant forms

While Theorem 1.1.5 looks nice, on its own it is not very useful to us. We are interested
in the entire cohomology group of G, not just the cohomology of the left-invariant forms.
However, as it will turn out, for G compact these two are actually the same thing:

Theorem 1.2.1. Let G be a compact connected Lie group. Then the inclusion maps Ωk
L(G) ↪→

Ωk(G) induce linear isomorphisms:

Hk
dR(G) ∼= Hk

L(G).

Since the inclusion map is clearly an algebra homomorphism between Ω•L(G) and Ω•(G),
Theorem 1.2.1 also implies that the spaces H•dR(G) and H•L(G) are isomorphic as graded
algebras. The rest of this section will be dedicated to proving this theorem. We will always
assume that G is compact (and not necessarily mention this every time). In this section
we will consider the more general case where G is acting on some manifold M , again by an
action l : G ×M → M, l(g, x) = lg(x), smooth as a map between manifolds. We can then
define Ωk

L(M) in the same way we defined it for just G. The aforementioned theorem then
still holds, we have:

Theorem 1.2.2. Let M be a manifold, G a compact connected Lie group acting on M from
the left. Then the inclusion maps Ωk

L(M) ↪→ Ωk(M) induce linear isomorphisms:

Hk
dR(M) ∼= Hk

L(M).

Denote by i : Ωk
L(M) → Ωk(M) the natural inclusion. We then have the following

commutative diagram.

Ωk(M) Ωk+1(M)

Ωk
L(M) Ωk+1

L (M)

... d ...

... d

i i

...

(1.3)

We now want introduce a map into the opposite direction, meaning a map Ωk(M) →
Ωk
L(M). To do this we need to find a way to turn any k-form into a left-invariant one. Intu-

itively, we want to ’average’ the form over G. This can be done by integrating over a suitable
(left-invariant) density on G, called the Haar Measure. We first recall some properties of
densities (taken from [13]).

Definition 1.2.3. Let V be a (real) vector space. A density on V is a map λ : V n → R
such that, for any linear transformation T ∈ End(V ):

T ∗λ := λ ◦ T k = | detT |λ.

The space of all densities on V is denoted by DV . One can show that this is a 1-dimensional
vector space.
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If M is a smooth manifold, then every tangent space TxM has the structure of a vector
space. We can then define the bundle of densities on M, denoted by DTM as the bundle
with fibers (DTM) ' DTxM . A (smooth) density on M can then be defined as a smooth
section of this bundle. In other words, a density on M is an element λ such that for every
x ∈M , λx is a density on TxM , in such a way that (viewed in local coordinates) λx depends
smoothly on x.

There are some obvious similarities between densities and differential forms on M . The
following example shows the relation between the two.

Example 1.2.4. Let ω ∈ Ωn(M) be a differential form on M (with dim(M) = n). Then
|ω|, defined by

|ω|p(v1, ..., vk) = |wp(v1, ...vk)| ∈ R,

is a smooth density on M .

The main difference between densities and differential forms is that (top)-forms transform
under pull-backs as the determinant of the linear transformation, while densities transform
as the absolute value of the determinant (the pullback of a density is defined in the same
way as for forms). This is also a reason why densities are useful, since it means we do not
have to worry about orientation when we define integration over densities. Let e1, ..., en be
the standard basis of Rn. Let λn be the density defined by λn(e1, ..., en) = 1. One can easily
deduce that every density on an open set U ⊆ Rn can be written as fλn, for an f ∈ C∞(U).
If f ∈ Cc(U) (i.e f compactly supported on U , then define than the integral over U as∫

U

fλn =

∫
U

f(x)dx,

where dx is the standard Lebesgue measure on Rn. Integration of compactly supported
densities on manifolds can now be defined completely analogous to how it is defined for
differential forms, by pulling back under charts and using a partition of unity. Note how-
ever that we can use the substitution of variables theorem without having to worry about
orientation, because of the way densities transform.

We can also talk about left invariance of densities, in the same way as for differential
forms. Call a density λ on G left invariant if (lg)

∗λ = λ, for all g ∈ G. One can then show
that the map λ 7→ λe is a linear isomorphism between the space of left-invariant densities
and the space Dg (compare Theorem 0.2.3). This allows the next definition.

Definition 1.2.5. The unique density λ on G, with (lg)
∗(λ) = λ for all g ∈ G and

∫
G
λ = 1,

is called the (normalized) Haar measure on G, and will be denoted by dg.

Note that here we make the assumption that G is compact, in order to do the normal-
ization. We will be needing the following lemma about this Haar measure.

Lemma 1.2.6. For a left-invariant density λ on G, and f ∈ Cc(G), we have for all g in G:∫
G

(
(lg)

∗f
)
λ =

∫
G

fλ. (1.4)

Here (lg)
∗f := f ◦ lg

12



Proof. Since λ is left-invariant, we can write (lg)
∗(f)λ = (lg)

∗(f)(lg)
∗(λ) = (lg)

∗(fλ). Ob-
serving that lg is an diffeomorphism, and applying the substitution of variables theorem then
gives the desired result.

We are now ready to give the following definition, which will define the desired map
Ωk(M)→ Ωk

L(M).

Definition 1.2.7. For any ω ∈ Ωk(M), we define the map m : Ωk(M)→ Ωk
L(M) by:

m(ω) =

∫
G

(lg)
∗ω dg. (1.5)

The integral is defined point-wise, i.e.

m(ω)p(v1, ..., vk) =

∫
G

(
(lg)

∗ω
)
p
(v1, ..., vk) dg.

Note that since in every point ((lg)
∗ω)p(v1, ..., vk) is smooth as a function of g (with image

in R), the integral is well-defined point-wise. To see that m(ω) is a smooth form, note that
since G is compact we can use a partition of one to decompose the integral as a finite sum of
integrals over charts. Therefore, by locally differentiating under the integral sign, it follows
that the integral commutes with taking (partial) derivatives, from which it follows the m(ω)
is a smooth form. It also follows from the same reasoning that m(dω) = dm(ω), since locally
d works by taking partial derivatives, so commutes with the integral (note that moreover
(lg)

∗ also commutes with d). The fact that m indeed maps to Ωk
L(M) is asserted in the next

lemma.

Lemma 1.2.8. For m as defined above we have the following properties:

(i) For any ω ∈ Ωk(M), we have (lg)
∗(m(ω)) = m(ω), i.e. m(ω) ∈ Ωk

L(M).

(ii) If ω ∈ Ωk
L(M), then m(ω) = ω.

(iii) m(dω) = dm(ω).

Proof. Fix h ∈ G, then

(lh)
∗
∫
G

(lg)
∗ω dg =

∫
G

(lh)
∗(lg)

∗ω dg =

∫
G

(lgh)
∗ω dg =

∫
G

(lg)
∗ω dg.

Here the last equality follows by Lemma 1.2.6. The first follows by simply writing out the
various definitions:(

(lh)
∗
∫
G

(lg)
∗ω dg

)
p
(v1, ..., vk) =

(∫
G

(lg)
∗ω dg

)
hp

(
Te(lh)(v1, ..., vk)

)
=∫

G

((lg)
∗ω)hp(Te(lh)(v1, ..., vk)) dg =

∫
G

ωghp(Te(lg) ◦ Te(lh)(v1, ..., vk)) dg

=

∫
G

((lh)
∗(lg)

∗ω)p(v1, ..., vk) dg.

With this we have proven (i). Assertion (ii) immediately follows from (lg)
∗ω = ω, and the

fact that
∫
G
dg = 1. Assertion (iii) has been shown above.
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We now turn our attention to the cohomology of M . Since we now have the following
commutative diagram,

Ωk(M) Ωk+1(M)

Ωk
L(M) Ωk+1

L (M)

... d

m

...

m

... d

i i

...

(1.6)

it follows that i and m induce maps in cohomology, i∗ : Hk
L(M) → Hk(M), m∗ :

Hk(M) → Hk
L(M). We want to prove that these are isomorphisms. Note that by Lemma

1.2.8 (ii), we already have m ◦ i = id, so immediately m∗ ◦ i∗ = (id)∗ = id. However, in
general it does not hold that i ◦ m = id. To prove that in cohomology this identity does
hold, we need to show that we can write (m− id)ω = dH(ω) + H(dω), where H is a linear
map Ωk(M)→ Ωk−1(M) (or rather a collection of maps, defined for every k). A collection of
such linear maps that satisfies this equality for all ω ∈ Ωk(M) is called a homotopy operator
(of m and id). If we can prove that there exists a homotopy operator, it then follows that
in cohomology the two maps are equal, so that m∗ is indeed a linear isomorphism between
the two spaces.

By Theorem 0.1.2, we know there exists such an operator for the pullbacks of any two
maps that are homotopic. Now if we assume that G is connected, it is easy to see that
lg ' le = id, for every g ∈ G, by choosing a path γ from g to e (recall that we write f1 ' f2
to indicate that two functions f1 and f2 are homotopic). We therefore have:

m(ω)− ω =

∫
G

(lg)
∗ω dg − (id)∗ω =

∫
G

(lg − id)∗ω dg =

∫
G

dkg(ω) + kg(dω) dg (1.7)

Where kg is a homotopy operator between (lg)
∗ and id, for every g ∈ G. However, it is

not clear if we can turn this expression into to the desired form, mainly because we don’t
know how the maps kg depend on g. In the proof of the theorem we will therefore use a
construction that explicitly shows the dependence on g. The main inspiration for this comes
from [5, Ch. IV, §1], but it should be noted that the actual proofs that we will give differ
from the ones given there.

In the part that follows we will briefly ‘forget’ that we are working with a Lie group, and
instead consider a general manifold X. This will make it easier to see what is going on.

We will now introduce some notation. Let M and X be two smooth manifolds, let dx be
a density on X. Assume we have a smooth family of maps lx : M → M indexed by x ∈ X,
i.e. the map l : X ×M →M , with l(x,m) = lx(m), is smooth as a map between manifolds.
Denote for any x ∈ X by ix : M → X × M the map defined by i(m) = (x,m)). By
π : X ×M →M we denote the projection to M , so π(x,m) = m. Finally, constx0 : X → X
is the map that has value x0 everywhere.

