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Abstract

In this thesis, I test whether data-driven approaches can predict
cognitive load based on EEG data. Previous research has tested
in an oddball paradigm how the magnitude of an Event-Related
Potential relates to cognitive load. However, an intervention is not
always desirable in everyday scenarios. I therefore test, whether
it is possible to predict the different cognitive load conditions be-
fore the intervention (i.e., oddball stimulus) is presented in three
data-driven experiments. In experiment 1, I used machine learning
to train a model that classifies the data for different conditions. In
experiment 2, I test which characteristic/features of the data have
the highest predictive power for each condition. In experiment 3, I
tested how a Fourier transformation and data-driven approach can
be used to complement each other. The combined results show that
using a data-driven approach; I can predict cognitive load for the
experiment at hand. However, the machine learning approach (ex-
periment 1 and 2) require a long processing time. The combined ap-
proach (experiment 3) provides a consistent pattern that can differ-
entiate between the cognitive load conditions. Further research is
needed to test the generality of these findings for different datasets.
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“ Man will only become better when you make him see what he is like. ”
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Introduction I

Every day, we use our cognitive capacity to acquire knowledge and understand

through thought, experience and the senses. An example of this is making a de-

cision about what to wear. We make this decision based on information we receive

(e.g. weather and occasion) that our brain processes. It allows us to understand and

to relate to the world more effectively. Even though our cognitive capability exceeds

that of every other animal, there are limits to our cognition.

For example, imagine you are reading a study book. If someone calls your name

while you are reading, you might notice it. However, if you are very deeply involved

in the material and thinking about it hard, you might not notice it, as you might

experience a so-called “high cognitive load”.

A high cognitive load suggests that the task at hand is difficult and, therefore, little

cognitive capacity remains for processing other signals. For example, in the exper-

iment of Van der Heiden et al. (2018), they show that when participants are tasked

with driving in a simulation, that these participants are less susceptible to auditory

signals than a participant who is stationary in that simulation. Thus, measuring

cognitive load provides insight into the difficulty of the task at hand, enabling us to

identify tasks where we have less cognitive capacity remaining and th erefore being

less susceptible to other signals even though being susceptible to other signals is in

some cases preferred (e.g. safety-critical situations).

Traditional research conducted into cognitive load concludes results through inter-

ventions and/or manipulations in an experiment (e.g. Klimesch et al. (1993) and

Scheer et al. (2016)). For example, in a study by Van der Heiden et al. (2018), fre-

quent sounds are played to test how susceptible people are to sounds under differ-

ent task load conditions. While using interventions is a proper way to test cognitive

load, it is less suitable for everyday scenarios like driving a car in real traffic. In such

cases, providing additional stimuli (as intervention) can distract from the task that

one needs to focus on. Instead, it would be beneficial if the cognitive load could be

assessed passively without an intervention. I will, therefore, explore whether data-

driven techniques can be used to detect patterns in data that predict cognitive load.

An additional advantage of such an approach is that it can also find new characteris-

tics that attribute to different conditions (Shi et al., 2018), and when caution is taken

to prevent overfitting (Pitt and Myung, 2002), provide novel insights.

1



1.1 Problem Definition

In this thesis, I test whether a data-driven (bottom-up) approach can predict cog-

nitive load. Specifically, I will use data from an experiment by Van der Heiden et

al. (2018), in which participants were exposed to three conditions that offer a vari-

ety of task load and associated cognitive load. Their study showed that when an

intervention was provided (i.e., when cognitive load was probed through the pre-

sentation of an oddball stimulus), that the different conditions could be detected in

an event-related potential signal. My question is new whether these conditions can

be predicted based on the EEG signal before the intervention (oddball stimulus) is

presented. Specifically, my research question is:

Can a data-driven approach be used to, without interventions and
manipulations, predict human cognitive load?

Although there is no guarantee that patterns will be found, the approach is strength-

ened by successes in other labs where machine learning was able to detect specific

cognitive processes within EEG data (e.g. Obermaier et al. (2001) and Doroshenkov

et al. (2007))

The remaining part of the thesis proceeds as follows. Chapter one provides further

background on cognitive load, how cognitive load can be measured, the application

of machine learning techniques to measured data from experiments, and a descrip-

tion of the experiment of which I used the data in this thesis. Chapter 3 discusses the

General Method, where I provide insight into the generic processing of the data for

the different experiments. This is followed by three experimental chapters. Chap-

ter 4 looks at my first experiment, where I use machine learning to classify different

amounts of cognitive load. Chapter 5 refines this work by testing what character-

istics are most predictive for the categorization into different cognitive load condi-

tions. Chapter 6 tests whether a top-down approach using proven preprocessing

methods can provide insight into what differentiate the cognitive load conditions.

Lastly, Chapter 7 discusses the combined results with their implications and limita-

tions.

2 Chapter 1. Introduction



Literature Review II

This section provides a literature review of the fields in which this thesis is placed.

At first, I start with a description of cognition and cognitive load. Next, I discuss the

experiment from which the data is used in this thesis and provide arguments as to

why this data can be used. Finally, we look at the application of machine learning

techniques to EEG data.

