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Abstract

Music or audio thumbnailing is the procedure of finding a continuous fragment that
can represent the whole musical piece. This study proposes to create thumbnails
based on the perception of listeners to identify the most memorable and distinguish-
able fragment. This aligns with the cognitive definition of hooks, the catchiest part of
a song. This study tested whether audio features previously used to define catchiness
collude with representativeness. First, a user study was carried out to assign a score
for representativeness and familiarity to fragments. Thereafter, audio features de-
rived with the CATCHY toolbox were used to approximate these scores. The results
indicate that features measuring intensity, commonality, and recurrence influence
representativeness positively. This matches previous results regarding catchiness.
Additionally, familiarity did not seem to have an impact and no preferred segmenta-
tion method was found. Lastly, a new music thumbnailing method is proposed based
on the features that could approximate representativeness the best.
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Chapter 1

Introduction

With the rise of the digital age, more and more music is becoming available. Stream-
ing services and websites with music videos make music readily accessible to the pub-
lic. However, with the availability of so much music, the need to navigate through
it easily becomes more and more important. One approach to tackle this problem
is to create music thumbnails. Music thumbnailing, or audio thumbnailing, is the
procedure of finding a continuous segment within a musical piece which represents
the whole piece (Chai and Vercoe, 2003; Cooper and Foote, 2002; Huang et al., 2017;
Müller et al., 2013). By using these shorter fragments of audio, music thumbnails
make it easier for users to navigate through loads of music without having to spend
too much time on listening to complete musical pieces.

A tangible example of how music thumbnails can be used is displayed at Muziek-
web,1 a Dutch music library that aims to make information about music available
for everyone. On their website, excerpts can be played to get a sense of the musical
piece. To be able to assess the musical pieces, choosing well-fitting representative
music thumbnails becomes a must. However, currently these excerpts are chosen
randomly, which makes it likely that these excerpts do not represent the musical
pieces very well.

This study aims to improve on the current Muziekweb thumbnailing method by
creating music thumbnails via the detection of the most catchy segment of a musical
piece. The inspiration to look into catchiness comes from the project Hooked,2

which aimed to detect features defining catchiness in music (Burgoyne et al., 2013;
Van Balen et al., 2015a). Suggestions have already been made on the potential
of catchiness for music search engines (Honing, 2010) and previous research also

1https://www.muziekweb.nl/
2http://www.hookedonmusic.org.uk/
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indicated that the best thumbnails could be those segments containing the most
memorable and distinguishable part of the musical piece (Chai and Vercoe, 2003;
Huang et al., 2017). This aligns with the cognitive definition of hooks as used in
the Hooked project; hooks are the most salient segments in a musical piece, making
them the most recognisable part of a song (Burgoyne et al., 2013). As the most
catchiest part of a musical piece, the hook should be the most recognisable part and
could therefore be a good representation of the musical piece for human listeners.

To use the notion of hooks and catchiness for audio thumbnailing, this study has a
similar setup to the study by Müllensiefen and Halpern (2014) into what features and
context facilitate the recognition of novel melodies. This means that first a user study
is performed to obtain information on the representativity of different fragments of
the same tunes. This user study is similar to one of the tasks in Hooked (Burgoyne
et al., 2013). Thereafter, several features are extracted from the audio fragments
via the CATCHY toolbox by Van Balen et al. (2015a), which has previously been
used to analyse the Hooked data. To make the features easier to interpret and to
explain the variance in the data with less features, dimensionality reduction is used to
obtain factors. These factors are used to see whether they can approximate the score
obtained via the user study in a linear model. Afterwards, the features that describe
the representativity the best are used to create a function to rate the representativity
of fragments of a song. With this scoring, the best-rated fragment can be detected
and used as audio thumbnail.

Putting this study in context, it falls within the scope of Music Information
Retrieval (MIR) and music cognition. MIR is an interdisciplinary research field that
uses computational approaches to deal with music data in digital form (Burgoyne
et al., 2016; Futrelle and Downie, 2002). As this study tries to use a computational
method to generate thumbnails, it is a part of MIR. Additionaliy, as musical salience
is considered and the aim is to identify the most representative thumbnails, the study
also lies within the field of music cognition. Within MIR, this study falls in the scope
of user studies as it tries to understand the need of users to present them the best
representation of a song (Futrelle and Downie, 2002). Moreover, hooks could be
useful for other categories within MIR: to improve music recommendation, as a way
to measure musical similarity, for the generation of satisfying segmentation as they
usually start at the beginnings of new sections, and for fingerprinting since hooks can
be interpreted as the brains fingerprint of a musical piece (Burgoyne et al., 2013).

Thus, this study focuses on whether the hook of a song could be used to identify
the most representative fragment that represents the complete song well enough to
make the listeners listen to as little as possible to be able to make a decision. This
should hopefully improve audio thumbnails as hooks are inspired by how humans
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perceive music and at the same time give extra insight into what hooks and catchiness
are.

First, some background into catchiness and audio thumbnailing in general is given
in Chapter 2. Thereafter, the method is given in Chapter 3 describing the data
preparation, the user study, feature extraction, dimensionality reduction, and the
approximation of the representativeness scores for the audio thumbnailing. Finally,
the results and discussion followed by the conclusion are given in Chapters 4, 5, and
6 respectively.
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Chapter 2

Literature

Before catchiness can be used for automatic music thumbnailing, the notion of hooks
and catchiness first need to be defined. The project which inspired the use of hooks
for thumbnailing will be elaborated on, along with a related phenomenon, a user
study which follows the same approach as this study, and a toolbox for feature
extraction to describe catchiness. Thereafter, some insight will be given into thumb-
nailing and how it differs from relating methods, previous research on automatic
audio thumbnailing, and how automatically created thumbnails are evaluated.

2.1 Catchiness

Many listeners can identify easily upon listening whether a song is ‘catchy’ or not
(Burgoyne et al., 2013). They are also mostly capable of pinpointing the catchiest
musical segment of a song, the hook. However, it remains unclear what catchiness and
hooks are, even when these concepts are vital for the understanding of human musical
memory. Where Burns (1987) already proposed the analysis of hooks in pop music,
Honing (2010) suggests how musical hooks show the potential of cognition-based
music retrieval. A common approach within MIR is to use advanced machine learning
methods on data to retrieve information from musical data. Honing proposes to let
MIR and music cognition elaborate by considering cognitive aspects of the music
in the form of hooks. They suggest that using such a cognition-based approach is
the next step in improving music retrieval. Therefore, they introduce the notion of
a musical hook as the “most salient, memorable, and easy to recall moment of a
musical phrase or song” to identify which features affect how music is appreciated,
memorised, and recalled.

This definition of hooks and the need for a larger user study to research musical
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hooks, and the more general catchiness in music, resulted in the game Hooked created
by Burgoyne et al. (2013). For this study, they adopted the cognitive point of view
of Honing (2010) for the definition of a hook: the most salient, easiest-to-recall
fragment of a musical piece. The musical hook here is thus the catchiest part of the
song where catchiness is described as long-term musical salience, the memorability
of musical fragments. It should be noted that every song will have a catchiest part,
even when some music may be catchier or have a catchier hook.

With this notion of musical hooks, Hooked was set up as an experiment to help
quantify the effect of catchiness on musical memory (Burgoyne et al., 2013). To be
able to reach a much larger number of participants, the experiment was framed as an
internet-based game. The assumption for the game is that the easier a fragment is to
recall, the catchier that fragment is. The game consisted of three tasks: a recognition
task, a verification task, and a prediction task. The recognition task measured how
long it took for participants to recognise a tune. In this task the player could listen
to a fragment of a song and click on a button as soon as they recognised the song.
Here, more points could be obtained the faster the song was recognised. Thereafter,
the song would mute and the verification task would follow after which the songs
starts playing after being muted for several seconds. While the song was muted,
participants were asked to sing along in their heads and afterwards verify whether
the song resumed at the correct point. If they identified this correctly, it was assumed
that they did recall the song. Lastly, the prediction task was an isolated task to test
whether the intuition of the player of what fragments are catchier matched with the
formal definition. In this task, participants were asked to choose the more catchier
fragment of two of the same songs for extra points.

The results of the game showed that response times in the recognition task could
differ up to four seconds (Burgoyne et al., 2013). Further analysis on the obtained
data from the experiment was carried out by Van Balen et al. (2015a). The methods
and features for this audio corpus analysis are further elaborated on in Section 2.1.3.
With their analysis they wanted to identify which attributes predict differences in
recognition ratings and what the proposed features model and how they behave. At
the same time the study tested how much audio-based corpus analysis tools could
add to insight into the data.

For the analysis, Van Balen et al. (2015a) only considered participants that at-
tempted to recognise at least fifteen segments. After the features described in Section
2.1.3 were obtained, a Principal Component Analysis (PCA) was used to reduce the
feature-space to a workable number of decorrelated variables. The extracted com-
ponents were fitted using a linear mixed-effects regression model. This type can
handle repeated-measures data which is necessary due to the availability in the data
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set of different segments of the same song as well as multiple plays from each parti-
cipant. Moreover, a linear model is easy to interpret to see how features contribute
to the prediction. The results of the study were that audio features are indeed
meaningful descriptors. Segments that are easier to recall have a more typical sound
and representative segments are more recognisable. As for melodies, those that are
recognisable also contain more typical motives and are thus those that are more con-
ventional (Jakubowski et al., 2017; Van Balen et al., 2015a). A role of repetition has
also been found in the importance of timbral recurrence. Lastly, a prominent vocal
line helped improve the recall in the study. Thus, audio-based corpus analysis tools
contribute substantially to insight into how catchiness was measured in the Hooked
study.

In conclusion, hooks are framed as the most salient part of a musical piece (Bur-
goyne et al., 2013), or the fragment of a melody that most people remember or start
singing when asked to do so (Honing, 2010). Moreover, representative segments seem
to be more recognisable (Van Balen et al., 2015a). Thus, the usage of the musical
hook from a cognitive viewpoint could lead to fragments that represent a musical
piece to be a good thumbnail.

2.1.1 Earworms

As mentioned, the boundaries between hooks, catchiness, and anything related re-
mains fuzzy (Burgoyne et al., 2013). Two related concepts are hit-song science which
tries the predict the popularity of songs and INvoluntary Musical Imargery (INMI).
The latter is more commonly known as “earworms” and describes the experience
where a tune gets involuntarily stuck in the mind (Burgoyne et al., 2013; Jakubow-
ski et al., 2017; Williamson et al., 2012). While Burgoyne et al. already mentions
that INMI are a too narrow definition to be usable for MIR, looking into them might
give some insight into catchiness overall. This is strengthened as Jakubowski et al.
proposes that the section of a tune that is most easily recalled, the hook, might also
be the section that comes to mind involuntarily during an INMI episode.

INMI is an example of internally-directed thought that is not under conscious
control (Williamson et al., 2012). It is involuntary, spontaneous cognition and a
common everyday experience (Jakubowski et al., 2017; Williamson et al., 2012).
Williamson et al. studied the circumstances surrounding INMI episodes; why they
happen at any point in time. While the brain activity while experiencing musical
imagery is similar to when actual music is heard, musical imagery is experienced
without direct sensory instigation and is vivid and veridical. It often consists of
repeated fragments and has a link with familiarity in long-term memory and recency.
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Positive links between the frequency of INMI episodes and music education and
portable music devices have also been found.

Williamson et al. (2012) studied what type of contextual circumstances aid INMI
to commence by analysing participant reports. This resulted in eight dominant
themes falling within four categories. The first category is music exposure which
describes recency and repetition. Second is memory triggers where the onset of
an INMI is not related to recent exposure, but caused by association, recollection,
and anticipation. Third are the themes in affective states that are associated with
the start of INMI episode such as mood, stress, and surprise. The last category
describe low attention states where the attentional demand is low such as dreams
and mind wandering. Of these categories, most INMI reports were linked to recency
and repetition in the music exposure category. This highlights the importance of
familiarity for the onset of an INMI episode. Concluding, the role of musical memory
for INMI is beyond doubt, and recency, familiarity and the omnipresence of music
play keys roles in the onset of INMI episodes.

Another study tried to identify what makes a song get stuck in the mind over
others (Jakubowski et al., 2017). Both intramusical (musical features and lyrics) as
well as extramusical (radio play and context) were examined along with the pop-
ularity of INMI. To pinpoint melodic features enhancing memorability the notion of
first-order and second-order features are used which are further described in Section
2.1.2. Thus, Jakubowski et al. tried to predict whether a song would become an
INMI based on popularity, recency, and features derived from the melody.

Via an online questionnaire and a data classification method known as random
forest, songs that are more likely to become INMI are identified and inspected (Jak-
ubowski et al., 2017). It was found that tunes with a generally faster tempo and
a common global melodic contour in comparison to the reference corpus were more
likely to become INMI. If the melodic contour does not conform to the norms, song
were still likely to become INMI if the melody has a highly unusual pattern of in-
tervals rising and falling. This aligns with the results by Van Balen et al. (2015a)
when analysing which features could help predict the scores in Hooked. A possible
explanation for the importance of common global pitch contour would be that these
would ameliorate the ability to the sing along with the melody easily. However, these
findings contradict those of a previous study which indicated the INMI had longer
average durations and smaller pitch intervals (see Müllensiefen and Halpern, 2014).
Apart from intramusical features, both features related the popularity and recency
had significant roles for songs to become INMI. Thus, melodic features, popularity,
and recency contribute to the onset of INMI.

Research into INMI shows that some overlap can be found between catchiness
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and INMI. Jakubowski et al. (2017) identified the same features that could predict
a song’s INMI potential as those found when examining the results from the Hooked
study (Burgoyne et al., 2013; Van Balen et al., 2015a).

2.1.2 User Study, First-Order and Second-Order Features

The Hooked experiment itself and the analysis of its data was already a user study
into what makes certain fragments easier to recall (Burgoyne et al., 2013; Van Balen
et al., 2015a). Another example of a study where data obtained from a user study
gave insight into the understanding of how music cognition works, is the study by
Müllensiefen and Halpern (2014). Müllensiefen and Halpern studied how structural
features and context could predict successfully whether a novel melody would be
identified correctly by both explicit and implicit memory.

We have an excellent memory for music, but whether memory for music is spe-
cial is still unknown (Müllensiefen and Halpern, 2014). Müllensiefen and Halpern
researched to what extent the features of songs themselves and a frame of reference
can predict the memorability of real, but unfamiliar, pop tunes. A discovery-driven
approach is taken by obtaining features from stimuli and using statistical learning to
decipher which features can predict the behaviour of listeners. This means that first
a user study was carried out to obtain data on when listeners explicitly or implicitly
recognised a previously heard or novel tune. Thereafter, two questions were to be
answered: whether the same features can predict explicit and implicit memory and
whether in explicit memory some features or context can drive recognition responses
irrespective of a tune being actually heard before. These questions were answered by
predicting the memory performance of the participants to identify musical features
that could explain the scores found in the user study.

To study this, the assumption that statistical learning also operates in music is
needed and that contextual information is used in memory for music (Müllensiefen
and Halpern, 2014). Müllensiefen and Halpern propose that even non-musicians can
abstract statistical properties from a song and a context. Thus, music is viewed in a
frame of reference and compared to context. This gives rise to the earlier mentioned
first-order and second-order features, which have also been used in the studies by
Van Balen et al. (2015a) and Jakubowski et al. (2017). First-order features are
computed using the intrinsic content of the music or audio itself, such as the average
note duration within the melody (Jakubowski et al., 2017; Müllensiefen and Halpern,
2014; Van Balen et al., 2015a). Second-order features reflect the characteristics of the
music in context of a corpus. These features thus illustrate how common or highly
distinctive a melody is in comparison to a reference corpus. Changing the reference
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corpus gives the opportunity to model different cognitive listening contexts.
Apart from first-order and second-order features, Müllensiefen and Halpern (2014)

also introduce so-called summary features and m-type features. Summary features
are reductive and summarise the item to one or few values, such as duration and
tonality. M-type features are representations of short melodic motives which are
tabulated in a frequency table, making them similar to a linguistic n-gram model.

For the study, Müllensiefen and Halpern (2014) used a corpus containing a large
collection of pop music and a corpus containing only stimuli presented in the study
as reference corpora for the second-order features. Thereafter, Müllensiefen and
Halpern tried to explain variability in the results of the user study on the basis of
structural features. First, clusters were identified and features were used to predict
the results of the implicit and explicit memory task. At the same time, individual
features were identified that could have elicited the subjective feelings.

The results indicated that explicit and implicit music memory are moderately
correlated (Müllensiefen and Halpern, 2014). The implicit model does use first-order
surface characteristics and uses contour and rhythm information. Explicit memory
was more dependent on individual encoding strategies and driven by uniqueness,
indicating its need for a reference corpus. Summarising, neither draw heavily from
first-order features but do rely on statistical features. There was also no difference
found between using the full pop corpus as reference corpus compared to using only
stimuli presented in the study. Moreover, unusual features made participants think
they have heard a tune before even when they have not. On the other hand, flat
contours appear novel more often.

Thus, the study by Müllensiefen and Halpern (2014) illustrates an approach using
a user study to obtain data from listeners and uses methods to afterwards create
models to gain insight into music memory. This is similar to how data from a user
study will be used in this study to predict the results using features derived from the
audio in hindsight.

2.1.3 Catchy Toolbox

This study worked with the toolbox used by Van Balen et al. (2015a) to analyse the
data from Hooked. This CATCHY toolbox1 was made as Van Balen et al. noted
a scarcity of corpus analysis tools for audio data. Corpus analysis describes the
analysis of a music collection to gain insight into the music itself. While corpus
analysis studies and tools for audio data are limited, symbolic data studies and tools

1https://github.com/jvbalen/catchy
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are more common, such as the work by Huron (2006), the FANTASTIC2 toolbox
(Müllensiefen, 2009), and IDyOM3 by Pearce (2005) which was based on the work
by Conklin and Witten (1995).

With the CATCHY toolbox, Van Balen et al. (2015a) proposes three novel con-
cepts for the study of corpus analysis: three new representations for melodic and
harmonic intervals, the use of second-order features for audio data, and a definition
of song-based and corpus-based second-order features. These concepts are described
below to understand what the toolbox has to offer.