Remark. Note that, with the notation above, we have l ◦ ix = lx. Also, it holds that
π ◦ ix = idM . The map (lx0 ◦ π) : X ×M → M is given by (lx0 ◦ π)(x,m) = lx0(m) for
x0 ∈M .
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Lemma 1.2.9. Let U ⊆ X be an open set such that x0 ∈ U , and U is contractible to {x0}.
Then the restrictions of l and lx0 ◦ π to U ×M are homotopic as maps U ×M →M .

Proof. There exists a homotopy F : R×U → U such that F (0, · ) = idU , F (1, · ) = constx0 ,
since U is contractible. Now define

F̃ : R× U ×M →M, F̃ (t, x,m) = l
(
F (t, x),m

)
.

Then F̃ is an homotopy between l and lx0 ◦ π (easy to check), so we have l ' lx0 ◦ π.

Lemma 1.2.10. Suppose that dx is compactly supported in U , and let x0 ∈ U . Then there
exists a homotopy operator Hx0

U : Ωk(M)→ Ωk−1(M) such that for all ω ∈ Ωk(M);∫
X

(lx)
∗ω dx−

∫
X

(lx0)
∗ω dx = dHx0

U (ω) +Hx0
U (dω).

Proof. Be the remark above, we can write (lx)
∗ω − (lx0)

∗ω = (l ◦ ix)∗ω − (lx0 ◦ π ◦ ix)∗ω =
(ix)

∗ ◦ (l∗ − (lx0 ◦ π)∗)ω.
By Lemma 1.2.9, we can therefore write (lx)

∗ω− (lx0)
∗ω = (ix)

∗(dk(ω) + k(dω)) for a homo-
topy operator k = kx0U : Ωk(M)→ Ωk−1(X ×M). Since everything involved is linear, and d
commutes with pullbacks, we now have∫

X

(lx)
∗ω dx−

∫
X

(lx0)
∗ω dx =

∫
X

d (ix)
∗(k(ω)) dx−

∫
X

(ix)
∗(k(dω)) dx. (1.8)

Considering the integrals pointwise (i.e in a point p ∈ M , and on tangent vectors
v1, ..., vk ∈ TpM), we see that the integrands on the right hand side depend smoothly on x
(as functions X → R). We can therefore, by locally differentiating under the integral sign,
write ∫

X

d (ix)
∗(k(ω)) dx = d

∫
X

(ix)
∗(k(ω)) dx.

Define now Hx0
U : Ωk(M)→ Ωk−1(M) as

Hx0
U (ω) :=

∫
X

(ix)
∗(k(ω)) dx,

then by the above we can write
∫
X

(lx)
∗ω dx−

∫
X

(lx0)
∗ω dx = dHx0

U (ω) +Hx0
U (dω).

Lemma 1.2.11. Suppose that X is a compact connected manifold, x0 ∈ X. Let dx be a
density on X. Then there exists a homotopy operator H : Ωk(M)→ Ωk−1(M) such that for
all ω ∈ Ωk(M) ∫

X

(lx)
∗ω dx−

∫
X

(lx0)
∗ω dx = dH(ω) +H(dω).
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Proof. Let {Ui} be an open, finite cover of X, where the Ui’s are chosen in such a way that
they are all contractible to points xi ∈ Ui (using charts, this is clearly always possible). Now
choose a smooth partition of unity {ψi} subordinate to this cover. By the previous lemma,
for every i we can write∫

X

(lx)
∗ω ψi(x) dx−

∫
X

(lxi)
∗ω ψi(x) dx = dHxi

Ui
(ω) +Hxi

Ui
(dω). (1.9)

We now remark that by choosing a smooth path in X, we have lxi ' lx0 for every i, and
so we can write

∫
X

(
(lxi)

∗(ω) − (lx0)
)∗
ω ψi(x) dx = dhxi(ω) + hxi(dω), again by using local

differentiation under the integral sign. Note that hxi will be a function Ωk(M)→ Ωk−1(M).
Then:

∫
X

(lx)
∗ω ψi(x) dx−

∫
X

(lx0)
∗ω ψi(x) dx

=

∫
X

(lx)
∗ω ψi(x) dx−

∫
X

(lxi)
∗ω ψi(x) dx+

∫
X

(
(lxi)

∗ − (lx0)
∗) ω ψi(x) dx

= dHxi
Ui

(ω) +Hxi
Ui

(dω) + dhxi(ω) + hxi(dω)

= d(Hxi
Ui

+ hxi)(ω) + (Hxi
Ui

+ hxi)(dω).

Now finally, since
∫
X
dx =

∑
i

∫
X
ψi(x) dx we can define H =

∑
i

(
Hxi
Ui

+ hxi
)
, and we

obtain the desired result.

With Lemma 1.2.11 proven, Theorem 1.2.1 follows immediately by setting X = G, and
observing that le = idM . Together with Theorem 1.1.5 we now also have the following
corollary, which is the main result of this chapter:

Corollary 1.2.12. Let G be a compact connected Lie group and g its Lie algebra. Then we
have the following linear isomorphism of cohomology groups;

Hk
dR(G) ∼= Hk(g).

The isomorphism is induced by the map ω 7→ m(ω)e, Ωk(G)→ Λkg∗.
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Part II

Intermezzo: Tensor products and ex-
terior algebras

In the previous part we established most of the basic theory that we will use in this thesis.
Part III and IV will focus on applications of this theory.

Before we start with this however, we first need to introduce some algebraic structures
that are important tools for what we will discuss later. More specifically, we will introduce
some basic notions of tensor products and exterior algebras of vector spaces. A large part of
this will be necessary for Part IV of this thesis, where we will heavily rely on these structures
for our discussion.

A lot of what we will discuss here is rather standard theory, and it can therefore be
found in almost any introductory text on (differential) algebra. Our treatment is taken from
multiple sources. Most of the discussion about tensor products is based on the treatment
in the book by Lee, [12, Ch. 12]. The section about exterior algebras is based mainly on
Serge Lang’s book, [11, Ch. XIX]. The final section, where we construct tensor products of
exterior algebras is also based on this, although some of the more specific parts are taken
from the first few sections of Koszuls article, [10, Ch. I]. This article will also be the main
source in Part IV.

Because of the elementary (and very algebraic) nature of this part, a couple of propo-
sitions are stated without proof. We ask the reader to go through the sources we just
mentioned, if he or she is interested in these proofs, or a more thorough treatment.

2.1 Tensor products

We start with an introduction to (formal) tensor products of vector spaces. As always, these
vector spaces are always assumed to be finite dimensional, and have scalar field R. As said
before, this treatment is based on [12, Chapter 12].

Definition 2.1.1. Let S be any set. A formal linear combination of elements of S is a
function f : S → R with f(s) = 0 for all but finitely many s ∈ S. By F(S) we denote the
set of formal linear combinations of S. With pointwise addition and scalar multiplication
F(S) becomes a vector space, the free vector space on S.
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A formal linear combination of S can intuitively be seen as a formal sum
∑
aixi with

xi ∈ S, ai ∈ R. From this it is clear that if we identify an element x ∈ S with the function
δx ∈ F(S), defined by δx(x) = 1, δx(y) = 0 for all y 6= x, then S forms a (linear) basis of
F(S).

Let now V1, ..., Vk be vector spaces, and form the free vector space F(V1 × · · · × Vk).
Denote by R the subspace of F(V1 × · · · × Vk) generated by elements of the form

(v1, ..., vi + v′i, ...vk)− (v1, ..., vi, ...vk)− (v1, ..., v
′
i, ...vk) and

(v1, ..., avi, ...vk)− a(v1, ..., vi, ..., vk),

where vi ∈ Vi, and a ∈ R.

Definition 2.1.2. We define the tensor product of V1, ..., Vk, denoted by V1⊗· · ·⊗Vk, as the
quotient space F(V1 × · · · × Vk)/R. The equivalence class of a k-tuple (v1, ..., vk) is denoted
by v1 ⊗ ...⊗ vk

From how we defined the tensor product, it follows that we have:

v1 ⊗ · · · ⊗ (avi + v′i)⊗ · · · ⊗ vk = a(v1 ⊗ · · · ⊗ vi ⊗ · · · ⊗ vk) + v1 ⊗ · · · ⊗ v′i ⊗ · · · ⊗ vk

Also, it holds that every element of tensor product can be expressed as a linear combination of
elements of the form v1⊗· · ·⊗vk. A basis is formed by elements of the form ei11 ⊗· · ·⊗e

ik
k , where

eilj is a element in the basis of Vj. For tensor product spaces there is the following ”universal
property”, that uniquely characterizes the tensor product up to linear isomorphism:

Proposition 2.1.3 (Universal propery of the Tensor Product). Let A : V1 × · · · × Vk → W
be a multilinear map into some vector space W . Then there exists a unique linear map Ã
such that the diagram below commutes (π denotes the natural projection map).

V1 × · · · × Vk W

V1 ⊗ · · · ⊗ Vk

π

A

Ã
(2.1)

This property can be used to prove, among other things, that taking tensor products
is associative. A second important proposition shows the relationship between the tensor
product of the dual spaces of the Vi’s, and the space of multilinear functions V1 × · · · × Vk,
denoted by L(V1, ..., Vk,R).

Proposition 2.1.4. There is a canonical isomorphism of vector spaces V ∗1 ⊗ · · · ⊗ V ∗k '
L(V1, ..., Vk,R), given by (ω1 ⊗ ...⊗ ωk)(v1, ..., vk) = ω1(v1) · · ·ωk(vk).

We will now focus our attention on tensor product spaces of the form V ⊗· · ·⊗V (k-times)
with V a vector space. A shorthand notation for this is V ⊗k or T k(V ).

For differentiable functions on such tensor spaces, we have the following useful lemma
(’the product rule for tensor products).