2.1 Cognition and Cognitive Load

Most of the time, when we talk about cognition functions, we are referring to the

cognitive skills in order to receive, select, transform, develop, and recovery infor-

mation that we’ve received from external stimuli. Although we can study these as

separate ideas, we need to keep in mind that these cognitive skills are always inter-

related and that these sometimes overlap. The main cognitive functions are defined

as memory, executive functions, and lastly, attention (Marvel and Paradiso, 2004).

Cognitive load refers, in general, to the load a specific task places on one or more

of the cognitive functions named above. Thus, as there are different cognitive func-

tions, we can say that there are different domains of cognitive load in accordance

with the functions. Having a high cognitive load in the attention domain placed

upon a person with a specific task might have that person miss other stimuli. A

prime example of this is the video where one is tasked with counting the number

of passes the team in white cloths makes, while this is happening most people miss

the gorilla walking through the background (Simons and Chabris, 1999). Because

we are tasked with counting the passes, our attention is focussed on this. We place

a cognitive load on ourselves; by doing this, we are less susceptible to other stimuli

that require attention. To some extent, this is because of the highly efficient filtering

our brain does, filtering through all the stimuli leaves only the relevant/‘important’

stimuli to be perceived. For the remainder of this thesis, I define cognitive load as

the load placed upon the cognitive function of attention.

In an attempt to measure the cognitive load of a human, various methods have been

employed. Among the non-invasive methods are, for example, functional Magnetic

Resonance Imaging fMRI (e.g. Herzmann et al. 2017; Young et al. 2018), Magne-

toencephalography MEG (e.g. Colclough et al. 2015; Basti et al. 2018) and Electroen-

cephalography EEG (e.g. Artoni et al. 2018). While all of the previously named
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methods are candidates for measuring workload, fMRI and MEG require expensive

setups that prohibit them from being implemented in consumer-grade vehicles.

EEG, on the other hand, is a cheaper option and provides insight into cognitive load

(e.g. Antonenko et al. (2010), Anderson et al. (2011), and Leppink et al. (2013)) and

susceptibility to auditory signals which can be used as metric for cognitive load

(Wester et al., 2008; Van der Heiden et al., 2018). These last two studies show that

susceptibility to auditory signals varies over different tasks and that humans are

less susceptible to auditory signals while having a high task load than when having

a low task load (i.e. when there is a high cognitive load human are less susceptible

to auditory stimuli than when humans have a low cognitive load).

In more detail, in Van der Heiden et al. (2018) they showed that while in a driving

simulation; when a participant was tasked with manual driving (i.e. a high task

load) they where less susceptible to auditory stimuli, when a participant was tasked

with driving in an autonomous car (i.e. a medium task load) they where more sus-

ceptible to auditory signals, and when a participant was placed in a stationary car

(i.e. a low task load) they where even more susceptible to auditory signals. They

also showed that participants who were tasked to react (i.e. press a button) to an

auditory stimulus were more susceptible to this stimuli than participants who were

asked to ignore this auditory stimulus. Because the data of Van der Heiden et al.

(2018) is available through the university, the data has different levels of cognitive

load, and because the researcher who did this study is easily approachable, I chose

this dataset to use for my thesis.

However, research into cognitive load is almost exclusively done in an experimen-

tal setup where they use interventions and/or manipulations to measure cognitive

load. While interventions and manipulations are fine for experimental setups, this

is not acceptable in everyday scenarios. I would like to test whether this is possi-

ble to determine the cognitive load of a person without using interventions and/or

manipulations by using a bottom-up (machine learning) approach.

2.2 Background on Machine Learning Technique(s)

Machine learning has recently gained popularity, spurred by well-publicized ad-

vances like deep learning (Lecun et al., 2015) and the advancement in hardware

and acquired data that allow for big data analytics (Chen et al., 2014). According

to Lee et al. (2018), there are already a number of significant commercial applica-

tions that have appeared, including but not limited to recommendation engines,

speech and handwriting recognition systems, content identification, image classi-

fication/retrieval, automatic captioning, spam filters, and demand forecasting. One

prime example is IBM Watson (Ferrucci, 2012); this question-answering computer
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system, communicating in natural language, entered the public stage through its

winning performance in the quiz show Jeopardy, and is now used in commercial ap-

plications like lung cancer treatment (AOCNP, 2015) and heart failure identification

(Guidi et al., 2016).

Machine learning is the field of science that ‘gives computers the ability to learn

without being explicitly programmed’ (Samuel, 1959). It, therefore, differs from

human learning (true learning), where variables of learning have meaning and are

not just features. Following Shalev-Shwartz and Ben-David (2014) and Trevor et al.

(2017), almost all of machine learning can be split into three different types of learn-

ing; namely supervised learning, unsupervised learning and reinforcement learning.

In supervised learning, learning occurs from a labelled dataset. This creates the op-

portunity to train a classifier to label new data in the same manner as in the learning

dataset (Trevor et al., 2017, Chapter 2). In unsupervised learning, no labelled data

is needed, in this case, learning occurs by means of finding a group that has simi-

lar features (clustering) (Trevor et al., 2017, Chapter 14). For reinforcement learning

a way of feedback is introduced to give positive and negative feedback according

to how good something is, this results in an online learning tool (Sutton and Barto,

1998). Because the data from the experiment that I use for my thesis is labelled, we

will in the remainder of this thesis only look at supervised learning.

