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Abstract

Probabilities of thunderstorm occurrence and conditional probabilities of lightning intensity over The Netherlands are
forecast using statistical post-processing with predictors derived from the operational non-hydrostatic numerical weather
prediction model Harmonie, at lead times up to 45 hours. Quantile regression forests (QRF) is compared with logistic
regression (LR) for thunderstorm occurrence forecasts and with extended LR for lightning intensity forecasts. Using
different sets of predictors that these statistical methods may select, it is demonstrated that pre-selection of predictors
based on physical understanding and simultaneously exploiting QRF as machine learning tool can help improving statistical
post-processing models. QRF is demonstrated to be beneficial for the predictions, with more skillful forecasts than LR for
thunderstorm occurrence. Lightning intensity predictions are influenced by inhomogeneity of lightning detection datasets;
despite inhomogeneity, skillful predictions can be made with both extended LR and QRF. The regional maximum of
Modified Jefferson index and most unstable CAPE are found as best thunderstorm occurrence predictors and the regional
minimum of Bradbury index and maximum of K-index emerge as best for lightning intensity. Neither most unstable CAPE
nor microphysical predictors (graupel, snow) are essential for thunderstorm occurrence prediction.



Summary

Severe thunderstorms can disrupt society. Therefore, Royal Netherlands Meteorological Institute
(KNMI) attempts to forecast these events and issues warnings for The Netherlands. To assist forecasters
with objective probabilistic forecasts, a statistical tool has been developed previously. This statistical tool
has been forecasting whether a thunderstorm occurs and additionally the lightning intensity for about
fifteen years.

The current statistical tool is outdated; the input of the tool will not be available anymore by 2020.
Moreover, the statistical methods have advanced since development of the statistical tool. Machine learning
is now widely applied. Weather simulations by numerical weather prediction models have also become
more realistic, importantly due to a finer resolution of these models. Therefore, an update of the statistical
tool for thunderstorm forecasts is necessary.

To find out the best strategy for making the statistical tool a traditional statistical method, logistic
regression, is compared to a machine learning method. The machine learning method is called quantile
regression forest (QRF) and consists of many decision trees. Each of the trees split a dataset in many small
parts (”leaves”) differently as if they are hundreds of different jigsaw puzzles of same picture; all the trees
issue a forecast and these forecasts are aggregated into one forecast. Moreover, it is tested whether specific
important information about the physical state of the atmosphere in the weather simulation is essential
or not. Output from daily weather simulations over the summers of 2015-2017 with the KNMI weather
model Harmonie for the next 3 to 45 hours has been statistically connected to lightning detections.

It is found that the machine learning method (QRF) improves the probabilistic forecasts about whether
thunderstorms will occur or not, compared to the more traditional method. One of the main reasons for
this is that the machine learning tool can exploit multiple variables fruitfully, even if they are statistically
strongly related to each other. For forecasts of lightning intensity, it cannot be demonstrated that the
machine learning method is better than the more traditional method. A main reason is that the operational
set of lightning detection sensors has changed in time. Therefore, the number of detected lightning
discharges is much larger in 2016 and 2017 than in 2015 and it makes forecasting the correct (measured)
lightning intensity by this system a harder task.

From the physical point of view, it is demonstrated that none of the information represented by
individual physical variables is essential to the new statistical tool made. If a certain type of information
is removed, it is largely buffered with related information. High lightning intensities are forecast in an
air mass that is warm and contains a lot of moisture, in which aspirant storm clouds would have the
tendency to rise fast in the vertical direction once they are formed (due to instability). This is consistent
with expectations. Lastly, the so-called Modified Jefferson index is the most important variable to isolate
potential thunderstorms from non-thunderstorms situations and it is also easy to compute.
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1 Introduction

1.1 Aim

Thunderstorms are important phenomena to forecast, because these can be hazardous to airplanes due
to the strong turbulent motions in and around convective clouds, but also due to the risks involved when
persons, buildings or infrastructure are hit. More importantly, accompanying phenomena like wind gusts
in excess of 25 m/s, (large) hail and flash floods may disrupt society. These phenomena contribute strongly
to European insurance pay outs [Munich Re, 2016].

Recently, numerical weather prediction (NWP) models have increased horizontal resolutions to simulate
deep convection explicitly. Additionally, statistical methods for post-processing of NWP output have
advanced. We aim to utilise this by developing new probabilistic (severe) thunderstorm forecasting models
and compare these with existing model set-ups. The focus is to find out how to make optimal thunderstorm
forecasts based on NWP output for up to 45 hours ahead, by first of all comparing the machine learning
technique quantile regression forests with logistic regression and second understand which physical variables
simulated by the NWP are most relevant. We forecast thunderstorms over The Netherlands in the period
from April 15th to October 15th, as the thunderstorm season usually lasts from May until September in
The Netherlands and surrounding regions [Taszarek et al., 2019]. The intention is to predict probabilities
of thunderstorm occurrence optimally and if thunderstorms occur their intensity, which is based on the
lightning detection system that KNMI uses.

1.2 Statistical post-processing: why and how?

Numerical weather prediction model output can be used in its direct form for some specific purposes,
although some post-processing has to be applied in all cases: for example re-gridding from NWP levels
to near-surface values. Nonetheless, there are several reasons why the numerical weather model will not
represent exactly the conditions that are observed at a measurement site:

1. The numerical model represents grid box average conditions, whereas the weather station represents
a point value.

2. The model may have a bias (systematic error) for some predicted variable in a certain region.

Furthermore, there are additional reasons to do statistical post-processing:

3. A deterministic forecast with direct model output cannot lead to probabilistic forecasts, without a
statistical post-processing step.

4. Statistical relationships can take into account some variability around the direct model output to
account for model errors that add some uncertainty to the forecast. Usually the uncertainty is also
incorporated by making ensemble predictions.

One could even argue that statistical post-processing is even more crucial for thunderstorms and deep
convection, as it is a very non-linear phenomenon for which NWP models have large problems in solving
processes and locations of occurrence. Large scale average conditions are typically predicted better (see
for example [Bauer et al., 2015]). Therefore, an aggregation step in post-processing model output is very
helpful in making lightning forecasts.

For many purposes weather forecasts can thus be improved by not using direct or raw output, but
by statistically connecting NWP model output with observation datasets, here lightning detections. This
can be done in a very direct way by deriving a statistical relationship, for example between temperature
records at a weather station and some temperature output for a nearby gridpoint at surface height. The
observed temperature record in that example is a predictand (dependent variable) and the NWP model
output for temperature at a nearby point in space is the predictor (independent variable). This statistical
relationship can often be improved by including multiple predictors, such as relative humidity and/or wind
speed when improving temperature forecasts. In general, it can be said that statistical post-processing
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uses a set of variables (predictors, typically model output variables), that may result from multiple NWP
models, to predict observational records of the predictand, using a statistical relationship. The prediction
based on the statistical relationship that was obtained has to be verified with an independent verification
set from the same type of observational record at the same locations as for which training was done.
Another improvement can be including ensemble information for statistical post-processing. Since grid
boxes, biases and errors in physics vary between different NWP models, one should in principle update a
statistical post-processing model when NWP models are updated.

In statistical post-processing, meteorology and statistics go hand in hand. This means that statistical
optimisation approaches are applied in standard studies. However, one also wants to take the meteorolog-
ical relationships into account. Only by using advantages of knowledge in both disciplines, one can come
close to good models that work in general cases and take all atmospheric variability and uncertainty well
into account. The statistical part involves choosing appropriate statistical models, having well defined,
useful and computationally efficient algorithms for fitting predictors, doing reliable cross-validations and
bootstrapping to assess uncertainty and modifying meteorological variables such that they are optimally
in line with assumptions of statistical models, for example using mathematical transformations. Cross-
validation is defined as the procedure of making (often three) subsets where clearly dependent samples
are kept in the same subset and then using these subsets for both training and testing statistical models.
Each of the subsets is then once used as verification set and twice as training set. Thereby spatial correla-
tions, correlations among predictors and correlations in time in predictors and predictand have to be taken
into account. The meteorological task involves deriving meteorologically relevant and potentially comple-
mentary predictors. Furthermore the meteorological task involves interpretation of what relations among
predictors are important and what the statistical models imply for forecasting certain weather phenomena,
here thunderstorms and their intensity. It is important to understand that two different predictors with
very similar meaning are from the statistical point of view seen as covariates that may also complement
each other in some cases and in meteorology, the same two variables can be seen as two different ways of
mapping the same type of (potential) atmospheric behaviour.

1.3 Previous thunderstorm post-processing models

First, some recent studies using statistical techniques for post-processing of short-term NWP output
and/or satellite and radar imagery for convection-related weather will be reviewed. This starts with a
discussion of the previously made and currently still operational thunderstorm post-processing model used
by the Royal Netherlands Meteorological Institue (Dutch: Koninklijk Nederlands Meteorologisch Instituut,
KNMI), followed by results obtained in studies comparing new statistical techniques for post-processing
and more traditional statistical techniques in Section 1.4.

In the 2000s, a thunderstorm forecasting system was built at KNMI based on NWP output, first op-
timising the choice of input variables for so-called logistic regression equations (Section 3.2.1) from a list
of potential predictors and then optimising the statistical equations [Schmeits et al., 2005, 2008]. In this
forecasting system, ECMWF convective precipitation is the most important predictor for thunderstorm
occurrence forecasts followed by Hirlam instability indices, mainly CAPE (convective available potential
energy), Jefferson index and slightly less frequently Boyden index. [Haklander and Van Delden, 2003]
assessed instability indices as thunderstorm occurrence predictor over The Netherlands and Boyden index
and CAPE of the most unstable layer (MUCAPE) also appear to be highly ranked. They have used
radio sounding data to compare instability indices. Bradbury index was most useful as lightning inten-
sity predictor by [Schmeits et al., 2005, 2008]. Aforementioned predictors are briefly introduced in Box 1.
Further discussion of thunderstorm prediction and some relevant theory will be the main topic of Chapter 2.
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Box 1: A brief description of some important thundstorm predictors
Convective instability indices are predictors for convective weather, such as thunderstorms, that have
been developed mainly in 1950s and 1960s, before numerical weather prediction was common. Obser-
vations made by a weather balloon would provide information on whether these types of weather could
happen later that day. Frequently used variables in convective instability indices are for example air
temperature, dew point temperature, potential wet bulb temperature and geopotential height at stan-
dard levels. Therefore one could say they are bulk approximations to the state of the atmosphere. A few
common examples are now discussed.

The Boyden index is defined as

Boyden index = 0.1(z700 − z1000)− T700 − 200

Here, zlevel indicates the geopotential height of the respective pressure level and Tlevel indicates the
temperature at the respective level. Note that thickness between 1000 hPa and 700 hPa layers is propor-
tional to the mean temperature in this layer, which means that Boyden index relates closely to a vertical
temperature gradient.

The Bradbury index is defined as

Bradbury index = Θw,850 −Θw,500

Here, Θw,level is the potential wet bulb temperature at the specified pressure level. It describes potential
instability of the atmosphere. Potential instability is a type of thermodynamic instability in which
conditions are favouring atmospheric convection after a large scale lifting process has taken place (that
has brought a lower layer from which convection would initiate to saturation).

The Jefferson index is an index that describes instability of the 925 (also used: 850 and 900) to 500
hPa layer in a more empirical way.

Jefferson index = 1.6Θw,925 − T500 − 11

It does not directly compare a parcel subject to latent heat release with its environment, but leads to a
good discrimination between stable and unstable conditions leading to convective storms if latent heat
can be consumed. A modified version of this index includes the dew point depression ( 1

2 (T −Td)) at 700
hPa, to account for dilution and cooling of rising parcels by entrainment when mid-levels are very dry.

