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Abstract

An abstract order type is a mapping χ : [n3]→ {+,−, 0}, satisfying some set of conditions,

where [n3] is the collection of all triples of a set of n elements. Given an ordered point set

P = (p1, . . . , pn), we define the order type χP of P as a mapping
(
P
3

)
→ {+,−, 0}. The order

type χP indicates for each ordered triple whether it is oriented clockwise(-), oriented counter-

clockwise(+) or collinear(0). We say a point set P realizes an order type χ, if χP (pi, pj , pk) =

χ(i, j, k), for all i < j < k. A set of points in the plane is among the most basic and natural

geometric objects of study in Discrete and Computational Geometry. They are relevant in

theory and practice alike. Interestingly, order types are capturing most structure of point

sets. In particular, many geometric properties of a point set depend only on the order type.

Thus the question of which order types are actually realizable as point sets is important, to

understand the combinatorial nature of point sets in the plane. The first result regarding this

question was formulated already 1700 years ago as geometry was enriched by its first projective

property. More answers followed 70 years ago, when this question was linked to a problem in

real algebraic geometry, resulting in a theoretical upper bound under certain conditions. A

more recent development suggested that this upper bound in the worst-case analysis of order

type realizability was too pessimistic

Another recent development is smoothed analysis, which gained popularity to explain the

practical performance of algorithms, even if they perform badly in the worst case. Smoothed

analysis is an interpolation between average-case analysis and worst-case analysis. The idea is

to study the expected performance on small perturbations of the worst input. The performance

is measured in terms of the magnitude δ of the perturbation and the input size.

In this thesis, the most important quantity in order type realizability is considered to be

the norm, a measure of the amount of grid points one needs in order to be able to realize

a given order type on a grid. We find an upper bound on the norm in the average case of

O(n3 ·2n), whereas the norm is tightly bounded in the worst case by Θ(2ˆ2n). Using smoothed

analysis, we can interpolate between these results by our parameter δ > 0, since the result we

find is an upper bound on the norm of O(n3 · 2n/δ).
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Figure 1: A configuration that describes the possible orientations of triples of points: the ori-

entation of {p1, p2, p4} is ‘-’, that of {p1, p3, p4} is ‘+’, and the collinear triple {p2, p3, p4} has

orientation ‘0’.

1 Introduction

In this thesis we study the problem of order type realizability and the computational complexity

thereof. This is a problem in the field of computational geometry; a branch of computer science

devoted to the study of algorithms which can be stated in terms of geometry. More specifically,

this problem is of the category combinatorial computational geometry which deals with geometric

objects as discrete identities. Computational geometry in this sense was first mentioned in a

book [27] in 1985 by Preparata and Shamos where they mention that the first geometrical problems

date back to antiquity.

The basis of book was the PhD thesis that Shamos [32] published in 1978. In his thesis, he

formulated the real RAM model which is widely used in computational geometry. The real RAM

model is a model of a computer, where each memory cell is capable of storing a real number

up to an infinite precision. The real RAM model is a well-suited model for theoretical analysis

in computational geometry, as geometric objects (even those that can be described using integer

values) often have real-valued substructures (e.g. a unit square has a diameter of
√

2 which cannot

be expressed as an integer value). Fredman and Willard [14] introduced a more realistic memory

model which they called the word RAM model. In the word RAM model, a memory cell can (just

as an actual computer) store only a finite amount of information, specifically a “word” of b bits for

some fixed integer b. We study the conditions under which these models will give the same results

regarding order type realizability. In its most general form, an order type is a mapping from an

ordered set to {+,−, 0} (skip ahead to Section 1.2 if you prefer to read the more general definition

first). If the ordered set is a set of points P , order type can be defined as a geometric property of

P :

Consider an ordered set P = (p1, p2, . . . , pn) of n real-valued points in [0, 1]2. The order type

χP of the ordered point set P is defined as a mapping from every triple of points in P to the

orientation of that triple, or formally, χP :
(
P
3

)
→ {+,−, 0} [15]. The value that corresponds to

a given orientation of a triple of points is explained using Figure 1. For example, if we follow

the points {p1, p2, p4} in the order they occur from a central position, we turn clockwise, which

is a negative orientation, so χP (p1, p2, p4) is equal to ‘-’. When we do the same for the points

{p1, p3, p4}, we move counter-clockwise, which is a positive orientation, so χP (p1, p3, p4) is equal

to ‘+’. The value ‘0’ is assigned to collinear triples, such as {p2, p3, p4}.
In this thesis, we are interested in abstract order types which can be realized by a point set

in the word RAM model. Before we can elaborate on the problem studied in this thesis, we need

a better description of the theoretical concepts underlying both finite-precision computations and

order type realizability. Hence we take a step back to explore these involved concepts.
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1.1 Representing point sets as discrete identities.

In this thesis we consider probably the most basic object one could encounter in geometry: a point

set. Consider an ordered set P = (p1, p2, . . . , pn) of n real-valued points in [0, 1]2, we can store P

by storing for every point its two coordinates. Most algorithms designed for point sets and the

analysis of their complexity assumes that the exact value of the coordinates can be stored. In the

real RAM model this is immediately true. In the word RAM model, however, it could be that we

cannot express the exact value of each coordinate, since we can only store a finite number of bits.

When we can only store a finite number of bits, we must round the real values of the coordinates

to a number that can be expressed with whichever finite precision we are allowed to use. This

rounding may change topological information of the geometric objects involved. A classical problem

that is encountered when performing finite-precision calculations is that a point may incorrectly be

determined to lie on the left side of an oriented line. This phenomenon is especially troublesome

when studying order types of a real-valued point set P . Consider the directed line between two

points p, q ∈ P and a point r ∈ P . If the point r is incorrectly determined to lie left of this line

then we have incorrectly determined the order type of ∆(p, q, r). These kind of rounding errors

may lead to incorrect or nonsensical solutions when the algorithms that is used assumes that the

computer has infinite precision.

The assumption of infinite precision is what allows us to think of parameters to be samples

from a continuous domain, rather than discrete values: Greene and Yao [19] transform geometric

concepts and algorithms from the continuous domain to the discrete domain. As an example they

consider the following classical problem in a discrete setting: given a set of n line segments L, report

the at most n2 points of intersections between lines in L. It is easy to verify that even if the lines in

L can be described with discrete coordinates, points of intersection between these lines might not.

Greene and Yao model the coordinates of these points of intersections as values from a continuous

domain and round them down to discrete values. In addition, they store an additional structure on

the continuous description of the values which they use to detect inconsistencies of their rounded

points (such as when a set of collinear real values stops to be collinear). Milenkovic [23] refers to

this method as the “hidden variable method”. He also proposes another method of correct and

verifiable geometric reasoning using finite precision arithmetic, which he calls “data normalization”.

Here a geometric structure is transformed into a discrete configuration that is such that all finite

precision calculations yield the same answers as infinite precision calculations would find.

This normalization method resembles the approach we will use to solve the problem that we have

encountered. We aspire to let the topological information of the configuration that our geometric

structure (the point set P ) was transformed into, be equal to the topological information of P . In

our situation, the transformation is a digitization of the point set P , and we will find a sufficient

condition for the digitization of P to have the same topological information.

Digitization and grids. Given some value k, we can partition [0, 1]2 into k2 equally sized

squares. We will denote the width of the squares by ω = 1/k and the corners of the squares form

a grid that is a subset of ωZ2. We can express the coordinates of any point on this grid using

log(k) bits per axis, but in general, real-valued points do not lie on grid points. We define the

k− digitization as a one-to-one mapping from P to P ′ which maps real-valued points in [0, 1]2 to

the nearest grid point in ωZ2 (see Figure 2 for an illustration). Such a procedure is often referred

to as grid snapping.

When we snap a point set P onto a grid we obtain a point set P ′ = {p′1, p′2, . . . , p′n} where p′i
is the grid point that is closest to pi ∈ P , and in Figure 2 we see that it may happen that p′i = p′j
while pi 6= pj . In the same figure we see that the order type of P , depending on the orientation

of triples of points, can be different from P ′, depending on the grid width ω and the positions of

the points in P . It is clear that in this case, the topological information of P ′ does not resemble

that of P . We note that the condition that all topological information is conserved is too strong:
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Figure 2: Grid snapping in the case k = 1/ω = 4. The points in P are indicated in red, and they

corresponding grid points in P ′ are indicated in green. Note that points in P ′ may be collinear or

even on the same location while corresponding points in P are not. The largest distance between a

pair of corresponding points dist(pi, p
′
i) is at most

√
2ω/2. On the right side we see that digitizing

a point set may change its order type, depending on the locations of the points in P and the grid

width ω.

no matter how precise (less wide) we make the grid, there will always be an infinite number of

real values in between grid points. If the point set P contains several of such points between two

grid points, their snapping P ′ will not preserve the topological information of P . However, as the

width of the grid decreases, inconsistencies can only occur on a smaller and smaller scale.