2.2.1 Random Forest

Random Forests is one of these supervised learning methods and was introduced

by Breiman (2001). A Random Forest (see algorithm 1) is a classifier consists of a

collection of decision trees, each tree is built from a sample (Z∗) drawn with re-

placements (i.e., a bootstrap sample) from the training set S. A tree Tb is build

following the following three steps recursively until the minimum node size nmin

is reached: 1) Select m variables at random from the p variables. 2) Pick the best

variable/split-point among the m. 3) Split the node into two daughter nodes. After

doing this for all trees, we have a forest {Tb}B
1 . In contrast to its original publication

Breiman (2001), I use the implementation of Pedregosa et al. (2011), where their im-

plementation combines classifiers by averaging the probabilistic prediction of each

tree, instead of letting each classifier vote for a single class. Thus, to now predict a

new point x; let Ĉb(x) be the class prediction of the bth random-forest tree. Then

ĈB
r f (x) = con f idence vote{Ĉb(x)}B

1 . As the number of trees in a Random Forest

increases, the test set error rates converges to a limit, meaning that there is no over-

fitting in large Random Forests (Breiman 2001 and Shalev-Shwartz and Ben-David

2014, Chapter 18).

2.2. Background on Machine Learning Technique(s) 5



Algorithm 1: Creating a Random Forest
Input: training set S

1 while b < B do

2 Draw a bootstrapped sample Z∗ of size N from the training data ;

3 while nodesize > nmin do

4 Select m variables at random from the p variables;

5 Pick the best variable/split-point among the m;

6 Split the node into two daughter nodes;

7 end

8 end

9 return Forest {Tb}B
1

A reason as to why Random Forests are popular is because of its interpretability.

Random Forests can be used to determine feature importance (e.g. Menze et al.

(2009)), and its decision making can be viewed. This might not be feasible to do by

hand when working with a large forest, but every decision tree can be viewed, its

root, node and leaves. Because of its popularity successes with random forest are

in abundance, in Yoshida et al. (2014) they successfully classify a driver’s cognitive

state in a real driving situation with eye-movements. Bashivan et al. (2015) showed

that using random forests it is also possible to rank the 192 features and select the 64

features that contribute to cognitive load in a memory task.

Despite its success, there are two major contributors to wether it succeeds or whether

it fails. Correlation between the different trees is key. Uncorrelated models can pro-

duce ensemble predictions that are more accurate than any of the individual pre-

dictions. The reason for this effect is that the trees protect each other from their

individual errors. While some trees may be wrong, many other trees will be right,

resulting in that as a group the trees are able to classify correctly. So the prerequisites

for a random forest to perform well are: 1) There needs to be some actual signal in

the features so that models built using those features do better than random guess-

ing. 2) The predictions (and therefore, the errors) made by the individual trees need

to have low correlation with each other (Trevor et al., 2017, Chapter 15). To make

sure that there is enough diversity between the trees we need to take the correlation

between features into consideration, we can select features of importance which do

not correlate using feature selection.

2.2.2 Recursive Feature Selection

Recursive feature selection is such a feature selection method, it trains a classifier for

all features - 1 and repeats this process such that each feature is left out exactly once.

6 Chapter 2. Literature Review



This provides with an insight into the feature that is approximated to be least signif-

icant. This feature is then removed from the features pool, and the process repeats

until only a set number of features remains. This algorithm can be adapted to use

different models to evaluate the features; in algorithm 2, I show an implementation

from Guyon et al. (2002) adapted with a Random Forest.

Algorithm 2: Recursive Feature Selection
Input: an instance a vector of feature values (p∗) and class labels

Output: ranking of features

1 Find the optimal values for the tuning parameters of the RF model;

2 Train the RF model with full feature set;

3 p← p∗;
4 while p ≥ 2 do

5 RFp ← RF with the optimal tuning parameter for the p variables and

overservations in Input;

6 wp ← calculate weight vector of the RFp(wp1, . . . , wpp);

7 rank.criteria← (w2
p1, . . . , w2

pp);

8 Remove variable with lowest value in rank.criteria vector from Input;

9 Rankp ← variable with lowest value in rank.criteria vector;

10 p← p − 1;

11 end

12 Rank1 ← variable in Input /∈ (Rank2, . . . , Rankp∗);

13 return (Rank1, . . . , Rankp∗)

This procedure is an instance of backward feature elimination. For computational

efficiency, more than one feature can be removed at a time. This, however, is at the

expense of possible classification performance degradation. If features are removed

one at a time, features can be ranked correspondingly. Features that remain among

the top-ranked are not necessarily ones that are individually most relevant, only

together these features are optimal. Although this algorithm is relatively old, it still

gets used in new research (e.g. Wang et al., 2018; Liu et al., 2018).

2.2. Background on Machine Learning Technique(s) 7





General Method III

3.1 Overview

For the experiments reported here, Van der Heiden et al. (2018) provided the data

from their experiment. This dataset was used because it was easily available, la-

belled and contained conditions that vary in cognitive load. The data contains EEG

recordings of 18 participants (11 F) with an age range of 20 to 25 years old (M =

22.06 years, SD = 1.39 years). In their experiment, they tested how susceptible hu-

man drivers are to auditory signals in three situations: when stationary, when driv-

ing, or when being driven by an autonomous vehicle. They measured suscepti-

bility using a three-stimulus auditory oddball paradigm (intervention) while partici-

pants experienced these different situations and studied this specifically through the

frontal P3 (fP3) Electroencephalography Event-Related Potential response (EEG ERP

response). In their results, they showed that the fP3 ERP response is reduced in au-

tonomous conditions compared to stationary conditions, but not as strong as when

participants drove themselves. In addition, the fP3 component is further reduced

when the oddball task does not require a response (i.e., in a passive category, versus

active). I will test if it is possible to differentiate between these different conditions

and categories without intervention and using a bottom-up approach.