First, Van Balen et al. (2015a) describe three new interval descriptors with the
purpose of translating simple harmonic and melodic structures to robust repres-
entations. The first descriptor is the Harmonic Interval Co-occurence (HIC) which
measures the distribution of triads in an audio segment. Triads are sets of three notes
that can be described in thirds and in this new descriptor, the triads are portrayed
by their interval representation. For example, a song with a lot of minor chords will
have a strong HIC 3,4 as a minor triad consist of a minor third with a major third
stacked on top. The second descriptor is the Melodic Interval Bigram (MIB) which
is a three-dimensional matrix that indicates how often triplets of melodic pitches
occur less than a certain amount of seconds apart. The last descriptor is the Har-
monisation Interval (HI) which measures which harmonic pitches in the chroma are
accompanied by melodic pitches in the melody.

The second addition by Van Balen et al. (2015a) is the notion of second-order
features for audio data as described in Section 2.1.2. The inspiration for the use
of these features comes from the FANTASTIC toolbox which has these features for
symbolic data. The goal of second-order features is to give a context to the values of
features, such as whether the value is common or whether the value is rather unique.
Second-order features are thus descriptors that reflect on how an observed feature
value relates to the corpus it is compared to.

The computation of second-order features differ for audio features in one dimen-
sion and those in d dimensions (Van Balen et al., 2015a). Second-order features in
one dimension have their typicality described by the log odds that a less extreme
value can be observed in the reference corpus. Van Balen et al. proposes to define
“less extreme” as “more probable”, showing that a density estimation can be made
to rank the density for each value of the feature in accordance with the reference
corpus.

When dealing with second-order audio features in d dimensions, such as MIB
and HIC, two other measures of typicalness are used (Van Balen et al., 2015a). The

2http://www.doc.gold.ac.uk/isms/m4s/
3https://code.soundsoftware.ac.uk/projects/idyom-project
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first measure is Kendall’s rank-based correlation τ which is directly taken from the
FANTASTIC toolbox (Müllensiefen, 2009; Van Balen et al., 2015a). The second
measure is Information (I), an information-theoretic measure of unexpectedness. In-
formation assumes that the feature itself can be seen as a frequency distribution of
observations in the audio and has previously been used as a measure of surprise in
IDyOM (Pearce, 2005).

Lastly, Van Balen et al. (2015a) define song-based and corpus-based second-order
features. These are based on the notion of expectations that arise from statistical
inference by the listener. When a listener hears music, expectations due to familiarity
with musical work arise which help to deal with novel music. To approximate these
expectations, Van Balen et al. propose to use typicality and surprise in relation to
a reference corpus. If this reference corpus consists of a large amount of musical
works, expectations with respect to the novel song can be approximated. Van Balen
et al. call corpus-based second-order features measures of conventionality as they
model expectations. Song-based second-order features use only the song itself as
reference corpus and thus should indicate how representative a segment is for a song
and could to some extent display how much a segment is repeated. The latter type
of second-order features is dubbed recurrence by Van Balen et al.

2.2 Music Thumbnailing

As discussed, a music or audio thumbnail is a continuous audio segment that best
represents a musical piece (Chai and Vercoe, 2003; Cooper and Foote, 2002; Huang
et al., 2017; Müller et al., 2013). However, the concept of a music thumbnail is gen-
erally ambiguous (Müller et al., 2013), since it could be described as a characteristic
segment (Levy and Sandler, 2006), a key part (Schuller et al., 2008), the main tune
(Nawata et al., 2011), a down-sampled version (Bartsch and Wakefield, 2005), or the
chorus of a pop song (Huang et al., 2017; Schuller et al., 2008).

As music thumbnails are shorter representations of musical pieces, they can be
used as an effective way to navigate through large music collections with tracks of
possible interest (Cooper and Foote, 2002; Levy and Sandler, 2006). Thumbnails
thus provide the listener a quick impression of a song (Levy and Sandler, 2006) and
could be used for web browsing, web searching, and music recommendation (Chai
and Vercoe, 2003; Levy and Sandler, 2006; Schuller et al., 2008).

It is also important to distinguish thumbnailing from other methods such as
summarisation and fingerprinting. Earlier research into creating audio thumbnails
use the terms thumbnailing and summarisation interchangeably (Chai and Vercoe,
2003; Cooper and Foote, 2002). While these studies still aimed to detect a continuous
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segment within a song, the two terms should not be confused. Summarisation is the
creation of a shorter fragment to represent a musical piece by combining snippets of
all different parts (Cooper and Foote, 2002; Silva et al., 2018). This means that a
summary is made with parts dispersed over the whole song which are then combined
to create a reduced representation. This differs from audio thumbnailing as the aim
is to find a continuous segment of the song without dissecting song sections.

Another term that is sometimes confused with audio thumbnailing is audio finger-
printing. In a review on audio fingerprinting, Cano et al. (2005) describes an audio
fingerprint as a compact content-based signature that summarises the audio record-
ing. Important to notice is that a fingerprint is a much shorter numeric sequence,
instead of an audio fragment. Fingerprinting extracts the perceptual digest of a mu-
sical piece by using acoustic relevant characteristics of the audio (Cano et al., 2005;
Van Balen et al., 2015b). Commonly, fingerprints are stored in a database and used
to identify new data, which has its characteristics calculated and matched against
the data base. This means the fingerprinting allows for the identification of audio
independently of format and meta-data. It differs greatly from audio thumbnailing
as the summary is a sequence or vector and not used as representation interpretable
for human listeners.

This research focuses only on finding a good music thumbnail: a continuous
segment that can represent a musical piece. The following subsections discuss several
previous studies on audio thumbnailing.

2.2.1 Previous Research

The definition of what a good thumbnail is differs and has an influence on the ap-
proach taken in studies to create thumbnails. A common assumption in these studies
is that the best thumbnail is the segment that is repeated most often (Chai and Ver-
coe, 2003; Müller et al., 2013). This belief causes research to focus on finding the
structure of an audio file to detect the most repeated segment.

The first example of an automatic thumbnailing method that tries to detect the
most repeated segment is by Müller et al. (2013). They argue that a typical thumbnail
would be a segment that has many repetitions that cover large parts of a musical
recording. An example would be the chorus of a pop song which is repeated often and
covers a large amount of the song. However, problems may arise due to variations,
which could make segments that are considered repetitions of earlier segments differ
significantly. To identify a segment with many (approximate) repetitions, Müller
et al. introduce a fitness value that expresses how well a segment can “explain”
the repetitive structure and use self-similarity matrices to check what amount of the
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music recording is covered by related segments.
Chai and Vercoe (2003) also mention that it is still unclear what makes a specific

fragment the most memorable or distinguishable and assume for this study that this
is true for the most repeated part of a song. Apart from using the most repeated
segment, Chai and Vercoe also suggest the option of choosing a fragment containing
a transition between different sections of the song to give an overview of the complete
work, and a strategy similar to summarisation where phrases from different sections
are stitched together. To create an audio thumbnail, Chai and Vercoe start by
identifying the recurrent structure and then use one of these three strategies to
select a thumbnail.

Bartsch and Wakefield (2005) start by doing beat-synchronous segmentation to
obtain frames per beat. Thereafter, chroma-based features are computed per frame
and these features are used for the calculation of correlation between frames. The
audio thumbnail is chosen by checking for the most similar pair of audio fragments
and selecting the earlier fragment of this pair. Bartsch and Wakefield assume that
the most similar pair of fragments will consist of the chorus as that is the most likely
part to be repeated as similar as possible. However, they do note that the features
used are derived from the musical signal and is not motivated by the perception of
the listener.

Similarly, Cooper and Foote (2002) assumes the best thumbnail to be the segment
that is the most similar to the average sound. Their approach was to find the segment
with the highest similarity to the entire musical piece. This approach was thus very
dependent on finding the most repeated part. Cooper and Foote also suggests that
the best thumbnails will begin and end at meaningful segment boundaries.

Levy and Sandler (2006) also notes that music has structural sections and how
these sections could be labelled per section type to identify the most repeated sec-
tion type. First, they start with segmentation to divide the song into its sections.
Each section is thereafter labelled and the most common section type is thereafter
identified. Lastly, the second segment of the most occurring section type is chosen
as a thumbnail as Levy and Sandler assume that the middle of a song is more rep-
resentative.

Apart from searching for the most repeated part of a song to use as a thumbnail,
another common approach is to detect the chorus. This is still similar as can be
seen in the example given by Müller et al. (2013) which mentions that the chorus
of a pop song chorus is often the most repeated part. Similarly, Levy and Sandler
(2006) also noted that the chorus of pop songs are often used for thumbnails. Schuller
et al. (2008), for example, belief that repeated sequences such as chorus sections are
the most mnemonic parts and therefore tried to extract the chorus from a song as
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thumbnail. Akin to Müller et al. (2013), Schuller et al. create similarity matrices
where diagonals in the matrices correspond to similar segments. To automate the
detection of the diagonals, a computer vision technique to detect edges in images is
used to extract bright diagonals and determine segments of interest. The selected
audio thumbnail is the best remaining segment in regard of its mean similarity. Their
results indicate that there is a difference per genre and that thumbnails that were
evaluated incorrectly also contained characteristic parts of the songs.

A more recent study by Huang et al. (2017) also proposes that chorus detection
may lead to good audio thumbnails. They discuss how the chorus can be considered
the most memorable part of a song. To detect the chorus of a song, Huang et al.
propose to use emotion recognition software as they assume that the main function
of music is to communicate emotion. For the emotion recognition, a neural network
model is used with which they test whether a music emotion recognition model reveals
anything about the structure of the song. The model first detects the emotion of
segments of the song. The emotion cluster with the largest amount of segments is
considered the chorus and from these segments, the one closest to the middle of the
song is chosen as thumbnail. The results indicate that for the thumbnails of 80 songs,
50% overlaps with the chorus sections.

Lastly, Nawata et al. (2011) use a different approach for automatic thumbnail
generation. They call a music thumbnail the main part of the song and use the
activation of audio objects and their location to detect sections. By analysing the
activation, they try to detect structural changes and try to identify the main com-
position section to select as a thumbnail.

Concluding, research into automatic music thumbnails is scattered in approach
but mostly assumes the best audio thumbnail is either the chorus of a pop tune or
the part that is repeated the most. This research adds a new insight into the field
by trying to capture the perception of the listener.

2.2.2 Evaluation

Another challenge with automatic music thumbnailing is evaluating the created
thumbnails. Previous research has mostly compared the generated thumbnails to
manually annotated thumbnails (Bartsch and Wakefield, 2005; Müller et al., 2013;
Nawata et al., 2011; Schuller et al., 2008). Müller et al. evaluate by checking overlap
between the boundaries of automatic generated thumbnails and a manually generated
ground-truth annotation, and computing the F-measure afterwards. The F-measure,
precision, and recall are also used by Nawata et al. who use it for their “objective”
evaluation by checking the timing-detection accuracy in accordance with a manu-
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ally given answer. Likewise, Bartsch and Wakefield also use precision and recall as
evaluation scores to test the overlap between generated thumbnails and thumbnails
selected by a single listener. Schuller et al. compared manual annotation to their
generated ones by checking whether the initial positions of the thumbnails matched
within in a certain threshold.

The use of manual annotation to compare the results of a new audio thumb-
nailing algorithm seems to be the most common. However, Chai and Vercoe (2003)
propose several criteria to evaluate music thumbnails with based on properties and
previous experiments with human listeners. The evaluation is done by considering
four criteria: the percentage of the thumbnails containing vocals, the percentage of
the thumbnails containing the song’s title as they assume this aligns with the hook
of the song, the percentage starting at the beginning of a structural section, and the
percentage starting at the beginning of a phrase.

However, the problem with comparing to manual annotations is that music an-
notation is subjective (Koops et al., 2017). Koops et al. noticed the ambiguity in
chord annotations in, for example, online repositories containing multiple versions of
annotations for the same popular song. Therefore, one single annotation may give
rise to problems as different listeners may disagree. This could also be the case for
audio thumbnailing as different annotators might think other segments are better
representations of the same song.

Koops et al. (2017) themselves propose a method to tackle the ambiguity between
different annotations for chords by modelling subjectivity and personalising chord
labels for each annotator. They showed that multiple reference annotations outper-
formed single reference annotations. They also discuss a study by Burgoyne et al.
(2011) which uses several opinions to create an optimal “mean” annotation. Nawata
et al. (2011) also uses several listeners for a “subjective” evaluation by letting them
score whether a possible structural change can be heard in a presented segment.
This aligns with the evaluation used in this study which uses mean user annotation
obtained via a user study to evaluate computed audio thumbnails.

Most previous studies also do not compare to baselines and setting such baselines
may pose new problems. Müller et al. (2013) propose the use of two baselines to
compare their generated thumbnails with: the entire song and a thumbnail starting
at the second sixth part of the song.

For this study, the idea of subjectivity in individual reference annotations is a
reason to use a “mean” annotation which is obtained via a user study. The user study
will thus lead to subjective score for different segments on their representativeness.
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2.3 Hypothesis

The aim of this research is to create a new cognition-inspired music thumbnailing
method. This is achieved by doing a user study where listeners rate fragments
on their ability to represent the full song. The set-up of the user study and the
features used are inspired by research into catchiness and INMI. This aligns with
thumbnailing as the cognitive definition of catchiness describes the long-term salience
of musical fragments (Burgoyne et al., 2013; Honing, 2010), which could also measure
representativeness (Van Balen et al., 2015a).

Thus, the first questions that arise are: can the notion of catchiness be used to
create cognitively inspired music thumbnails? And can the representativeness of a
fragment be described with features related to catchiness and hooks?

The expectation is that with enough participants in the user study, the scores of
fragments differ enough to be able to identify meaningful features to explain them.
If long-term salience also measures representativeness, the same features found in
previous studies related to catchiness and INMI should be identified. This would
mean that a general higher commonality and recurrence of a fragment with regards to
the reference corpora should align with fragments obtaining higher scores in the user
study (Van Balen et al., 2015a). This means that a more typical sound, repetition, a
prominent vocal line, and conventional melodies (Jakubowski et al., 2017; Van Balen
et al., 2015a) benefit thumbnails. Thus, it is expected that these features which are
measurable with the catchy toolbox can approximate the user study scores. This
would lead to a new music thumbnailing method.

Another theory is that hooks start at the start of structural sections (Burgoyne
et al., 2013). Similarly, Cooper and Foote (2002) suggest that the best thumbnails
start and end at a meaningful boundary. While the latter is not relevant in this
study as Muziekweb uses a fixed length for previews, testing the influence of starting
at a structural boundary might benefit thumbnails. Therefore, the hypothesis is that
using boundary detection for segmentation benefits the generated thumbnails.
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Chapter 3

Methods

This study aims to approximate the representative power of fragments to select the
most representative fragment as audio thumbnail. The representativeness of frag-
ments is rated via a user study in Dutch similar to the prediction task in the Hooked
study (Burgoyne et al., 2013). Afterwards, features per segment are computed with
the CATCHY toolbox (Van Balen et al., 2015a) which are used to explain the user
study scores of the segments. Lastly, a “catchy” function is created as a model of
how human listeners score the segments to derive the most representative thumbnail
per song.

3.1 Data

The methods in this research are fine-tuned on popular music as previous research on
catchiness has focused on the same type of music (Burgoyne et al., 2013; Müllensiefen
and Halpern, 2014; Van Balen et al., 2015a). Schuller et al. (2008) already noted
that the preferred thumbnails differ per genre, which implies that the results will not
be suited for any other genre than pop music. Furthermore, as the aim of the new
thumbnailing approach is also to be used by Muziekweb afterwards, the used audio
is provided by them and consists of a selection of 60 pop songs which are listed in
Appendix A. For each song, six ten-second segments are selected to be evaluated in
the user study.

3.1.1 Selection of Music

The selection of music for this study is based on statistics derived by Muziekweb.
The data that was used were two lists of the 100 most listened to songs on Muziekweb
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in 2017 and 2018. This list is thus fine-tuned on the data coming from the behaviour
of Muziekweb users. First the counts per song for these two years were summed up,
giving a list of 121 unique songs. An interesting feature of this list is that a large
amount consists of French and German songs. The reason could be that Muziekweb
is the first hit via Google search when either French or German songs are queried.
However, as these songs are less likely to be known by the general Dutch population,
it was opted for this study to only use one song per language in a different language
from either Dutch or English. This choice should help with recognition during the
user study. However, one extra song in German was included as the title of that song
is in English and was overlooked.

Thereafter, another decision was made for the remaining songs, removing double
artists and albums to keep the remaining music as diverse as possible. If an artist or
album had several listings, the song with the highest listening count was included.
An exception was made for songs appearing on the same compilation albums of
“greatest hits”. While compilation albums may skew the data, the songs may still be
considered representative of general pop music of different time periods while showing
the diversity at the same time. A last song that was excluded as an exception was a
live recording of how the band was introduced.

The final selection of used songs in this study can be seen in Appendix A. All
the songs in this list were provided by Muziekweb in FLAC.

3.2 Frame Segmentation

The rating in the user study is done on a selection of ten-second segments, or ex-
cerpts, from the original audio. Hooks mostly occur at the start of structural sections
(Burgoyne et al., 2013; Honing, 2010), meaning that segments starting at these sec-
tions make more sense to assess. In Hooked, Burgoyne et al. used the Echo Nest as a
structural segmentation algorithm, which is not available anymore to use. Therefore,
here the identification of these beginnings for segmentation is done via an algorithm
available in the Python package called MSAF (Nieto and Bello, 2015).1

MSAF, or Music Structure Analysis Framework, is a framework which facilitates
the analysis, evaluation, and comparison of music structure analysis algorithms (Ni-
eto and Bello, 2015). Music Structure Analysis (MSA) aims to detect boundaries, the
exact points in a musical piece where sections start or end, and aims to do structural
grouping by classifying the identified segments into groups. The idea behind MSAF
is to create a transparent framework to compare different algorithms for MSA and

1https://msaf.readthedocs.io/
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already includes several implementations of MSA algorithms.
For this study, one specific implementation from MSAF is used for boundary

detection. This is the algorithm based on the original publication by Serra et al.
(2014). This algorithm aims to annotate songs by looking at structure features
and time series similarity. The structure features encapsulate global characteristics
which in combination with local measurements results in the estimations of segment
boundaries. This algorithm is chosen as it is the standard algorithm used in the
framework while still yielding feasible results in comparison to other algorithms in
MSAF . However, MSAF does not use the original implementation by Serra et al.
(2014) as this was not publicly available (Nieto and Bello, 2015). At the same time,
the implementation in MSAF is not discussed by Nieto and Bello (2015), which
makes it impossible to compare this boundary detection algorithm to others.