Convective available potential energy (CAPE) is the vertical integral of the buoyancy of a parcel,
assuming an adiabatic process. It has interpretation as the maximum kinetic energy a parcel initially
at rest could theoretically acquire, without interaction with the environment and is therefore not a
convective index, but has a clear dynamical meaning.

CAPE =

∫ LNB

LFC

g
Tv,p − Tv,env

Tv,env
dz

The level of free convection (LFC) is the level where the parcel would be neutrally buoyant, before it
becomes postively buoyant. The level of neutral buoyancy (LNB), also known as equilibrium level,
is where the parcel would be neutrally buoyant at the top of a CAPE layer. When a parcel is negatively
buoyant (cooler than its enviroment), this integral is called convective inhibition (CIN); the upper
limit of the integral is then LFC.

A more complete overview of convective indices and their interpretation is given in [Haklander and
Van Delden, 2003]. Definitions of all predictors can be found in Appendix A.
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Figure 1: Map of The Netherlands with KOUW-regions drawn as boxes with an indication of the region number.

The intention is to make an update of the currently operational probabilistic thunderstorm forecasting
system for weather warnings/alarms (acronym: KOUW), using the same KOUW-regions and somewhat
similar predictors. KOUW-regions are twelve boxes that were defined to be used in operational weather
forecasts by KNMI, each with an area of approximately 7000km2 and together they cover the Netherlands,
bordering parts of Belgium and Germany and the North Sea coastal region (Figure 1). Experiments are
done with more potential predictors from NWP output, but in contrary to the 2008 system advected radar
and lightning information will not be used as predictor sources.

It is explicitly pointed out that the forecast skill cannot be directly compared with the previous post-
processing models for thunderstorm forecasts: first of all, the current lightning detection system ”KLDN”
that is operational at KNMI is strongly different compared to the former lightning detection system
(”FLITS”; see [Noteboom, 2006]). Second, the used NWP model, Harmonie, solves deep convection
explicitly; the previous KOUW-system was based on predictors from Hirlam and ECMWF in which all
convection was parameterised. Third, the strategy applied to get to final post-processing models is slightly
different. One of the consequences of this third point is that no separate logistic regression equations for
thunderstorm occurrence are derived for each of the KOUW-regions1.

Regarding ”FLITS” and ”KLDN” lightning detections, [De Vos, 2015] has found similarities, but also
many differences. The relation between detections obtained with both sets is very obscure, such that both
detection systems would classify events differently, even if events are compared to the climatology of their
own detection system. The new detection system may have more problems in discriminating between
severe and non-severe storms using discharge rates. Results from [De Vos, 2015] have indicated that
this was indeed the case for the 2010-2014 KLDN lightning intensities in comparison with corresponding
FLITS lightning intensities, observations of hourly rainfall and hourly wind gust at nearby KNMI weather
stations.

1Both separate fits per region and combined fits for all regions have been experimented with, using the machine learning
technique that we apply, namely quantile regression forests. Since the average verification scores were slightly worse with
separate fitting, variability between minimum and maximum scores overlapped strongly, because the Dutch topography is
relatively homogeneous and because occurrence and non-occurrence would be more in balance, combined fits were preferred.
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1.4 Recent developments

However, as mentioned statistical post-processing methods and NWP models have advanced. This means
that the two most important factors of added value due to recent developments are the implementation
of machine learning methods (in particular quantile regression forests, abbreviated as QRF; [Breiman,
2001] and [Meinshausen, 2006]) and higher resolution NWP output, with related model modifications.
Due to the model resolution (2.5 km in Harmonie versus 11 km previously in Hirlam) deep convection is
solved explicitly with Harmonie. It leads to an explicit description of vertical velocity along with more
direct and detailed description of cloud processes [Bengtsson et al., 2017]. A large dataset with from
a non-hydrostatic NWP model has not been used so far to study thunderstorm occurrence predictors
as far as we are aware. In addition, it should be realised that the general forecasting performance of
NWP models has improved in time [Bauer et al., 2015], which should also contribute to (slightly) better
forecasting skills after post-processing when a common reference is used. However, as opposed to these
reasons to expect better performance, a reason for which performance at high intensities could be worse,
is the non-stationarity of the new lightning detection system data that is operationally used at KNMI.

Comparing QRF and more traditional post-processing techniques like (extended) logistic regression for
numerical weather prediction has recently been done by several authors. QRF is a statistical technique,
in which typically several hundred decision trees are created with a dataset; each of the trees makes a
prediction of the outcome of unseen samples and the whole forest gives a robust prediction.

The problem of severe convective storms has been investigated over The Netherlands from the rainfall
perspective by [Whan and Schmeits, 2018]; in this study, similar Harmonie output was used as potential
predictor set from an older model version. In their study, it was amongst others found that the QRF method
can profit significantly from adding more variables than just precipitation for forecasting storms, whereas
more traditional methods usually gain less information from the indirect predictors. For our lightning
intensity statistical post-processing study, the distinction between direct and indirect predictors is not
clear, because NWP models are not able to simulate lightning discharges explicitly. In other words, direct
predictors are non-existent. In traditional statistical post-processing models, the non-linearity in predictors
cannot always be fitted appropriately, for example for bimodal or in general multimodal distributions. In
some cases this can be partly corrected using transformations. But the non-linearity is no issue for QRF.
A predictand can also be bi- or multimodaly distributed, when applying QRF to (ensemble) forecasts
[Taillardat et al., 2016]. For the thunderstorm forecasts multimodal distribution could only be potentially
present in conditional lightning intensity forecasts, because forecasting it is a continuous regression task,
whereas thunderstorm occurrence forecasts involve a binary classification. Additionally, fits that are
biased towards certain percentiles (bulk) of the distribution are prevented in QRF; also a result found in
the aforementioned study.

A drawback of the QRF method that was found by [Whan and Schmeits, 2018], is that it cannot
issue high probabilities for climatologically extreme values. Here q0.97, the 97th percentile, was mentioned
in particular. This is because QRF is not able to isolate the tail of the distribution, beyond q0.97, very
sharply from the rest of the distribution. In other words, when an attempt is made to isolate the tail of
the distribution (of hourly precipitation) from the bulk with the predictors, the tail is still mixed with a
portion of the bulk of the distribution. Note that this happens with other methods as well, otherwise a
method would be found superior to QRF and other methods. It is interesting to find out what quantile
of discharge rate can be forecast skillfully (and what reliably) using a conditional predictand, as in this
study. Nonetheless, since a thunderstorm forecast is made instead of hourly precipitation here, results are
not directly comparable. In the QRF framework, the testing that was done by [Whan and Schmeits, 2018]
will be expanded, by testing a wider range of settings to optimise the predictions done by QRF.

Promising results have also been found in applying the random forests (RF) technique to the problem
of convective initiation, using satellite imagery and NWP output data combined [Mecikalski et al., 2015].
Like QRF, RF is a method that uses hundreds of optimised decision trees based on a dataset to predict
the outcome of unseen samples. They conclude that NWP and satellite retrieved information go hand in
hand when improving nowcasts. Despite their benefits when nowcasting convective initiation, for longer
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time scales (12-48 hours lead time) the satellite imagery is not usable, because even long lived convective
systems will hardly survive for such a long time. Therefore, this study will rely on NWP output data. One
disadvantage of their approach is that the satellite imagery fields have a very high resolution, which means
that there are many data available for each case; this limits the number of cases processed when having
the same computational capacity limits, with spatial coherence potentially leading to highly correlated
subsamples in the dataset. The approach that will be applied here, namely the lower resolution by
aggregating NWP grid cells to KOUW-regions, leads to higher predictability.

A very similar study to [Mecikalski et al., 2015], was done by [Ahijevych et al., 2016]. They forecast
initiation of mesoscale convective systems (MCS) over the US with RF. An MCS is an example of a
severe thunderstorm case and is intended to be forecast with the post-processing models, although these
convective systems do not fully overlap with the high lightning intensity events. Apart from CAPE as an
instability indicator, their study found that important predictors are terrain height (not so relevant for the
Netherlands), skin/surface temperature, precipitable water, valid time and radar imagery extrapolation.
Model precipitation appeared in the middle of the predictor ranking, whereas [Schmeits et al., 2005, 2008]
find convective model precipitation as most important predictor. The convective indices in their potential
predictor set were much more restricted than ours. Not all of the important predictors are important
in every US region. The more homogeneous terrain characteristics in The Netherlands imply that The
Netherlands would have a clearly different importance ranking if the same predictors would be used for
the same forecasts.

Another important finding in their study was that the ratio between occurrences and non-occurrences
of events (that means threshold exceeded versus not exceeded) should not be too small. Their full training
dataset, with 0.3% mesoscale convective system initiation samples, was giving worse results than when
the ratio was lifted to 30% using a subsampling strategy. In our study, the ratio of 0.3% corresponds
to forecasting conditional severe thunderstorm probabilities at extreme intensities (q0.997). An additional
advantage of the use of conditional probability of ligtning intensities, is that inconsistency in probabilistic
forecasts is impossible (for example 35% probability of a thunderstorm and 40% probability of a thunder-
storm with at least 50 discharges per 5 minutes is impossible).

Summarised, it can be said that different studies that relate closely to this study have been done.
They have statistically post-processed NWP output and in some cases additional satellite/radar data to
forecast deep convection and its severity. Satellite and radar imagery are useful tools in the first few hours
and beyond NWP output such as instability indices and precipitation are useful. Which instability index
contains the most appropriate information, may depend on many factors and notably on the predictand.
CAPE is often used and appears informative in these cases. Additionally, (Q)RF has been most extensively
applied for the very short term (nowcasting) in the context of atmospheric convection.

1.5 Set-up of this study

Aforementioned summary of findings from previous studies addresses some of the research interests; the
general purpose of this study is to understand how thunderstorm forecasts can be improved on the short
term up to +45 hours, without the specific interest to improve their nowcasting. This is the main feature
of this study and therefore conventional thunderstorm predictors, such as CAPE, Boyden Index and other
instability indices, and moisture and precipitation indicators (see Appendix A) are investigated and the
added value that combinations of variables and transformed variables can have, for the applied techniques:
logistic regression, extended logistic regression and QRF.

The next aim is to understand thunderstorm predictors in the Netherlands and surrounding areas better
for forecasting applications, potentially with new predictors. This is mostly in line with the study by [Whan
and Schmeits, 2018], but with slightly different experiments and a wider variety of potentially interesting
predictor variables. A main focus in the predictor context is whether the microphysics representation
in a non-hydrostatic model (Harmonie) and CAPE as an integrated measure of buoyancy when lifting a
parcel are of essential value compared to for example non-integrated instability predictors for thunderstorm
forecasts.
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Having introduced statistical post-processing and some previous studies, the following chapter will cover
essential theory on how thunderstorms begin and can be forecast. This is followed by the third chapter on
the datasets and specific statistical post-processing methods that are applied. The fourth chapter describes
thunderstorm climatology, with some climatology conditional on time and place to assist interpreting the
statistical models and some elaboration on homogeneity of the lightning detection data. The results by
statistical class of the post-processing models will be discussed in Chapter 5 and in Chapter 6 the physical
interpretations and predictor experiments will be presented in more depth. Some extra figures can be
found in appendices. Then some case studies are done in chapter 7 to show potential weaknesses of the
statistical models. This is followed by some final discussion in Chapter 8 and conclusions (Chapter 9).