We conclude that the conservation of topological information depends on the locations of the

points in P , as well as the grid width ω. Also, since it is impossible to conserve all topological

information for any choice of P , we find a condition to conserve the order type rather than all

topological information.

Order types. Since topological information is lost nearly always in the process of digitization,

one could argue that the results of calculations based on a digitized point set are not reliable. How-

ever, when the order type is conserved, this is not true. Aichholzer, Aurenhammer and Krasser [1]

enumerate all possible order types for point sets with cardinality up to 10, and show that we can use

the order type to characterize important combinatorial properties of a finite point configuration.

Aichholzer and Krasser [3] later find methods to characterize order types for point sets of higher

cardinality. This database shows us that point sets with the same order type share topological

information, and other works show us how the order type can be used to solve various geometrical

problems [2, 4, 26]. This leads us to believe that the conservation of order type, instead of all topo-

logical information, will suffice as a condition that calculations with P ′ as input configuration will

yield the same answers as input configuration P for geometrical problems that we are interested

in.

1.2 Order type realizability.

An abstract order type is a mapping χ that maps every triple from a set of n elements to an element

of {+,−, 0}, satisfying some set of conditions. We denote the collection of all triples that can be

formed from n elements by [n3], so formally, we can write χ : [n3]→ {+,−, 0}.
Recall the definition of order type of a point set. We say a point set P realizes an order type

χ if χP (pi, pj , pk) = χ(i, j, k), for all i < j < k. We say that we have successfully represented a

point set P as a discrete identity P ′ when P and P ′ realize the same order type.

Since three orientations are possible for a triple of points, one trivially state that there exist at

most 3(n3) different order types for a set of n points. If P is a real-valued point set where no three

points are collinear, Goodman and Pollack [16] show that the number of order types that P could
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p1 p2 p3

p4
p5

p6

p7 = `(p1, p6) ∩ `(p4, p3)

p8 p7 p9

p8 = `(p1, p5) ∩ `(p4, p2)

p9 = `(p2, p6) ∩ `(p5, p3)

Figure 3: Illustration of the configuration used in Pappos’ hexagon theorem: when {p1, p2, p3} and

{p4, p5, p6} are two sets of collinear points, then the points of intersection {p7, p8, p9} are collinear

as well.

realize is upper bounded by 24n log(n)+O(n). Throughout this thesis (following the example of [17])

we will assume that the point set P contains no collinear points. This assumption is often referred

to as the points lying in general position [8]. It is unknown how many out of all possible abstract

order types for a set of n elements can be realized by a configuration of n points where points can

be collinear.

Pappos’ hexagon theorem. First we consider a result that explicitly shows that not every

abstract order type χ can be realized by a point set. Pappos of Alexandria lived in the fourth

century, and he proved the following result in the field of projective geometry, while that field

developed only many centuries later [28].

Theorem I (Pappos’s hexagon theorem). Let p1, p2, p3 be three collinear points and let p4, p5 and

p6 also be three collinear points. The lines `(p1, p6), `(p1, p5), `(p2, p6) intersect the lines `(p4, p3),

`(p4, p2), `(p5, p3), respectively, and the three points of intersection are collinear.

Nine points are described (refer to Figure 3), which together form a point set Q which realizes a

certain order type. We denote by p7, p8 and p9 the three points of intersection, the theorem states

that when the first eight points are placed in the plane as described, we know that χQ(p7, p8, p9) =

0. An abstract order type, however, can map some set of 9 elements to the same values for all

triples, except for {7, 8, 9}. Hence we must conclude that not every abstract order type can be

realized by a point set. One might say that it is incorrectly assumed that the points of intersection

exist, but in projective geometry, these always exist and have the desired properties. That means

this result holds in the projective plane, and if something does not exist in RP2, then certainly it

does not in R2.

Norm of a point set and bit complexity. For the abstract order types that can be realized

by a point set, there is some “degree of realizability”. For example, Grünbaum has shown that

configurations exist that cannot be expressed in rational coordinates, hence require infinite preci-

sion [21]. In the remainder of this section, we will formalize the scale on which we measure the
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degree of realizability. We also mention Mnëv’s universality theorem here, in order to show that

order type realizability is not just of interest when considering representations of point sets with

finite precision, but also when considering problems in real algebraic geometry.

Goodman, Pollack and Sturmfels [18] have provided us with the definition of a norm, which we

will use to formalize the notion ‘degree of realizability’. The norm ν of a point set P is a measure

of the minimal number of grid points needed to describe a point set that realizes the same order

type as P . Or formally,

ν(P ) = min max{|x′1|, |x′2|, . . . , |x′n|, |y′1|, |y′2|, . . . , |y′n|}

where the minimum is taken over all point sets P ′ ⊂ Z2 that realize the same order type as

P . Remember that Grünbaum showed that there are configurations that cannot be expressed in

rational coordinates, in that case this definition does not apply, and for those cases, we define the

norm to be zero. The notion “degree of realizability” of an order type χ is formalized by the norm

of any point set that realizes χ.

Given the norm of some point set P , we know that it can be realized on an integer grid with

width ν(P ). This means that coordinates can have 2ν(P ) different values, so the amount of bits

required to express the largest coordinate is log(2 · ν(P )). Goodman, Pollack and Sturmfels [17]

show that they can construct for any value of n a point set whose norm is doubly exponential in

n, which means that there is a point set with bit complexity at least of the order O(2n).

Constructing a set which requires a large grid size to be realized was enough to show a lower

bound, but to give an upper bound, we must represent every possible point set up to order type.

This has been done by Aichholzer and Krasser [3] for point sets with cardinality up to 11, the

amount of different order types for higher cardinalities is too large to expect a lot of progress using

this approach. However, Goodman, Sturmfels and Pollack [17] showed that the norm of a point

set of n points in general space (thus excluding collinear points, which excludes those sets that

require infinite precision) is upper bounded by 2ˆ2cn for some constant c. Obviously, there is an

entirely different way to solve this problem; they used a mathematical connection between order

types and semi-algebraic sets which allowed them to use a result defined in terms of those sets [20,

lemma 10] to find the maximal grid size needed to represent any point set of n points in general

space.

Mnëv’s universality theorem. The connection between semi-algebraic sets and order types is

a lot stronger than the application described above. One of the most astounding results regarding

order types, is by Mnëv [24]. Let S be a semi-algebraic set, i.e., the set of real numbers satisfying

a given set of polynomial equations and inequalities. Then there is an abstract order type OS ,

such that the realization space is ”stably-equivalent” to S. Roughly speaking, stably-equivalent

means that topological properties are the same. In particular, S is empty, if and only if OS can be

realized. This shows that the anecdotal results that we saw before, i.e., Pappos hexagon theorem

and the doubly exponential lower bound found by Goodman, Pollack and Sturmfels are not just

isolated phenomena, but actually stem from a deeper mathematical connection to real algebraic

geometry.

Even though it is beyond the scope of this thesis to discuss Mnëv’s universality theorem in

more detail, we note that the problem we study not only concerns representing point sets with

finite precision. It may even translate to a result in the field of algebraic geometry, just like a

result in algebraic geometry offered a solution to proving the doubly exponential upper bound on

the norm of points in general space.

1.3 Relation to recent work.

We have seen that some abstract order types cannot be realized by a planar point set, some require

infinite precision, and some can only be realized by a point set with a norm that has a doubly
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exponential dependence on the cardinality n. The most recent of these results was published in

1989, but there are recent developments in this area as well. For example, Fabila-Monroy and

Huemer define an average case and show that, in the average case, a point set can be snapped to

grid with size polynomial in n without changing its order type, as n tends to infinity. Devillers,

Duchon, Glisse and Goaoc found a similar result as a byproduct of their research, in which they

study the amount of bits an algorithm needs to read, in order to determine the order type of a

point set in the average case.

The average case. If we generate an abstract order type by just randomly picking
(
n
3

)
orienta-

tions, the probability is rather large that it cannot be realized. Also, it makes sense to assume that

an order type that can only be realized when using infinitely precise coordinates, does not occur

often in practice, as Devillers et al. showed. When interested in representing point sets on a grid,

a more natural way to define an average case is to pick points randomly from a probability space.

Fabila-Monroy and Huemer [13] chose some value M ∈ N, and considered a set S of n points

distributed independently and uniformly at random in [0,M ]2 to be an average case. They denote

by S′ the set of n integer grid points that lie closest to the points in S, and show that in the

average case, the order types of S and S′ are equal with a probability that tends to 1 as n tends

to infinity. In this thesis, we agree on the definition of average case, but if we want to compare

this result to the upper bound on the norm found by Goodman et al., we need a different result.

We can use this result to find an upper bound on the norm by observing that S and S′ have

the same order type, and thus the same norm. The norm of S′ is easily upper bounded by the

grid size, so we can state that in the average case, the norm of S is upper bounded by M , with

probability that tends to 1 as n tends to infinity. Still, in order to compare this result to that of

Goodman et al., we need prove a different result.