A second choice that has been made is which type of time series is used for
boundary detection. MSAF has the option to use several types based on Lib-
rosa2 implementations, namely tempograms, tonal centroid features (Tonnetz), Pitch
Class Profiles (PCP), Mel-Frequency Cepstral Coefficient (MFCC), and a Constant-
Q Transform (CQT) scaled to a dB-spectrum. Considering that the features in the
catchy toolbox are mostly harmonic, tempograms for rhythmic content and MFCCs
for timbral representations do not seem interesting for boundary detection. From
the remaining three options, the Tonnetz implementation resulted in far too few
boundaries to be feasible, while the CQT implementation was very slow. This leaves
the PCPs as last option to use which aligns with previous studies describing the
importance of chroma’s (Chai and Vercoe, 2003; Schuller et al., 2008). The PCPs as
used in MSAF describe harmonic content using Librosa’s implementation for CQT
chromagrams.

Thus, for each of the 60 selected songs, boundaries are detected based on the CQT
chromagrams using the implementation in MSAF of Serra et al. (2014). First, each
song was converted to WAV to ensure compatibility with the packages in Python.
Using MSAF, a list with times per song is given of detected boundaries. For each of
these boundaries, a new WAV-file was created that lasts 9.95 seconds which starts
at the identified boundaries. Previous studies have shown that ten seconds is plenty
of time for the listener for recognition (Burgoyne et al., 2013). Most listeners can
recall a catchy song from memory after only 400 milliseconds. Also, using shorter
fragments should lower the computation of features per fragment later on in the
study. Moreover, Muziekweb mentioned that due to copyright they are only allowed
to display a maximum of 29.9 seconds per song. As in the user study three different
segments per song will be displayed, choosing to use segments with a length of

2https://librosa.github.io/librosa/
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9.95 seconds prevents possible copyright issues. Boundaries were ignored when the
resulting segment exceeds the end of the song. Per song this resulted in multiple
excerpts with a total of 737 for the full corpus in separate WAV-files. To get an
impression of the detected boundaries, the resulting excerpts were examined. The
fragments do not start perfectly at the different sections of the song, but do seem to
have captured the sections well. This would mean that the start of each excerpt is
not as well as hoped for, but the general sense of the different sections of the songs
is captured with this method. Moreover, as thumbnails generally use fade-ins and
fade-outs, the exact starting point of the fragment becomes less important.

3.2.1 User Study Fragments

For the user study, a selection of six excerpts per song is made to be evaluated. This
is done for the 60 songs to be studied as well as two additional songs which are used
as examples in the user study. Four of the excerpts per song were those that start a
structural boundary as detected by the algorithm in MSAF. To ensure there is no bias
within the chosen excerpts, the selection of excerpts is done completely at random.
This might cause some of the excerpts starting at structural boundaries to be less
representative as the intro of a song may be chosen for example. Previous audio
thumbnailing studies assumed the middle of a song to be the most characteristic
(Huang et al., 2017; Levy and Sandler, 2006), which might not be a part of the
chosen excerpts due to randomisation. There are, however, songs where the intro
does serve as the hook (Burns, 1987; Kronengold, 2005), which fortifies that random
selection of fragments is preferred. After listening to the selection of excerpts starting
at structural boundaries, there does seem to be a preference for in the selection for
fragments starting at the intro, which might influence the results.

The remaining two excerpts for the user study per song are used as base cases.
The first base case is how previews are currently generated by Muziekweb, which
is by choosing a segment completely randomly. The second base case is a rather
arbitrary one-minute-in segment. The latter base case should give a more reasonable
excerpt as the song should have commenced into a more well-known part, skipping
the intro, but keeping distance from the end where variations of the different sections
may occur. However, the start of the segment could be rather abrupt as it starts at
such an arbitrary point. But also for the base cases, the standard use of fade-ins and
fade-outs in thumbnails reduces the problems of fragments starting abruptly.
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3.3 User Study

The aim of the user study is to provide scores of the representative power for each
of the selected six segments of the 60 songs. This is inspired by Müllensiefen and
Halpern (2014) who used a user study to afterwards identify features and context
that could explain the trigger of recognition of novel melodies. The scores in the
current study are obtained via an online survey where participants can rank the
ten-second segments in threes. Afterwards, the user study results are used to obtain
scores of representativeness which are approximated with a catchy function to obtain
the best segment as music thumbnail.

3.3.1 Participants

The user study is a web-based experiment where participants are reached via social
media. A link to the experiment was placed on the homepage of Muziekweb, and
the Twitter and Facebook-page of Muziekweb. It was accessible from April the 3rd,
2019 up to May the 27th, 2019. There is no expectation that Muziekweb-users differ
from the general population and therefore the link has also been distributed by the
researchers.

The participants should have been at least 18 years old and a check was made
before the actual experiment where participants could confirm their age and give
their informed consent (see Appendix B). The expectation was that only healthy
participants of the general population participated.

The estimated amount of participants that was needed to find a significant result
is approximately 450. This amount was estimated as follows. In this study, six ten-
second segments per song are to be rated. All these segments are assessed in pairs,
which leads to fifteen combination of pairs per song. The general rule-of-thumb is to
have 30 measurements per pair, which leads to 450 assessments. As participants are
asked to score three segments simultaneously, each song needs to be evaluated 150
times. However, participants are expected to score 20 songs approximately instead
of the full data set of 60 songs used in this study due to the duration of the full
experiment. This leads to a total of 450 participants.

The expectation of participants scoring 20 songs leads to an expected duration
of the experiment of 15 to 20 minutes. The scoring of one song should take approx-
imately 45 seconds to 1 minute. However, participants may continue to score more
songs or stop at any given moment.
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3.3.2 Survey

The user study as presented to the participants was an online survey. The main
task was similar to the prediction task in the study by Burgoyne et al. (2013) where
participants were asked to choose which of the two presented fragments of the same
song was perceived as being catchier. Similarly, in this study, participants ranked
the representativeness of three presented fragments of the same song.

The study here consisted of a page for each song which displays three fragments
as playable audio-files along with the title and the artist of the song to help their
memory. The participants were asked to rank the three fragments on how well they
helped them to get a sense of what the song is (“een idee van het nummer”). This
phrasing should have triggered a gut feeling of their impression of the song. The
ranking was done by ordering the fragments on their capability of conveying the
sense of the song. At the same page, the participants were also asked to indicate
whether they are familiar with the song or not. If they were, it was assumed that
they had a clearer notion of what segments are more representative or memorable. If
they did not know the song, the ranking of the segments could give an indication of
whether the listener gets the feeling of understanding what the song is about. The
hypothesis was that to convey a sense of what the song is about does not rely on
familiarity which is evaluated via this question.

The survey started with a page that gave some background on the study, followed
by the informed consent. Participants were notified that they can stop the experiment
at any moment as participation is completely voluntary, that the obtained data is
used for research and stored securely, and that they give their consent to participate
(see the informed consent text in Appendix B). By checking a box on the page they
confirmed that they participate voluntarily and that they were at least 18 years old.
Only after this confirmation did the actual study start.

3.3.3 Implementation of the Survey

The implementation of the user study is done via Qualtrics,3 an online survey plat-
form to facilitate building surveys and keeping track of the results. This platform
was preferred to ensure that displaying music fragments is possible, to ease the pro-
cedure of putting together the survey, and to ensure safety of the music and obtained
data. At the same time, Qualtrics had a great influence on the final design of the
survey which is discussed below.

The tool in Qualtrics to create surveys has a distinction between blocks and

3https://www.qualtrics.com
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questions can be made: each block can consist of multiple questions and is displayed
as one page with a customisable next-button. For this study, this means that each
song is put into one block with two questions: a question to rank three segments of
a song and another question to check whether the participants are familiar with the
song.

In Qualtrics, there are four options to display rank-order questions: “drag-and-
drop”, radio buttons, text boxes, and select boxes. The select boxes are the only
rank-order type questions that does not support music players. From the three
remaining options, the drag-and-drop question type is chosen to rank the fragments
as this type is the most mobile user friendly; text boxes expect the respondent to
type their preferred ranking and radio buttons do not fit the average screen without
scrolling vertically and selecting a ranking. Moreover, moving items in a preferred
order seemed more natural to represent mental ranking.

The drag-and-drop question type asks respondents to drag the options in their
preferred order. In this study, the option that was put at the top should be the most
representative fragment according to the participant. A limitation within this type
is that if one of the options is not picked up at least once, the ordering of the items
by the respondent are not recorded. Therefore, it was chosen to force participants
to at least drag one item once by giving a built-in warning message if nothing has
been moved. While this may annoy participants during the experiment, this ensures
that the results are stored in Qualtrics. Additionally, Qualtrics also displays that a
ranking is recorded by adding numbers in front the items after the respondent has
moved at least one item as shown in Figures 3.1 and 3.2. This might make it easier
to know whether the response is recorded during participation.

Figure 3.1: Drag-and-drop rankings as
displayed in Qualtrics when the parti-
cipant has not moved any fragment

Figure 3.2: Drag-and-drop rankings as
displayed in Qualtrics when at least one
fragment has been moved at least once

Another problem with the drag-and-drop question type is the insertion of frag-
ments and how these fragments can be distinguished between themselves when they
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are moved. To be able to present the fragments in players via Qualtrics, all fragments
need to uploaded to Qualtrics and can thereafter be inserted into the questions one
by one. This means that all the fragments are available on the Qualtrics servers
and that they can only be played via the nonadjustable player available in Qualtrics.
To still be able to distinguish between the nonadjustable players without using text
or numbers which could lead to bias, the chosen solution here was to use Unicode
symbols to differentiate between fragments. The chosen symbols can be seen in Fig-
ure 3.3 and consist of six differently filled squares which do not have an apparent
ordering themselves. These symbols were added in front of the players (see Figures
3.1 and 3.2, and Appendix C).

Figure 3.3: Unicode characters used in the survey to differentiate between fragments

To ensure that the bias of the participants per fragment in the overall study
is minimised, the songs and fragments per song are randomised via the built-in
randomisers in Qualtrics. This means that the musical pieces that are actually tested
are ordered completely random, as well as which three fragments are displayed per
participant and in what order. As the song order is randomised, this should also
outweigh the amount of rankings per fragment per song when participants do not
finish the full survey.

Lastly, Qualtrics also had an impact on more general choices made for the survey.
First, Qualtrics provides the option to prevent “ballot-box stuffing” by not allowing
users to participate from the same IP-address more than once. This was selected to
ensure that participants only participate once as ranking the same song twice could
easily lead to bias. Second, Qualtrics does provide the option to display a progress
bar, but it was chosen to ignore this feature as this might discourage participants due
to the duration of completing the survey. By not displaying a progress bar, hopefully,
participants only rank the amount of songs they feel comfortable with. This does also
add a limitation by discouraging participants that want to know what they are up to
when participating. Third, the survey ends with an question whether the participant
wants to receive the final report of this study afterwards and the standard Qualtrics
thank-you message. Qualtrics did not have an option to add a button to every page
which would automatically abort the survey, which means that only participants
that complete the full survey get to see this question and message. Therefore, it
was chosen to add thank-you messages to the introduction. Still, this means that
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participants interested in the results who have not finished the complete survey are
not able to give their email-address to receive the final version. Last, Qualtrics has
the option for participants to continue their survey after closing the survey tab if
wanted. However, while Qualtrics waits for respondents to continue, it does not
record that made progress. Thus, here it was chosen to let Qualtrics automatically
close the survey after seven days of no activity. This should give participants the
possibility to take their time for the survey while still ensuring the results are stored
by Qualtrics after a reasonable amount of time.

Appendix C shows screenshots with translations of the several parts in the survey
as displayed in Qualtrics.

3.3.4 Storage of Data

Qualtrics stores obtained results according to the ethical laws of the university and
thus it is safe to keep the results on Qualtrics. The data obtained via the survey can
be downloaded in csv-file format with UTF-8 encoding, which can be used in the
following steps of this study.

The results that are obtained via Qualtrics are the rankings of the three fragments
per song for each participant. The format of the file is to show the questions and the
possible options as header for the columns, while the numbers of the ranking (“1”,
“2”, “3”, or nothing when the fragment was not ranked by the participant) are shown
in rows per participant. To ensure that the results could be easily traced back to their
respective songs and fragments, invisible text in HTML was added to the survey to
add Muziekweb’s song-ID and the start of the second in milliseconds. This invisible
text does not influence the look of the survey apart from slightly larger spacing, but
does add the text to the csv-file to identify the songs and their fragments.

One problem with the downloaded results from Qualtrics happens due to the
prevention of ballot-box stuffing. This ensures that participants cannot participate
more than once and is tracked by Qualtrics via IP-addresses. These addresses are
not visible in the csv-file when the participant has finished the survey, but are visible
for those who have not finished the complete survey. To ensure anonimity to parti-
cipants, the row containing this information is immediately manually deleted after
downloading the results from Qualtrics.

3.4 Feature Extraction

Both the extracted segments with MSAF and the rankings obtained via Qualtrics are
not immediately usable. First, the features that are used to describe the segments are
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computed with the CATCHY toolbox by Van Balen et al. (2015a) are discussed and
explained. Then, a method to transform the rankings of the user study in a “worth”
per segment via a model called Plackett-Luce is given. Lastly, a computation is given
to obtain a familiarity score as additional feature. By computing these features,
descriptors of the sound, as well as measurable values based on the user study are
obtained which are used in the approximation steps of this study.

3.4.1 Catchy Features

The derivation of the catchy features for each segment separately is done with the
CATCHY toolbox4 which was introduced in Section 2.1.3. This toolbox can compute
several first and second-order features to describe the audio signal (Van Balen et al.,
2015a). Afterwards, these features can be used to approximate the survey results.

Figure 3.4: Modules in the catchy toolbox by Van Balen et al. (2015a)

To understand how the different first and second-order features are derived from
the audio, an overview of the modules in the CATCHY toolbox can be seen in
Figure 3.4. Each module computes a different set of all the features. The first
module called “psycho-acoustic features” computes features with the MIRtoolbox5

in Matlab.6 The features in this module are loudness (mean and standard deviation),
roughness (mean), and sharpness (mean). Loudness can be described as the sound
intensity of the stimulus as perceived by human listeners (Van Balen, 2016; Weihs

4https://github.com/jvbalen/catchy
5https://www.jyu.fi/hytk/fi/laitokset/mutku/en/research/materials/mirtoolbox
6https://nl.mathworks.com/
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et al., 2016). Thus, a higher value on loudness would mean that the listener perceives
the sound as being louder or having a greater volume. Roughness in music occurs
whenever a pair of sinusoids are close in frequency. A higher roughness can be
perceived as pitch perception being unclear, beats less defined, and a generally noisy
sound. This can for example occur when two dissonant notes are played causing
the perception of a rough sound. Lastly, sharpness of a tone is measured by testing
whether the centroid of the sound spectrum is in the higher end. A higher sharpness
means that the sound has more power in higher frequencies, causing a shriller sound.
After computing these features in Matlab, the results can be read in Python to merge
with the other modules.

The other modules in catchy toolbox are all computed in Python. The “basis
features” module calculates standard MIR features derived from other toolboxes,
namely: Librosa’s MFCCs (total variance), estimates of the melodic pitch heights
from Melodia7 (mean and standard deviation), and chroma from HPCP.8 MFCCs,
short for Mel-Frequency Cepstral Coefficient, describe some part of musical timbres
in terms of bands, with each band describing a specific aspect (Van Balen, 2016;
Weihs et al., 2016). Each band is computed with a different coefficient and often
thirteen bands are sufficient to capture audible timbral aspects. However, separately
these bands cannot be interpreted apart from the first band agreeing with energy
and loudness. Therefore, some kind of mean value cannot be derived. The estimates
of the melodic pitch heights are a method to approximate the melody in the audio
signal. Lastly, the chroma feature is a mapping of the energy for each of the twelve
tones in the Western tonal system over time. This is the only feature that is purely
computed to be used for the computation of other features and is not a part of the
features used in the following steps in this study.

The features of the “basis features” module feed into the “melody and harmony
descriptors” module which uses these features to compute the higher-dimensional
features introduced by Van Balen et al. (2015a) (see Section 2.1.3): the Harmonic
Interval Co-occurence (HIC), the Melodic Interval Bigram (MIB), and the Harmon-
isation Interval (HI). As a short recap, the HIC describes the distribution of triads
in an audio segment based on their interval representation. The MIB indicates how
often triplets of melodic pitches occur in the audio. Lastly, the HI measures which
pitches in the chroma are accompanied by pitches in the melody. These higher-
dimensional features are a more sophisticated way of depicting harmonics in the
audio signals, which means that the computed chroma feature can be ignored.

Figure 3.4 also shows a module called “rhythm descriptors” which is still under

7https://www.upf.edu/web/mtg/melodia
8https://www.upf.edu/web/mtg/hpcp
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development and is supposed to include Inter-Onset Intervals (IOIs) and a beat-
tracker. As it is still unavailable, it was chosen for this study to not include rhythmic
features.

The last module “first and second-order transforms” uses the computed features
of the other modules to calculate the first-order and the corpus-based and song-based
second-order features (see Section 2.1.3). As explained in Section 2.1.2, first-order
features describe intrinsic content of the audio itself. Normally, this is done in terms
of averages and standard deviations as is shown for the features in the catchy toolbox
in Table 3.1. Second-order features describe the commonness or uniqueness of the
feature values in comparison to a reference corpus. Thus, corpus-based second-order
features indicate whether the values are common within a corpus of several songs,
while song-based second-order features show the commonness within the song itself.

