
Utrecht University

Artificial Intelligence

Master Thesis

On the classification of imbalanced image
datasets

A machine learning approach towards classifying the imbalanced
COCO image dataset

Author:
Olivier Claessen

Supervisors:
dr. Cassio de Campos

dr. Ad Feelders
drs. Wilbert Weterings

August 1, 2019

Abstract

In certain complex real-world problems such as fraud detection and disaster prediction,
some instances of classes are more rare than other instances of classes in the dataset
making the dataset imbalanced. When working in such important domains, some classes
might have very few instances while still being very important for the classification
task. An intuitive example of a minority class which is important to learn and predict
in an imbalanced dataset is an instance of a fraud case when trying to detect fraud.
As fraudulent transactions are not as common as non-fraudulent transactions, these
instances might be hard to learn as there is less data to train the classifiers on while
this class is still the most important class to predict in the dataset. In order to solve
these problems, the problem of imbalanced datasets has to be addressed. The goal of
this thesis is to construct a classification model that can predict classes of image data in
an imbalanced dataset. The dataset that is used for this research is the Common Objects
in Context (COCO) dataset by Microsoft, this dataset contains 80 classes with occluded
and cluttered images of these instances and is quite imbalanced. The goal is to research
what kind of classifiers perform well on such types of imbalanced dataset, by using a
convolutional Neural Network (CNN), random forest (RF) and support vector machine
(SVM). The RF and SVM classifiers use pre-extracted features such as histogram of
oriented gradients (HOG) and DAISY. Out of the three classifiers that were used, the
neural network generally performed better than the RF and SVM. This is probably
due to these predictors needing pre-extracted features which makes them less flexible in
extracting meaningful features from images. The Neural network performance F1 micro
(0.425) outperformed the baseline dummy classifier F1 micro (0.306) while only using
10% of the entire COCO dataset. This research shows that different approaches have
the potential to construct models which have the potential to be used for multi-class
classification tasks on imbalanced datasets. There are implications that the techniques
which were used during this research can be finetuned and optimized even further which
in turn leads to better results.

Contents

1 Introduction 6
1.1 Problem statement . 6
1.2 Main objective of this study . 7
1.3 Scope of this thesis . 8
1.4 Research Question . 8

2 Literature review 10
2.1 Imbalanced data set classification . 10
2.2 Sampling . 11
2.3 Data stratification . 11
2.4 Research gap . 12

3 Research Objectives 13
3.1 Design . 13

3.1.1 Research question . 13
3.2 Research sub-questions . 13

3.2.1 Does pre-processing the data improve the model’s results? 14
3.2.2 Which metric or metrics represent the performance of the model

best? . 14
3.2.3 Which sampling methods represent the data in the best manner? 14
3.2.4 Does a machine learning algorithm with feature extraction achieve

a higher accuracy than using machine learning techniques without
feature extraction? . 15

3.2.5 What machine learning technique or combination of techniques
will yield the best results? . 15

3.2.6 How can the machine learning techniques be optimized further? . 15
3.2.7 Is there a possibility to account for possible biases such as the

selection bias? . 15

4 Experimental setup 16
4.1 Data . 17

4.1.1 COCO data set . 17
4.1.2 Class imbalance . 17
4.1.3 Stratification of the subsets . 19
4.1.4 Sampling . 19

4.2 Metrics . 20
4.3 Models . 22

4.3.1 Convolutional Neural Networks 22
4.3.2 Random Forest . 24
4.3.3 SVM . 24

4.4 Dummy classifier . 25
4.5 Feature Descriptors . 25

4.5.1 Histogram of Oriented Gradients 26
4.5.2 DAISY . 26
4.5.3 Multi-Block Local Binary Pattern 27

5 Results 28
5.1 Data . 28
5.2 Optimizing the models . 28
5.3 Results COCO dataset . 33

5.3.1 Validation . 38

6 Discussion 40
6.1 Further research . 41

7 Conclusion 44

8 Reflection 46

List of Figures

1 Image from data set with bounding boxes. 9
2 Undersampling & oversampling Badr, n.d. 11
3 Specifications of the used CPU for the RF and SVM experiments. 16
4 Specifications of the used GPU for the NN experiments. 16
5 An example of an occluded object (bicycle) in the data set. 18
7 Histogram of oriented gradients on an image of a cat. 26
8 DAISY feature extractor on an image of a cat. 27
9 MLBP feature extractor on an image of a cat. 27
11 Clustered sampled class subset (16 classes) of the COCO subset, the axis

are used to illustrate how far clusters of classes are from eachother. The
closer clusters of classes are together, the more similar these classes are
to eachother. 29

12 K Means and PCA to cluster the COCO dataset, the axis are used to il-
lustrate how far clusters of classes are from eachother. The closer clusters
of classes are together, the more similar these classes are to eachother. . 29

13 Validation loss for the best performing neural networks from the grid
search, where the orange line is the 3-128-3-128 architecture 30

14 PCA curve for the class subset, 700 components describe about 97.5% of
the dataset. 31

16 F1 micro for the class subset. 32
17 F1 micro for best strategies found for the class subset. 33
18 Micro and macro ROC curves of the Neural network without sampling

methods, which is the best performing classifier on the subset 34
19 F1 micro for stratified methods. 34
20 NN with Tomek Links 10% of the dataset ROC. 36
21 F1 micro for Tomek Links and dummy classifier. 36
22 Strategies and their micro F1 score for percentages of the COCO dataset

used. 37

List of Tables

1 specifications of the macbook CPU used for NN, RF and SVM experiments. 17
2 Dataset statistics. 19
3 Example of a confusion Matrix. 22
4 The architecture of the neural network which found by grid searching

different architectures. 30
5 Class subset classifier micro F1 score and standard deviation (n=5). . . 33
6 class subset classifier results with standard deviation in parenthesis (n=5). 51
7 class subset random undersampling classifier results. 51
8 class subset random oversampling classifier results. 51
9 class subset ENN classifier results. 51
10 class subset datagen classifier results. 51
11 class subset dummy classifier results. 51
12 class subset SMOTE classifier results. 52
13 class subset TOMEK classifier results. 52
14 class subset SMOTETOMEK classifier results. 52
15 class subset ADASYN classifier results. 52
16 Support Vector Machine iterative imageset stratification results. 52
17 Random Forest iterative image set stratification results. 52
18 Neural Network iterative image set stratification results. 52
19 Support Vector Machine stratified subset results with standard deviation

in parenthesis (n=5). 53
20 Random Forest stratified subset results with standard deviation in paren-

thesis (n=5). 53
21 Neural Network stratified subset results with standard deviation in paren-

thesis (n=5). * represents the usage of a data generator. 53
22 Support Vector Machine Tomek Links with standard deviation in paren-

thesis (n=5). 53
23 Random Forest Tomek Links. 53
24 Neural Network Tomek Links. 54
25 dummy classifier results. 54
26 Support Vector Machine with RBF kernel stratified results. 54
27 Classification report for the neural network on the class subset 55
28 Classification report of the RF on 10% of the COCO dataset 55
29 Classification report of the SVM on 10% of the COCO dataset 57
30 Classification report for the neural network with TOMEK links on 10%

of the COCO dataset . 58
31 Class occurence in the dataset . 60

1 Introduction

In this modern age where data is more abundant than ever, there is a huge need to
gain knowledge and insights from data. People generally share a huge amount of per-
sonal data on social media platforms such as Facebook, Instagram, LinkedIn and Flickr
(Manovich, 2011; Naaman, 2012). On platforms such as Instagram and Flickr where
every piece of content is visually inclined, there is an abundant amount of data avail-
able. These days social media marketers still struggle to sift through the gigabytes of
personal data in order to find useful and meaningful content. One popular technique
to infer knowledge from data is machine learning (Bose and Mahapatra, 2001; Fayyad,
Piatetsky-Shapiro, and Smyth, 1996). Data from these photos can be used to infer
knowledge by using machine learning techniques. Because of this recent trend and the
ever-growing dataset from the world wide web, the question arises whether it is possible
to train classifiers on imbalanced datasets while still getting good results. More research
is needed to fully explore the scope in which sampling can utilized for machine learning
to use imbalanced datasets and quickly train classifiers for prototyping or business cases
while maintaining good results.

As image data sets are quite large these days, it is quite interesting to see what
impact different data sampling methods have on the results of classifiers. This imme-
diately raises the question whether it is possible to improve a classifier on a set of data
while using sampling techniques and achieve good results on the test set. If achieving
good results with a sample of the data is possible, what are the differences in results
when comparing different sampling methods. Some datasets also tend to be imbalanced
which might pose a challenge for the data scientist trying to engineer a model to solve
the problem (Maloof, 2003). Domains where unbalanced datasets occur naturally are
fraud detection and NLP (Lemaître, Nogueira, and Aridas, 2017; S. Kotsiantis, Kanel-
lopoulos, Panayiotis Pintelas, et al., 2006). More research is needed in the domain of
imbalanced multi-class datasets and effective sampling techniques.

The models generated by these machine learning techniques can be used in the
industry to get an insight into the data that has been collected. Machine learning
can be an effective tool for the domain of marketing especially when combined with the
descriptive power of images. There are two main domains of marketing: mass marketing
and direct marketing. In mass marketing the newspaper and television are used to reach
a large audience and in direct marketing the marketing is tailored to groups that might
already be interested in buying the product yielding higher response rates. By using
machine learning, direct marketing can be tailored exactly to the consumers’ needs in
order to save money for the company and yield a higher response rate. Machine learning
can also be incorporated in companies to find possible future customers or to analyze
which customers might be interested in their new product (Ling and Li, 1998; Witten
et al., 2016).

1.1 Problem statement

Training a classifier and trying to make it learn the classes present in the data set is
much harder when the data set is imbalanced. This means that at least one of the classes
present in the data set is significantly larger than other classes. The problem is that the
classes with few instances have a low error cost and a low prior probability. Machine
learning algorithms have different learning strategies when training on imbalanced data
sets. Some algorithms might try to balance the true-positive and false-positive rates
while others might simply predict he majority class most of the time. As imbalanced

data sets occur often in real life applications, this problem is interesting to study (Mal-
oof, 2003; Lemaître, Nogueira, and Aridas, 2017). This raises the question: What are
good sampling algorithms for a machine learning algorithm?

Sometimes, the dataset is larger than the classification algorithms can deal with on
the hardware where it is running on (Provost, 2000). In this case sampling can be a
good technique to see which models perform best on a part of the data set and later
train it on the dataset. Applications such as market segmentation, new opportunity
detection, risk management and software cost prediction are a big part of applications
for companies where much data is available (Bose and Mahapatra, 2001).

A standard single label classification has a domain χ that must be classified. Y
is the set of labels and H is the set of classifiers so that χ → Y . The objective in a
classification task is to find the classifier h ∈ H that maximizes the amount of times the
correct class is predicted, h(x) = y where y ∈ Y is the true label of the instance that
is classified (Boutell et al., 2004). Single-label classification tries to classify cases with
one label l from a set of disjoint labels L where |L| > 1 and if |L| = 2 the problem is
called a binary classification problem. Even though single label classification has quite
some success, there are still problems which do not suit the framework of single label
classification (Zhou and M.-L. Zhang, 2007). The single label classification problem is
quite limited because images can belong to multiple classes at the same time, if |L| > 2
the problem is a multi-class classification problem.

By constructing a model which can automatically classify which objects are in an
image, much context and knowledge can be automatically inferred from photos without
having to rely on humans. By using image recognition techniques together with feature
extraction approaches, local features can be obtained from the photos which can be
used for classification models. To build statistical models, machine learning can be
used to automate the process of gathering information. Using a statistical model has
the advantage that it detects objects faster than humans can, is likely more accurate
and will be a lot cheaper in the long run. This use case also applies to Avanade,
which is a joint-venture between Accenture and Microsoft. Avanade is an internationally
operating Microsoft-based IT company specialized in IT consulting and services, they
are currently using machine learning and computer-vision in their Analytics department
to create client-tailored solutions.

1.2 Main objective of this study

The goal of this research project is to discover what the effects of imbalanced data
sets are on the classification results and what the effect of different sampling methods
are regarding the results of the original data set. By comparing different machine
learning techniques, tuning parameters, trying several methods of data pre-processing
and sampling of the data set, the goal is to find how the results of different classifiers
change with different subsets of data obtained by sampling techniques.

To optimize the models, research has to be done to discover what optimizations
are most effective in the process of constructing a good model for different sizes and
structures of the data set on images and why the classifiers’ results are different for
particular sampling methods. The effect of the size of the data set used to train the
model will also be researched, as this is a phenomenon that occurs often when working
with data sets. Examples of possible optimizations are: Tuning the parameters of
the models, pre-processing the data and possibly combining different machine learning
techniques. The effect of undersampling and oversampling will also be studied and
compared to stratified and random sampling.

As an additional step, several open-source machine learning libraries such as OpenCV,
TensorFlow and scikit will be used to compare their feature extractors and classifiers.
Open-source data sets with labeled data might be used to improve the usefulness of the
model and to make a reliable proof of concept, this will also allow us to build a proof of
concept if the provided data is not labeled or high quality. Using open-source data next
to using the available data also allows for potentially automatically generating labels
for the unlabeled data. One of the sub goals is that this research can provide a guideline
on how to sample data sets when the data is imbalanced and give insight in when to use
which sampling techniques and classifiers. Furthermore, the classifiers will be compared
against several baseline algorithms to measure the performance of the models.

1.3 Scope of this thesis

For this thesis the COCO (Common objects in context) data set will be used as scope
for this research to train and validate the models. The COCO data set is a good starting
point to implement a proof of concept and to test the techniques as it is quite extensive.
To further elaborate on this, the data set contains classes which occur often in images
such as persons, vehicles and items that are used in everyday life. Furthermore, the
images in the set are not always fully visible which makes it more of a general-purpose
data set for training robust classifiers. The COCO 2014 train data set contains 82783
images with 604907 annotations which equals 7.3 annotations on average per image. An
example of an instance from the data set with bounding boxes can be seen in Figure
1. The data set is roughly split into 1

2 training data, 1
4 validation data and 1

4 test data
which will help with validating the models (Lin et al., 2014). As the data sets are
quite large the focus will be on using the train 2014 and validation 2014 sets because
of computability. Due to time constraint, not every sampling method can be tested,
because of this the sampling methods that will be considered are random sampling,
stratified sampling and one over and undersampling algorithm. Another limitation is
that only the COCO data set is used to verify the results, the classifiers and sampling
methods might perform differently and thus yield different results on other data sets.

The main goal of this research is to find how the classifiers perform on different sub-
sets of the original data set and which classifier is good for training on imbalanced data
sets using the mentioned sampling methods. This thesis will only focus on supervised
learning as this might give us more insight into what features to select and what the
relation between subsets of data and the results is. Another reason to use supervised
learning is that the performance of the sampling methods and classifiers can be mea-
sured. In the domain of data set subsetting the focus will mainly be on the different
sampling techniques for data, the size of the data set and the relation with the results
of the various classifiers.

1.4 Research Question

When taking the problem statement and scope of this thesis into account there is one
question that that we want to answer in this research: What is the influence of sampling
methods for training a classifier to classify images in an imbalanced multi-class data set?

Figure 1: Image from data set with bounding boxes.

2 Literature review

In this section the intermediate results of the literature study will be discussed. First
some comparable multi-class classification research will be analyzed. Then some litera-
ture regarding the problem transformation approach will be discussed.

2.1 Imbalanced data set classification

Imbalance inherently occurs in the real-world when decision systems are used to detect
cases which are both rare and important, domains such as fraud detection, NLP and
detecting oil spills are examples of real-world examples with class-imbalance (Lemaître,
Nogueira, and Aridas, 2017; G. M. Weiss, 2004; Chawla, Japkowicz, and Kotcz, 2004).
The problem with class-imbalance is that small classes are underrepresented in the
dataset which might make it harder to classify these classes correctly while they might
be important for the classification task (Lemaître, Nogueira, and Aridas, 2017; S. Kot-
siantis, Kanellopoulos, Panayiotis Pintelas, et al., 2006). Imbalanced data sets still pose
a big problem for data scientists. When using an imbalanced data set, the question rises
whether the classifier will learn every class or whether it will simply predict the classes
which are big in the data set (Maloof, 2003). One of the biggest factors in this is which
metrics are being used to evaluate the performance of the classifiers. When using the
accuracy as evaluation metric on a heavily imbalanced data set where the classifier pre-
dicts the majority class most of the time, the accuracy might be very high as there are
many instances of that particular class in the dataset. The error rate of the smaller
classes might be very high and the minority classes might be less likely to be predicted
correctly while these classes might be very important. Metrics that are representative
for the problem that is being solved should be chosen for evaluating models (G. M.
Weiss and Provost, 2003).

If the data set that is being used has negative examples that outnumber the positive
examples, some discriminative classification algorithms will overfit on one of the classes.
A recognition-based classification algorithm might perform better than a discriminative
one as the model is created only using the target class instances. One example of such a
recognition-based classifier is the Support Vector Machine(SVM), this machine learning
algorithm tends to perform extremely well in domains where the data is unbalanced
(Chawla, Japkowicz, and Kotcz, 2004). Another problem next to class imbalance is the
distribution of data in every class which is quite important (between-class versus within-
class imbalance) (Zadrozny and Elkan, 2001; Chawla, Japkowicz, and Kotcz, 2004).
While SVM’s and Neural Networks generally perform well when the extracted features
are continuous and multi-dimensional (S. B. Kotsiantis, Zaharakis, and Pintelas, 2007),
the question arises how well they will perform on imbalanced data sets. An SVM can
be used as a classifier with a one vs all approach as baseline where a classifier is built
for every label.

Solutions for the class imbalance level can be implemented on both data and algo-
rithmic level. When looking at the data level, several oversampling and undersampling
such as random oversampling might be applied to counteract the class imbalance. One
problem with sampling is that it is not always possible to sample the data. For ex-
ample, when the minority classes do not have many instances it might be hard to
generate new instances from the limited pool of existing instances without overfitting.
At the algorithmic level, techniques such as adjusting the probability estimates, decision
thresholds and one class learning might help improving the performance of the model
(S. Kotsiantis, Kanellopoulos, Panayiotis Pintelas, et al., 2006; Maloof, 2003; Chawla,
Japkowicz, and Kotcz, 2004; G. M. Weiss and Provost, 2003).