In Section 3, the theorem of Fabila-Monroy and Huemer is adjusted, and a proof of this ad-

justed theorem is given, which allows us to state the desired result. This result holds not only

asymptotically, but for all n, so we can use it to compute an expected value of the norm. Instead

of S, we use P , a set of n points, distributed independently and uniformly at random in [0, 1]2.

We upper bound the norm in the same way, and find that the expected value of the norm of P is

upper bounded by 16n3 · 2cn, where c is the same as the constant that Goodman et al. used in

their upper bound on the norm.

Determining order types. Devillers, Duchon, Glisse and Goaoc used the same setting as the

average case and, as a byproduct of their research, found a result that is similar to that of Fabila-

Monroy and Huemer. On could say that Devillers et al. researched what we called the ‘degree of

realizability’ of order types, but formalized it in a different way: they determine the amount of

coordinate bits an algorithm must read in order to determine the order type of an ordered point

set, in the average case. They give a near-tight upper bound of 4n log(n) +O(n) on this amount

of coordinate bits [9].

In the case that the order type of a point set P cannot be determined by reading b bits, it is

likely that P ′, the 2b-digitization of P , has a different order type than P . If we choose b large

enough that the order types of P and P ′ are equal, then the norm of P and P ′ is equal, and smaller

than the amount of bits required to represent P ′. Using this argument, we expect the norm of P

to be upper bounded by O(n · n4n). This is, asymptotically, larger than the value of 16n3 · 2cn
that we found, which makes sense, since this is a rather crude translation a result with different

applications.

These recent works show that order type realizability is an active field of research, and these

new results created a new problem. When we compare the result of Goodman et al., the upper

bound on the norm of any point set in general space, which is 2ˆ2cn for some constant c, to our

result of 16n3 · 2cn in the average case, where c is the same constant, we see that for large n, the

difference becomes rather large. Goodman et al. showed that their upper bound holds for all point
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sets in general space and that it is a tight bound, so we could call this an lower bound in the worst

case. We found an upper bound on the norm in the average case. Using this nomenclature, the

problem that arises is explaining the difference between worst-case and average-case analysis.

1.4 Smoothed analysis.

Large differences between average-case and worst-case analysis are not rare. Quite recently, Spiel-

man and Teng developed a hybrid of both models of analysis, which enables us to explain such

differences. They stated that worst-case analysis can improperly suggest that an algorithm will per-

form poorly by examining its performance under the most contrived circumstances. Average-case

analysis was introduced to provide a less pessimistic measure of the performance of algorithms, and

many practical algorithms perform well on the random inputs considered in average-case analysis.

However, average-case analysis may be unconvincing as the inputs encountered in many application

domains may bear little resemblance to the random inputs that dominate the analysis [34].

Spielman and Teng proposed a new analysis called smoothed analysis, where the performance of

an algorithm is studied under slight perturbations of arbitrary inputs. They explain their analysis

by applying it on the Simplex algorithm, which was known for particularly good performance in

practice that was impossible to verify theoretically [22]. Using this new approach, they show that

the Simplex algorithm has “smoothed complexity” polynomial in the input size and the standard

deviation of Gaussian perturbations of those inputs, which was the desired theoretical verification

of its good performance.

This theoretical verification in terms of smoothed analysis is based on the assumption that

worst-case examples are rare, and spread out over the possible inputs. If this is the case, then the

smoothed analysis will suggest significantly better performance than the worst-case analysis. This

is because smoothed analysis is a combination of the average- and worst-case analysis, and offers a

parametrization of the scale between the two, and this is what enables us to verify that worst-case

examples are rare, under the condition that they are spread out.

Smoothed complexity. The smoothed expected complexity of an instance can be defined as

follows [10]: Let us fix some δ, which describes the maximum magnitude of perturbation. We

denote by (Ωδ,µδ) a corresponding probability space where each x ∈ Ωδ defines for each instance I

a new ‘perturbed’ instance Ix. We denote by C(Ix) the complexity of instance Ix. The smoothed

expected complexity of instance I equals

Cδ(I) = E
x∈Ωδ

[C(Ix)] =

∫
Ωδ

C(Ix)µδ(x) dx

If we denote by Γn the set of instances of size n, then the smoothed complexity equals:

Csmooth(n, δ) = max
I∈Γn

E
x∈Ωδ

[C(Ix)]

This formalizes what was mentioned before: not only do the majority of instances behave nicely,

but actually in every neighborhood (bound by the maximal perturbation δ) the majority of in-

stances behave nicely. The smoothed complexity is measured in terms of n and δ. If the expected

complexity is small in terms of 1/δ then this means worst-case examples are spread out, in which

case we have a theoretical verification of the hypothesis that worst-case examples are well-spread.

Smoothed complexity of order type realizability. Smoothed analysis is not only a handy

tool for explaining differences between average-case and worst-case analysis, but also corresponds

to a more realistic analysis in our case, where the input is a point set. This is because real-

life applications include measuring errors, apparatuses are not necessarily calibrated and modern

measuring tools already process information to display more relevant data, but rounding occurs

along the way. Hence it is natural to consider an input set of points P not as a set of exact values,



Digitizing order types 8

p
q

r

px
qx

rx

p′ q′

r′

Figure 4: A possible instance P = {p, q, r} with positive orientation, being randomly perturbed

to Px = {px, qx, rx}, which are then snapped to the grid points {p′, q′, r′} = P ′, both positively

oriented. Note that for some perturbations, snapped points may lie outside the blue disks. We are

interested in the likelihood of the order types of Px and P ′ being equal.

but instead as a set of points with an inherent measuring error δ. In this case, a more realistic

approach is to study the problem under slight random perturbations of P .

If we apply this analysis on the problem of order type realizability, the complexity that we

are interested in is the norm ν. We determine the norm of a point set Px as described before in

Section 1.3: if we determine the value of k such that P ′, the k-digitization of Px, has the same

order type as Px, then we can compute the norm in terms of k.

In our case, we are interested in planar point sets, so perturbations are bound by a disk with

radius δ, hence Ωδ := {xi | xi ∈ disk(δ), i ∈ {1, 2, . . . , n}}. Then, an adversary specifies a point set

P = {p1, p2, . . . , pn}, which is then perturbed slightly by some perturbation vector x ∈ Ωδ. This

results in Px = {p1 + x1, p2 + x2, . . . , pn + xn}, so we can define the smoothed norm of instance P

as the expected norm of Px by integrating over Ωδ, or formally

νδ(P ) = E
x∈Ωδ

[ν(Px)] =

∫
Ωδ

ν(Px)µδ(x) dx

If we denote the set of all possible point sets of cardinality n by Γn, the smoothed norm equals:

νsmooth(n, δ) = max
P∈Γn

E
x∈Ωδ

ν(Px)

Figure 4 shows an example of an instance P = {p, q, r} of three points, chosen by an adversary.

The blue disks around these points have radius δ, so the perturbed points Px = {px, qx, rx} must

lie somewhere inside these disks. Then, these points are snapped to grid points to form the set

P ′ = {p′, q′, r′}. For every perturbation, we determine the likelihood that P ′ has the same order

type as Px, and integrate over the possible perturbations, to find the smoothed expected norm of

P . To find the smoothed complexity of order type realizability, we find the worst-case instance an

adversary can specify and compute the smoothed expected norm of that instance.

Other applications. Clearly, smoothed analysis is a lot more complicated than a worst-case

analysis, but the results are usually a lot better. This analysis can be used to show that vari-

ous algorithms actually run in polynomial time, which forms the theoretical explanation of good

performance in practice that was missing so far.

For example, the smoothed analysis of the Nemhauser-Ullmann Algorithm [25] for the knapsack

problem shows that it runs in polynomial time [6]. A more general result that holds for a large class

of combinatorial problems containing all binary optimization problems, is that problems of this

class can be solved in smoothed polynomial time if and only if it can be solved in pseudopolynomial

time [7]. Other famous examples are the smoothed analysis of k-means algorithm [5], the 2-OPT
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TSP local search algorithm [11], and the local search algorithm for MaxCut [12]. Not surprisingly,

teaching material on this subject has become available [29, 31, 30].

Problem statement. In this thesis we are interested in abstract order types which can be

realized by a point set that has finite bit complexity (a finite, non-zero norm). For a given abstract

order type that is realized by a real-valued point set P , it is non-trivial to determine its norm.

However, if we can find a k-digitization of P which has the same order type then the norm of P is

upper bound by 2k (Observation 1).

To illustrate this idea for finding an upper bound on the norm of a point set P . We apply this

technique in the average case in Section 3 where we show that for a random point set the expected

norm is upper bound by O(n2n). We have already seen in the worst-case there exists an example

of a point set P that has a norm lower bound by O(22n).

In this thesis, we aim to explain this large difference between average-case and worst-case anal-

ysis by applying smoothed analysis on order type realizability. We assume that for any arbitrary

real-valued point set P , each point will be perturbed within a uniform distribution of radius δ

(the probability space Ωδ) around the point. The main problem studied in this thesis is finding

an upper bound on the norm of an arbitrary real-valued point set P in this implementation of the

smoothed analysis framework.