Module Feature type First-order Second-order
Psycho-acoustic Loudness Mean Ranked odds

Standard deviation Ranked odds
Roughness Mean Ranked odds
Sharpness Mean Ranked odds

Basis MFCC - Independent log odds
Standard deviation Ranked odds

Melodic Pitch height Mean Ranked odds
Standard deviation Ranked odds

Melody and Harmonic HI Normalised entropy Ranked odds
- τ
- Information

HIC Normalised entropy Ranked odds
- τ
- Information

MIB Normalised entropy Ranked odds
- τ
- Information

Table 3.1: Overview of the different derived features with the cathy toolbox
(Van Balen et al., 2015a)

Thus, the last module computes the first-order features by calculating the av-
erages and standard deviations of features derived in the previous modules. An
exception is made for higher-dimensional features which are described by normal-
ised entropy. The second-order descriptors for the features computed in the psycho-
acoustic and basis modules are computed by taking a look at the rank of each feature
values probability density estimate in comparison to the corpus, normalising the rank
by the number of observations, and taking the log odds (Van Balen et al., 2015a).
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This is also done for the the normalised entropy descriptors of the HIC, MIB, and
HI. Additional to these features, two different second-order measures are used which
are given by computing Kendall’s τ and Information, which is information-theoretic
measure of unexpectedness. The only exception are the MFCCs, which are mul-
tivariate with independent features, where the mean of the first thirteen components
is used to derive an additional second-order feature similar to those of the basis fea-
tures by considering each component as a one-dimensional feature. Table 3.1 gives
an overview of all the first and second-order features that are obtained per feature
type.

3.4.2 Exploratory Factor Analysis and Principal Component
Analysis

The aim is to use the first-order and second-order descriptors which describe intrinsic
characteristics and commonness of values respectively in the following steps in this
study. Similarly to Van Balen et al. (2015a), the dimensionality of the features is
reduced after their derivation. Van Balen et al. used a Principal Component Analysis
(PCA) for dimensionality reduction with the aim of identifying features that explain
the same source of variance in the data.

In this study, the main method for dimensionality reduction is Exploratory Factor
Analysis (EFA). In contrast to PCA, EFA only regards shared variance and considers
latent variables causing an underlying structure (Osborne et al., 2008). In PCA,
components are computed using all of the variance of the features for its solution.
Thus, EFA becomes a preferred method to ensure no variance is inflated as only
shared variance is considered, while the interpretability is improved as an underlying
structure via shared variance is examined. However, as Van Balen et al. (2015a) used
a PCA, it is also evaluated in Appendix F as comparison to the model obtained via
EFA and their study.

The dimensionality reduction is done via the Psych package in R (Revelle, 2011).
For the reduction, the feature values of all obtained fragments is used. Thus, the
additional fragments obtained via MSAF that were not selected for the user study
are also used here to have more occurrences of the features.

The process of reducing the dimensionality has several steps. The first one is to
obtain the correlation or covariance matrix of the features. The type of this matrix
is dependent on whether the features are normally distributed. Then, selecting the
amount of dimensions to map the features onto needs to be chosen. Both too many
as not enough factors can have harmful effects on the results (Osborne et al., 2008).
This is done via a test available in the Psych package that plots four different methods
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to determine the amount of dimensions: Very Simple Structure (VSS), complexity,
emperical BIC, and root mean residual. Each of these methods gives a score per
amount of factors in a model according to the feature space. Generally, one would
chose the factor where the VSS for “1” is the highest, the complexity remains as low
as possible, the BIC has reached its lowest point, and the root mean residual has
an elbow point. However, one optimal method to determine the amount cannot be
found. To gain more insight, the clustering algorithm called Item Clustering Analysis
(IClust) is also run to gain insight into its preferred amount of clusters.

After choosing the amount of factors or components, the modelling can be done
via EFA. The model is created with “Varimax” rotation, the most common choice
for dimensionality reduction where factors are uncorrelated and results are easier
to interpret (Osborne et al., 2008). The last choice made in this process is to use
minimum residuals as factor extraction method. Minimum residuals is a method
used for exploratory and descriptive analyses (Tinsley and Tinsley, 1987). This
method assumes both the subjects and features to be populations and therefore,
generalisations can not be made.

After creating a model with these choices for the EFA, the model can be used to
compute the values per factor for each of the segments. These are the new “features”
to describe the fragments, which are used to explain the user study results.

3.4.3 Segment Worth

The rankings obtained in the user study have a format of displaying which of the
fragments were ranked as first (“1”), second (“2”), and third (“3”). The unseen
fragments do not obtain a score. This means that the results are a ranking of a
discrete or qualitative choice where there are no continuous variables. To obtain a
continuous variable that can be estimated, here it is opted to model the rankings via
the exploded logit model which is also known as the rank-ordered logit or Plackett-
Luce model (Beggs et al., 1981; Turner et al., 2018). This model allows ranked
preference data and differs from the usual logit model of qualitative choice as it
considers the ratings of all alternatives. The usual logit model only considers the
most preferred alternative during modelling. By acknowledging all the information
from the rankings, a more precise estimate of the worth of each alternative can be
computed.

The worth of the fragments is obtained with the R package PackettLuce (Turner
et al., 2018). According to Turner et al. the model is based on Luce’s axiom which
describes that for a given set S of J items, the probability of selecting an item j with
worth αi for item i can be deduced with:
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P (j|S) =
αij∑
i∈J αi

(3.1)

Thus the probability of picking j is the worth of said item divided by the sum of
the worth of all items in set S. Thereafter, the ranking can be seen as a sequence
of choices where the first choice is the item ranked the highest and thereafter the
second choice is the highest ranked item of the remaining set (Turner et al., 2018).
This leads to the following model M which was derived by Plackett (1975):

M =
J∏

j=1

αij∑
i∈J αi

(3.2)

Thus the worth of an item is computed by multiplying the probability of selecting
the item from several sets of alternatives. The higher the probability is that an
item will be chosen in multiple different sets of alternatives, the higher the worth.
Therefore, the different rankings as given in the user study are obtained and counted
on how often they occur and in which sets of alternatives. With these rankings the
Plackett-Luce worth is computed. To allow negative values, the log of the worth is
taken, and thereafter the values are scaled to have a standardised continuous worth
value to indicate the representativeness of fragments.

3.4.4 Familiarity

During the user study, participants are also asked to indicate whether they are fa-
miliar with the songs. To see whether familiarity has an impact on the rankings of
songs, a familiarity score is computed by dividing the amount of respondents that
were familiar with the song with the amount of unfamiliar respondents. As there were
songs in the corpus which were either familiar or unfamiliar for every participant,
plus one was added to both values:

Familiarity =
Known+ 1

Unknown+ 1
(3.3)

To ensure that the familiarity values do have negative values, the log is taken
from Equation 3.3. The last step is to scale the values to ensure compatibility and
easier interpretation in comparison with the other features (the factors as well as the
Plackett-Luce worth) which are also standardised:
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Familiarity = standardised log

(
Known+ 1

Unknown+ 1

)
(3.4)

3.5 Worth Approximation

To see whether the factors based on the CATCHY features as well as familiarity can
explain the representative worth of fragments, a Generalised Linear Model (GLM) is
used. A GLM is a model which uses a linear combination of independent variables
to explain a non-linear dependent variable (Bishop, 2006; Nelder and Wedderburn,
1972). This means that similarly to linear models a linear function is created in the
simplest form of

y(x,w) = w0 + x1w1 + ...+ xnwn (3.5)

where x = (x1, ..., xn) is the set of independent features and the weights w0, ..., wn

are the intercept and coefficients that are computed. To allow for linear combinations
of non-linear functions, this definition of linear models can be extended to

y(x,w) = w0 +
M−1∑
j=1

wjφj(x) (3.6)

where φj(x) are basis functions and M as the amount of the total number weights.
The addition of the GLM to the linear model is that the dependent variable does
not need to have a normal distribution (Nelder and Wedderburn, 1972). However,
as the dependent variable in this study is standardised, the GLM in this study is the
same as a normal linear model.

Thus, for the approximation the obtained factors and the familiarity scores are
used as independent values for the model. The GLM then tries to find a linear
combination of these features to predict the dependent variable, the worth of the
fragments. Features with high estimates that have a low probability to occur are most
likely to be able to predict how representative each fragment is and can thereafter
be used for the proposed thumbnailing method.

Additionaly, a second GLM is created which also considers the segmentation
method as a categorical variable. Previous catchiness studies have indicated that
sectional boundaries improve recognition, which could also mean that the segment-
ation method might have impacted the worth of segments.
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3.6 Thumbnail Selection

Finally, the last part of this study is to create a new music thumbnailing method
based on the findings. The results of the GLM show which factor or factors contribute
to the explanation of the worth of a fragment significantly. These are used to create
a “catchy” function which can assign a representative worth to new fragments. This
function is a combination of the intercept and the estimates for the significant factors
along with a computation to simplify these relevant factors.

The simplification of the factor scores is based on the features with high loadings
(above 0.4) for the relevant factors. Having high loadings means that these features
have a high contribution to the factor scores. For each of the important factors, new
GLMs are run with the features with high loadings as independent variables. This
should results in a simplified version of the factor based on the contribution of the
most important CATCHY features. The reduction of features to approach the factor
scores should make it easier to compute as only a subset of the CATCHY features
is needed.

The functions for the factor approximations can be combined with the “catchy”
function in a form of summary prediction function. This function predicts a repres-
entative worth of a given fragment for which the CATCHY features were computed.
The fragment of a song with the highest predicted worth can thereafter be used as
music thumbnail.

Thus, the proposed music thumbnailing method would start with the segmenta-
tion of song to be evaluated. Then, the relevant CATCHY features are computed for
each fragment. This is followed by computing the approximated worth and selecting
the fragment with the highest worth as music thumbnail.
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Chapter 4

Results

This Chapter discusses the results obtained via the methods described in Chapter 3.
The first steps of the method about data, segmentation, and the user study do not
yield specific results. However, checks are made to gain insight into the Muziekweb
user demographics and into the responses recorded via Qualtrics. Thereafter, the
several steps for dimensionality reduction and their results are shown. These results
lead to the approximation of the user study results with the obtained factors via EFA,
the familiarity score, and the segmentation method. Finally, the results leading to a
proposed music thumbnailing method are given.

4.1 Muziekweb Users

One of the assumptions for the user study is that Muziekweb users do not differ
from the general population. Figure 4.1 displays some basic demographic content
Muziekweb obtained via their website. These statistics were obtained by Google
Analytics based on cookies. The percentages in the right upper corner display how
many of the visitors of the Muziekweb site had cookies to obtain this information. It
can be seen that the gender of these visitors is fairly equal and also that the age of the
visitors is fairly equally distributed over different age classes. However, Muziekweb
does seem to have relatively few visitors in the age group between 18 and 24 years
of age.
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Figure 4.1: Demographics of visitors of the Muziekweb site displaying age and gender

4.2 Qualtrics Responses

The Qualtrics survey was available from April the 3rd, 2019 up to May the 27th, 2019
via a link posted on the site, Twitter, and Facebook of Muziekweb. Muziekweb made
a post on April the 3rd, 2019 and a second time on April 23rd, 2019 to encourage
respondents. At the same time, one of the researchers also posted the link on their
Facebook. In this time frame, 148 responses were recorded, of which fourteen have
completed the full survey and 93 have done so partially. The remaining responses
did not get past the informed consent. The expectation was that participants would
rank approximately 20 songs each. The mean amount of ranked songs was 25.35
(standard deviation of 20.81) and the median was 19.50. This was computed only
for the 72 participants who managed to get past the example questions and shows
that when participants were willing to actually participate, they would indeed rank
approximately 20 songs.

This resulted in each segment being ranked with a mean of 15.25 (median of 15,
standard deviation of 3.19). This displays only how often each segment was seen
and ranked, and does not give an indication of how often each pair of segments was
ranked. This is lower than the goal of 30 measurements per pair. However, the
results later in this Chapter show that the amount of collected data was sufficient.

4.3 Dimensionality Reduction

Here is described how the dimensionality of the feature space was reduced, which
steps and choices were considered, and what contributes to the obtained factors.

41



4.3.1 Correlation

The first step for dimensionality reduction is to create a correlation or covariance
matrix based on the features. The type of the matrix depends on whether the feature
values are normally distributed. To test this, the distributions of all obtained feature
values with the CATCHY toolbox are plotted in Figure 4.2 which show this is not the
case. Also notable are the bumps at the ends of some of the plots, which is caused
by how the second-order features are computed for the one-dimensional features.
However, these should not influence whether a feature is normally distributed. As
the plots indicate that transformations may be needed to ensure that all features are
normally distributed, it was opted to use the Spearman correlation as this correlation
does not assume normal distribution of features. The resulting correlation matrix
between features is hereafter used for the following dimensionality reduction steps.

Figure 4.2: Distribution of the occurrences of all features computed with the
CATCHY toolbox
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4.3.2 Number of factors

The second step is to check how many factors, or dimensions, are needed to explain
the variance in the data well enough. Figure 4.3 shows four plots of different methods
to identify the best amount of factors. These plots were optimised for the usage of
Varimax rotation and minimum residual factor analysis.

Figure 4.3: Results of different methods to find the optimal amount of factors

The figure shows no single obvious number of factors to use. The Very Simple
Structure technique shows a small bump at four factors but is mostly stable. The
complexity only seems to rise when factors are added, which also advocates for
choosing less factors than the number of twelve chosen by Van Balen et al. (2015a).
The Empirical BIC does show a lowest value with more factors but is relatively stable
after reaching five or six factors. Lastly, the Root Mean Residual should in an ideal
case show a clear elbow point, which is not the case here. Overall, the plots seem
to indicate that there is no optimal number of factors, but keeping the number low
does seem to be preferred. This is supported by also running IClust which showed
that features were preferably clustered into three clusters (see Appendix D). This
clustering does show one much larger cluster which could be divisible, indicating that
three dimensions might not be enough to explain the data.
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With these findings on the amount of dimensions that would work the best in
mind, the results for EFA with the amount of factors between four and eight were
tested and compared (see Appendix E for the loading tables). Models with more
than six factors include factors with only two high loadings (at least a loading 0.4 or
higher), which is an indication that six factor already has a too high dimensionality.
Morover, models with more factors than five would have factors that would overlap
too much. This is another indication of too many factors. While overfactoring is
less harmful than underfactoring, it is key to choose as many factors without losing
interpretability or identifiability. This lead to choosing between four and five factors.
Here, five factors was preferred as the interpretability of the factors containing less
high loadings is still possible, while they do contain at least three high loadings or
more. Moreover, the four-factor model has more features that do not have high
loadings in any of the factors, which emphasises that a five-factor model explains
more of the variance in the data.

4.3.3 Factor Analysis with Five Factors

Table 4.1 shows the loadings of the different features for the minimum residual EFA
model run for five factors with Varimax rotation. The table shows for each feature
its loadings for the different factors (where MR stands for minimum residual), its
communality (h2), its uniqueness (u2), and its complexity (com) of the component
loadings (Revelle, 2011). The factor loadings show the importance of the features
for the different factors. The communality measures how much of the variance of
a feature is explained by all factors together. The uniqueness is measured by the
variability minus the communality.

4.4 Representativeness Approximation

The obtained factors via the EFA are used as new features to approximate the user
study rankings. Therefore, the factor scores based on these factors are computed
for each segment of the user study. Thereafter, a GLM is created with as depend-
ent variable the standardised worth of the fragments and the five factors and the
familiarity scores as independent features. The results are shown in Table 4.2, which
shows the coefficients (b) of the features, the standard error, as well as the t-score
and p-value to indicate how likely the results were.

The results of the GLM indicate that MR3, MR4, and MR5 could explain the
worth of the fragments significantly. To further test this assumption, the function
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Factors
Feature MR1 MR2 MR3 MR4 MR5 h2 u2 com
HIC Entropy -0.89 -0.28 -0.02 -0.03 -0.04 0.86 0.14 1.21
HI | Corpus Information 0.88 0.32 0.06 -0.05 0.00 0.88 0.12 1.27
HIC | Corpus Information 0.88 0.30 0.07 0.02 0.04 0.87 0.13 1.25
HI | Song Information 0.87 0.34 0.06 -0.04 -0.01 0.89 0.11 1.32
HIC | Song Information 0.86 0.31 0.07 0.02 0.03 0.83 0.17 1.27
HI | Corpus -0.61 0.08 0.03 0.20 0.05 0.42 0.58 1.27
HI | Song -0.52 0.08 0.06 0.23 0.14 0.36 0.64 1.63
HIC | Corpus -0.50 0.11 0.18 0.21 0.18 0.37 0.63 2.08
HIC Entropy | Corpus -0.48 -0.02 0.24 0.16 0.16 0.34 0.66 1.97
HIC | Song -0.45 0.05 0.24 0.17 0.19 0.33 0.67 2.32
Melodic Pitch SD 0.08 0.00 -0.04 0.03 -0.06 0.01 0.99 2.82
MIB Entropy -0.37 -0.90 0.00 -0.02 -0.06 0.95 0.05 1.35
MIB | Song Information 0.38 0.87 -0.03 0.02 0.03 0.91 0.09 1.38
MIB | Corpus Information 0.43 0.84 -0.03 0.01 0.05 0.89 0.11 1.51
HI Entropy -0.50 -0.76 -0.08 0.00 -0.05 0.84 0.16 1.77
Melodic Pitch SD | Corpus -0.06 0.33 0.20 0.00 -0.03 0.16 0.84 1.75
MIB | Corpus -0.26 0.32 0.08 0.30 0.14 0.28 0.72 3.48
Melodic Pitch SD | Song -0.08 0.17 0.15 0.02 0.00 0.06 0.94 2.48
Loudness 0.04 -0.06 0.93 0.03 -0.04 0.87 0.13 1.02
Roughness 0.17 0.08 0.79 0.09 0.14 0.68 0.32 1.21
MFCC Variance 0.24 0.03 -0.54 0.01 -0.04 0.35 0.65 1.39
Loudness SD 0.30 0.06 0.45 0.14 0.04 0.32 0.68 2.01
MFCC Mean | Corpus -0.03 0.21 0.45 0.20 0.35 0.41 0.59 2.84
Melodic Pitch Height 0.17 -0.06 0.45 0.08 -0.01 0.24 0.76 1.41
Sharpness | Corpus 0.12 0.13 0.32 0.15 0.20 0.19 0.81 2.91
MIB Entropy | Corpus -0.08 0.04 0.12 0.77 -0.03 0.61 0.39 1.08
HI Entropy | Corpus -0.10 0.06 0.09 0.76 0.01 0.60 0.40 1.07
HI Entropy | Song 0.04 -0.08 0.00 0.52 0.19 0.32 0.68 1.33
MIB Entropy | Song 0.02 -0.12 0.00 0.50 0.09 0.27 0.73 1.19
MIB | Song -0.09 0.28 0.05 0.32 0.17 0.22 0.78 2.74
Loudness | Corpus 0.03 0.18 -0.14 -0.02 0.56 0.37 0.63 1.35
Roughness | Corpus 0.06 0.06 0.41 0.03 0.52 0.44 0.56 1.97
Roughness | Song -0.04 0.07 0.25 0.03 0.48 0.30 0.70 1.59
Loudness | Song -0.03 0.09 -0.02 0.06 0.46 0.22 0.78 1.13
Sharpness 0.20 0.35 0.18 0.18 0.43 0.41 0.59 3.24
Loudness SD | Corpus -0.02 0.15 0.03 0.02 0.34 0.14 0.86 1.44
MFCC Mean | Song -0.04 0.09 0.19 0.16 0.31 0.17 0.83 2.46
MFCC Variance | Song -0.03 0.07 0.10 0.05 0.28 0.10 0.90 1.49
Melodic Pitch Height | Corpus 0.05 0.08 0.19 0.15 0.27 0.14 0.86 2.76
Loudness SD | Song 0.00 0.10 -0.07 0.00 0.25 0.08 0.92 1.51
HIC Entropy | Song -0.06 0.00 0.22 0.06 0.25 0.11 0.89 2.23
MFCC Variance | Corpus -0.08 0.14 0.00 -0.05 0.23 0.08 0.92 2.07
Melodic Pitch Height | Song 0.00 -0.01 0.16 0.04 0.20 0.07 0.93 1.98
Sharpness | song 0.04 0.12 0.14 0.06 0.16 0.06 0.94 3.27