2.2 Sampling

Data sets as provided are not always optimally distributed for machine learning tasks
(G. M. Weiss and Provost, 2003). One way to reduce the imbalance between classes
is sampling. While sampling can offer a solution, the question remains: What is the
optimal way to sample a data set into a smaller and more representative data set?
Another interesting question regarding this is: What is the correct distribution for a
learning algorithm? The distribution that occurs naturally is not always the optimal
distribution for learning. A good reason to use undersampling is that it increases the
sensitivity of the model to the minority class which makes the classifier more precise
in its classification. Oversampling can be used to extend the number of examples for
minority classes. While random undersampling can disregard some important cases
in the data set and account for a loss of data, random oversampling might lead to
overfitting on the training set. The problem with oversampling and undersampling is
that the number of samples has to be detected empirically (Chawla, Japkowicz, and
Kotcz, 2004; Chawla, Bowyer, et al., 2002; G. M. Weiss, 2004). Another problem which
comes with oversampling is that extra computations have to be done to artificially create
data which still resembles the data set (Chawla, Japkowicz, and Kotcz, 2004; Maloof,
2003; S. Kotsiantis, Kanellopoulos, Panayiotis Pintelas, et al., 2006).

The amount of undersampling and undersampling is mostly a process of experimen-
tation and empirically set (Chawla, Japkowicz, and Kotcz, 2004). While undersampling
and oversampling might improve the classifiers results, there are techniques that com-
bine these two approaches. Well known examples of oversampling techniques which
are also more advanced than random sampling are SMOTE (Synthetic Minority Over-
sampling Technique) and ADASYN (Adaptive Synthetic), whereas TOMEK links and
ENN (Edited Nearest Neighbours) are well known undersampling techniques. When
oversampling using these techniques the minority classes in the data set are fitted and
synthetic minority class examples are added to the minority instances (Chawla, Bowyer,
et al., 2002).

Figure 2: Undersampling & oversampling Badr, n.d.

2.3 Data stratification

The data set which is used to run experiments for machine learning tasks is very im-
portant. For supervised learning the data set is often split in a train, validation and a
test set to evaluate the performance of the classifier. In the case of classification tasks,
the stratification of data is quite important to keep the proportions of instances in the
train, validation and test set close to the proportion of the original data set. When
keeping these proportions similar by using stratification, the bias and variance of the
classification are lowered (Kohavi et al., 1995).

Data stratification for image sets of labels can be achieved by using techniques
such as the iterative stratification algorithm. This algorithm first calculates the desired
number of instances per subset, then it calculates the number of class instances for every
fold. When this is calculated, the algorithm finds the class with the least remaining
instances and breaks ties randomly. Finally, it finds the subset with the highest number
of examples for this particular label and breaks ties based on the number of labels for
every fold (Sechidis, Tsoumakas, and Vlahavas, 2011).

2.4 Research gap

In the previous section it is evident that available literature regarding the field of data
set sampling does not have a consensus on what data sampling techniques yield the
best results in a general problem setting. One of the reasons is that the problem of
data sampling is quite complex because of nature of the problem domains and the
availability of the data (Chawla, Japkowicz, and Kotcz, 2004; Provost, 2000). Another
possible reason is that image classification combined with imbalanced data sets is a
combination of problems that is simply too hard to solve accurately for the current
use cases. Images contain much information it makes classification more complex as
features should possibly be selected (Hall, 1999). More research summarizing some
of the popular techniques and their performance on artificial subsetted data is much
needed in this research domain.

A topic that is not covered often is the stratification of sets of images which are all
in one single image called image sets in this thesis. As image sets for every image in this
data set could be regarded as a group of labels and sub-image called bounding boxes,
sub-images from containing one object instead of an image with multiple objects, that
belong together. The comparison between sampling image sets and separate bounding
boxes might yield interesting results. Data stratification for single-label classification
problems are well documented and this task is relatively easy. The stratification of
the image set data proves to be harder as the item sets of the instances in the data
set have to be considered. This makes stratification for these kind of image sets a non-
trivial task which could be solved by techniques such as iterative stratification (Sechidis,
Tsoumakas, and Vlahavas, 2011).

3 Research Objectives

The main objective of this research is to find out how different sampling methods
influence the results of the chosen classifiers when using an imbalanced data set. More
specifically, what are the effects of different sampling methods on classifiers such as the
RF, SVM and CNN. As a great number of data sets are imbalanced in a way, it is
quite important to research what the effects of unbalanced data sets are on the used
classification algorithms.

3.1 Design

For this research standard machine learning practices will be applied. First the sets will
be split into a training and test set, then the selected images will be pre-processed by
using gaussian blurring and converting to gray-scale when necessary. After splitting,
features have to be extracted from the images using techniques such as DAISY, Multi-
Block Local Binary Pattern (multi-MLBP) and Histogram of Oriented Gradients (HOG)
(Tola, Lepetit, and Fua, 2009;L. Zhang et al., 2007;Zhu et al., 2006). Classifiers such
as a CNN, SVM and RF will be used to construct a classification model. When the
models are trained, the performance of the classifiers will be evaluated. Scikit-image
and openCV will be used to pre-process the images and extract features to be able to
make a comparison between the different feature extraction techniques (Van der Walt
et al., 2014; Bradski and Kaehler, 2000). TensorFlow and Scikit-learn will be used to
train classifiers (Pedregosa et al., 2011; Abadi et al., 2016). Furthermore, to reduce the
class-imbalance in the data set several oversampling and undersampling techniques will
be used to make the data set more balanced and hopefully improve the classification
results (Chawla, Bowyer, et al., 2002).

3.1.1 Research question

What is the influence of sampling methods for training a classifier to classify images
in an imbalanced multi-class data set? Additionally, would it be possible to compare
multiple models and find the best possible model within the scope of this research.

3.2 Research sub-questions

The main goal of this project is to research what the effect of sampling methods is
on classification tasks using images and machine learning. This will help in order to
generate valuable knowledge for Avanade. Extending consumer profiles will possibly
give companies such as Avanade a better insight in their consumers which might in turn
help optimize processes such as identifying business needs. The research is divided into
several sub-questions which have to be answered to answer the main research question.

• Does pre-processing the data improve the model’s results?

• Which metric(s) represent the performance of the models best?

• Which sampling methods represent the data in the best manner?

• Does a machine learning algorithm with feature extraction achieve a higher accu-
racy than using machine learning techniques without feature extraction?

• What machine learning technique or combination of techniques will yield the best
results?

• How can the machine learning techniques be optimized further?

• Is there a possibility to account for possible biases when sampling such as the
selection bias?

3.2.1 Does pre-processing the data improve the model’s results?

Using pre-processing techniques might help training better classifiers. When pre-processing
an image, noise can be reduced and uninteresting section can be smoothed. By reducing
the noise and smoothing the images, a more robust classifier might be trained which
performs better overall because it did not overfit as much as it would without pre-
processing. Techniques such as Linear filtering are used to reduce noise in machine
learning research, but how effective are these techniques? Some researches that use
convolutional neural networks or kernel-based methods do not pre-process their images
at all (Krizhevsky, Sutskever, and Hinton, 2012; Camps-Valls and Bruzzone, 2005).
While in the classical machine learning context many pre-processing techniques such as
whitening, Gaussian smoothing, Thinning or Edge Sharpening are available (Fayyad,
Piatetsky-Shapiro, and Smyth, 1996; Bow, 2002). This raises the question which tech-
niques generally improve the model’s performance.

3.2.2 Which metric or metrics represent the performance of the model
best?

Metrics are used to measure how well a machine learning model performs on a data set.
While accuracy is often used as a metric to measure the performance of machine learning
classifiers, it does not give a complete representation of the results of the model. More
specifically, the rare or underrepresented classes in the data set which still might be very
important do not influence the accuracy score on the same level as the majority class
even if the minority class might be more important, this gives an intuitive reason why
other metrics should also be taken into consideration (G. M. Weiss, 2004; S. Kotsiantis,
Kanellopoulos, Panayiotis Pintelas, et al., 2006; Chawla, Japkowicz, and Kotcz, 2004).
When using an imbalanced data set, metrics such as precision and recall in combination
with accuracy might give a more complete overview of the performance of the model.
This raises the question which metric(s) represents the performance of the model in the
best way.

3.2.3 Which sampling methods represent the data in the best manner?

When a dataset is imbalanced, sampling methods might help to increase the perfor-
mance of machine learning models. In the literature there are many different sampling
methods for large datasets such as random sampling, TOMEK links, ENN (Edited Near-
est Neighbours) and SMOTE (Chawla, Japkowicz, and Kotcz, 2004; Batista, Prati, and
Monard, 2004; Wilson, 1972). This raises the question which sampling method repre-
sents the data in the best way and thus yields the best results. Another subject that
might be interesting to study is why the sampling methods improve the results of the
models. Can the best sampling method be generalized for other data sets or is the best
sampling method dependent on the dataset where it is used on?

3.2.4 Does a machine learning algorithm with feature extraction achieve
a higher accuracy than using machine learning techniques without
feature extraction?

When looking at neural networks there are two possibilities when training the classifier.
The first one is to extract features using feature extractors and using these extracted
features to train the classifier. Another option is to give the raw image matrix as an
input and let the neural network derive its own features from the images. An example
of this is convolutional auto-encoders where neural networks are stacked upon eachother
to use unsupervised learning to extract hierarchical features (Masci et al., 2011). To test
this, TensorFlow will be used to train neural networks with and without pre-extracted
features (Abadi et al., 2016).

3.2.5 What machine learning technique or combination of techniques will
yield the best results?

As discussed in the previous section the main research question is which techniques
perform best on the COCO data set. In order to derive the best techniques for training
a classifier, experiments have to be done to get results that support a claim for best
performing techniques. Furthermore extra literature research is needed to identify if
there are additional techniques which are not yet mentioned in this proposal. All of
the techniques that were mentioned before NN, SVM and RF will be implemented in
python using the scikit-learn and TensorFlow libraries (Pedregosa et al., 2011; Abadi
et al., 2016).

3.2.6 How can the machine learning techniques be optimized further?

While the standard machine learning techniques might yield decent results, are there
any techniques that improve these results? The improvement might be achieved by
pre-processing, optimizing hyperparameters or sampling methods. The techniques that
further optimize the classification results are interesting because they improve the results
but it also might give more insight in what is needed to build a good classifier.

3.2.7 Is there a possibility to account for possible biases such as the selec-
tion bias?

The COCO data set is quite skewed in the number of classes, for example the number
of people in the data set is by far the largest class as can be seen in Figure 6a. Another
problem that is present is how to select the training and testing set. Using non-randomly
selected data might have a huge impact on the results and change outcome of the
research (Heckman, 1977). It is very important that the results that are produced will
be as free from bias as possible to fairly evaluate all of the techniques but also to make
the research reproducible.

4 Experimental setup

In this section, the experimental setups used in this research will be explained and
discussed. The following subjects will be discussed in the following subsections:

1. Data

2. Metrics

3. Models

4. Dummy classifier

5. Feature descriptors

The software and hardware are not extensively covered in this thesis as these spec-
ifications are not fully conclusive. To give a better insight in this project the software
and hardware that were used will be summarized. For this research Python was used to
implement all of the pre-processing, feature extractors and classifiers. Jupyter notebook
was used to make visualization and re-using calculated features and data sets easier.
To train and validate the classifiers, the Azure machine learning workspace on the Mi-
crosoft Azure platform was used as training on a laptop would take a long time. To train
the SVM and RF a CPU cluster was instantiated. The CPU clusters that were used
are the STANDARD_Ds2_V2 up until the STANDARD_Ds4_V2 VM which uses an
Intel Xeon E5-2673 v3 @ 2.4 GHz CPU as can be seen in figure 3. As training a neural
network is usually faster on a GPU, a GPU cluster was instantiated. The GPU cluster
that was used is a Standard_NC6 VM, these VM’s use a NVIDIA Tesla K80 GPU,
the specifications can be seen in figure 4. Both the CPU and GPU cluster used two of
the Microsoft VM’s, this equals one Intel Xeon E5-2673 v3 @ 2.4 GHz CPU and one
NVIDIA Tesla K80 GPU. To run additional experiments when the machine learning
workspace was unavailable, a macbook was used. The specifications of this machine
can be found in table 1.

Figure 3: Specifications of the used CPU for the RF and SVM exper-
iments.

Figure 4: Specifications of the used GPU for the NN experiments.

Table 1: specifications of the macbook CPU used for NN, RF and SVM
experiments.

Version MacBook Pro (Retina, 15-inch, Mid 2014)
CPU 2,8 GHz Intel Core i7
Cores 4
Memory 16 GB 1600 MHz DDR3

4.1 Data

Meaningful data is an essential component of machine learning. In this section the data
set which will be used will be discussed first. Secondly the stratification of the different
subsets will be covered. Finally, upsampling and downsampling will be discussed and
the potential uses and benefits that these techniques will bring to this research.

4.1.1 COCO data set

The COCO data set was made with the goal to create a data set which will help the
advance of scene understanding. The data set covers three core research areas of scene-
understanding:

• Detecting non-iconic views.

• Contextual reasoning between objects.

• Precise localization of objects.

The reasoning behind this is that when searching for an object online such as a bicycle,
there exists an iconic view which is an unobstructed image. Nowadays classifiers per-
form quite well on unobstructed and non-occluded images but these classifiers seem to
struggle when objects are occluded or cluttered as can be seen in Figure 5 (Lin et al.,
2014). As mentioned in the introduction the COCO data set is used to train classifiers
for multi-class classification, object detection and scene labelling.

The COCO data set consists of images with possibly multiple instances of the classes
present in the data set. To find the objects in the training and validation data sets,
a JSON file is provided with the instances of classes for every image and the location
of this object as a bounding box. The average size of a bounding box in the COCO
data set is 104x107, all of the bounding boxes were resized to 50x50 for a uniform
input. Several training, validation and test data sets are available on the COCO data
set website http://cocodataset.org.

4.1.2 Class imbalance

When training machine learning classifiers on data sets it is important to take certain
biases into account such as the selection bias. The distributions of the COCO data sets
are similar as can be seen in Figures 6a & 6b. However, it is easy to see that the number
of classes is not equally distributed in the data set. This poses a problem for training
the classifiers as some classes have less than 200 instances in the data set which means
that these classes can be especially hard to learn.

The fact that this data set is skewed has to be taken into account when drawing
conclusions from the results of the trained classifiers. Machine learning while using an
unbalanced data set poses an interesting problem when trying to train a classifier as
there are many possible solutions to this problem. When 1 class out of 80, in this case

Figure 5: An example of an occluded object (bicycle) in the data set.

persons in the COCO data set, makes up for about 30% of the data set it would be
an intelligent classification pattern for the classifier to predict person 100% of the time.
This is due to some assumptions built into most classification algorithms: Maximizing
accuracy and when the classifier is used in a production or predictive environment, the
training data represents the test or production data. On one hand one could say that
the data that is provided in the data set is the data that should be used to train the
classifiers. On the other hand, one could say that artificially balancing the data set
might lead to better classification results. Whether artificially balancing the data set
always leads to better results is still debated as some classification methods are more
robust to class imbalances than others (Provost, 2000; Chawla, Japkowicz, and Kotcz,
2004).

In some domains the class imbalance such does not pose a big problem as in some
settings the number of instances of a certain class such as fraud is quite small in com-
parison to the number of non-fraudulent transactions. The dataset might still have to
be sampled in a way to learn the important class, which is fraud, but the proportions
of the data are natural to the domain. In other cases, the class imbalance occurs in
domains where such an imbalance is not common which poses a problem, in these cases
it is up to the data scientist to decide how to tackle this problem.

Over-sampling is a method where classes with a low prevalence in the data set
are added in the train and test set in order to have more instances for the classifier
to train on and create a more balanced representation of classes. Under-sampling is
complementary in over-sampling in the sense that it reduces the amount of instances
of classes which occur often in the data set (Lemaître, Nogueira, and Aridas, 2017). A
problem that follows from this skewed data set is that the data should likely be stratified
into subsets to measure the performance of classifiers on smaller data sets. The problem
of stratified sampling on images is not necessarily trivial and multiple methods will be
tested to measure the difference in the results.

Another interesting measure is the label density, which can be calculated using
LD(D) = 1

|D|
∑|D|

i=1
|Yi|
|L| , where D is number of instances the dataset, Yi number of

labels for the current image and |L| is the number of labels. As can be seen in Table
2 this data set is quite sparse as the label density is 0.091 which is low. However,
the validation and test sets are similar in the distribution of labels and density and a
proportional number of images, annotations and unique labelsets. If these metrics were
too different the data sets would not exhibit the same properties which would make the
research harder (Tsoumakas and Katakis, 2007).

(a) Distribution of labels in the train set. (b) Distribution of labels in the val set.

Table 2: Dataset statistics.

Train 2014 Val 2014
Images 82783 40504
Annotations 604907 291875
Annotations/image 7.307 7.206
Label density 0.0913 0.0901
Unique labelsets 82081 40137

4.1.3 Stratification of the subsets

The stratification of multi-label data is a non-trivial task as one image can have an
arbitrary number of labels. Stratification splits a data set in a way that every smaller
subset approximately contains the same proportions of the labels in the original data
set, this way the subsets still represent the original data set. When using stratified data
instead randomly split data in cross-validation, the bias and variance are decreased in
comparison to non-stratified data (Kohavi et al., 1995). In order to see how impor-
tant sampling is, three sampling methods are implemented for this research: Random
sampling, probability mass split and iterative sampling. The random sampling method
serves as a baseline to see which results are obtained when sampling from the original
data set at random.

The probability mass function (PMF) is a measure that gives the possible values for
a random variable. By using the PMF for splitting the original data set, the occurrence
of labels in the labelsets in every fold is considered and should therefore yield better
results than randomly splitting a skewed data set.

Finally, the iterative sampling method starts by calculating the number of desired
labels for every subset. This algorithm iteratively examines the labelset and greedily
picks the label with the fewest remaining examples to assign the labelsets containing
this label to the folds. By greedily picking the labels with the least remaining examples
the algorithm ensures that these labels are also stratified in the subsets. The labelsets
are assigned to the subset which deviates most from the proportions of the original
data set. When a tie occurs between two or more subsets, the data set with the highest
number of desired examples is selected and further ties are broken randomly (Sechidis,
Tsoumakas, and Vlahavas, 2011).

4.1.4 Sampling

As mentioned in earlier section, the COCO data set is not close to being uniformly
distributed. This might be a problem when training the classification models or trying
to generalize them. Class imbalance is an important problem to take into account when
training classifiers as the data sets have a large influence on design and the results of
the classifiers. It is often the case that misclassifying classes which are not common in
a data set are most of the time more important to classify than the examples in the

data set that are common. Techniques that are often discussed in literature to tackle
this problem are oversampling and undersampling. Two of the most known sampling
methods are: random over-sampling and random under-sampling (Chawla, Japkowicz,
and Kotcz, 2004; Maloof, 2003; Prati, Batista, and Monard, 2009; Lemaître, Nogueira,
and Aridas, 2017).

