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Abstract

Sound Event Detection (SED), also known as Audio Event Detection, is the
task of labelling audio files with what information is represented in the audio,
and when. Most current state-of-the-art SED systems use neural networks. To
try and improve on these state-of-the-art methods this work introduces a new
method called Branching Neural Networks, that uses multiple neural networks
grouped into a tree structure to create a SED.

The properties of this branching neural network are researched by testing the
branching neural network method on multiple subsets of a dataset created for
testing SED systems during the Detection and Classification of Acoustic Scenes
and Events (DCASE) competition in 2017, the DCASE 2017 task 4 dataset.

The branching neural network system seems less negatively influenced by us-
ing an non-optimal threshold. Where the threshold is the minimum confidence
value for which the SED system accepts that any sound event has occurred. In
some subsets the branching neural network system has shown to have signifi-
cantly better results for all threshold values.

The input to this branching neural network system is the input to a standard
SED system, where the classes to train on are not presented as a list, but a tree
structure instead.

The tree structure, when used by the branching neural network, has the
added benefit of providing intermediate results that have much increased ac-
curacy over the end results. The disadvantage of the tree structure is the
requirement for extra tuning, as non-optimal trees can significantly decrease
performance when compared to the system with an optimal tree.
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Chapter 1

Introduction

1.1 Motivation

Sound Event Detection (SED), also known as Audio Event Detection, is the
task of labelling audio files with what information is represented in the audio,
and when. SED has many applications including:

• Detecting vehicle sounds for a smart car system to avoid accidents.

• Detecting gun-shots and screaming in audio recordings in a home security
system so the police can be alerted.

• Detecting animal noises to assess which animals occur in an area, and
when they are most likely to appear.

• Automatic content recognition in audio/audiovisual media.

Current state of the art research in SED systems use neural networks trained
on pre-labelled data. This approach has worked well for Object Detection in
images, for which neural networks are now considered the de-facto standard
(Ren et al. (2015), He et al. (2016), Szegedy et al. (2017)), and has seen some
success for SED systems (Cakir et al. (2016), Jeong et al. (2017)). However,
for sounds, these neural networks, working with multiple different label classes,
have been less successful than they have been for Object Detection in images.
This is illustrated by the Detection and Classification of Acoustic Scenes and
Events (DCASE) competition, the biggest competition to find the limits of cur-
rent state of the art techniques for automatically detecting sound elements. In
DCASE 2017, task 4 revolved around creating a SED system to detect dan-
gerous vehicle sounds for a smart car system to avoid accidents. The winner
of this competition had an accuracy of 55.6% on 17 classes (Rohan Badlani,
2017). Compare that to the results of the winning system for a similar contest
for Object Detection in images, ILSVRC 2017, which had an accuracy of 73.2%
on 200 classes (Russakovsky et al., 2015).
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In this research project, we propose a completely new method that exploits
the human grouping ability by using an ontology of the dataset. An ontology is
a set of concepts and categories of a subject area or domain that are both joined
by their properties and the relations between them. So for our SED dataset, this
is how different sound events relate. This ontology is used to create tree shaped
groupings of neural networks used in SED systems. For this thesis the current
state of the art Convolutional Gated Recurrent Neural Networks, discussed in
section 4, will be used, however theoretically any neural network should work.
We use this human grouping as humans are quite capable of differentiating both
different sounds and different images, as such this might increase the capabilities
of SED systems. The advantages of using these groupings could include:

• When adding a class we only need to retrain a subset of the full network.

• Self checking of the output by requiring that multiple networks agree on
the results of the group.

• Providing sub classifications that could be useful, for example knowing
that a sound event represents a siren is sometimes more important than
knowing whether it represents a police siren or an ambulance siren. In
this way the sub classifications alone might be sufficient to decrease the
probability of an accident.

• Because the internal neural networks, the networks used for each of the
branches, can be changed, this method would improve together with im-
provements of neural networks for SED systems.

1.2 Sound Event Detection

Although SED systems have been made using support vector machines
(Temko et al. (2009), Foggia et al. (2015), Elizalde et al. (2016)), Gaussian
Mixture Models (Cai et al. (2006), Mesaros et al. (2010), Heittola, Mesaros,
Eronen, & Virtanen (2013), Vuegen et al. (2013)), Deep Random Forest (Yu
et al., 2017), Hidden Markov Models (Mesaros et al. (2010), Heittola et
al. (2011), Heittola, Mesaros, Eronen, & Virtanen (2013), Heittola, Mesaros,
Virtanen, & Gabbouj (2013)), or using Spectral decomposition methods
( Cotton & Ellis (2011), Dikmen & Mesaros (2013), Gemmeke et al. (2013),
Heittola, Mesaros, Virtanen, & Gabbouj (2013), Mesaros et al. (2015), Ko-
matsu et al. (2016), Benetos et al. (2016), Benetos et al. (2017)), currently most
SED systems are based on Neural Networks. There are multiple variants
of neural networks, including Deep Neural Networks (Cakir et al., 2015),
Convolutional Neural Networks (CNN) (Cakir et al. (2016), Jeong et al.
(2017)), Recurrent Neural Networks (RNN) (Parascandolo et al. (2016), Lu
& Duan (2017)), and mixes of these like Convolutional-Recurrent Neural
Networks (CRNN) (Cakir et al. (2017), Adavanne & Virtanen (2017)).
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These neural networks and most of the other methods mentioned are learning
methods that can be trained on data to produce the desired output. For SED
there are two types of data to train on.

Strongly labelled Strongly labelled data means that each audio-file in the
dataset has an accompanying annotation containing all sound events in
the audio file. Each sound event has a label, a start time and duration.
This annotation is the correct output for an SED System.

Weakly labelled For weakly labelled data each audio-file also has an anno-
tation. However, this annotation only contains the labels of each sound
event, not the start time and duration. This annotation would be the cor-
rect output for a Audio Tagging system, a different kind of system that
only concerns itself with the labels present in an audio-file, not their start
time and duration.

An example of these 2 data types can be seen in Figure 1.1.

Figure 1.1: Left: Weakly labelled, Right: Strongly labelled. Figure adapted
from (Mesaros et al., 2016)

As can be seen in Figure 1.2, strongly labelled SED contains the following
steps:

1. Process all audio files and accompanying annotations in the training set by
creating a feature-set and annotation matrix, or Event Activity Indicators,
for each element in the training set. The feature-set can be created by
different methods, section 3 will go into the most popular methods. The
annotation matrix is created by dividing the audio file into time steps of
between 20-200ms, then the height of the matrix corresponds to all labels
that the SED system is training on, and the width the time frames. The
elements of the matrix will then indicate if a label is active in a time-frame
or not.

2. Train the SED system to output the matrix based on the feature-set on
the training set, this training depends on the method used and is more
deeply explained in section 4.

3. Process the audio files in the evaluation set by creating their feature-sets.

4. Create annotation matrix for each element of the evaluation set using the
SED system.
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5. Transform the annotation matrix to the expected form of annotation, by
reversing back the time-frames into start time and duration.

Figure 1.2: SED steps. Figure from (Mesaros et al., 2016)

For weakly labelled datasets the annotations lack start time and duration.
This means we cannot make an annotation matrix for a weakly labelled dataset.
Therefore an annotation matrix will need to be estimated. A lot of current re-
search is focused on estimating these annotation matrices for SED on weakly
labelled datasets (Kumar & Raj (2016), Kumar & Raj (2017), Kong et al.
(2017), Su et al. (2017), Chou et al. (2017), Salamon et al. (2017), Wang &
Metze (2017), Kumar et al. (2018), Xu et al. (2018)). Because this estimated
annotation matrix is estimated differently in each method a more in-depth ex-
planation is given for the current state-of-the-art method in section 4.4.2.

A lot of research is focused on these weakly labelled datasets is because not
many strongly labelled datasets are available. It is hard to label sound events
exactly because it is very labour-intensive and because it is hard to agree on a
specific start time and duration of a certain audio event (Gemmeke et al., 2017).
One example of this can be seen when looking at an audio event with the class
footsteps. Because of their repetitive nature, there are multiple ways to label
these footsteps in an audio file.

• Labelling the presence of a footstep sound so that for each footstep there
exists a start and end time.

• Labelling the presence of a series of footsteps so that for each series of
footsteps there exists a start and end time.

Even when agreed on one of these definitions, questions still arise. For example,
how small does the gap between two series of footsteps need to be before they
are considered one series. Weakly labelled data, however, can be created by
only rating if a sound-event is present or not in an audio file. This is not only
less labour-intensive, but the results are also more easily agreed on.
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1.3 Current State-of-the-art Results

The biggest competition for automatic detection of sound elements is the Detec-
tion and Classification of Acoustic Scenes and Events (DCASE) competition.
This is a yearly event in which current state-of-the-art detection systems are
used on public datasets. A requirement for this competition is that each partic-
ipating team submits a technical report, meaning that current state-of-the-art
methods are not only used, but also explained, and weighed against other meth-
ods on the same datasets. In the DCASE competition, the evaluation of these
state-of-the-art SED systems is on the preferred basis of F1 score and error rate
(Mesaros et al., 2016) as a rating. The F1 score measures how many selected
items are relevant and how many relevant items are selected in the annota-
tion matrix. The error rate measures how many substitutions, deletions, and
insertions are needed to get the correct annotation matrix from the current an-
notation. The F1 score and error rate are more fully explained in Chapter 2. In
this way, the perfect score would be an error rate of 0 and an F1 score of 100%.
This weighing is done on a dataset not used for training, called the evaluation
set, to ensure the results can be extended to data that the SED system has not
seen before. In 2017 (DCASE2017), the DCASE competition had three tasks
focusing on SED systems, Task 2, 3 and 4. The task of most interest is task 4.

Task 4 This task focused on a large-scale weakly labelled SED system for smart
cars. The dataset was weakly labelled and contained the 17 classes: train
horn, Air horn, truck horn, car alarm, reversing beeps, ambulance siren,
police siren, fire engine, fire truck siren, civil defense siren, screaming,
bicycle, skateboard, car, car passing by, bus, truck, motorcycle, train.

The winner of this task had an error rate of 0.7300 and an F1 score of
51.8% for SED. By using a Convolutional Gated Recurrent Neural network
(section 4.4.2).

1.4 The Research Objective

The current study will focus on SED on weakly labelled datasets because weakly
labelled datasets are easier to create and usually have the biggest number of
classes. This is advantageous for an SED system, because this means more
labelling can be done with a single system. The research objective is to formu-
late and test a new method that uses the ontology of the dataset to shape a
network of neural networks. These ontologies are shaped like graphs or trees.
In particular, the ontology of the Google Audioset, the superset of the DCASE
task 4 dataset, is shaped like a tree. The top 2 layers of this tree can be seen
in figure 1.3. This picture shows multiple groupings of the audio-files found in
Google Audioset. First the sounds are grouped into: Human sounds, Animal
sounds, Natural sounds, Music, Sounds of things, Source-ambiguous sounds and
Channel, environment and background sounds. These groupings each also have
their own subgroupings, for example Natural Sounds is split into the groups:
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Wind, Thunderstorm, Water, Fire. In this way we have a tree that goes from
all sounds, into groups, into subgroups of these groups.

Figure 1.3: Top 2 layers of google AudioSet Tree. Figure from (Gemmeke et
al., 2017)

(a) Cheetah, Picture from
Buschgardens

(b) Leopard, Picture by Derek
Keats

(c) Seal, Picture from National
Aquarium

(d) Sea Lion, Picture by Casey
Klebba

Figure 1.4: Easily confusable classes
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An intuitive example that shows why this tree shape could improve F1 results
and simplify training is an image classifier that classifies 4 classes, a cheetah, a
leopard, a seal and a sea lion. The hypothesis is as follows: A classifier trained to
split all 4 is likely to confuse a cheetah with a leopard, and a seal with a sea lion.
If, however, there exist 3 classifiers, one that splits cheetahs and leopards from
seals and sea lions, another that splits cheetahs from leopards and another that
splits seals from sea lions, these classifiers only need to learn features necessary
for their specific task, simplifying training. The classifier that only knows the
difference between cheetahs and leopards is less likely to confuse the 2 than the
bigger classifier because that is the only thing it is trained to do. Because this
would be the true for all 3 networks, this would increase the overall accuracy. A
more in-depth explanation of the new method, called branching neural networks,
can be found in chapter 5.

An advantage of using ontologies to shape the network is that ontologies are
usually already created for datasets. In particular, the Google AudioSet, and
therefore also its subset DCASE 2017 task 4, contains a very complex ontology.
Meaning this additional input is easy to gather.

To test this new branching neural network method the DCASE 2017 task 4
dataset will be used, because it allows us to compare with current-state-of-the-
art methods. The data is split into a training set, that is weakly labelled, and a
evaluation set, that is strongly labelled. This strongly labelled set exists to test
the methods accuracy using the F1 score and error rate explained in chapter
2. Figure 1.5 shows the classes in this dataset, accompanied by the number of
instances for each class.

Figure 1.5: DCASE 2017 case 4 challenge labels. Figure from (Lee et al., 2017)
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To test the usefulness of this method the following questions will need to be
answered:

• Can we successfully build a classifier with this new Branching Neural
Network method?