1.5 Results.

First we will consider the average case, i.e., P is a set of n points, chosen independently and

uniformly at random from [0, 1]2. We find the following upper bound on the expected value of the

norm of P , comparable to the result of Devillers et al. [9] that an algorithm can determine the

order type of a point set with at most 4n log(n) +O(n) coordinate bits, in the average case.

Theorem 1. Let P be a set of n points chosen independently and uniformly at random from [0, 1]2.

The expected value of the norm of P is smaller than 10n3 · 2cn for some constant c.

When we do not consider the average case, but the case that an adversary can choose the

worst-case positions of the points in P , and consider this set under slight perturbations, we can

compute an upper bound on the norm of Px that holds with probability γ.

Theorem 2. Given a point set P ⊂ [0, 1]2, |P | = n and some magnitude of perturbation δ, define

Px = {p1 + x1, p2 + x2, . . . , pn + xn} where (x1, x2, . . . , xn) ∈ Ωδ is a perturbation as defined in the

introduction. Then the norm of Px is smaller than 4n3

(1−γ)δ with probability larger than γ.

We can use the lemmas that we needed to prove this theorem in a slightly different way in

order to calculate the expected value of the norm of Px, which is the smoothed expected norm of

P .

Theorem 3. Given a point set P ⊂ [0, 1]2, |P | = n and some magnitude of perturbation δ, define

Px = {p1 + x1, p2 + x2, . . . , pn + xn}, where (x1, x2, . . . , xn) ∈ Ωδ as defined in the introduction.

Then the expected value of the norm of Px is smaller than 4n3/δ · 2cn.

The smoothed norm of order type realizability is equal to the smoothed expected norm of P

that maximizes this value, and since the smoothed expected norm of every point set P is upper

bounded by the above theorem, we have that the smoothed norm is upper bounded by 9n3/δ2.

2 Preliminaries

Before we prove these theorems, we must understand what proves them and why. In Section 3 we

prove a slightly alternative version of the theorem that R. Fabila-Monroy and C. Huemer proved

in [13], which is why we follow the same steps. They show that we can choose some value M large
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enough, such that if S is a set of n points chosen independently and uniformly at random from

[0,M ]2, and we move the points in S to S′, the set of n integer grid points that are closest to the

points in S, then S and S′ realize the same order type. Then, trivially, the norm of both S and

S′ is smaller than M . They show this result holds when n tends to infinity, and we will show a

similar result that holds for all n with a given probability. By integration, we find the expected

value of the norm in the average case.

In the case that we allow an adversary to choose a point set P , which is then perturbed to Px
by a perturbation vector x ∈ Ωδ, we will upper bound the norm of Px. We do that in the same

way as in the average case, but the condition that P ′, which is the digitization of Px in this case,

has the same order type as Px, becomes a bit more complicated.

Therefore, in contrast to the average case, we will not attempt to place the points of Px on

a grid directly, but we find the probability that the points in Px can move a distance d without

changing the order type of Px. To show that the order type of Px does not change under this

condition, we show that the orientations of all triangles in Px do not change when the vertices of

those triangles are free to move a distance d. There are two ways in which we will show that the

orientation of a triangle will not change, both depending on the minimal height of the triangle.

After we show that points in Px can move a distance d in any direction, we relate this to the

norm by the observation that digitizing a point set Px is, in a way, moving every point in Px a

limited distance (to a grid point). We show two examples of perturbations of a given point set in

Figure 5.

p

q

r

px

qx

rx

p′ q′

r′

p

q

r

px

qx

rx

p′

q′

r′

Figure 5: Given a point set P = {p, q, r}, a perturbed point set Px may have a different order

type than P , but we are interested in the value of k, such that Px and its k-digitization P ′ have

the same order type. The top row shows a perturbation for which the value of k is large enough,

the bottom row shows another perturbation of the same point set P with the same magnitude of

perturbation for which the value of k is not large enough.

We denote by P ′ ⊂ ωZ2 the set of n grid points that are closest to the points in Px. The largest

value a coordinate in Px, and thus in P ′, can have, is 1 + δ. If we multiply every coordinate in P ′
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by 1/ω, all points are integer grid points and the largest coordinate is (1 + δ)/ω < 2/ω, since we

are only interested in values of δ < 1. From this we can trivially deduce that the norm of P ′ is at

most 2/ω.

Observation 1. Let P ′ be the 1/ω-digitization of Px, if P ′ and Px have the same order type, the

norm ν(Px) = ν(P ′) is at most 2/ω.

If we move the points of Px to a grid with spacing ω, the maximal distance any point needs to

move is
√

2ω/2 < ω (refer to Figure 2). So after we have showed that any point in Px can move a

distance d without changing the order type, we can move every point to a grid with spacing ω = d

without changing order type. This leads to the following observation:

Observation 2. Let d be the distance every point in Px can move without changing the order type

of Px, then the norm of Px is at most 2/d.

With this observation we can let go of the idea of snapping points to grid because the norm is

upper bounded in terms of d, a property of the perturbed point set Px. We note, however, that

the underlying idea of why this is an upper bound on the norm is that we can snap Px to a grid

and upper bound the norm of the snapped point set.

3 Expected value of the norm in the average case

This section is based on [13], where Theorem II is proven. Given a number M , We define the

integer grid ΓM := [0,M ]2 ∩ Z2.

Theorem II. Let ε > 0, n a natural number and let M := bn3+εc. Let S be a set of n points

chosen independently and uniformly at random from the square [0,M ]2. Let S′ be the subset of n

points of ΓM that are closest to S. Then, the probability that S′ and S have the same order type

tends to 1, as n tends to infinity.

Here we prove a slightly alternative version of this theorem, in which the upper bound holds

not only asymptotically, but also in general with probability γ. A small error has been corrected,

besides that, the proof is comparable to the original.

3.1 Upper bound on the norm.

Following the example of Fabila-Monroy and Huemer, we first state the theorem and after that the

lemmas that lead up to the proof of this theorem. The theorem and lemmas below are numbered

alphanumerically, to indicate that they are based on the work of others.

Theorem A. Let P be a set of points chosen independently and uniformly at random from [0, 1]2.

With probability γ, the norm of P is upper bounded by 10n3

1−γ .

Before we continue to prove this theorem, we divide the problem in a few smaller steps: first

we will consider under what conditions the orientation of a triangle changes. Then we can apply

the union bound to the probability that will be the result of those considerations, to find the

probability that the orientations of any pair of corresponding triangles in P and P ′ are different.

If no pair of corresponding triangles has a different orientation, the order types of P and P ′ are

equal. Using observation 1, we upper bound the norm of P which proves the theorem.

We will first consider three points {p, q, r} ⊂ [0, 1]2, and their digitizations {p′, q′, r′} ⊂ ωZ2.

Since p′ is the grid point closest to p, the maximum distance between p′ and p is
√

2ω/2 (refer to

Figure 2). Now we consider two snapped points p′ and q′ and the disks with radius
√

2ω/2 < ω

around them as in figure 6. Since all we know about the position of the original points p and q

is that they are at most a distance ω from p′ and q′, the green disks are the possible locations of
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p and q. If r lies inside the purple wedge, the orientation of the triangle ∆(p, q, r) is likely to be

different from triangle ∆(p′, q′, r′). Now we also take the digitizing of r into account, and we note

that if dist(`(p′, q′), r) is less than ω, the orientations of ∆(p, q, r) and ∆(p′, q′, r′) may be different.

p′
q′

ω

Figure 6: Digitizing points p and q changes the orientation of triangle ∆(p, q, r) whenever r lies

inside the purple area.

We denote by Apq(omega) the area that is such that if r lies inside it, the orientations of

∆(p, q, r) and ∆(p′, q′, r′) may be different. To find the probability that r lies inside this area, we

upper bound the value of Apq(omega) first.

To find an upper bound on Apq(omega), we find the locations of p and q inside the disks that

maximize this area. Clearly, it is on the edge of the disk, but the location on the edge depends

on the distance between p′ and q′. To simplify our calculations, we replace the circles by squares

with the same centers and width 2ω, the double wedge that can be created by the points p, p′, q′

and q is always smaller than the purple wedge in figure 7 below. We must also take the orange

area into account, these are the possible locations of r where dist(`(p′, q′), r) is less than ω. The

desired upper bound on Apq(omega) is found by the intersection of these two colored areas.

p′

h

q′

Figure 7: If there is a third point r in one of the colored areas, the orientation of ∆(p, q, r) can be

different from the orientation of ∆(p′, q′, r′) because of the digitizing of p and q (purple area) or r

(orange area)

Lemma B. If p and q are at a distance dist(p, q) ≥ 8ω, then the probability that r, distributed

uniformly at random inside the unit square, is inside area Apq(ω), is less than 10ω/dist(p, q).