SS loadings 6.28 4.03 3.22 2.27 2.22

Table 4.1: Factor loadings for Minimum Residual EFA with five factors showing
the factor loadings, communalities (h2), uniquenesses (u2), and complexities of the
factor loadings (com)
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“dredge” from the MuMIn package in R is used which creates models with all possible
combination of independent variables to explain the dependent variable. Table 4.3

Feature b SE t p
Intercept -0.04 0.05 -0.75 0.452
Familiarity -0.08 0.07 -1.11 0.267
MR1 -0.05 0.05 -0.90 0.370
MR2 0.06 0.05 1.19 0.236
MR3 0.17 0.05 3.18 0.002
MR4 0.20 0.05 3.91 <0.001
MR5 0.30 0.05 5.64 <0.001

Table 4.2: GLM results using factors and
familiarity. For each variable, the estimate
or coefficient (b), the standard error (SE),
the t-score, and p-value are given

shows the results of the nine best per-
forming models. Models could be in-
terchangeably used when their ∆AICc

is lower than three. However, as the
factors as well as the familiarity score
are standardised, it should be noted
that the size of the coefficients mat-
ters. Thus, even when the ∆AICc

suggest models which start to include
MR2 or familiarity can also be used,
the coefficients of these variables are
so small that they do not add any
value.

Intercept Familiarity MR1 MR2 MR3 MR4 MR5 df ∆AICc

-0.05 0.16 0.20 0.29 5 0.00
-0.05 0.06 0.17 0.20 0.29 6 0.64
-0.04 -0.07 0.16 0.20 0.30 6 1.00
-0.05 -0.04 0.17 0.20 0.29 6 1.29
-0.04 -0.07 0.06 0.16 0.21 0.30 7 1.58
-0.05 -0.04 0.06 0.17 0.20 0.29 7 2.02
-0.04 -0.08 -0.05 0.17 0.20 0.30 7 2.19
-0.04 -0.08 -0.05 0.06 0.17 0.20 0.30 8 2.86
-0.05 0.20 0.30 4 7.73

Table 4.3: The best nine models to approximate the representative worth based on
different combinations of independent features. Along with the estimates for each
feature, the degrees of freedom (df) as well as a measure to compare models (∆AICc)
are shown
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Feature b SE t p
Intercept -0.03 0.13 -0.20 0.838
familiarity -0.08 0.07 -1.10 0.275
MSAF -0.10 0.14 -0.72 0.474
Random 0.33 0.18 1.84 0.067
MR1 -0.05 0.05 -0.91 0.365
MR2 0.05 0.05 1.03 0.306
MR3 0.16 0.05 3.08 0.002
MR4 0.22 0.05 4.20 <0.001
MR5 0.30 0.05 5.41 <0.001

Table 4.4: GLM results with the addition
of a categorical variable for the method
of segmentation with as standard the 1-
minute in method

One hypothesis during the set-up of
this study was that hooks lie at the be-
ginning of structural sections. There-
fore, a second GLM was created with
the addition of how the fragments
were obtained as categorical variable
(either via MSAF, random selection,
or 1-minute-in). The GLM with this
additional categorical variable does in-
dicate that the segmentation method
could affect the score as can be seen
in Table 4.4. Based on these results, a
post-hoc comparison is carried out to
check the influence of the categorical
variable as a whole in the form of an
ANOVA from the “car” package in R
(see Table 4.5).

Feature Chisq Df p
Familiarity 1.20 1 0.275
Segmentation 9.44 2 0.009
MR1 0.82 1 0.364
MR2 1.05 1 0.305
MR3 9.50 1 0.002
MR4 17.63 1 <0.001
MR5 29.25 1 <0.001

Table 4.5: ANOVA results to test the im-
portance of the segmentation method

The ANOVA indicates that the mean
worth per segmentation method may
differ significantly. An additional
post-hoc test “glht” is run via the
“multcomp” R-packagea which per-
forms a Tukey test to compare the
segmentation groups (Hothorn et al.,
2016). The results of this test are
extracted via “cld” which creates a
compact letter display of all pair-wise
comparisons along with a box plot
showing the distributions of the de-
pendent value for each segmentation
method.

ahttps://cran.r-project.org/web/

packages/multcomp/index.html
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The results are shown in Figure 4.4 where
the strict interpretation of the letter plots
is that for any two groups that share a
letter, there is insufficient information to
reject the null hypothesis that the groups
performance is the same. In this case, this
means that the 1-minute-in segmentation
method does not differ from random or
MSAF segmentation. However, as random
and MSAF segmentation do not share a
letter, they are different according to this
test.

Figure 4.4: Plot of the worth per seg-
mentation type with the letters defin-
ing which groups are similar

4.5 Catchy Function

Lastly, the proposed music thumbnailing method based on the results can be estab-
lished. The results of the GLMs show the importance of the factors MR3, MR4, and
MR5 to approximate the worth of an fragment. However, the factors rely on the full
set of 44 features in the CATCHY toolbox. Therefore, to simplify the derivation of
the feature scores, new GLMs are created for each of these three factors using the
factor scores as dependent variables and the features with high loadings (loadings
above 0.4) as independent variables. The results of these models are shown in Table
4.6, 4.7, and 4.8 for factors MR3, MR4, and MR5 respectively. For each factor, the
scores can be approximated by a summation of the features with a significant p-value
multiplied by the estimates of the respective GLM. Thereafter, these approximations
are combined with the results of the first model in Table 4.3 to create a function for
representativeness. These estimates are preferred as they are computed without the
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influence of familiarity, MR1, nor MR2. This combination results in Equation 4.1
which computes the representative worth of a given fragment. However, as second-
order features are based on the reference corpus used, there are some risks in using
them as they change depending on the music corpus and segmentation.

worth = −0.05 + 0.16 ∗MR3 + 0.20 ∗MR4 + 0.29 ∗MR5

= −0.620 + 0.024 ∗ Loudness+ 0.013 ∗Roughness
− 0.021 ∗MFCC V ariance+ 0.013 ∗MFCC Mean | Corpus
+ 0.034 ∗MIB Entropy | Corpus + 0.018 ∗MIB Entropy | Song
+ 0.032 ∗HI Entropy | Corpus+ 0.018 ∗HI Entropy | Song
+ 0.060 ∗ Loudness | Corpus+ 0.039 ∗ Loudness | Song
+ 0.030 ∗Roughness | Corpus+ 0.039 ∗Roughness | Song
+ 0.006 ∗ Sharpness

(4.1)

Feature b SE t p
Intercept -2.36 0.31 -7.55 <0.001
Loudness 0.15 0.01 21.63 <0.001
Roughness 0.08 0.03 2.48 0.013
MFCC Variance -0.13 0.05 -2.78 0.006
Loudness SD 0.00 0.01 0.31 0.755
MFCC Mean | Corpus 0.08 0.01 7.08 <0.001
Melodic Pitch Height 0.01 0.00 1.87 0.062

Table 4.6: Approximation of MR3 by GLM

Feature b SE t p
Intercept 0.00 0.00 0.00 1
MIB Entropy | Corpus 0.17 0.02 7.73 <0.001
MIB Entropy | Song 0.09 0.02 4.44 <0.001
HI Entropy | Corpus 0.16 0.02 7.38 <0.001
HI Entropy | Song 0.09 0.02 4.31 <0.001

Table 4.7: Approximation of MR4 by GLM
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Feature b SE t p
Intercept -0.64 0.13 -4.79 <0.001
Loudness | Corpus 0.20 0.02 12.60 <0.001
Loudness | Song 0.13 0.02 8.01 <0.001
Roughness | Corpus 0.10 0.02 6.11 <0.001
Roughness | Song 0.13 0.02 7.75 <0.001
Sharpness 0.02 0.00 4.87 <0.001

Table 4.8: Approximation of MR5 by GLM
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Chapter 5

Discussion

Whether the notion of catchiness can be used for music thumbnailing is dependent
on several steps in this study. First the factors from the EFA are interpreted and
evaluated. Then, the results of the GLMs are considered to assess the importance of
the factors as well as familiarity and segmentation method. Thereafter, the catchy
function and how this would be used for music thumbnailing is discussed. This is
followed by limitations of this study and further research.

5.1 Analysis

The analysis and interpretation of the results in the several steps is important to
see what they could mean and whether the research question is answered. First an
interpretation of the EFA factors is derived to know what each factor is possibly
measuring in the audio signals. Then, the PCA components are interpreted and
compared to the factors and the components found in Van Balen et al. (2015a). This
should give an idea of how the choice for EFA might have impacted the results.
This is followed by the several GLMs that were trained to see whether the inputted
independent variable could explain the user study rankings. Then, the proposed
method for Muziekweb is shown with preliminary results on the effectiveness of the
thumbnailing method. Lastly, the current study is compared to previous studies.

5.1.1 Factor Analysis

The first part of analysing the results is by interpreting what the obtained factors via
the EFA could measure in the music as shown in Table 4.1. Here, an interpretation
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of these factors is given by looking mostly at the features with high loadings of above
0.4.

The first factor, MR1, consists mostly of second-order higher-dimensional features
describing harmonics. Both the HI which shows the harmonisation between the
melody and the chords, as well as the HIC which describes triads have very high
and similar positive loadings for their second-order feature measured in terms of
information-theoretic unexpectedness, or Information. The second-order features for
HI and HIC computed via Kendall’s τ also have similar loadings but add negatively
to this factor. This could mean that all these different measures for the higher-
dimensional features do measure the same thing and thus describe the same variance
in the data. A higher Information score means that the feature value has a lower
probability to occur; there is more information needed to describe the event. This
aligns with a lower τ as this indicates that there were less occurrences of similar
values. The remaining high loadings in this factor are the first-order measure of
the HIC and HI in terms of entropy and second-order features of the HIC based on
entropy. For the first-order HIC and HI, entropy is used as a first-order measure of
dispersion which means that a lower value represents less dispersed data (Van Balen
et al., 2015a). This factor thus prefers less dispersed HIC and HI as can be seen by
the high negative loadings. Furthermore, the second-order entropy features for HIC
could also indicate that a less common dispersion of data is preferred. Lastly, features
based on MIB also have some higher loadings, with one above the threshold of 0.4.
This shows that apart from harmonic uniqueness, the factor also likely measures
melodic uniqueness to some degree. This most likely means that this factor measures
the uniqueness of values for the different higher-order harmonic (and also slightly
melodic) features in relation to different corpora.

Factor MR2 is very similar to MR1 but has very high loadings for the melodic
higher-dimensional features. Similarly, the second-order features computed via in-
formation add positively to this factor, while the entropy for MIB and HI adds negat-
ively. There is also quite some overlap between this factor and the first one in loadings
above 0.3, meaning that this factor might emphasise the melodic higher-dimensional
features but is still very similar to the harmonic higher-dimensional features. This
overlap could suggest that a four-factor model would have been preferred. However,
even in a four-factor model, there is still a lot of overlap between factors depending
on second-order higher-dimensional features (see Appendix E). At the same time,
more features in the four-factor model have a low communality (h2) which indicates
that they are not represented enough. Despite the overlap of this factor with MR2,
it is thus preferred to explain more variance with a five-factor model.

Thereafter, the factors start containing the basis features and their second-order
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variant. Simultaneously, they start including smaller sets of features, starting with
MR3. This factor mostly relies on a high positive values for loudness (mean and
standard deviation) and roughness. It also prefers a lower MFCC variance, a high
MFCC mean, and a high melodic pitch height. This factor should thus measure the
intensity of fragments.

The fourth factor, MR4, is heavily based on the corpus as well as song-based
second-order features for the MIB and HI entropy. This means that the values for
this factor rise when the dispersion of MIB and HI is more common. Thus, it is
a measure that describes the commonality and recurrence of melodic and harmonic
aspects in comparison with the reference corpus. This could thus both indicate
repetition within a song itself, while also maintaining sounds that do not stray too
far from the corpus.

Lastly, factor MR5 comprises of less high loadings in comparison with the other
factors, with only two features that score above 0.5 and two that almost near it. These
four features describe the corpus and song-based second-order features for loudness
and roughness with a preference for the corpus-based variants. The last feature with
a high loading is sharpness. This factor thus probably describes the commonness of
the intensity (as the features overlap with those in factor MR3) in relation to the full
corpus and the song. Therefore, this factor depicts the commonality and recurrence
of the intensity of the fragment in combination with a high sharpness.

These interpretations show that the factors describe higher-dimensional harmonic
and melodic uniqueness, intensity, and recurrence and commonality of fragments.

5.1.2 Generalised Linear Model and Implications

The next step is to evaluate the GLM made with the interpreted factors and the
familiarity score as independent variables. The results of this model is shown in
Table 4.2. The factors MR3, MR4, and MR5 have high estimates (b) in this model
along with significant p-values. As all variables in the model are standardised, the
size of the coefficients matters. This also means that the other two factors and the
familiarity score are unimportant for the approximation of the worth of a segment.
The importance of the three factors is strengthened by the results shown in Table
4.3. These results indicate that the model with the least degrees of freedom (df),
and thus the least complex but working model, is a model only consisting of these
three factors as features. The relative quality of the models is given by the ∆AICc

and shows that most tested models can be used interchangeably as the values stays
below three. The table thus shows the first model lacking one of these three factors
has a great decline of the ∆AICc, indicating the importance of this factor for the
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model. Moreover, the estimates of the MR3, MR4, and MR5 remain consistent in
each set-up of features, while the estimates for the other independent features remain
low. This shows that the factors MR3, MR4, and MR5 are the best indicators of the
dependent variable.

With the interpretation of the factors in mind, it is possible to infer what these
factors are and how they contribute to better representativeness as indicated by
the Plackett-Luce worth. The most important contributor with an estimate 0f 0.30
is MR5, which thus means that if the intensity of the fragment is more common in
comparison to the corpus, but also in the song, the worth rises. MR4 has an estimate
of 0.20 and describes whether the melodic content as well as the harmonisation
between melody and chords has a dispersion that is common in the reference corpus.
These two factors and their importance thus indicate that a more representative
fragment has a higher commonality and recurrence. Lastly, MR3 has the lowest
significant estimate of 0.17, which means that the representativeness of a fragment
increases when the intensity of the fragment is higher.

Combining these interpretations, fragments that are more representative are most
likely fragments that have high recurrence. This could mean that they are often re-
peated within a song. They should also not stray from the full corpus, indicating that
they have a generally accepted sound within the corpus and thus a high common-
ality. Lastly, the intensity of the fragment should be high. This means that within
popular music the most representative fragments could be the fragments containing
the chorus as those are often the most repeated parts of a song with a relatively high
intensity (Bartsch and Wakefield, 2005; Huang et al., 2017).

Apart from testing the features of the CATCHY toolbox, familiarity was also
evaluated with the same GLM on whether it has an effect on representativeness.
In this model, the estimate for the standardised familiarity score is rather low and
seems to indicate that familiarity could influence the worth of a fragment negatively.
However, with a very low estimate and insignificant p-value, it is safe to say that
familiarity does not impact the worth of a fragment. Thus, listeners are able to
evaluate the representativeness of a fragments without the need of knowing the song.

Lastly, an assumption made in this study was that fragments starting at the
beginnings of structural sections might have a higher chance of containing the most
representative part of the song. This was tested by running another GLM with the
addition of the segmentation method as categorical variable. The results in Table
4.4 show that the segmentation method may have an influence, with a preference for
random segmentation. Therefore, an ANOVA was run as on the model as post-hoc
test which shows that segmentation does seem to have a significant effect on the
worth (see Table 4.5). To see how the different segmentation methods differ, Figure
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4.4 shows the results of a pair-wise comparison of the different segmentation groups.
The compact letter display shows that segmentation by taking a fragment starting
at 1-minute in does not differ from fragments segmented via MSAF nor random
selection. However, segmentation via MSAF does differ significantly enough from
randomisation, where segments that are randomly selected have a better worth in
this data set.

These results shows that the hypothesis of segments starting at structural begin-
nings would benefit representativeness is not supported. This could be due to the
aim of the study. Where Burgoyne et al. (2013) tried to identify the exact moment in
a song were recognition starts, here the focus is on creating thumbnails. A thumbnail
does not necessarily improve by starting at a point of recognition, but benefits the
most of containing the most representative part somewhere in the thumbnail. This
does not mean the most recognisable part needs to be at the exact beginning of the
thumbnail. Moreover, the set-up of the Hooked user study awarded participants to
recognise a song as fast as possible, meaning that the start of the fragment is much
more important than in the current set-up.