• Does this new method improve in F1 score and error rate on the current
winner of the DCASE 2017 task 4 challenge?

• Can current state-of-the-art SED systems be used as the internal tree
nodes for the new method? Specifically the Convolutional Gated Recur-
rent Neural Network?

• What is the training and running time of this method versus the current
winning method?

• How much does randomly changing the ontology change the training and
running time of the method? Is this change dependant on the shape of
the network?

• How much does randomly changing the ontology change the error rate and
F1 score?

• Does tuning the ontology based on the number of instances for each class
change the results?

11



Chapter 2

Metrics

To answer the questions we will need a universal way to test the performance
of a SED system, which brings us to metrics. This section will go into metrics,
by summarizing Mesaros et al. (2016). To determine how well a SED system
performs one uses a second set of data besides the training set, called the evalu-
ation set. This set must always be strongly labelled, so that it can be compared
with SED output, i.e. the annotation matrix for an audio-file. There are many
different types of metrics to evaluate the accuracy of this comparison. The most
popular ones are:

True Positive rate: The number of true positives Tp aggregated over the en-
tire evaluation set. A true positive in a segment-based approach, like SED,
is when a segment is active, while it is active in the annotation matrix. For
the tagging output of an SED, i.e. the labels present without a start-time
and duration, this is all labels output from an audio-file, that should be
output. See Figure 2.1.

True Negative rate: The number of true negatives Tn aggregated over the
entire evaluation set. A true negative in a segment-based approach, like
SED, is when a segment is inactive, while it is inactive in the annotation
matrix. For the tagging output of an SED this is all the labels that were
not output, that should not be output. See Figure 2.1.

False positive rate: The number of false positives Fp aggregated over the
entire evaluation set. A false positive in a segment-based approach, like
SED, is when a segment is active, while it is inactive in the annotation
matrix. For the tagging output of an SED this is all the labels that are
output, that should not be output. See Figure 2.1.

False negative rate: The number of false negatives Fn aggregated over the
entire evaluation set. A false negative in a segment-based approach, like
SED, is when a segment is inactive, while it is active in the annotation
matrix. For the tagging output of an SED this is all tags that are not
output, that should be output. See Figure 2.1.

12



Selected items: The number of false and true positives aggregated over the
entire evaluation set. See Figure 2.1.

Precision: Precision P is a percentage of how many selected items are relevant.
Defined as follows:

P =
Tp

Tp + Fp

See Figure 2.1.

Recall, Sensitivity or Recognition rate: Recall R, also called Sensitivity
or Recognition rate, is a percentage of how many relevant items are se-
lected. Defined as follows:

R =
Tp

Tp + Fn

See Figure 2.1.

F-score: F-score is a measure that weighs recall against precision. Defined as
follows:

Fβ = (1 + β2) · ( R · P
(β2 · P ) +R

The F1 score is the harmonic mean of precision and recall. The harmonic
mean tends strongly towards the least elements of the list, to mitigate the
impact of large outliers and aggravate the impact of small outliers. An
F-score with β < 1 will weigh recall lower than precision, while an F-score
with β > 1 will weigh recall higher than precision.

Specificity: Specificity Sp is a percentage of how many non-selected elements
are truly negative. Defined as follows:

Sp =
Tn

Fp + Tn

Error rate: Error rate E measures errors in terms of insertions, deletions
and substitutions. For Sound Event Detection this is usually done us-
ing segment-based error rate. This segment-based error rate looks at all
the segments in an annotation matrix and determines how many segments
should be changed from one label to another (substitution S), how many
need be deleted (deletions D), and how many need to be added (insertions
I).

S = min(Fn, Fp)

D = max(0, (Fn − Fp))
I = max(0, (Fp − F − n))

The error rate is then defined as follows:

E =
S +D + I

Tp + Fp

13



A lower error rate means, less substitutions, deletions and insertions com-
pared to the True and False Positives, so a better accuracy.

Usually multiple measures are used together to strengthen the accuracy
claim. Recognition rate with false positive rate, false negative rate with false
positive rate, Precision with Recall, Sensitivity with Specificity, or F-score with
error rate. This is done because each accuracy looks at specific way to deter-
mine accuracy and on their own they may create a very skewed picture. For
example if only Recall is used, how many irrelevant items are selected is never
looked at, so if there were many irrelevant items with only a few relevant items
in the dataset, recall is more likely to be better just based on the data. Precision
does take irrelevant items into consideration, counteracting this effect. For this
specific combination F-score was created.

Figure 2.1: True Positives, True Negatives, False Positives, False Negatives,
Recall, Precision. Figure from (Walber, n.d.)
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Chapter 3

Features

With the metrics defined, we can quantify the performance of a SED system.
The first step for a SED system, as can be seen in Figure 1.2, is transforming
audio-files into feature-sets. As such, a way to gain features needs to be defined.
However before we can discuss how to gain features from audio files, we first
need to discuss how to represent audio files in some form of audio representation.

3.1 Waveform

Sound is generated by displacements and oscillations of air molecules (Müller,
2015). This alternating pressure in the air can be perceived as a wave. Sound
can then be represented by plotting the pressure-time plot of air in a certain
location. The resulting representation is referred to as waveform. This is the
simplest audio representation.

3.2 Mel Features

In the past the Fourier transform (Müller, 2015), calculated based on the wave-
form, was often used to gain features to train SED systems on. However, current
methods mostly use features gained by looking at the mel scale, mel coming
from melody. This scale is created using a log transformation of the frequency
space, because this is most similar to the human perception system. One fea-
ture type that uses this mel-scale is the Mel Frequency Cepstral Coefficients
(MFCCs, Fayek (2016)). An example of these MFCCs can be seen in Figure
3.3b. MFCCs were created to accurately represent the shape of the human vocal
tract, hence their popularity in speech recognition. They, however, used to be
very popular for SED systems too.
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Figure 3.1: MFCCs steps. Figure from (Chung et al., 2013)

The steps for creating MFCCs are as followed, also shown in Figure 3.1:

1. Frame the audio-file into short frames and apply a windowing function
to each frame, usually the hamming window w(n), by multiplying each
sample in the frame with the window formula. For the hamming window
function this is:

w(n) = 0.54− 0.46 cos (
2πn

N − 1
)

where n is the sample number and N is the amount of samples in the
frame.

2. For each frame calculate the periodogram P , also known as the power
spectrum, using the formula:

P (xi) =
|F (xi)|2

N

where F (xi) is the discrete fourier transform, usually calculated with the
FFT algorithm, xi is the signal of frame i and N is the number of samples
used for the discrete fourier transform, typically N is 256 or 512.

3. Apply the mel filterbank to each of these periodograms. Applying a mel
filterbank means multiplying filter Hm(k) with the frequency k for a set
number of filters, for each k in P (xi), for each xi. Each filter is given by
the formula:

Hm(k) =



0 k < f(m− 1)
k−f(m−1)

f(m)−f(m−1) f(m− 1) ≤ k < f(m)

1 k = f(m)
f(m+1)−k

f(m+1)−f(m) f(m) < k ≤ f(m+ 1)

0 k > f(m− 1)
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Where m is the mel value, f = 700(10m/2595 − 1) the formula for trans-
forming mel into frequency, and k is a frequency sample. Typically 40
filters are taken, with m values equally spaced between the minimum and
maximum mel value of the periodogram. See Figure 3.2 for an example of
these filters and their result on a periodogram. In this Figure (a) shows
the full filterbank, with all filters and (b) shows the periodogram after
using all these filters on some audio file. Furthermore (c) shows a single
filter, filter 8, and (d) shows the periodogram while only using this filter
on the audio-file. For (e) and (f) this same thing is shown for filter 20.

Figure 3.2: Plot of mel filterbank and windowed power spectrum. Figure from
(Lyons, 2013)

4. Take the log of each of the resulting elements, creating log filterbank
frames.

5. Take the Discrete Cosine Transform (DCT) of the log filterbank frames, for
coefficient 2 - 13. The Discrete Cosine transform is given by the following
formula:

Cx(k) =

{∑N−1
n=0 2x cos ( π

2N k(2n+ 1)) 0 ≤ k < N

0 otherwise

where k is a frequency sample on the log filterbank frames, Cx is coefficient
x and N is the max coefficient.
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6. Join all DCT frames into one feature-set, where each DCT frame is one
vertical row. The result is an image similar to Figure 3.3b, where the
amplitude is now given by a color.

Currently, however, SED systems most often use log-mel energies, mel-
filterbanks, mel-spectrograms, or mel band energies. The difference between
MFCCs and these others is that one of the steps, called the Discrete Cosine
Transform (DCT) step, is skipped. This results in a feature-set more similar
to Figure 3.3a. In the past this step would not be skipped because the most
prevalent learning algorithms like Gaussian Mixture Models and Hidden Markov
Models had better results on the MFCCs, however, neural networks work just
as well on both versions. So skipping this step increases training speed and
decrease running time of the SED system.

(a) Mel Spectogram (b) MFCCs

Figure 3.3: Mel-spectogram and MFCCs of same audio-file. Figure from (Fayek,
2016)
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Chapter 4

Current Methods for SED

All current state-of-the-art SED methods and especially those with the highest
accuracy ratings in the DCASE challenges, rely on neural networks. Because
of this the basics of neural networks will be introduced here. Section 4.4.1
will explain the baseline method given for DCASE2017 task 4 as a comparison
method. Section 4.4.2 will explain the winning method of DCASE2017 task4.

4.1 Neural Network

This section summarizes Karn (2016b). (artificial) neural networks are a learn-
ing algorithm inspired by the human brain. The human brain consists of mil-
lions of neurons connected to each other. To mimic this behavior in computers
a neural network consists of a network of artificial neurons or nodes, however
not millions of them. At the simplest level one of these neurons consists of one
or more input, a function that acts on those input, and one or more output, as
shown in Figure 4.1.

Figure 4.1: A single artificial Neuron. Figure from (Karn, 2016b)
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Each of the input and output has a corresponding weight that mimics the
strength of a neuron connection. All input values are multiplied by their weight
and added together before they are used in the function. There are multiple
different function, called activation functions, that are usually used in these
neurons. The 3 most popular functions are seen in Figure 4.2:

Sigmoid Takes any value as input and outputs a value between 0 and 1, as such
we know that sudden very high or low inputs will not greatly influence
the entire network.

σ(x) =
1

1 + e−x

Tanh The sigmoid function extended from -1 to 1, makes it so negative values
can be output, causing more complex interactions between neurons.

tanh(x) = 2σ(2x)− 1

ReLu Outputs the input when it is higher than 0, has higher convergence than
Tanh, but is more fragile because high inputs will greatly influence the
entire network.

f(x) = max(0, x)

Figure 4.2: popular activation functions. Figures from (Karn, 2016b)

Usually a constant input is added with weight b, called the bias, so the
activation function can be shifted to the left or the right depending on this bias,
as shown in Figure 4.3.
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(a) Effect on output with 3 different
weights

(b) Effect on output with 3 different
biases, same weights.

Figure 4.3: The use of bias. Figure from (Kohl, 2010)

Neurons are connected to each other in layers to form a network. They are
usually divided into 3 categories:

Input node The neurons on the first layer only have 1 in-going connection,
one of the input features, hence the name input nodes. Their output go
towards the next layers.

Output node The neurons in the last layer only have 1 outgoing connection,
all output from the neurons on the last layer combined are the output of
the neural network. These last neurons are therefore also called output
nodes. Their input comes from previous layers.

Hidden node Any node in the intermediate layers, between the input and
the output layer, are called hidden nodes. This is because they are only
connected to other neurons.

A neural network in which every layer is only connected to the previous and
next layer is called a feedforward neural network. This was the first and simplest
type of neural network. There can be any number of layers. An example of a
feedforward neural network can be seen in Figure 4.4. A feedforward network
with only 2 layers, the input layer and the output layer, is called a Single Layer
Perceptron. If there are one or more layers containing Hidden nodes, it is called
a Multi-Layer Perceptron. If a neural network has many layer it is called a deep
neural network (DNN). How many layers are necessary before it is called a deep
neural network depends on who you are talking to and the application of the
neural network. However conventionally it is at least more than 3 layers.

21

https://stackoverflow.com/questions/2480650/role-of-bias-in-neural-networks


Figure 4.4: Feedforward Neural Network. Figure from (Karn, 2016b)

(a) Incorrect output

(b) Backpropagation

(c) Correct output

Figure 4.5: Neural Network Learning. Figures from (Karn, 2016b)
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To train a neural network a training algorithm is used to update the neural
network to output the correct data given the input. The simplest algorithm
that does this is called back-propagation. This algorithm works as follows:

1. Create all nodes and connections with randomized weights.

2. Input features into the input layer of the neural network. Then use the
weights and functions in the neurons to calculate output. This process is
known as forward propagation.

3. Calculate total error in all output nodes compared to correct output, using
a loss function. There are multiple loss functions L, the simplest being:

L =
1

N

N∑
n=1

(pn − an)

where pn is the nth predicted output and an is the nth actual output. This
loss function is called the Mean Bias Error (MBE) and finds the average
distance between the prediction and the actual observation.