When downsampling, only a subset of the large classes is used to make the distri-
bution of the test set more uniform. Two downsides of using this method is that a
portion of the large classes is never used and that bias is added by arbitrarily selecting
a subset of the original data set (Chawla, Bowyer, et al., 2002; Maloof, 2003). Another
problem that occurs when undersampling is that the undersampled data set might not
be adequate to learn the classes which are in the data set (Maloof, 2003). This raises
the question how many of the instances of the class should be sampled in order to get
results which are not completely useless because of the bias. The downsampling in this
research will be done by randomly downsampling large classes to a fixed number of
instances to balance the data set.

Oversampling might increase overfitting on the train set as classes which are not
represented equally in the data set might be sampled as exact copies of these instances
of the class. Another option is to artificially create the classes which are underrepre-
sented by using interpolation to create instances which are similar to the instances in
the data set but are not exact copies. Even better results might be booked when noisy
examples are removed from the classes and the classes are equalized by oversampling
on examples which are not noisy (Prati, Batista, and Monard, 2009). As the definition
of an optimal region to sample is not equal for every dataset, several sampling tech-
niques were constructed. The difference between the sampling techniques is whether
these techniques focus on synthesizing borders of classes to make the borders between
classes clearer, whereas other sampling techniques focus on finding hard to learn classes
and instances and focus on synthetically sampling these instances and classes (Branco,
Torgo, and Ribeiro, 2016). However, the question still remains whether the generated
data is not biased and whether the classification algorithms are prone to overfitting on
the train set due to this generated data.

4.2 Metrics

The metrics that are chosen are quite important in machine learning tasks. When
analyzing whether a machine learning classifier performs well on the task it is supposed
to perform, metrics represent the performance in different ways. The metrics that
are often used in machine learning are Accuracy, Precision, Recall and F1. Accuracy
is the metric that is often used for measuring the performance of classifiers because
it represents the ratio of correctly predicted true positives and true negatives to the
complete predicted set. Precision is a metric which represents the ratio of the true
positives to the true positives and false positives, this metric gives an insight in how
many of the positive predicted classes were actually predicted correctly. The recall is
the ratio of the true positives to the true positives and false negatives which represents
the ratio of how many of the positive predicted classes that are correctly identified.
Finally, the F1 metric represents the harmonic mean between the precision and recall.

Depending on the problem that has to be solved using an imbalanced dataset, there
are three interesting metrics that have to be considered. As an example, the precision
of this imaginary classifier will be calculated, let us imagine that there are 3 classes
called A,B,C with a number of true positive (TP) and false positive (FP) predictions.

• A: 1 TP and 1 FP.

• B: 9 TP and 1 FP.

• C: 1 TP and 1 FP.

It is easy to see that the probabilities of a correct classification are Pr(A)=1
2 , Pr(B)=

9
10

and Pr(C) = 1
2 . The macro average is calculated by adding the probabilities and di-

viding by the number of classes. The macro precision of the classifier for this exam-
ple = 0.5+0.9+0.5

3 = 0.633. The macro average of the metrics may be quite impor-
tant for imbalanced data sets as it gives as much weight to classes that do not occur
often as to classes that are the majority class. The micro average is calculated by
adding the true positives of every class and dividing by the total number of predictions,
Pr(classifier)= 1+9+1

2+10+2 = 0.786. A third way to calculate interesting metrics is to calcu-
late the weighted precision, recall and F1. When calculating the weighted metrics, the
metric values of different classes are added based and given a weight based on the size of
the class. A final note that has to be made when discussing these different metric scores
is that the micro score is equal for every metric in the multi-class domain. The metrics
are also important for validating the model in a reliable way as the different metrics
give different insights in how the classifier performs (Manning, Raghavan, and Schütze,
2010). As these metrics are biased it is important that multiple metrics are taken into
account in order to evaluate the model as objective as possible (Powers, 2011). Measur-
ing the performance of a classifier with accuracy is not always the best solution as the
cost of classifying some classes incorrectly might have a higher cost (Chawla, Bowyer,
et al., 2002).

Accuracy =
TP + TN

TP + FP
, (1)

Precision =
TP

TP + FP
, (2)

Recall =
TP

TP + FN
, (3)

F1 = 2 ∗ Precision ∗Recall
Precision+Recall

. (4)

Some classification tasks might require more focus on getting the cases that are pre-
dicted as true absolutely correct. For these cases the metrics precision and recall might
be preferred. Precision represents the proportion of true positives to the true positives
and false positives, this metric represents how good the classifier is in not making incor-
rect true predictions. Recall represents the proportion of the true positives compared to
all of the ’positive’ predictions that the classifier made. Finally, the F1 metrics might
be the most popular metric lately, it represents the harmonic mean of the precision and
recall metrics. Even though this performance metric is widely used, there are arguments
such as that the relative importance of the precision and recall should be dependent on
the problem and the researcher instead of always choosing the harmonic mean (Hand
and Christen, 2018). Because accuracy does not give complete information on the per-
formance of the classifier, the Precision, Recall and F1 metrics are also calculated in

Table 3: Example of a confusion Matrix.

Actual positive Actual Negative
Predicted positive TP FP
Predicted negative FN TN

order to see if there are any interesting patterns that might be discovered (He et al.,
2008).

4.3 Models

One of the most important parts of this research is to compare classifiers such as Convo-
lutional Neural Networks, Random Forests and Support Vector Machines and measure
which classifiers perform best for different inputs. These inputs include subsetting the
data in a stratified and non-stratified manner, pre-processing, time-limitations and lim-
ited computational resources. A comparison can be made between very straightforward
such as random forests and more complex models such as the SVM and Neural Net-
works. It will also give an insight which factors are important when trying to classify
which objects are on images. Another interesting comparison to make is between the
performance of pre-extracted features by using feature extractors and feeding these
features to the SVM and RF and using a CNN to extract its own features.

4.3.1 Convolutional Neural Networks

In the traditional models of machine learning, human made feature extractors have to
gather relevant and distinct representation of the images and make these representations
simpler than the input. Whenever all the features are collected, the extracted features
can be given as input to a trainable classification model. This model than tries to
categorize the input into classes and learn what representation classes should have. A
different way to solve this problem is by having the model extract the features and reduce
the size of the extracted features compared to dense layers using convolutional layers.
This way the neural network can extract low-level features such as corners, edges and
colors and combine these low-level features into higher level features in higher layers
(LeCun, Bengio, et al., 1995). Another interesting step in the convolutional neural
network is the pooling step, this step reduces the dimensionality of the feature map by
downsampling.

The neural network uses an error rate to measure the progress and how well it
is learning. The error rate is defined by Total Error_rate = Σ1

2(targetprobability −
outputprobability)2. The steps that a neural network goes through are:

1. Initialize parameters and weights with random starting values.

2. Network gets image as input and goes through forward propagation.

3. Total error of the output layer is calculated.

4. Backpropagate and calculate the gradients of the error rate and update weights
accordingly using gradient descent.

5. Repeat previous steps for number of epochs.

When using a neural network as a classifier there are several design choices that
should be made when building it. As only neural networks are used in this research the

scope can somehow be limited to exclude some architectures such as: Long Short Term
Memory networks (LSTM) and Boltzmann Machine as the scope of the thesis has to be
narrowed down. Some of these design choices include:

• Activation function.

• Stride length.

• Number of convolutional layers.

• Size of convolutional layers.

• Number of dense layers.

• Size of dense layers.

• Optimizer.

• Pooling layers.

• Dropout rates.

• mini batches.

• Data augmentation.

The search space that has to be searched to optimize all of these options is too
large to fully search, so some assumptions have to be made from intermediate results.
In order to get some benchmarks and establish a good baseline, the focus will be one
architecture which have been used a lot in the past such as Conv-Pool-Conv-Pool on
the ImageNet data set (Krizhevsky, Sutskever, and Hinton, 2012). The rectified linear
unit (ReLU) activation function works really well with (convolutional) neural networks
so this activation function will be chosen instead of the Sigmoid or Tanh activation
functions which are used in many general-purpose neural networks (Nair and Hinton,
2010; Krizhevsky, Sutskever, and Hinton, 2012). The reason that the RELU activation
function is picked for this research is the vanishing gradients problem. When training
Neural networks which use gradient-based learning methods and backpropagation, each
of the weights is updated proportional to the partial derivative of the used error function.
The problem occurs if the gradient becomes small enough that it does not change the
value of the weights anymore (Hochreiter, 1998).

• ReLU: h = max(0, x).

• Sigmoid: h = σ(x) = 1
1+e−x .

• TanH: tanh(x) = ex−e−x

ex+e−x .

Where x is the input to a neuron of the NN in the earlier listed formulas. Further-
more, the SoftMax function will be used as the activation function in the dense layers,
the loss function is categorical cross entropy. The optimizer that is used for the CNN’s
in the experiments is the ADAM optimizer, ADAM is a gradient-based optimization
algorithm for stochastic objective functions. Some of the upsides of this algorithm is
that it is efficient, good for large problems and can handle noisy and sparse gradients
(Kingma and Ba, 2014).

SoftMax: yk = ezi∑c
j e

zj

For the data augmentation the comparison between color and grey-scale will be
made in order to see whether much information is lost when disregarding the color.
Furthermore, the images are normalized by dividing every pixel by 255 which helps
removing some minor distortions and makes the images easier to work with. The Keras
data generator object is also used to flip, mirror and shift the images to reduce the
overfitting on the train set. Methods such as Dropout rates and mini-batches also help
optimizing the model by preventing the overfitting of the Neural Network on the train
data set. The dropout rate deactivates some neurons based on the dropout rate for
every epoch (Krizhevsky, Sutskever, and Hinton, 2012).

4.3.2 Random Forest

A random forest fits multiple bootstrap samples of the data to decision tree classifiers
and uses majority decision to make a classification. Using ensembles of trees that
are trained on multiple bootstrap samples of the data should prevent overfitting and
therefore lead to more accurate predictions. Because decision trees tend to overfit on
the training set when the tree depth is deep with low bias but high variance, random
forests seem to be a better choice as this classifier reduces the variance of the decision
tree. The random forest achieves this by using bootstrap aggregating (bagging), bagging
selects a random subset of the original data set by random sampling with replacement
from the full data set (Liaw, Wiener, et al., 2002; Breiman, 2001).

The number of trees is a parameter that is not known in advance and the optimal
number of trees in a random forest can be determined by cross-validation or using the
out of bag error. Furthermore, the random forest uses at each split a random subset of
the features that are given to the classifier, the thought process is that the best subset
of features which are strong predictors are chosen for the classifier. The number of
features used for a classification task with n features is often

√
n when using a random

forest (Breiman, 2001).

4.3.3 SVM

A Support Vector Machine (SVM) constructs a hyperplane which separates different
classes in a classification task. Because there are many hyperplanes which can separate
data, the hyperplane with the largest error margin is chosen. This makes SVM’s quite
robust, also when the training set is small (Foody and Mathur, 2004).The instances
from the data set are projected to a n-dimensional space where n is the number of
features for every instance in the data set, where every feature is a coordinate in this n-
dimensional space. For classes which are not linearly separable or where the separation
of the classes is not good, the kernel trick can be used. Instead of using a linear
kernel, kernel functions that transform low dimension input and transforms it to a
higher dimensional space. The kernel trick transform uses a kernel function to compute
dot products between instance vectors in a high dimensional space without having to
transform the data to this high dimensional space to find a kernel which separates the
data in a non-linear manner (Camps-Valls and Bruzzone, 2005; Liu and Y. F. Zheng,
2005; Foody and Mathur, 2004).

Usually the SVM tries to separate two classes in the best way possible. In order to
be able to use the SVM for multi-class problems it has to be transformed to either a
one-vs-one classifier on a one-vs-rest classifier. The one-vs-rest approach trains the SVM
on one class and uses all the other classes as negative examples. This way the classifier
can predict whether an instance belongs to a specific class in a multi-class setting. On
the other hand, the one-vs-one approach is trained for every possible combination of

two classes (Liu and Y. F. Zheng, 2005). For this research the one-vs-rest classifier is
used as it is most suited for the current problem in terms of scalability.

For the Support Vector machine, both the linear and radial basis function (RBF)
kernel will be compared. The disadvantage of the linear kernel is that the performance
is often lower than that of the RBF kernel. An SVM with an RBF kernel takes a long
time to compute, for data sets with more than 10000 samples it is recommended to
use the linear kernel. The first benchmarks will be done with the linear kernel as the
implementation of the non-linear SVM is based on the libsvm library implementation
and the time complexity is more than quadratic with the number of samples in the train
set. The SVM with the linear kernel is based on the liblinear library and should scale
better with a bigger data set (scikit-learn.org SVC n.d.).

• Linear kernel = K(xi, xj) = xi · xj .

• RBF kernel = K(xi, xj) = exp
(
− ‖xi−xj‖

2

2σ2

)
, σ ∈ IR.

Where xi and xj are two instances from the dataset, the dot product of xi and xj are
0 when the features are dissimilar. Furthermore the σ value is determined a priori and
is subject to optimization methods such as grid search.

4.4 Dummy classifier

To establish a baseline for the classification task on the COCO data set, the dummy
classifier from the scikit-learn library was used (Pedregosa et al., 2011). This dummy
classifier uses simple rules to classify instances in the data set. The results are expected
to be low, but it will give an insight in the minimal classification rates which should be
achieved. The rules which are used for the dummy classifier are the following.

• Stratified.

• Most frequent.

• Prior.

• Uniform.

The stratified rule uses the distribution of the training data set in order to make pre-
dictions on the test set, this approach takes the proportional occurrence of classes into
account. The most frequent rule always predicts the label that is represented most often
in the training set. This most frequent rule might be quite simple, but the occurrence
of the most common label person makes up for almost 30% in the data set. The prior
rule always predicts the class label that maximizes the class prior. Finally, the uniform
rule randomly generates uniform predictions for the data set. These baselines will be
used to explain how the results of the different classifiers and sampling techniques are
impacted.

4.5 Feature Descriptors

In this section the feature descriptors which are used to classify images with the Random
Forest and Support Vector machine will be discussed. A feature is a type representation
of an image that is obtained by simplifying the image and extracting the important
information. There are two types of features, global features where one single feature
vector describes the entire image and the local features where the image is described

Figure 7: Histogram of oriented gradients on an image of a cat.

by interesting regions in the image instead of describing the entire image (Awad and
Hassaballah, 2016). This section consists out of three sections where every feature used
for the classification will be discussed. The feature descriptors used for this research
are Histogram of Oriented Gradients (HOG), DAISY and Multi-Block Local Binary
Pattern (MLBP).

4.5.1 Histogram of Oriented Gradients

The Histogram of Oriented Gradients (HOG) is a feature description method that has
its basis in the evaluation of normalized local histograms of image gradient orientation
in a dense grid. One of the assumptions of the HOG descriptor is that local objects and
shape in images can be described by the distribution of gradients. When computing
the features, the image is divided into connected regions which are called cells. For
the pixels in every cell, the histogram of gradients is calculated. The calculation of the
HOG feature is done by first calculating the horizontal and vertical gradients from the
images. After this is done, the magnitude and direction of the gradients is computed.
Finally, the histogram of gradients is constructed, which contains 9 bins from 0-180
degrees. An example of extracted features from a HOG feature extractor can be seen
in figure 7 to get a better understanding of what this feature extractor is.

HOG can both be used for gray-scale and color images, when using color images
to compute the features the gradients have to calculated for each color channel. From
these calculated features, the one with the largest norm is picked as the gradient vector
(Dalal and Triggs, 2005). The setup for the HOG descriptor for this experiment has 8
orientations, 12x12 pixels per cell and 1x1 cell patches. The block size is essential for
the classification, the size has a big impact on the extracted features. While a small
block size might miss global features, adding blocks with different sizes are likely to
increase the computational costs (Zhu et al., 2006).

4.5.2 DAISY

DAISY is one of the most critically acclaimed feature extractors in the field today, the
local region descriptors which are used often today are SIFT and GLOH. The problem
with an algorithm like SIFT is that it is proprietary and that it might take a long time
to compute, DAISY tries to compute the feature descriptors for every pixel in a faster
manner. This is good for a bag-of-features representation of the image. The SIFT and
GLOH algorithms use the gradient orientation histograms, these histograms are robust
to distortions, occlusions and light. Another difference between DAISY and SIFT is

Figure 8: DAISY feature extractor on an image of a cat.

that DAISY uses a gaussian kernel, whereas SIFT uses a triangular kernel. The DAISY
descriptor is a vector made out of the values from convolved orientation (Awad and
Hassaballah, 2016). An example of the daisy feature extractor can be seen in figure 8

4.5.3 Multi-Block Local Binary Pattern

The Multi-Block Local Binary Pattern (MLBP) is a local feature descriptor that uses
local binary pattern operator to encode rectangular areas. This feature descriptor can
be computed quickly by using the integral image. The MLBP is quite similar to haar-
like features but the set of MLBP features is smaller than the set of haar like features
which gives it an advantage as the usage of the feature is simpler and it also makes the
implementation of feature selection potentially easier. The MLBP is a descriptor that
encodes the intensities of rectangular areas by local binary patterns which can capture
large scale structures in images, an example can be seen in figure 9. The output of this
feature descriptor can be used as a descriptor of the image (L. Zhang et al., 2007).

Figure 9: MLBP feature extractor on an image of a cat.

5 Results

In this section the results of the conducted experiments for this research will be dis-
cussed. The goal of these results is to answer the question: What is the influence of
sampling methods for training a classifier to classify images in an imbalanced multi-class
data set? The subsections are divided in the different sampling methods. Some sam-
pling methods use the imbalanced dataset as is, while other try to balance the dataset
by sampling.

5.1 Data

The models used can compute any imbalanced data set, but to limit the study the
decision was made to test and optimize the classifiers for a subset of classes of the
original COCO data sets and stratified subset of the entire COCO data set. By doing
this, the results and conclusions in this research will lead to more substantial claims
as there are more metrics available for different models. This limitation to the re-
search was made because the thesis would become too large without this limitation.
The subset of classes chosen from the COCO data set is the following collection of
classes (2,11,14,17,23,34,36,39,58,65,74,76,78,80,89,90) called the subset, the classes can
be found in Table 31. This particular set was chosen as the classes in this set are spread
across the various super categories present in the data set, because the set is also im-
balanced making it a good set to test the various models and sampling methods and
because the models can be computed within the resource limitations of this research.
The subset and the original set do not necessarily have the same level of class imbal-
ance, but it is a good place to start experimenting before moving on to the entire data
set. The imbalance of the COCO data set can be seen in Figure 6a and Figure 6b, the
distribution of the subset can be seen in Figure 10a and Figure 10b.