Lemma 2.1.5 (Product rule for tensor). Let V be a vector space, f1, f2 : R → V two
differentiable functions. Then:

d
dt

(f1(t)⊗ f2(t)) = ( d
dt
f1)⊗ f2 + f1 ⊗ ( d

dt
f2).
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Proof. The proof is actually very similar to the proof of the ‘normal’ product rule in R. We
have

lim
h→0

f1(t+ h)⊗ f2(t+ h)− f1(t)⊗ f2(t)
h

= lim
h→0

f1(t+ h)⊗ f2(t+ h)− f1(h)⊗ f2(t+ h)

h

+ lim
h→0

f1(h)⊗ f2(t+ h)− f1(h)⊗ f2(t+ h)

h
.

Then using the bi-linearity of the tensor product, the statement follows.

With the notation introduced above, we can define the tensor space of V, T (V ) as the
direct sum T (V ) := ⊕kT k(V ). With tensor multiplication ⊗ : T k(V ) × T l(V ) → T k+l(V )
this becomes a graded algebra, we call it the tensor algebra of V

2.2 Exterior algebra

We will go on to define the exterior algebra of V . Let I be the two-sided ideal in T (V )
generated by elements of the form v⊗ v for v ∈ V . This is the linear subspace generated by
elements of the form v1 ⊗ · · · ⊗ vk with vi = vj for some i 6= j.

Definition 2.2.1. The exterior algebra of V, denoted by Λ(V ), is defined as the quotient
space T (V )/I. The equivalence class of an element x⊗ y is denoted by x ∧ y.

Since it holds that

0 = (x+ y) ∧ (x+ y) = x ∧ x+ x ∧ y + y ∧ x+ y ∧ y = x ∧ y + y ∧ x

(x∧ x = 0 for all x ∈ V ), we see that for all x, y ∈ V , x∧ y = −(y ∧ x). In other words, the
wedge product ∧ is anti-commutative.

The k-th exterior power of V, denoted by Λk(V ) is the subspace of Λ(V ) generated
by elements of the form v1 ∧ ... ∧ vk, it is the space of elements of degree k. We have
Λ1(V ) = V,and define Λ0(V ) = R. If dim(V )= n, we have that Λp(V ) = 0 for all p > n.
Λ(V ) then decomposes as the direct sum Λ(V ) = ⊕nk=1Λ

k(V ). Endowed with the wedge
product ∧, Λ(V ) also has the structure of a graded algebra. For x ∈ Λk(V ), y ∈ Λl(V ) we
have the following identity (graded commutativity):

x ∧ y = (−1)kly ∧ x. (2.2)

For exterior powers, we also have a universal property:

Proposition 2.2.2. Let A : V k → W be a alternating linear map into a vector space W .
Then there is a unique linear map A′ that makes the following diagram commute:

V k W

Λk(V )

π

A

A′
(2.3)
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Applying this proposition for W = R shows that there is a natural isomorphism between
the space of k-linear alternating functions V k → R and the dual (Λk(V ))∗ of Λk(V ). As we
will see below, this dual space is isomorphic to Λk(V ∗), and thus we have an isomorphism
between the space of k-linear alternating functions V k → R, and Λk(V ∗). This explains why
the notation ΛkV ∗ is used for both spaces. We will also keep using this notation for both
spaces, from context it should always be clear which one we are talking about.

Proposition 2.2.3. Let Φ : Λk(V ∗)→ (ΛkV )∗ be the map determined by

Φ(f 1 ∧ ... ∧ fk)(x1 ∧ ... ∧ xk) = det(f i(xj)).

Then Φ is well-defined and a linear isomorphism Λk(V ∗) ' (ΛkV )∗.

Proof. To introduce this map one can use the universal property of the exterior algebra, by
noting that the above is indeed alternating with respect to the f i’s. By then choosing a
basis of V (and V ∗), one can show that it is a linear isomorphism.

By the previous proposition, from now on we can identify ΛkV ∗ ' (ΛkV )∗. Let γ :
V → W be a linear map between vector spaces V and W . Then, using the universal
property, we can uniquely extend γ to an algebra homomorphism γ̃ : ΛV → ΛW . It satisfies
γ̃(v1 ∧ ... ∧ vk) = γ(v1) ∧ ... ∧ γ(vk), and will actually be a graded algebra homomorphism
(meaning it maps ΛkV to ΛkW for a given k).

We can then also determine the dual map γ̃∗ : (ΛW )∗ → (ΛV )∗. Using the identification
above, this will be exactly the map that we would obtain by extending γ∗ : W ∗ → V ∗ to

˜(γ∗) : ΛW ∗ → ΛV ∗. When talking about the dual map, we will always mean this one,
the one after the identification. It follows that this dual will also be a graded algebra
homomorphism.
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2.3 Tensor products of algebras

We will now discuss the construction of the tensor product of two algebras. This construction
can be done for any algebra, but we will focus our attention to exterior algebras, since those
are the ones we will be using.

Definition 2.3.1. Let V,W be a vectorspaces, ΛV,ΛW their exterior algebras. We de-
fine the tensor product of the exterior algebras as the space ΛV ⊗ ΛW , endowed with the
multiplication

(u⊗ v) · (u′ ⊗ v′) = (−1)kl(u ∧ u′)⊗ (v ∧ v′),

where k and l are the degrees of u′ and v.

By defining the product in this way, the resulting space will still have the structure of
an algebra, and moreover it will still satisfy graded commutativity (this is the reason for the
(−1)kl factor). The next proposition gives another important reason why this definition is
natural.

Proposition 2.3.2. There exist a natural isomorphism (of graded algebras) between
Λ(V ⊕W ) and ΛV ⊗ ΛW .

Proof. Let {ei} and {fi} be bases of V and W respectively. A basis of Λ(V ⊕W ) is given by
elements of the form ei1 ∧ ...∧ eil ∧ fil+1

∧ ...∧ fik . Define now a map Λ(V × V )→ ΛV ⊗ΛV
on basis elements by

ei1 ∧ ... ∧ eil ∧ fil+1
∧ ... ∧ fik 7→ (ei1 ∧ ... ∧ eil ∧ 1)⊗ (fil+1

∧ ... ∧ fik ∧ 1)

(recall that 1 is the unit element of Λ0V and Λ0W , which in this thesis will always be
1 ∈ R). One can check that the map given above this indeed defines an isomorphism of
graded algebras between the two spaces.

We will now discuss some important facts having to do with this identification. Assume
we have a vector space V = V1 ⊕ V2. Let i1 : V1 → V be the canonical inclusion of V1 into
V . Under the identification of the previous proposition, the extension
ι̃1 : Λ(V1)→ Λ(V1)⊗ Λ(V2) ' Λ(V ) will be given by ι̃1(u) = u⊗ 1. In a similar way, we can
define the map i2, and then we have ι̃2(u) = 1⊗ u.

It can now also be worked out that if a ∈ Λ(V ∗1 ), b ∈ Λ(V ∗2 ), the dual map ι̃1
∗ :

Λ(V ∗1 )⊗ Λ(V ∗2 )→ Λ(V ∗1 ) will be given by

ι̃1
∗(a⊗ b) = b0a, (2.4)

where b0 a is the (scalar) component of b in Λ0(V2). To see this, note that for u ∈ V1,
(a⊗ b)(u⊗ 1) = a(u)b(1) = a(u)b0 ∈ R, where we have used (Λ(V1⊕ V2))∗ ' Λ(V ∗1 )⊗Λ(V ∗2 )
and the identification from Proposition 2.2.3.
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Let us now look at the ‘direct’ dual of i1, i
∗
1 : V ∗1 ⊕ V ∗2 → V ∗1 . Let a⊕ b ∈ V ∗1 ⊕ V ∗2 . Then

it holds for every v ∈ V1 that

i∗1(a⊕ b)(v) = (a⊕ b)(i1(v)) = a(v).

We have used here that (V1 ⊕ V2)
∗ ' V ∗1 ⊕ V ∗2 . Therefore, we see that the map i∗1 is the

natural projection map of V ∗1 ⊕ V ∗2 to the first coordinate.

Finally, we will discuss the ‘diagonal’ map ϕ : V → V × V given by ϕ(v) = (v, v). The
dual of its extension to Λ(V ) will be a map Λ(V ∗)⊗Λ(V ∗)→ Λ(V ∗), for which the following
important proposition holds.

Proposition 2.3.3. Let ϕ : V → V × V the map v 7→ (v, v), and let ϕ̃∗ : Λ(V ∗)⊗Λ(V ∗)→
Λ(V ∗) be the induced dual map on the exterior algebra. Then:

ϕ̃∗(a⊗ b) = a ∧ b

for a⊗ b ∈ Λ(V ∗)⊗ Λ(V ∗).

Proof. By the discussion at the end of the previous section, it follows that ϕ̃∗ is an algebra
homomorphism. We therefore have for an element a⊗ b ∈ Λ(V ∗)⊗ Λ(V ∗)

ϕ̃∗(a⊗ b) = ϕ̃∗
(
(a⊗ 1) ∧ (1⊗ b)

)
= ϕ̃∗(a⊗ 1) ∧ ϕ̃∗(1⊗ b)

We now claim that ϕ̃∗(a ⊗ 1) = a. Let π1 : V × V → V be the projection to the first
component, i.e. π1(u, v) = u. Clearly, π1 ◦ ϕ is the identity. Therefore ϕ̃∗ ◦ π̃1∗ must also be
the identity. The map π̃1

∗ : Λ(V ∗)→ Λ(V ∗)⊗Λ(V ∗) can be shown to be the map a 7→ a⊗1,
this follows from the fact that the dual of π1 is the natural inclusion V ∗ → V ∗ × V ∗ to the
first component (compare the discussion about i∗1 above). The claim then follows. We can of
course prove a similar claim for the second component, which then proves the proposition.
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Part III

Hodge decomposition theorem for
compact Lie groups

As said before, in this part we will look at an application of what we have shown in Part I.
The theorem we want to prove is a version of the Hodge decomposition theorem, in the case
of compact connected Lie groups. The exact formulation of this theorem is given in Theorem
3.4.8. Before we start proving this theorem, we will first take a look at bi-invariant forms,
forms that are both left- and right-invariant. These are an important part of the proof.
We will also briefly discuss the concept of Riemannian manifolds, since Hodges theorem
is about manifolds that have such a Riemannian structure. Afterwards, we will introduce
the Hodge star operator, which is a map Ωk(G) → Ωk−1(G). With this operator, we can
then define the Hodge Laplacian, the map ∆ : Ωk(G) → Ωk(G). Our version of the Hodge
decomposition theorem is about exactly this operator. The main source for this part is the
book by Helgason, [7, Ch. II, § 7]. Our treatment differs from Helgason’s mainly in that
we introduce the ∗-operator in a different (but equivalent) way, and that we provide more
details in the final part of the proof.