4. Adjust all weights in the network in such a way that total error is reduced.
This can for example be done with gradient descent: Calculate the deriva-
tive of the output in terms of the weights, adjust weights based on the
derivative. The most popular method for calculating these derivatives is
known as back-propagation. The exact math for calculating this deriva-
tive with back-propagation can be found in Lucas Schuermann (2016) and
an example can be seen in section 7.1.

5. Repeat step two to four for all elements in the training-set.

An example of this process can be seen in Figure 4.5. In this figures (a) shows
step 2, (b) shows step 3 and 4, and (c) shows step 2 in the second loop.

Some popular loss functions used in step 3 include:

Mean Squared Error (MSE)

L =
1

N

N∑
n=1

(pn − an)2

Finds the average squared distance between the prediction pn and the
actual observation an, in this way predictions with big differences are
more heavily penalized.

Mean Absolute Error (MAE)

L =
1

N

N∑
n=1

|pn − an|
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Finds the average absolute distance between the prediction and the actual
observation, in this way predictions with big differences are more heavily
penalized, however it is more robust to outliers as the difference is not
squared.

Mean Squared Log Error (MSLE)

L =
1

N

N∑
n=1

(log(an + 1)− log(pn + 1))2

Finds the average squared log distance between the prediction and the
actual observation, in this way predictions with big differences are less
penalized than for MSE or MAE.

Cross Entropy Loss

L = − 1

N

N∑
n=1

(an log(pn + 1) + (1− an) log(1− pn))

Penalizes predictions for how far they are from actual observations with
values 0 or 1, as such it is used for tasks where the output should be either
0 or 1, like SED systems.

Hinge loss

L =
1

N

N∑
n=1

max(0,m− pnan)

Where m is some customized margin. Penalizes predictions from how far
they are from actual observations with value −m or m, in such a way that
|pn| goes to ∞. In this way the hinge loss creates predictions with high
levels of certainty, because it is less likely that −m < pn < m.

4.2 Convolutional Neural Network

Convolutional Neural Networks (CNNs) are a type of neural networks invented
specifically for Object Detection: Finding the position of an object in an image.
However, they have also found their use in Sound Event Detection. this section
summarizes Karn (2016a) to explain these CNNs. The difference between feed-
forward and convolutional neural networks is the ability for convolutional neural
networks to find important groups or combinations in the input that improve
the performance of the neural network, removing the need for manual selection
of these combinations. This is done by having three operations which a feed-
forward neural network does not have, before continuing on like a feedforward
neural network. resulting in four operations.
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Figure 4.6: Convolutional Neural Network. Figure from (Karn, 2016a)

The four operations of a CNN, shown in Figure 4.6 are:

Convolution The convolution operation, from which CNNs gained their name,
is based on the mathematical convolution:

(f ∗ g)(t) =

∫ ∞
−∞

f(τ)g(t− τ)dτ

where f, g : R→ R are two random functions and t ∈ R.

(a) On func-
tions

(b) On a feature-set

Figure 4.7: Convolution. Figure from (Karn, 2016a)

The effect of this operator on a two random functions can be seen in Figure
4.7a. In CNNs this step is mimicked by having the feature-set be f(t) and
a smaller set, called a filter, kernal or feature detector, be g(t). Then this
filter is passed over the feature-set and the dot product of the two is output
in one pixel in a new Feature Map, also called convolved feature map or

25

https://en.wikipedia.org/wiki/Convolution
https://en.wikipedia.org/wiki/Convolution
https://github.com/PetarV-/TikZ/tree/master/2D%20Convolution


activation map. This effect can be seen in Figure 4.7b, where f(t) = I and
g(t) = K, an animation of this can be found in Karn (2016a). The size of
the steps taken when the filter is passed over the feature-set is called the
stride. Because the size of the feature map is smaller than the original,
some convolutional filters use zero-padding to pad the feature map using
zeros at the edges. Some standard filters used for image manipulation can
be seen in Figure 4.8

Figure 4.8: Some Standard 3x3 Filters. Figure from (Karn, 2016a)

The idea of these filters is that the feature map, the output of the filter
set, captures some features of the input. For example the edge detection
filter, seen in Figure 4.8, will bring to focus the edges in an image. CNNs
learn similar filters during the training process. However some parameters
must be given to the CNN. These parameters include the number of filters,
called depth, the filter size, and the layout of the entire network. Usually
more filters result in better, but slower, recognition, because more features
need to be extracted.

Non Linearity (ReLU) The non-linearity operation, tries to introduce non-
linearity into the CNN. This non-linearity is introduced by using an acti-
vation function, for example the Sigmoid, Tanh or ReLu functions seen in
Figure 4.2. The chosen function is used on every element of a feature map,
resulting in a map reffered to as the rectified feature map. The most used
activation function is the ReLU function, because this has been found to
have the best performance. Therefore this operation is sometimes also
called the ReLU operation.

Pooling or Sub Sampling The pooling operation reduces dimensionality of
a feature map, but retains the most important information. This is needed
to solve what is known as the curse of dimensionality: The higher the di-
mensionality of the problem, the more data is needed to learn the correct
model. This operation also reduces the likelihood of over-fitting, makes
the network resistant to small distortions and helps create an almost scale

26

https://ujwlkarn.files.wordpress.com/2016/07/convolution_schematic.gif?w=268&h=196&zoom=2


invariant representation of the input. Over-fitting happens when a learn-
ing method corresponds too closely to an exact data-set and may therefore
fail to fit to additional data-sets. Scale invariance means the features do
not change with the size of the input. Reducing the dimensionality is done
using spatial pooling, also known as sub-sampling or down-sampling. Spa-
tial pooling is done by defining a window, sliding it over a feature map and
outputting the result in a new pooling map. However the function of the
window is different for spatial pooling, in the convolution operation a dot
product was used, while for spatial pooling one of the following functions
is used:

Max pooling Take the max element in the window.

Average pooling Take the average of all the elements in the window.

Sum pooling Take the sum of all the elements in the window.

An example of max pooling is given in Figure 4.9. Just as in the convo-
lution operation, these windows have different sizes and the step size for
sliding is called the stride. The pooling is done for each of the rectified
feature maps gained from the previous step.

Figure 4.9: Max Pooling. Figure from (Karn, 2016a)

Classification The classification operation uses the output of the pooling lay-
ers as input of a fully connected feedforward neural network. A feedfor-
ward neural network is called fully connected when every neuron in each
layer is connected to all neurons in the next layer. This means this oper-
ation works by using the feedforward neural network explained in section
4.1, but with a different input.
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Figure 4.6 shows the first CNN used for object detection, the LeNet CNN
(LeCun et al., 1998). The steps for this CNN where as followed:

1. Initialize all filters parameters and weights with random values.

2. Use forward propagation on an element in the training set. By doing the
steps: convolution, ReLU, pooling, convolution, ReLU, pooling, classifi-
cation.

3. Calculate total error of the output

4. Use back-propagation to adjust all weights and filters to reduce total error
of the output.

5. Repeat Step 2 to 4 with all elements in the training-set.

These steps are very similar to the steps of a standard neural network, this
is because the same forward and back-propagation steps can be taken. The
difference is the math involved for these propagation steps. The math to get the
derivatives related to the convolution and pooling steps can be seen in Agarwal
(2017). In newer CNNs the layer ordering and depth have changed compared
to the LeNET CNN, however because they use the same operations forward
and back-propagation are still used to train them. Just as with standard neural
networks, at the end of this training a CNN should output the correct results
for most elements in the training-set and on data that is similar to it.

4.3 Recurrent Neural Network

This section summarizes Banerjee (2018). One big problem with Standard Neu-
ral networks is that these only act on instantaneous input. If a network is trained
to identify parts of a sentence, the network will not use the knowledge of the
last sentence for the new sentence, unless they are both input at the same time.
Recurrent Neural Networks (RNNs) try to fix this context problem by allowing
information to persist in the network. The way this is done is by looping a
hidden state back as partial input for the next input. Then this network can be
seen as a recurring network of neural networks, as seen in Figure 4.10, where a
RNN is seen as a looping neural network on the left side and multiple connected
copies of a neural network on the right. The representation of an RNN as a
recurring neural network is also called an unrolled RNN. This recurrence makes
them very useful for data that is dependant on context, such as sequences of
events, like in audio-files used for Sound Event Detection. Another big advan-
tage of these RNNs is that they are not constrained by fixed size input. This is
because the input can be split up into multiple smaller files, as long as the data
can be put in a sequence. For audio files used in SED system this sequencing is
performed by framing the files into multiple time steps.
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Figure 4.10: RNN unrolled. Figure from (Banerjee, 2018)

RNNs are divided into the following categories, based on their input and
output:

One to One A standard neural network, not recurrent.

One to Many A neural network that goes from one input to many output, for
example from an audio-file containing speech, to the words spoken.

Many to One A neural network that goes from multiple input to one output,
for example from a sentence, to a value representing its hostility.

Many to Many A neural network that goes from multiple input to multiple
output, for example from an English Sentence to a Dutch one.

Synced Many to Many A neural network that goes from multiple input to
multiple output, in such a way that each input has an output, for example
from an audio-file split in frames to a list of sound events that happened
on each frame.

As seen in Figure 4.11, where blue is the output, red is the input and green is
a part of an unrolled RNN.

Figure 4.11: RNN types. Figure from (Karpathy, 2015)
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The most important part for the RNN itself is how the hidden state ht is
created, how it is updated based on input and how this hidden state influences
output. In the simplest case this hidden state is a single vector. This vector is

initialized with the zero vector h0 =
−→
0 and updated on the input with the tanh

function such that ht = tanh (Whhht−1 +Whxxt), where Whh is a matrix of
hidden weights, Wxh a matrix of input weights and xt the input vector at step
t. Then the output at step t, yt, is calculated with yt = Wyhht where Wyh is a
matrix of output weights. These weights are updated using a back-propagation
algorithm:

1. Unroll the RNN until a standard feedforward neural network is obtained,
an example of which is shown in Figure 4.10.

2. Set the input of this network to be the initial hidden state and the input
at every time-step.

3. Perform forward and backward propagation as with a standard neural
network

4. Average all gradients at each layer, so the weight change is the same at
each recurrent step.

5. Repeat steps 1 to 4 for all elements in the sequence made from all data in
the training set.

A problem standard RNNs have is that the information most important to
the hidden state is always the most recent input. However the most important
information for the sequence might be less recent. To solve this a variant of
RNNs called Long Short Term Memory Networks (LSTM) was created. Because
this variant solves many problems with the original RNNs, LSTM models are
used more often than the original and sometimes the terms for RNN and LSTM
are used interchangeably. The only difference between a standard RNN and a
LSTM is the update function. The update function is changed to:

ht = ot ∗ tanh(Ct)

using
ot = σ(xtWxo + htiWho)

Ct = σ(ft ∗ Ct−1 + it ∗ C̃t)

ft = σ(xtWxf + htiWhf )

it = σ(xtWxi + htiWhi)

C̃t = tanh(xtWxc − htiWhc)

where the weights are given by the W matrices, xt signifies the input at time t,
ht the hidden values at time t, ∗ is the operator for element-wise multiplication,
and σ is the sigmoid function given by σ(x) = ex

ex+1 . i, f and o are called the
input, forget and output gate respectively. This is because the σ-function has
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a value between 0 and 1. This means these input, forget and output functions
gate how much information is let through. These gates have the same dimension
as the hidden state. Because the update steps is the only change in this type of
RNN, the steps to train an LSTM stay the same as for an RNN, only the exact
math changes.

4.4 Current State-of-the-Art

Now the basics have been discussed the current state-of-the-art methods can be
described in detail. These details are necessary because the branching method
proposed will use current state-of-the-art methods as part of its internal struc-
ture.

4.4.1 Baseline Method for DCASE2017 Task 4

The baseline for DCASE2017 task 4 is a feedforward neural network (FFNN,
section 4.1). As input the audio-files are transformed to log mel spectograms
with frames of 40ms. This neural network is trained on each frame as a separate
input, losing context, but making it possible to work with different length audio
files. As such each frame uses a 50% overlap to get back a bit of context. The
mel-spectrogram uses 40 mel bands covering the frequency range 0 to 22050Hz.
The FFNN consists of 2 fully connected layers, with 50 neurons each. These
layers both had a 20% dropout rate, which means that during training a random
20% of the neurons where not used to decrease overfitting (Srivastava et al.,
2014). The Adam algorithm is used as its gradient-based optimizer (Kingma &
Ba, 2014) for back-propagation. Training is performed for 200 epochs using a
learning rate of 0.001 (Mesaros et al., 2017). The SED results for this FFNN
were gained by running the FFNN over each frame of an audio file and smoothing
out the results by using a running window median function because of the 50%
overlap. The tagging results were gained by using the maximum output for each
tag from this smoothed output.

4.4.2 Convolutional Gated Recurrent Neural Network

The SED system by Xu et al. (2018), uses a Convolutional Gated Recurrent
Neural Network (CGRNN) trained on weakly labelled data to create a SED
system. In Task 4 of the DCASE2017 contest it came in first place overall
because of its audio tagging results, but second place in SED with an error rate
of 0.7300 and an F1 score of 51.8%.