For data analysis and model fitting, the programming language R is used; specifically relevant packages
are cited.
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2 Thunderstorms: physical mechanisms & numerical prediction

After introducing developments in numerical weather prediction from the last years with Harmonie as
the example used (Section 2.1), this chapter discusses theory about how thunderstorms and accompanied
lightning intensities can be forecast (Section 2.2). In addition, the “most unstable” and “surface-based”
layers used are defined (Section 2.3). One of the interests of this study is to find out whether new useful
potential predictors can be composed from previously used potential predictors. The three categories
of new predictors are described in Section 2.4, with in addition a short summary of available Harmonie
variables in that section. Lastly, NWP errors with which statistical post-processing models deal will be
discussed as well (Section 2.5).

2.1 Simulation of (deep) convection with Harmonie

In recent years, numerical weather prediction has advanced: non-hydrostatic models are widely used.
Since Harmonie is a non-hydrostatic model, it simulates vertical velocity as a state variable and is able to
solve deep convection explicitly (see Chapter 1). Shallow convection still has to be parameterised with a
resolution of 2.5 km [Bengtsson et al., 2017].

With the microphysical parameterisation Harmonie can simulate various types of hydrometeors within
showers separately, namely rain, snow, graupel, cloud ice and cloud water [Bengtsson et al., 2017]. The
hydrometeors are involved in lightning initiation according to literature, as will become clear in Section
2.2. With Hirlam and ECMWF, these hydrometeors were not separately simulated and could not be
used as separate thunderstorm predictors. As a consequence of improved hydrometeor representation, the
interaction of hydrometeors with other processes is also affected. Other parameterisations have also been
modified; a detailed description of the version of Harmonie that is used, is provided by [Bengtsson et al.,
2017].

Because of the high resolution of Harmonie output, in practice regional minimum, maximum and/or
mean of physical fields will be used as predictors for thunderstorm forecasting models. The exact way of
deriving such statistical measures from Harmonie output is described in Chapter 3.

Some physical predictors that are identified to relate to thunderstorm occurrence, lightning intensity
and/or dynamics of convective cells and are derived from Harmonie output will be printed in italic in the
next section.

2.2 Theory and forecasting of thunderstorms and deep convection

2.2.1 Initialisation of lightning discharges

Physical mechanism
The initialisation of the occurrence of lightning discharges in the atmosphere is very strongly associated
with deep convection and the presence of various hydrometeors in convective clouds, namely ice, water
droplets, snow and graupel (soft hail). The first focus will be the understanding of the role of hydrometeors
in the occurrence of lightning in convective clouds.

Originally, calculations by [Takahashi, 1978] based on his experiments have confirmed that the inter-
action of cloud ice and graupel upon collision is responsible for the initialisation of lightning discharges
in sufficiently strong updrafts. By accumulating electrical charge in regions with different cloud tempera-
tures, the electrical field that triggers a discharge is thought to be produced. Regions of the cloud around
-10 ◦C and around -20 ◦C are often transition regions with a negative charge being observed between
these isotherms and positive charge outside this temperature range [Takahashi, 1978]. A discharge can
be produced when the negative charge region is opposed on both sides by the region positive charge with
sufficiently strong gradients in electrical charge. However, the exact mechanism that leads to a discharge
is currently not known [Lopez, 2016].
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Literature above suggests three important criteria for thunder occurrence based on the role of convective
updrafts and hydrometeors within: presence of cloud graupel and ice content; presence of thermodynamic
instability that could cause vertically developed clouds with sufficiently strong updraft; a convective cloud
top temperature of about -20 ◦C or lower.

Numerical modelling with NWP output
Whether the last of the three conditions is fulfilled in Harmonie is not directly represented in the Harmonie
dataset, but the first two are; as both cloud ice and cloud graupel content2 are simulated by Harmonie, it
can directly be derived whether the first criterion could be fulfilled in the model given a correct forecast.
The second criterion of thermodynamic instability is well represented by CAPE, because that is a vertically
integrated measure of buoyancy of parcels. Additionally, for the third criterion cloud top temperature can
be seen as approximately a function of the thermodynamic conditions in the feeding air mass and the
height to which the shower could reach; these two are well reflected by the air mass properties in the
source air, namely the potential wet bulb temperatures Θw in lower layers of 850 and 925 hPa, and level
of neutral buoyancy. Level of neutral buoyancy (LNB) is the top of a positively buoyant layer when a
parcel is (commonly adiabatically3) lifted; above it rising parcels will decelerate, but cloud parcels with
significant upward velocities at this level will clearly temporarily overshoot this level. Some additional
processes also play a role in determining the eventual cloud top temperature, such as entrainment and
phase transitions occurring in the cloud.

The convective cloud top temperature could in be derived in a more direct way from Harmonie output,
because a cloud top temperature is calculated from the pseudo infrared satellite image. Processing it to
convective cloud top temperatures would require masking of the top temperatures with vertical velocity
field to extract convective clouds and hence combining Θw and LNB to approximate it is easier.

Alternative ways to exploit the aforementioned three physical criteria for modelling occurrence of
lightning discharges will also be fruitful. [Lopez, 2016] uses primarily CAPE as proxy for updraft velocities
and derived graupel content in convective clouds to parameterise discharge densities for ECMWF IFS. In
addition, derived liquid water and ice content are used.

2.2.2 Ingredients of deep convection

Physical mechanisms
Three main ingredients have been used in literature to explain deep convection and assess potential initi-
ation ([Johns and Doswell, 1992] and [Doswell et al., 1996]):

1. Steep lapse rates governing thermodynamic instability (covered in Section 2.2.1);

2. Moisture in the layer from which storms are extracting potential energy due to the thermodynamic
instability;

3. A lifting mechanism that allows a parcel to be lifted to level of free convection.

This lifting mechanism can both act on large synoptic scale and mesoscale. It is important to realise that
both enriched moisture and upward motion enlarge the thermodynamic instability locally and also decrease
convective inhibition and related potential suppression of convection by an inversion, by increasing the
probability of parcel condensation with subsequent latent heat release and increasing CAPE.

Besides this, deep convection is a very non-linear process which is influenced strongly by neighbouring
environment; shallower convection can be a moisture source for the lower part of the free troposphere in a
convective environment, but sink for the boundary layer. Furthermore, cold pools are important initiation
mechanisms due to which convective cells have interaction (see [Markowski and Richardson, 2010]).

2Only graupel was selected as very important, because the frozen cloud content predictors appeared to correlate strongly
and not complement each other so strongly

3In the applied computations entrainment is taken into account, as described in Section 2.3 and the adiabatic assumption
vanishes.
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Lifting mechanisms can both arise on small and large scales; extratropical cyclones usually induce low
level convergence near their centre and are accompanied by ascending motions, especially if they are deep-
ening or are deep. Using quasi-geostrophic theory, lifting processes that are involved can be understood.
Warm air advection (or thickness advection) and cyclonic vorticity advection, which occur near centres
of low pressure systems and mainly at frontal boundaries, can be identified as diagnostics for large scale
lifting. In addition there are small scale lifting processes, which may relate to subregions of large scale
lifting and to differential diabatic heating of an air mass. Differential diabatic heating can lead to smaller
scale (mesoscale) low pressure systems and/or convergence zones in the lower troposphere. An example
of differential diabatic heating and resulting mesoscale ascent near a heated region is the sea breeze circu-
lation.

Numerical modelling with NWP output
The previous part of this section suggests that besides different indices of convective instability, water
vapour itself and enrichment in water vapour can help predict thunderstorm occurrence; moreover predic-
tors can be used to get information about both lifting motions and water vapour content simultaneously.
Water vapour convergence in the boundary layer is typically caused by convergent flow in the boundary
layer, which has a typically higher water vapour content than the free troposphere; regions with water
vapour convergence are expected to have (relatively) high integrated water vapour contents or precipitable
water (PW) as well, because most of the moisture content is typically in the boundary layer. Higher
probabilities of hydrometeor contents in clouds and low convective inhibition would often be expected in
the same regions.

The large scale lifting processes be induced from pressure fields, vorticity fields and temperature fields.
Unfortunately, thickness advection and cyclonic vorticity advection are not available from Harmonie4.
Typically, lifting or ascending motions are also associated with dropping pressure/geopotential heights in
the lower troposphere (negative tendency and lower values). Apart from direct diagnosis with vertical
velocity or thickness advection and cyclonic vorticity advection, information as water vapour convergence,
mean sea level pressure and pressure tendency could be proxies for lifting mechanisms as well.

2.2.3 Additional potential sources of predictability

Physics
Thunderstorm climatology could give information about likelyhood of thunderstorms, because The Nether-
lands typically has a northwest-southeast or north-south gradient in occurrence and intensities of thun-
derstorms [Taszarek et al., 2019]. Additionally, thunderstorms in late summer and autumn are typically
different in being concentrated on the coast and less intensive in terms of lightning intensity than severe
summer cases (discussed in Section 2.2.5). This means that there are arguably different thunderstorm
climatologies in the Netherlands and the proximity of the coast could therefore be a successful predictor.

Apart from the suggested physical fields that can give information on the occurrence or initiation of
thunder in a convective storm, the dynamics that is known to explain the initiation and behaviour of deep
convection cells can likely help us understanding where thunder could occur. The most important variables
for dynamics of thunderstorms are arguably deep layer wind shear and storm relative helicity (from here
on just helicity), which explain mode of convection. They can also affect initiation and occurrence of
thunderstorms [Markowski and Richardson, 2010]. Therefore they should be physically informative in our
study.

Numerical modelling with NWP output
The coast variable is determined as being true for KOUW regions 1-5 (North Sea, Wadden Sea and IJssel
Lake) and 7 (North Sea coast, southern part); see Figure 1 in Chapter 1. For region 10, one can discuss
about whether it is coastal or not, covering the Westerschelde mouth and a tiny bith of North Sea. It was
chosen to call this an inland region, as only a very small part is actually sea.

4It was investigated whether ECMWF predictors of the indicators of upward motion and ECMWF convective precipitation
would add value to the post-processing models, but they were assessed as not strongly complementary to the available
Harmonie predictors. Similarly, mean, maximum and minimum of vertical velocity at about 3.5 km height in Harmonie have
been investigated, but their information did not add much to already available predictors as column graupel and CAPE.
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Unfortunately, the directly derived deep layer shear from near-surface to 6 km is incorrectly formulated
in the Harmonie reforecasting output and exactly equal to the 500 hPa wind speed. However, since 850
and 500 hPa wind speed and direction are available, the bulk shear over this layer can be derived. This
shear measure is less informative than deep layer wind shear with the lowest layer of the atmosphere also
included, when convection is triggered from the surface. This is usually from around noon to just before
sunset. Helicity over the lower 3000 m is also calculated from Harmonie output.

2.2.4 Potential instability

Physical mechanism
The last point that needs to be made is that CAPE assess conditional instability, which could exist shortly.
It can be preceded by purely potential instability. Given that potential wet bulb temperature Θw decreases
with height, potential instability exists. The instability is released with lifting after condensation in a
previously unsaturated layer. It can occur because the upper layer will continue cooling at dry adiabatic
pace, while the lower layer already gets saturated and subsequently cools slower with height, due to latent
heat release. After condensation of the lower layer the lapse rate increases above that saturated layer,
eventually leading to (conditional) instability.

Numerical modelling with NWP output
If the larger scale condensation is not simulated by a model, the conditional instability might never be
released in the model but purely potential instability that may be seen by the NWP model and subsequent
condensation process would still allow for thermodynamically unstable parcels to be lifted over great depth
in reality. Potential instability can be assessed with Θw using the Bradbury index and is by definition
present with conditional instability. In wet climates such as The Netherlands, it is typically strongly
correlated with some other 500-850 hPa indices, mainly Adedokun1 Index. The Adedokun indices are in
essence just an expression of a temperature difference that a parcel from below would have compared to
its environment if lifted adiabatically to 500 hPa. The strong correlation does physically make sense in
wet climates; an explanation of that goes beyond the scope of understanding predictions of thunderstorms
and deep convection over The Netherlands.