3.1 Bi-invariant forms

The primary source of this section is again the article by Chevalley and Eilenberg, [2, §
11-12]

Definition 3.1.1. A bi-invariant k-form ω ∈ Ωk(G) is a form that is both left- and right-
invariant, i.e. (lg)

∗ω = ω = (rg)
∗ω, for all g ∈ G. We denote by Ωk

I (G) the space of all
bi-invariant k-forms.

Since the pullback of both left- and right-multiplication commutes with d, we can de-
fine the cohomology of bi-invariant forms, denoted HI(G), in the same way we defined the
cohomology of left-invariant forms.

Remark. Note that in particular a bi-invariant form is a left-invariant form that is invariant
under conjugation, this follows from the fact that Ch = lh ◦ rh−1 .
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Lemma 3.1.2. Let ω be a bi-invariant form. Then ω is closed, i.e. dω = 0

Proof. Assume ω is a bi-invariant k-form. Then ω is certainly left-invariant, and is therefore
completely determined by its value at e. By the remark above, it is also invariant under
conjugation, i.e. (Ch)

∗ω = ω for all h ∈ G. Since conjugation leaves the identity fixed, it
follows that

ωe(x1, .., xn) = ωe(Te(Ch)x1, ..., Te(Ch)xk) for x1, ..., xk ∈ TeG.

Using linearity, we can assume without loss of generality that we can write ωe = ω1∧...∧ωk ∈
Λkg∗. The above equation can the be expressed as:

ω1 ∧ ... ∧ ωk = (ω1 ◦ Ad(h)) ∧ ... ∧ (ωk ◦ Ad(h)) (3.1)

(recall that Ad(h) := TeCh). Set now h := exp(tx), for some x ∈ g. Differentiating equation
3.1 with respect to t in t = 0 on both sides then gives, using Lemma 2.1.5 and the chain
rule:

0 =
k∑
i=1

(ω1 ◦ id) ∧ ...(ωi ◦ d
dt

∣∣
t=0

Ad(exp tx))).... ∧ (ωk ◦ id)

=
k∑
i=1

ω1 ∧ ...(ωi ◦ ad(x)).... ∧ ωk.

Recall that, by definition, ad(x)y = [x, y]. Therefore, by the equation above

k∑
i=1

ωe(x1, ..., [x, xi], ..., xk) = 0 for all x ∈ g. (3.2)

Now also recall that we have for a left-invariant form, by Prop. 1.1.3

dωe(x0, ..., xk) =
∑
i<j

(−1)i+j ωe([xi, xj], x0, ..., x̂i, ..., x̂j, ...xk).

Using that the Lie bracket is anti-symmetric, we can then also write:

2dωe(x0, ..., xk) =
∑
i<j

(−1)i+j ωe([xi, xj], x0, ..., x̂i, ..., x̂j, ...xk) +∑
j<i

(−1)i+j+1 ωe([xi, xj], x0, ..., x̂i, ..., x̂j, ...xk).

Be rearranging terms, using that ω is skew-symmetric, i.e. interchanging variables changes
the sign, we find:

2dωe(x0, ..., xk) =
∑
i 6=j

± ωe(x0, ..., [xi, xj], ..., x̂j, ..., xk).

Applying equation 3.2, we see that indeed dωe = 0, and by left-invariance of ω therefore
dω = 0.
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Remark. Using some representation theory, one can give a more elegant proof. It goes like
this. First we note that, by (3.1), the bi-invariant forms correspond exactly to the elements
of Λkg∗ that are invariant under the adjoint representation Ad of G in Λkg∗. But these
correspond to the elements of Λkg∗ that are invariant under the induced representation of
Ad (which is ad) of g in Λkg∗. This then immediately gives (3.2). The rest of the proof is
then the same. See the Appendix for a short introduction to representations.

Theorem 3.1.3. Let G a compact Lie group. Then the inclusion map i : Ωk
I (G) → Ωk(G)

induces a linear isomorphism
Hk
dR(G) ' Hk

I (G).

Proof. Define the left action of G×G on G by l(g, h)(x) = gxh−1, for (g, h) ∈ G×G, x ∈ G.
Note that the bi-invariant forms on G are exactly the forms that are (left)-invariant under
this action. Now apply Theorem 1.2.2.

Theorem 3.1.4. Every equivalence class of Hk
dR(G) contains exactly one bi-invariant form.

Proof. This follows by looking at the space Hk
I (G). Since dω = 0 for every bi-invariant

form ω, it follows that Hk
I (G) := Ker(dk)/Im(dk−1) = Ωk

I (G)/{0} = Ωk
I (G) (recall that we

restrict dk in this definition to the space Ωk
I (G)). Thus Theorem 3.1.3 implies the linear

isomorphism (and, in particular, bijective relation)

Hk
dR(G) ' Ωk

I (G),

from which the statement follows.
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3.2 Riemannian manifolds

The theorem that we want to prove in Part III involves so called Riemannian manifolds. We
will give a short introduction to Riemannian manifolds in this section.

The main idea of a Riemannian manifold is that we introduce a ‘metric’ on our manifold
(actually more of an inner product), so that we are able to talk about distances, and hence
consider the manifold as a metric space.

Definition 3.2.1. Let M be a smooth manifold. A Riemannian metric on M is a smooth
covariant, symmetric 2-tensor field β on M that is positive definite at each point. We call
the pair (M,β) a Riemannian manifold. ([12, Ch. 13])

Note that from the definition it follows that β defines, at every point p in M , an inner
product βp on TpM . Often we will use the term ‘metric’ instead of ‘Riemannian metric’. If
a Riemannian manifold is also a Lie group, then we can talk about left- and right-invariance
of the metric. We say that β is left-invariant if (lg)

∗β = β, in other words if βh(u, v) =
βgh(Thlg u, Thlg v) for all g, h ∈ G, and u, v ∈ ThG. In similar ways, we define what it means
for a metric to be right-invariant or bi-invariant.

Proposition 3.2.2. Let G be a compact Lie group. Then G admits a bi-invariant metric
βg.

Proof. Let 〈. , .〉 be any inner product on g. Construct a right-invariant metric by defining
βg(u, v) := 〈Tg(rg−1)u, Tg(rg−1)v〉 for u, v ∈ TgG.

To now construct a metric that is also left-invariant, we use the same trick we used to
make left-invariant forms, the ‘averaging’ process. Define β′p(u, v) :=

∫
G

(l∗gβ)p(u, v) dg =∫
G
βgp(Tplgu, Tplgv) dg for u, v ∈ TpG. Left-invariance of β′ then follows by left-invariance of

the Haar measure, in the same way as we have seen for forms.

3.3 The Hodge star operator

In this section, we will introduce the so called Hodge star operator. The main source for this
is [4, § 2.7], and the book by Helgason, [7, Ch. II, § 7]. Let V be a vector space, endowed
with an inner product 〈. , .〉. This inner product induces an inner product on the space ΛkV ,
which can be given by

〈λ1 ∧ · · · ∧ λk, µ1 ∧ · · · ∧ µk〉 = det〈λi, µj〉,

for λi, µj ∈ Λ1V . Let e1, ..., en be a orthonormal basis of V . Then for λ ∈ ΛkV, µ ∈ Λn−kV ,
we can write λ ∧ µ = f(λ, µ) e1 ∧ · · · ∧ en, for some specific linear function f with values
in R. For a fixed λ there is a unique ∗λ ∈ Λn−kV such that f(λ, µ) = 〈µ, ∗λ〉 (for infinite
dimensional vector spaces, this is the Riesz representation theorem).

Definition 3.3.1. We define the ∗-operator, ∗ : ΛkV → Λn−kV as the map that sends a λ
to (the uniquely determined) ∗λ.
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Proposition 3.3.2. The ∗ operator is linear, and determined on orthonormal basis elements
by

∗ (ei1 ∧ · · · ∧ eik) = ±eik+1
∧ · · · ∧ ein (3.3)

where (i1, ..., in) is a permutation of (1, ..., n) and the sign is determined by whether this
permutation is odd or even. Also, for η ∈ Λk(V ), ∗ ∗ η = (−1)k(n−k)η.

Proof. Showing that ∗ is linear is easy, everything else then follows quickly by choosing a
basis and working out the requirements. For more details, see [4, § 2.7].

From the proposition, it follows that for λ, µ ∈ ΛkV we have

µ ∧ ∗λ = (−1)k(n−k)〈µ, λ〉e1 ∧ · · · ∧ en. (3.4)

Since any inner product on V induces an inner product on the dual V ∗, the Hodge star
operator is also defined on the space ΛkV ∗. For a Riemannian manifold M , with metric βg,
this means that the ∗-operator is defined on ΛkTpM

∗ for every p ∈ M . If moreover M is
orientable, then we can choose a positively oriented volume form Θ = θ1∧ ...∧ θn (where the
θi ∈ Ω1(M) form an orthonormal frame), and define the ∗-operator on Ωk(M) by requiring
for ω ∈ Ωn−k(M), η ∈ Ωk(M),

ω ∧ η = 〈ω,∗η〉 Θ, i.e. (ω ∧ η)p = 〈ωp,∗ηp〉p Θp, for all p ∈M. (3.5)

Here we mean with 〈. , .〉p the inner product on the dual space ΛkTpM
∗, induced by the

metric at the point p.

Let us now assume that we have a compact, connected Lie group G, with a given
bi-invariant metric, which can always be constructed as in Proposition 3.2.2. We can then
choose a global. orthonormal left-invariant frame X̃1, ..., X̃n, with dual frame θ1, ..., θn
(chosen so that θi(Xj) = δij), and set Θ = θ1 ∧ ... ∧ θn. Then Θ is clearly also left-
invariant, and we can choose the orientation on G such that Θ is positively oriented. We
claim moreover that Θ is also right-invariant. Since Θ is a left-invariant top-form, we have
(rg)

∗Θ = (rg)
∗(lg−1)∗Θ = Ad(g−1)∗Θ = det(Ad(g−1))Θ. The claim then follows by using the

lemma below, which is an important property of compact connected Lie groups.