(a) Distribution of labels in the train subset. (b) Distribution of labels in the val subset.

Another interesting thing to note about both datasets is that the clusters of classes
overlap quite often, this means that the classifiers might have difficulties correctly clas-
sifying the instances of classes which are essentially outliers. This will most likely reflect
in the results of the models but might be partially solved by undersampling the weakest
instances of the class. The clusters of the data can be seen in Figure 11 and Figure 12.

5.2 Optimizing the models

In order to get optimal results from the classifiers, they have to be optimized by training
on a (sub)set of the COCO dataset. This will give insight in the optimal hyperparam-
eters or architecture of the classifiers. As mentioned in the previous section there are

Figure 11: Clustered sampled class subset (16 classes) of the COCO
subset, the axis are used to illustrate how far clusters of classes are from
eachother. The closer clusters of classes are together, the more similar

these classes are to eachother.

Figure 12: K Means and PCA to cluster the COCO dataset, the axis
are used to illustrate how far clusters of classes are from eachother. The
closer clusters of classes are together, the more similar these classes are

to eachother.

two datasets on which the classifiers are trained and validated, the COCO dataset and
a subset with a collection of classes, called the class subset, from the original dataset.
To resample the data, several under and oversampling techniques are used next to the
stratified dataset. For undersampling the undersampling techniques which are used are
TOMEK links, ENN and random undersampling, the oversampling technique that is
being used is SMOTE. Finally, one technique that uses both undersampling (TOMEK
links) and oversampling (SMOTE) is used called SMOTETOMEK.

Figure 13: Validation loss for the best performing neural networks from
the grid search, where the orange line is the 3-128-3-128 architecture

Table 4: The architecture of the neural network which found by grid
searching different architectures.

Convolutional Layers 3
Kernel size 3
Dense layers 3
Convolutional layer size 128
Dense layer size 128
Pooling (2,2)
Batch size 70
Dropout rate 0.35
Activation function ReLU
Activation function dense SoftMax
Loss function Categorical cross entropy
Optimizer ADAM
Early Stopping 10

The effect of these different sampling techniques on the different classifiers will be
researched using this dataset. In order to find the optimal architecture of the Neural
Network, a grid search was done on the different possible architectures as can be seen
in Figure 13. The best Neural Network architecture of this grid search can be seen in
Table 4, the chosen architecture is conv-pool-conv-pool-conv-pool. To further prevent
overfitting, a gaussian noise layer was added as input layer of the model to introduce
noise to the images which will make the learned features more robust and generalizable.
Furthermore, an early stopping monitor is added, this callback stops the model when
it is not improving anymore. Finally, drop out layers are added to prevent overfitting
on the train set.

When looking at the feature extractors for the SVM and RF, there were some
interesting findings and limitations. Firstly, images need to be in gray-scale for the
DAISY feature extractor, so all of the images were pre-processed and converted to
gray-scale to be able to extract features from the images. However, some information is
lost when converting images to gray-scale as the colors of to be predicted classes might
have much information about which class is being represented. To elaborate further, the
neural network yielded better results when images had 3 channels (r,g,b). Furthermore,
the SVM failed to converge when using the MLBP features so these features had to
be omitted for the SVM. When optimizing the random forest, it became apparent that
1000 trees was the optimal number of trees. The number of trees used was 500 as the
increase of performance between 500 and 1000 trees was marginal. Finally, the SVM
had a better performance with the RBF Kernel than it had with a linear kernel as was
to be expected as can be seen in Table 19 and Table 26 located in the appendix.

Another interesting finding is that the images can be greatly downsampled by using
PCA, as can be seen 700 components describe approximately 97.5% of the data. If we
compare a 50x50x3 image which has 7500 components to 700, 9.33% of the components
have enough descriptive power which greatly reduces the size of the images as can be
seen in figure 14. This process omits many non-meaningful features. As can be seen in
figures 15a & 15b, the image of the bicycle is greatly blurred when PCA is used but the
object in the image is still visible for the human eye.

Figure 14: PCA curve for the class subset, 700 components describe
about 97.5% of the dataset.

As can be seen in Figure 16, all of the classifiers outperform the dummy classifier
by a large margin. The Neural Network has the best results as was to be expected as it
is most likely the most flexible classifier when learning classes due to the convolutional
layers instead of the pre-extracted features that the RF and SVM use. When looking
at the classification results of the models which were trained on the undersampled
dataset using the TOMEK links it is quite surprising to see that the classification
results are either similar or even worse. The expected results were that TOMEK links
would eliminate any instances of classes which were outliers and therefore improve the
performance of the model. The other undersampling techniques, ENN and random
undersampling, also did not improve the results of the classifiers and even severely
decreased the performance of the models. This might be due to discarding too many
images from the dataset due to overlapping with other classes, this shrinks the train
dataset to a point where every class has an equal number of instances while there is
also a clear imbalance in the validation set. Furthermore, the amount of datapoints to

(a) Image of a bicycle from the dataset without
PCA.

(b) Image of a bicycle from the dataset with
PCA on 700 components.

Figure 16: F1 micro for the class subset.

train on is severely decreased which most likely contributes to the loss in performance
as can be seen in tables 7 & 9 which are located in the appendix.

Another surprise was the SMOTETOMEK sampling method were no significant
improvements were found except for the random forest classifier. With the oversampling
done with SMOTE and after this the removal of instances which overlapped with other
classes by using TOMEK links, the expectation was that there would be a significant
improvement of the results for all of the classifiers. As can be seen in tables 6, 14, 13 &
15, the Neural Network has the best overall performance and this is when no sampling
methods are being used. The SVM’s results do not fluctuate much between different
methods, the random forest has the most interesting behavior where the results improve
when SMOTETOMEK is used as would be expected. Even though the results might
not improve as is expected when using sampling methods on this dataset, it might be
that the sampling methods do improve the performance when using the entire COCO
dataset. The best strategies which were found while testing on the class subset can be
seen in figure 17 and table 5, the strategies are sorted on F1 micro performance. The
best classifier is the neural network without sampling methods which is quite unexpected

Figure 17: F1 micro for best strategies found for the class subset.

Table 5: Class subset classifier micro F1 score and standard deviation
(n=5).

Classifier F1 micro SD
SVM 0.424 0.000
RF 0.486 0.002
NN 0.581 0.013

and interesting, the micro and macro ROC curves of this classifier can be found in figure
18.

5.3 Results COCO dataset

When comparing the results of the SVM, RF and NN with iterative stratification as can
be seen in tables 16, 18 & 17 to the results of the dummy classifier as can be seen in table
25, all the metrics of the SVM, RF and NN have a higher score for every metric. This
is for accuracy, precision, recall and the F1 score for both separate classes and overall.
The only exception for this is when the dummy classifier always picks the majority
class as predicted class, which is the person class. In this scenario both the accuracy
and weighted recall of the dummy classifier are higher for smaller subsets of the COCO
dataset as most of the instances in both the train and test set are persons with about
30.6%. When always picking the majority class, it seems quite logical that these metrics
perform better for the dummy classifier. This is because of the data set being extremely
skewed towards the person class, as the number of instances in this class is multiple
times larger than any other class present in the data set. When looking at the results of
different train and test set sizes for the SVM, RF and NN using iterative stratification,
the metrics keep improving when the train and test sets are a bigger subset of the data
set. This is to be expected as a bigger training data set ensures that the model is
trained with more instances per class, which in turn provides more diverse within-class
examples of the different classes. The extra data limits overfitting on the training set
and thus yielding better results on the test set.

Figure 18: Micro and macro ROC curves of the Neural network with-
out sampling methods, which is the best performing classifier on the

subset

When comparing the performance of the SVM and NN in tables 16 & 18 against
the performance of the random forest using the same iterative stratification on the
image sets as can be seen in table 17, the random forest does perform better on the
smaller sample sizes where all the metrics score higher than those of the SVM and NN.
Whenever the sample size gets sufficiently large, around 5-7.5%, the SVM and NN start
outperforming the RF in all the metrics.

Figure 19: F1 micro for stratified methods.

Interestingly enough the same pattern is found when stratifying the data set on
labels instead of label sets in an image. For example, the classifiers outperform the
dummy classifier on every metric for almost all the strategies. The exception for this
is once again the most frequent strategy, also known as the majority class strategy. As
explained in the previous section this is to be expected because the dataset is extremely
unbalanced which makes picking the majority class, in this case person, quite an effective

strategy. Once again, the accuracy and recall are better for the majority decision
strategy compared to the NN, SVM and RF for the smaller data sets (1-2%) and the
non-dummy classifiers perform better for all the other metrics. This is interestingly
enough with the exception of the SVM using an RBF kernel, this classifier already
outperforms the dummy classifier on the 1% data set and is effectively the best classifier
for small data sets out of all the tested classifiers as can be seen in table 26. This is likely
due to the difference in the kernel, the linear kernel which tries to separate the data
linearly to make the hyperplane decision boundaries between classes. The RBF kernel
uses a non-linear kernel to make this decision boundary which is more flexible and will
most likely fit the data better. In general, the linear kernels are faster than the RBF
kernel but the trade-off is that the accuracy is generally lower. When the datasets get
sufficiently large enough, all of the classifiers start outperforming the dummy classifier
for every metric. The RF outperforms the SVM and NN once again for small data sets
(1-2%) on both accuracy and recall but the SVM and NN have better precision and F1
scores.

If bigger sample sizes are used (7.5-10%), the NN outperforms both the SVM and
RF on all the metrics. Once again, the SVM and RF tend to overfit too much on the
person class where the recall of the SVM and RF is 0.93 and 1 respectively. One of the
things that really stands out is that the RF classifier barely improves when the data set
is enlarged, the only metric that improves a lot is the precision of the classifier. All the
other metrics which are measured only improved with minimal margins when looking
at the difference between 1% and 10% of the data set. The SVM improves a lot when
looking at the difference between 1% and 10%, all the metrics improved a lot mainly
the accuracy, precision and recall. As is to be expected the results of the NN improved
a lot when the data set was enlarged, as neural nets need many samples to perform
well.

When comparing the single label stratification against the image set stratification it
seems that the NN performs better when it is fed data which is stratified without taking
the image sets into consideration. On one hand this is quite logical because no biased is
introduced by only sampling image sets instead of freely sampling the whole data set,
on the other hand there might have been samples which are similar in the same image
set which could have helped the classifier to learn the classes. It seems that the model
overfits a bit more when image sets are used, this is true for both small data sets (1%)
as for bigger data sets (10%).

It is interesting to note that the classification results of the single label stratification
were better than the results of the image set classification. This might be because of
the bias that is introduced when sampling image sets. When multiple instances of the
same class appear on one image, he generalizability of the classifier is decreased as the
instances of these classes are most likely not as different as when sampling single labels.
To conclude, the best techniques to predict classes in the dataset which was found in
this research is the Neural Network with stratification. The Neural Network being the
best classifier is not a shocking result as the neural network is more flexible than the
SVM and RF especially when feature extractors are used for both RF and SVM while
the NN has convolutional layers to extract the features that is uses to learn the different
classes.

The results that were obtained from this experiment are interesting as can be seen
in tables 23, 22 & 24. The TOMEK links did not improve the results of the models
when testing sampling techniques on the class subset. The expected results was that
the TOMEK links removing instances from classes which are overlapping according
to the nearest neighbor pairs of the same class would improve the classification rate

Figure 20: NN with Tomek Links 10% of the dataset ROC.

Figure 21: F1 micro for Tomek Links and dummy classifier.

significantly. There are also more samples in the subset which might be on a class border
or a bad representation of the class, the positive effects would be increased if there are
more samples to undersample. After sampling, the train set is left with instances of
classes which are not overlapping with other classes thus improving classification results
of the models. This effect was also initially expected with TOMEK links on the class
subset. Examples of the code that was used to calculate the TOMEK links on the
COCO dataset can be found in the appendix in listings 1 & 2.

Undersampling techniques such as EditedNearestNeighbors (ENN) and AllKNN un-
dersampled some of the minority classes to the point where some of these minority
classes were omitted from the train set. Because of this the ENN and AllKNN are
not included in the results of the complete dataset. Furthermore, most sampling tech-
niques try to balance the dataset to a point where most classes are in the same order
of magnitude. This means that all of the classes are oversampled to the point where
the number of instances in all classes is almost equal to the number of instances in the
person class. As mentioned in earlier section, the person class makes up about 30%
of the original dataset which means that all other classes are oversampled until their
number of instances is 30% of the size of the original dataset.

While the overall results of the SVM are about equal or sometimes slightly better
than the results of the RF when the dataset is big enough (7.5-10%), the RF outperforms
by quite a margin the SVM when the dataset is small (1-3%) as can be seen in tables

Figure 22: Strategies and their micro F1 score for percentages of the
COCO dataset used.

16, 17, 19, 20, 23 & 22. This might have multiple reasons: The RF has an extra feature
compared to the SVM because the SVM fit converged very slowly or did not converge at
all when this feature, MLBP, was used for the SVM. This feature might help classifying
the test set when the train set is small in the sense that extra information is provided to
the RF classifier. When looking at the results per class it seems that the SVM mainly
focused on classifying the majority class correctly whereas the RF tried to optimize the
performance on multiple classes.

Looking at larger subsets of the data, it seems that the SVM tried to diversify and
tried to learn more classes as almost all the classes have metric scores higher than 0
if the class sizes is not too small (<250). As person is by far the majority class, this
class might be a good choice for the classifier to optimize. The random forest scored
better on some other classes such as pizza, tv, clock and book. This might again be
because of the MLBP feature which was added to the RF classifier. It seems that the
RF is once again prioritizing the majority class to get a better classification rate as the
recall rate on the person class is once again 1 for the RF whereas it seems to ignore
most other classes besides to the traffic light, bowl and dining table classes. It is quite
interesting because these classes are not even near as big as the person class, this might
mean that the features for these classes are distinct enough from the other classes, even
for small data sets. Even more interesting is that the SVM does not score near as good
on these classes. According to multiple sources the SVM generally outperforms the RF
classifier if an SVM can be used for the domain, this also seems to be the case for these
experiments. The RF was faster and easier to use than the SVM, which makes the RF
a reliable, easy to use and fast classifier when first inspecting the data and finding out
which features are useful for classification.

As expected the neural network’s performance is not that good when the sample size
is small as can be seen in tables 18,21 & 24 located in the appendix. The performance
of the neural network is comparable to the performance of the SVM. The accuracy is
almost identical for these two classifiers for small datasets, the precision is a bit worse
for the neural network. However, the F1 score and recall are significantly better for
the neural network than the SVM. When comparing the results of the Neural Network
against the results of the RF on small datasets, the RF is better for both accuracy and
recall but the NN is better in both precision and F1 by a large margin already. This is
not something that is to be expected as NN’s tend to overfit on small sample sizes and
might not have enough samples to correctly learn and predict the classes. However, the

overall results of the neural network are to be expected as the metrics scores are not
that high, which would be normal for small datasets. If we are looking at the bigger
sample sizes however, the neural network outperforms the SVM and RF by a significant
margin. This was to be expected as the neural network outperformed the RF and SVM
by a large margin in the class subset. All of the metrics, accuracy, precision, recall, F1,
are significantly better for the Neural network. This might be because of the nature
of neural networks where the neural network tries to learn features which are good for
classifying the different classes.

When taking the individual scores into account it seems that the neural network
didn’t overfit as much because the precision of the person class is 54.1% for the neural
network, 36.6% for the SVM and 33.2% for the RF as can be seen in tables 28, 29 & 30.
This might show that Neural networks are less prone to picking the majority class too
often even if the data set is skewed. The recall is lower for the NN is lower than that
of the SVM and RF when looking at the person class, this might show that the neural
network tries to diversify the classifications whereas the SVM and RF are still prone
to picking the majority class more often. One of the reasons why the RF and SVM
have a recall of close to 1 for the person class is that one of the features used is HOG,
which is used in many applications to classify or detect persons. Another reason might
be that the features that are used work well on objects such as persons, whereas the
neural network generates features and does not get the pre-calculated features. This
might make the NN better in many scenarios because of the feature extraction and the
flexibility of the classifier if the data set is big enough and not too imbalanced.

5.3.1 Validation

The class subset which was used to optimize the models was small enough that sampling
was not needed and the whole train and validation/test set could be used to train
and test the models. This means that the collected results for the class subset are
fairly accurate and unbiased as there is no need to use techniques such as k-fold cross
validation. This is because all of the instances belonging to the class subset are used to
train and validate the classifiers. The best performing classifiers were trained five times
to establish a mean and standard deviation for the metrics of these models. The results
which were gathered from the class subset are used to test and validate which sampling
techniques and models work well on this particular set. The results gathered from
this validation were used to pick an architecture for the neural network and to pick the
sampling methods that performed well to use for the entire COCO dataset. It should be
taken into account that basing sampling algorithms, hyperparameters and architectures
of classifiers on results of the models trained on the class subset is a somewhat biased
but relatively good starting point for classifying the entire dataset as can be seen in the
results.

To validate the models which were trained, a test set is sampled from the train set.
The data set is large enough that both the train and test set can be sampled from the
original train set without contaminating the classifier as every classifier uses the same
train and test sets for every experiment. When using the same 1-10% of instances in the
dataset, the classifiers can at least be compared as they have been trained and tested
on the same dataset. This does not mean that there is no need for cross validation
on different folds when aiming to extensively validate the classifier. Every sampling
method is used on both the train and test set with the exception of the over and
undersampling techniques. For these sampling techniques, the standard stratification
was used to validate the performance of the model. Generating both the train and test

set by using the same sampling technique will give an insight in techniques which might
be good for both training and testing models on a data set.

6 Discussion

The goal of this thesis was to research the impact of different sampling techniques on the
performance of widely used classifiers for supervised learning, more specifically object
recognition on images. After having tested sampling methods such as random sampling,
iterative image set sampling, stratified sampling and several under and over sampling
techniques on supervised learning techniques such as Neural Networks, SVM’s and Ran-
dom Forests, results have been gathered and research questions can be answered. There
is still a lot to improve on in this research such as further optimizing the models, test-
ing more pre-processing techniques, researching these sampling techniques on other data
sets and classifiers.

The results which are obtained during this research are satisfactory and the classifiers
outperform the baseline classifiers on most of the metrics, except for maybe accuracy
when the baseline is always picking the majority class when the classifiers do not have
much data to train on. The baselines give an insight in how well the classifiers actually
perform as it makes it easier to interpret the results from the trained models with
respect to the result of the baseline classifiers. When looking at the results of the
different classes, it is apparent that the person class is one of the easiest classes to learn
for the classifier. This is very likely due to the number of instances in the person class
in proportion to the entire dataset.