5.1.3 Catchy Thumbnailing Function

With these results in mind, a proposition for a automatic music thumbnailing method
is made. This is mostly based on the GLM results indicating the importance of MR3,
MR4, and MR5 with estimates of 0.17, 0.20, and 0.30 respectively.

The first part of the method would be to use a segmentation method to obtain
different fragments of the same song. The results show that no specific segmentation
method is preferred. Then, for each of these fragments an approximation of the
representative worth can be computed by computing the CATCHY features and
inserting the values into Equation 4.1. It should be noted that because these factors
are computed with second-order features which depend on their respective reference
corpus, the results will change.

The second step would be to choose a fragment based on the computed worth for
all fragments created with the segmentation method. The best method would be to
choose the fragment with the highest worth and select this as chosen thumbnail for
the song. Th evaluation of this proposed method would be part of a follow-up study.

5.1.4 Comparison to Other Studies

The previous subsection describes the proposed method for music thumbnailing based
on the results from this study. The interpretation of the factors that contribute
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the most to this method indicate that intensity, and a higher commonality and
recurrence are related to the representativesness of a fragments. This aligns with
previous automatic thumbnailing studies, as they mostly focused on detecting the
most repeated section or chorus (Bartsch and Wakefield, 2005; Chai and Vercoe,
2003; Huang et al., 2017; Levy and Sandler, 2006; Müller et al., 2013; Schuller et al.,
2008). This means that the results based on the preferences of listeners strengthen
the assumptions of previous studies where the best thumbnail was thought to be the
part of the music that is repeated most often, which often aligns with the chorus.

The importance of intensity, commonality and recurrence also aligns with pre-
vious work aimed at catchiness and INMI. Van Balen et al. (2015a) found that
fragments that are easier to recall have a more typical sound, more conventional
melodies, more recurrence in the timbral aspects, and a prominent vocal line. The
last aspect could not be measured with the factors in this study. Moreover, INMI,
which is related to catchiness, seems to appear more often for often repeated frag-
ments with a faster tempo and a common melodic contour (Jakubowski et al., 2017;
Williamson et al., 2012). The results of this study thus agree with previous works,
meaning that the assumption that catchiness also overlaps with representativeness
seems plausible.

5.2 Limitations

While many results are very significant, several choices were made that could have
limited this study. The impact of the data, segmentation, user study format, as well
as the creation and processing of the features and models are discussed.

5.2.1 Data

The first choice in this study is how data was obtained and chosen. The data that was
used is based on the listening counts of visitors of Muziekweb’s site. It was noted
that there was a bias towards French and German songs likely caused by Google
listing Muziekweb as the first option for these terms. This makes it possible that
listening counts are based on casual visitors of the Muziekweb site as well. This
limitation, however, is not within the reach of this study. Figure 4.1 shows that
the demographics of Muziekweb users does not stray from the general population
in terms of age or gender. While there can still be differences between the general
population and Muziekweb users and visitors in terms of other criteria, the user
study results should also be based on a mix of Muziekweb users and visitors, as well
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as people falling outside of this scope. Regarding the significance of this study, it is
unlikely to have affected the results.

Another choice concerns the selection of data. During selection, songs were ig-
nored from the same artists and albums to increase the diversity in the corpus. An
exception was made for compilation albums, which took up a large part of the list,
with the assumption that compilation albums do contain a representative collection
of popular music. While it still limits the broadness of the study, choosing a list
based on Muziekweb’s listening counts was to ensure that participant would be fa-
miliar with the music. As the results have shown that familiarity is not necessary
for representativeness, the importance of familiarity could already be measured.

The last limitation of the data selection is that only pop music is included. The
results in this study are significant, but no statements can be made about other
musical genres as thumbnail preferences differ between genres (Schuller et al., 2008).

5.2.2 Segmentation

The results in this study showed that fragments do not need to start at structural
boundaries to be more representative. There was even a slight preference for seg-
mentation by choosing a random starting point instead of a boundary chosen by
MSAF. A part of this observation might be caused by randomisation involved in
the selection of fragments chosen by MSAF. The MSAF algorithm normally detec-
ted at least four or more boundaries, which exceeds the amount of fragments that
were used in the user study. This randomisation of choosing detected boundaries
arbitrarily might have had a negative effect on the chosen segments. Thus, com-
plete random selection of the detected boundaries might have left the best fragments
of the song starting at structural boundaries out in the user study. However, this
cannot completely explain the effect encountered in this study. A follow-up study
could investigate the cases where boundary sections lack in comparison to randomly
chosen starting points to investigate what happens in the music.

Additionally, only one boundary detection algorithm has been evaluated in the
user study. This study thus only reveals that the implementation of the algorithm in
MSAF based on Serra et al. (2014) is not necessarily preferred for the segmentation
of representative fragments. This study thus does not give an indication on how
other segmentation algorithms would affect the results. Another choice for the seg-
mentation algorithm was also to choose on which type of time series the boundaries
would be detected. While using chromagrams gave plausible results and aligns better
with the features extracted via the CATCHY toolbox, it is a limitation on what as-
pects of the audio signal are considered during boundary detection. Further research
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could look into the differences between boundary segmentation algorithms, which
could give insight into whether boundary segmentation in general is not preferred
for identifying representative fragments, or only some specific algorithms.

5.2.3 Qualtrics

Creating the user study in Qualtrics had several pros and cons. While the platform
is relatively easy to use, data is stored securely, and playing music did not cause any
problems, the choices that needed to be made might have influenced this study as
well.

One such choice is to not add progress bars to the study. The idea behind this
is that seeing the length of the full study might discourage participants to continue
as their progress would be really slow. But, for participants who want to know what
they are up to when participating in a study, might stop due to not being able to
follow their progress. In this study, leaving the bar out still made more sense as it was
not expected of participants to fulfil the complete study. Leaving the progress bar
out should have encouraged participants to evaluate as many songs as they wanted
to.

Another choice was to use the drag-and-drop option in Qualtrics for ranking.
While this option is the most mobile-user friendly, it also has some limitations. One
of them is that the response is not recorded when none of the alternatives are moved
at least once. To ensure that everything is recorded, a warning is shown to the
participant when they have not moved one of the fragments at least once before
proceeding. This does solve the problem of recording responses, but causes the
ranking to be more tedious than needed. Participants need to move fragments even
when their preferred ordering is already given and if they forget to do so, end up
with a warning message which can be annoying over time.

Another problem with the drag-and-drop function arises when music players are
used as alternatives. The boxes cannot be moved by clicking on the players them-
selves, making it less instinctive. Moreover, the size of the music players cannot
be adjusted, meaning that the boxes are too broad to fit the average mobile phone
screen. This makes the survey drastically worse on mobile, while Muziekweb has
indicated that half of their users visits their site via a mobile device. However, the
option of using drag-and-drop ranking was still preferred above the other ranking
option in Qualtrics where the limitations for mobile users would be greater due to
typing or having to click on a ranking that does not fit the typical phone screen.

The design of the study might also have had an impact, such as to have an in-
troduction followed by a page containing the informed consent. A large introduction
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and an intimidating informed consent might have caused nearly one-third of the par-
ticipants to discontinue the survey at the user study. While better phrasing might
have made the introduction more compact, the intimidating informed consent is a
must for a scientific experiment.

Lastly, there could also be an effect due to the exact phrasing used in the user
study and the symbols used to distinguish between the music players. The significant
results show that it is likely participants did have a similar grasp on what was expec-
ted from them to rank, even when “an idea of the song” is vague wording and could
differ between participants. However, this phrasing was used to ensure participants
would rank items based on a gut feeling without mulling on what representativeness
might mean. Also, while individual participants might have had ranked preferences
for the filled squares, there is no common ranking and thus, having enough parti-
cipants would overcome personal preferences.

Thus, certain choices regarding the user study might have impacted how enjoyable
it was for respondents to participate and might have caused bias. However, the clear
results show that participants knew what they were supposed to do in the study and
personal biases should have been overcome. Yet, future studies wanting to conduct
a similar user study may consider a different platform for questionnaires.

5.2.4 Model and Analysis

The last impact by choices is in the processing of the data and modelling afterwards.
First, the features that are used are only those currently available in the CATCHY
toolbox. This means that rhythmic features were not considered in this study, while
previous research has shown that melodies containing longer average durations are
more likely to become INMI (Müllensiefen and Halpern, 2014). As INMI are related
to catchiness, this could also be the case for representativess.A follow-up study could
start by also considering the relationship between this branch of features could and
representativeness.

Second, the features are not used themselves to explain the user study scores. In-
stead, they are used for a five-factor model created via EFA. Dimensionality reduction
does help to describe variance in less dimensions and creates easier to interpret fea-
tures. However, the procedure has many options and very few guidelines (Osborne
et al., 2008). Here, the choice for an EFA is demonstrated as being profitable in
comparison to a PCA as only shared variance is considered which makes it easier to
interpret while an underlying structure is considered. However, more choices were
made, such as doing an EFA via minimum residual and using Varimax rotations.
Different choices here might have given different results. But, while for this study
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different choices could have been made, the made choices did result in interpretable
factors that were able to explain the representative scores via a GLM.

Third, the approximation of the representative worth of the fragments is done
via a linear model. Although linear models are very easy to interpret, it is a large
assumption to claim that a linear model would accurately model a complex world.
Models allowing different relationships between independent and dependent variables
might represent the actual relations better, but would also make the results far less
clear. A follow-up step would be to also test more complex models and to compare
these with the linear model. This could give insight into whether a linear model is
able to sufficiently explain the ascribed representativeness scores.

Lastly, the results from this study are simplified for the proposed method. Table
4.3 does show that using only three factors for the approximation of the worth of
a fragment is sufficient. Thereafter, a simplifcation of the factor scores is proposed.
However, whether the use of this limited set of features is enough to represent the
factors is not tested here. It could be that using the actual factors for the computation
of worth may be preferred as the factor scores are more accurate even though the
computation of features becomes more arduous.

5.3 Further Research

The discussion of limitations already discussed several considerations for further re-
search. These were possible follow-up studies which consider different genres, testing
of other boundary detection of algorithms for segmentation, testing rhythm features,
testing more complex models instead of only a linear model, and not using the pro-
posed approximation for factor scores.

Apart from exploring different methods, the significant results of this study also
push for a follow-up to compare the proposed music thumbnailing method with other
methods and Muziekweb’s current implementation. The method proposed to evalu-
ate the thumbnails is via another user study. In this user study, thumbnails obtained
via different audio thumbnailing methods can be presented to participants. The re-
spondent is then asked to rate these on their ability of being good thumbnails. This
could be done similarly to this study via ranking. By comparing these thumbnails,
it can be evaluated whether this method creates better thumbnails with regards to
the current implementation used by Muziekweb, as well as how it holds up against
other methods.

The results of this study also indicate that features for representativeness and
catchiness do collude. The significance shows that it would interesting for further
research to delve deeper into these two terms.
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Chapter 6

Conclusion

Music thumbnailing is the process of selecting a fragment of a song that represents
the complete song the best. Previous studies have mostly focused on detecting the
chorus or the most repeated part for thumbnailing. Here a cognitive view is added
by adding the notion of hooks, the most salient part of a musical piece. For this
study, it is assumed that the hook overlaps with the most representative part. First,
rankings of different fragments of the same song were obtained via a user study to
compute the representative worth per fragment to grade. With features obtained via
the CATCHY toolbox, the worth of each fragment was approximated. To reduce the
dimensionality of the feature space and increase interpretability and identifiability,
a five-factor model was made based on these CATCHY features via an Exploratory
Factor Analysis. This resulted in intensity, commonality, and recurrence having a
significant impact on the worth of a fragment. This colludes with musical aspects
that have previously been identified as being important for the catchiness of the
music. Simultaneously, the impact of familiarity on scoring the representativeness
of fragments was tested and showed that familiarity is insignificant. Following, the
influence of the segmentation method was also checked. The results indicate that
the boundary detection algorithm used in this study does not perform too well.
According to these findings, any arbitrary segmentation method can most likely
be used to obtain fragments. Lastly, a new method to create music thumbnails is
proposed based on the findings in this study.
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R. C. (2015a). Corpus analysis tools for computational hook discovery. In Proceed-
ings of the 16th International Society on Music Information Retrieval (ISMIR),
pages 227–233, Malaga, Spain.

Van Balen, J., Wiering, F., and Veltkamp, R. (2015b). Audio bigrams as a unifying
model of pitch-based song description. In Proceedings of the 11th International
Symposium on Computer Music Multidisciplinary Research (CMMR), Plymouth,
United Kingdom.

Weihs, C., Jannach, D., Vatolkin, I., and Rudolph, G. (2016). Music Data Analysis:
Foundations and Applications. CRC Press.

65

https://doi.org/10.1109/tmm.2014.2310701
https://doi.org/10.1109/tmm.2014.2310701
https://doi.org/10.1037/0022-0167.34.4.414
https://doi.org/10.1037/0022-0167.34.4.414


Williamson, V. J., Jilka, S. R., Fry, J., Finkel, S., Müllensiefen, D., and Stewart,
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Appendix A

Song Selection

Table A.1 displays the final selection of 60 songs used in this study. The artist, title,
and the ID given by Muziekweb are shown. The Muziekweb ID is also used in further
processing of the songs. The ID can be interpreted as stating the code for the album
before the hyphen and the song identification after. As a great part of the list is
derived from compilation albums, a great overlap of album ID’s can be seen while
the artists and their original albums do not overlap. These albums are JK155735,
JK135666, JK135667, and JK135668 which are Dutch compilation albums with the
100 greatest hits in the 60’s, 70’s, 80’s, and 90’s respectively (“De 100 grootste jaren
60 hits”, “De 100 grootste jaren 70 hits”, “De 100 grootste jaren 80 hits”, and “De
100 grootste jaren 90 hits”). The last compilation album with several songs in the
list is HAX1853 contains a Dutch 100 best songs (“De 100 mooiste Nederlandstalige
liedjes”). Behind the titles of the songs the language codes are added for Dutch (nl),
English (en), French (fr), and German (de).
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Table A.1: Selected tracks

Muziekweb ID Artist Title
HAX1853-0001 Marco Borsato Wat is mijn hart (nl)
HAX1853-0002 De Dijk Niemand in de stad (nl)
HAX1853-0004 Acda & De Munnik Lopen tot de zon komt (nl)
HAX1853-0021 Guus Meeuwis Toen ik je zag (nl)

HBX2087-0001 Gérard Lenorman La ballade des gens heureux (fr)
HCX1490-0001 Peter Maffay Du (de)
HCX1490-0005 Falco Rock me Amadeus (de)
HEX14751-0004 Andrea Bocelli, Dua Lipa If only (en)
JAX3145-0018 Memphis Minnie Killer diller blues (en)

JK135666-0001 Meat Loaf Paradise by the dashboard
light (en)

JK135666-0002 Santana She’s not here (en)
JK135666-0003 Dr. Hook, Medicine Show Sylvia’s mother (en)
JK135666-0004 Cheap Trick I want you to want me (en)
JK135666-0005 Redbone We were all wounded at

wounded Knee (en)
JK135666-0006 Boston More than a feeling (en)
JK135666-0009 The Emotions Best of my love (en)

JK135667-0001 Cyndi Lauper Girls just wanna have fun (en)
JK135667-0002 Terence Trent D’Arby Wishing well (en)
JK135667-0003 Bonnie Tyler Total eclipse of the heart (en)
JK135667-0004 The Electric Light Orchestra All over the world (en)
JK135667-0005 Alison Moyet The ole devil called love (en)
JK135667-0006 Spandau Ballet Through the barricades (en)
JK135667-0007 Earth, Wind & Fire Let’s groove (en)
JK135667-0009 Deniece Williams Let’s hear it for the boy (en)
JK135667-0010 Owen Paul My favourite waste of time (en)
JK135667-0011 Bill Withers Lovely day (en)
JK135667-0012 Spagna Call me (en)
JK135667-0013 Fox the Fox Precious little diamond (en)
JK135667-0014 Rodney Franklin The groove (en)
JK135667-0015 Fiction Factory Feels like heaven (en)

Continued on next page
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Table A.1 – continued from previous page
Muziekweb ID Artist Title
JK135667-0017 Don Johnson Heartbeat (en)
JK135667-0018 Shakin’ Stevens Oh Julie (en)
JK135667-0019 Toto Africa (en)
JK135667-0020 Nicole Don’t you want my love (en)
JK135667-0021 Kenny Loggins This is it
JK135667-0022 Journey Don’t stop believing
JK135667-0023 The Bangles Eternal flame
JK135667-0024 The Outfield Your love
JK135667-0025 The Weather Girls It’s raining men (en)
JK135667-0029 The Pasadenas Tribute (en)

JK135668-0001 Des’ree Life (en)
JK135668-0002 London Beat I’ve been thinking about you (en)
JK135668-0003 Ten Sharp You (en)
JK135668-0004 De Poema’s Mijn houten hart (nl)
JK135668-0005 Fugees Fu-gee-la (en)
JK135668-0006 Michael Bolton How am I supposed to live

without you (en)
JK135668-0009 Martika (also in JK135667) Toy soldiers (en)
JK135668-0011 Brownstone If you love me (en)
JK135668-0013 B*Witched C’est la vie (en)
JK135668-0018 Womack & Womack Uptown (en)

JK135670-0002 The Pointer Sisters Fire (en)

JK154457-0003 Big Blind Hold on (en)
JK155735-0001 Bob Dylan Like a rolling stone (en)
JK155735-0002 Simon & Garfunkel Mrs. Robinson (en)
JK176222-0001 Actress R.I.P. (en)
JK193539-0003 Ronnie Flex, Mr. Polska Zusje (nl)
JK215477-0002 Boef, Sven Alias Slapend Rijk (nl)
JK216338-0003 Josylvia, 3Robi, Killer Kamal Westside (nl)
JK218358-0001 Lil’ Kleine Volume (nl)
JK234026-0003 Rosanne Cash, Elvis 8 Gods of Harlem (en)

Costello, Kris Kristofferson
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Appendix B

Informed Consent

Figure B.1 displays the informed consent for the user study as displayed in Qualtrics.
The text translates roughly to:

If you want to participate in this research, I ask of you to read the in-
formed consent below thoroughly and to agree that you give your consent.