Lemma 3.3.3. Let G be a compact connected Lie group. Then det(Ad(g)) = 1, for all
g ∈ G.

Proof. Consider the map g 7→ | det(Ad(g))|. It can be easily checked that this is a continuous
group homomorphism into the multiplication group of positive real numbers. Its image
therefore has to be a compact subgroup of (R>0, ·). It is easy to see that this can only be
the subgroup {1}. We now know that det(Ad(g)) is either 1 or −1. However, since the map
g 7→ det(Ad(g)) is continuous, with connected domain, its image must also be connected.
Since det(Ad(e)) = 1, it therefore follows that det(Ad(g)) = 1 for all g ∈ G.

Remark. In general, Lie groups that satisfy | det(Ad(g))| = 1 for all g ∈ G are called
unimodular.
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Lemma 3.3.4. The ∗-operator as defined above for compact connected Lie groups commutes
with left- and right pull-backs, i.e. for ω ∈ Ωk(G) we have:

∗(l∗gω) = l∗g(∗ω) and ∗ (r∗gω) = r∗g(∗ω) for all g ∈ G

Proof. In the definition of the ∗-operator we started with a bi-invariant metric on G. This
metric induces an inner product on Ωk(G) that will be invariant under left- and right-
pullbacks. This can be worked out using some theory from linear algebra, where we use that
the adjoint of an isometry is also an isometry. We will show the statement of this lemma for
left-multiplication, the case of right-multiplication can be done in essentially the same way.
Let ω, η ∈ Ωk(G), using (3.4) we have

(−1)k(n−k) ω ∧ (∗ l∗gη) = 〈ω, l∗gη〉Θ = 〈l∗g−1ω, l∗g−1l∗gη〉Θ = 〈l∗g−1ω, η〉Θ.

Also, by left-invariance of Θ,

(−1)k(n−k) ω ∧ (l∗g ∗ η) = (−1)k(n−k) (lg)
∗(l∗g−1ω ∧ ∗η) = (lg)

∗(〈l∗g−1ω, η〉Θ
)

= 〈l∗g−1ω, η〉 (lg)
∗Θ = 〈l∗g−1ω, η〉Θ.

So we see that for all ω ∈ Ωk(G), we have ω ∧ (∗ l∗gη) = ω ∧ (l∗g ∗ η). We can therefore
conclude that ∗(l∗gη) = l∗g(∗η).

With the ∗-operator, we can define (another) inner product on Ω•(G). For ω ∈ Ωk(G),
η ∈ Ωl(G) it is given by:

〈ω, η〉 =

{
0 if k 6= l,∫
G
ω ∧ ∗η if k = l

(3.6)

By extending it bilinearly, we obtain an inner product on the whole of Ω•(G). It is strictly
positive definite, to see this write ω =

∑
i1,...ip

ai1...ipθi1 ∧ ... ∧ θip , which we can do because
the θi form a basis of the dual tangent space at every point. This follows from the way we
defined them. Now

ω ∧ ∗ω =
∑
i1,...ip

a2i1...ipΘ

and the statement follows since Θ is positively oriented.

Remark. If Θ is normalized, i.e.
∫
G

Θ = 1, then this inner product is actually the same
(up to perhaps a sign), as the one we saw before. This follows by integrating equation (3.5)
over G on both sides.

3.4 The Hodge Laplacian and Hodge’s theorem for com-

pact connected Lie groups

Before we define the Hodge Laplacian, we will first introduce the d∗-operator, d∗ : Ωk(G)→
Ωk−1(G). It is defined for a form ω ∈ Ωk(G) by

d∗ω = (−1)n(k+1)+1 ∗ d ∗ (ω). (3.7)

We can then formulate the following important proposition:
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Proposition 3.4.1. Let η, ω ∈ Ω•(G). Then

〈dω, η〉 = 〈ω, d∗η〉.

In other words, d∗ is the adjoint of d. Here 〈. , .〉 is the inner product we defined above.

Proof. Since the inner product is bilinear, we only need to check the statement for ω ∈
Ωk−1(G), η ∈ Ωk(G). We then have:

dω ∧ ∗η − ω ∧ ∗(d∗η) = dω ∧ ∗η − ω ∧ (−1)n(k+1)) ∗ ∗ d ∗ η
= dω ∧ ∗η − (−1)k−1d ∗ η = d(ω ∧ ∗η).

Now integrate over G on both sides, and with Lemma 3.4.2 below the statement then
follows (note that ω ∧ ∗η is a (n − 1)-form). We have used here that ∗ ∗ ω = (−1)k(n−k)ω,
and that (−1)k

2
= (−1)k, in order to work out the sign.

Lemma 3.4.2. Let ω be (n− 1) -form. Then
∫
G
dω = 0.

Proof. This is Stokes theorem for manifolds without boundary.

Definition 3.4.3. We define the Hodge Laplacian ∆ : Ωk(G) → Ωk(G) as ∆ := dd∗ + d∗d.
We say that a form ω is harmonic if ∆ω = 0.

Proposition 3.4.4. A form ω is harmonic if and only if dω = d∗ω = 0

Proof. We have

〈∆ω, ω〉 = 〈dd∗ω, ω〉+ 〈d∗dω, ω〉 = 〈d∗ω, d∗ω〉+ 〈dω, dω〉.

Since 〈. , .〉 is positive definite, the result follows.

We will now begin the main proof of this section, the statement that the harmonic forms
are exactly the bi-invariant ones. Before we start, we will need to prove two lemmas. These
lemmas cannot be found anywhere in Helgasons book, but since both the assertions and
proofs are non-trivial, we feel it is appropriate to include them. With LV we denote the Lie
derivative along a vector field V .

Lemma 3.4.5. Let V ∈ X(M) a vector field on a manifold M , with flow φt. Let ω be a
k-form. Suppose LV (ω) = 0, then for all x0 ∈ M there exist a neighborhood U of x0 and a
δ > 0 such that

(φt)
∗ω|U = ω|U ∀t ∈ (−δ, δ)

Proof. Choose U and δ such that (−δ, δ) × U ⊂ dom(φ), then choose x ∈ U . We have
(φt)

∗ω(x) = ωφt(x) ◦ (Dφt(x))k ∈ ΛkT ∗xM . Now:

d
dt

(φt)
∗ω(x) = d

dt
s
∣∣
s=0

(φt+s)
∗(x) = d

ds

∣∣
s=0

(φt)
∗(φs)

∗(x) = d
ds

∣∣
s=0

(φs)
∗
φt(x)(Dφt(x))k

= LV (ω)φt(x) ◦ (Dφt(x))k = 0.

It follows that t 7→ (φt)
∗ω(x), a smooth function with image in ΛkT ∗xM (a fixed vector

space), has derivative equal to zero, hence (φt)
∗ω(x) = (φ0)

∗ω(x) = ω(x).
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Lemma 3.4.6. With notation as in the previous lemma, suppose φt ◦∆ = ∆ ◦ φt for all t.
Then LV ◦∆ = ∆ ◦ LV .

Proof. We will prove the statement on open sets U ⊆ M where we can choose a local
frame λ1, ..., λn ∈ Ωk(U). By covering M with subsets like this, the statement the follows
for the entire manifold. In such a local frame, we can write ω =

∑
i ω

iλi. Then also
∆ω =

∑
i,j(P

i
jω

i)λj, where P i
j is some scalar differential operator. This follows from the fact

that we can locally write d and ∗ in such a way.
We claim that in this basis we have

d
dt

∣∣
t=0

((φt)
∗ω)i = (LV ω)i,

where (·)i denotes picking the i-th component with respect to the basis. To see this, note
that (·)i : Λk(TxM

∗)→ R is a linear functional. Also, (ω)ix = (ωx)
i. Therefore

d
dt

∣∣
t=0

(φ∗tω)ix = d
dt

∣∣
t=0

(((φt)
∗ω)x)

i =
(
d
dt

∣∣
t=0

((φt)
∗ω)x

)i
= (LV ωx)i = (LV ω)ix.

We now have the following:

d
dt

∣∣
t=0

∆(φ∗tω) = d
dt

∣∣
t=0

∑
i,j

P i
j (φ
∗
tω))λj =

∑
i,j

d
dt

∣∣
t=0

P i
j (φ
∗
tω)iλj

=
∑
i,j

P i
j (LV ωi)λj = ∆ ◦ LV (ω).

We have used here that d
dt

∣∣
t=0

◦ P i
j = P i

j ◦ d
dt

∣∣
t=0

, which is simply the statement that we
can interchange partial derivatives. Now using the hypothesis of the lemma, we conclude
that LV ◦∆(ω) = d

dt

∣∣
t=0

φ∗t (∆ω) = d
dt

∣∣
t=0

∆(φ∗tω) = ∆ ◦ LV (ω).

Theorem 3.4.7. Let G be a compact connected Lie group. Then a form ω is harmonic if
and only if it is bi-invariant.

Proof. Let ω a bi-invariant form. By Lemma 3.1.2, dω = 0. Since ∗ commutes with lthe
pullback of left- and right-multiplication, we see that ∗ω is also bi-invariant. Thus d∗ω =
∗d(∗ω) is also zero. So, by Prop. 3.4.4, ω is harmonic.

Let now ω be a harmonic form, then in particular dω = d∗ω = 0. Let X ∈ g, and write
X̃ for the induced left-invariant vector field on G. By Cartan’s magic formula,
LX̃ω = i(X̃)dω + di(X̃)ω = di(X̃)ω, since dω=0. Now we can write the following.