To get these results, first the audio files are split into frames of 41.7ms
and transformed to log mel spectrograms. Then these spectrograms are fed
into three gated convolutional neural network blocks (section 4.2) created using
gated linear units (GLUs, (Dauphin et al., 2016), as can be seen in Figure 4.12.
These GLUs, similar to the gates in the LSTM network (section 4.3), control
the amount of information that flows to the next layer. As such GLUs increase

31



the performance of a neural network by reducing the vanishing gradient problem
(Nielsen, 2018), a problem in which earlier layers learn more slowly compared
to neurons on the later layers. This is due to the distance the gradient of the
earlier layers have from the output compared to the later layers. This problem
decreases prediction accuracy on deeper neural networks. These GLU blocks
are followed by a bi-directional recurrent neural network (Bi-RNN, Schuster &
Paliwal (1997)), which is a variant of RNN that uses context from both before
and after the frame it is currently analyzing. The final step consists of two
FFNNs (section 4.1, one that uses a sigmoid activation function and another
that uses softmax as the activation function. These two FFNNs together predict
the tags present in each frame, which created the estimated annotated matrix.
These annotations are then averaged for each class to get the predicted audio-
tags. To train the neural networks, stochastic gradient descent (SGD) is used
for the back-propagation with the cross-entropy loss function, seen in section
4.1. This loss function is calculated over the tag prediction of the entire file.
To compensate SGD’s fluctuating performance while training, system results
fusion (SRF) was used to stabilize and improve results. SRF fuses the results of
multiple systems so as to create one superior system. In CGRNN, SRF is used in
two ways. First the results of the same system are fused during different steps in
the training process, then the posteriors of systems with different configurations
are averaged to ensure a more stable solution.

Figure 4.12: Convolutional Gated Recurrent Neural Network. Figure from (Xu
et al., 2018)
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Chapter 5

A New Method: Branching
Neural Networks

At the moment humans are still better at SED than state-of-the-art SED meth-
ods (Kim & Pardo, 2018). This implies that we might be able to improve SED
methods by using human knowledge.

Humans tend to group sounds together by similarity, known as the law
of Prägnanz. This law states that humans tend to group things together in
a way that is regular, orderly, symmetrical and simple. This manifests itself
with a tendency to group objects together when humans have to deal with
a great number of objects. Examples of this are the ontologies that humans
often create for sounds. These ontologies are networks of different groupings
with information on how groupings relate, such as which group is a subgroup
of another and which elements belong to which grouping. In this way these
ontologies contain information about which elements we find similar and why.
We might use the human grouping ability, used to create these ontologies, to
improve SED results.

The method proposed in this report consists of training multiple neural net-
works, used as a SED system, in a tree shape inspired by the ontology. Each
neural network would then focus on a subtask of the full system in such a way
that each neural network decides the best next neural network to use. This
works by having the same input format for each neural network as a standard
SED system, but a different classification task depending on its position in the
tree. An example of one an ontology-inspired tree can be seen in Figure 5.1. For
this example the method would consist of a first neural network that differenti-
ates Vehicle from Alarm and a second neural network trained on differentiating
the Vehicle category into MotorVehicle, NonMotorizedVehicle and Train. This
would continue until each split in the tree had its own neural network. Hence-
forth, we will refer to this method as a branching neural network.

An advantage of such a branching neural network is that it could be created
using any SED system as the internal nodes, because the input and output
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would be the same between the different SED systems. If necessary, multiple
types of SEDs could be used in the same tree if it turns out, for example, that
one SED is more suited for a certain subsection and another SED is more suited
for another subsection.

In this way the proposed method behaves as a decision tree built of different
groupings, in which neural networks make complex choices on which groups
follow from which.

Tree

Vehicle

MotorVehicle

Truck

Bus

Car passing by

Car

Motorcycle

NonMotorizedVehicle

Skateboard

Bicycle

Train

Alarm

Screaming

Reversing beeps

Car alarm

Horn

Train horn

Air horn, truck horn

Siren

Civil defense siren

Police car (siren)

Fire engine, fire truck(siren)

Ambulance (siren)

Figure 5.1: DCASE 2017 tree.
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Chapter 6

The Basic Branching
Neural Network

Branching neural networks are based on the idea of combining neural networks
with decision trees in such a way that each decision in the tree is made by a
neural network. At each node in the tree in the branching neural network, a
decision is made as to which neural network should be used next. As such we
can look at decision trees to decide how to create these trees and make these
decisions.

The simplest way that trees are formed for decision trees is manually. Vari-
ants of decision trees exist that are formed automatically, using techniques like
induction (Quinlan, 1986). But using hand-made decision trees is an easier way
to test the viability of this hybrid method. Therefore, we will use the latter.

Figure 6.1: Example of a Decision Tree. Figure from (Cavaioni, 2017)
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For decision trees a dataset is split each time by a logical decision. An
example of a decision tree can be seen in Figure 6.1. In this decision tree, the
first decision is of the form x < 10 that splits a dataset into data that contains
elements where the variable x ≥ 10 and elements where x < 10. The advantage
of using neural networks for these decisions is that the decision can be more
complicated, or needs to be less well-defined. An example of this is the decision
x = High or Low, where High and Low are determined by human labeling of
data. As another example, for the classes sea lion, seal, cheetah and leopard,
one might imagine the tree in Figure 6.2, in which the grouping is made by
similarity according to some underlying criteria (i.e. visuals).

Tree

Pinnipeds

Seals

Sea lions

Cats

Leopards

Cheetahs

Figure 6.2: An example tree.

6.1 Intuitive Reasoning

As branching neural networks are derived from a combination of decision trees
and neural networks, the intuitive reason behind why they work can also be
derived from these methods. The intuitive reasons inherited from decision trees
are the following:

• As each split is done to find the dissimilarities in the most dissimilar
groupings, each split should be the easiest task possible.

• As each split in the tree is a simpler task than the whole SED task, a
neural network trained to do these simpler task should be more accurate.

• If one task can be shown to have bad results, we can change the shape of
the tree to remove this task completely or partially.

An example that illustrates these reasons is the animal example shown in
Figure 6.2. In this example the easiest split is the task that separates Pinnipeds
and Cats, because their visual dissimilarities are greatest. This split is intuitively
easier than splitting all 4 at the same time. A second split, that splits Cheetahs
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and Leopards, is again intuitively easier than splitting all 4 at the same time,
as it is a subtask already. If it turns out that the Cats Pinnipeds split was not
easy, we could reshape the tree into for example the tree in picture 6.3, showing
the third intuitive reason stated.

Tree

Group2

Seals

Cheetahs

Group1

Leopards

Sea lions

Figure 6.3: An example tree.

However the advantages of a branching neural network are not limited to
the advantages given by decision trees. Due to its composition the method
also has the advantages of a neural network. One example is that the decision
needed for the tree can be made even if it is complex or non-linear, which is
not possible in decision trees. Because neural networks extend well to unseen
data, branching neural networks might also extend well to unseen data, an
advantage decision trees normally do not have. Additionally, there are many
different types of neural networks used for many different applications, such
as convolutional neural networks, recurrent neural networks and feedforward
neural networks explained in section 4.1. As such by changing the internal
neural network, the branching neural network might be able to generalize to
many different applications and input data types. It could even be possible to
have many different neural networks inside the tree itself, making it so that each
decision can be tuned to fit to the decision type and its input data type.

6.2 How it Works

The basic branching neural network consists of multiple neural networks that
each make a decision based on a predefined tree. Similar to a standard neural
network, this branching neural network will need a list of outputs and a set
of labelled data to train on. Unlike a neural network a tree also needs to be
created, as this tree is not automatically generated. The tree divides the output
into multiple sub-decisions. The simplest tree is the tree with only one decision,
rendering it a standard neural network. An example of this simple variant for
the more complex tree given in Figure 6.2, can be seen in Figure 6.4. By adding
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decisions, this tree becomes more complex.

Tree

Seals

Sea lions

Leopards

Cheetahs

Figure 6.4: Tree for a standard neural network.

Each of these neural networks is trained like the standard neural network,
using inferred labels from the existing labelled data. For example, data with
the label Seal would have an output of Pinnipeds in the tree neural network in
Figure 6.2, a label of Seal in the Pinnnipeds neural network, and an empty label
in the Cats neural network.

6.3 Testing the Method

To test the branching neural network it is used as an SED system in DCASE
2017 task 4. In DCASE 2017 task 4, a baseline method to compare to is given
and the winning method has published their code on github. The DCASE 2017
task 4 dataset consists of 17 classes: screaming, bus, motorcycle, car, car alarm,
car passing by, ambulance (siren), ”fire engine, fire truck (siren)”, police car
(siren), civil defense siren, truck, ”air horn, truck horn”, reversing beeps, train,
train horn, bicycle, and skateboard.

These things make this task a good dataset to test the branching neural
network, as we have multiple state of the art SED systems to compare it to and
to use as internal decision systems. To test branching neural networks, multiple
subsets from this dataset were used, as can be seen in the final comparison in
section 8. To show each consecutive variant of the branching neural networks,
however, only one subset will be used, as to illuminate the results of each step of
the step-by-step process, without making the comparisons more complex than
they need to be. This subset consists of 4 classes: ”Air horn, truck horn”, Train
horn, Ambulance (siren) and Police car (siren). The tree for this subset is given
in Figure 6.5. Hereafter this shall be referred to as the HornSiren dataset. This
subset was chosen because it keeps the branching neural network to its core:
4 classes, split into 2 groups that are easily split by humans. The HornSiren
dataset consists of 2 partitions. The training set, with which the neural network
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and internal neural networks for the branching neural network are trained as
explained in chapter 4, and the evaluation set, a strongly labelled dataset with
which the F1 score is calculated as discussed in chapter 2. The HornSiren
dataset training set is a balanced dataset. This means that for each class there
exist the same amount of labelled audiofiles as for each other class. For the
HornSiren training set there are 313 files for each class. These files are picked
from the larger trainingset given by the DCASE2017 task 4 dataset. For each
class the first 313 files that contain the label, sorted alphabetically, are used from
the larger training set. The evaluation set is not a balanced dataset. Instead as
much data from the DCASE2017 task 4 evaluation set was used by using all files
containing the classes: ”Air horn, truck horn”, Train horn, Ambulance (siren)
or Police car (siren). This was done for all subsets shown in this thesis. For the
hornsiren dataset this evaluation set contained 46 ”Air horn, truck horn” files,
49 Train horn files, 33 Ambulance (siren) files and 36 Police car (siren) files.
Table 6.1 shows these numbers.

Air horn, Truck horn Train horn Ambulance (siren) Police car (siren)
Training set 313 313 313 313
Evaluation set 46 49 33 36

Table 6.1: Number of files in the HornSiren subset

For each of the Internal nodes, in this case Tree, Siren and Horn, the base-
line method seen in section 4.4.1 is used to choose which branch to take. For
this reason the only parameters changed between the baseline method and the
branching method is the tree structure given, and which data to train on. This
means that the features used are the same as the features used for this baseline
method, and are gained by using the settings described in 4.4.1 on the audiofiles
in the subset, for both the training set and evaluation set.

Tree

Horn

Train horn

Air horn, truck horn

Siren

Ambulance (siren)

Police car (siren)

Figure 6.5: HornSiren
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SED systems have 2 outputs:

• All classes present in an audio-file, called the tags.

• When exactly each of the classes is present.

Using the tags internally to determine which neural network to go to next
for each of the neural networks is much simpler than using the full SED output.
This is because with the tagging output we can focus on one output for each next
neural network, not multiple outputs. This means we do not have to combine
all of the decisions for all the SED output, as such decreasing the amount of
tuning necessary. As the focus is to improve SED performance, SED results
will still be shown in section 8, however to find the best branching structure all
results will be tested using the F1 score of the tagging output.

6.4 From Neural Network to Decision

In a decision tree each logical decision has an output of True or False, however
neural networks output a real number. To use this neural network as a decision,
we must transform this real number into a True or False value. The standard
way to do this in tasks that require a True or False values is to use a threshold
value t. The output o of the neural network is than compared to this threshold
value t in a function such that

d(o) =

{
False if o < t

True if o >= t

creating a decision d which has a True or False value. Because this same method
is used in audio tagging, we can look at audio tagging to see how this threshold
value is picked. In audio tagging there are 2 ways to pick this t value:

1. Pick the t value for which the neural network has the best accuracy on
the training set

2. Pick the t value for which the neural network has the best accuracy on a
evaluation set on which the neural network has not been trained.

It should be clear that training on a unseen evaluation set is the most robust
method for determining this t value. The standard way to create this evaluation
set is by using n-fold cross-validation, where the training set is split into n
folds, and for each fold n−1

n of the data is used in the training set and 1
n in the

evaluation set. Afterwards the best t value over all these n folds is used, after
which the neural network is retrained on the full training set. However as this
increases training time by about n times, the easier, albeit less accurate, method
using the training set was used instead. In this method the most accurate t
value on the training set is used. Another way to create the evaluation set is
by picking a random subset of the data for the evaluation set. However because
this adds extra randomness into already complicated procedure of evaluation a
new method, this random evaluation set method was not chosen to determine
the threshold values.
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6.5 How to Divide the Dataset

Now that we can create decisions from neural networks and we have a tree
structure for the decision tree, we need only determine how to train the neural
networks. Although for each neural network we have a set of labels for each
dataset, this does not mean we need to use all data in each decision. In fact
there are multiple ways to filter the data based on the decision.