Informed consent: I am informed to satisfaction about the research. I
was given the possibility to ask questions about the research and possible
questions have been answered to satisfaction. I have had the possibility
to think about participation in the research. I understand that I am free
to quit the experiment at any given moment. I understand that there
are no risks or inconveniences to be expected due to participation in this
experiment. I understand that the anonymous data that is obtained in
this experiment will be digitally stored. I understand the obtained data
will be used for scientific purposes and could be published. Hereby, I
grant permission out of free will to participate in this experiment. Lastly,
I confirm that I am at least 18 years old.

After the text, the page enforces the participants to choose between the option to
give informed consent (“Ik geef toestemming”) or deny (“Ik geef geen toestemming”).
If the participant does not choose one of the options, a warning is given that denies
them to proceed. If the participant give their informed consent, they are redirected
to the rest of the survey, otherwise they are sent to the Qualtrics endscreen.
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Figure B.1: Informed consent (“toestemmingsverklaring”) as displayed in Qualtrics
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Appendix C

Qualtrics

Figures C.1, C.2, C.3, C.4 and C.5 show screenshots of the Qualtrics survey as seen
by participants. For each screenshot, a short explanation of which part of the survey
is displayed as well as a translation to English of the Dutch text is given.

The survey starts with an introductory page as shown in Figure C.1 which states
the general background of the study. The text can be translated to:

Thank you for your interest! This study is a part of my master thesis
“Artificial Intelligence” at the Utrecht University and is made possible
by Muziekweb. I try to determine which fragment of a song conveys an
idea of the complete song the best. I’d like to ask you to do the following:
for several songs you will get to listen to three fragments. The title and
artist are given for each song. You rank the fragments on how well they
convey an idea of the song in your opinion. You do not have to be familiar
with the songs. More information will be given in the next two examples.
For any further questions you can mail to Arianne van Nieuwenhuijsen
(a.n.vannieuwenhuijsen@uu.nl).

After clicking on the arrow to continue, the participant will be led to the informed
consent which has already been discussed in Appendix B. After giving their consent,
two pages with example question are shown with more details of the tasks. Figure C.2
shows the first of these example pages. The task as described here can be translated
to:

The next two songs are for practice.

Rank the following three fragments on how well they convey an idea of
the song. Drag the fragments in order of the best (1) to the least (3),
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Figure C.1: Introduction to the survey as shown in Qualtrics
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Figure C.2: An example question with instructions on the task as shown in Qualtrics
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where the top is the best. The symbols in front of the players are only
for recognition of the fragments and can be used as a mark to grab and
drag the blocks.

On mobile, the survey could look better when you keep you phone ver-
tically.

ATTENTION: ensure that you drag a fragment at least once (grabbing
is enough) to save your answer.

The song is: Taste of bitter love by Gladys Knight

After the practice round, some last information regarding the survey is given as
shown in Figure C.3):

These were the practice rounds. Now the real experiment starts. Each
question takes about one minute. You may proceed as long as preferred
and can stop at any given moment. If you restarts the survey within
seven days on the same device, you can proceed the survey from where
you left off. After seven days the survey is automatically closed. Thanks
for your participation!

Figure C.3: The last page before the real experiment starts
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Thereafter, the experiment starts with one of the randomly selected songs. After
the practice rounds, it is assumed that the participant is familiar with the task, thus
the text is kept minimal to keep distraction as low as possible as can be seen in
Figure C.4. The example questions already mention that the survey might not look
to well on mobile phone, as can be seen in Figure C.5. As the players in Qualtrics
are not adjustable, it was chosen to leave the mobile version for what it is to bring
out the survey as fast as possible and give a tip to hold your phone vertically. This
might have influenced how many participants participated in the end.
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Figure C.4: One of the songs that is part of the main experiment as shown in
Qualtrics
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Figure C.5: Example of how the questions look on a mobile phone
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Appendix E

Additional Factor Analysis
Loadings

Tables E.1, E.2, E.3, and E.4 show the factor loadings for the minimum residual
factor analysis with a number of 4, 6, 7, or 8 factors respectively.
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Factors
Feature MR1 MR2 MR3 MR4 h2 u2 com
HI | Song Information 0.94 0.06 -0.06 -0.05 0.89 0.11 1.02
HI | Corpus Information 0.93 0.07 -0.08 -0.06 0.88 0.12 1.03
HIC | Corpus Information 0.92 0.09 -0.07 0.01 0.86 0.14 1.03
HIC Entropy -0.91 -0.05 0.09 -0.02 0.84 0.16 1.02
HIC | Song Information 0.90 0.09 -0.06 0.01 0.83 0.17 1.03
HI Entropy -0.78 -0.03 -0.42 0.00 0.79 0.21 1.53
MIB | Corpus Information 0.75 -0.09 0.51 0.02 0.84 0.16 1.80
MIB Entropy -0.73 0.06 -0.57 -0.03 0.87 0.13 1.92
MIB | Song Information 0.73 -0.10 0.54 0.02 0.83 0.17 1.89
HI | Corpus -0.51 0.00 0.31 0.20 0.39 0.61 2.02
HIC Entropy | Corpus -0.44 0.25 0.23 0.16 0.34 0.66 2.52
HI | Song -0.43 0.06 0.32 0.23 0.35 0.65 2.50
HIC | Corpus -0.40 0.19 0.35 0.21 0.36 0.64 3.02
HIC | Song -0.38 0.26 0.29 0.17 0.33 0.67 3.15
Melodic Pitch SD 0.07 -0.05 -0.06 0.03 0.01 0.99 3.15
Loudness 0.02 0.84 -0.12 0.03 0.73 0.27 1.04
Roughness 0.19 0.79 0.03 0.09 0.67 0.33 1.15
Roughness | Corpus 0.07 0.53 0.27 0.03 0.35 0.65 1.54
MFCC Mean | Corpus 0.06 0.51 0.34 0.20 0.42 0.58 2.11
MFCC Variance 0.22 -0.51 -0.06 0.01 0.31 0.69 1.39
Loudness SD 0.30 0.45 -0.07 0.14 0.32 0.68 2.00
Melodic Pitch Height 0.13 0.44 -0.14 0.07 0.24 0.76 1.46
Roughness | Song -0.01 0.36 0.30 0.04 0.22 0.78 1.96
Sharpness | Corpus 0.16 0.36 0.14 0.15 0.19 0.81 2.15
HIC Entropy | Song -0.06 0.28 0.14 0.06 0.10 0.90 1.69
MFCC Mean | Song 0.00 0.26 0.24 0.16 0.15 0.85 2.65
Melodic Pitch Height | Corpus 0.07 0.26 0.17 0.14 0.12 0.88 2.60
Melodic Pitch Heigh | Corpus -0.01 0.21 0.09 0.04 0.05 0.95 1.46
Sharpness | Song 0.08 0.17 0.15 0.06 0.06 0.94 2.71
MIB | Corpus -0.09 0.07 0.41 0.30 0.27 0.73 2.00
Sharpness 0.33 0.28 0.40 0.17 0.38 0.62 3.16
Loudness | Corpus 0.09 0.02 0.40 -0.01 0.17 0.83 1.11
MIB | Song 0.04 0.06 0.33 0.33 0.22 0.78 2.10
Loudness | Song 0.00 0.10 0.31 0.07 0.11 0.89 1.32
Loudness SD | Corpus 0.04 0.11 0.30 0.02 0.10 0.90 1.30
MFCC Variance | Corpus -0.02 0.05 0.26 -0.05 0.07 0.93 1.15
Melodic Pitch SD |Corpus 0.10 0.13 0.25 0.01 0.09 0.91 1.86
Loudness SD | Song 0.04 -0.01 0.21 0.00 0.05 0.95 1.08
MFCC Variance | Song 0.00 0.17 0.21 0.05 0.07 0.93 2.04
Melodic Pitch SD | Song 0.00 0.11 0.15 0.02 0.04 0.96 1.90
MIB Entropy | Corpus -0.04 0.10 0.03 0.78 0.61 0.39 1.04
HI Entropy | Corpus -0.05 0.08 0.07 0.77 0.61 0.39 1.05
HI Entropy | Song -0.01 0.07 0.02 0.51 0.26 0.74 1.04
MIB Entropy | Song -0.03 0.04 -0.05 0.49 0.24 0.76 1.05

SS loadings 7.82 3.49 3.07 2.28

Table E.1: Loadings for a four-factor EFA model
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Variable MR1 MR6 MR3 MR4 MR2 MR5 h2 u2 com
HIC | Corpus Information 0.94 0.25 0.03 -0.01 0.05 0.00 0.95 0.05 1.15
HIC | Song Information 0.93 0.25 0.03 -0.02 0.08 -0.01 0.93 0.07 1.17
HIC Entropy -0.92 -0.25 0.00 -0.01 0.00 -0.02 0.92 0.08 1.15
HI | Song Information 0.85 0.37 0.06 -0.04 -0.14 0.00 0.88 0.12 1.46
HI |Corpus Information 0.85 0.35 0.07 -0.03 -0.16 0.02 0.87 0.13 1.45
HI | Corpus -0.49 -0.04 -0.03 0.13 0.46 -0.03 0.48 0.52 2.16
HIC Entropy | Corpus -0.43 -0.07 0.22 0.12 0.28 0.12 0.34 0.66 2.76
HIC | Corpus -0.41 0.03 0.14 0.15 0.38 0.12 0.37 0.63 2.73
HIC | Song -0.37 -0.03 0.20 0.12 0.35 0.14 0.34 0.66 3.13
Melodic Pitch Height 0.10 -0.03 -0.06 0.01 0.04 -0.07 0.02 0.98 3.05
MIB Entropy -0.35 -0.93 -0.01 -0.02 -0.06 -0.04 0.98 0.02 1.29
MIB | Song Information 0.35 0.90 -0.02 0.01 0.04 0.02 0.94 0.06 1.31
MIB |Corpus Information 0.38 0.88 -0.02 0.02 -0.01 0.05 0.93 0.07 1.37
HI Entropy -0.47 -0.79 -0.09 0.00 0.00 -0.05 0.86 0.14 1.66
Melodic Pitch SD | Corpus -0.02 0.28 0.17 -0.03 0.21 -0.07 0.16 0.84 2.76
Melodic Pitch SD | Song -0.08 0.16 0.14 0.02 0.07 -0.01 0.06 0.94 2.84
Loudness 0.00 -0.02 0.98 0.05 -0.05 -0.03 0.97 0.03 1.01
Roughness 0.18 0.08 0.78 0.08 0.11 0.13 0.68 0.32 1.25
MFCC Variance 0.18 0.08 -0.51 0.04 -0.21 -0.01 0.35 0.65 1.70
Loudness SD 0.26 0.11 0.48 0.16 -0.09 0.06 0.34 0.66 2.05
Melodic Pitch Height 0.24 -0.13 0.42 0.03 0.17 -0.05 0.28 0.72 2.30
Sharpness | Corpus 0.15 0.10 0.30 0.13 0.17 0.17 0.19 0.81 3.62
MIB Entropy |Corpus -0.08 0.05 0.12 0.75 0.12 -0.05 0.61 0.39 1.15
HI Entropy | Corpus -0.08 0.05 0.09 0.73 0.17 -0.01 0.58 0.42 1.18
HI Entropy | Song 0.00 -0.03 0.02 0.57 -0.06 0.21 0.38 0.62 1.29
MIB Entropy | Song -0.02 -0.06 0.02 0.55 -0.08 0.11 0.32 0.68 1.17
MIB | Corpus -0.12 0.19 0.01 0.21 0.54 0.03 0.39 0.61 1.70
HI | Song -0.40 -0.05 -0.01 0.15 0.49 0.06 0.43 0.57 2.20
MFCC Mean | Corpus 0.08 0.11 0.39 0.13 0.44 0.28 0.46 0.54 3.15
Sharpness 0.31 0.26 0.13 0.11 0.38 0.36 0.47 0.53 4.15
MIB | Song -0.01 0.20 0.01 0.28 0.35 0.10 0.25 0.75 2.77
Loudness SD | Corpus 0.06 0.07 -0.02 -0.04 0.31 0.28 0.19 0.81 2.22
Loudness | Corpus 0.03 0.19 -0.13 -0.02 0.09 0.55 0.37 0.63 1.44
Roughness | Song -0.06 0.10 0.26 0.05 0.04 0.49 0.33 0.67 1.72
Roughness | Corpus 0.09 0.04 0.39 0.01 0.20 0.49 0.44 0.56 2.37
Loudness | Song -0.06 0.14 0.00 0.09 -0.01 0.48 0.26 0.74 1.27
MFCC Mean | Song -0.05 0.11 0.19 0.17 0.07 0.31 0.18 0.82 2.81
MFCC Variance | Song -0.05 0.10 0.11 0.07 0.01 0.29 0.12 0.88 1.75
HIC Entropy | Song -0.07 0.02 0.22 0.07 0.03 0.25 0.13 0.87 2.38
MFCC Variance | Corpus -0.11 0.17 0.01 -0.04 0.00 0.25 0.10 0.90 2.26
Melodic Pitch Height | Corpus 0.08 0.06 0.18 0.13 0.16 0.24 0.14 0.86 3.70
Loudness SD | Song 0.02 0.08 -0.08 -0.01 0.10 0.23 0.08 0.92 1.95
Melodic Pitch Height | Song -0.04 0.04 0.18 0.07 -0.06 0.22 0.09 0.91 2.42
Sharpness | Song 0.03 0.13 0.14 0.06 0.04 0.16 0.07 0.93 3.52

SS loadings 5.96 4.01 3.12 2.11 2.03 1.99

Table E.2: Loadings for a six-factor EFA model
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Variable MR1 MR6 MR3 MR2 MR4 MR7 MR5 h2 u2 com
HIC | Corpus Information 0.95 0.25 0.04 0.06 -0.02 0.05 -0.02 0.96 0.04 1.16
HIC | Song Information 0.93 0.25 0.03 0.07 -0.03 0.06 -0.05 0.94 0.06 1.18
HIC Entropy -0.93 -0.25 0.00 -0.04 0.00 -0.01 -0.01 0.92 0.08 1.15
HI | Corpus Information 0.85 0.36 0.07 -0.03 -0.03 -0.14 0.04 0.87 0.13 1.44
HI | Song Information 0.84 0.38 0.06 -0.01 -0.02 -0.15 0.00 0.88 0.12 1.48
HI | Corpus -0.50 -0.05 -0.03 0.19 0.11 0.38 -0.12 0.47 0.53 2.52
HIC Entropy | Corpus -0.47 -0.05 0.19 0.33 0.16 0.08 -0.04 0.40 0.60 2.58
HIC | Corpus -0.44 0.03 0.12 0.34 0.17 0.21 -0.04 0.40 0.60 2.96
HIC | Song -0.38 -0.04 0.19 0.25 0.11 0.28 0.03 0.34 0.66 3.53
MIB Entropy -0.34 -0.92 -0.01 -0.04 -0.01 -0.09 -0.04 0.98 0.02 1.30
MIB | Song Information 0.34 0.91 -0.03 0.07 0.03 0.00 -0.02 0.96 0.04 1.29
MIB | Corpus Information 0.38 0.89 -0.02 0.02 0.02 0.01 0.05 0.93 0.07 1.36
HI Entropy -0.46 -0.79 -0.09 -0.04 -0.01 0.00 -0.03 0.86 0.14 1.65
Melodic Pitch SD | Corpus -0.01 0.27 0.18 0.03 -0.05 0.22 -0.09 0.17 0.83 3.10
Loudness 0.01 -0.02 1.00 -0.02 0.04 -0.01 0.01 0.99 0.01 1.01
Roughness 0.17 0.08 0.76 0.20 0.09 0.04 0.07 0.67 0.33 1.33
MFCC Variance 0.18 0.09 -0.51 -0.13 0.05 -0.17 0.05 0.36 0.64 1.77
Loudness SD 0.25 0.12 0.46 0.09 0.19 -0.15 0.04 0.35 0.65 2.45
Melodic Pitch Height 0.23 -0.12 0.40 0.18 0.06 0.04 -0.15 0.29 0.71 2.70
Sharpness | Corpus 0.14 0.11 0.28 0.26 0.14 0.06 0.06 0.20 0.80 3.53
Sharpness 0.27 0.28 0.07 0.60 0.15 0.10 0.09 0.56 0.44 2.14
MFCC Mean | Corpus 0.04 0.13 0.35 0.58 0.17 0.14 0.00 0.53 0.47 2.12
Roughness | Corpus 0.07 0.05 0.35 0.49 0.02 0.01 0.28 0.45 0.55 2.58
Loudness SD | Corpus 0.03 0.08 -0.04 0.40 -0.03 0.12 0.08 0.19 0.81 1.42
Loudness | Corpus 0.01 0.20 -0.17 0.40 -0.02 -0.03 0.39 0.38 0.62 2.87
Melodic Pitch Height | Corpus 0.07 0.05 0.16 0.24 0.12 0.10 0.15 0.14 0.86 3.96
MFCC Variance | Corpus -0.13 0.18 -0.01 0.20 -0.02 -0.09 0.16 0.12 0.88 4.23
HI Entropy | Corpus -0.10 0.06 0.06 0.13 0.79 0.09 -0.04 0.67 0.33 1.15
MIB Entropy | Corpus -0.09 0.05 0.11 0.06 0.79 0.09 -0.03 0.65 0.35 1.12
HI Entropy | Song 0.02 -0.05 0.03 -0.02 0.52 0.08 0.30 0.37 0.63 1.71
MIB Entropy | Song 0.00 -0.08 0.03 -0.10 0.49 0.08 0.24 0.32 0.68 1.67
MIB | Song 0.06 0.14 0.03 -0.03 0.18 0.67 0.18 0.54 0.46 1.42
MIB | Corpus -0.11 0.15 0.01 0.19 0.16 0.60 -0.04 0.46 0.54 1.59
HI | Song -0.38 -0.08 0.01 0.16 0.09 0.54 0.01 0.48 0.52 2.13
Melodic Pitch SD | Song -0.06 0.15 0.16 -0.07 -0.02 0.18 0.05 0.09 0.91 3.76
Loudness | Song -0.05 0.12 0.00 0.14 0.03 0.10 0.49 0.29 0.71 1.40
Roughness | Song -0.05 0.09 0.26 0.22 0.00 0.09 0.46 0.35 0.65 2.34
MFCC Mean | Song -0.03 0.08 0.21 0.09 0.11 0.20 0.35 0.23 0.77 2.87
MFCC Variance | Song -0.03 0.08 0.12 0.06 0.01 0.12 0.33 0.15 0.85 1.83
Melodic Pitch Height | Song -0.02 0.02 0.19 -0.01 0.02 0.07 0.28 0.12 0.88 1.92
HIC Entropy | Song -0.07 0.02 0.22 0.14 0.05 0.04 0.22 0.12 0.88 3.08
Loudness SD | Song 0.02 0.08 -0.08 0.14 -0.04 0.09 0.19 0.08 0.92 3.43
Sharpness | Song 0.04 0.12 0.15 0.06 0.03 0.10 0.17 0.08 0.92 4.01
Melodic Pitch SD 0.09 -0.02 -0.06 0.02 0.03 -0.02 -0.10 0.02 0.98 3.17