2.2.5 Lightning intensity

Physics
Arguably, lightning intensities can differ among convection modes, since mesoscale convective systems
with squall lines can cover a large area of many thousands of square kilometres leading to potentially high
intensities, whereas some small so-called single cells can cover much smaller areas and discharges can occur
in restricted subregions. The area covered by convective storms is usually the biggest around LNB, due
to the expansion of the parcel during its convective rise. This is because the pressure at LNB relative to
the pressure in the inflow provides an estimate for parcel expansion during its convective rise. In addition,
(storm relative) flow near the top of showers has impact on the area covered by convective cells. Therefore,
the area covered is amongst others a function of level of neutral buoyancy and upper atmospheric and
storm relative flow. Consistently with aforementioned arguments, one expects that smaller cells isolated
cells especially during cold air advection events over the North Sea produce much lower lightning intensities
than showers in warm air masses, partly because they are smaller and frequently isolated.

On the other hand, provided that lightning occurs, high lightning intensities are expected to occur
when very warm and moist air masses with large latent instability are brought to The Netherlands. In
terms of predictors this is amongst others associated with high potential wet bulb temperature (Θw) in
the lower troposphere and high CAPE; most frequently a tongue of high Θw called ”Spanish plume” is
associated with such setting, also due to the forcing mechanism involved. This has been described in terms
of synoptic setting by [Van Delden, 1998] with a case study. The relation between mesoscale convective
systems and so-called Spanish plume events over neighbouring UK has been investigated by [Lewis and
Gray, 2010] and they state that most MCS events in that region are related to this synpotic setting. The
highest frequencies in the UK occur over Eastern Anglia, which is closest to The Netherlands.
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Anomalous or ”extreme” convective weather is typically associated with MCS systems and also with
high lightning intensities in a study over Florida, according to [Williams et al., 1999]. They argue that high
lightning intensities and other severe convective weather have a common cause, namely strong updrafts.
Additionally, [Púčik et al., 2015] show that various types of severe convective weather over Europe are
more likely when CAPE increases, except for wind gusts.

Numerical modelling with NWP output
With the parameterisation that [Lopez, 2016] has made for ECMWF, lightning densities are calculated.
This implicitly means that one can assume that it simulates both occurrence and intensity of lightning,
with intensity being related to the suggested predictors of hydrometeors and CAPE, the latter being meant
as proxy for vertical velocity in convective cells. Lopez also uses cloud base height as giving information
about the size of the convective cell in order to parameterise lower intensities in smaller cells, which is
consistent with the previous paragraph.

With the physics described in this section (Section 2.2.5), it can be assumed that some prediction for
lightning intensity is also possible with predictors that have passed in other parts of Section 2.2.

2.2.6 The elementary predictors

Thirteen important predictors of thunderstorm occurrence, intensity and dynamics have been printed
in italic in Sections 2.2.1 to 2.2.5. They lead to a physically elementary set of 15 potential predictors
that will be used as either proxies or direct information on whether a thunderstorm ingredient is present
or convective storms are initiated in Harmonie, because helicity and moisture convergence have been
included twice, as both regional maximum and minimum values. For the other predictors, one physically
appropriate statistical measure has been selected. For CAPE and CIN, the most unstable layer values
have been selected as most relevant, which will be defined in Section 2.3. The list of 15 potential predictors
is found in Appendix A.

Other potential predictor sets will be defined in Chapter 3 (Section 3.5), because they have been made
with information derived with the statistical methods that are described in Chapter 3.

2.3 “Most unstable” (MU) and “surface-based” (SB) layer settings

Most potential predictors are available as direct model output, or relatively easily computable, for example
by taking the differences between two or three model fields. On the other hand, the methods applied to
specifically asses CAPE, LFC, LNB and CIN are relatively sophisticated. In general, for these four
predictors, the first choice that needs to be made is some initial parcel. Subsequently one can model the
buoyancy of that parcel when it would be lifted. CAPE and CIN have been defined in Box 1 (Chapter
1). Important parcels are the “surface-based” parcel and the “most unstable” parcel, the latter is the
parcel that has maximum CAPE. This section discusses parcel definitions that have been used to compute
CAPE, CIN, LFC and LNB.

Methods applied have been used at KNMI systematically for over a decade. First of all, a mixed layer
covering the lowest 500 m of the atmosphere is used as the surface-based parcel to calculate SBCAPE
and SBCIN. The most unstable of all 500 m thick mixed layer conditions around the lower 35 layers of
the Harmonie model are used for computations of the MUCAPE and MUCIN. These 35 layers are about
3000 m thick in total. After parcel condensation, both SBCAPE and MUCAPE calculations takes into
account entrainment, which is assumed to take place above condensation level on a (vertical) length scale
of 5000 meters. This implies that the adiabatic assumption commonly defining CAPE actually vanishes
and CAPE does not consist of all the convective available potential energy anymore. The CIN is computed
over the layer that is below the main belonging CAPE layer, or, if CAPE is zero, over the depth of the
atmosphere up to LCL. Although this script mostly produced expected values, some predictor values had
to be omitted, because some LFC and LNB values were found to be deep in the stratosphere at the highest
model level, which could not be changed with the time necessary run it. Eventually, the values of LFC and
LNB above the threshold of 14 km were removed and valid values were used. The script to calculate most
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unstable layer values for CAPE and CIN was made for severe weather computations at KNMI [personal
communication - Rudolf van Westrhenen] and eventually not modified by us.

When CAPE is not present, the LNB is set to the lowest level where condensation occurs (LCL) and
LFC is set to a higher LCL, namely the highest that the script finds during the loop over 35 model layers.

2.4 Potential predictor variables

2.4.1 Variables derived from Harmonie output

An initial set of 67 NWP output variables is created for comprehensive potential predictor sets with
variables having physically different interpretations. However, many of these are convective indices which
somehow relate to atmospheric conditional, potential or unconditional instability with respect to small
thermodynamic perturbations and its potential consequences over depth scales of kilometres/hundreds
of hectopascals. Some other variables are indicators for cloud height and content, water vapour and
precipitation. Additionally, wind speed and its components at some levels with respective spatial structure
(wind shear, helicity) and thermodynamic combinations of temperature, moisture and height are available
or computed. While for example convective indices can be strongly correlated, they can also complement
each other to improve forecasts for specific cases.

Those of the variables serving as potential predictors are found in Appendix A; variables are selected
as potential predictors in several steps, which are described in Section 3.5. This is because the selection
procedure involves the statistical methods described in Chapter 3.

2.4.2 New combined predictors from Harmonie output

Three categories of new variables are used. The first category multiplies the regional maximum of Boyden
index, minimum Bradbury index or a third variable with abundance of moisture. The moisture that is used
is the regional maximum of precipitable water content and its logarithm. Since they combine an instability
index with precipitable water (PW), they are called ”PWinst”-indices. The third instability component
used in ”PWinst”-indices is Θw,925,max − Θw,500,min or ”Edward”. Subscripts ”max” and ”min” refer to
regional extremes of the predictor. It is similar to Bradbury in that it assesses potential instability (see
Section 2.2.4), if no horizontal gradients in temperature and moisture exist. On the other hand, when
there are horizontal gradients in potential wet bulb temperature within our regions, it also gives a strong
signal. Such condition happens typically when a frontal zone enters the region. So the Θw component
of this predictor could simultaneously indicate a mixture of potential instability and presence of a frontal
boundary.

The reason for taking regional maximum and minimum values of the predictors above and subsequently
combining them to new predictors is that when initially experimenting with the predictors, the grid cell
values were not yet available. Nonetheless, since predictors described here turn out to be selected in the
preliminary experiments, they are kept in the potential predictor sets and not modified to grid cell values.
In the end, grid cell values could be used as well, but it was chosen to not do so, because of the huge
predictor sets (Section 3.5) that are used, the phase in which the project was and the general purpose of
experimenting when predictors look worth using due to preliminary selection.

The second category combines MUCAPE and MUCIN into a new predictor. This predictor is√
MUCAPE +MUCIN . In addition, the same is done with SBCAPE and SBCIN. They are used to

represent an updraft velocity scale in the potential predictor sets in addition to the squared velocity scale
represented by just MUCAPE.

In the third category MUCAPE is combined with column integrated graupel, cloud water and snow
contents into new predictors by taking their grid cell products. They are eventually power transformed,
as indicated by their equations (Appendix A); transformation methods will be discussed in Section 3.1.3.
The potential predictors indicate presence of conditional instability and the hydrometeor contents in the
model. The idea is that increase in both MUCAPE and aforementioned hydrometeor contents indicate
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that thunderstorms are more likely and also more likely to be intensive. It has some similarity to what
[Lopez, 2016] has done for ECMWF lightning parameterisation.

The full potential predictor list is found in Appendix A.

2.5 Complicating steps from predictor dataset to predictand

It is important to realise that any predictor can represent both the environments preceding the actual
thunderstorm and environments of the thunderstorm and even a mixture of both. To give an illustrative
example: helicity on the larger scale can be used to infer the potential of supercells, which will usually give
a thunderstorm with high intensity. On the smaller scale helicity can be strongly modified by circulation
in and around a supercell system itself [Lilly, 1986]. This can produce even higher helicity very locally.
The predictors used by the statistical post-processing model can profit from both the preceding (potential)
thunderstorm environment as represented by Harmonie and from the actual simulation of the convective
storm. Whether a convective storm is actually produced by the NWP model or not, can in the end be
inferred from several variables, such as column graupel.

Imagine now the case that conditional instability is present in Harmonie over a certain region, with
most unstable CAPE exceeding 500 J/kg in the NWP model and also in the actual outcome. In this case
there are still four options:

1. both in the NWP model and in the lightning detection system, deep convection does not happen
(correct rejection).

2. both in the NWP model and in the lightning detection system, deep convection does happen (hit).

3. in the NWP model deep convection happens, but in the lightning detection system it does not (false
alarm).

4. in the lightning detection system deep convection happens, but in the NWP model it does not (miss).

If the NWP model is qualitatively good, cases 1 and 2 should more frequent than cases 3 and 4 and the
graupel predictor as indicator for presence of deep convective clouds in the NWP is beneficial. However, if
cases 3 and 4 happen too frequently, the statistical post-processing models will not select an indicator of
deep convection such as high graupel content as important predictor, because it is not informative for the
actual outcome due to NWP modelling issues with deep convection. Model errors in a NWP can result
from imperfect initial conditions and divergence between the trajectory of reality and that of the model in
time, so errors in for example CAPE are likely to be larger at a longer forecasting time than at a shorter
forecasting time.

The last important point is to realise that the ”truth” value is in the end only based on at least two
lightning discharges per six hours within a region. Apart from the potentially strong influence of region
boundaries, the threshold of more than one discharge and boundaries of time bins and the accuracy of the
actual detection system influence the results.

All of the above stated factors can complicate the classification task of each record, without directly
being present in the dataset.

Page 23 of 99



3 Datasets, statisical models & methods

To make a statistical post-processing model based on NWP output, first the (potential) predictor and
predictand datasets need to be defined and connected. Additionally, the dataset has to be modified such
that the data are in accordance with the needs for optimal fitting (Section 3.1). It includes for example
applying predictor and predictand transformations and generate subsets. Some tests are subsequently
done to optimise settings. In the next step the methods for initial cross-validation to choose settings
selected for final fits and subsequently final cross-validation are applied (Section 3.3).
The procedure is done with different potential predictor sets for the ordinary and extended logistic regres-
sion (LR) methods and the QRF method and for two different predictands, for all lead times separately.
Based on the final cross-validation, QRF and (E)LR methods can be compared. Then conclusions re-
garding the relevant research aims can be drawn using verification methods (Section 3.4). Each of the
statistical post-processing steps and methods are explained in the remainder of this chapter. Lastly, the
potential predictor sets used are defined in this chapter (Section 3.5).