〈LX̃ω,LX̃ω〉 = 〈LX̃ω, di(X̃)ω〉 = 〈d∗LX̃ , i(X̃)ω)〉. (3.8)

Using Lemma 3.4.6, we have that LX̃ω is also a harmonic form. Thus d∗LX̃ = 0, and
by the above therefore 〈LX̃ω,LX̃ω〉 = 0. Thus LX̃ω = 0. Now recall that for the flow φt
of a left-invariant vector field , we have φt(x) = rexp tX . Since both d and ∗ commute with
pull-backs of right-multiplication, it follows that φt commutes with ∆. With Lemma 3.4.5,
we then see that for all x ∈ G, (r∗exp tXω)x = ωx, for t small enough. Since G is connected,
it is completely generated by products of such elements (i.e. of the form exp tX), and so we
can conclude that ω is right-invariant. Repeating this entire argument with a right-invariant
vector field, it follows in the same way that ω is also left-invariant. So ω is bi-invariant.
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Corollary 3.4.8. Let G be a compact connected Lie group. Then every equivalence class of
the cohomology of G contains exactly one harmonic form.

Proof. Follows from the previous theorem in combination with Theorem 3.1.4.

With the above corollary, we have proven what we wanted to prove in this part. As we
have said before, the corollary can be reformulated for a general Riemannian manifold M ,
and it then becomes (a version of) the famous Hodge Decomposition Theorem. Since this
theorem provides an explicit way to find representatives of the cohomology, it is an important
tool when studying this. Moreover, the ∆-operator can be shown to be a so called elliptic
operator. Among other things, this simplifies solving differential equations involving the
operator, which is another reason for studying it. The proof of the general theorem requires
a lot more theory and proofs than what we have used here. This is therefore a good example
of how powerful the structure of a Lie group can be.
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Part IV

Theorem of Hopf

In this final part we will look at a second application of the theory that we have built up.
Specifically, we will use the established isomorphisms to prove a theorem about the coho-
mology of a compact Lie group G, by showing the statement for its Lie algebra cohomology,
as defined in part I. The theorem we want to prove says that the cohomology of any com-
pact Lie group is linearly isomorphic to the cohomology of the Cartesian product of certain
odd-dimensional spheres. The exact formulation is given in Corollary 4.3.6. The theorem
was originally stated, and proved, by the German mathematician Heinz Hopf in his article
[9], written in 1941. The proof uses mainly the group multiplication. In this article, Hopf
actually proves the theorem for what he calls ‘Γ-manifolds’, which are manifolds that admit
left- and right-multiplication, but with a weaker condition on the inverse map than for Lie
groups. We will not go to this more general case, and instead keep focusing on compact Lie
groups. This will allow us to make full use of the properties of the Lie algebra, which enables
us to prove the theorem in a different way. Our entire treatment is based on the article by
Koszul, [10, Ch. 1-10], who as far as we know was the first person to prove the theorem
using the Lie algebra.

His proof, despite being arguably more elegant than the one given by Hopf, is still rather
long and requires a lot of build up. The aim of this part will therefore not be to give a
fully detailed proof, but instead we will only show the main part of the proof, and only
briefly touch upon the topics that lie too far outside of the focus of this thesis. Essentially,
this means we restrict our attention to Section 10 of Koszuls article, and only introduce the
necessary parts from the sections before that. We refer to the article for more details. As
perhaps a bit of a warning, the article is written in French, however with a basic knowledge
of this language it is very well readable.
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4.1 Preliminaries

In this first section, we will introduce some of the concepts that will be needed later on. We
start by discussing properties of a general Lie algebra a, later on we will turn our focus to
properties that hold especially for a Lie algebra g of a compact Lie group.

Recall that, by Proposition 2.2.3, for an exterior algebra ΛV of a vector space V we can
identify the dual of ΛV with Λ(V ∗). For fi ∈ V ∗, xi ∈ V this duality is given by

〈f1 ∧ ... ∧ fk, x1 ∧ ... ∧ xk〉 := Φ(f1 ∧ ... ∧ fk)(x1 ∧ ... ∧ xk) = det(fj(xi))

For f ∈ ΛV ∗ and x ∈ ΛV we say that x is orthogonal to f if 〈f, x〉 = 0. If A ∈ End(ΛV ),
then we call a map A∗ ∈ End(V ∗) the dual of A if 〈f1 ∧ ... ∧ fk, A(x1 ∧ ... ∧ xk)〉 =
〈A∗(f1 ∧ ... ∧ fk), x1 ∧ ... ∧ xk〉.

Definition 4.1.1. Let a a Lie algebra. On Λa, define the map ∂ : Λka→ Λk−1a by bilinearly
extending

∂(x1 ∧ · · · ∧ xk) =
∑
i<j

(−1)i+j+1 [xi, xj] ∧ x1 ∧ · · · x̂i · · · x̂j · · · ∧ xk,

for xi ∈ a.

Proposition 4.1.2. The map δ : Λa∗ → Λa∗ defined previously is the dual of (−∂)

Proof. Identify the space of k-linear alternating functions on a with the dual of Λa. The
map δ : Λka∗ → Λk+1a is then given by:

δω(x0 ∧ · · · ∧ xk) =
∑
i<j

(−1)i+j ω([xi, xj] ∧ x0 ∧ · · · ∧ x̂i ∧ · · · ∧ x̂j ∧ · · · ∧ xk).

Where ω ∈ Λka∗, x0, ..., xk ∈ a. It is then obvious that we have δ(ω) = ω ◦ (−∂), and the
statement follows.

From the above proposition it follows that ∂ ◦ ∂ = 0, since a similar assertion holds for
δ. Having defined ∂ and δ, the spaces Λa and Λa∗ now have the structure of a complex.
Elements of Λa are often referred to as chaines, the elements of Λa∗ are called cochains. We
call chains that are zero’s of ∂ cycles, and similarly co-cycles are the zero’s of δ.

In the same way as we have seen before we can now define the cohomology of a, H∗(a),
as the quotient of the cocycles by Im(δ). The wedge product induces a graded algebra
structure on H∗(a). For the sake of clarity we will denote the multiplication with the ^
symbol. In the same fashion we can define the homology of a, by taking the quotient of the
cycles in Λa by the image of ∂. This homology will be denoted by H(a). It is important here
to note that since ∂ is not generally an anti-derivation, this space will in general not have
an induced algebraic structure. Both the homology and cohomology will be graded spaces,
we can write H(a) = ⊕kHk(g) and H∗(a) = ⊕kHk(a). Note that if g is the Lie algebra of a
compact Lie group, then H∗(g) is the cohomology of g that we have already seen in Part I.
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Remark. Recall that an anti-derivation on a graded algebra A = ⊕kAk, with multiplication
∧, is a linear map θ : A → A that satisfies

θ(x ∧ y) = θ(x) ∧ y + (−1)kx ∧ θ(y),

for x ∈ A, y ∈ Ak.
The duality of Λa and Λa∗ carries over in the duality of H∗(a) and H(a), as one would
expect. To see this, note that

〈f + δg, x+ ∂y〉 = 〈f, x〉+ 〈δg, x〉+ 〈f, ∂y〉+ 〈δg, ∂y〉
= 〈f, x〉+ 〈g, (−∂)x〉+ 〈−δf, y〉+ 〈g, ∂2y〉
= 〈f, x〉,

for f, g ∈ Λa∗, x, y ∈ Λa, where we are assuming that δf = 0 = ∂x. This shows that the
duality is independent of the choice of representative of an equivalence class, from which the
statement follows. This then also implies that H∗(a) and H(a) have the same dimension.

We will now state an important proposition about the space H(a), that holds for certain
a, in particular if a is the induced Lie algebra of a compact Lie group. We will state
the proposition without proof, mainly because the proof involves a lot of statements about
general (Lie) algebras, which lies somewhat out of the scope of this thesis. The entire
argument can be read in Koszul’s article ([10, § 6-9]).

Proposition 4.1.3. Let g be the Lie-algebra of a compact Lie group G. Then H(g) can
be given the structure of a graded algebra, where the multiplication is induced by the wedge
product on Λg.

Proposition 4.1.3 is more generally true for a type of Lie algebra that we call reductive.
We will not go into the details of what this means, but know that the Lie algebra of a
compact Lie group is a special case of this type of Lie algebra. The proof Koszul gives uses
among other things that a compact Lie algebra is unimodular (see the remark in section 3.3),
which is equivalent to saying that the trace of ad(x) is zero, for all x in g. Another thing it
uses is that on invariant cycles, the ∂ map behaves like an anti-derivation. By then showing
that every homology class contains at least one invariant cycle, the algebra structure can be
defined accordingly.

Remark. Because of the previous proposition, we can define the homology algebra of g,
denoted by H∗(g). Its multiplication will be denoted by the ^ symbol. From the definition
of ∂, it is clear that the map commutes with any graded algebra homomorphism γ : Λg→ Λh,
Therefore, any such algebra homomorphism induces a homomorphism of the algebras H∗(g)
and H∗(h). This homomorphism will be denoted by γ as well.
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We will also be need the following well-known theorem, called the Künneth theorem.

Theorem 4.1.4 (Künneth). Let M,N be smooth manifolds, H•dR(M) and H•dR(N) their
respective cohomology algebras. Then there exist an isomorphism of graded algebras

H•dR(M ×N) ' H•dR(M)⊗H•dR(N).

The isomorphism is induced by the isomorphisms between the exterior algebras of the
tangent spaces, that we have seen in Lemma 2.3.2. From the theorem it also follows that
if G and H are two Lie groups, then the isomorphism Λ(g∗ × h∗) ' Λg∗ ⊗ Λh∗ induces
an isomorphism H∗(g × h) ' H∗(g) ⊗ H∗(h). This can also be proved directly as follows.
We use that by what we have discussed in Section 3.1, the cohomology of g is isomorphic
to the exterior algebra of elements that are invariant under the adjoint representation. In
other words, we have the isomorphism of algebras H∗(g) ' (Λg∗)g. Similarly, it holds that
H∗(g × h) ' (Λ(g∗ × h∗))g×h. It can then be shown using properties of the representation

that
(
Λg∗ ⊗ Λh∗

)g×h
= (Λg∗)g ⊗ (Λh∗)h ' H∗(g) ⊗H∗(h), which proves the statement. We

again refer to the Appendix for a short introduction to representations.

4.2 Primitive elements

We are now ready to begin with the final preparations for the theorem we want to prove.