There is a clear distinction between using the entire data set and the class subset in
the performance metrics, this at least shows the potential of all the different models and
sampling methods which were used in this research. The results do give us an insight in
the relations between data set size, sampling technique, classifier and the performance
of this particular model. This is exactly the reason why the earlier named benchmark
is so important.

Even though a large part of the data set was not used, conclusions can still be drawn
because the baseline can always be compared to the actual performance of the model.
The metrics which are used to measure the performance of the model are the F1 micro
and macro scores as these metrics give an insight in the performance on imbalanced
data sets. The micro score is dependent on the total amount of correctly predicted
incorrectly predicted classes, whereas the macro score calculates a F1 metric for every
class and averages this metric by adding all of the macro scores from other classes and
dividing by the number of classes (Z. Zheng, Wu, and Srihari, 2004).

As the COCO set had one class made up about 1
3 of the data set, the macro scores

of classes that do not have many instances in this set have a fairly unstable macro score.
This is still important to note because the importance of the classes in the data set is
not known. The classification could have been more stable if the classes with too little
instances would have been omitted from the train and test set. However, this raises the
question whether bias is introduced into the classification process by arbitrarily selecting
and omitting data and could be a possible interesting topic for further research. Because
the research was focused on classifying imbalanced data sets, the choice was made to
keep the data set intact with all of the classes present.

The results also show that the Neural Networks perform the best on this data
particular data set and possibly performs better overall on imbalanced data sets. This
might be due to the convolutional layers, weight updates and deep learning aspects of
the neural network. As the neural network does not need pre-extracted features to be
fed to the machine learning algorithm but extracts its own features based on interesting
aspects of the class in the images, it might extract features that are performing well on
the data set making it more flexible, instead of extracting features that perform well

overall which leads to overfitting. It can not be verified nor falsified whether the Neural
Network overfitted on this data set or not as the classifiers were not tested on other data
sets, the generalizability of the classifiers trained on this data set is unknown. Some
of the results such as the results of the class subset were validated while the results of
a percentage of the entire COCO dataset were not cross-validated. This may have an
effect on the observations and conclusions which are made in this thesis.

When training the neural network using the ImageDataGenerator in the TensorFlow
library with featurewise centering and ZCA whitening, the results were very good (72%
validation accuracy). The validation set was passed to the neural network using a
special validation_data parameter while fitting on the train set. When the validation
set was used to as a set of images that had to be predicted and the results were logged
in a classification report, the results were really low. Even when predicting the train
set the results in the classification report were quite bad. This was quite confusing
and a possible explanation is a bug in the Keras ImageDataGenerator for ZCA and
featurewise centering.

Finally, the oversampling techniques might boost the performance of the classifiers
which were used in this research a lot. When oversampling on an imbalanced data set
where the majority class makes up about 30% of the data set, the amount of oversam-
pling on the other classes would simply be too much to calculate with the limitations
in the setup if this thesis. Also, the combination of over and undersampling would be
interesting to research as it might yield better results than just undersampling or over-
sampling. This would make it interesting to research oversampling and oversampling +
undersampling for this problem in the future. A short paragraph in the future research
will be devoted to this topic as it is likely that these methods will greatly boost the
performance of the classification models.

6.1 Further research

While conducting the research there were many questions, solutions, insights and doubts.
These questions, insights and doubts will be discussed in this section to give an overview
of interesting topics which could not be elaborated on during this research. To further
improve upon classifiers which have to predict classes in an imbalanced and to fully un-
derstand the dynamics and implications of the different sampling methods and classifiers
on the results more research is needed. Unfortunately, some of the experiments which
were needed to further elaborate on these implications were not possible to conduct in
the scope or time frame of this research.

One of the major points of improvement of this research is that results have to
be cross-validated, especially when using the folds of the COCO dataset to train the
classifiers. Using stratified cross-validation reduces the bias and variance of the models
significantly Kohavi et al., 1995. The results which have been obtained during this
research give insight into the domain of image classification on imbalanced data sets
but using cross-validation would make these results more robust and would allow for
stronger conclusions to be made from the results and data when looking at the results
of the 1-10% of the COCO dataset as train set. The results which were obtained during
this research can still be used to draw conclusions, but to further elaborate on these
conclusions and make stronger arguments more research is needed. Furthermore, the
pre-processing and feature extraction might benefit from further research as there are
a plethora options available for these steps in the machine learning process. Feature
extraction methods such as SIFT, ORB, SURF, shape-based features, edge detectors
and texture-based features (Rublee et al., 2011; Nixon and Aguado, 2012).

Another interesting subject would be how well the models generalize from this data
set to other data sets. Generalizability is a big problem in the field of machine learning
as models often perform well on the data set on which they are trained but when tested
on other data sets, the results might not be satisfactory. Data sets such as ImageNet,
Google’s Open Images or even the CIFAR-10 data set might be used to further train
the model in order to generalize the model and use it in multiple scenarios and data
sets. Training the classifiers on a data set that is not as imbalanced would most likely
benefit the performance and generalizability of the models. However, it is important
to note that this data set has occluded and cluttered images instead of unobstructed
images which are easier for machine learning algorithms to classify (Lin et al., 2014).

One way to achieve better performance might be to research the feature engineering
and pre-processing techniques further so that more meaningful features can be extracted
from the images. More information will most likely result in better classification results.
Spending more time on feature engineering might also provide a better insight into the
problem which will help with the optimization of the models. Feature extraction meth-
ods such as SIFT and SURF might yield better results and different ways of combining
or selecting the most meaningful features might boost the performance of the classifiers.
Another way to boost the performance of the neural networks in particular is to po-
tentially make the network ’deeper’. Deeper neural networks might extract more useful
features which cannot be extracted by more shallow neural networks. Another way to
achieve better performance is to create a classifier using one-vs-one (OVO) classification
strategy to make classifiers which are more precise in prediction a single class. Whether
this actually improves the results is unclear, but it might be interesting to research
the performance of OVO classifiers instead of one-vs-rest (OVR) classifiers on imbal-
anced datasets. The downside of using ovo classifiers is that it is quite computationally
expensive to compute all of the separate classifiers for classes.

One interesting observation for the SVM implementation that is used in this thesis
is that the kernel function which was used is linear. This has the advantage that this
kernel function is faster and computationally less expensive to compute than some of the
other functions. As can be seen in Figures 19 & 26 the results of the SVM experiments
with the RBF kernel seem to outperform the stratified linear SVM by a large margin.
It is hard to say that the RBF always outperforms the linear SVM but it seems that the
RBF kernel is more flexible in fitting to the data. One downside of using the RBF kernel
is that it is computationally very expensive as was mentioned in the experimental setup
in the SVM subsection. This is due to the kernel trick that is used in SVMs not scaling
well when the number of training samples or features in the feature space is increased.
It would be interesting to see how the SVM with an RBF kernel would perform when
sufficient computational resources are available to calculate this classifier on a big data
set.

The effect of other sampling methods would also be an interesting topic for further
research on either the COCO data set or imbalanced data sets in general. Due to
the scope and time limitations it was not possible to test all of the available sampling
algorithms. Most of the oversampling methods are computationally expensive, this is
why only undersampling methods were used in these experiments. When oversampling,
the computational cost and the memory that is needed to upsample the minority classes
in the data set is such as vast amount. This is because the person class makes up 30%
of the data set, this means that all of the other classes have to be upsampled by a
large amount which uses a huge amount of memory and processing power which is not
feasible on this data set during this research. There might be sampling algorithms
or combinations of algorithms such as ADASYN, SMOTE or SMOTETOMEK which

might improve the results of the models on this data set even further (He et al., 2008;
Barua, Islam, and Murase, 2011). Furthermore, some of the sampling methods such
as Edited Nearest Neighbors (ENN) reduced the data set to approximately 1

8 of the
original subset of the data and might even omit entire classes from the train set. This
greatly reduces the data available for the classifiers to train on which naturally yields
worse results. This technique might work better when there are not as much classes
present in the dataset and when the class imbalance itself is not that extreme.

Finally, there were several assumptions made and concerns when doing this research
which might need researched and clarified in the future. Firstly, the amount of data
which was used is relatively low compared to the full data set. This has multiple reasons,
the first one is that it is interesting to research if there are sampling techniques which
can optimize the results when the amount of data is relatively small. The second reason
is more practical in the sense that the computational resources to compute all of these
models and results is unfeasible in the time for this thesis. As mentioned earlier there
are 82783 images in the data set which have a combined size of 12.5GB can be further
divided into 604907 sub images. For all of these images’ features have to be extracted,
pre-processing has to be done and the models have to be trained. This process takes up
quite some time, especially when there are many sampling methods for different models
and subset sizes.

Other classification algorithms such as KNN or meta models which, can be con-
structed by combining multiple models, could be used to construct a more optimized
model with better results. The SVM, Random Forest and Neural Networks were used
as these algorithms seem to be widely used in the field of image classification but that
does not mean that these algorithms are always best suited for an image classification
problem.

7 Conclusion

The goal of this research was to analyze which sampling and classification methods
perform well when working with an imbalanced data set. First of all, pre-processing
is an important step in the process of machine learning as it can reduce overfitting on
the train set with techniques such as gaussian blurring, data augmentation and one-hot
encoding which standardize the data. The performance metric which was chosen to
measure the performance of the classifiers is the F1 micro score and in some cases the
weighted F1 score. These metrics give an insight in how the precision and recall relate
to eachother but the F1 micro also represents the results that the classifiers achieve
on imbalanced datasets better than the macro scores on this dataset as there is no
single important class. Another reason is that the F1 score gives a more complete
understanding of the classifier in contrast to for example the accuracy score.

It is not possible to say which sampling methods perform the best in general and
what the optimal sampling rate would be as these choices are likely to be dependent
on the domain (G. M. Weiss, 2004). From this research it can be inferred that strati-
fying data on single labels is most of the time a good way to subset data for training
a model. Furthermore, techniques such as TOMEK links, ADASYN and data augmen-
tation specifically for neural networks improve on the performance of the classifiers in
some scenarios. The problem with picking a sampling method is that the performance
of classifiers on the sets that are sampled with these techniques are very dataset depen-
dent which makes picking an optimal sampling method very hard. Furthermore, this
problem makes it impossible to pick a single sampling method that always yields good
results. Techniques such as ENN, SMOTETOMEK and random sampling did not yield
good results when conducting this research, this does not mean that these sampling
methods are bad as these techniques might yield better results on other datasets.

Furthermore, the neural networks seem to outperform the SVMs and RFs when the
data set for training is sufficiently large, this may mean that neural networks are the
best choice when working with imbalanced, cluttered and occluded data sets such as the
COCO data set used for this research. This might have to do with the neural network
being more flexible as it can extract its own features, depending on what is important
in the dataset instead of having to rely on feature extractors which always look for the
same patterns. On the other hand, classifiers such as the RF and SVM are easier to
interpret and explain, which might have value when trying to better understand the
current domain. The best performing setup is a neural network with only the stratified
data for the class subset and the neural network with stratified labels and possibly
TOMEK links when using the 1-10% of the entire COCO dataset as the results for
these setups where similar. The sampling methods did not always improve the results,
which might suggest that the error rate of the minority samples is very high. One
explanation for this might be that the learning problem may have another origin, such
as the within-class distribution of data for every class. Another explanation might
be that other methods such as manually augmenting data may in some cases yield
better results than undersampling and oversampling methods due to sampling methods
introducing within-class outliers or instances which are close to the border of another
class. The final way to improve on the results is to use more data, but in order to use
more data the computational resources have to be increasingly powerful.

As can be inferred from the results, all of the classifiers perform better than the
baseline even without under or oversampling methods when enough data is available.
This shows that these classifiers are able to improve on the baseline classifier which only
picked the majority class. Even though the performance of these models is not very

good on the data set with the small subset of data which was used to train the models,
these methods do show potential. Understanding the problem of classifying imbalanced
data sets and which methods work well in this particular domain have increased due
to this research. Further optimization, combining sampling methods, ZCA whitening,
using more feature extractors and the ability to feed more data to the models will greatly
improve the performance for all of the models. Techniques such as combining classifiers
to create a better classifier and creating deeper neural networks might be used to better
results.

The bias in this research is limited, as the stratification is a good method to split
datasets while keeping bias and variance limited Kohavi et al., 1995. To further diminish
the effects of overfitting and reduce the bias, techniques such as sampling, gaussian
blurring, adding noise and data augmentation were used. The only bias introduced was
when validating on a class subset from the COCO dataset as these classes were a subset
of the dataset which does not represent the entire dataset. However, this was only
used for optimizing and validating the models. The variance that was introduced could
have been reduced by cross-validating the results on the entire COCO dataset using
stratified k-folds cross validation Kohavi et al., 1995. Another thing to keep in mind
when using folds is that there is variance in the actual samples, this means that the
next to cross-validating the folds should be resampled. This thesis shows that machine
learning can be used in an effective manner when classifying imbalanced data sets and
that machine learning can be used to classify cluttered and occluded objects. It is
important to note that the pre-processing, sampling and the classification techniques
have a significant effect on the performance of the model and commonly used techniques
should be explored before picking and committing to certain techniques.

Finally, to answer the research question: What is the influence of sampling methods
for training a classifier to classify images in an imbalanced multi-class data set? The
conclusion can be made that the sampling method which yields optimal results is depen-
dent on the classifier, the domain and the dataset. This means that some exploratory
research has to be conducted before picking a sampling method. In order to find the
best sampling method for the dataset, establish a baseline with performance metrics for
the current problem. When the baseline results are collected, implement and optimize
the sampling methods and compare these results to the baseline classifier to find the
most optimal sampling method for the domain. As all imbalanced datasets are different
in terms of data, domain and the proportions of classes, there is not one single tech-
nique or a set of techniques which will always yield optimal results. In conclusion, all
of the classifiers which were used during this research are sensitive to class imbalance.
The effect of class imbalance on classifiers should not be overlooked when working with
imbalanced datasets.

8 Reflection

With this thesis I have shown that machine learning on imbalanced data sets can be
improved upon by using the right sampling techniques. The models that I constructed
during this research were able to classify the objects on images better than the baseline
classifier did. During this research I focused on data processing, feature extraction,
sampling methods and optimization of the models. When I started my thesis, I had an
idea of how data analytics works but I did not have much experience with solving data
science problems which were as complex as this project. I had to learn techniques such as
TensorFlow, Azure with the machine learning workspace, imblearn and research possible
approaches to tackle this problem which did cost me quite some time. I have learned a lot
on the subjects of statistics, machine learning, data analytics and conducting research.
Furthermore, I have also learned how to run a cloud machine learning service in Azure
on which jobs for training models can be scheduled. Another important skill which I
learned during this research is learning which metrics to pick and how to interpret these
metrics to draw conclusions. I have learned a lot about how and why the classifiers
work and in which domains these classifiers perform well.

There is still room for improvement in training and optimizing these models as the
domain and number of possibilities in machine learning are quite big. I have shown
that skills which I have acquired during the master Artificial Intelligence were sufficient
to conduct these experiments and create relatively successful models for the amount of
data which was used and the limitations of the research. The most important thing
I think I have shown during this thesis is that I’m able to evaluate and analyze my
experiments in order to improve upon the results and that I’m not satisfied with only
the results but I also need to be able to explanation why the results have a certain
value. My research skills and writing skills also improved a lot during the course of this
thesis, looking back I’m very grateful for this opportunity from both my supervisors at
Utrecht University and Avanade. I hope that this research can have a positive impact
on the classification of imbalanced data sets at Avanade. Even though I have learned
a lot from conducting this research for my thesis, there is still knowledge to be gained
and I hope to expand further on my knowledge regarding this topic in the future.

References

[1] Martın Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
“Tensorflow: a system for large-scale machine learning.” In: OSDI. Vol. 16. 2016,
pp. 265–283.

[2] Ali Ismail Awad and Mahmoud Hassaballah. “Image feature detectors and descrip-
tors”. In: Studies in Computational Intelligence. Springer International Publishing,
Cham (2016).

[3] Will Badr. Having an Imbalanced Dataset? Here Is How You Can Fix It. https:
//towardsdatascience.com/having-an-imbalanced-dataset-here-is-how-
you-can-solve-it-1640568947eb. Accessed: 2019-05-20.

[4] Sukarna Barua, Md Monirul Islam, and Kazuyuki Murase. “A novel synthetic mi-
nority oversampling technique for imbalanced data set learning”. In: International
Conference on Neural Information Processing. Springer. 2011, pp. 735–744.

[5] Gustavo EAPA Batista, Ronaldo C Prati, and Maria Carolina Monard. “A study
of the behavior of several methods for balancing machine learning training data”.
In: ACM SIGKDD explorations newsletter 6.1 (2004), pp. 20–29.

[6] Indranil Bose and Radha K Mahapatra. “Business data mining—a machine learn-
ing perspective”. In: Information & management 39.3 (2001), pp. 211–225.

[7] Matthew R Boutell, Jiebo Luo, Xipeng Shen, and Christopher M Brown. “Learn-
ing multi-label scene classification”. In: Pattern recognition 37.9 (2004), pp. 1757–
1771.

[8] Sing-Tze Bow. Pattern recognition and image preprocessing. Marcel Dekker New
York, 2002.

[9] Gary Bradski and Adrian Kaehler. “OpenCV”. In: Dr. Dobb’s journal of software
tools 3 (2000).

[10] Paula Branco, Luıs Torgo, and Rita P Ribeiro. “A survey of predictive modeling
on imbalanced domains”. In: ACM Computing Surveys (CSUR) 49.2 (2016), p. 31.

[11] Leo Breiman. “Random forests”. In: Machine learning 45.1 (2001), pp. 5–32.

[12] Gustavo Camps-Valls and Lorenzo Bruzzone. “Kernel-based methods for hyper-
spectral image classification”. In: IEEE Transactions on Geoscience and Remote
Sensing 43.6 (2005), pp. 1351–1362.

[13] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer.
“SMOTE: synthetic minority over-sampling technique”. In: Journal of artificial
intelligence research 16 (2002), pp. 321–357.

[14] Nitesh V Chawla, Nathalie Japkowicz, and Aleksander Kotcz. “Special issue on
learning from imbalanced data sets”. In: ACM Sigkdd Explorations Newsletter 6.1
(2004), pp. 1–6.

[15] Navneet Dalal and Bill Triggs. “Histograms of oriented gradients for human de-
tection”. In: Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE
Computer Society Conference on. Vol. 1. IEEE. 2005, pp. 886–893.