3.2 Preprocessing

For each of the experiments, these data were processed offline using the MNE v0.17.0

package (Gramfort et al., 2014) in Python (Rossum, 1995). To compensate for noise

from the mains, a 50 Hz notch filter was applied and the data was referenced to

the mean of left and right mastoid signal. The data was also corrected for a 50ms

delay when logging the stimulus onset, see Van der Heiden et al. (2018) for details.

Trials containing false alarms (e.g. button-presses to the non-target auditory signal),

misses (e.g. failed responses to the deviant target tone), and invalid responses (e.g.

responses outside the 100-950 ms interval, after correction for the delay) following

Van der Heiden et al. (2018).

After following the preprocessing steps from Van der Heiden et al. (2018), I also

rejected trials that are contaminated with blinks using the EOG electrodes. Lastly,

9



because I want to look at the interval of 500 ms preceding the stimulus, a high-

pass filter is applied to filter out frequencies < 2 Hz because for lower frequencies

I cannot capture a complete sine wave in this time interval. The interval of 500

ms preceding the stimulus was chosen because it limits the amount of data that is

used/needed to check for predictive markers in the EEG data while still allowing

for a large spectrum of wavelengths.

10 Chapter 3. General Method



Experiment 1 IV

In this experiment, I wanted to evaluate whether it is possible to train a machine

learning model that predicts the driving condition (stationary, autonomous, or man-

ual driving) based on EEG. To do this, I compared the validation score of this model

to a random model and a most common model (this model always chooses the label

that is most common in the data). If the machine learning model is better than the

other two models, it might be usable in online use-cases where the driving condition

is associated with a difference in susceptibility. If a model can be used to predict this

driving condition, it could be used to determine when a person is most susceptible

to auditory stimuli.

4.1 Method

Using different preprocessing techniques, I wanted to create more features than the

64 features from the electrodes. Because I was using a bottom-up approach, I did

not know what features mattered, and by using Random Forests, I could be able to

determine what feature(s) matter to classify the different driving conditions. After

preprocessing, according to the general method (Chapter 3), I copied the data into a

total of four datasets and processed them further. For dataset 1, a baseline correction

was applied for an interval of 100 ms preceding the stimulus onset, and the data

was selected to be in the interval of 500 - 0 ms preceding the stimulus. For dataset

2, the same baseline correction was applied, but instead of the interval, an average

was placed upon each data point containing the average of 500 ms preceding that

datapoint. Dataset 3 had no baseline correction applied and contained the data in the

interval of 500 - 0 ms preceding the stimulus. The last dataset, dataset 4, contained no

baseline correction, and each data point contained the average of 500 ms preceding

that point. Finally, I downsampled all datasets from 2048 Hz to 200 Hz.

The data was separated to account for features, features that the dataset consist of,

represent the EEG bands which have been estimated from each electrode. Frequen-

cies were extracted for the following bands: δ (<4 Hz), θ (4-7 Hz), α (8-12 Hz), β

(12-30 Hz), and γ (31-50 Hz). Additionally, the following four features were also

extracted: δ + θ, θ + α, α + β and β + γ (such that δ + θ contained <7 Hz, etc.), these

four features counter overlap in the different bands. Nine features in total were ex-

tracted from each of the 64 EEG electrodes, resulting in a total of 576 features for

11



each dataset. The features were denoted as “proprocessing_electrode_feature”. For

example, feature “nByA_FCz_al”, represented the alpha band (8 to 12 Hz) for elec-

trodes “FCz” without being baselined and but with an average.

4.1.1 Random Forest

As a machine learning technique I chose to use a Random Forest model from Pe-

dregosa et al. (2011) because previous research (Chapter 2) shows promising results

by using Random Forests on EEG data, they can hardly be overfitted and are fast to

train. A total of 2304 features were then used to train this model, setting the random

state (seed) to 1636 to make sure the experiment could be repeated, maximum depth

of 25% of all features to make sure that a tree wouldn’t turn out to have a single node

at each depth. I put the total amount of trees to 64 trees to limit calculation time. All

the remaining settings remained on default because a preliminary test showed that

these settings had minimal impact on the resulting score.

Stratified 10-fold cross-validation was used to compute the final result to make sure

that each fold contains approximately the same percentage of samples of each target

condition as the complete set and as validation for the stability of the machine learn-

ing model trained. Using Stratified 10-fold cross-validation the model was trained

with 8 out of the total of 10 folds, where the remaining 2 folds were used to test the

model. This was repeated such, that every fold was used exactly 8 times to train and

2 times to test to reduce the chance that the model was biased.

The labels used for the training and testing of the model were the different driving

conditions. I decided to leave the category (active vs passive) out because the par-

ticipants were asked to react to auditory stimuli after the stimuli were presented.

However, the data used in this experiment were selected to exclude data after the

auditory signal was given.