Proof. From Figure 6 we can deduce that the distance between p′ and q′ can be bounded in terms

of dist(p, q): dist(p, q)− 2ω ≤ dist(p′, q′) ≤ dist(p, q) + 2ω. This gives us the following bounds on

h = dist(p′, q′)/2− ω:

dist(p, q)/2− 2ω ≤ h ≤ dist(p, q)/2

The orange area, denoted by AO(ω), is now easily bounded: AO(ω) = 2ω · h ≤ ω · dist(p, q). For

the purple area we observe that we can bound the area of both wedges by one wedge with the same

apex angle and height
√

2, since that is the maximal length of any line in [0, 1]2. We can express

that wedge as two triangles on top of each other, where one triangle can be seen as an orange

triangle of which the height has been multiplied by the factor
√

2/h. So we can upper bound the

purple area AP (ω) by taking twice the area of an orange triangle, multiplied by the factor 2/h2.

This leads to

AP (ω) ≤ 2 · hω/2 · 2/h2 = 2ω/h ≤ 2ω/(dist(p, q)/2− 2ω)

In the original proof, refer to [13], the upper bound instead of the lower bound on h was used

erroneously to upper bound the 1/h term.
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The total area Apq(ω) is equal to the sum of the colored areas, so we have that:

Apq(ω) = AO(ω) +AP (ω) ≤ ω dist(p, q) +
2ω

dist(p, q)/2− 2ω

Now we will apply the condition dist(p, q) ≥ 8ω, which implies dist(p, q)/2− 2ω ≥ dist(p, q)/4

≤
(
dist(p, q)2 + 8

) ω

dist(p, q)

Observe that dist(p, q) ≤
√

2

≤ 10ω

dist(p, q)

Which proves our lemma.

This probability will no longer depend on dist(p, q) if we integrate over the probability space

of this distance, as in the original proof. The points p and q are distributed independently and

uniformly at random in [0, 1]2, so we can use the following density function for the distance between

two points p and q [33]:

fD(x) =

{
2πx− 8x2 + 2x3 0 ≤ x ≤ 1

4x
(
arcsin(1/x)− arccos(1/x) + 2

√
x2 − 1− x2/2− 1

)
1 ≤ x ≤

√
2

Lemma C. If p, q and r are distributed independently and uniformly at random inside the unit

square, the probability that r is inside area Apq(ω), is less than 30ω.

The proof of this lemma requires us to solve an integral, which could use the help of a computer

program that could do that for us, so we have moved the proof of this lemma along with the code

to Appendix A, so the reader can verify this result.

The integral we need to solve is the following

Pr(r ∈ A(ω)) =

∫ √2

0

Pr(r ∈ Apq(ω)|dist(p, q) = x)fD(x)dx

We have found the probability Pr(r ∈ Apq(ω)|dist(p, q) > 8ω) < 10ω/dist(p, q), and since every

probability is upper bounded by 1, we have that Pr(r ∈ Apq(ω)|dist(p, q) ≤ 8ω) ≤ 1, so we have

the equations we need to solve this integral.

We have found the probability that r lies inside the area Apq, which is equal the probability

that the orientations of ∆(p, q, r) and ∆(p′, q′, r′) may be different. We can extend this result to

the probability that any of the corresponding triangles in P and P ′ may have a different orientation

by the union bound, or Boole’s inequality, which states the following about events Ei:

Pr(∪mi=1Ei) ≤
m∑
i=1

Pr(Ei)

Lemma D. Let P be a set of n points, chosen independently and uniformly at random from [0, 1]2,

and let P ′ ⊂ ωZ2 be the set of n grid points that are closest to the points in P . With probability

larger than 1− 5n3ω, P and P ′ have the same order type.

Proof. We choose some indexing of all triangles that the points in P can form. Note that there

are
(
n
3

)
< n3/6 distinct triples in a set of n points, so the amount of triangles in P is also less than

n3/6.

We define Ei to be the event that triangle i may change orientation, and Lemma C gives us an

upper bound on Pr(Ei) for any i. Combining the statements above, we have that

(n3)∑
i=1

Pr(Ei) ≤
(
n

3

)
30ω < 5n3ω
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The probability that none of the corresponding triangles in P and P ′ have a different orientation

is the complement of the probability that any pair of corresponding triangles does have two different

orientations. We can conclude that the order type P and P ′ have is the same when all corresponding

triangles in P and P ′ have the same orientation, which happens with probability larger than

1− 5n3ω.

We have found a lower bound on the grid width ω that is such that we are sure that P ′, the

1/ω-digitization of P , has the same order type as P . We use Observation 1 from Section 2: when

P and P ′ ⊂ ωZ2 have the same order type, the norm of P is smaller than 2/ω. The norm ν(P ) is

thus upper bounded by N = 2/ω with probability larger than 1− 10n3/N , and equating the latter

to γ gives us that N = 10n3/(1 − γ). So with probability larger than γ, the norm of P is upper

bounded by 10n3/(1− γ), which proves Theorem A.

We can also use Lemma D to prove Theorem II, we do so by choosing the grid width ω in

such a way that the probability that P and P ′ have the same order type tends to 1, as n tends to

infinity. We choose ω = 1/
⌊
n3+ε

⌋
where ε is some value larger than zero. If we now let S = P/ω

and S′ = P ′/ω, we have proved Theorem II.

3.2 Expected value of the norm.

The results found above still are not ideal; an upper bound that holds with a certain probability is

not yet comparable to an upper bound that always holds. So in order to compare the average case

to the theoretic upper bound on the norm of 2ˆ2cn (where c is some constant as follows from [17]),

we need to compute the expected value of the norm in the average case.

From the previous section, we know that the norm ν(P ) is upper bounded by N with probability

larger than 1 − 10n3/N , so trivially, Pr(ν(P ) ≥ N) < 10n3/N . We can use this probability to

compute the expected value of the norm. First we show how to calculate an expected value given

such a probability, after which we can simply substitute this probability.

Assume we are given a probability that a non-negative random variable d is larger than some

threshold value t and that the domain of d is upper bounded by m for some value m > 0. The

probability density function of random variable d is denoted by fd. Then, by definition,∫ m

0

Pr(d ≥ t) dt =

∫ m

0

∫ m

t

fd(z) dz dt

Since we know that fd(z) ≥ 0, the requirements of Tonelli’s theorem [35] are met, which allows us

to change the order of integration.∫ m

0

∫ m

t

fd(z) dz dt =

∫ m

0

∫ z

0

fd(z) dt dz

Since fd(z) does not depend on t, we can move it out of the inner integral, which then becomes

rather trivial. ∫ m

0

∫ z

0

fd(z) dt dz =

∫ m

0

fd(z)

∫ z

0

1 dt dz =

∫ m

0

zfd(z) dz

This is the definition of the expected value of a non-negative random variable d with a maximal

value of m. We can put all this together to find the following equation:

E[d] =

∫ m

0

Pr(d ≥ t) dt

The expected value of the norm ν(P ) can be computed by substituting Pr(ν(P ) ≥ N) <

10n3/N , and m by 2ˆ2cn, the upper bound found by Goodman, Strumfels and Pollack. Since this

upper bound on Pr(ν(P ) ≥ N) is larger than one for values of N smaller than 10n3, we use 1 as
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an upper bound of that probability in the domain [0, 10n3]:

E[ν(P )] =

∫ 2ˆ2cn

0

Pr(ν(P ) ≥ N) dN

<

∫ 10n3

0

1 dN +

∫ 2ˆ2cn

10n3

10n3/N dN

= 10n3
(
1− 0 + log(2ˆ2cn)− log(10n3)

)
Since n > 1, we have that log(10n3) > 1, so

< 10n3 · 2cn

Remember that Goodman et al. show that c is some constant, which proves the following theorem:

Theorem 1. Let P be a set of n points chosen independently and uniformly at random from [0, 1]2.

The expected value of the norm of P is smaller than 10n3 · 2cn for some constant c.

4 Robustness of a triangle

Throughout this thesis we are given a point set P = {p1, p2, . . . , pn}. This point set is then slightly

perturbed to a point set Px = {p1 + x1, p2 + x2, . . . , pn + xn}, where x is a random vector from

the probability space Ωδ. Lastly, we digitize Px and obtain a point set P ′ and we are interested in

whether or not the order type of Px and P ′ are the same, which, using Observation 1 can be used

to upper bound the norm of Px.

Suppose you are given three points p, q and r, which are perturbed to the points px, qx and rx
and finally snapped to the points p′, q′ and r′. We are interested in whether or not the orientation

of ∆(px, qx, rx) is any different from the orientation of ∆(p′, q′, r′).

We say a triangle Tx := ∆(px, qx, rx) is d-robust, if for every set of vectors ~p, ~q, ~r ∈ disk(d) holds

that T ′ := ∆(px + ~p, qx + ~q, rx + ~r) has the same orientation as Tx. For any point p in the plane,

its 1
ω -digitization could be regarded as an arbitrary translation p of a distance at most

√
2

2 ω < ω

and thus if Tx is ω-robust, it has the same orientation as T ′.