Definition 4.2.1. We define the space D∗(g) as the linear subspace of H∗(g) consisting of
all linear combinations of elements of the form a ^ b, where a, b ∈ H∗(g) both have degree
> 0.

Definition 4.2.2. The space P (g) is defined as the subspace of H∗(g) that is orthogonal to
D∗(g), and to to the subspace H0(g). Elements of P (g) are called primitive.

Remark. Note that both spaces are graded subspaces, i.e. we can write D∗(g) = ⊕kDk(g),
where Dk(g) = D∗(g) ∩Hk(g), and similarly we have P (g) = ⊕kPk(g). Note that D∗(g) is
a two-sided ideal in H∗(g). From the definition, it follows that P0(g) = {0}.

In the next two lemmas, we will prove two crucial properties of the primitive elements of
H∗(g). Let ϕ be the ‘diagonal’ map g→ g× g, i.e. ϕ(x) = (x, x). As usual, by ϕ̃ we denote
the extension of this map to Λg, as well as the induced map ϕ̃ : H∗(g)→ H∗(g× g).

Lemma 4.2.3. Let ϕ̃ : H∗(g)→ H∗(g× g) be the map defined above. Then for u ∈ P (g),

ϕ̃(u) = u⊗ 1 + 1⊗ u.

Proof. Recall that we have the identification H∗(g × g) ' H∗(g) ⊗ H∗(g). Since for every
element in a ⊗ b ∈ H∗(g) ⊗ H∗(g) we can write a ⊗ b = (a ⊗ 1) ^ (1 ⊗ b), we see that we
have Hp(g) ⊗ Hq(g) ⊂ D∗(g × g) for every p, q > 0. It can then be easily verified that we
must have:

D∗(g× g) =
∑
p,q>0

Hp(g)⊗Hq(g) +D∗(g)⊗ 1 + 1⊗D∗(g).
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We can now ask ourselves what an element of the space P (g× g) should look like. Since
it has to be orthogonal to every element in D∗(g × g), it can only be of the form u ⊗ 1 or
1 ⊗ u for some u ∈ P (g), where the component 1 is needed so that it is orthogonal to all
subspaces Hp(g) ⊗ Hq(g) (p, q > 0). Every linear combination of elements of this form is
clearly also orthogonal to D∗(g× g). It follows that

P (g× g) = P (g)⊗ 1 + 1⊗ P (g).

Now note that by what we have discussed before (see Part II), the dual map
ϕ̃∗ : H∗(g × g) → H∗(g) is also a homomorphism (of algebras). By definition of the space
D∗(g), it follows that ϕ̃∗(D∗(g × g)) ⊆ D∗(g). Therefore ϕ̃(P (g)) ⊆ P (g × g), and thus for
u ∈ P (g);

ϕ̃(u) ∈ P (g)⊗ 1 + 1⊗ P (g).

Let π1 : g× g→ g be the natural projection to the first coordinate. One can show that
for a⊗ b ∈ H∗(g)⊗H∗(g) it holds that π̃1(a⊗ b) = b0 a, where b0 is the component of b with
degree zero (compare to the discussion in Section 2.3). Since P0g = {0}, it therefore holds
that π̃1(1 ⊗ P (g)) = {0}. Now observe that ϕ ◦ π1 is the identity, we therefore must have
that

π̃1 ◦ ϕ̃(u) = u.

By the above, this implies that the component of ϕ̃(u) in P (g) ⊗ 1 has to be equal to
u ⊗ 1. We can reason in a similar way for the other component, which shows that indeed
ϕ̃(u) = u⊗ 1 + 1⊗ u.

Lemma 4.2.4. Let u be a (non-zero) element of P (g). Then the degree of u is odd.

Proof. With the notation (u)p we will mean the p-fold product u ^ ... ^ u. The map ϕ̃ is
an algebra homomorphism from H∗(g) to H∗(g×g). Therefore, if we choose p > 0 such that
(u)p = 0 (such a p exists. since we can always choose p larger that the dimension of G), we
have

(ϕ̃(u))p = ϕ̃(up) = (u⊗ 1 + 1⊗ u)p = 0.

Now let us assume that u has even degree. Looking at Definition 2.3.1, it then holds
that (u⊗ 1) ^ (I ⊗ u) = (I ⊗ u) ^ (u⊗ I). Therefore, it can be worked out that

0 = (u⊗ 1 + 1⊗ u)p =

p∑
n=0

(
p

n

)
(up−n ⊗ un)

(this is the well-known binomial formula). Now assume that we have chosen p to be min-
imal, that is, (u)p = 0 but (u)p−1 6= 0. Since all terms in the equation above are linearly
independent, in particular we then have that the term p(up−1 ⊗ u) must be equal to 0. But
this means that either u = 0 or up−1 = 0, which is a contradiction in both cases. Therefore
the degree of u must be odd.

The importance of the degrees of the primitive elements being odd will become clear in
the following lemma. As we will see, it will allow us to define an algebra homomorphism
from Λ(P (g)) to H∗(g).
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Lemma 4.2.5. Let (A, · ) be a graded algebra, satisfying graded commutativity. Assume
γ : V → A is a linear map from a vector space V , which has only elements of odd degree in
its image (apart from 0). Then there exists an algebra homomorphism γ̄ : ΛV → A that is
equal to γ when restricted to V = Λ1(V )

Proof. Let us first look at the tensor algebra of V , T (V ). The algebra homomorphism
γ′ : T (V ) → A that sends an element v1 ⊗ ... ⊗ vk to γ(v1) · ... · γ(vk) can be defined using
the universal property of T k(V ). Since every element γ(v) is either zero or has odd degree,
from graded commutativity it follows that

γ′(v ⊗ v) = γ(v) · γ(v) = −γ(v) · γ(v).

It follows that we must have γ′(v ⊗ v) = 0. Therefore γ′ descents to an algebra homo-
morphism γ̄ : T (V )/I = Λ(V ) → A, where I is as before the two-sided ideal generated by
elements of the form v⊗v. Clearly, on V it will still just be γ, which proves the statement.

4.3 Proof of the theorem

We can now formulate the next lemma. By i : P (g) → H∗(g), we denote the natural
inclusion.

Lemma 4.3.1. The inclusion map i extends to an injective homomorphism of algebras
ῑ : ΛP (g)→ H∗(g).

Proof. Using Lemma 4.2.4, we can define the algebra homomorphism ῑ as in Lemma 4.2.5.
To show that it is injective, choose a basis of homogeneous elements {ui}1≤i≤l of the linear
space P (g), arranged such that deg(ui) ≤ deg(ui+1) for all i. To show that ῑ is injective it
is enough to show that it is non-zero on all algebraic combinations of these elements, since
those form a basis of ΛP (g). For this it is enough to show that ῑ(u1 ∧ ... ∧ ul) 6= 0. Assume
now to the contrary that ῑ(u1 ∧ ... ∧ ul) = u1 ^ ... ^ ul = 0. Since ul 6= 0, there must then
exist an index s such that

us ^ us+1 ^ ... ^ ul = 0, but us+1 ^ ... ^ ul 6= 0.

Denote by p the degree of us. Now look at the element ϕ̃(us ^ ... ^ ul) ∈ H∗(g)⊗H∗(g),
where ϕ̃ is the map we defined previously. Since ϕ̃ is a homomorphism, this element has to
be equal to zero. Its component in the space Hp(g) ⊗ H∗g must therefore also be equal to
zero. Using the equation from Lemma 4.2.3, one can work out that this component is given
by ∑

deg(ui)=p

(−1)s+i ui ⊗ (us ^ ... ^ ûi ^ ... ^ ul).

Since the ui’s are all linearly independent, from this it follows that us⊗(us+1 ^ ... ^ ul) = 0.
Since us 6= 0, this implies that us+1 ^ ... ^ ul = 0, which is a contradiction.

37



Having showed that ῑ is an injective homomorphism, we would now like to show that it
is an isomorphism of algebras. For this, we need to show that it is surjective.

Lemma 4.3.2. The homomorphism ῑ : ΛP (g)→ H∗(g) is surjective.

Proof. We will prove the statement by showing that the dimension of ΛP (g) is greater or
equal to the dimension of H∗(G). Since ῑ is in particular an injective linear map, between
finite dimensional vector spaces, this then implies that ῑ must also be surjective.

Choose a basis {ai} (which is minimal), of homogeneous elements of the (cohomology)
algebra H∗(g), This means that for every element a ∈ H∗(g), there exist λi1,...,ik ∈ R such
that we can write

a =
∑
i1,...ik

λi1,...,ikai1 ^ ... ^ aik .

We claim that for every p > 0, the amount of elements of degree p in {ai} is equal to the
dimension of the quotient Hp(g)/Dp(g), which in turn is equal to the dimension of Pp(g) by
the duality. For this we need to show that H∗(g) is equal to the direct sum of D∗(g) and
the linear span of {ai}, which we will denote by 〈ai〉. By the definition of the spaces, it is
clear that we have H∗(g) = 〈ai〉+D∗(g). So we only need to show that 〈ai〉 ∩D∗(g) = {0}.

Assume to the contrary that there exists a non-zero element a in D∗(g) that is also in
〈ai〉. Since it is in D∗(g), we can write it as

∑
λi1,...,ikai1 ^ ... ^ aik , with every term

being the cup product of at least two elements of {ai} with degree > 0. However, since by
assumption it is an element of 〈ai〉 too, it can also be written as

∑
i∈I λiai for some index

set I, chosen so that λi 6= 0 for all i. We thus have:∑
i1,...ik

λi1,...,ik ai1 ^ ... ^ aik =
∑
i∈I

λiai.

By comparing degrees, we can assume that all the terms have the same degree. It then
follows that the ai’s on the right hand side cannot also appear somewhere on the left hand
site, since that would create an unequal degree. Now fix an i0 ∈ I, then it holds that

λi0ai0 =
∑
i1,...ik

λi1,...,ik ai1 ^ ... ^ aik −
∑

i∈I\{i0}

λiai.

Since aio appears nowhere on the right hand side, this is in contradiction with the mini-
mality of {ai}, so it follows that we must have H∗(g) = 〈ai〉 ⊕D∗(g).