SS loadings 5.93 4.03 3.02 2.09 2.06 1.76 1.44

Table E.3: Loadings for a seven-factor EFA model
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Variable MR1 MR6 MR3 MR2 MR4 MR7 MR5 MR8 h2 u2 com
HIC | Corpus Information 0.94 0.26 0.04 0.05 -0.02 0.05 -0.02 -0.01 0.97 0.03 1.17
HIC | Song Information 0.93 0.26 0.04 0.06 -0.03 0.07 -0.05 -0.01 0.94 0.06 1.19
HIC Entropy -0.93 -0.25 0.00 -0.04 0.00 0.00 0.00 0.00 0.92 0.08 1.15
HI | Corpus Information 0.84 0.36 0.07 -0.02 -0.03 -0.16 0.04 0.01 0.87 0.13 1.45
HI | Song Information 0.84 0.38 0.06 0.00 -0.02 -0.16 -0.01 0.01 0.88 0.12 1.50
HI | Corpus -0.50 -0.04 -0.02 0.14 0.11 0.43 -0.14 0.00 0.48 0.52 2.43
HIC Entropy | Corpus -0.47 -0.05 0.20 0.31 0.17 0.10 -0.08 0.01 0.40 0.60 2.71
HIC | Corpus -0.44 0.04 0.14 0.30 0.17 0.25 -0.08 -0.01 0.40 0.60 3.17
HIC | Song -0.37 -0.04 0.20 0.23 0.11 0.29 0.02 0.07 0.34 0.66 3.64
MIB Entropy -0.34 -0.93 -0.01 -0.04 -0.01 -0.09 -0.04 -0.05 0.99 0.01 1.30
MIB | Song Indormation 0.33 0.92 -0.03 0.07 0.03 0.00 -0.03 0.03 0.96 0.04 1.28
MIB | Corpus Information 0.37 0.89 -0.02 0.03 0.02 0.00 0.05 0.04 0.94 0.06 1.36
HI Entropy -0.46 -0.79 -0.09 -0.05 -0.01 0.01 -0.03 -0.06 0.85 0.15 1.67
Loudness 0.01 -0.03 0.97 -0.03 0.05 -0.03 0.03 0.08 0.96 0.04 1.03
Roughness 0.17 0.08 0.78 0.17 0.08 0.06 0.05 0.01 0.68 0.32 1.27
MFCC Variance 0.18 0.09 -0.51 -0.10 0.04 -0.18 0.05 -0.08 0.36 0.64 1.77
Loudness SD 0.24 0.13 0.48 0.07 0.18 -0.12 0.02 -0.08 0.36 0.64 2.29
Melodic Pitch Height 0.23 -0.13 0.40 0.15 0.07 0.04 -0.16 0.08 0.29 0.71 2.86
Sharpness | Corpus 0.14 0.10 0.29 0.25 0.14 0.06 0.03 0.02 0.20 0.80 3.48
HIC Entropy | Song -0.07 0.02 0.22 0.16 0.05 0.04 0.20 -0.01 0.12 0.88 3.25
Sharpness 0.26 0.28 0.10 0.59 0.15 0.14 0.02 0.00 0.55 0.45 2.26
MFCC Mean | Corpus 0.03 0.14 0.39 0.53 0.16 0.21 -0.06 -0.06 0.53 0.47 2.69
Roughness | Corpus 0.07 0.04 0.36 0.52 0.04 0.01 0.23 0.05 0.46 0.54 2.29
Loudness | Corpus 0.01 0.18 -0.18 0.49 0.00 -0.08 0.35 0.10 0.45 0.55 2.63
Loudness SD | Corpus 0.04 0.06 -0.05 0.43 0.00 0.10 0.04 0.11 0.22 0.78 1.37
Melodic Pitch Height | Corpus 0.07 0.06 0.17 0.24 0.12 0.11 0.12 -0.02 0.14 0.86 3.86
MFCC Variance | Corpus -0.13 0.18 0.00 0.21 -0.02 -0.08 0.13 -0.01 0.12 0.88 3.79
HI Entropy | Corpus -0.10 0.06 0.06 0.11 0.81 0.08 -0.04 0.03 0.69 0.31 1.12
MIB Entropy | Corpus -0.08 0.04 0.11 0.04 0.80 0.09 -0.02 0.02 0.67 0.33 1.10
HI Entropy | Song 0.02 -0.04 0.04 0.00 0.50 0.08 0.31 -0.04 0.36 0.64 1.79
MIB Entropy | Song 0.00 -0.07 0.04 -0.09 0.47 0.08 0.26 -0.05 0.32 0.68 1.81
MIB | Song 0.06 0.14 0.02 -0.03 0.18 0.63 0.22 0.11 0.51 0.49 1.64
MIB | Corpus -0.10 0.15 0.01 0.16 0.16 0.59 -0.03 0.09 0.44 0.56 1.59
HI | Song -0.38 -0.08 0.01 0.12 0.09 0.57 0.01 0.04 0.50 0.50 1.96
Loudness | Song -0.05 0.12 0.01 0.19 0.02 0.10 0.47 -0.03 0.29 0.71 1.63
Roughness | Song -0.06 0.10 0.27 0.26 -0.01 0.10 0.43 -0.01 0.35 0.65 2.76
MFCC Mean | Song -0.03 0.10 0.22 0.09 0.09 0.22 0.35 -0.07 0.25 0.75 3.22
MFCC Variance | Song -0.04 0.09 0.13 0.08 0.00 0.13 0.32 -0.03 0.15 0.85 2.09
Melodic Pitch Height | Song -0.02 0.01 0.19 0.02 0.02 0.05 0.29 0.03 0.12 0.88 1.83
Loudness SD | Song 0.03 0.07 -0.09 0.17 -0.03 0.08 0.17 0.03 0.08 0.92 3.56
Sharpness | Song 0.04 0.12 0.15 0.06 0.03 0.09 0.16 0.02 0.08 0.92 4.11
Melodic Pitch SD 0.09 0.00 -0.05 0.00 0.02 0.02 -0.11 -0.09 0.03 0.97 3.47
Melodic Pitch SD | Corpus 0.01 0.20 0.12 0.06 0.01 0.09 -0.07 0.76 0.65 0.35 1.26
Melodic Pitch SD | Song -0.04 0.07 0.11 -0.05 0.03 0.04 0.13 0.60 0.40 0.60 1.23

SS loadings 5.9 4.01 3.06 2.09 2.07 1.78 1.34 1.05

Table E.4: Loadings for a eight-factor EFA model
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Appendix F

Comparison of EFA with PCA

In this study, Exploratory Factor Analysis (EFA) is used as the preferred dimen-
sionality reduction method. However, Van Balen et al. (2015a) used a Principal
Component Analysis (PCA) for this purpose with CATCHY toolbox features. To
see whether whether a different dimensionality reduction method produces a differ-
ent division of features, the results of the PCA are compared to those of the EFA.
PCA considers all variance whereas EFA only considers common, or shared, variance.
This can result in a different interpretation of the variance within the data. Here,
the results of a five-component PCA using Varimax rotation is shown to compare
with the results of the EFA and Van Balen et al. As this comparison has no added
value to the research question, this has not been included in the main body of text.

Table F.1 shows the loadings of the PCA model run for five components with
Varimax rotation. To aid the comparison, the congruence between the different
factors and components are shown in Table F.2 which gives an indication of how
much factors and components overlap.

First, the components found as a result of the PCA in Table F.1 are interpreted
by looking at the loadings above 0.5. This threshold differs from the other threshold
in this paper, as it simplifies the interpretation by considering less features during the
interpretation of the components. Simultaneously, the components are compared to
the factors of EFA model and the twelve components found in the study Van Balen
et al. (2015a). A first observation already shows that the ordering of features for the
PCA already differs from the ordering for the EFA. This is because the ordering is
based on the loadings per component or factor.

The first component consist of both the corpus and song-based second-order
information features of HIC, HI, and MIB adding positively to the factor along
with their first-order entropy variant negatively. This is similar to both MR1 and
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Components
Feature RC1 RC3 RC2 RC5 RC4 h2 u2 com
HI | Song Information 0.90 0.09 -0.24 -0.05 -0.03 0.88 0.12 1.17
HI | Corpus Information 0.89 0.10 -0.27 -0.03 -0.03 0.87 0.13 1.21
HIC | Corpus Information 0.89 0.11 -0.22 -0.05 0.02 0.85 0.15 1.16
HIC | Song Information 0.88 0.11 -0.19 -0.06 0.02 0.82 0.18 1.14
HIC Entropy -0.88 -0.07 0.25 0.04 -0.03 0.84 0.16 1.18
HI Entropy -0.87 -0.03 -0.21 -0.11 0.02 0.81 0.19 1.15
MIB | Corpus Information 0.85 -0.10 0.28 0.13 -0.02 0.83 0.17 1.29
MIB Entropy -0.84 0.07 -0.35 -0.14 0.01 0.86 0.14 1.42
MIB | Song Information 0.84 -0.10 0.33 0.12 -0.02 0.83 0.17 1.38
Sharpness 0.42 0.23 0.26 0.35 0.14 0.43 0.57 3.59
HIC Entropy | Corpus -0.41 0.25 0.37 0.16 0.08 0.40 0.60 3.08
Loudness -0.01 0.88 -0.01 -0.02 0.03 0.77 0.23 1.00
Roughness 0.19 0.80 0.04 0.10 0.08 0.69 0.31 1.16
MFCC Variance 0.22 -0.59 -0.21 0.01 0.08 0.45 0.55 1.59
Melodic Pitch Height 0.11 0.58 -0.04 -0.17 0.05 0.38 0.62 1.29
Loudness SD 0.28 0.54 -0.13 0.00 0.19 0.42 0.58 1.94
MFCC Mean | Corpus 0.13 0.51 0.33 0.26 0.14 0.47 0.53 2.66
Rougness | Corpus 0.09 0.49 0.07 0.48 0.01 0.48 0.52 2.11
Sharpness | Corpus 0.19 0.39 0.10 0.15 0.15 0.24 0.76 2.31
MIB | Corpus 0.03 0.03 0.62 0.05 0.23 0.45 0.55 1.30
HI | Corpus -0.43 -0.03 0.56 0.02 0.13 0.52 0.48 2.01
HI | Song -0.36 0.01 0.54 0.10 0.17 0.46 0.54 2.08
HIC | Corpus -0.33 0.16 0.51 0.16 0.14 0.44 0.56 2.35
Melodic Pitch SD | Corpus 0.20 0.18 0.48 -0.12 -0.15 0.34 0.66 2.01
HIC | Song -0.33 0.24 0.44 0.16 0.11 0.40 0.60 2.95
MIB | Song 0.14 0.00 0.43 0.11 0.34 0.33 0.67 2.28
Melodic Pitch SD | Song 0.06 0.14 0.30 -0.05 -0.07 0.12 0.88 1.70
Loudness | Corpus 0.15 -0.14 0.10 0.63 -0.02 0.45 0.55 1.27
Loudness | Song 0.03 -0.04 0.02 0.61 0.11 0.38 0.62 1.08
Roughness | Song 0.00 0.28 0.04 0.57 0.05 0.41 0.59 1.49
MFCC Variance | Song 0.01 0.10 0.04 0.40 0.07 0.18 0.82 1.20
MFCC Mean | Song 0.02 0.20 0.09 0.39 0.21 0.25 0.75 2.26
MFCC Variance | Corpus 0.02 -0.03 0.12 0.35 -0.09 0.15 0.85 1.40
Loudness SD | Corpus 0.09 0.04 0.22 0.35 -0.07 0.19 0.81 1.97
HIC Entropy | Song -0.06 0.26 0.01 0.32 0.07 0.18 0.82 2.12
Melodic Pitch Height | Song -0.02 0.19 -0.07 0.30 0.08 0.14 0.86 2.00
Melodic Pitch Height | Corpus 0.10 0.25 0.07 0.26 0.18 0.18 0.82 3.22
Sharpness | Song 0.11 0.16 0.07 0.21 0.06 0.09 0.91 2.96
Melodic Pitch SD 0.07 -0.04 -0.03 -0.12 0.05 0.02 0.98 2.69
MIB Entropy | Corpus -0.03 0.12 0.22 -0.07 0.75 0.62 0.38 1.24
HI Entropy | Corpus -0.02 0.10 0.25 -0.04 0.73 0.61 0.39 1.28
HI Entropy | Song -0.02 0.01 -0.08 0.17 0.71 0.54 0.46 1.14
MIB Entropy | Song -0.05 0.00 -0.10 0.07 0.70 0.51 0.49 1.07

SS loadings 8.06 3.74 3.22 2.81 2.61

Table F.1: Component loadings for PCA with five components
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MR1 MR2 MR3 MR4 MR5
MR1 1.00 0.51 0.03 -0.15 -0.04
MR2 0.51 1.00 0.15 0.14 0.32
MR3 0.03 0.15 1.00 0.30 0.39
MR4 -0.15 0.14 0.30 1.00 0.33
MR5 -0.04 0.32 0.39 0.33 1.00 RC1 RC3 RC2 RC5 RC4
RC1 0.92 0.80 0.09 -0.03 0.12 1.00 0.10 -0.12 0.09 -0.03
RC3 0.07 0.09 0.99 0.29 0.39 0.10 1.00 0.19 0.26 0.22
RC2 -0.48 0.46 0.27 0.46 0.39 -0.12 0.19 1.00 0.33 0.27
RC5 -0.07 0.31 0.27 0.22 0.96 0.09 0.26 0.33 1.00 0.21
RC4 -0.09 0.05 0.22 0.97 0.30 -0.03 0.22 0.27 0.21 1.00

Table F.2: Congruence between the factors of the EFA and the components of the
PCA

MR2 of the EFA and gives a first indication that the PCA prefers to divide features
based on their derivation (whether via information, Kendall’s τ , entropy, ranked
density, or their first-order format) instead of what each feature measures in the
audio signal. The very high loadings of above 0.8 also align very well with the
features of component 1 in the study by Van Balen et al. (2015a).

The second listed component is RC3. It is apparent that while this component is
the third in the model, it is more defined by very high loadings and thus listed second.
The high loadings in this component are loudness and roughness which aligns with
MR3 and could thus describe intensity. However, MFCC variance, melodic pitch
height, the standard deviation of loudness, and the mean MFCC are also included in
this component, which make it less clear to interpret. The first four high loadings do
match those in component 2 in Van Balen et al.’s (2015a) study. Here the assumption
that similarly derived features are clumped together is strengthened as these are the
first-order variants of the basis features.

Then, RC2 seems to mix the type of derivation a little bit more, but describes
mostly the Kendall’s τ second-order features of the higher-dimensional features in the
catchy toolbox. Interestingly, this component does not match one of the EFA factors
and seems like a mix of components 6, 8, and 12 in the Van Balen et al. (2015a)
study. The component seems to capture Kendall’s τ and adds it positively, meaning
that is describes commonness in the fragments according to the higher-dimensional
melodic and harmonic features.

The fourth listed component is another switch based on the highness of the load-
ings. This component, RC5 is mostly composed of the second-order features of
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loudness and roughness, with lower loadings for the second-order features of the two
MFCC measures. This component seems to join factor MR5 in describing the con-
ventionality of the intensity. In Van Balen et al. (2015a), component 7 seems to serve
the same purpose.

Lastly, component RC4 contains the second-order variant of the MIB and HI
entropy features. This agrees greatly with factor MR4 and components 4 and 10
in Van Balen et al. (2015a). Therefore, this component most likely depicts the
conventionality of the melodic and harmonic features within the fragments.

The interpretation of these components indicate a great overlap between the
factors of the EFA and the PCA. To strengthen this, Table F.2 shows the congruence
between the factors and components. It can be seen that indeed, RC1, RC3, RC4,
and RC5 have a high congruence with one of the EFA factors. This leaves RC2
which seems to be mostly based on how the second-order feature is computed and
MR2 which does have a very high congruence with RC1 as well which is to be
expected as RC1 contains HIC, HI, and MIB. Looking at the congruence between
the factors and components themselves, it becomes apparent that the EFA results
have far more overlap (highest congruence is 0.51), whereas the PCA results are more
distinct with the highest congruence being 0.33. This could be due to difference in
which variance is regarded. The choice to consider all or only shared variance could
also have influenced the amount of very high loadings in the PCA in comparison
to EFA. Considering all variance can cause inflated loadings (Osborne et al., 2008).
Furthermore, the clumping together of second-order features with similar derivations
in the PCA model seems less intuitive for interpretation, strengthening the choice
for EFA as dimensionality reduction method.

In comparison with Van Balen et al. (2015a), it can be seen that the components
here do match the components found in their study. The main difference is that using
twelve components gives rise to more distinct components with a smaller amount of
high loadings. In this study, the limit of five components causes features to cluster
together far more. While a conscious choice has been made to ensure each factor
in the EFA has at least three loadings of 0.4 or higher and the PCA was set up as
similar as possible to the EFA, it might have not resulted in components that can be
fully compared to those in Van Balen et al.. This means, for example, that in this
study there is no component that is related to vocal prominence.
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