To evaluate the score of Random Forest model to something, I also created two ad-

ditional models. The most common model picks the label that is most common in

the dataset. In the case of this experiment, the most common label is Driving. Lastly,

I created a random model, which was also set to a random state (seed) of 1636 to

make sure the result could be repeated.

4.2 Interim Results

Fig. 4.1 shows the accuracy of the proposed method compared to a model that is

completely random and a model that picks the most common label. In this figure,

I show that I was able to get an accuracy of 41,1% using a Random Forest model,

12 Chapter 4. Experiment 1



while the model that always picked the label that is most common in the data was

able to score 35,4%. Using a completely random model decreases the accuracy by

∼2% and results in an accuracy of 33,4%, which is what one would expect from a

completely random model.
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FIGURE 4.1: The Accuracy of the model compared to random and
most common

4.3 Discussion of Results

In this experiment, I used the preprocessed EEG data to assess the ability of a Ran-

dom Forest model to classify the three driving conditions. Results showed that this

classification was done to a better extent than randomly applying a label to data or

classifying everything as the label that is most common. However, because of its

overall accuracy, this model is not a solution for classifying cognitive load in safety-

critical situations.

Random Forest models are vulnerable to features that correlate and feature that do

not contribute to the labelling of the data. This vulnerability is because in each node

in a tree from a random forest, a random pick selects a set of features which could be

used in that node. The tree then selects the feature that leads to the most substantial

Gain (see Algorithm 1, step 5). Reducing the Gini Impurity is one of the ways you

can calculate the highest Gain, it means that the decision tree tries to form nodes

containing a high proportion of samples (data points) from a single label by finding
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the features that cleanly divide the data into classes. When the random pick of fea-

tures in the initial stage doesn’t contain features that can be used to label the data

clearly, the decision tree loses its ability to perform well.

Even though I was able to create a Random Forest model to classify the driving

conditions, this model is not suitable for safety-critical situations. Neither was I able

to determine what features were ranked high among the trees. A next experiment

should be to reduce the number of features such that only features that contribute

to labelling the data are considered in a next Random Forest model, neither should

redundant features be considered to cut down on time used to create and evaluate

the Random Forest model.
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Experiment 2 V

In this experiment, I followed up on one of the discussion points from experiment

1. Namely, that a reduction in features that correlate with each other and the elim-

ination of features that do not contribute to the label should improve the score for

a Random Forest model. Using recursive feature selection, I want to reduce the fea-

tures that are used in the Random Forest model. Using recursive feature selection

provides insight into the correlation between features and the contribution of a fea-

ture to the label. It will allow for selecting the features that contribute most to the

label and eliminating features where the correlation with the chosen features is high.

This should result in giving the Random Forest model a better chance of picking fea-

tures that can be used to distinguish between the labels.

5.1 Method

For this experiment, I used the same preprocessing method as in experiment 1 (Chap-

ter 4). However, instead of using stratified 10-fold cross-validation, I used a 5-fold to

reduce calculation time. I also decided oly to use the manual driving condition and

stationary label instead of all 3 labels to reduce training and testing time, by only us-

ing 2 of the 3 labels the calculation time could improve with 33%. I chose these two

labels because these were the two most extreme opposites in previous experiments

(Van der Heiden et al., 2018). Saving time is important for this experiment because

to eliminate one feature at a time for a complete ranking, I needed to do 4.22 ∗ 106748

iterations of the algorithm.

Next, I searched for settings for the Random Forest algorithm to minimalize the

time it takes to do the 5-fold cross-validation while making sure that the test scores

are still better than random and the most common label. This was done by chang-

ing the parameters is the Random Forest model one at a time, while leaving the

other parameters on the default setting. The number of trees was tested for 1, 2,

4, 8, 16, 32 and 64 trees (default = 8), the maximum depth of the trees in the ran-

dom forest was tested for 0.1, 0.2, . . . , 1 of all the features (no maximum depth as

default). I also tested with the minimal sample split which is required to split a

node and changed it to 0.1, 0.2, . . . , 1 of all the datapoint (default = 2). Lastly, I

changed the number of features to consider when looking for the best split (default
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=
√

total number o f f eatures) and changed it to 0.1, 0.2, . . . , 1∗ total number of fea-

tures. Afterwards, I want to use recursive feature selection to eliminate features one

at a time.

5.2 Interim Results

Preliminary research showed (figure 5.1 and 5.2) that there are a vast amount of

features that correlate heavily with each other. Thus, feature selection should pick

the feature that contributes the most to the classification of the label and leaves the

remaining features out. In figure 5.1 on the left, I show the correlation between

the features that haven been preprocessed such that they have not been baselined

and have been averaged with the delta-frequency band. The brighter the colour,

the more correlated the individual features are. Features on the diagonal line are

correlated with themselves; thus, they are the brightest. In figure 5.1 on the right, I

show the correlation between the features that haven been preprocessed such that

they have not been baselined and have been averaged. In this figure, we can clearly

see that there are some bright spots among the features; most of them are around the

diagonal line.

FIGURE 5.1: Left: Correlation matrix of the delta frequncy band for
the no baseline but with average features. Right: Correlation matrix

of the no baseline but with average features

In figure 5.2, I show a complete overview of the correlations between features. Again,

there are some large bright spots in the figure. All these bright spots show features

that are highly correlated with each other.