Observation 3. Let Tx be an ω-robust triangle and let T ′ be the 1
ω -digitization of Tx, then T ′ has

the same orientation as Tx.

We are interested in the probability that we obtain a triangle ∆(px, qx, rx) for which its 1
ω -

digitization has the same orientation. It follows from this observation that we can focus on the

probability that ∆(px, qx, rx) is 2ω-robust instead.

Now we need a relation between robustness and measurable identities. We indicate all of the

possible vectors ~p, ~q, ~r ∈ disk(δ) by disks with radius δ around the vertices (refer to Figure 8), and

consider which choice of vectors results in a different orientation of T ′ = ∆(px + ~p, qx + ~q, rx + ~r).

In the figure, we see a triangle of which the smallest height is 2d, and it is clear that there is only

one choice of vectors ~p, ~q, ~r such that the orientation of T ′ is different from Tx: all three vectors are

perpendicular to the base corresponding to the smallest height. From here we can easily deduce

that if Tx is d-robust, there can be no choice of vectors of length d such that Tx has a different

orientation than T ′, so the height for each base of Tx must be more than 2d. Also, if the height

for every base of Tx is larger than 2d, then clearly, there is no choice of vectors of length d such

that the orientation of Tx is different from T ′, so Tx is robust.

Observation 4. A triangle Tx is d-robust if and only if for each base of the triangle Tx, its height

is more than 2d.

In Section 4.1 and 4.2, we consider the placements of rx that are such that ∆(px, qx, rx) is not

d-robust. Another method of finding the probability that ∆(px, qx, rx) is d-robust, is by simply
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d
px

qx

rx

~p

~q

~r

2d

Figure 8: Illustration of the robustness of a triangle: if the smallest height is equal to 2d, then

there is one choice of ~p, ~q, ~r ∈ disk(δ) such that the orientation of Tx is different from T ′, so this

triangle is not d-robust.

considering distances from lines (representing the height of a triangle). This method is a lot simpler

and even leads to a better result, but it may be more difficult to understand why this method works

on a first reading. This method is discussed in Section 4.3.

4.1 Finding the worst-case scenario for obtaining robust triangles.

We denote by rh the height of the triangle Tx with respect to the base pxqx, ph and qh are defined

similarly. We are interested in an upper bound on the probability that the triangle Tx is not

d-robust and thus (after applying observation 4) Pr(min{ph, qh, rh} ≤ 2d) for some positive value

d.

To get an understanding of how to upper bound this probability, we first assume two things:

• dist(px, qx) is guaranteed to be large.

• d(px, rx), d(qx, rx) < d(px, qx).

Because of the second assumption, the height rh is always smaller than qh and ph. This is

because clearly the area At of a triangle is constant and we know that if we denote by h the height

and b the base length, At = h · b/2, so the smallest height corresponds to the largest base.

This scenario can always be achieved in the smoothed analysis model by placing the original

points p and q far away from one another and by placing the original point r somewhere in between

(refer to Figure 9). Specifically, if we place p, q and r such that 2δ < d(p, r), d(q, r) < 2d(p, q) then it

is easy to see that both assumptions are guaranteed. Under these specific conditions, Pr(rh < 2d)

is minimal if the original points p, q, r are collinear.

Lemma 4. Let p, q and r be three collinear points with 2δ < d(p, r), d(q, r) < 2d(p, q) and let d be

a positive real number then

Pr(min{ph, qh, rh} ≤ 2d) <
8d

3δ
.

Proof. Without loss of generality, we assume that the point r lies between p and q and that they

all lie on a horizontal line, as depicted in Figure 9.

Consider the perturbed points px and qx. We denote by Ax(d) = {v ∈ R2 | d(`(px, qx), v) ≤ 2d}
the union of all points in the plane that have distance at most d from the line `(px, qx). If

rx 6∈ Ax(d), we know that the height rh is larger than 2d. Because of the assumptions we made

earlier, rh is always smaller than qh and ph, so when rx 6∈ Ax(d), we know that min{ph, qh, rh} > 2d.

The area of the intersection between the perturbation disk of the point r and Ax(d) is less

than 4d · 2δ whereas the total area of the area of the disk that rx can be perturbed to is πδ2.

It follows that the probability that rx is placed within Ax(d) (and therefore the probability that

min{ph, qh, rh} is less than 2d) is upper bound by 8dδ
πδ2 <

8d
3δ which concludes the proof.

Lemma 4 operates under the assumption that d(px, rx), d(qx, rx) < d(px, qx). In Figure 10 we

illustrate what happens if we remove this assumption. In the figure, we placed the initial points p

and r arbitrarily close and kept the original point q at a large distance.
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2d

2δ

px~p

p r

4d

q
qx

~q
rx

~rAx(d)

Figure 9: In this figure we see three original points p, q and r and the disks indicating the locations

they can be perturbed to. After perturbing p and q we obtain two points px and qx. We show a

slab of height 4d which contains the line pxqx in its middle, denoted by Ax(d). Observe that if rx
lies within this slab, that we can move px, qx and rx by at most distance d, to obtain a triangle

which has a different orientation than ∆(px, qx, rx).

p, r px q qx2δ 4d

Figure 10: In this figure we see three original points p, q and r and the disks indicating the locations

they can be perturbed to. After perturbing p and q we obtain two points px and qx. As in Figure 9,

we indicate the area that is such that if rx lies within this area, we can move px, qx and rx by at

most distance d, to obtain a triangle which has a different orientation than ∆(px, qx, rx).

Given the point placements px and qx, we are interested in both the height rh and ph.

Just as in Lemma 4 we can define an area Ax(d) as the union of placements of rx such that

rh < 2d and this area is again shown in red in Figure 10. However, we can also define an area

Bx(d), as the union of all placements of rx such that ph < 2d, this region is bounded by the dashed

lines. These regions are not identical, the area of Bx(d) that does not intersect with Ax(d) is

indicated in blue. Hence, we have found a larger area for poor placements of rx, and thus a larger

probability that there exists a base of Tx, such that the height of Tx with respect to that base is

less than 2d.

In Figure 10 we can see that the area of bad placements of rx increases as we move px and qx
closer together. The probability that px and qx are closer together increases as we move the original

points p and q closer together. Hence, we consider the worst-case scenario where the original points

p, q and r lie arbitrarily close. Note that this scenario is equivalent to having px, qx and rx be

three samples from the uniform distribution over Ωδ which is comparable to the scenario from [13]

and [9].

4.2 The worst-case scenario for obtaining robust triangles.

Having defined the worst-case placement of p, q and r an adversary can choose, we can upper

bound the probability Pr(min{ph, qh, rh} < 2d) in the worst case. Since it holds in the worst case,

it holds for any placement of p, q and r, which is result we need in order to be able to extend this
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p, q, r

px

p, q, r

qxqx px

p, q, r

px qx
Bx(d) Cx(d)4d

Figure 11: Here we show the areas Bx(d) and Cx(d), and the union Ax(d) ∪ Bx(d) ∪ Cx(d). The

green disk is the area that rx can be perturbed to, if rx lies inside the differently colored areas,

∆(px, qx, rx) is not d-robust.

result to all triangles in Px.

Theorem 5. Let p, q and r be three points chosen by an adversary which are perturbed by some

perturbation vector x ∈ Ωδ and let d ≥ 0 a real number. Then Pr(min{ph, qh, rh} ≤ 2d) < 44d
δ .

We prove this theorem in two steps. First we show, that if the distance between px and qx is

some value t ≥ 8d, then Pr(min{ph, qh, rh} ≤ 2d | dist(px, qx) = t) < 12d
t . We then consider all

values t for the distance dist(px, qx) to upper bound Pr(min{ph, qh, rh} ≤ 2d).

Lemma 6. Let px, qx and rx be three points chosen independently and uniformly at random from

disk(δ). If the distance between px and qx is at least 4d, then

Pr(min{ph, qh, rh} ≤ 2d) <
11d

dist(px, qx)

Proof. Given px and qx we can define three areas: the area Ax(d) is the union of all possible

placements of rx such that rh ≤ 2d. Since px and qx are given, this is the slab as was illustrated in

Figure 9. The second area, Bx(d), is the union of all possible placements of rx such that ph < 2d,

this area is a wedge that originates from qx and is bound by two tangents to a circle around px of

radius 2d as illustrated in Figure 10. If rx lies inside this wedge, the line `(rx, qx) intersects the

circle of diameter 2d around px, so dist(`(rx, qx), px) = ph ≤ 2d. The area Cx(d) is the union of

all possible placements of rx such that qh < 2d and it is defined symmetrically. An illustration of

these areas is provided in Figure 11.