3.1 Definition of the predictions

3.1.1 Predictand definitions

There are two types of predictands, one of which is conditional on the other. The first one is the (non-
)occurrence of at least two lightning discharges within a KOUW-region and within a time slot covering
six hours, based on the KLDN detection system. These KOUW-regions have been defined in Figure 1
in Section 1.3 and previously in [Schmeits et al., 2005]. The second predictand is only trained on the
part of the KLDN dataset in which thunderstorms occur and forecasts their intensity probabilistically,
conditionally on the thunderstorm occurrence. The time slots last from 03 to 09 UTC, 09-15 UTC, 15-21
UTC and 21-03 UTC, synchronously with NWP output. For each lead time separate models are trained
and tested (evaluated), so each region and time slot can be used multiple times. For verification of
thunderstorm occurrence predictions, there is separation between the regions, but for training all regions
are pooled, as one dataset. The separate training for each lead time is a general strategy in statistical
post-processing called model output statistics (MOS; [Glahn and Lowry, 1972]), as the NWP model output
contains more and more errors with a longer lead time, which can for example increase biases between
forecast and actual outcome. Additionally, the physical mechanisms that can cause thunderstorms are
expected to differ partially between day and night.

The threshold of at least two discharges is chosen, because a single detection is much more likely to
be an erroneous lightning occurrence report than an event with two detections, as other features can lead
to false detections. However almost all of the lightning occasions lead to multiple detections. In fact, in
the detection dataset 92% of all thunderstorm occurrences show multiple discharges. It is important to
realise that the relative frequency that lightning is observed differs per region and time slot, which may
have effects on the training of the forecasting system and the final product, the MOS forecast. This will
be discussed in Chapter 4.

Given that in a six hour period at least two discharges are detected in a KOUW-region, the maximum
number of discharges over 5 minute time bins is the second and conditional predictand. The dataset with
maximum number of discharges is therefore much smaller and strongly dependent on the climatology of
thunderstorms. Note that the characteristics of the detection system have a huge impact on the maximum
intensity in the dataset (see [De Vos, 2015]). In addition to differences among different lightning detec-
tion systems that can be found, one lightning system is generally not fully homogeneous due to sensor
replacements and potential detection efficiency changes.

With lightning intensity as predictand, training and testing again is applied for each lead time and
valid time separately, but verification (model testing) is not done for each region separately as for the
(non-)occurrence of lightning. This is because the verification sample size would be reduced too much to
get reliable scores for only a few samples, if all regions were validated separately (see also Chapter 4).
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Thunderstorm occurrence is a binary predictand, for which probabilistic forecasts are made using
both QRF and LR. From the statistical point of view, this is a classification task. On the other hand,
conditional lightning intensity has a continuous distribution with an infinite number of classes and from
the statistical point of view, predicting intensity is a regression task in which the predictand is described
as the probability that a lightning intensity threshold is exceeded. Therefore, both prediction tasks require
in principle different statistical methods.

3.1.2 Availability and pre-processing of potential predictors

We use the 00z runs of a Harmonie reforecast dataset (2015-2017 period). The Harmonie version used is
the upcoming operational version at KNMI, called Harmonie40 HAP2. The output is contained in hourly
grib files up to +48 hours and then binned in time bins of 6 hours that do not overlap, namely 03-09 UTC,
09-15 UTC, 15-21 UTC and 21-03 UTC. The resolution of Harmonie is 2.5 by 2.5 km, which allows for
explicitly solved deep convection. The Harmonie run of April 23rd 2015 was removed from the predictor
(and predictand) dataset, because it was initially not fully processed. Additionally, due to some data
processing error, 24 thunderstorm cases in 2015 in KOUW-region 6 have not been taken into account, due
to an error in the data processing. Therefore a substantial part of the 2015 dataset is missing for this
region. However, on the total of about 2200 thunderstorm cases and about 24.000 non-cases, this is a
small number.

Gridded data at the high resolution model grid of Harmonie are first re-gridded to KOUW-regions,
with statistical measures of the model fields within a KOUW-region covering all six hours as final potential
predictor values. These statistical measures are minima, maxima, means and some quantiles, as can be
found in Section 3.5.2.

Reforecast output covering mid-April through mid-October is used, as the warm thunderstorm season
usually lasts from the end of April or May until approximately late September [Taszarek et al., 2019] and
it is intended to train a model for this part of the year.

The full potential predictor set is found in Appendix A.

3.1.3 Transformation of predictors

In addition to using just the predictor values themselves, some of the predictors are also or solely used
in transformed versions. First, all predictors are plotted in scatter plots against empirical conditionally
observed lightning occurrence probability in a predictor bin and observed lightning discharge rates. Then,
for the predictors showing indications that transforming them makes them better predictors for LR models,
we allow a LR model to pick from several transformed versions of the original predictor p: for example p

1
4

and p
1
5 . In other words, an experiment with multiple power transformations of the original predictor as

potential predictors is conducted and the first selected power transformation is chosen as optimal power
transformation. This is tested with a dataset containing reforecasts for multiple lead times. It leads to
a discrimination in favour of LR, but for QRF transformations are in principle not necessary, due to its
splitting approach as described in Section 3.2.3 and because the ranking of predictor samples does not
change by transforming.

The mathematical expressions of transformations can be found in Appendix A.

3.2 Statistical fitting methods

3.2.1 Logistic regression (LR)

The logistic regression equation is often used to model the probability that an event happens, using one
or multiple predictors. The general expression for this model is Equation (1) [Messner et al., 2014a].

P (y = 1) = (1 + exp(a0 + a1x1 + a2x2 + a3x3 + ....+ anxn))−1 (1)
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Figure 2: A figure to illustrate what happens if the two potential predictors would be selected, in this example square
root of most unstable CAPE and transformed column graupel. Harmonie40 00z output from +3 to +27 hours is
aggregated and gridded in 25 by 25 bins for the two potential predictors and the conditional thunderstorm probability
per cell is calculated and given by the colour of a cell. Red lines indicate absolute frequency per grid cell. The ”prob.
gradient” indicates a line along which the conditional thunderstorm probability gradient may point and the intersect
indicates where we approximately find the 50% probability of thunderstorms. Note that this figure is actually also
a result from this study, but here used as illustration.

Here, P (y = 1) denotes the probability that the event y = 1 is observed, xm denotes a predictor and
am denotes a model coefficient; here m can run from 1 to nLR. The predictor selection procedure can
be interpreted as that it sets some coefficients am to zero, which means that the term belonging to it is
removed. This selection is done by stepwise selection and subsequently stepwise elimination of terms amxm
if necessary5. During each step, all predictors are fitted individually to the training data and the one that
reduces the squared error of predictions with the training data the most is selected for the LR-model, in
addition to previously selected predictors. The selection stopping criterion is the decrease of the Akaike
information criterion (AIC; see [Wilks, 2011]) or a maximum tolerable number of predictors, which is set
to nLR,max = 6. This nLR,max is set to reduce the possibility of overfitting, which will usually occur for
large datasets if stopping is solely based on the AIC and additionally in the previous KOUW-system a
criterion of maximum 5 predictors were used (see [Schmeits et al., 2005]). If one of the two stated criteria
is fulfilled, the selection is stopped.

When a statistical model is overfitting, it fits a relation to residual data from a training dataset that
are actually not predictable with the predictor selected to be added to the model. This would likely lead
to degrading model performance on an independent verification set.

Models are fit for 1 to nLR,max predictors and results are compared, to select the appropriate LR model
for each situation. The ideal number of predictors nLR is found with the initial 9-fold cross-validation as
described in Section 3.3.2.

It is important to realise that stepwise forward selection does not always lead to optimal combinations
of predictors. To be sure that the best possible model will be fitted, all possible combinations of predictors
will have to be tested and verified, but this is an infeasible job when the number of potential predictors is
large, even for a computer. An interpretation of this selection procedure as non-optimal is the following: the

5An elimination step is attempted for all terms, if all of them are increasing the error criterion, AIC, none are eliminated
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Figure 3: Probabilities of not exceeding a climatological accumulated precipitation quantile over five days as a
function of ensemble mean precipitation over five days as predictor. Figure (a) shows a forecast plane made with
an extended logistic regression model. Figure (b) shows the same forecast plane with separate ordinary logistic
regression models per precipitation threshold. This figure was taken from [Wilks, 2009].

first predictor that is selected, is always the one with the highest correlation between model prediction and
outcomes. As a single predictor, it will therefore perform the best of all predictors, given that the predictor
is significantly better than the second best predictor. However, some combinations of two predictors
without this best predictor might still give more information on the outcome (observations). In other words,
those two predictors might be better in a complementary sense and therefore would improve the model.
Part of this problem can be tackled with physical intuition, that is by trying to combine predictors that
may provide complementary information into new potentially useful predictors. This is what is also done
by testing newly invented predictors. Additionally, one can use more sophisticated and computationally
costly algorithms for fitting the predictors, such as the so-called LASSO algorithm, but this is not applied.
The interpretation of the function that LR fits, can be found in Figure 2. The probability gradient
indicated on the graph6 indicates a potential line along which the thunderstorm probability according to
an LR model can increase/decrease with the S-shape of a logistic curve. Perpendicular to this, one can
find the line along which the intersect of the graph leads to a 50% probability along a fit that is suggested
in this example.

To construct the LR models, the function ”StepAIC” from the R-library MASS is used [Venables and
Ripley, 2002], with its default minimisation settings.

LR Models can be constructed for any threshold value of a predictand. But for an array of thresholds or
full PDF, the extended LR and QRF methods are more appropriate, because the ordinary LR method can
lead to inconsistent results as demonstrated by [Wilks, 2009]. These results are shown in Figure 3b: when
the ensemble mean precipitation is about 8 mm, the probability of more than 16.5 mm precipitation is
according to LR models larger than the probability of more than 0.0 mm precipitation, which is impossible
in reality. It is caused by the variable coefficient in front of the ensemble mean precipitation; if coefficients
are not exactly equal, the curves of high and low precipitation will always intersect somewhere. By using
extended logistic regression, such an issue is circumvented in Figure 3a.

6Note that in this example logistic curve red isolines, indicating sampling density in Figure 2, are not taken into account
to optimise the illustrated LR fit.
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3.2.2 Extended logistic regression (ELR)

The general expression for an extended logistic regression model is Equation (2).

P (y = 1) = (1 + exp(g(θ) + a0 + a1x1 + a2x2 + a3x3 + ....+ anxn))−1 (2)

All symbols have the same meaning as in Equation (1), but in addition, a function g(θ) provides a
probability density distribution of conditional lightning intensity θ. Combined with the LR result the
full lightning intensity distribution, including that for no lightning, is forecast. Hence, this threshold can
be interpreted as a threshold intensity, but extrapolation beyond the lightning intensities in the training
dataset is not very accurate [Wilks, 2009] and the model skill will not be stable in the upper tail of the
distribution used for training. The aim is to skillfully forecast high lightning intensities, which means that
the result of this ELR model should especially be reliable for the upper quantiles of observed lightning
intensities. For the lower part of the distribution, it is not a direct intention to fit the best model. Usually,
g(θ) is a power function. The shape of this power function is tested and improved applying ordered logistic
regression, which is very similar to extended logistic regression, but for any threshold that is trained on,
an intercept of the model that replaces g(θ) is optimized separately. An attempt for finding the relation
between these intercepts is then done, like by [Messner et al., 2014a].