The EEG signal extracted from the recording was processed, filtered and segmented

into 500 ms epochs as described in the General Method (Chapter 3) and the specific

method for this experiment. The complete data set was divided into 5 sets in accor-

dance with the stratified cross-validation to avoid bias and to make sure that each

fold contains approximately the same percentage of samples of each target condi-

tion as the complete set. Next, the model was trained with 4 out of the total of 5 sets,
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FIGURE 5.2: Correlation matrix that shows the correlation between
features. (best shown in color)

where the remaining 1 set was used to test the model. This was repeated such, that

every set was used exactly 4 times to train and 1 time to test. Figure 5.3 shows the

train en test scores of Random Forest models with a different number of trees and

time it takes to train and test these models.
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FIGURE 5.3: Left: this graph shows the train and test score for differ-
ent amount of trees in the Random Forest with all other settings on
default from a 5-fold cross validation. Right: this graph shows the
time it took for different amount of trees to generate a result from a

5-fold cross validation.

This result highlights a problem for a bottom-up (data-driven) approach. The score

required to be an improvement on the most common label is 0.54 (from all the labels,

54% of the labels is “stationary”). Thus only a model with 4 or more trees in the forest

satisfied the requirement of having a better classification than most common. To

train and test this model it takes 2359 seconds (roughly 39 minutes). Using recursive
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feature selection would mean that this model should be trained and tested for a total

of 2304 times (each time the model would leave one feature out to train). The time

it would take to calculate the worst feature would take roughy 5.4 ∗ 106 seconds (63

days). As shown in Algorithm 2 in Chapter 2, the process would repeat until there

were only two features left (or another chosen number of features).

While the remaining parameters of the random forest algorithm also contributed to

the score and time it takes to train and test the model, the performance and calcula-

tion time changes I found were marginal.

5.3 Discussion of Results

In this experiment, I tried to use the preprocessed EEG data to assess which features

contributed most to the labelling of the data. Results show, however, that using the

recursive feature elimination with a Random Forest is not a viable option because

of time constraints. The complete algorithm would take approximately 1.89 ∗ 106746

years when there is no improvement in calculation speed when there are fewer fea-

tures to consider. The algorithm can be adapted to drop more than one feature each

time (e.g. drop the two worst features) but this can also result in inaccuracy.

A next experiment should find another way of preprocessing the initial data to pro-

duce fewer features and look for manners of preprocessing EEG data that has al-

ready been used to produce significant results.
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Experiment 3 VI

In this experiment, I wanted to evaluated the power of the different EEG frequency

bands and calculated if there is a significant difference between the different cat-

egories (active and passive), the different conditions (stationary, autonomous, and

manual driving), and if there is an interaction effect between the category and con-

ditions before the auditory stimulus. By calculating the power of a frequency band,

I hoped to acquire fewer features than in my previous experiments, but still, be able

to distinguish between conditions before the auditory stimulus.

6.1 Method

After preprocessing, according to the general method (Chapter 3), I applied a 50 Hz

low-pass filter to the data to remove all the frequencies that were out of scope for

the EEG frequency bands. Next, I selected the interval of 500 - 0 ms preceding the

stimulus. The dataset was then downsampled from 2048 Hz to 500 Hz to reduce the

density of the data (data reduction) but have enough data remaining to processes

the data further. Afterwards, I reduced the electrodes such that they still cover the

whole scalp and conform to the 10/20 standardized layout. I also decided to add

the FCz as an additional electrode because this electrode yielded a significant result

in the experiment of Van der Heiden et al. (2018). The remaining electrodes were as

follows: Fp1, Fp2, F3, F4, Fz, Cz, C3, C4, T7, T8, Pz, P3, P4, O1, O2, Oz.

6.1.1 Fourier transform

For each trial and electrode, I applied a fast Fourier transform to calculate the power

for the frequency spectrum. Next, I took the calculated averages from the output

from the fast Fourier transform for each participant in the three different conditions.

Thus, resulting in three averaged fast Fourier transforms for each participant, in total

54 for each electrode (18 participants × 3 conditions). Next, I grouped and averaged

the frequency ranges to account for the frequency bands found in EEG data, namely;

δ (<4 Hz), θ (4-7 Hz), α (8-12 Hz), β (12-30 Hz), and γ (31-50 Hz).
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6.1.2 ANOVA

Statistical analyses were conducted in R. I used a 2 (categories: active and passive)

x 3 (conditions: stationary, autonomous, and manual driving) ANOVA, with the

active and passive category as a between-subjects factor and driving condition as

a within-subjects factor. Through-out all analyses, a significance level of α = .05

for the conditions was used. In cases where a main effect of driving was found, I

used Holm-corrected pairwise t-tests to determine the differences between the three

driving conditions.
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6.2 Interim Results

Table 6.1 reports the F-values of the main effect of driving condition. As can be seen,

the theta frequency band produced significant differences. More specifically, for 11

out of the 17 electrodes, there was a significant effect. For electrodes that are located

on the somatosensory cortex, parietal and occipital lobe, there was consistently a sig-

nificant difference in theta power between the three driving conditions. The effect

was the strongest pronounced on the electrode P4, where a Holm-corrected pair-

wise comparisons yielded significant differences between stationary and driving

(p = .002, d = 0.72), between autonomous and driving (p = .006, d = 0.54) and

between stationary and autonomous (p = .016, d = 0.30). More generally, on all of

the electrodes, a similar pattern was found; namely, the stationary condition consis-

tently had the highest theta power and the manual driving conditions the lowest.