Using that P (g) is orthogonal to D∗(g), it follows that (Pp(g))∗ = Hp(g)/Dp(g). Because
of this, and Lemma 4.2.4, we also know that, apart from one element of degree zero, the
basis {ai} consists entirely of elements of odd degree. These elements (so without the degree
zero element) generate a linear subspace V of H∗(g) that, by the claim above, has the same
dimension as P (g). Therefore there exists a linear isomorphism from P (g) to V , which by
Lemma 4.2.5 can be extended to an algebra homomorphism ΛP (g)→ H∗(g). Its image will
be the subalgebra of H∗(g) generated by elements of V , as well as the unit element. But
this is the whole of H∗(g), since {ai} is contained in this set. We have therefore shown that
there exists a surjective linear map from ΛP (g) to H∗(g), which means that the dimension
of ΛP (g) is greater or equal to the dimension of H∗(g). Since the dimensions of H∗(g) and
H∗(g) are equal, the proof is complete.
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Now that we have shown that ῑ : ΛP (g)→ H∗(g) is an algebra isomorphism, we turn to
the dual map, ῑ∗ : H∗(g)→ Λ(P (g))∗. By duality, this will certainly be a linear isomorphism.
We would like to show that is also an isomorphism of algebras.

Lemma 4.3.3. The map ῑ∗ : H∗(g)→ Λ(P (g))∗ is an isomorphism of algebras.

Proof. Denote by ξ : P (g) → P (g) × P (g) the diagonal map u 7→ (u, u). The extension to
ΛP (g), ξ̃ : ΛP (g)→ ΛP (g)⊗ΛP (g) is given by on elements u ∈ P (g) by ξ̃(u) = u⊗1+1⊗u.
Denote by ῑ⊗ ῑ the map ΛP (g)⊗ ΛP (g)→ H∗(g)⊗H∗(g), u⊗ u′ 7→ ῑ(u)⊗ ῑ(u′). Then we
have

(ῑ⊗ ῑ) ◦ ξ̃(u) = ῑ(u)⊗ 1 + 1⊗ ῑ(u) = ϕ̃ ◦ ῑ(u),

where the last equality follows by Lemma 4.2.3. So we see (ῑ⊗ ῑ) ◦ ξ̃ = ϕ̃ ◦ ῑ, and therefore
also

ξ̃∗ ◦ (ῑ⊗ ῑ)∗ = ῑ∗ ◦ ϕ̃∗.

By Lemma 2.3.3, we have

ξ̃∗(u⊗ v) = ξ̃∗(u) ∧ ξ̃∗(v) for u⊗ v ∈ ΛP (g)∗ ⊗ ΛP (g)∗.

Similarly, using this lemma one can deduce that

ϕ̃∗(a⊗ b) = a ^ b for a⊗ b ∈ H∗(g)⊗H∗(g).

To keep track of the domains; we have ϕ̃∗ : H∗(g)⊗H∗(g)→ H∗(g) and
ξ̃∗ : ΛP (g)∗ ⊗ ΛP (g)∗ → ΛP (g)∗. Putting this all together, we see for a ^ b ∈ H∗(g);

ῑ∗(a ^ b) = ῑ∗ ◦ ϕ̃∗(a⊗ b) = ξ̃∗ ◦ (ῑ⊗ ῑ)∗(a⊗ b) = ῑ∗(a) ∧ ῑ∗(b).

This shows that ῑ∗ : H∗(g)→ ΛP (g) is indeed an algebra isomorphism.

With the previous lemma, we are now finally ready to state and prove the main theorem
of this section. As mentioned earlier, we will relate the cohomology of a compact Lie group
to the cohomology of a product of n-spheres. First recall the following, well-known theorem
(see for example [12, Th. 17.21]).

Theorem 4.3.4. The cohomology Hk
dR(Sn) of an n-dimensional sphere is given by

Hk
dR(Sn) =

{
0 if k 6= 0, n,

R if k = 0, n.
(4.1)

39



Theorem 4.3.5. Let g be the Lie algebra of a compact connected Lie group. Then there
exist odd integers n1, ..., nl such that we have the isomorphism of graded algebras

H∗(g) ' H•dR(Sn1 × ...× Snl)

Proof. By the previous Lemma, we know H∗(g) ' Λ(P (g)∗). Since P (g)∗ is a finite-
dimensional vector space, we can choose a finite linear basis {ai}1≤i≤l of P (g)∗. As we
have seen before, the ai’s will have odd degree. Since we can now write P (g)∗ ' ⊕i〈ai〉,
(where, as before 〈ai〉 denotes the linear span of {ai}) it holds that

ΛP (g) ' Λ〈a1〉 ⊗ ...⊗ Λ〈al〉.

Since for every i, 〈ai〉 is a one dimensional vector space, its exterior algebra is simply given
by the direct sum 〈1〉⊕〈ai〉. Let ni be the degree of ai (as an element of H∗(g)). Then by the
above theorem we have a straightforward algebra isomorphism between the algebras H•(Sni)
and Λ〈ai〉. Doing this for every i then gives us the following isomorphism of algebras, in an
obvious way:

Λ〈a1〉 ⊗ ...⊗ Λ〈al〉 ' H•dR(Sn1)⊗ ...⊗H•dR(Snl).

By the Künneth theorem, it then follows that ΛP (g)∗ ' H•dR(Sn1 × ...× Snl).
Putting everything together, we obtain the isomorphism of graded algebras H∗(g) '
H•dR(Sn1 × ...× Snl).

Corollary 4.3.6 (Hopf). Let G be a compact connected Lie group. Then there exist odd
integers n1, ..., nl such that for all k we have the isomorphism of graded algebras

H•dR(G) ' H•dR(Sn1 × ...× Snl).

Proof. Follows by the previous theorem, in combination with what we have done in Part I.
Specifically, we use the isomorphisms of graded algebras H∗(g) ' H•L(G) ' H•dR(G).
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Appendix: Representations

In this section we will give a brief introduction to representations of Lie groups. It should
be pointed out that the theory of representations is far broader than what we will be dis-
cussing. We will limit ourselves to only the context that is useful for this thesis, for example
by restricting to finite dimensional vector spaces. Most of what we will discuss is based on
[13, Ch. 20], and [6, Ch. 5]. Missing proofs can also be found there.

Let us define what a representation is.

Definition 4.3.7. Let V be a finite-dimensional vector space. A (finite dimensional) smooth
representation (π, V ) of G in V is a left action π : G × V → V that is smooth, and such
that π(x) : V → V is a linear endomorphism of V for every x ∈ G.

Remark. It is actually only necessary to demand that π is continous, smoothness then
follows automatically. However, we will not prove this. Alternatively, one can also define
a representation as a Lie group homomorphism π : G → GL(V ), which is equivalent to
definition given here.

An important example of a Lie group representation is the adjoint representation map,
Ad : G → GL(g). Recall that Ad(x) is defined as TeCx, where Cx is the conjugation by x.
See section 0.2 for more information.

In much the same way that we define a representation of a Lie group, we can also define
a representation of a Lie algebra.

Definition 4.3.8. A represention of g in V is a Lie algebra homomorphism ρ : g→ End(V ),
where End(V ) is equipped with the commutator bracket.

The next proposition shows a common way to construct Lie algebra homomorphisms.

Proposition 4.3.9. Let π : G → GL(V ) a Lie group representation of G in V . Then
π∗ := Teπ : g→ End(g) is a representation of the Lie algebra g.

This shows in particular that ad : g → End(V ) is a Lie algebra representation, the
‘adjoint representation’ of g. The next proposition shows an important relationship between
the exponential map and the representations of both G and g.

Proposition 4.3.10. We have π∗(X) = d
dt
|t=0π(exp(tX)) for X ∈ g. Also

π(expX) = eπ∗(X).
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Definition 4.3.11. Let π1, π2 be representations of G in V1 and V2 respectively. The tensor
product representation π1⊗π2 : G→ GL(V1⊗V2) is defined by (π1⊗π2)(x) = π1(x)⊗π2(x)
for x ∈ G.

Proposition 4.3.12. With notation as above, the associated Lie algebra representation sat-
isfies

(π1 ⊗ π2)∗(X) = π1∗(X)⊗ 1 + 1⊗ π2∗(X) for X ∈ g.

Proof. Using the product rule (for tensor products, Lemma 2.1.5), we have for u ∈ V1, v ∈ V2:

(π1 ⊗ π2)∗(X)(u⊗ v) = d
dt

∣∣
t=0

π1(exp tX)u⊗ π2(exp tX)v

= π1∗(X)u⊗ v + u⊗ π2∗(X)v.

So the result follows.

This proposition can also be easily generalized to a k-fold tensor product.

Definition 4.3.13. Let (π, V ) be a representation of G in V . An element v ∈ V is called
G-invariant if π(x)v = v for all x ∈ G. Denote by V G the space of all G-invariant elements,
i.e

V G := {v ∈ V | π(x)v = v for all x ∈ G}.

Let π∗ be the induced representation of g in V . We call v ∈ V g-invariant if π∗(X)v = 0
for all X ∈ g. Define the space V g by:

V g := {v ∈ V | π∗(X)v = 0 for all X ∈ g}.

Proposition 4.3.14. Assume G is connected. Then an element v ∈ V is G-invariant if and
only if v is g-invariant. In other words, V G = V g.

Proof. Can be derived using Proposition 4.3.10. See Lemma 29.1 in [13].

Dual representation

Since a finite dimensional vector space is isomorphic to its dual, we can also define a repre-
sentation of G in this dual space. This is done in the following way.

Definition 4.3.15. Let π be a representation of G in V . Then we define the dual represen-
tation π∨ : G→ GL(V ∗) of π by

π∨(x)v∗ = v∗ ◦ π(x−1)

for x ∈ G, v∗ ∈ V ∗.

One can easily check that this indeed defines a representation. We can also calculate the
induced dual representation π∨∗ : g → GL(V ∗), π∨∗ := Teπ

∨. An important example of such
a representation is the adjoint representation of g in Λkg∗, given by the map ad(·)∗ : G →
GL(Λkg∗).
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