When applying the method, a certain set of thresholds for training (TELR) has to be chosen. A series
of thresholds will likely improve the lightning intensity forecasting skill, such that the training profits
better from the recorded lightning intensities. Since the intention is to forecast severe cases, the training
intensities will be centered on the highest half of the lightning detection set, but training on many of the
highest few percentiles as threshold would be based on few data points and may easily induce overfitting for
the highest percentiles. Therefore, it is decided after some preliminary experiments to train in a systematic
way on every 5th percentile from 50th to 95th from lightning intensity climatology of the corresponding
valid time. This climatology per valid time will be described in Chapter 4 and shown in Figure 11.

The variable selection procedure consists again of adding each predictor that is available to the current
model with forward selection and selecting iteratively the best remaining potential predictor based on
AIC, until a maximum of 4 NWP predictors is included in the model. This nELR,max = 4 is set because
the smaller lightning intensity dataset is expected to be more susceptible to overfitting than the larger
thunderstorm occurrence dataset and the previous KOUW-system had up to 5 predictors. No elimination
is applied in this case. With two NWP variables, all combinations that are possible after elimination have
been constructed, when using all options with one NWP variable. Hence, if at most two NWP predictors
are used, elimination is not necessary. In some preliminary tests with Harmonie output from another model
version and lightning detection dataset, it was seen that typically one or two NWP predictors would be
selected based on initial cross-validations, such that elimination is likely unimportant.

To implement ELR, the function hxlr from R-package crch [Messner et al., 2014b] is used, with default
minimisation settings.

3.2.3 Quantile regression forest (QRF)

In QRF, there is no dependence on linearity between predictors and response variable, in contrary to
logistic regression due to the combination of factors aixi. The tree method splits a (sub)set of training
data in two subsets in each step of the building process. During the building process, each of the new
subsets is iteratively split until the stopping condition is fulfilled. Such a split is based on whether a value
of one of the predictors is exceeded. Before splitting, the algorithm checks all splits possible based on
the available records and the available potential predictor variables. To illustrate this: if there are ten
observations of five potential predictor variables selected options for the split, nine splits are possible in
each predictor variable and in total, 45 potential splits have to be assessed.

To select an optimal split in a tree a statistical measure is minimised. When the tree does a classification
task, such as yes or no thunderstorm, the associated Gini index of the outcome variable is calculated for
all potential splits (Equation 3). For a regression task, the summed variance of the predictand, here
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Figure 4: A fragment of an actual tree built in a quantile regression forest. The names at nodes indicate a predictor
that is chosen in the tree, the values at nodes are the best splitting values and percentages in boxes indicate the
empirical thunderstorm probability in the subset; the set that exceeds splitting value is green, with non-exceeding
set coloured red. The number of cases (N) is also indicated in the tree. Note that the full training set is a random
selection of the actual full dataset in QRF, which is different for each tree.

transformed lightning intensity, within a branch after the potential split is calculated and minimised to
select an optimal split (Equation 4).

G(y) = 1− (p2y,no + p2y,yes)) (3)

min(V ar(y1) + V ar(y2)) (4)

Here, in the lightning intensity prediction, y1 refers to the set of lightning intensities on one side of the
split and y2 refers to the outcome on the other side of the split. In case of classification, py,no refers to the
empirical probability of no thunderstorm and py,yes refers to the empirical thunderstorm probability in a
subset after splitting. The minimal sum of the Gini index (Expression 3) weighted by number of records
in a subset defines the best split.

This process of optimal split selection and subsequently splitting is iterated until either the terminal
subset has no variance and therefore is fully homogeneous or a certain size of the terminal subset of the
dataset is reached. The minimum number of observations that a terminal subset must have before a
split is attempted is settable and therefore it is the first so-called hyperparameter that is varied, namely
”minimum node size” or sQRF . Values of 3, 9 and 15 are used, because it has to be clearly smaller than
the number of records in the datasets to provide representative selections of cases to compare with. The
splitting procedure for one tree is further illustrated in Figure 4, with the predictor plane belonging to the
same tree shown in Figure 5.

Random forest [Breiman, 2001] is an algorithm that builds many trees for regression or classification
tasks. It selects a random subset of the training dataset to build a single tree. The random subsample of
records is different for each tree in the forest. Random forest also randomly selects a subset of the potential
predictors to try at each split (mQRF ). This is a hyperparameter that can be varied and regards the number
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Figure 5: See Figure 2. Here it can be seen what happens when QRF works with these two predictors, with the grey
values indicating splitting order. Note that some fourth splits are missing, because a third predictor was selected
for these splits. This is the same tree as Figure 4.

of predictors tested only for taking that single splitting decision. In Figure 5 the hyperparameter is equal
to two. Besides 2, 6 and 10 are tried, because this number has to be a fraction of all potential predictors
that are eventually used for a forest. For a random forest, a specified number of trees is built, which is set
to the default value of 500.

Evaluating the probability of an event with such a random forest is done as follows: a sample is sent
down all trees by evaluating the decisions for the sample and via the nodes of each tree (see Figure 4).
This leads to a certain terminal subset of comparable records for each tree after going down through
vertically through tree. From the terminal subsets, random forest uses only the mean of the terminal
subset selected of each tree, but QRF [Meinshausen, 2006] does in essence the same and uses information
on the outcome of all training samples found at at terminal subsets of each trees. These subsets can
give accurate information about the outcome distribution with the sample to be predicted. QRF builds
an empirical CDF with all training samples from terminal nodes for regression tasks and similarly an
empirical classification probability for classification tasks.

If a sample is in the terminal node of multiple trees, its weight in the empirical CDF thus increases pro-
portionally with its frequency of appearance in terminal subsets. Therefore near neighbours in important
predictor variables will end up in multiple terminal subsets, while the sample will likely have an outcome
similar to these near neighbours. In essence, many multidimensional stepwise (stairslike) functions are
built with a training dataset in QRF.

Stepwise backward elimination is applied for predictor selection, starting with all predictors of a po-
tential predictor set. For the elimination steps, the concept of variable importance is used, which is a
measure belonging to each predictor in a random forest that describes how important the variable was
for making accurate predictions. Elimination in each step is based on the lowest importance value in the
set of predictor variables, which for each variable is calculated by permutation of all records of a certain
predictor (randomly reordering its values); it estimates the decrease in prediction accurracy of the part
of the dataset that is not used for the tree for which the permutation importance is calculated. But this
computation is still sensitive for perturbations and especially in very strongly correlated predictor sets;
see discussion by [Gregorutti et al., 2016]. Due to the random nature of QRF, the early eliminations of
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Table 1: Hyperparameters that are tested for each of the methods. In this table, nset indicates the number of
potential predictors that a potential predictor set contains (Table 2).

Hyperparameter description Name
Statistical
Method

Options tested

Number of predictors nLR LR 1, 2, 3, 4, 5, 6
Number of predictors nELR ELR 1, 2, 3, 4

Training thresholds TELR ELR
fixed, based on preliminary tests:
q0.50, q0.55, q0.60, ... q0.95

Number of predictors nQRF QRF 1, 2, 3, 4, .... (nset − 1), nset
Number of predictors tried for each split mQRF QRF 2, 6, 10
Min. sample size necessary to split sQRF QRF 3, 9, 15

variables may be somewhat random, since the differences in importance between predictors will be smaller
and correlations between predictors have higher impacts when many well correlated variables are present,
whereas the last eliminations are likely to have a certain order that is not so dependent on random sub-
setting for each fit. After elimination of all of the variables but two, the best number of predictors could
be derived from the scores of the models in the initial 9-fold cross-validation, in combination with the best
performing hyperparameter set. Here, a model refers to all decision trees in a QRF together. The found
settings can be used for final cross-validation models.

For the implementation of QRF, the R-package ranger [Wright and Ziegler, 2017] is used.

3.3 Cross-validations and hyperparameter determination

3.3.1 Hyperparameters

For each statistical method there are one or several statistical hyperparameters that can be set. The
most obvious one is the number of predictors used in the (E)LR models and other hyperparameters may
describe characteristics of the subsample set that is selected and used when fitting, or the way that a
model is fitted with QRF; see Section 3.2.3. Therefore, they can be interpreted as meta-parameters for
the fitting process. To determine which model settings of hyperparameters to use, the section will discuss
the initial cross-validation procedure (Section 3.3.2). Based on the verification performance (Section 3.4.1)
of the initial cross-validation the best model settings are chosen and used for a final cross-validation and
the actual post-processing model. An overview of the hyperparameters is given in Table 1. Note that the
hyperparameter with training thresholds has been set with preliminary experiments.

3.3.2 Initial cross-validation strategy

The initial cross-validation applied to choose hyperparameters is a 9-fold cross-validation. First, all
datasets are split into three years and one year is kept apart for final testing, leading to three initial
sets with NWP model data to train on. Then, within these three initial sets, a random selection of dates
(days) is applied. Each date within a dataset covering two years is coupled to one of the three test sets
for model verification and then the other two test sets within these two years of data are combined and
used for training a model. Finally, the model is verified with a test set. So 9 verifications with 9 test sets
of 9 models for each model setting have been done. This is the initial cross-validation procedure.

The grouping by dates is to account better for dependence: if two neighbouring grid cells end up in
different test sets, the model performs likely better due to spatial coherence in some predictor fields and
spatial coherence predictand outcome. On the other hand, the random drawing of dates is to take into
account variability in the dataset, such as the structured seasonal lightning (intensity) variability.
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Figure 6: Data flow through the R-scripts. The orange dashed part of the figure indicates where cross-validation
is applied by interchanging the test set for each cycle of cross-validation. Note: when applying the methods, the
settings are the hyperparameter settings, which is for (E)LR only the number of predictors and for QRF some
additional settings, to be explained in Section 3.2.3.

3.3.3 Final cross-validation strategy

For the final cross-validation the statistical models are trained using the best hyperparameters as shown
in Table 1. Each year in the final cross-validation is used once used for testing each of the post-processing
models, while the other two years are then used for training. For the lightning intensity forecasts, the
second approach is used as well: randomly distributing the three years in three subsets and training
on two of these subsets, with afterward a verification based on the other of the subsets. One of the
two approaches will be preferred and therefore presented as main result (Section 5.4.1). In the cross-
validation, the verification set and training sets are again rotated. Like in the initial cross-validation
strategy, all records of different regions for one day always ends up in the same verification set, to prevent
interference with spatial homogeneity in predictor and outcome (see 3.3.2).

The data flow through the R-scripts until the final cross-validation is visualised in Figure 6.

3.3.4 Impact of cross-validation procedure on predictor selection

The cross-validation procedure leads to a variable set of predictors to be selected, which becomes even
less stable when higher correlations among the predictors are present in the potential predictor dataset
and the number of observations becomes smaller. However, high correlations also imply that one potential
predictor can be replaced by another one without large consequences for prediction. In the results on
final fits, importance measures from QRF and forward selected frequency of predictors for (E)LR will be
exploit, keeping in mind the correlations if necessary. Additionally, any selected predictor is verified with
an independent set in the cross-validation procedure for all methods.

3.4 Verification

3.4.1 Verification methods

Forecasts can be compared to each other using many verification measures; for probabilistic forecasts, the
Brier score is a natural one. It is computed as follows: a vector with probability forecasts that were issued
is compared a vector to the eventual outcomes of all the events, which is for individual events either 0
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(non-event) or 1 (event). The squared difference between all elements is averaged to get the Brier score.
Therefore, the Brier score is a mean squared error of probabilistic forecasts [Wilks, 2011]; see Equation
(5).