Electrode δ-power θ-power α-power β-power γ-power

Fp1 0,121 0,918 0,241 0,715 0,849

Fp2 1,563 1,223 0,219 0,28 0,157

F3 0,825 1,879 0,250 0,601 0,887

F4 1,983 2,433 0,622 0,325 0,158

Fz 1,381 3,690* 0,003 0,192 0,408

FCz 1,642 5,149* 0,076 0,161 0,435

Cz 1,959 7,848** 0,327 0,13 0,492

C3 1,602 7,785** 1,208 0,069 0,604

C4 2,225 9,286*** 0,209 0,385 0,374

T7 1,463 0,006 2,924(.) 1,503 0,041

T8 2,415 2,969(.) 0,210 0,300 0,591

Pz 2,104 4,533*** 1,734 0,203 0,673

P3 2,108 10,370*** 1,802 0,176 0,505

P4 2,259 10,816*** 0,946 0,144 0,642

O1 2,255 5,494* 5,489** 1,109 0,307

O2 2,358 6,126* 0,245 0,588 2,072

Oz 2,490(.) 6,924** 2,506(.) 0,530 0,459

TABLE 6.1: This table shows the F-values from the main effect of
driving condition of each electrode for the different frequency bands

when F(2, 16). Signif. codes: ‘***’< .001, ‘**’< .01, ‘*’< .05, ‘(.)’< .1.
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For the main effect of response category (active versus passive), there were only

consistent significant effects on the gamma frequency band. Specifically, for 11 out

of the total of 17 electrodes, there was a significant effect. Electrodes that yielded a

significant effect tended to be located around the midline region of the brain. Again,

the effect was strongest pronounced on electrode P4, with an F-value of F(1, 16) =

7.958, p < 0.05, d = 1.03. On all electrodes with a significant effect, a similar pattern

was found, where the passive category consistently yielded a higher gamma power

than the active category. Table 6.2 reports the F-values of the main effect of category

(active versus passive).

Electrode δ-power θ-power α-power β-power γ-power

Fp1 2,178 3,724(.) 3,040 2,994 5,184*

Fp2 0,210 2,138 2,694 2,976 5,158*

F3 0,885 1,100 1,349 1,325 2,447

F4 0,616 2,169 1,670 2,121 1,533

Fz 0,674 0,816 1,775 2,285 5,404*

FCz 0,630 0,586 1,793 2,410 6,136*

Cz 0,602 0,422 1,608 2,633 6,459*

C3 0,612 0,201 1,587 2,447 3,467(.)

C4 0,526 0,887 1,533 1,016 1,393

T7 0,654 0,599 3,928(.) 5,271* 7,479*

T8 0,462 1,225 1,951 2,019 3,256(.)

Pz 0,517 0,000 1,580 3,547(.) 6,624*

P3 0,533 0,000 2,418 4,358(.) 7,325*

P4 0,537 0,212 1,975 3,36(.) 7,958*

O1 0,460 0,004 0,692 2,564 6,523*

O2 0,488 0,086 0,183 0,002 1,283

Oz 0,472 0,001 0,859 2,946 7,055*

TABLE 6.2: This table shows the F-values from the main effect of ac-
tive / passive category of each electrode for the different frequency
bands when F(1, 16). Signif. codes: ‘***’< .001, ‘**’< .01, ‘*’< .05,

‘(.)’< .1.
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There was no significant interaction between the driving mode and response cate-

gory for any electrode or frequency band, see table 6.3.

Electrode δ-power θ-power α-power β-power γ-power

Fp1 0,680 0,136 0,532 0,807 0,819

Fp2 0,479 0,140 0,411 0,224 0,138

F3 0,164 0,173 0,547 0,841 0,803

F4 0,377 0,731 0,695 0,429 0,027

Fz 0,290 0,162 0,232 0,356 0,430

FCz 0,351 0,215 0,176 0,325 0,463

Cz 0,354 0,223 0,111 0,245 0,486

C3 0,292 0,031 0,106 0,189 0,640

C4 0,321 0,844 0,526 0,625 0,467

T7 0,319 0,233 0,008 0,074 0,708

T8 0,336 1,368 0,737 0,766 0,800

Pz 0,256 0,303 0,288 0,115 0,364

P3 0,289 0,292 0,283 0,103 0,314

P4 0,277 0,004 0,095 0,175 0,516

O1 0,284 0,641 0,929 0,535 0,174

O2 0,377 0,354 0,706 0,205 0,067

Oz 0,278 0,427 0,261 0,260 0,269

TABLE 6.3: This table shows the F-values from the interaction effect
of the active / passive category with the driving condition (station-
ary, autonomous, and driving) of each electrode for the different fre-

quency bands when F(2, 16).

6.3 Discussion of Results

In this experiment, I investigated if the output of a Fourier transform can be used

as a means to distinguish between the different conditions and categories. I show

in table 6.1 that a reduction in θ-power is significant between the driving conditions

for 11 of the 17 electrodes and in table 6.2 that a reduction is γ-power for 11 of the 17

electrodes is significant between the categories. I also showed in table 6.3 that I did

not find an interaction effect between the conditions and categories. After finding a

pattern using a bottom-up (data-driven) approach, I need to validate my findings in

theory.