[16] Usama Fayyad, Gregory Piatetsky-Shapiro, and Padhraic Smyth. “From data min-
ing to knowledge discovery in databases”. In: AI magazine 17.3 (1996), p. 37.

https://towardsdatascience.com/having-an-imbalanced-dataset-here-is-how-you-can-solve-it-1640568947eb
https://towardsdatascience.com/having-an-imbalanced-dataset-here-is-how-you-can-solve-it-1640568947eb
https://towardsdatascience.com/having-an-imbalanced-dataset-here-is-how-you-can-solve-it-1640568947eb

[17] Giles M Foody and Ajay Mathur. “A relative evaluation of multiclass image clas-
sification by support vector machines”. In: IEEE Transactions on geoscience and
remote sensing 42.6 (2004), pp. 1335–1343.

[18] Mark Andrew Hall. “Correlation-based feature selection for machine learning”. In:
(1999).

[19] David Hand and Peter Christen. “A note on using the F-measure for evaluating
record linkage algorithms”. In: Statistics and Computing 28.3 (2018), pp. 539–547.

[20] Haibo He, Yang Bai, Edwardo A Garcia, and Shutao Li. “ADASYN: Adaptive syn-
thetic sampling approach for imbalanced learning”. In: 2008 IEEE International
Joint Conference on Neural Networks (IEEE World Congress on Computational
Intelligence). IEEE. 2008, pp. 1322–1328.

[21] James J Heckman. Sample selection bias as a specification error (with an appli-
cation to the estimation of labor supply functions). 1977.

[22] Sepp Hochreiter. “The vanishing gradient problem during learning recurrent neu-
ral nets and problem solutions”. In: International Journal of Uncertainty, Fuzzi-
ness and Knowledge-Based Systems 6.02 (1998), pp. 107–116.

[23] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimization”.
In: arXiv preprint arXiv:1412.6980 (2014).

[24] Ron Kohavi et al. “A study of cross-validation and bootstrap for accuracy estima-
tion and model selection”. In: Ijcai. Vol. 14. 2. Montreal, Canada. 1995, pp. 1137–
1145.

[25] Sotiris B Kotsiantis, I Zaharakis, and P Pintelas. “Supervised machine learning: A
review of classification techniques”. In: Emerging artificial intelligence applications
in computer engineering 160 (2007), pp. 3–24.

[26] Sotiris Kotsiantis, Dimitris Kanellopoulos, Panayiotis Pintelas, et al. “Handling
imbalanced datasets: A review”. In: GESTS International Transactions on Com-
puter Science and Engineering 30.1 (2006), pp. 25–36.

[27] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classification
with deep convolutional neural networks”. In: Advances in neural information
processing systems. 2012, pp. 1097–1105.

[28] Yann LeCun, Yoshua Bengio, et al. “Convolutional networks for images, speech,
and time series”. In: The handbook of brain theory and neural networks 3361.10
(1995), p. 1995.

[29] Guillaume Lemaître, Fernando Nogueira, and Christos K Aridas. “Imbalanced-
learn: A python toolbox to tackle the curse of imbalanced datasets in machine
learning”. In: The Journal of Machine Learning Research 18.1 (2017), pp. 559–
563.

[30] Andy Liaw, Matthew Wiener, et al. “Classification and regression by randomFor-
est”. In: R news 2.3 (2002), pp. 18–22.

[31] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollár, and C Lawrence Zitnick. “Microsoft coco: Common ob-
jects in context”. In: European conference on computer vision. Springer. 2014,
pp. 740–755.

[32] Charles X Ling and Chenghui Li. “Data mining for direct marketing: Problems
and solutions.” In: Kdd. Vol. 98. 1998, pp. 73–79.

[33] Yi Liu and Yuan F Zheng. “One-against-all multi-class SVM classification using
reliability measures”. In: Proceedings. 2005 IEEE International Joint Conference
on Neural Networks, 2005. Vol. 2. IEEE. 2005, pp. 849–854.

[34] Marcus A Maloof. “Learning when data sets are imbalanced and when costs are
unequal and unknown”. In: ICML-2003 workshop on learning from imbalanced
data sets II. Vol. 2. 2003, pp. 2–1.

[35] Christopher Manning, Prabhakar Raghavan, and Hinrich Schütze. “Introduction
to information retrieval”. In: Natural Language Engineering 16.1 (2010), pp. 100–
103.

[36] Lev Manovich. “Trending: The promises and the challenges of big social data”. In:
Debates in the digital humanities 2 (2011), pp. 460–475.

[37] Jonathan Masci, Ueli Meier, Dan Cireşan, and Jürgen Schmidhuber. “Stacked
convolutional auto-encoders for hierarchical feature extraction”. In: International
Conference on Artificial Neural Networks. Springer. 2011, pp. 52–59.

[38] Mor Naaman. “Social multimedia: highlighting opportunities for search and min-
ing of multimedia data in social media applications”. In: Multimedia Tools and
Applications 56.1 (2012), pp. 9–34.

[39] Vinod Nair and Geoffrey E Hinton. “Rectified linear units improve restricted boltz-
mann machines”. In: Proceedings of the 27th international conference on machine
learning (ICML-10). 2010, pp. 807–814.

[40] Mark Nixon and Alberto S Aguado. Feature extraction and image processing for
computer vision. Academic Press, 2012.

[41] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand
Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent
Dubourg, et al. “Scikit-learn: Machine learning in Python”. In: Journal of machine
learning research 12.Oct (2011), pp. 2825–2830.

[42] David Martin Powers. “Evaluation: from precision, recall and F-measure to ROC,
informedness, markedness and correlation”. In: (2011).

[43] Ronaldo C Prati, Gustavo EAPA Batista, and Maria Carolina Monard. “Data
mining with imbalanced class distributions: concepts and methods.” In: IICAI.
2009, pp. 359–376.

[44] Foster Provost. “Machine learning from imbalanced data sets 101”. In: Proceedings
of the AAAI’2000 workshop on imbalanced data sets. Vol. 68. AAAI Press. 2000,
pp. 1–3.

[45] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary R Bradski. “ORB: An
efficient alternative to SIFT or SURF.” In: ICCV. Vol. 11. 1. Citeseer. 2011, p. 2.

[46] scikit-learn.org SVC. https://scikit-learn.org/stable/modules/generated/
sklearn.svm.SVC.html. Accessed: 2019-03-11.

[47] Konstantinos Sechidis, Grigorios Tsoumakas, and Ioannis Vlahavas. “On the strat-
ification of multi-label data”. In: Joint European Conference on Machine Learning
and Knowledge Discovery in Databases. Springer. 2011, pp. 145–158.

[48] Engin Tola, Vincent Lepetit, and Pascal Fua. “Daisy: An efficient dense descriptor
applied to wide-baseline stereo”. In: IEEE transactions on pattern analysis and
machine intelligence 32.5 (2009), pp. 815–830.

https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html

[49] Grigorios Tsoumakas and Ioannis Katakis. “Multi-label classification: An overview”.
In: International Journal of Data Warehousing and Mining (IJDWM) 3.3 (2007),
pp. 1–13.

[50] Stefan Van der Walt, Johannes L Schönberger, Juan Nunez-Iglesias, François
Boulogne, Joshua D Warner, Neil Yager, Emmanuelle Gouillart, and Tony Yu.
“scikit-image: image processing in Python”. In: PeerJ 2 (2014), e453.

[51] Gary M Weiss. “Mining with rarity: a unifying framework”. In: ACM Sigkdd Ex-
plorations Newsletter 6.1 (2004), pp. 7–19.

[52] Gary M Weiss and Foster Provost. “Learning when training data are costly: The
effect of class distribution on tree induction”. In: Journal of artificial intelligence
research 19 (2003), pp. 315–354.

[53] Dennis L Wilson. “Asymptotic properties of nearest neighbor rules using edited
data”. In: IEEE Transactions on Systems, Man, and Cybernetics 3 (1972), pp. 408–
421.

[54] Ian H Witten, Eibe Frank, Mark A Hall, and Christopher J Pal. Data Mining:
Practical machine learning tools and techniques. Morgan Kaufmann, 2016.

[55] Bianca Zadrozny and Charles Elkan. “Learning and making decisions when costs
and probabilities are both unknown”. In: Proceedings of the seventh ACM SIGKDD
international conference on Knowledge discovery and data mining. ACM. 2001,
pp. 204–213.

[56] Lun Zhang, Rufeng Chu, Shiming Xiang, Shengcai Liao, and Stan Z Li. “Face
detection based on multi-block lbp representation”. In: International Conference
on Biometrics. Springer. 2007, pp. 11–18.

[57] Zhaohui Zheng, Xiaoyun Wu, and Rohini Srihari. “Feature selection for text cat-
egorization on imbalanced data”. In: ACM Sigkdd Explorations Newsletter 6.1
(2004), pp. 80–89.

[58] Zhi-Hua Zhou and Min-Ling Zhang. “Multi-instance multi-label learning with
application to scene classification”. In: Advances in neural information processing
systems. 2007, pp. 1609–1616.

[59] Qiang Zhu, Mei-Chen Yeh, Kwang-Ting Cheng, and Shai Avidan. “Fast human
detection using a cascade of histograms of oriented gradients”. In: 2006 IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition (CVPR’06).
Vol. 2. IEEE. 2006, pp. 1491–1498.

Appendix

The tables which are represented here contain the Accuracy score, which is the same
as the precision micro, recall micro and F1 micro in a multi-class setting. Furthermore
it contains the macro scores of the earlier mentioned metrics denoted by m. Finally,
the columns with a metric name followed by a w represent the weighted score of the
respective metrics.

Table 6: class subset classifier results with standard deviation in paren-
thesis (n=5).

Classifier Accuracy/micro F1 m Precision m Recall m F1 w Precision w
SVM 0.424 (0.000) 0.340 (0.000) 0.425 (0.000) 0.347 (0.000) 0.390 (0.000) 0.427 (0.000)
RF 0.486 (0.002) 0.396 (0.002) 0.555 (0.003) 0.378 (0.002) 0.464 (0.002) 0.521(0.003)
NN 0.581 (0.013) 0.502 (0.009) 0.532 (0.006) 0.500 (0.010) 0.575 (0.013) 0.584(0.009)

Table 7: class subset random undersampling classifier results.

Classifier Accuracy/micro F1 m Precision m Recall m F1 w Precision w
SVM 0.289 0.266 0.319 0.267 0.283 0.314
RF 0.384 0.348 0.399 0.399 0.377 0.403
NN 0.072 0.008 0.004 0.062 0.010 0.005

Table 8: class subset random oversampling classifier results.

Classifier Accuracy/micro F1 m Precision m Recall m F1 w Precision w
SVM 0.378 0.341 0.360 0.421 0.365 0.435
RF 0.506 0.442 0.525 0.427 0.491 0.514
NN 0.502 0.440 0.439 0.457 0.502 0.517

Table 9: class subset ENN classifier results.

Classifier Accuracy/micro F1 m Precision m Recall m F1 w Precision w
SVM 0.274 0.220 0.273 0.248 0.247 0.307
RF 0.297 0.209 0.431 0.254 0.254 0.464
NN 0.189 0.121 0.154 0.151 0.164 0.199

Table 10: class subset datagen classifier results.

Classifier Accuracy/micro F1 m Precision m Recall m F1 w Precision w
NN 0.590 0.487 0.505 0.491 0.577 0.579

Table 11: class subset dummy classifier results.

Strategy Accuracy/micro F1 m Precision m Recall m F1 w Precision w
stratified 0.091 0.066 0.066 0.066 0.091 0.091
most_frequent 0.174 0.019 0.011 0.063 0.052 0.030
uniform 0.068 0.061 0.068 0.068 0.076 0.099

Table 12: class subset SMOTE classifier results.

Classifier Accuracy/micro F1 m Precision m Recall m F1 w Precision w
SVM 0.380 0.346 0.358 0.424 0.368 0.432
RF 0.496 0.452 0.460 0.467 0.489 0.494
NN 0.524 0.460 0.461 0.470 0.520 0.531

Table 13: class subset TOMEK classifier results.

Classifier Accuracy/micro F1 m Precision m Recall m F1 w Precision w
SVM 0.423 0.339 0.406 0.346 0.389 0.423
RF 0.488 0.395 0.552 0.377 0.464 0.520
NN 0.575 0.494 0.533 0.494 0.570 0.574

Table 14: class subset SMOTETOMEK classifier results.

Classifier Accuracy/micro F1 m Precision m Recall m F1 w Precision w
SVM 0.380 0.346 0.359 0.424 0.368 0.433
RF 0.500 0.456 0.464 0.469 0.493 0.498
NN 0.525 0.462 0.466 0.471 0.524 0.536

Table 15: class subset ADASYN classifier results.

Classifier Accuracy/micro F1 m Precision m Recall m F1 w Precision w
SVM 0.381 0.347 0.358 0.427 0.370 0.432
RF 0.501 0.454 0.455 0.470 0.495 0.502
NN 0.521 0.456 0.448 0.477 0.520 0.534

Table 16: Support Vector Machine iterative imageset stratification
results.

%data Accuracy/micro F1 m Precision m Recall m F1 w Precision w
1 0.198 0.056 0.063 0.055 0.172 0.160
2 0.230 0.059 0.068 0.060 0.188 0.182
3 0.272 0.065 0.075 0.070 0.204 0.188
5 0.303 0.068 0.093 0.075 0.206 0.196
7.5 0.321 0.069 0.104 0.075 0.214 0.203
10 0.330 0.074 0.116 0.079 0.220 0.213

Table 17: Random Forest iterative image set stratification results.

%data Accuracy/micro F1 m Precision m Recall m F1 w Precision w
1 0.272 0.016 0.048 0.019 0.128 0.117
2 0.282 0.024 0.072 0.025 0.139 0.145
3 0.299 0.038 0.089 0.035 0.157 0.169
7.5 0.312 0.037 0.165 0.034 0.167 0.232
10 0.311 0.039 0.167 0.035 0.169 0.239

Table 18: Neural Network iterative image set stratification results.

%data Accuracy/micro F1 m Precision m Recall m F1 w Precision w
1 0.198 0.059 0.065 0.058 0.182 0.174
2 0.241 0.089 0.099 0.087 0.224 0.216
3 0.282 0.110 0.125 0.105 0.259 0.246
5 0.304 0.129 0.139 0.130 0.285 0.277
7.5 0.362 0.167 0.190 0.163 0.334 0.324
10 0.383 0.192 0.214 0.182 0.353 0.340

Table 19: Support Vector Machine stratified subset results with stan-
dard deviation in parenthesis (n=5).

%data Accuracy/micro F1 m Precision m Recall m F1 w Precision w
1 0.216 0.053 0.062 0.051 0.195 0.184
2 0.265 0.059 0.065 0.062 0.217 0.203
3 0.291 0.061 0.076 0.064 0.217 0.201
5 0.319 0.069 0.091 0.074 0.221 0.204
7.5 0.333 0.072 0.114 0.077 0.223 0.217
10 0.333(0.000) 0.053(0.000) 0.138(0.000) 0.056(0.000) 0.206(0.000) 0.215(0.000)

Table 20: Random Forest stratified subset results with standard devi-
ation in parenthesis (n=5).

%data Accuracy/micro F1 m Precision m Recall m F1 w Precision w
1 0.310 0.014 0.049 0.017 0.155 0.157
2 0.314 0.019 0.079 0.020 0.162 0.175
3 0.316 0.027 0.100 0.026 0.166 0.181
5 0.321 0.032 0.118 0.029 0.173 0.202
7.5 0.321 0.035 0.171 0.031 0.174 0.237
10 0.332(0.001) 0.051(0.001) 0.288(0.017) 0.043(0.001) 0.193(0.001) 0.306(0.007)

Table 21: Neural Network stratified subset results with standard devi-
ation in parenthesis (n=5). * represents the usage of a data generator.

%data Accuracy/micro F1 m Precision m Recall m F1 w Precision w
1 0.225 0.049 0.056 0.050 0.206 0.193
2 0.261 0.077 0.084 0.076 0.240 0.227
3 0.286 0.100 0.105 0.098 0.266 0.251
5 0.313 0.130 0.144 0.123 0.297 0.288
7.5 0.364 0.160 0.178 0.154 0.331 0.314
10 0.420(0.003) 0.200(0.002) 0.253(0.008) 0.186(0.005) 0.366(0.005) 0.358(0.004)
10* 0.399(0.001) 0.146(0.003) 0.234(0.009) 0.148(0.005) 0.314(0.007) 0.333(0.006)

Table 22: Support Vector Machine Tomek Links with standard devia-
tion in parenthesis (n=5).

%data Accuracy/micro F1 m Precision m Recall m F1 w Precision w
1 0.309 0.045 0.063 0.050 0.196 0.172
2 0.322 0.049 0.081 0.053 0.199 0.183
3 0.323 0.049 0.115 0.052 0.198 0.199
5 0.326 0.048 0.087 0.051 0.199 0.184
7.5 0.327 0.048 0.112 0.051 0.201 0.198
10 0.333(0.000) 0.054(0.000) 0.127(0.000) 0.056(0.000) 0.207(0.000) 0.210(0.000)

Table 23: Random Forest Tomek Links.

%data Accuracy/micro F1 m Precision m Recall m F1 w Precision w
1 0.315 0.024 0.069 0.026 0.164 0.171
2 0.320 0.032 0.154 0.031 0.171 0.227
3 0.321 0.035 0.151 0.034 0.174 0.231
5 0.323 0.037 0.165 0.034 0.178 0.244
7.5 0.327 0.045 0.203 0.040 0.185 0.258
10 0.331(0.001) 0.051(0.001) 0.260(0.013) 0.043(0.002) 0.192(0.001) 0.293(0.011)

Table 24: Neural Network Tomek Links.

%data Accuracy/micro F1 m Precision m Recall m F1 w Precision w
1 0.312 0.025 0.039 0.033 0.183 0.153
2 0.342 0.064 0.097 0.069 0.237 0.214
3 0.349 0.096 0.130 0.094 0.265 0.247
5 0.380 0.126 0.184 0.116 0.291 0.285
10 0.421(0.005) 0.193(0.006) 0.264(0.010) 0.180(0.008) 0.362(0.007) 0.362(0.002)

Table 25: dummy classifier results.

strategy Accuracy/micro F1 m Precision m Recall m F1 w Precision w
stratified 0.104 0.012 0.012 0.012 0.104 0.104
uniform 0.013 0.009 0.013 0.012 0.016 0.108
most_frequent 0.306 0.006 0.004 0.013 0.144 0.094

Table 26: Support Vector Machine with RBF kernel stratified results.