BS = n−1
n∑

k=1

(ok − pk)2 (5)

Here, index k denotes an element in the vector with observations (o)/probabilities (p) and n denotes
the total number of observations and forecasts in the record. Brier score is a verification measure that
can account for resolution, reliability and uncertainty of forecasts: with a high reliability, the forecast
probability always resembles the conditional frequency of thunderstorm event observation. In other words,
a forecast issued at 10% probability leads to an event that indeed happens approximately 10% of the cases
in which it is issued and similarly for other probabilities. On the other hand, resolution expresses the
ability of a forecasting model to discriminate between cases and non-cases: forecasts with high resolution
issue probabilities that are frequently close to 0% when no thunderstorm observed or 100% whenever
a thunderstorm is observed. A forecast with no resolution is the climatological forecast: it issues a
forecast with the same probability for every sample. Therefore, in forecasts with high resolution, forecast
probabilities are shifted away from the climatological probabilities. Finally, the uncertainty in the Brier
score expresses to what extent one can anticipate on the outcome: with a 50% probability according
to a climatological forecast, the outcome is uniformly distributed between 0 and 1, which means highly
uncertain. This will lead to the maximum uncertainty and a maximum in climatological Brier Score of
0.25: both occurrences and non-occurrences always lead to the same squared error of 0.25. For high or low
climatological probabilities, the outcome is relatively certain and this leads to a lower minimum possible
Brier score than 0.25.

The Brier score of a model is typically compared to the Brier score of a reference forecast and in
the normalised comparison with a reference model it is called Brier skill score (BSS). The climatological
forecast is usually used as reference forecast: this type of forecast can be easily issued with historical records
of some event. By calculating a BSS, one can see the improvement of a forecasting method compared to
climatology as method: the relative decrease mean squared error (Brier score) of a model compared to the
mean squared error (Brier score) of the climatological forecast is expressed as the skill score (Equation
(6)).

BSS =
BSref −BSmodel

BSref
= 1− BSmodel

BSref
(6)

Here, it is defined that BSref = BSclim. Sometimes another method such as persistance (forecasting the
outcome using the observations of the previous day(s)) is used as reference. The Brier score and BSS can
be computed for any threshold in the distribution of observations.

When integrating the Brier score over all possible thresholds with equal weighting, one gets the (un-
weighted) Continuous Ranked Probability Score (CRPS). Another way of understanding this scoring rule
is that for each combination of an observation with predictor values in the dataset there is a cumulative
density function (CDF) that describes the probability that a predictand threshold would not be exceeded
based on the forecasting model, as a function of predictand threshold: F (xi). The outcome CDF of an ob-
servation, namely I(yi), is defined by a similar function that jumps from 0 to 1 at the value of observation
yi (see equation 7, with w(xi) ≡ 1). Integrating the area between both CDF curves gives the contribution
of this sample to the CRPS, as shown in Figure 7. When averaging the CRPS over all samples, we have
a measure of model performance.

Weighting depending on forecasting threshold can also be applied [Thorarinsdottir and Schuhen, 2018].

CRPSmean =
1

n

n∑
i=1

{∫ ∞
0

w(xi)(F (xi)− I(yi ≤ xi))2dxi
}

(7)

In the weight function w(xi) = w(x) is independent of the sample, but depends on transformed lightning
intensity. It is set to 0.1 for intensities equal to or below 25 discharges per 5 minutes and 1.0 for higher
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Figure 7: Example of unweighted CRPS contribution of an individual sample (shaded area), given the cumulative
forecast distribution and observation (orange jump).

Figure 8: Example of a reliability plot. On the left hand side, the relative frequency of an event in the verification
set versus predicted binned probabilities by a model are given. On the right hand side the relative frequency that a
model forecasts a probability in the same bins is shown.

intensities, which are of specific interest. In the unweighted CRPS, w(x) ≡ 1. Both the weighted and
unweighted CRPS will be calculated.

The score as defined in Equation 7 can only be calculated exactly when the full probability distribution
of a continuous predictand is defined by a forecast. This means that the score is only useful for predicting
lightning intensity. However, verifying the full probability distribution is impossible in practise when
applying it to a QRF fit, because we have a finite number of samples in the train set: it returns an
empirical CDF, which implies that the PDF is not fully continuous. On the other hand, to compare ELR
and QRF in a fair way, the scoring rule has to be implemented the same way in verifying both methods.
Therefore the CDF is approximated numerically by calculating some equidistant quantiles of the outcome
to in the end derive the CRPS. This approach is also frequently used for verifying ensemble forecasts.
The approach is equivalent to approaching an integral with a Riemann sum. In the end, by increasing the
number of equidistant quantiles, the integral is computed more accurately, but its calculation requires more
computation time if the number of quantiles is increased. Eventually 25 quantiles are used to evaluate the
ensemble CRPS.

Similarly to the Brier score, the CRPS can be compared to a reference CRPS obtained using climatology
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forecasts, resulting in the CRPSS. Both its weighted and unweighted version can be evaluated. In Equation
(6) BS is then substituted with CRPS, as in [Wilks, 2011].

The verification information can be represented in a convenient way, using reliability diagrams. In
this type of diagram, the issued probabilities are distributed in bins. For each of the probability bins, the
conditional relative frequency of the positive observations is plotted against this binned probability. The
forecasts are reliable if a line that connects the points in the reliability diagram lies close to the 1:1-line.
However, in some cases, probability bins of the forecast may match with only few observations and the
points are then more likely to deviate strongly from the 1:1-line. Therefore, the relative frequency that a
certain probability range connected to one of the probability bins is issued, is represented in another part
of the same diagram. So with few observations in some probability bins, the reliability diagram can look
very unstable, but it may not affect the BSS if it regards a few samples. This happens with a probabilistic
forecast for 60-90% in the example of Figure 8. Additionally, this relative frequency diagram can be used
to get insight in the resolution of forecasts. If the climatological probabilities correspond to one of the bins
in the centre of the diagram, a high resolution model corresponds to a model with high relative frequencies
of forecasts issued in the highest and lowest bin.

For verification we use the R-package Verification [Laboratory, 2015]; for the CRPS packages SpecsVer-
fication [Siegert, 2017] and scoringRules (weighted CRPS) [Jordan et al., 2018] are used.

3.4.2 Block bootstrapping to assess the uncertainty in the BSS

The verification scores by region can be used for thunderstorm occurrence forecasts to assess uncertainty
in the BSS to some degree. However, as neighbouring regions will be strongly correlated, the uncertainty
interval in BSS will be somewhat stronger than when using independent samples for uncertainty. Usually,
independence of samples is appropriately assumed in significance tests. For the lightning intensity forecasts,
an alternative method that better quantifies uncertainty of the models is applied: block bootstrapping.
The blocks consists of observations from a day, as within one day the occurrence of severe thunderstorms
among different regions will be strongly connected. This is because they usually extend over multiple
regions on one day. You can say that some dependence is still likely to be present among two consecutive
days, but this is not so high. Therefore grouping by days is applied and block bootstrapping with dates is
done. For block bootstrapping, the procedure applied is to generate a series of random discrete numbers
from one to the number of dates in the dataset that is verified, where each date is connected with a random
number. The random numbers are converted into dates and these dates are put in the verification dataset.
Each time, a few of the dates will occur multiple times in the verification set and each time some will be
left out. By applying the procedure 1000 times, one can get an idea of the distribution of the Brier skill
scores. From the 1000 empirical skill score results, the 0.025 and 0.975 quantiles are eventually extracted
as bounds for the 95% confidence interval of the BSS.

3.5 Potential predictor sets

3.5.1 Overview

This section is to some extent related to thunderstorm theory, but also uses the statistical methods
discussed in this chapter and therefore complements content of both Chapter 2 and this chapter. In
addition to the ”elementary” set of 15 potential predictors (see Section 2.2.6), we start with another very
large dataset (Section 2.4.1), from which the eventual selection of potential predictors for the potential
predictor sets is described in this section. The potential predictor sets contain predictors that can be
used by (E)LR and QRF to build statistical models. By comparing models built with different other
potential predictor sets, an idea is given of how complementary various types of physical predictors can be
to other predictors, even if they describe the same physical ingredient of convection (Section 2.2.2). All
the potential predictor sets used are described in the remainder of this section and summarised in Table
2.
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3.5.2 Preliminary potential predictor selection

It could be expected that frequently high or low quantiles within regions are more useful than extremes
or mean values of NWP output variables, especially because convection is a skewed phenomenon. Adding
extra quantiles to the dataset compared to minima and maxima that were previously used by [Whan and
Schmeits, 2018] could improve the statistical models as well, because only extreme values of predictors
may give less opportunity to extract complementary information than some slightly less extreme quantiles
such as q0.90 values within a region. In addition, extreme values of different predictors are unlikely to
overlap in space and can be localised outliers. Note that there are about 1200 Harmonie grid cells with six
hourly predictor values that are resampled to quantiles q0.98, q0.90, q0.10, q0.02, median, mean and extreme
values within regions, using nearest neighbour as interpolation method. For some variables, differences
between quantiles or extremes may also be interesting.

Since the previous set of quantiles, means, and extremes leads to a potential predictor set of around
600 variables, this set was first reduced by removing very strongly correlated variables. An example is
that mean sea level pressure regional mean is very highly correlated with its 6 hour regional extremes, as
KOUW-regions are up to almost 100 km in size and the pressure field is typically very smooth. This first
step is manually done and has reduced the initial set to approximately 375 predictors. The next selection
step is done by making some quantile regression forests per lead time, using its predictor elimination order
and permutation importance measure. These are compared to find out which statistical measures of a
physical variable are preferred over other statistical measures of the same physical variable. This step is
to some extent arbitrary, like the previous elimination step. One could argue about a small bias towards
favouring QRF predictions applying this method; however, on the other hand it is very obvious that
(extended) logistic regression is much less able to profit from any predictor than QRF. This is because
the method uses only few predictors in each model to not overfit. On the other hand, QRF is found
to work well with many predictors and is not susceptible to overfitting due to its random subselection
strategy, as shown by results of [Gregorutti et al., 2016]. Eventually, a 228 potential predictor set is left.
Some physical fields are still present several times in this set. A set of only maximum and/or minimum
and means (whichever is physically relevant) of the variables was also made, with the exception of most
unstable CAPE and level of neutral buoyancy. These predictors additionally had q0.90 and q0.98, because
they are assumed to be very important. This leads to a much smaller potential predictor set of 91 potential
predictors, of which the details are found in Appendix A. Due to a mistake only 90 of the 91 potential
predictors were used in the initial cross-validation; see Sections 5.1.3 and 5.3. This is the first full predictor
set for final cross-validation.

3.5.3 Smallest set

From the ”elementary” set of 15 potential predictors (Section 2.2.6 and Appendix A), an even smaller selec-
tion of 4 potential predictors was made by applying the ingredient based approached to severe convection;
as best integrated measures of instability MUCAPE is combined with moisture, namely precipitable water.
Furthermore a proxy for forcing is added, namely sea level pressure and graupel, representing the actual
occurrence and intensity of convection in the NWP. The six hour maximum within the region is used for
this four potential predictor set.

3.5.4 Potential predictor sets for physical experiments

A composite set with physically very relevant ”elementary” variables for severe convection as well as the
most important additional covariate predictors found from selections of the potential predictor set of 91
variables was subsequently made, which contains 40 potential predictors. These potential predictors are
shown in Appendix A.