Only correct data We could only use the correct data for each decision. For
example we could use only the data with the label Police car (siren) or an
Ambulance (siren) in the Siren decision. This greatly decreases training
times, as we use less data in the decisions as we go deeper into the network.
However, intuitively this would perform worse on badly labelled data in
previous decisions, as we never train on data that ends up in the wrong
decision.

All data We could use all data for each decision. For example if we have data
with the Train horn label, we would label it as empty for the Siren neural
network. Although this would increase performance of data that ends up
in the wrong decisions, training on all data will increase the training time
relative to the other methods.

Only important data As a middle ground, we could use earlier decisions to
decide which data ends up where. For example data with the label Train
horn, would be trained like normal in the Tree and Horn neural networks.
However, it would be used in the training of the Siren neural network, if
the Tree neural network would label the data as Siren. In this way we
would decrease training time, but also keep the performance up by also
training on the data that is most likely to end up in each network.

The basic branching neural network has been tested on all 3 of these training
methods on the HornSiren dataset. As a comparison, the baseline neural net-
work from which the internal neural networks were made is also tested. The test
consists of running all methods 10 times and plotting their mean and standard
deviation in F1 score for their tagging results on a F1/threshold plot. The lines
in the figure represent the mean F1 score over the 10 runs, and the area around
each line, in its respective color, represents a standard deviation for the 10 runs.
In other words, the shaded area represents where the actual mean is most likely
to be.

The table shows the F1 mean and F1 standard deviation for each method,
followed by a p-value when compared to the baseline method, for thresholds 0.10,
0.20, ..., 0.90. The p-value in the table is used to determine if the difference
between 2 methods is significant. This value is calculated by performing a
Mann-Whitney U test (McKnight & Najab, 2010), a statistical test between
2 random independent samples that can be used on non-normally distributed
data. After all, it is not a given that the data is normally distributed. All test
were performed using a single-sided test, when the mean is lower,given in red,
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the test was done to check if the mean was significantly lower, given in a
bold red. When the mean was higher, given in blue the test was done to check
if the mean was significantly higher, given in bold blue. The difference was
considered significant if p < 0.05 (or p < 5%), meaning that there is less than
a 5% chance that they belong to a distribution with the same mean given the
results. In this table, and all following tables, the highest F1 mean value of all
methods is bolded for each threshold value.

As can be seen in Figure 6.6 and its accompanying table the Correct Data,
All Data and Important Data branching methods have very different properties:

Shown in the figure is that Training with all data results in a shape most
similar to the baseline method, but with a higher F1 score mean for all thresh-
olds.

training with only correct results in a shape most similar to training with
important data, however training with important data has a higher standard
deviation. This shows that although this method has great potential for success,
it also has a high risk of failure.

Shown in the table is that if we want the method least influenced by the
threshold, the best choice would be training with only correct data, as the F1
score mean of Correct Data changes the least over the entire threshold range
while maintaining a low standard deviation. Similarly, if we want a method
that works best on high thresholds, which equates to high confidence ratings,
the correct data method would be most preferred. However, if we wish to have
the highest F1 score for some threshold, the method that uses all the data wins
out.

Some general conclusions we can draw from this data is that:

• Training on all data indicates potential for success.

• All methods are more robust than the baseline method: less sensitive to
picking an incorrect threshold. Because for all methods the lower threshold
values have significantly better results than the baseline method.
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Threshold 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

Baseline F1 mean 43.5 46.3 52.0 57.3 58.9 59.4 55.8 48.4 36.2
Correct Data F1 mean 55.1 55.3 55.9 56.6 57.6 58.0 58.2 57.6 56.2
All Data F1 mean 55.3 56.2 58.1 59.9 61.5 61.2 59.4 52.4 38.9
Important Data F1 mean 55.1 55.4 56.1 57.1 57.9 58.6 58.5 56.5 54.6

Baseline F1 Standard Deviation 0.2 0.3 0.8 1.2 1.6 2.0 2.5 2.0 2.3
Correct Data F1 Standard Deviation 1.1 1.1 1.3 1.2 1.0 1.4 1.2 1.5 2.0
All Data F1 Standard Deviation 1.1 1.2 1.2 1.3 1.6 1.8 2.1 2.3 2.0
Important Data F1 Standard Deviation 1.1 0.9 1.1 1.3 1.3 1.5 1.5 2.3 6.5

Correct Data p-value 0.0% 0.0% 0.0% 10.6% 3.2% 8.1% 1.9% 0.0% 0.0%
All Data p-value 0.0% 0.0% 0.0% 0.0% 0.1% 3.8% 0.5% 0.2% 1.3%
Important Data p-value 0.0% 0.0% 0.0% 21.4% 14.5% 19.2% 1.3% 0.0% 0.1%

Figure 6.6: Tagging F1 graph for HornSiren: Baseline vs Correct Data, All Data
and Important Data Branching methods
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Chapter 7

Backward Propagation in a
Branching Neural Network

All 3 variants of the basic branching neural network can be seen as forward
propagating methods. First the trunk of the tree is trained after which the
deeper layers are trained, based on the output of the previous layers. This is
similar to how a decision tree is formed. However, neural networks usually work
the other way around. Because the network shape is set in advance, similar
to our tree, back-propagation can used instead. This would entail changing
shallow layers based on how wrong the deeper layers were. If we could do this
for our branching neural network, we would in effect be creating a deeper neural
network. It is known that deeper neural networks can do more complex things
than shallow neural networks, although they have their own downsides. As such
if we want to mimic a deeper neural network with the branching method we will
need to look into these downsides and the math behind a neural network more
closely.

7.1 back-propagation in Neural Networks

The most popular method to train a neural network, back-propagation, works
by calculating the error gradient of the weights and then adjusting the weights
based on this gradient, nudging the neural network towards a better set of
weights. Take yn to be the output vector at layer n, then the formula for yn is
given by:

yn =

{
x if n = 0

fn(wn−1yn−1) if n > 0

where x is the input, fn is the set of functions for the neurons in layer n, and
wn is the set of weights for layer n. For a network with N layers yN is thus
the output. Assume ŷx is the correct output for input x. Then the error of
the network is defined by e = 1

2 (yN − ŷx)2. This means that the error gradient,
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dN−1, of weights N−1 is given as dN−1 = δe
δwN−1

. We can then give this formula

as a function of the outputs of the neural network by simplifying dN−1:

dN−1 =
δe

δwN−1

=
δ

δwN−1

1

2
(yN − ŷx)2

=
δ

δwN−1

1

2
(fN (wN−1yN−1)− ŷx)2

= (fN (wN−1yN−1)− ŷx)
δfN
δwN−1

= (yN − ŷx)yN−1f
′
N

For weights N − 2, dN−2 is given by dN−2 = δe
δwN−2

. This can, similar to

dN−1 then be given as a function of the outputs of the neural network:

dN−2 =
δe

δwN−2

=
δ

δwN−2

1

2
(yN − ŷx)2

=
δ

δwN−2

1

2
(fN (wN−1yN−1)− ŷx)2

= (fN (wN−1yN−1)− ŷx)
δfN (wN−1fN−1(wN−2yN−2))

δwN−1

= (fN (wN−1yN−1)− ŷx)
δfN
δfN−1

δfN−1
δwN−2

= (yN − ŷx)f ′NwN−1yN−2f
′
N−1

= dN−1
yN−2
yN−1

wN−1f
′
N−1

or in general, with the assumption that dM−1 = dM−1
yM−2

yM−1
wM−1f

′
M−1 holds

for all weights M > n, with induction we can show that for all 0 < n < N − 1:

dn = dn+1
yn
yn+1

wn+1f
′
n+1

= (yN − ŷx)yN

N−1∏
m=n

ym
ym+1

wm+1f
′
m+1

= (yN − ŷx)yN
yn
yN

N−1∏
m=n

wm+1f
′
m+1

= (yN − ŷx)yn

N∏
m=n+1

wmf
′
m

This means that we can turn branching neural networks into a deeper neural
network by having a function that connects each of the layers. A connecting
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function however, does exist for branching neural networks, the decision function
f(x):

f(x) =

{
0 if x < t

1 if x >= t
(7.1)

where 0 represents False and 1 represents True. However, as we can see in the
back-propagation formula, this function also needs a derivative. If we look at
the derivative of our decision function we get:

f ′(x) =


0 if x < t

undefined if x = t

0 if x > t

(7.2)

Which means our derivative is partially undefined and as such we can not use
it for backwards propagation. We could change this function into a function
that has a derivative, such as the σ function, as is standard in a neural network.
However, this would remove the decision and create instead a standard deeper
neural network.

The reasons not to use this a different can be seen by looking at the 2 big
problems a standard deeper neural network has.

Vanishing Gradient Problem When calculating the gradients used to adjust
the neural network, if these gradients are lower than one, the gradients
tend to go towards zero as we go deeper in the neural network. This is
because these gradients are multiplied with each other. With a gradient
of zero, the network does not adjust and therefore learns nothing. This
causes deeper layers to not adjust, making it so the entire network does
worse, as there exist layers that turn useful data into useless data.

Exploding Gradient Problem When calculating the gradients used to ad-
just the neural network, if these gradients are higher than one, the gra-
dients tend to go towards infinity as we go deeper in the neural network.
This is because these gradients are multiplied with each other. With a
gradient of infinity, the network adjusts completely every time an adjust-
ment takes place. This makes it so that deeper layers will not converge to
a useful state, as such there exist layers that turn useful data into useless
data.

The origin of these problems can be seen by looking at dn.

lim
N>∞

d0 = lim
N>∞

(yN − ŷx)y0

N∏
m=1

wmf
′
m

so if wnf
′
n < 1 for multiple n d0 goes towards 0, called a vanishing gradient. If

wnf
′
n > 1 for multiple n d0 goes towards ∞, called an exploding gradient.
If we look again at our decision function, function 7.1, we can see that

an exploding gradient would not be an issue with enough decision functions,
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because our derivative, function 7.2, is always 0 where it is defined. For this same
reason, for the decision function, the vanishing gradient problem would always
be a problem. Normally this would mean that backward propagation would
be impossible, however if we create a step inspired by backward propagation
that would solve the vanishing gradient problem, we will have created a deeper
neural network without its 2 biggest problems by using these new decision layers
at the correct depths.

7.2 Propagating Loss

In the basic branching neural network we trained each of the neural networks
separately. However, this solution does not keep in mind backward propagation,
or vanishing gradients, a big remaining issue with this method as this could
lead to networks that turn useful data into useless data. If however we adjust
the method to take a gradient from the later decisions in such a way that we
can train the earlier decisions in the tree, we will have a solution that mimics
backward propagation and mimics a deeper neural network without vanishing
gradients. The reason this solution would not be the same is that we would need
a connected network with a fully defined derivative to actually perform backward
propagation. A fully defined derivative function however, would make it so the
method is no longer a branching neural network, but instead a deeper neural
network, as seen in section 7.1.

To determine the gradient for our mimicking of backward propagation we can
take a closer look at the decision function. The error of a the decision function
can be calculated by looking at what will happen in the next networks. In the
case the next neural network has the correct output, the decision was correct,
and its error would be 0. If however the neural network has the incorrect
output, the error equals this output. As such we now have a loss l of l =
max(wrong output). The way to represent this loss is by having a separate
output neuron in the neural network that trains with this loss value as its
actual value, in this way adjusting all the weights in the neural network during
training. As the loss of a decision is determined by the output of the next neural
networks and later decisions, we will need to train the later decisions first, before
training earlier decisions in the tree. This extra loss however also removes the
option of only training on important data or correct data in each network, as all
data is now important to determine this loss. However, if this could increase the
performance of the system as a whole, by mimicking a deeper neural network,
without the vanishing gradient and exploding gradient problems, this might be
worth this loss of options.

The results on the HornSiren subset are shown in Figure 7.1 and its accom-
panying table. These tables contain the same type of information as the tables
seen in section 6.5, however the p-value here is calculated between the forward
and backward method. Just as in this section, the values are all for the tagging
output of the SED systems. These tables show that no significant difference
between the forward and backward propagation was found on most thresholds
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values, as only t = 070 has a p-value of p < 5%, on this t = 0.70, however,
backward propagation did significantly worse.