Previous EEG studies have identified the frontal midline region as an optimal lo-

cation for detecting load-sensitive EEG signals in the theta band (Ishii et al., 1999;
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Gevins et al., 1997; Inouye et al., 1994). They have also shown that alpha-band sig-

nals over the frontal and parietal regions tend to be relatively more sensitive to the

attention demands of tasks than to the alpha band signals recorded over other re-

gions (Gevins et al., 1997; Klimesch et al., 1993). In Klimesch (1997) and Klimesch

et al. (1997), they emphasize that alpha activity, especially in the higher frequency

range (10–13 Hz, referred to as upper alpha), is associated with semantic informa-

tion processing, in particular with searching, accessing, and retrieving information

from long-term memory. Since most cognitive tasks draw on these processes, al-

pha Event-Related Desynchronization can be observed in a wide range of task de-

mands (Klimesch et al., 2006). Theta activity, in contrast, has been frequently related

to episodic and working memory as theta Event-Related Synchronization increases

parametrically with working memory load and is sustained during the retention pe-

riod (e.g. Jensen and Tesche (2002) and Kahana et al. (2001)).

The results in this experiment also reflect that the theta band is ideal for detection

differences in cognitive load. However, the results reflect that the parental frontal

region is more suitable for the detection of differences in cognitive load, then the

aforementioned frontal midline region. The results also don’t reflect any relation to

the alpha band for detecting differences in cognitive load. Which I did not consider

is the fact that some electrodes might be placed over the primary visual, auditory, or

somatomotor cortices, this might influence the resulting indices to be disproportion-

ately affected by task-related activation of these regions. While this is not a problem

when detecting cognitive load in a task-related environment, the same model cannot

be used to generalize because the task-related activation of regions might differ.

Muller et al. (2000) showed that gamma-band signals differ when subjects attend to a

particular stimulus, compared to when the same stimulus was ignored. Participants

in the study of Van der Heiden et al. (2018) were asked to either press a button when

an auditory signal was presented (attend to a stimulus) as a participant in the active

category or to ignore the auditory signal (ignore the stimulus) as participants in the

passive category. The results from table 6.2 of this thesis imply that attending to or

ignoring a stimulus can be detected beforehand.
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General Discussion VII

7.1 Summary of Results

This thesis started with the research question “Can a data-driven approach be used

to, without interventions and manipulations, predict human cognitive load?” and I

can confirm that this is possible. Using a Random Forest machine learning model, I

was able to outperform a random model (which randomly selected a label) and the

most common model (which always selected the most common label). However,

the model created during this thesis is not accurate enough to be used in safety-

critical situations. Afterwards, I tried to improve my Random Forest model by using

Recursive Feature Selection to select features that are important to label the data

and remove redundant features to speed up the training and testing of the model.

This was, however, not feasible because of time constraints, calculating the optimal

features would take over a thousand years.

In the last experiment, I used a Fourier transform to calculate the power for the

different bands for each condition. This yielded consistently significant results that

I was able to distinguish between the driving conditions without an intervention. It

also proved that it was possible to consistently distinguish between the active and

passive category without an intervention.

7.2 Implications

In the existing theory, I did not find research that tried to predict cognitive load in

a driving simulator. However, research into cognitive load, in general, is not novel.

Klimesch et al. (1993) showed that alpha-band signals over the frontal and parietal

regions tend to be relatively more sensitive to the attention demands over other re-

gions. Again in Klimesch et al. (1997) and Klimesch (1997), they emphasized that

alpha activity, especially in the higher frequency range, is associated with semantic

information processing. In contrast with this, I did not find any significant distin-

guishing between the different conditions or categories, which might be explained

by the fact that this is associated with semantic information processing.
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I did find a consistent significance in the theta frequency band, which frequently

has been related to episodic and working memory as theta Event-Related Synchro-

nization increases parametrically with working memory load (Jensen and Tesche,

2002; Kahana et al., 2001). However, I found the opposite to their findings, where

they report on a decrease in theta power when cognitive load increases, I found the

opposite. Where I found a decrease in theta power when cognitive load decreased,

they reported on an increase in theta power. However, again, they did not apply

cognitive load in a driving simulator but with memory tasks.

7.3 Future Work

A follow-up could investigate if there are other machine learning algorithms that

are less vurnerable to these vast amounts of irrelevant features. But, what might be

more interesting is to continue with my third experiment. A follow-up could be to

test whether the phenomenon that I found is not only consistent over the dataset

used for this thesis but if it is consistent over multiple data sets.

Another way to continue is to experiment if it is possible to detect this phenomenon

in real-time uses in a simulator, and, if so, is it possible to manipulate the participant

into having more or less cognitive load. It could be even possible to test if when

a participant has a low cognitive load, is that participant quicker to press a, e.g.,

button in case of a warning signal.

7.4 Conclusion

This study aimed to use a data-driven approach to see whether it was possible to pre-

dict different cognitive load conditions. As the results and discussion have shown, it

is possible to distinguish between different cognitive load conditions. Even though

the results from this study are not completely accounted for by the existing liter-

ature, I believe that further improvements in this field could bring an explanation

as to why the results and existing literature do not match. Even though it was not

the major goal of this study, it also showed that it is possible to distinguish between

active and passive categories. It shows the importance of trying a non-traditional

approach, and how it can provide new insights.
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