%data Accuracy/micro F1 m Precision m Recall m F1 w Precision w
0.01 0.340 0.057 0.158 0.048 0.208 0.340
0.02 0.348 0.074 0.206 0.06 0.234 0.348
class subset 0.513 0.465 0.464 0.475 0.512 0.517

Table 27: Classification report for the neural network on the class
subset

Id precision recall f1-score support
2 0.725 0.745 0.735 2474
11 0.733 0.702 0.717 650
14 0.531 0.508 0.519 512
17 0.467 0.612 0.530 1669
23 0.542 0.348 0.424 462
34 0.694 0.690 0.692 935
36 0.540 0.597 0.567 794
39 0.610 0.649 0.629 1022
58 0.664 0.689 0.676 1021
65 0.494 0.355 0.413 1450
74 0.560 0.617 0.587 851
76 0.603 0.571 0.586 1028
78 0.664 0.672 0.668 539
80 0.375 0.038 0.070 78
89 0.000 0.000 0.000 74
90 0.385 0.363 0.373 634

Table 28: Classification report of the RF on 10% of the COCO dataset

Id precision recall f1-score support
1 0.332 0.993 0.498 18532
2 0.000 0.000 0.000 496
3 0.376 0.064 0.109 3079
4 0.000 0.000 0.000 602
5 0.462 0.078 0.134 383
6 0.000 0.000 0.000 433
7 0.000 0.000 0.000 316
8 0.000 0.000 0.000 705
9 0.500 0.001 0.003 759
10 0.514 0.021 0.040 916
11 0.000 0.000 0.000 131
13 1.000 0.365 0.535 137
14 0.000 0.000 0.000 83
15 0.333 0.001 0.003 675
16 0.143 0.001 0.003 729
17 0.000 0.000 0.000 330
18 0.000 0.000 0.000 377
19 0.000 0.000 0.000 467
20 0.447 0.051 0.092 665
21 0.875 0.012 0.024 569
22 1.000 0.008 0.015 391
23 0.000 0.000 0.000 90
24 1.000 0.087 0.160 369
25 0.000 0.000 0.000 360
27 0.000 0.000 0.000 620
28 0.338 0.029 0.054 787

31 0.000 0.000 0.000 878
32 0.500 0.002 0.004 449
33 0.000 0.000 0.000 425
34 0.429 0.016 0.031 186
35 0.418 0.196 0.267 470
36 0.500 0.005 0.010 196
37 0.438 0.408 0.422 439
38 0.528 0.029 0.055 656
39 0.250 0.004 0.008 240
40 0.000 0.000 0.000 269
41 0.000 0.000 0.000 401
42 0.600 0.007 0.014 416
43 0.000 0.000 0.000 341
44 0.667 0.002 0.005 1698
46 0.000 0.000 0.000 562
47 0.280 0.123 0.171 1451
48 0.333 0.010 0.020 392
49 0.308 0.014 0.028 554
50 0.143 0.002 0.005 429
51 0.210 0.102 0.138 1006
52 0.444 0.006 0.011 691
53 0.500 0.002 0.005 431
54 0.000 0.000 0.000 309
55 0.373 0.054 0.095 460
56 0.000 0.000 0.000 493
57 0.000 0.000 0.000 554
58 0.000 0.000 0.000 202
59 0.698 0.092 0.163 400
60 1.000 0.004 0.008 498
61 0.500 0.002 0.004 455
62 0.209 0.076 0.111 2715
63 0.000 0.000 0.000 411
64 0.000 0.000 0.000 592
65 0.000 0.000 0.000 290
67 0.238 0.009 0.017 1117
70 1.000 0.003 0.007 287
72 0.613 0.248 0.353 404
73 1.000 0.012 0.023 341
74 1.000 0.007 0.013 152
75 0.222 0.005 0.010 412
76 0.000 0.000 0.000 198
77 0.000 0.000 0.000 446
78 1.000 0.008 0.017 119
79 0.000 0.000 0.000 230
80 0.000 0.000 0.000 15
81 0.467 0.018 0.034 393
82 0.000 0.000 0.000 187
84 0.273 0.133 0.179 1732
85 0.674 0.134 0.224 433
86 0.000 0.000 0.000 462

87 0.000 0.000 0.000 107
88 0.000 0.000 0.000 344
89 0.000 0.000 0.000 13
90 0.000 0.000 0.000 138

Table 29: Classification report of the SVM on 10% of the COCO
dataset

Id precision recall f1-score support
1 0.366 0.957 0.530 18532
2 0.500 0.002 0.004 496
3 0.192 0.177 0.185 3079
4 0.000 0.000 0.000 602
5 0.248 0.065 0.103 383
6 0.310 0.021 0.039 433
7 0.200 0.003 0.006 316
8 0.143 0.001 0.003 705
9 0.231 0.004 0.008 759
10 0.216 0.023 0.041 916
11 0.000 0.000 0.000 131
13 0.488 0.584 0.532 137
14 0.000 0.000 0.000 83
15 0.000 0.000 0.000 675
16 0.316 0.008 0.016 729
17 0.000 0.000 0.000 330
18 0.000 0.000 0.000 377
19 0.000 0.000 0.000 467
20 0.319 0.035 0.062 665
21 0.130 0.011 0.020 569
22 0.129 0.010 0.019 391
23 0.000 0.000 0.000 90
24 0.343 0.125 0.183 369
25 0.000 0.000 0.000 360
27 0.000 0.000 0.000 620
28 0.214 0.030 0.053 787
31 0.000 0.000 0.000 878
32 0.000 0.000 0.000 449
33 0.000 0.000 0.000 425
34 0.000 0.000 0.000 186
35 0.176 0.302 0.223 470
36 0.000 0.000 0.000 196
37 0.277 0.390 0.324 439
38 0.148 0.014 0.025 656
39 0.043 0.004 0.008 240
40 0.000 0.000 0.000 269
41 0.000 0.000 0.000 401
42 0.000 0.000 0.000 416
43 0.000 0.000 0.000 341
44 0.140 0.014 0.025 1698
46 0.000 0.000 0.000 562

47 0.222 0.145 0.176 1451
48 0.186 0.020 0.037 392
49 0.115 0.020 0.034 554
50 0.000 0.000 0.000 429
51 0.151 0.165 0.158 1006
52 0.083 0.007 0.013 691
53 0.000 0.000 0.000 431
54 0.000 0.000 0.000 309
55 0.212 0.015 0.028 460
56 0.000 0.000 0.000 493
57 0.000 0.000 0.000 554
58 0.000 0.000 0.000 202
59 0.250 0.050 0.083 400
60 0.000 0.000 0.000 498
61 0.000 0.000 0.000 455
62 0.168 0.118 0.139 2715
63 0.000 0.000 0.000 411
64 0.000 0.000 0.000 592
65 0.000 0.000 0.000 290
67 0.182 0.029 0.049 1117
70 0.400 0.007 0.014 287
72 0.277 0.500 0.356 404
73 0.400 0.006 0.012 341
74 0.412 0.046 0.083 152
75 0.000 0.000 0.000 412
76 0.000 0.000 0.000 198
77 0.500 0.002 0.004 446
78 0.264 0.118 0.163 119
79 0.000 0.000 0.000 230
80 0.059 0.133 0.082 15
81 0.222 0.015 0.029 393
82 0.400 0.011 0.021 187
84 0.162 0.105 0.127 1732
85 0.349 0.222 0.271 433
86 0.000 0.000 0.000 462
87 0.000 0.000 0.000 107
88 0.000 0.000 0.000 344
89 0.000 0.000 0.000 13
90 0.000 0.000 0.000 138

Table 30: Classification report for the neural network with TOMEK
links on 10% of the COCO dataset

Id precision recall f1-score support
1 0.541 0.880 0.670 18532
2 0.260 0.151 0.191 496
3 0.446 0.478 0.461 3079
4 0.379 0.214 0.274 602
5 0.471 0.256 0.332 383
6 0.360 0.289 0.321 433

7 0.368 0.155 0.218 316
8 0.154 0.033 0.054 705
9 0.216 0.097 0.134 759
10 0.635 0.461 0.534 916
11 0.462 0.046 0.083 131
12 0.857 0.613 0.715 137
13 0.000 0.000 0.000 83
14 0.222 0.024 0.043 675
15 0.259 0.085 0.128 729
16 0.158 0.009 0.017 330
17 0.167 0.005 0.010 377
18 0.322 0.191 0.240 467
19 0.413 0.362 0.386 665
20 0.315 0.158 0.211 569
21 0.412 0.307 0.352 391
22 0.000 0.000 0.000 90
23 0.440 0.320 0.370 369
24 0.454 0.289 0.353 360
25 0.199 0.076 0.110 620
26 0.253 0.178 0.209 787
27 0.088 0.011 0.020 878
28 0.182 0.031 0.053 449
29 0.083 0.002 0.005 425
30 0.249 0.242 0.245 186
31 0.420 0.438 0.429 470
32 0.192 0.026 0.045 196
33 0.520 0.538 0.529 439
34 0.422 0.354 0.385 656
35 0.280 0.242 0.260 240
36 0.167 0.007 0.014 269
37 0.137 0.077 0.099 401
38 0.198 0.079 0.113 416
39 0.205 0.070 0.105 341
40 0.333 0.264 0.295 1698
41 0.343 0.181 0.237 562
42 0.243 0.245 0.244 1451
43 0.110 0.041 0.059 392
44 0.152 0.265 0.193 554
45 0.098 0.028 0.044 429
46 0.233 0.157 0.188 1006
47 0.381 0.436 0.406 691
48 0.248 0.142 0.180 431
49 0.188 0.110 0.139 309
50 0.388 0.559 0.458 460
51 0.395 0.627 0.485 493
52 0.356 0.606 0.448 554
53 0.133 0.050 0.072 202
54 0.335 0.365 0.349 400
55 0.346 0.293 0.317 498
56 0.167 0.015 0.028 455

57 0.196 0.236 0.214 2715
58 0.500 0.002 0.005 411
59 0.413 0.145 0.215 592
60 0.100 0.007 0.013 290
61 0.181 0.098 0.128 1117
62 0.297 0.143 0.193 287
63 0.277 0.450 0.343 404
64 0.217 0.126 0.160 341
65 0.203 0.092 0.127 152
66 0.206 0.180 0.192 412
67 0.053 0.015 0.024 198
68 0.117 0.031 0.049 446
69 0.175 0.252 0.207 119
70 0.093 0.035 0.051 230
71 0.000 0.000 0.000 15
72 0.173 0.099 0.126 393
73 0.050 0.005 0.010 187
74 0.237 0.333 0.277 1732
75 0.615 0.457 0.525 433
76 0.099 0.028 0.044 462
77 0.000 0.000 0.000 107
78 0.071 0.003 0.006 344
79 0.000 0.000 0.000 13
80 0.158 0.022 0.038 138

Table 31: Class occurence in the dataset

Id name size
1 person 185316
2 bicycle 4955
3 car 30785
4 motorcycle 6021
5 airplane 3833
6 bus 4327
7 train 3159
8 truck 7050
9 boat 7590
10 traffic light 9159
11 fire hydrant 1316
13 stop sign 1372
14 parking meter 833
15 bench 6751
16 bird 7290
17 cat 3301
18 dog 3774
19 horse 4666
20 sheep 6654
21 cow 5686
22 elephant 3905
23 bear 903

24 zebra 3685
25 giraffe 3596
27 backpack 6200
28 umbrella 7865
31 handbag 8778
32 tie 4497
33 suitcase 4251
34 frisbee 1862
35 skis 4698
36 snowboard 1960
37 sports ball 4392
38 kite 6560
39 baseball bat 2400
40 baseball glove 2689
41 skateboard 4012
42 surfboard 4161
43 tennis racket 3411
44 bottle 16983
46 wine glass 5618
47 cup 14513
48 fork 3918
49 knife 5536
50 spoon 4287
51 bowl 10064
52 banana 6912
53 apple 4308
54 sandwich 3089
55 orange 4597
56 broccoli 4927
57 carrot 5539
58 hot dog 2023
59 pizza 4001
60 donut 4977
61 cake 4551
62 chair 27147
63 couch 4113
64 potted plant 5918
65 bed 2905
67 dining table 11167
70 toilet 2873
72 tv 4036
73 laptop 3415
74 mouse 1517
75 remote 4122
76 keyboard 1980
77 cell phone 4460
78 microwave 1189
79 oven 2302
80 toaster 156
81 sink 3933

82 refrigerator 1875
84 book 17315
85 clock 4328
86 vase 4623
87 scissors 1073
88 teddy bear 3442
89 hair drier 135
90 toothbrush 1377

Listing 1: Example code for neural network with stratified subset and
TOMEK links in Python

from c o l l e c t i o n s import d e f a u l t d i c t
import i t e r t o o l s
import numpy as np
from numpy import genfromtxt
import os
from PIL import Image , ImageFi l t e r
import keras
import keras . backend as K
from random import s hu f f l e , seed
from skimage . transform import r e s i z e
from sk l ea rn . metr i c s import c l a s s i f i c a t i o n_ r ep o r t , confusion_matrix , roc_curve
from skmu l t i l e a rn . model_se lect ion import i t e r a t i v e_t r a i n_t e s t_sp l i t
from sk l ea rn . model_se lect ion import t r a i n_te s t_sp l i t
from imblearn . under_sampling import TomekLinks
from imblearn . combine import SMOTETomek
import t en so r f l ow as t f
from t en so r f l ow . keras . models import Sequent ia l , load_model
from t en so r f l ow . keras . l a y e r s import Conv2D , MaxPooling2D , GlobalAveragePooling2D , Dense , Act ivat ion , Flatten ,
Dropout , GaussianNoise
from t en so r f l ow . keras . c a l l b a ck s import EarlyStopping , TensorBoard
from t en so r f l ow . keras . p r ep roc e s s i ng . image import ImageDataGenerator
from t en so r f l ow . keras . u t i l s import to_categor i ca l , plot_model
import time

def loadAnnotat ions (f i l e L o c a t i o n) :
with open(f i l e L o c a t i o n) as r e ad_f i l e :

annotat ions = json . load (r e ad_f i l e)
return annotat ions

def getBoundingBox (x , y ,w, h , img) :
return img [y : y+h , x : x+w]

def f indAnnotat ionsById (id , property , annotat ions) :
i tems = []
for annotat ion in annotat ions :

i f annotat ion [property] == id :
i tems . append (annotat ion)

return i tems

def preProcessImage (img) :
img = np . asarray (img)
return img

def getBoundingBoxesAnnotations (annotat ions , path) :
bounded_images = []
bounded_annotations = []
try :

for annotat ion in annotat ions :
image_id = annotat ion [’ image_id ’]
image_id_string = str (image_id) . z f i l l (12)
image = Image .open(path + image_id_string +’ . jpg ’) . convert (’RGB’)
image = preProcessImage (image)
image_resized = r e s i z e (getBoundingBox (int (annotat ion [’ bbox ’] [0]) , int (annotat ion [’ bbox ’] [1]) ,
int (annotat ion [’ bbox ’] [2]) , int (annotat ion [’ bbox ’] [3]) , image) , (50 , 50) , an t i_a l i a s i ng=True)
bounded_images . append (image_resized)
bounded_annotations . append (annotat ion [’ category_id ’])

except Exception as ex :
print (ex)

bounded_images = np . asar ray (bounded_images)
bounded_annotations = np . asarray (bounded_annotations)
return bounded_images , bounded_annotations

def getBoundingBoxesPicture (image_id , path) :
bounded_images = []
bounded_annotations = []
image_id_string = str (image_id) . z f i l l (12)
image = Image .open(os . path . j o i n (data_folder , path) + image_id_string +’ . jpg ’) . convert (’RGB’)
image = preProcessImage (image)
annotat ions = findAnnotat ionsById (image_id , ’ image_id ’ , t ra in_annotat ions)
for annotat ion in annotat ions :

try :
image_resized = r e s i z e (getBoundingBox (int (annotat ion [’ bbox ’] [0]) , int (annotat ion [’ bbox ’] [1]) ,
int (annotat ion [’ bbox ’] [2]) , int (annotat ion [’ bbox ’] [3]) , image) , (50 , 50) , an t i_a l i a s i ng=True)
bounded_annotations . append (annotat ion [’ category_id ’])

except Exception as ex :
print (ex)

bounded_images = np . asar ray (bounded_images)
bounded_annotations = np . asarray (bounded_annotations)
return image_id , bounded_images , bounded_annotations

def constructCNN (conv_layer , l ayer_s ize , kerne l_s ize , dense_size , dense_layer , dropout , num_classes , x_train) :
percent_noise = 0 .1
no i s e = (1 .0/255) ∗ percent_noise
model = Sequent i a l ()
model . add (GaussianNoise (noise , input_shape=x_train . shape [1 :]))
model . add (Conv2D(layer_s ize , (kerne l_s ize , ke rne l_s i z e)))

model . add (Act ivat ion (’ r e l u ’))
model . add (MaxPooling2D (poo l_s ize =(2 , 2)))

for l in range (conv_layer −1):
model . add (Conv2D(layer_s ize , (kerne l_s ize , ke rne l_s i z e)))
model . add (Act ivat ion (’ r e l u ’))
model . add (MaxPooling2D (poo l_s ize =(2 , 2)))

i f (dropout) :
model . add (Dropout (0 . 2 5))

model . add (Flatten ())

for j in range (dense_layer) :
model . add (Dense (dense_size))
model . add (Act ivat ion (’ r e l u ’))

i f (dropout) :
model . add (Dropout (0 . 2 5))

model . add (Dense (num_classes))
model . add (Act ivat ion (’ softmax ’))

model . compile (l o s s=’ ca t ego r i c a l_c ro s s en t ropy ’ ,
opt imize r=’adam ’ ,
metr i c s =[’ accuracy ’])

return model

def probabi l i ty_mass_spl i t (y , images , f o l d s =7):
obs , c l a s s e s = y . shape
d i s t = y .sum(ax i s =0). astype (’ f l o a t ’)
d i s t /= d i s t .sum()
i ndex_l i s t = []
image_l i s t = []
f o ld_d i s t = np . z e ro s ((f o ld s , c l a s s e s) , dtype=’ f l o a t ’)
for _ in range (f o l d s) :

i ndex_l i s t . append ([])
for i in range (obs) :

i f i < f o l d s :
ta rge t_fo ld = i

else :
normed_folds = fo ld_d i s t .T / fo ld_d i s t .sum(ax i s=1)
how_off = normed_folds .T − d i s t
ta rge t_fo ld = np . argmin (np . dot ((y [i] − . 5) . reshape (1 , −1) , how_off .T))

f o ld_d i s t [ta rge t_fo ld] += y [i]
i ndex_l i s t [ta rge t_fo ld] . append (i)
image_l i s t [ta rge t_fo ld] . append (images [i])

print ("Fold␣ d i s t r i b u t i o n s ␣ are ")
print (f o ld_d i s t)
return index_l i s t , image_l i s t

def random_sets (y , images , f o l d s) :
i ndex_l i s t = []
image_l i s t = []
for _ in range (f o l d s) :

i ndex_l i s t . append ([])
image_l i s t . append ([])

c = l i s t (zip (y , images))
seed (42)
s h u f f l e (c)
y , images = zip (∗ c)
f o l d s i z e = int (len (y)/ f o l d s)
idx = 0
for i in range (f o l d s) :

i f i < fo ld s −1:
i ndex_l i s t [i] = y [idx : idx+f o l d s i z e]
image_l i s t [i] = images [idx : idx+f o l d s i z e]

else :
i ndex_l i s t [i] = y [idx :]
image_l i s t [i] = images [idx :]

idx += f o l d s i z e
return index_l i s t , image_l i s t

def getBoundingBoxPreselected (annotat ions , path) :
bounded_images = []
bounded_annotations = []
for annotat ion in annotat ions :

try :
image_id = annotat ion [0]
image_id_string = str (image_id) . z f i l l (12)
image = Image .open(os . path . j o i n (data_folder , path) + image_id_string +’ . jpg ’) . convert (’RGB’)
image = preProcessImage (image)
image_resized = r e s i z e (getBoundingBox (int (annotat ion [1] [0]) , int (annotat ion [1] [1]) ,
int (annotat ion [1] [2]) , int (annotat ion [1] [3]) , image) , (50 , 50) , an t i_a l i a s i ng=True)
bounded_images . append (image_resized)
bounded_annotations . append (annotat ion [2])

except Exception as ex :
print (ex)

bounded_images = np . asar ray (bounded_images)
bounded_annotations = np . asarray (bounded_annotations)
return bounded_images , bounded_annotations

path = " tra in2014 /COCO_train2014_"
category = " category_id "

read data
with open(os . path . j o i n (data_folder , " annotat ions / ins tances_tra in2014 . j son ")) as r e ad_f i l e :

t r a i n = json . load (r e ad_f i l e)
t ra in_annotat ions = t r a i n [" annotat ions "]
del t r a i n