If rx is not placed in Ax(d) ∪ Bx(d) ∪ Cx(d), then per definition min{ph, qh, rh} > 2d. We

upper bound the area of (Ax(d) ∪ Bx(d) ∪ Cx(d)) ∩ disk(δ) to conclude this proof. We simplify

our calculations by replacing the disks around px and qx by squares with side lengths equal to the

diameters of the disks: this does not change Ax(d), but it does increase Bx(d) and Cx(d) which is

not a problem since we are establishing an upper bound. Now we use Figure 12 to see that Ax(d)

is entirely contained in the wedges Bx(d) and Cx(d), except for the red area. Clearly, the red area

is smaller than the blue area, note that they are congruent triangles and compare their largest

sides. The blue area is counted doubly in the sum Bx(d) + Cx(d), so we can state

Observation 5. Ax(d) ∪Bx(d) ∪ Cx(d) < Bx(d) + Cx(d)

If we assume the left side of the double wedge that forms Bx(d) and the right side of the double

wedge that forms Cx(d) to be zero (refer to Figure 11), then Ax(d) is still contained in the sum

Bx(d) + Cx(d) (refer to Figure 12). Also, the left side of Bx(d) we assume to be zero is entirely

contained in the left side of Cx(d) and the right side of Cx(d) we assume to be zero is entirely

contained in the right side of Bx(d). This means that Observation 5 is still valid under these

assumptions.
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px qx4d Ax(d)

Figure 12: Here we see that the area Ax(d) is for a large part contained in the wedges originating

from px and qx.

Using these assumptions, the areas Bx(d) and Cx(d) are easily upper bounded: the height of

the wedge originating from px is 4d after a horizontal distance of dist(px, qx) − 2d, so the area of

that part of the wedge is 4d · (dist(px, qx) − 2d)/2. The maximal horizontal distance is 2δ if we

intersect the wedge with disk(δ), so the maximal area of the wedge is

2d(dist(px, qx)− 2d) ·
(

2δ

dist(px, qx)− 2d

)2

=
8dδ2

dist(px, qx)− 2d

We assumed that dist(px, qx) ≥ 4d, so we see that this area is smaller than 16dδ2/dist(px, qx).

Using Observation 5 and that the area Cx(d) can be upper bounded in the same way as Bx(d), we

state that (Ax(d) ∪Bx(d) ∪ Cx(d)) ∩ disk(δ) < 2Bx(d) ∩ disk(δ) ≤ 32dδ2/dist(px, qx)

The area of the disk that rx can be perturbed to is πδ2, and the perturbation is chosen from a

uniform distribution, so the probability that rx ∈ (Ax(d)∪Bx(d)∪Cx(d))∩disk(δ) is smaller than

32dδ2

dist(px, qx)
· 1

πδ2
<

11d

dist(px, qx)

which concludes the proof.

Now we can proceed to the second step of our proof. Lemma 6 first assumes that dist(px, qx) ≥
4d and then provides an upper bound for Pr(min{ph, qh, rh} ≤ 2d). Here we show a how to upper

bound the probability Pr(min{ph, qh, rh} < 2d) in general, so we need to lose our restriction on

dist(px, qx).

Lemma 7. Let px, qx and rx be three points, chosen independently and uniformly at random from

disk(0, δ) and d ≥ 0 a real number. Then Pr(min{ph, qh, rh} ≤ 2d) < 44d
δ .

Proof. At this point, we note a few things: the first thing we note is that dist(px, qx) always

lies between 0 and 2δ. The second thing we note is that if dist(px, qx) < 11d, then Lemma 6

gives an upper bound for Pr(min{ph, qh, rh} ≤ 2d) of one, which means that the lemma does not

supply any additional information. Lastly we note that if dist(px, qx) < 4d, we have no bound on

Pr(min{ph, qh, rh} < 2d) other than the fact that probabilities are always upper bound by 1.

Now we express the probability Pr(min{ph, qh, rh} ≤ 2d) without dependence on dist(px, qx) by

integrating over the probability space of dist(px, qx). This means that we will solve the following

integral:
∫∞

0
Pr(min{ph, qh, rh} ≤ 2d | dist(px, qx) = t)fδ(t) dt, where fδ(t) is the probability

density function of dist(px, qx). Because of these three prior observations, we can upper bound

this probability by stating:

Pr(min{ph, qh, rh} < 2d) ≤
∫ 4d

0

1 · fδ(t) dt +

∫ 11d

4d

1fδ(t) dt +

∫ 2δ

11d

11d/t · fδ(t) dt

It is hard to derive the exact value for the probability density function fδ(t). But since we

are interested in an upper bound on the probability Pr(min{ph, qh, rh} ≤ 2d), we can use an
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upper bound on the probability density function. Since px and qx are both a sample from disk(δ),

Pr(dist(px, qx) = t | t > 2δ) = 0. Consider any placement of px, if we want that dist(px, qx) = t,

then we can only place qx on the intersection between the domain disk(δ) and the circumference

of a disk with center px and radius t. The area of this intersection is at most 2πt and hence

Pr(dist(px, qx) = t) ≤ 2πt
πδ2 = 2t

δ2 . The probability density function fδ(t) on the domain t ∈ [0, 2δ]

that specifies the probability that dist(px, qx) = t is therefore upper bound by 2t
δ2 and thus we

state:

fδ(t) <

{
2t/δ2 t ≤ 2δ

0 t > 2δ

By applying this upper bound for the probability density function:

Pr(min{ph, qh, rh} < 2d) ≤
∫ 4d

0

2t/δ2 dt +

∫ 11d

4d

2t/δ2 dt +

∫ 2δ

11d

22d/δ2 dt

= 16d2/δ2 − 0 + 121d2/δ2 − 16d2/δ2 + 44d/δ − 242d2/δ2

< 44d/δ

This is the probability we were looking for, hence our lemma is proven.

Now we use the earlier observation that placing p, q and r arbitrarily close is the worst-

case configuration an adversary could choose. Because of this, we know that the probability

Pr(min{ph, qh, rh} < 2d) is upper bounded by 44d/δ, independent of the configuration the adver-

sary chooses. This proves theorem 5:

Theorem 5. Let p, q and r be three points chosen by an adversary which are perturbed by some

perturbation vector x ∈ Ωδ and let d ≥ 0 a real number. Then Pr(min{ph, qh, rh} ≤ 2d) < 44d
δ .

4.3 An alternative worst-case situation.

In this section, we present an alternative proof to Theorem 5, which will even lead to a better

result. To prove this theorem, we need to show that the minimum height of ∆(px, qx, rx) is more

than some distance 2d by showing that for every base, the height is at least 2d. In the previous

sections, we focused on the placement of rx. However, we can exploit the way we implement

smoothed analysis to prove this theorem in a lot more straightforward way: simply considering the

distance of any perturbed point to any line.

The situation is as before: an adversary may choose three points p, q, r ⊂ [0, 1]2. After these

points are chosen, they are perturbed by some vector x ∈ Ωδ as defined in the introduction. In

this case we have px := p+ xp where xp is chosen randomly and uniformly from disk(δ), qx and rx
are defined in the same way.

We will first consider rh, the distance from the line `(px, qx) to the perturbed point rx. Since

the perturbation is a random variable, our result will be the probability Pr(rh ≤ 2d). When we

consider the heights ph and qh (defined similarly to rh), the situation is exactly the same. Then

we can apply the union bound to find Pr(min{ph, qh, rh} < 2d), which will prove theorem 5.

Lemma 8. Let p, q, r ⊂ [0, 1]2 be perturbed to px, qx, rx as described above. Then the height rh is

at most 2d with probability smaller than 8d/3δ.

Proof. The proof of this lemma is comparable to that of Lemma 4, so we also refer to Figure 9,

where we see a slab of width 4d centered on the the line `(px, qx). We know that if rx lies outside

of this slab, then rh > 2d. We see that under any condition, independent of the placement of

p, q and r, the area of intersection between this slab and the disk that rx can be perturbed to

is smaller than 8dδ, no matter how the points p, q and r were placed. Since the perturbation is
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chosen uniformly from this disk with area πδ2 > 3δ2, the probability that rx lies inside this area

of intersection is thus smaller than 8d/3δ.

We note that the same result holds for ph and qh by permuting px, qx and rx in the proof above,

so we can apply the union bound. In our case, the union bound states the following:

Pr(rh ≤ 2d) ∪ Pr(ph ≤ 2d) ∪ Pr(qh ≤ 2d) ≤ Pr(rh ≤ 2d) + Pr(ph ≤ 2d) + Pr(qh ≤ 2d)

These probabilities are correlated, but the union bound is a result that is true for any set of prob-

abilities. Since all three probabilities are upper bounded by 8d/3δ, we have that Pr(min{ph, qh, rh} <
2d) = Pr(rh ≤ 2d) ∪ Pr(ph ≤ 2d) ∪ Pr(qh ≤ 2d) ≤ 8d/δ. This way, we have simplified our proof

and improved our result:

Theorem 5a. Let p, q and r be three points chosen by an adversary which are perturbed by some

perturbation vector x ∈ Ωδ and let d ≥ 0 a real number. Then Pr(min{ph, qh, rh} ≤ 2d) < 8d
δ .