Threshold 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

Forward F1 mean 55.3 56.2 58.1 59.9 61.5 61.2 59.4 52.4 38.9
Backward F1 mean 55.5 56.2 58.2 59.2 60.1 59.9 57.1 51.1 38.5

Forward F1 Standard Deviation 1.1 1.2 1.2 1.3 1.6 1.8 2.1 2.3 2.0
Backward F1 Standard Deviation 1.2 1.2 1.6 1.1 1.8 2.0 1.8 1.9 4.0

p-value 48.5% 54.5% 39.6% 15.4% 7.0% 8.1% 1.3% 10.6% 41.0%

Figure 7.1: Tagging F1 graph for HornSiren: Forward vs Backward branching
method
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7.3 Different Loss Functions

One reason for the absence of significant differences between the backward and
forward propagation could be the loss function used to train the neural net-
work. Because we want to propagate loss from one network to another, this
loss function plays a great role, as it determines how the loss is calculated and
used. For that reason we need to look not only at the loss function currently
used internally for the baseline, but also why this loss function is used and if it
makes sense to use it for the perpetuation of our new loss.

The loss function function currently used in the baseline implementation is
Binary Cross-entropy :

L(y, ŷ) =

{
− log (y) if ŷ = 1

− log (1− y) else

Where y is the output of a neural network and ŷ the true observation. As
the name implies this loss function is designed for when the true observation
is either 0 or 1. As the loss gained by backward propagation is the output of
a neural network, this value is a real number. As such it might make sense to
change the loss function for a function that is designed for real numbers, not
binary values. The lack of a significant difference might then be explained by
this loss function. Therefore we should test different loss functions, to see if
changing these loss functions change our results. To do this we need to analyze
different loss functions to find the most theoretically valid loss functions. The
most popular loss functions are (Changhau, 2017):

Mean Squared Error (MSE)

L(y, ŷ) =
1

N

N∑
n=1

(ŷn − yn)2

The simplest loss function. This loss function is for real values, as such
this loss function could be suitable for our loss propagation. One big
problem this loss function suffers from is slow convergence speed when
used in conjuncture with a sigmoid activation function. As the last layer
of the baseline method uses this sigmoid activation function, MSE will
most likely suffer from this problem in the baseline implementation.

Mean Squared Logarithmic Error (MSLE)

L(y, ŷ) =
1

N

N∑
n=1

(log (ŷn + 1)− log (yn + 1))2

A varient of MSE that is designed to work with larger numbers. As the
expected loss values for our purposes are likely to be between 0 and 1,
MSE is more likely to be useful than MSLE.
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Mean Absolute Error (MAE)

L(y, ŷ) =
1

N

N∑
n=1

|ŷn − yn|

A variant on MSE that is less influenced by outliers in the data because
of its linear nature. This however, also means it is less influenced by large
errors. As such this loss function is most useful when more concerned with
noisy data than with large errors. As our loss can be exactly calculated,
we are less concerned with noisy data for our purposes, so most likely the
MSE will perform best.

Mean Absolute Percentage Error (MAPE)

L(y, ŷ) =
1

N

N∑
n=1

∣∣∣∣ ŷn − ynŷn

∣∣∣∣ · 100

A variant on MAE which uses the ratio of the difference in percentages.
This loss function works well with many different classifications because of
its relative nature, however in cases where ŷ = 0 its value is undefined. As
this is the case for a big part of our dataset, because ŷ = 0 whenever we
send data to a correct node, this loss function is most likely inappropriate
for our use case, if we do not adjust this definition.

There exist more loss functions, like the Kullback Leibler Divergence, Poisson
and Cosine proximity loss functions, however, as these are not meant for other
purposes than multiple real-valued inputs, they will not be investigated. MSE,
MSLE, MAE and MAPE are plotted in Figure 7.2 against using the default
Binary Cross-entropy (BCE). This figure and its accompanying table show that
no significant positive difference is found between the different loss functions.
This can not only be seen by the fact that for no p-value p < 5%, but can also
be seen in the Figure by the fact that all lines and shaded areas overlap, making
it impossible to tell which method is which. Therefore we most conclude that
changing loss function will not create a significant difference between backward
and forward propagation and the default will be used henceforth.
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Threshold 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

BCE (Original) 55.5 56.2 58.2 59.2 60.1 59.9 57.1 51.1 38.5
MSE 55.4 56.0 57.6 59.5 59.1 58.8 56.0 50.8 39.1
MSLE 54.7 55.6 57.3 58.9 59.5 60.0 56.6 50.7 41.3
MAE 55.0 55.7 57.1 58.7 60.2 59.8 57.3 52.3 39.8
MAPE 55.2 55.7 57.4 59.2 59.7 60.0 56.8 49.9 39.7

BCE Standard Deviation 1.2 1.2 1.6 1.1 1.8 2.0 1.8 1.9 4.0
MSE Standard Deviation 1.1 1.3 1.2 1.2 1.5 1.7 1.5 2.0 2.5
MSLE Standard Deviation 1.2 1.3 1.4 1.7 1.6 1.6 1.5 2.5 2.7
MAE Standard Deviation 0.7 1.0 1.1 0.7 1.7 1.6 2.1 2.7 2.5
MAPE Standard Deviation 0.8 1.0 1.4 1.9 1.9 2.5 2.6 2.8 2.1

MSE p-value 42.5% 33.9% 20.3% 31.2% 17.2% 10.6% 15.3% 50.0% 33.9%
MSLE p-value 12.1% 13.7% 12.1% 44.0% 36.7% 54.5% 28.5% 44.0% 9.9%
MAE p-value 23.6% 10.6% 5.6% 13.7% 33.9% 50.0% 26.0% 17.2% 28.5%
MAPE p-value 33.9% 15.4% 12.1% 68.9% 39.6% 45.5% 51.5% 12.0% 31.2%

Figure 7.2: Tagging F1 graph for HornSiren: Different Loss functions in Back-
ward propagation
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7.4 Additional Output

The backward branching neural network is now trained in such a way that each
network has an output that shows how wrong the next network is likely to be:
the output that is trained to propagate our loss from the next network. As such
we have extra data that could tell us which network is best to go to. Therefore
we can experiment with this additional data to find how to best use it. Could it
be that this extra input changes the backward method to be significantly better
than the forward method? This question could be answered by changing the
output in such a way that only when the label was originally given and the
network doesn’t think the next step will go wrong, the label will now be given.
As such the following method were devised to use this new data, where ô is our
new output, o the original output of the network, and p this data symbolizing
how wrong the network is:

Multiplication
ôi = oi · (1− pi)

Subtraction
ôi = oi − pi

Average

ôi =
oi + (1− pi)

2

Each of these functions are a different way of interpreting how oi and pi
interact. For all it is the case that the highest output would be when pi = 0
and oi = 1 and the lowest output when pi = 1 and oi = 0, however, for all
thee functions the values in between follow a slightly different pattern. Multi-
plication weights high pi values more heavily than subtraction and average is a
compromise between multiplication and subtraction.

The results of these different output functions can be seen in Figure 7.3 and
its accompanying table. On most thresholds no significant difference is found
between using an output function or not using an output function, as can be seen
from the p-values. However for Subtraction and Average there is a thresholds
that does significantly better, t = 0.70, and that thresholds overlaps with the
thresholds where backwards propagation did worse than forward propagation.
As Subtraction showed the most significant change at t = 0.70, since there the
p-value is the lowest, this function will be used in further results.

It seems as if the backwards branching method is not any better than the for-
ward branching method at this point, as we have not been able to use the extra
information in a way to increase the performance of the backwards branching
method on all thresholds, as we have not been able to create a method with
significant p-values over all thresholds when compared to the original.

52



Threshold 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

Original 55.5 56.2 58.2 59.2 60.1 59.9 57.1 51.1 38.5
Multiplication 56.1 56.7 58.6 59.9 60.2 61.0 57.3 50.4 39.8
Subtraction 55.5 56.1 57.8 59.7 60.7 60.0 59.4 52.1 41.5
Average 56.1 56.9 58.6 60.0 60.8 60.7 58.0 50.6 39.6

Original Standard Deviation 1.2 1.2 1.6 1.1 1.8 2.0 1.8 1.9 4.0
Multiplication Standard Deviation 1.0 1.3 1.0 1.4 2.0 2.3 2.3 2.3 2.8
Subtraction Standard Deviation 0.6 0.8 1.1 1.3 1.1 1.4 2.8 2.9 3.3
Average Standard Deviation 1.4 1.4 1.7 1.5 1.7 2.5 2.9 1.9 2.0

Multiplication Diff 0.6 0.5 0.4 0.7 0.1 1.1 0.2 -0.6 1.4
Subtraction Diff -0.0 -0.1 -0.4 0.5 0.6 0.2 2.3 1.0 3.0
Average Diff 0.6 0.7 0.4 0.8 0.7 0.9 0.9 -0.5 1.1

Multiplication p-value 17.2% 28.5% 42.5% 17.2% 44.0% 22.5% 56.0% 28.5% 26.0%
Subtraction p-value 36.7% 23.6% 31.2% 23.6% 15.4% 51.5% 2.1% 17.2% 7.0%
Average p-value 12.0% 17.2% 32.5% 7.0% 18.2% 23.6% 4.4% 42.5% 35.3%

Figure 7.3: Tagging F1 graph for HornSiren: Different output functions in
Backward propagation
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Chapter 8

Testing on Multiple Subsets

To test how successful the forward and backward versions of branching neural
networks are, they have been tested on multiple subsets of the DCASE 2017 task
4 dataset. This dataset consists of 17 classes: screaming, bus, motorcycle, car,
car alarm, car passing by, ambulance (siren), ”fire engine, fire truck (siren)”,
police car (siren), civil defense siren, truck, ”air horn, truck horn”, reversing
beeps, train, train horn, bicycle, and skateboard. This number of classes means
many different trees can be created, an example of a tree created by me can be
seen in Figure 5.1. Many different possible trees means that is hard to make
sure that the specific tree is the optimal tree, and therefore if the branching
neural network method is useful or not, as we do not know which part of the
tree is causing which properties. As such subsets where created to test the
branching neural network method. These subsets make creating perfect subsets
of a tree more simple, as there are less possible different iterations of the tree.
The subgroups are:

CarHorn This subset consists of the classes: Car, Truck, Air horn & truck
horn and Train horn. The tree of this subset is given in Figure 8.1a. For
the training set the classes were balanced by using 313 files for each class.

TruckSiren This subset consists of the classes: Bus, Truck, Ambulance (siren),
and Police car (siren). The tree of this subset is given in Figure 8.1c. For
training the classes were balanced by using 524 files for each class.

HornSiren This subset consists of the classes: Ambulance (siren), Police car
(siren), Air horn & truck horn and Train horn. The tree of this subset
is given in Figure 8.1b. For the training set the classes were balanced by
using 313 files for each class.

Shuffle This subset is the same as HornSiren, but has its tree shuffled. This
allows us to test the importance of the tree itself. This tree is given in
Figure 8.1d.
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Deep Subset This subset consists of the classes: Bicycle, Skateboard, Bus,
Truck, Air horn & truck horn, Train horn, Ambulance (siren), Police car
(siren). This subset consists of 3 layers, instead of 2. This is to see if the
results scale with deeper levels. The tree of this subset is given in Figure
8.1e. For the training set the classes were balanced by using 313 files for
each class.

These subgroups where created by using the Google Audioset ontology explained
by Gemmeke et al. (2017). This ontology has a tree shape consisting of 632 audio
events grouped into a tree of depth 5, the first two layers of which can be seen
in Figure 1.3. The subgroups where chosen in such a way that a tree of depth
2 that made intuitive sense could be made for them, except in the case of the
deep subset, where a tree of depth 3 was purposefully created to test if the
results would extend to deeper trees. The subsets where then taken from the
DCASE2017 task 4 dataset. The training sets from the DCASE2017 task 4
training set, and the evaluation sets from the DCASE2017 task 4 evaluation
set. For all training sets the subset is is the first N files, in an alphabetic order,
containing one of the classes present, where N and the classes are given in
the description above. For all evaluation sets the subset is gained by taking all
audiofiles with the classes in the description above present from the DCASE2017
task 4 evaluation set. This means for example that the label for Bicycle is not
present in any of the audio files in the training or evaluation set for HornSiren.

First, a comparison will be made between the tagging results of SED systems,
all labels present in an audio-file, since this is the simplest output that also
exemplifies most the results of branching neural networks. Afterwards we will
look at the SED results, where the labels are accompanied by a start-time and
a duration, because these results show if the SED output is correct even when
the branching neural network internally uses a tagging system, that only looks
at the labels present.

8.1 Tagging Results

To see the effects of the branching neural networks, all plots will be F1/threshold
plots, in which the F1 score is shown as a function of threshold value. For the
both method the threshold value shown in the graphs and tables is used on
all outputs. However for the branching method internally different thresholds
values are used as the branching methods tunes these internal thresholds during
training. This is done to ensure a fair comparison. For all results shown, the
branching method consists of a multiple of the exact same networks as the
compared method. For example, in CarHorn, the branching method consists of
3 of the same neural networks used for the baseline method. This again is to
keep the comparison simple, if the neurons inside the internal subsystems were
tuned for performance, it would exponentially increase the amount of variables
to tune. The effect of this is that the computation necessary for training each
of the branching neural networks is equal to the training necessary for training
as many comparison methods as there are internal nodes. For example, for
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Figure 8.1: Subset trees.
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the HornSiren dataset, the training computation necessary is three times the
training computation necessary for the baseline method. However, for forward
branching, all networks can be trained simultaneously, keeping training time
similar. For backwards branching only the networks in the same layer can be
trained at the same time, provided enough parallel computing power is available,
meaning that the training time is multiplied by the amount of layers in the tree.
For example, in the HornSiren dataset, the training time is double that of the
original method. In the figures given in this chapter the branching methods will
be given in blue, and the compared methods will be given in red, as per the
legend of each figure. These figures will be joined by tables, representing the
same values given in the figure in a more quantifyable manner.