#Load a l l annotations , when th i s i s done pick a s t r a t i f i e d subset and get the bounding boxes
bbox_category_ids = []
bboxes = []
for annotat ion in t ra in_annotat ions :

bbox_category_ids . append (annotat ion [’ category_id ’])
bboxes . append ((annotat ion [’ image_id ’] , annotat ion [’ bbox ’] , annotat ion [’ category_id ’]))

tra in_spl i t_strat_x , test_spl i t_strat_x , bounded_annotations_train , bounded_annotations_val=
t ra i n_te s t_sp l i t (bboxes , bbox_category_ids , t e s t_s i z e =0.1 , t r a i n_s i z e =0.1 , s t r a t i f y=bbox_category_ids)
images_train , bounded_annotations_train = getBoundingBoxPreselected (tra in_spl i t_strat_x , path)
images_val , bounded_annotations_val = getBoundingBoxPreselected (test_spl i t_strat_x , path)

#data generator example , can be uncommented when using mode. fit_generator
’ ’ ’
datagen = ImageDataGenerator(

width_shift_range=0.2,
height_shift_range=0.2,
hor izonta l_f l ip=True ,
fill_mode=’nearest ’)

datagen . f i t (x_train)
print ("datagen train ")
’ ’ ’

#f l a t t en the image array and undersample using TOMEK l inks
datase t_s i ze = images_train . shape [0]
TwoDim_dataset = images_train . reshape (dataset_s ize ,−1)

t l = TomekLinks ()
X_res_tm , y_res_tm = t l . f i t_resample (TwoDim_dataset , bounded_annotations_train)
x_res_3d = X_res_tm . reshape (X_res_tm . shape [0] , 50 , 50 , 3)

images_train = x_res_3d
bounded_annotations_train = y_res_tm

#Normalize the p i xe l s between 0 and 1 by div id ing by 255
x_train = images_train /255
x_test = images_val /255
#Correct the id ’ s for the c l a s s i f i c a t i on report of the neural network
cor rec ted_ids = [−1 ,0 ,1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 ,10 , −1 ,11 ,12 ,13 ,14 ,15 ,16 ,17 ,18 ,19 ,20 ,21 ,22 ,23 , −1 ,
24 ,25 , −1 , −1 ,26 ,27 ,28 ,29 ,30 ,31 ,32 ,33 ,34 ,35 ,36 ,37 ,38 ,39 , −1 ,40 ,41 ,42 ,43 ,44 ,45 ,46 ,47 ,48 ,49 ,50 ,51 ,
52 ,53 ,54 ,55 ,56 ,57 ,58 ,59 ,−1 ,60 ,−1 ,−1 ,61 ,−1 ,62 ,63 ,64 ,65 ,66 ,67 ,68 ,69 ,70 ,71 ,72 ,−1 ,73 ,74 ,75 ,76 ,77 ,78 ,79]
for index , item in enumerate (bounded_annotations_train) :

bounded_annotations_train [index] = cor rec ted_ids [bounded_annotations_train [index]]
for index , item in enumerate (bounded_annotations_val) :

bounded_annotations_val [index] = cor rec ted_ids [bounded_annotations_val [index]]

#Transform labe l s to categor ica l (one−hot encoding)
y labe l s_t ra in = to_cat ego r i ca l (bounded_annotations_train)
y l abe l s_te s t = to_cat ego r i ca l (bounded_annotations_val)

with t f . Se s s i on () as s e s s i o n :
s e s s i o n . run (t f . g l o b a l_va r i a b l e s_ i n i t i a l i z e r ())
early_stopping_monitor = EarlyStopping (pat i ence = 10)
np . s e t_pr in topt i ons (th re sho ld=np . i n f)
#Neural network function that can be used as grid search or jus t to train one NN
dense_layers = [3]
l a y e r_s i z e s = [1 2 8]
dense_s izes = [1 2 8]
conv_layers = [3]
k e rne l_s i z e s = [3]
for dense_layer in dense_layers :

for dense_size in dense_s izes :
for ke rne l_s i z e in ke rne l_s i z e s :

for l aye r_s i z e in l a y e r_s i z e s :
for conv_layer in conv_layers :

model = constructCNN (conv_layer , l ayer_s ize , kerne l_s ize , dense_size , dense_layer ,
True , len (y l abe l s_t ra in [0]) , x_train)
NAME = "{}−conv−{}−nodes−{}−dense−{}−dense_size−{}−ke rne l " . format (conv_layer ,
l ayer_s ize , dense_layer , dense_size , ke rne l_s i z e)
print (NAME)
#log to tensorboard
tensorboard = TensorBoard (log_dir=" outputs /{}" . format (NAME))
model . f i t (x_train , y l abe l s_t ra in . astype (np . f l o a t 3 2) , batch_size=70, epochs=200 ,
va l idat ion_data = (x_test , y l abe l s_te s t) , c a l l b a ck s = [tensorboard , EarlyStopping] ,
s h u f f l e=True)
’ ’ ’
f i t to generator example NN
model . f it_generator (datagen . f low (x_train , ylabels_train , batch_size=32, shu f f l e=True) ,
epochs=10, ca l l backs = [tensorboard] , validation_data = (x_test , y labe l s_tes t))
’ ’ ’
#l e t the neural network predict the c lasses and transform to human readable format
y_pred = model . p r ed i c t (x_test)
p r ed i c t i o n s = t f . argmax (y_pred , 1)
t rue_c la s s = t f . argmax (y labe l s_tes t , 1)
t ru e_c l a s s_ l i s t = true_c la s s . eval ()
p r e d i c t i o n s_ l i s t = p r ed i c t i o n s . eval ()
#show c l a s s i f i c a t i on report and confusion matrix
print (c l a s s i f i c a t i o n_ r e p o r t (t rue_c la s s_ l i s t , p r ed i c t i o n s_ l i s t , d i g i t s =3))
con_mat = t f . confusion_matrix (true_class , p r e d i c t i o n s)
print (’ Confusion ␣Matrix : ␣\n\n ’ , t f . Tensor . eval (con_mat , feed_dict=None , s e s s i o n=None))
#save the model for l a t e r use
model . save (’ outputs / ’ + NAME +’ 0 .1_SMOTETomek_100epochs . h5 ’)

Listing 2: Example code for SVM and RF with stratified subset and
TOMEK links in Python

from c o l l e c t i o n s import d e f a u l t d i c t
import numpy as np
import os
from PIL import Image , ImageFi l t e r
from random import s hu f f l e , seed
from skimage import i o as i o

from skimage import exposure
from skimage . transform import r e s i z e , integra l_image
from skimage . c o l o r import rgb2gray
from skimage . f e a tu r e import daisy , hog , mult iblock_lbp
from sk l ea rn . p r ep roc e s s i ng import Mult iLabe lB inar i z e r
from sk l ea rn . e x t e rna l s import j o b l i b
from sk l ea rn . ensemble import RandomForestClass i f i e r
from sk l ea rn . model_se lect ion import t ra in_te s t_sp l i t , GridSearchCV
from sk l ea rn . metr i c s import c l a s s i f i c a t i o n_ r ep o r t , confusion_matrix
from sk l ea rn . svm import SVC, LinearSVC
import i t e r t o o l s
from imblearn . under_sampling import TomekLinks
from skmu l t i l e a rn . model_se lect ion import i t e r a t i v e_t r a i n_t e s t_sp l i t
from sk l ea rn .dummy import DummyClassif ier
import time

def loadAnnotat ions (f i l e L o c a t i o n) :
with open(f i l e L o c a t i o n) as r e ad_f i l e :

annotat ions = json . load (r e ad_f i l e)
return annotat ions

def getBoundingBox (x , y ,w, h , img) :
return img [y : y+h , x : x+w]

def preProcessImage (img) :
img = np . asarray (img)
img = rgb2gray (img)
img = cv2 . GaussianBlur (img , (5 , 5) , 0)
#img = cv2 .medianBlur(img ,5)
#img = cv2 . b i l a t e r a lF i l t e r (img ,9 ,75 ,75)
#img = cv2 . b lur (img ,(5 ,5))
#kernel = np . ones ((5 ,5) ,np . f loat32)/25
#img = cv2 . f i l t er2D (img,−1, kernel)
return img

def getBoundingBoxPreselected (annotat ions , path) :
bounded_images = []
bounded_annotations = []
for annotat ion in annotat ions :

try :
image_id = annotat ion [0]
image_id_string = str (image_id) . z f i l l (12)
image = Image .open(os . path . j o i n (data_folder , path) + image_id_string +’ . jpg ’) . convert (’RGB’)
image = preProcessImage (image)
image_resized = r e s i z e (getBoundingBox (int (annotat ion [1] [0]) , int (annotat ion [1] [1]) , int (annotat ion [1] [2])
, int (annotat ion [1] [3]) , image) , (50 , 50) , an t i_a l i a s i ng=True)
bounded_images . append (image_resized)
bounded_annotations . append (annotat ion [2])

except Exception as ex :
print (ex)

bounded_images = np . asar ray (bounded_images)
bounded_annotations = np . asarray (bounded_annotations)
return bounded_images , bounded_annotations

def ca l cu lateHogFeatures (gray_image , o , p i x e l s , c e l l s) :
f e a t u r e s = hog (gray_image , o r i e n t a t i o n s=o ,

p ixe l s_per_ce l l=(p ix e l s , p i x e l s) ,
ce l l s_per_block=(c e l l s , c e l l s) ,
transform_sqrt=True ,
v i s u a l i z e=False , block_norm = "L2−Hys")

return f e a t u r e s
def ca l cu l a t eDa i syFea tu r e s (gray_image) :

desc s = dai sy (gray_image , s tep=180 , rad ius =15, r i n g s =3, histograms=8,
o r i e n t a t i o n s =8, v i s u a l i z e=False)

descs_num = descs . shape [0] ∗ descs . shape [1]
return descs . reshape (descs . s i z e) . t o l i s t ()

def c a l cu l a t eFea tu r e s (imgs) :
hog_features = []
da i sy_feature s = []
lbp_features = []
for img in imgs :

hog_features . append (ca l cu lateHogFeatures (img , 8 , 1 2 , 1))
da i sy_feature s . append (ca l cu l a t eDa i syFea tu r e s (img))
int_img = integra l_image (img)
lbp_features . append (multiblock_lbp (int_img , 0 , 0 , 30 , 30))

return hog_features , da i sy_features , lbp_features

def svmFit (x_train , y_train) :
print (" F i t t i n g ␣ the ␣ c l a s s i f i e r ␣ to ␣ t r a i n ")
c l f = LinearSVC ()
c l f = c l f . f i t (x_train , y_train)
return c l f

def svm_rbfFit (x_train , y_train) :
print (" F i t t i n g ␣ the ␣ c l a s s i f i e r ␣ to ␣ t r a i n ")
param_grid = { ’C ’ : [1 e3 , 5e3 , 1e4 , 5e4 , 1 e5] ,

’gamma ’ : [0 . 0 001 , 0 .0005 , 0 .001 , 0 .005 , 0 . 01 , 0 . 1] , }
c l f = GridSearchCV (SVC(ke rne l=’ rb f ’ , c lass_weight=’ balanced ’) ,

param_grid , cv=5)
c l f = c l f . f i t (x_train , y_train)
print ("Best ␣ es t imator ␣ found␣by␣ gr id ␣ search : ")
print (c l f . best_estimator_)
return c l f

def svmPredict (x_test , y_test , model) :
print (" Pred i c t ing ␣ the ␣ t e s t ␣ s e t ")

y_pred = model . p r ed i c t (x_test)
print (c l a s s i f i c a t i o n_ r e p o r t (y_test , y_pred , d i g i t s = 3))
conf_mat = confusion_matrix (y_test , y_pred)
print (conf_mat)
return conf_mat

def randomForestFit (x_train , y_train , e s t imato r s) :
print (" F i t t i n g ␣ the ␣ c l a s s i f i e r ␣ to ␣ t r a i n ")
r f = RandomForestClass i f i e r (n_estimators=es t imato r s)
r f . f i t (x_train , y_train) ;
return r f

def r fP r ed i c t (x_test , y_test , model) :
print (" Pred i c t ing ␣ the ␣ t e s t ␣ s e t ")
y_pred = model . p r ed i c t (x_test)
print (c l a s s i f i c a t i o n_ r e p o r t (y_test , y_pred , d i g i t s = 3))
conf_mat = confusion_matrix (y_test , y_pred)
print (conf_mat)
return conf_mat

def saveModel (model , f i l ename) :
print ("Saving␣ f i l e . . . ")
j o b l i b . dump(model , open(f i l ename , ’wb ’))
print (" F i l e ␣ saved")

def loadModel (f i l ename) :
print (" load ing ␣ f i l e . . . ")
j o b l i b . load (f i l ename)
print ("Model␣ loaded ")

np . s e t_pr in topt i ons (th re sho ld=np . i n f)

bbox_category_ids = []
bboxes = []
for annotat ion in t ra in_annotat ions :

bbox_category_ids . append (annotat ion [’ category_id ’])
bboxes . append ((annotat ion [’ image_id ’] , annotat ion [’ bbox ’] , annotat ion [’ category_id ’]))

tra in_spl i t_strat_x , test_spl i t_strat_x , bounded_annotations_train , bounded_annotations_val=
t ra i n_te s t_sp l i t (bboxes , bbox_category_ids , t e s t_s i z e =0.1 , t r a i n_s i z e =0.1 , s t r a t i f y=bbox_category_ids)
images_train , bounded_annotations_train = getBoundingBoxPreselected (tra in_spl i t_strat_x , path)
images_val , bounded_annotations_val = getBoundingBoxPreselected (test_spl i t_strat_x , path)

f u l l_p i c tu r e_ f ea tu r e s = ca l cu l a t eFea tu r e s (images_train)

fu l l_p i c tu re_fea ture s_va l = ca l cu l a t eFea tu r e s (images_val)

picture_features_svm = [np . concatenate ((x , y)) for x , y in zip (f u l l_p i c tu r e_ f ea tu r e s [0] , f u l l_p i c tu r e_ f ea tu r e s [1])]
picture_features_svm_val = [np . concatenate ((x , y)) for x , y in zip (fu l l_p i c tu re_fea ture s_va l [0] ,

f u l l_p i c tu re_fea ture s_va l [1])]

svm = svmFit (picture_features_svm , bounded_annotations_train)
svmResults = svmPredict (picture_features_svm_val , bounded_annotations_val , svm)
j o b l i b . dump(value=svm , f i l ename=’ outputs /svm_strat_tm_0 , 9 2 5 . npy ’)
j o b l i b . dump(value=svmResults , f i l ename=’ outputs /svm_strat_tm_confusion_matrix_0 , 9 2 5 . npy ’)

#SVM with RBF kernel
#svmrbf = svm_rbfFit (picture_features_svm , bounded_annotations_train)
#svmrbfResults = svmPredict (picture_features_svm_val , bounded_annotations_val , svmrbf)

del picture_features_svm
del picture_features_svm_val

p i c tu re_fea ture s_r f = [np . concatenate ((x , y , [z])) for x , y , z in zip (f u l l_p i c tu r e_ f ea tu r e s [0] ,
f u l l_p i c tu r e_ f ea tu r e s [1] , f u l l_p i c tu r e_ f ea tu r e s [2])]

p i c ture_features_r f_va l = [np . concatenate ((x , y , [z])) for x , y , z in zip (fu l l_p i c tu re_fea ture s_va l [0] ,
f u l l_p i c tu re_fea ture s_va l [1] , f u l l_p i c tu re_fea ture s_va l [2])]

del f u l l_p i c tu r e_ f ea tu r e s
del f u l l_p i c tu re_fea ture s_va l

r f = randomForestFit (p i c ture_features_r f , bounded_annotations_train , 300)
r f_conf = r fP r ed i c t (p icture_features_rf_val , bounded_annotations_val , r f)

	Introduction
	Problem statement
	Main objective of this study
	Scope of this thesis
	Research Question

	Literature review
	Imbalanced data set classification
	Sampling
	Data stratification
	Research gap

	Research Objectives
	Design
	Research question

	Research sub-questions
	Does pre-processing the data improve the model's results?
	Which metric or metrics represent the performance of the model best?
	Which sampling methods represent the data in the best manner?
	Does a machine learning algorithm with feature extraction achieve a higher accuracy than using machine learning techniques without feature extraction?
	What machine learning technique or combination of techniques will yield the best results?
	How can the machine learning techniques be optimized further?
	Is there a possibility to account for possible biases such as the selection bias?

	Experimental setup
	Data
	COCO data set
	Class imbalance
	Stratification of the subsets
	Sampling

	Metrics
	Models
	Convolutional Neural Networks
	Random Forest
	SVM

	Dummy classifier
	Feature Descriptors
	Histogram of Oriented Gradients
	DAISY
	Multi-Block Local Binary Pattern

	Results
	Data
	Optimizing the models
	Results COCO dataset
	Validation

	Discussion
	Further research

	Conclusion
	Reflection