4.4 Upper bound on the norm of a perturbed point set.

Both Theorem 5 and 5a are proven in the previous sections and they have similar results. In this

section, we will show how we can use such a result to upper bound the norm of a perturbed point

set.

Given a perturbed point set Px with |Px| = n, we can think of it as a collection of
(
n
3

)
< n3/6

triangles. Theorem 5a applies to all of these triangles independently, and we can apply the union

bound on this collection of triangles to prove the following lemma.

Lemma 9 (Union bound). Let P ⊂ [0, 1]2 be perturbed to Px as described in the introduction.

Every triangle in Px is d-robust with probability larger than 1− 2n3d/δ.

Proof. We will apply the union bound, or Boole’s inequality, which states the following about

events Ei:

Pr(∪mi=1Ei) ≤
m∑
i=1

Pr(Ei)

We choose some labeling of triangles of which the vertices are points in Px, and define Ei to

be the event that triangle i is not d-robust. For any triangle with vertices px, qx and rx we

know that with probability smaller than 8d/δ, the minimum height of ∆(px, qx, rx) is 2d or less.

Using Observation 4, we know that ∆(px, qx, rx) is not d-robust in that situation, which means

Pr(Ei) < 8d/δ.

We have bounded Pr(Ei) independently of i, so the choice of indexing of the collection of

triangles formed by the points in Px is not relevant, only the total amount of triangles:
(
n
3

)
< n3/6.

In this case, ∪mi=1Ei denotes the event that any of the triangles in Px is not d-robust. Substitut-

ing m =
(
n
3

)
and the value we found for Pr(Ei), we have that Pr(∪mi=1Ei) <

(
n
3

)
· 8d/δ < 2n3d/δ.

The complement of this event is that all triangles in Px are d-robust, which happens with proba-

bility 1− 2n3d/δ.

Observation 3 states that an ω-robust triangle Tx has the same orientation as T ′, its 1/ω-

digitization. If all triangles in Px are ω-robust, then P ′, the 1/ω-digitization of Px, has the same

order type as Px. Observation 1 from Section 2 states that in this case, the norm ν(Px) is upper

bounded by 2/ω. Substituting d = ω in Lemma 9, this results in

Pr(ν(Px) < 2/ω) > 1− 2n3ω

δ
(1)

Equating the right-hand side to γ, we find ω = (1−γ)δ
2n3 , or 2/ω = 4n3

(1−γ)δ , which proves the following

theorem:
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Theorem 2. Given a point set P ⊂ [0, 1]2, |P | = n and some magnitude of perturbation δ, define

Px = {p1 + x1, p2 + x2, . . . , pn + xn} where (x1, x2, . . . , xn) ∈ Ωδ is a perturbation as defined in the

introduction. Then the norm of Px is smaller than 4n3

(1−γ)δ with probability larger than γ.

4.5 The smoothed norm.

The probability defined in Lemma 9 can also be used to calculate the expected value of the norm

of Px, E[ν(Px)]. This is the smoothed norm of point set P . Since this results holds for any case,

it is the smoothed norm of any point set with cardinality n.

From the previous section, Equation 1, we know that the norm ν(Px) is upper bounded by N

with probability larger than 1 − 4n3/(δN), using the substitution ω = 2/N . We can thus state

Pr(ν(P ) ≥ N) < 4n3/(δN). We can use this probability to compute the expected value of the

norm. First we show how to calculate an expected value given such a probability, after which we

can simply substitute this probability. This discussion is exactly equal to that in Section 3.2.

Assume we are given a probability that a non-negative random variable d is larger than some

threshold value t and that the domain of d is upper bounded by m for some value m > 0. The

probability density function of random variable d is denoted by fd. Then, by definition,∫ m

0

Pr(d ≥ t) dt =

∫ m

0

∫ m

t

fd(z) dz dt

Since we know that fd(z) ≥ 0, the requirements of Tonelli’s theorem [35] are met, which allows us

to change the order of integration.∫ m

0

∫ m

t

fd(z) dz dt =

∫ m

0

∫ z

0

fd(z) dt dz

Since fd(z) does not depend on t, we can move it out of the inner integral, which then becomes

rather trivial. ∫ m

0

∫ z

0

fd(z) dt dz =

∫ m

0

fd(z)

∫ z

0

1 dt dz =

∫ m

0

zfd(z) dz

This is the definition of the expected value of a non-negative random variable d with a maximal

value of m. We can put all this together to find the following equation:

E[d] =

∫ m

0

Pr(d ≥ t) dt

The expected value of the norm ν(P ) can be computed by substituting Pr(ν(P ) ≥ N) <

4n3/(δN), and m by 2ˆ2cn, the upper bound found by Goodman, Sturmfels and Pollack. Since

this upper bound on Pr(ν(P ) ≥ N) is larger than one for values of N smaller than 4n3/δ, we use

1 as an upper bound of that probability in the domain [0, 4n3/δ]:

νδ(P ) = E
x∈Ωδ

[ν(Px)] =

∫ 2ˆ2cn

0

Pr(ν(Px) ≥ N) dN

<

∫ 4n3/δ

0

1 dN +

∫ 2ˆ2cn

4n3/δ

4n3/(δN) dN

= 4n3/δ
(
1− 0 + log(2ˆ2cn)− log(4n3/δ)

)
Since n > 1 and δ < 1, we have that log(4n3/δ) > 1, so

< 4n3/δ · 2cn

Remember that Goodman et al. show that c is some constant, which proves the following theorem:

Theorem 3. Given a point set P ⊂ [0, 1]2, |P | = n and some magnitude of perturbation δ, define

Px = {p1 + x1, p2 + x2, . . . , pn + xn}, where (x1, x2, . . . , xn) ∈ Ωδ as defined in the introduction.

Then the expected value of the norm of Px is smaller than 4n3/δ · 2cn.
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5 Prospects

In this thesis we managed to find a theoretical explanation of the large difference between the

average-case and worst-case analysis of order type realizability. What we cannot claim, however,

is that our explanation is complete: we did not show the bound on the smoothed norm to be tight,

nor did we show the bound on the norm in the average case to be tight.

These results can easily be generalized to higher dimensions under the condition that the

definition of order type changes accordingly. At this point, it is unclear whether this generalization

finds any interesting applications.

6 Retrospects

This section is a short overview of the originality of the presented work. Existing results are

indexed by Roman numbers, improved results are indexed by letters and original work is indexed

by Arabic numbers.

Theorems I and II are paraphrased from sources [28] and [13], respectively. Theorem A is an

improvement of Theorem II and its proof is thus based on the proof of Theorem II.

I consider Theorems 1 and 3 to be important new results, but Theorem 2 is new as well. The

proof of Theorem 5 is partially based on Theorem II, but the proof of Theorem 5a is new work.

I consider Lemma 8 to be the most elegant result, since its proof makes good use of the specific

conditions of this problem.
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A Proof of Lemma C

Here we repeat Lemma C and show how the integral results in the value that it was claimed to be.

Lemma C. If p, q and r are distributed independently and uniformly at random inside the unit

square, the probability that r is inside area Apq(ω), is less than 30ω.

Proof. We have found the probability Pr(r ∈ Apq|dist(p, q) > 8ω) < 10ω/dist(p, q), and since

every probability is upper bounded by 1, we have that Pr(r ∈ Apq|dist(p, q) ≤ 8ω) ≤ 1. We can

use these formulas to calculate the probability Pr(r ∈ A):

Pr(r ∈ Apq) =

∫ √2

0

Pr(r ∈ A|dist(p, q) = x)fD(x)dx

We will use the following probability density function, where x is used as a shorthand notation for

dist(p, q).

fD(x) =

{
2πx− 8x2 + 2x3 0 ≤ x ≤ 1

4x
(
arcsin(1/x)− arccos(1/x) + 2

√
x2 − 1− x2/2− 1

)
1 ≤ x ≤

√
2

(A.1)

Now we can let some program like Mathematica do the work, here ω has been replaced by w,

so this code can be copied into a Mathematica cell directly.

In[1]:= Expand[Integrate[(2 Pi*x - 8 x^2 + 2 x^3), {x, 0, 12 w}] +

Integrate[

15w/x*(2 Pi*x - 8 x^2 + 2 x^3), {x, 12 w, 1}] +

Integrate[

15w/x*(4 x (ArcSin[1/x] - ArcCos[1/x] +

2 Sqrt[x^2 - 1] - x^2/2 - 1)), {x, 1, Sqrt[2]}] ] // N

This results in the following probability:∫ √2

0

Pr(r ∈ Apq|dist(p, q) = x)fD(x)dx = −1365.33ω4 + 1194.67ω3 − 301.593ω2 + 29.7321ω

< −1300ω4 − 300ω2(1− 4ω) + 30ω

Since it is safe to assume that the grid width will be smaller than 1/4,

< 30ω (A.2)

This concludes the proof of our lemma.
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