The tables and figures in this chapter are of the same type as the tables and
figures given in Chapter 6.5: The test consists of running all methods 10 times
and plotting their mean and standard deviation in F1 score for their tagging
results on a F1/threshold plot. This F1 value is gained by using a subset of
the evaluation set given for the DCASE2017 dataset, in which the labels not
present in the training subset were ignored. This means that the evaluation
subset consists of all files present in the evaluation set that have a label also
present in the training set, however, the files without a label present in the
training set were removed. This evaluation set was used to ensure the method
is not over fitting to the training set. The lines in the figure represent the mean
F1 score over the 10 runs, and the area around each line, in its respective color,
represents a standard deviation for the 10 runs. In other words, the shaded area
represents where the actual mean is most likely to be.

The table shows the F1 mean and F1 standard deviation for each method,
followed by a p-value when compared to the baseline method, for thresholds 0.10,
0.20, ..., 0.90. The p-value in the table is used to determine if the difference
between 2 methods is significant. This value is calculated by performing a
Mann-Whitney U test (McKnight & Najab, 2010), a statistical test between
2 random independent samples that can be used on non-normally distributed
data. After all, it is not a given that the data is normally distributed. All test
were performed using a single-sided test, when the mean is lower,given in red,
the test was done to check if the mean was significantly lower, given in a
bold red. When the mean was higher, given in blue the test was done to check
if the mean was significantly higher, given in bold blue. The difference was
considered significant if p < 0.05 (or p < 5%), meaning that there is less than
a 5% chance that they belong to a distribution with the same mean given the
results. In this table, and all following tables, the highest F1 mean value of all
methods is bolded for each threshold value.
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8.1.1 CarHorn

Threshold 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

Baseline F1 mean 41.7 43.4 47.3 49.5 48.4 46.3 41.3 33.0 25.4
Forward Branching F1 mean 46.8 48.2 49.2 49.7 48.9 46.6 43.2 36.1 25.8
Backward Branching F1 mean 46.8 47.6 49.3 49.6 49.5 47.5 43.1 35.5 27.5

Baseline Standard F1 Deviation 0.2 0.5 0.9 1.3 1.9 2.1 1.5 2.1 2.2
Forward Branching F1 Standard Deviation 0.8 1.0 1.4 1.5 1.5 2.3 2.0 1.4 2.2
Backward Branching F1 Standard Deviation 0.7 0.7 0.8 1.1 1.6 2.2 2.3 1.6 2.1

Forward Branching p-value 0.0% 0.0% 0.4% 39.6% 26.0% 39.6% 3.2% 0.2% 38.1%
Backward Branching p-value 0.0% 0.0% 0.1% 23.6% 10.6% 10.6% 2.7% 0.9% 2.7%

Figure 8.2: Tagging F1 graph for CarHorn: Baseline vs Branching method

Car, Truck, Air horn & truck horn and Train horn:
From Figure 8.2 and its accompanying table it can be seen that for this

subset, although both branching neural network methods work similarly to the
baseline method for some thresholds, for most thresholds the branching neural
network methods both have significantly better F1 mean, as can be seen from the
p-values where p < 5%. Especially for low thresholds, t = 0.10, 0.20 and 0.30,
both branching neural networks perform significantly better. The same can
be seen at threshold values = 0.70 and t = 0.80, where both the forward and
backward method have p-values p < 5%. Overall, for this specific dataset the
branching neural network is less sensitive to picking a correct t value than the
baseline method: Not only is the highest F1-score mean for both branching neu-
ral network higher, for every threshold the F1-score mean is either significantly
higher (higher F1 mean with p < 5%) or similar (p > 5%). This makes it so that
wrongly tuning the branching neural networks has less negative consequences
for the branching neural networks.
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8.1.2 TruckSiren

Threshold 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

Baseline F1 mean 42.7 45.2 49.0 52.0 50.5 46.4 37.8 26.3 10.4
Forward Branching F1 mean 54.2 53.9 53.3 51.4 50.6 45.4 38.8 28.3 13.3
Backward Branching F1 mean 53.3 53.0 52.3 51.8 49.7 46.0 38.8 30.8 14.2

Baseline F1 Standard Deviation 0.2 0.4 0.7 1.4 2.0 2.2 2.0 1.9 1.3
Forward Branching F1 Standard Deviation 0.8 1.0 1.0 1.7 2.1 1.6 1.9 1.8 1.6
Backward Branching F1 Standard Deviation 0.8 0.6 1.2 1.1 2.3 2.2 2.3 2.0 1.3

Forward Branching P-Value 0.0% 0.0% 0.0% 23.6% 36.7% 23.6% 13.6% 2.7% 0.1%
Backward Branching p-value 0.0% 0.0% 0.0% 39.6% 19.2% 42.5% 19.2% 0.1% 0.0%

Figure 8.3: Tagging F1 graph for TruckSiren: Baseline vs Branching method

Bus, Truck, Ambulance (siren), and Police car (siren):
Similar to CarHorn, the highest F1-score mean belongs to the forward branch-

ing method, as can be seen in Figure 8.3 and its accompanying table. Also sim-
ilar to CarHorn, for lower thresholds the branching method seems to perform
significantly better than the baseline method, as the p-value p < 5%. As with
the previous subset for high thresholds, t = 0.80 and t = 0.90 the branching neu-
ral networks both performs significantly better, although it has shifted towards
slightly higher values, as it no longer the case for t = 0.70. One interesting thing
for this dataset is that the highest F1-score mean for the branching method is
on very low thresholds t = 0.10, bringing with it the idea that the first layer is
so effective that the second layer of branching method has a negative effect on
the system overall.

59



8.1.3 HornSiren

Threshold 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

Baseline F1 mean 43.5 46.3 52.0 57.3 58.9 59.4 55.8 48.4 36.2
Forward Branching F1 mean 55.3 56.2 58.1 59.9 61.5 61.2 59.4 52.4 38.9
Backward Branching F1 mean 55.5 56.1 57.8 59.7 60.7 60.0 59.4 52.1 41.5

Baseline F1 Standard Deviation 0.2 0.3 0.8 1.2 1.6 2.0 2.5 2.0 2.3
Forward Branching F1 Standard Deviation 1.1 1.2 1.2 1.3 1.6 1.8 2.1 2.3 2.0
Backward Branching F1 Standard Deviation 0.6 0.8 1.1 1.3 1.1 1.4 2.8 2.9 3.3

Forward Branching p-value 0.0% 0.0% 0.0% 0.0% 0.1% 3.8% 0.5% 0.2% 1.3%
Backward Branching p-value 0.0% 0.0% 0.0% 0.1% 1.9% 20.3% 1.1% 0.4% 0.2%

Figure 8.4: Tagging F1 graph for HornSiren: Baseline vs Branching method

Ambulance (siren), Police car (siren), Air horn & truck horn and
Train horn:

Again the figure for this subset, Figure 8.4, and its accompanying table
show properties seen in the previous subsets: For low threshold values, and
high threshold values, the F1-score mean is significantly better (higher with
p < 5%) for both the forward and branching methods. The biggest difference
is that the significant differences have extended from t = 0.30 to t = 0.50 as
now p < 5% for both t = 0.40 and t = 0.50, with a higher F1-score mean
for both methods. In this case the forward propagation method is significantly
better than the baseline method at every threshold value as the F1-score mean
is higher and p < 5% for every threshold. This suggest that the tree is better
suited to some datasets than others, which will be further explored in section
8.1.4.
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(a) Forward method

Threshold 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

Baseline F1 mean 43.5 46.3 52.0 57.3 58.9 59.4 55.8 48.4 36.2
Forward Shuffled F1 mean 46.9 49.3 52.3 55.2 57.6 58.4 57.2 51.0 38.3
Forward F1 mean 55.3 56.2 58.1 59.9 61.5 61.2 59.4 52.4 38.9
Backward Shuffled F1 mean 47.2 49.4 52.5 55.5 57.5 58.0 55.9 51.0 37.8
Backward F1 mean 55.5 56.1 57.8 59.7 60.7 60.0 59.4 52.1 41.5

Baseline F1 Standard Deviation 0.2 0.3 0.8 1.2 1.6 2.0 2.5 2.0 2.3
Forward Shuffled F1 Standard Deviation 1.1 1.2 0.8 1.3 1.8 2.1 1.7 3.0 2.3
Backward Shuffled F1 Standard Deviation 1.3 1.3 2.0 2.4 1.6 2.2 2.0 2.1 2.8

Forward Shuffled p-value 0.0% 0.0% 23.6% 0.2% 6.1% 19.2% 9.3% 1.1% 3.8%
Backward Shuffled p-value 0.0% 0.0% 21.4% 4.4% 4.8% 9.3% 38.1% 0.9% 20.3%

(a) Backward method

Figure 8.6: F1 graphs for Shuffle: Baseline vs Branching methods vs Shuffled
branching
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8.1.4 Shuffle

Ambulance (siren), Police car (siren), Air horn & truck horn and
Train horn: Although the classes of this dataset are the same as the classes
for HornSiren, the performance of the Shuffled branching method, shown in
Figure 8.6 and its accompanying table, shows the importance of the tree, and
the biggest weakness of the branching methods. Although for the branching
methods significantly better F1-score results still show for low thresholds when
compared to the baseline, they show significantly worse results than the branch-
ing methods with the tree from section 8.1.3. The shuffled method no longer
outperforms the base method in highest F1 score and is significantly worse on
some thresholds. The reason for this clear when analyzing Figure 8.7 and its
accompanying table, Table 8.1. In these we compare the backward branching
method with its shuffled variant for one specific run for a threshold value of
t = 0.50.

Node F1 Precision Recall Shuffled F1 Shuffled Precision Shuffled Recall

Tree 82.9 79.4 86.7 72.3 67.4 78.0 s
Horn 68.1 54.4 90.9
Siren 67.2 58.7 78.6
Group1 67.7 54.4 89.6
Group2 61.8 49.4 82.4
Overall 64.0 56.3 74.0 58.4 51.8 66.9

Table 8.1: Table accompanying Figure 8.7.

In Figure 8.7, green are the True Positives, red are False Positives, and yellow
are False Negatives. True Negatives are not shown, as they are not important
to the precision and recall calculations. Table 8.1 describes these values in a
more conventional way. In this table Tree is the name given to the internal
neural network that splits into the first subgrouping, while Horn, Siren, Group1
and Group 2 are the neural networks for these subgroupings. Overall shows
the performance of the entire branching method for this run and threshold
value. In this table we can then get the F1, precision and recall for each neural
network. Tree and Overall are the only variables that both the shuffled and
the non-shuffled tree contain. In the table we can see that the biggest difference
between the branching method and its shuffled variant is the performance of the
Tree neural network. In this neural network the 2 methods have a 14.6% relative
difference between F1 scores. This difference not only makes intuitive sense, the
difference between Siren and Horn is intuitively more clear then between Group1
and Group2, but also shows the reason why the shuffled variant performs worse
as a whole. If we could assume the second set of networks was perfect, getting
a F1 score of 100, the branching method would get a F1 score of 82.9, while the
shuffled method would have an F1 score of 72.3, as such the neural networks
for Group1 and Group2 would have to perform much better than the neural
networks for Siren and Horn.
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(a) Branching errors

(b) Shuffled errors

Figure 8.7: Sankey plot of performance for threshold t = 0.5 for a single run
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The table also show a big advantage of having this tree structure. The struc-
ture of the branching method allows one to use the internal classifications, i.e
the ones given by the Tree neural network (the labels Siren and Horn, or Group1
and Group2 ). These classifications have a better accuracy then the external
classifications, i.e the ones given by the Siren, Horen, Group1 and Group2 neural
networks. In the case of the HornSiren tree a 29.5% relative difference is found
between accuracy of the Tree neural network and the Overall accuracy. In some
cases these internal classifications are very useful. For example, knowing that
a sound is a siren might be enough to assess a traffic situation, even without
knowing if the siren is a police or ambulance siren.

8.1.5 Deep Subset

Threshold 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

Baseline F1 mean 27.2 37.0 44.4 44.6 40.5 34.8 27.8 20.5 11.0
Forward Branching F1 mean 42.9 44.2 45.9 44.1 40.5 36.0 30.5 24.0 13.7
Backward Branching F1 mean 41.6 42.7 44.2 43.0 39.7 35.5 29.8 22.4 13.7

Baseline F1 Standard Deviation 0.3 0.5 0.8 1.1 1.6 1.5 1.4 1.5 1.2
Forward Branching F1 Standard Deviation 0.9 1.1 1.2 1.6 1.5 1.4 1.5 1.9 1.8
Backward Branching F1 Standard Deviation 0.6 0.9 1.3 1.5 1.9 2.0 1.5 1.6 1.8

Forward Branching p-value 0.0% 0.0% 0.5% 13.7% 63.3% 6.1% 0.1% 0.1% 0.2%
Backward Branching p-value 0.0% 0.0% 39.6% 3.2% 19.2% 23.6% 1.0% 1.6% 0.2%
Backward vs Forward p-value 0.1% 0.3% 0.4% 20.3% 26.0% 28.5% 12.1% 2.5% 48.5%

Figure 8.8: Tagging F1 graph for DeepSubset: Baseline vs Branching method

Bicycle, Skateboard, Bus, Truck, ”Air horn, truck horn”, Train horn,
Ambulance (siren), Police car (siren): For this deeper subset shown in
Figure 8.8 and its accompanying table, it can be seen that both branching
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methods again significantly outperform the baseline in F1-score mean on low
and high thresholds, with the biggest difference on low thresholds. In this
case the backward branching neural network has a threshold value t = 0.40
where it performs significantly worse than the baseline method (F1-score mean
is lower and p < 5%). Furthermore, it seems that the backward branching
method performs significantly worse at thresholds t ≤ 0.30 and t = 0.80 than
the forward branching method. As such it is likely that the forward branching
method is the best choice for deeper subsets, or that the backwards branching
method needs to be rethought.

8.2 SED Results

So far we have only focused on the tagging output of the SED systems, all labels
present in an audio-file. However, as the the internal systems used in our branch-
ing neural networks are SED systems, it is important that the performance of
these systems has not been compromised by our focus on tagging resuls. There-
fore we will also look at the SED output of the two different branching neural
network methods, where the SED output also contains the start-time and dura-
tion of each label. We will look at the results on the HornSiren subset, as these
results show the biggest difference for tagging output.

8.2.1 HornSiren

Figure 8.9 and its accompanying table show that the difference between the
baseline method and both branching methods become less significant for SED
than for tagging, as there are now threshold values where the p-score p > 5%
for both methods. This may be due to the fact that internally the system
still uses tagging, not SED, to make decisions. However, similar to how both
branching neural networks behave when tagging, we still see significant (p < 5%)
differences between the baseline and both branching methods for low and high
threshold values in SED in favor of both the branching neural networks.
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Threshold 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

Baseline F1 mean 34.8 41.4 49.1 52.9 52.1 48.8 42.4 33.7 20.5
Forward Branching F1 mean 44.6 48.7 52.2 53.5 51.9 48.3 43.0 35.9 24.1
Backward Branching F1 mean 45.3 48.9 52.3 53.4 51.9 48.8 43.9 36.7 25.0

Baseline F1 Standard Deviation 0.1 0.5 0.9 1.4 1.7 1.9 2.0 1.8 1.8
Forward Branching F1 Standard Deviation 0.8 1.1 1.3 1.3 1.8 2.0 2.2 2.3 2.4
Backward Branching F1 Standard Deviation 0.9 1.1 1.2 1.1 1.5 1.3 1.6 2.0 1.7

Forward Branching p-value 0.0% 0.0% 0.0% 19.2% 68.8% 66.1% 7.0% 2.7% 0.5%
Backward Branching p-value 0.0% 0.0% 0.0% 21.4% 63.3% 68.8% 3.8% 0.4% 0.1%

Figure 8.9: SED F1 for HornSiren: Baseline vs Branching method
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8.3 Other Internal Systems

8.3.1 HornSiren

To test if the internal system can be replaced by other methods, the forward
branching method was also tested on HornSiren with the Convolutional Gated
Recurrent Neural Networks from section 4.4.2 as the internal system. In Figure
8.11 the results of this are compared to the winning method itself. It shows
that the forward branching CGRNN no longer outperforms its internal method
in this case. Although the forward branching method still has a higher mean
than the CGRNN method on the threshold values t = 0.10 and t = 0.20, it
is no longer significant (p > 5%). The biggest change however is that for high
threshold values the mean has gone down significantly compared to the CGRNN
method. Combined with the significantly larger standard deviation, this means
that the forward branching cannot be recommended over the CGRNN method.
However, as can be seen in Figure 8.12, no significant difference between the
max value of the CGRNN and the forward branching method can be found.
(p-value of 48.4% with a Mann-Whitney U test)

A possible reason this internal method does worse is because the internal
systems are exact copies of the original system. However, each of the internal
systems is done on a simpler task. This causes an exploding gradient to occur in
some cases. This can be seen when training the networks. The loss and accuracy
when using the CGRNN method normally have a consistent pattern. However
when this CGRNN system is used on the smaller datasets sudden major changes
can sometimes happen, after which the neural network does not recover, and
convergence is not found. This normal behaviour, and this sudden change can be
seen in Figure 8.10. In this figure the normal gradient shows a mostly decreasing
loss value, and a stable accuracy, while for the exploding gradient the loss goes
up greatly when compared with the normal gradient, while the accuracy is very
unstable.
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(a) Normal (b) Exploding

Figure 8.10: Normal versus Exploding gradient

The results of exploding gradients on the neural networks can be seen when
comparing a single run of the CGRNN forward branching method. The results
of a 2 runs, for the same threshold value can be found in Figure 8.13 and its
accompanying table 8.2. Here we can see that in run 2 the Horn neural network
has not converged, having a significantly lower F1 value. This one non-converged
neural network then decreases the performance of the whole branching neural
network significantly. The advantage for the branching neural network is that
this network could be retrained, however it does mean that if the branching neu-
ral network needs to show consistently better results, the internal system needs
to be tested on the smaller datasets for exploding or vanishing gradients.An
explanation on why these non-converged neural networks are less of a problem
on lower t values is that for lower threshold values the only important neural
network is the internal neural network. As such, for lower threshold values, only
the failing of one neural network will show, not three.
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Node run 1 F1 run 1 Precision run 1 Recall run 2 F1 run 2 Precision run 2 Recall

Tree 86.4 87.9 85.0 87.4 85.6 89.2
Horn 76.3 66.7 89.3 12.0 35.4 7.1
Siren 61.5 51.5 75.5 60.5 54.9 67.2
Total 64.5 59.2 70.9 41.1 52.4 33.9

Table 8.2: Table accompanying Figure 8.13.

Threshold 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

Baseline F1 mean 59.9 62.2 63.3 64.2 64.1 64.2 63.6 62.9 61.9
Forward Branching F1 mean 61.5 62.5 62.7 61.9 60.9 59.0 57.1 54.3 49.5

Baseline F1 Standard Deviation 2.4 2.8 2.9 2.7 3.1 3.2 3.8 3.8 3.0
Forward Branching F1 Standard Deviation 4.5 4.6 5.6 6.5 7.8 8.4 8.6 11.9 14.0

Forward Branching p-value 10.6% 31.2% 71.5% 45.5% 28.5% 15.4% 4.4% 1.6% 0.1%

Figure 8.11: Tag F1 for HornSiren: CGRNN vs CGRNN Branching method
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Figure 8.12: Max Value CGRNN vs Forward Branching
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(a) run 1

(b) run 2

Figure 8.13: Sankeys of different runs for Forward CGRNN method for t = 0.5
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Chapter 9

Conclusion

The goal of this thesis was to test the viability and the properties of our devised
new branching neural network method for improving SED systems. To do this
we asked multiple research questions.

Can we successfully build a classifier with this new Branching Neural
Network method?

It has been shown that an SED can be build with this branching neural
network by building multiple SED systems on multiple datasets for multiple
variants of the branching neural network method.

Does this new method improve in F1 score and error rate on the
current winner of the DCASE 2017 task 4 challenge?

Both forward and backward propagation have shown to be an improvement
over the baseline method on lower thresholds, while maintaining performance on
the other thresholds. This is not only on all covered datasets, but it also applies
to both the tagging task and the SED task. These properties render branching
neural networks a robust choice, as this means that using the branching neural
network methods is the safer choice, especially if the threshold value is too low
in the final implementation of the SED system. On some datasets the branching
neural network methods were even shown to beat out the baseline method on
all thresholds.

The intermediate information provided by branching neural networks, in
the form of the outputs of the inner neural networks, allows one to gain useful
information that the internal method did not provide, even on the thresholds
where no significant difference is found. For example for a SED system built for
smart car systems, knowing that a particular sound is a siren, could be more
useful than knowing if it is a police or ambulance siren in some situations. This
siren output was shown for the HornSiren dataset to be 29.5% more accurate
than the police or ambulance siren output.
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Can current state-of-the-art SED systems be used as the internal
tree nodes for the new method? Specifically the Convolutional Gated
Recurrent Neural Network (CGRNN) method?

The possibility of replacing the internal method was shown by replacing
the baseline method with the CGRNN method. This shows that it is possi-
ble to replace the internal method with one that is more accurate, when it is
formulated, which could increases the accuracy of the system created with the
branching neural network method.

The forward branching method did not beat the CGRNN method while using
it as an internal method on the HornSiren subset, as the neural networks did not
converge consistently. However, it was also not shown that the CGRNN method
beat out the branching neural network method, as results were inconclusive.

What is the training and running time of this method versus the
current winning method? How much does randomly changing the
ontology change the training and running time of the method? Is
this change dependant on the shape of the network?

One disadvantage of the branching neural network method is the increase in
training time, as each decision requires another neural network to train. Luckily
multiple neural networks can be trained an run at the same time, allowing par-
allel computation. With enough computing power there would be no difference
for the forward branching neural network, however for the backward branching
neural network only each layer can be trained at the same time, meaning that
even with enough computing power the minimum training time is l ∗ t, where
l is the number of layers, and t the training time of the internal method. This
means that the running time of the branching neural network methods is de-
pendant on the shape of the tree, and that each decision added will add to the
training and running time of the method, especially if this decision adds more
layers to the tree.

How much does randomly changing the ontology change the error
rate and F1 score?

Another disadvantage of the branching neural network is the importance of
the tree structure. Even though it was shown that the branching method with
an non-optimal tree still performed better on lower thresholds, and comparable
on the other thresholds, than the baseline method, the extended training time
needed for training multiple of the same neural networks might not warrant the
small increase in performance. This however implies that with tuning of the
tree a more optimal tree could be found for a particular dataset.

Does tuning the ontology based on the number of instances for each
class change the results?

All subsets given were balanced subsets, removing the necessity to tune the
ontology based on the number of instances for each class. This however does
mean that it has not been tested how the SED systems performed for a less
balanced dataset.
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9.1 Future Work

As it was shown that the internal method could be replaced with the GCRNN
method, future work includes tuning the branching neural network method
enough that this replacement process has consistent results, for state-of-the-
art methods. This might include a way to decrease the size of the internal
methods to smaller parts designed for the smaller tasks the internal systems
need to perform. It might even be possible for this to be done automatically,
without increasing the training time, maybe even decreasing training time by
simplifying the network.

A second direction the research could be taken to is automatic creation of
the tree by using unsupervised learning methods to find the best tree splits and
branches. If this could be done successfully, the big weakness of bad trees could
be circumvented. This would not only mean not needing the extra tree input
compared to the standard SED methods, but also that tuning of the tree based
on ontologies might no longer be necessary.

A third direction for further research is different applications. Theoretically
the branching method could work on any type of neural network. This means
research could be extended into other systems built with neural networks, like
object detection systems, which are systems that use neural networks to detect
the presence of objects in pictures. This could even be done in such a way that
some internal choices use one system whilst others use another. For example
that the branching neural network consist of both object detection nodes, and
SED nodes.

A fourth direction is towards using more information from the internal
groups. It has been shown that internal groups have higher performance than
the external groups. We could therefore use a system that needs multiple groups
to agree before the data flows towards the next neural network to see if this
would increase performance. This situation is pictured in Figure 9.1, where
both Red and Fruit classifications are necessary before reaching Red Fruits.
This could even be combined with multiple different systems, where both a
sound and a object need to exist before continuing onto the next layer.

Tree

Red

Fruit

Red Fruits

Strawberry

Apple

Figure 9.1: Joining branches

A fifth direction for further research is a different way of threshold tuning.
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In the work so far we have only tuned in a forwards direction, from the root
of the tree each network was tuned in order. However, another option becomes
available in our tree structure. We could tune deeper networks first, and after-
wards tune backwards. This cascading t value tuning would allow the tuning of
the internal networks to have more information about the performance of the
later networks, and in turn increase the performance of their tuning. This allows
us for example, to attribute a different value to data labelled Police car (siren)
that goes to the Siren network but ends up in the Ambulance (siren) category
in the final decision, than if that data would have gone to the Horn category.
Creating a tuning method that can take these special cases into consideration.

A sixth direction is analyzing the effect the balancing the datasets. In the
current case the datasets were all balanced, however this means the results only
follow for balanced training sets. Of course all datasets can be balanced by not
using all the data in the training set. In fact that is how the balanced train-
ing sets for this research were created. However another method of balancing
could be by multiplying data points, or using partial audio files to duplicate
labels that are not abundant. However, it might not be necessary to balance
the datasets at all. By doing further research in this direction the viability for
the branching methods can be found for unbalanced datasets.

The repository for the code, so that this future work can be performed, can
be found at:
https://git.science.uu.nl/K.A.Schalkwijk/branchingNN
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