Based on the set of 40 potential predictors, three additional experiments are performed where the
additional forecast skill that is gained by including particular sets of predictors is investigated. We remove:

1. The predictors containing a vertical integral of buoyancy (8)

2. The predictors containing a microphysical reservoir (4)
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Table 2: Name and description of potential predictor sets that are used.

Name of set Size Purpose/remarks
”228” 228 Presence of multiple quantiles for most predictors
”91” 91 Maxima, minima and/or mean of potential predictors only

(except MUCAPE and LNB)
”40” 40 Selection with elementary potential predictors set + QRF from ”91”
”15” 15 Elementary potential predictors set
”4” 4 Three ingredients + actual showers
no CAPE 32 Value of the predictors containing CAPE and/or CIN
no mph 36 Value of microphysics predictors: snow, graupel, MUCAPE with snow/graupel
no PWinst 34 Value of newly combined precipitable water - instability predictors

3. The six new predictors with precipitable water and instability index (6) (see Section 2.4.2)
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4 Conditional thunderstorm climatology

This short chapter serves as a cornerstone to interpret models that are eventually build and presented
in subsequent chapters and to understand the forecast skill of these models. As discussed by [Ahijevych
et al., 2016], having strongly unbalanced datasets with only a few per mille of positive outcomes does not
lead to optimal statistical models. As a rule of thumb, approximately 5 to 10% positive occurrence in
our dataset should be kept in mind to get close to such optimum, although the more balanced outcomes
are, the closer one would likely approach an optimal model. This means for predicting lightning intensity,
one could say that forecasts are unlikely to work well above the 95th percentiles of lightning intensity
climatology (Section 4.3), unless a very powerful transformation has been applied such that ELR allows
for extrapolation and unless QRF has some surprising results [Whan and Schmeits, 2018]. Only 19-35
samples exceed that quantile, depending on the time of the day. The dataset will be interpreted in this
framework in this chapter. The climatology is very limited in time span and therefore not necessarily
representative on long term, as the dataset covers only three years and it appears to be inhomogeneous.
Moreover, it covers only the time of year that is studied: April 15th to October 15th. The climatology
serves as a reference forecast, upon which improvement can be shown using the skill scores (BSS and
CRPSS).

Additionally, the dataset with predictors and thunderstorm occurrence predictand will be exploited to
illustrate an example of how predictable lightning is with the predictors used, which can also serve as an
empirical guidance for those who are interested (Section 4.2). Furthermore, the issue of homogeneity of
KLDN lightning detections is discussed in Section 4.4. With this chapter, the point where a lot of care is
required for interpretations of the results is automatically passed.

4.1 The climatology of thunderstorm occurrence

In Figure 9, it can be seen that thunderstorm frequencies over all KOUW-regions average 6% during night
and morning (21-09 UTC) and 10% during daytime (09-21 UTC), which makes an average of 8%. During
the daytime, a clear north-south gradient in climatology is seen, as the low region indices 1-3 indicate the
northern regions and the high indices 10-12 the southern regions. Southeastern and central regions 3, 5,
6 and 8 to 12 all have a climatology with a clear diurnal cycle, whereas the other (they are northwestern)
regions have no clear dependence on a diurnal cycle. These four northwestern regions have the lowest
thunderstorm frequency during daytime (09-21 UTC). This north-south gradient over The Netherlands is
consistent with results based on synoptic stations and lightning detection from [Taszarek et al., 2019] and
previous KOUW-study [Schmeits et al., 2005].

For training purposes, it can be said that putting all regions together not only increases the number of
cases with thunderstorms; it also means that predictand outcome in the dataset is less unbalanced: there
are 6 to 10 % of positive cases for each valid time. With training on individual regions, this would drop
to 3-4% in regions.

Note that some thunderstorms in 2015 in region 6 are wrongly processed (see also Section 3.1), which
leads to an underestimate of the lightning frequency of 0.01: instead of 8.9% of the time it should be 9.9%
of the time in this region. All four valid times were affected by this error.

4.2 Thunderstorm occurrence climatology conditional on Harmonie predic-
tors

Besides a climatology conditional on subregions and time of the day, as described in Section 4.1, another
condition can be the air mass which flows over The Netherlands. It can be said that thunderstorms are
more likely in tropical air mass than in polar air mass for example (see Figure 10), or that the direction
from which the flow is coming can give information on relative frequency of thunderstorm occurrence.
Additionally, one can describe the climatology or change in time of air mass that enters the study region
or the change of wind direction in time. The combination of the former two types of information can lead
to a hypothesis whether frequency of thunderstorm occurrence increases or decreases in time. Nonetheless,
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Figure 9: Thunderstorm frequency observed in each region as function of valid time, with the KOUW-region index
indicated by the colour. Note that region 6 is affected by a data processing issue (see main text). Region 6 is shown
as blue square, in contrary to indications in the legend and other regions, because it has some wrongly processed
lightning detections. The northern (”N”) and southern (”S”) regions are also marked as such.

Figure 10: Empirical conditional thunderstorm probability as a function of maximum level of neutral buoyancy
or equilibrium level and maximum potential wet bulb temperature at 850 hPa, based on 03-27 hour reforecasts of
Harmonie. The red lines indicate that at least 50, 100, 150, 200 and 250 samples are present in a grid cell for
empirical probability estimate.
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non-stationarity of thunderstorm occurrence frequency conditional on the flow over The Netherlands might
mean that such an hypothesis turns out to be falsifiable.

Simultaneously, the short-term forecasting of thunderstorms might profit from the same type of condi-
tional information based on climatology of thunderstorm occurrence. Besides some measures for thermo-
dynamic instability, information such as air mass and flow may be beneficial. This type of information is
also informative for understanding thunderstorm forecasting from the meteorological point of view and in
statistical post-processing models applied in practice. So ideally, in practice a prediction system based on
a dataset with many variables would be used to optimise thunderstorm forecasts and one or two variables
would be used simultaneously to build on some physical understanding. Different combinations of two
variables will lead to different insights and the real predictions could be based on many combinations
simultaneously. Quantile regression forests are very useful for predictions based on potentially many vari-
ables and for the interpretation of the results it can be very useful to see why forecasts can profit from the
combination of and relation between physical predictors. Additionally, the combinations of variables can
help to find out why a model skill in practice behaves in a certain way, as function of the predictors that
are present in the model.

Figure 10 shows the empirical thunderstorm probability as function of air mass (Θw,850,max) and max-
imum LNB. Isolines indicate the frequency that conditions occur in Harmonie reforecasts. One thing that
can immediately be seen is that thunderstorm probability behaves differently as a function of maximum
LNB in cold air masses than in warm air masses. That is, thunderstorms typically start occurring in cold
air masses (low Θw,850,max in Figure 10) with a maximum LNB of about 4500 m, whereas this is slightly
over 6000 m in warm air masses (high Θw,850,max). It can also be seen from the red isolines in aforemen-
tioned figure that the relative frequency that potentially thundery conditions occur, is higher in warm air
masses (Θw,850,max > 9◦C). A function that is solely based on LNBmax would smoothen this effect and
the dependency on air mass would be hidden. Probabilities would start to increase slowly when LNBmax

reaches about 4500 m and keep gradually increasing until an LNBmax of roughly 10.000 m. This means
that many cases are classified as unlikely thunderstorm cases correctly; this is because LNBmax is usually
below about 4500 m. However, in the few cases with higher LNBmax, the second variable Θw,850,max

helps improving thunderstorm forecasts a bit my modifying issued probabilities for high LNBmax, since
it shows whether a cold or warm air mass is present or not. Therefore it can be better inferred what
the thunderstorm occurrence probabilities are. The modification would improve overall scoring slightly,
since these are a only few samples within the full LNBmax distribution, as Figure 10 shows. The post-
processing model could improve in particular when LNBmax > 4500 m, which are cases where the forecast
is particularly relevant. Benefitting from many variables is a task that would fit QRF, since LR only takes
a few variables into account in each model without suffering from overfitting. Additionally, LR might not
be able to pick the ultimate combination of complementary predictors with stepwise selection or only in a
fraction of the cross-validations. Although another variable might lead to better discrimination between
thundery and non-thundery cases than maximum LNB, this example illustrates how forecasts can profit
from many variables in a probabilistic thunderstorm forecasting model.

Besides this, Figure 10 is in agreement with what would be expected based on [Takahashi, 1978]:
his conclusion was that thunderstorms are likely to occur when convective clouds stretch out over the
temperature range of -10 ◦C to -20 ◦C. If we assume that the Dutch summer climate does not likely lead
to cloud bases with temperature below -10◦C, we can see that as it is anticipated in Section 2.2.1, the
combination of LNBmax and Θw,850,max may give a reasonable estimate whether this criterion is reached.
That is, when the potential wet bulb temperature increases, the convective cloud needs to reach higher to
generate similar thunderstorm probabilities in the figure. However, the rise of thunderstorm probability is
not checked to coincide with level of neutral buoyancy of approximately -20 ◦C and due to small errors in
model forecasts (subtle inversions) or as consequence of assumptions for parcel calculations (Section 2.3)
leading to non-optimal estimates of LNBmax, the relation between this criterion and arising empirical
thunderstorm probabilities will not be one to one.

Note that with a very high LNBmax, for example 13.000 m as at the edge of Figure 10, the probability
can be equal to 0.0 or 1.0 due to presence of just one or two samples in a grid cell. Additionally, the
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(a) Coloured by time of the day (b) Coloured by KOUW-region index

Figure 11: Cumulative distribution of lightning intensities conditional on at least two discharges being detected.
Note that the x-axis is transformed at power 1

4
. The colour of region 6 deviates from the legend in figure b, because

it has wrongly processed detections and the northern (”N”) and southern (”S”) regions are marked as such in figure
b.

zero probabilities for Θw,850,max < 12◦ C and LNBmax ≈ 12.000 m are likely related to an error in the
LNBmax calculation (see Section 2.3). In general the Harmonie output looks very useful for producing
thunderstorm forecasts, based on Figure 10.

4.3 Conditional intensity climatology

The conditional climatology of lightning intensities is shown in Figure 11a. The late afternoon and evening
hours (15-21 UTC) clearly have a distribution with higher intensities. For the nighttime (21-03 UTC),
this generally holds as well, but above q0.80 its quantile curve in Figure 11a shifts toward the 03-09 and
09-15 UTC valid times. Between 03 and 15 UTC the lightning intensities are lower, which is consistent
with expectations based on previous results (Figure 2b in [Schmeits et al., 2005]).

It is also important to note that there are only 2200 thunderstorm cases in the dataset (see Table 3
in Section 4.4): therefore the upper part of the distribution is wobbly when separating them by region.
Only 183 thunderstorm cases per region are left on average, which means that the distribution of lightning
intensity appears somewhat unstable and poorly sampled from about q0.85 onward. For the four valid
times, a somewhat unstable appearance happens between q0.90 and q0.95.

Looking at the regional intensities (Figure 11b), the N-S/NW-SE gradient in lightning intensities is
clear. Region 1 (the most northwestern region) has very infrequent high lightning intensities. It should be
kept in mind that this region also has lowest probability of occurrence in general (Figure 9). This means
that the conditional q0.97 of about 100 discharges per 5 minutes happens in that region only about 0.1 %
of the time. This is in three six hour periods out of about 2200 six hour periods in total. In contrary, in
some of the southern (yellowish and orange) regions in Figure 11b intensities above 100 discharges per 5
minutes happen 1.5 to 1.9 % of the time (slightly below 20 % of 11 or 12% of the time). The other northern
regions 2 to 6 and in addition region 7 are in between the aforementioned extremes. Note that region 6 is
again affected by an issue with data processing (see Sections 4.1 and 3.1), such that its climatology differs
slightly from the true detection climatology.

4.4 Inhomogeneity of KLDN lightning intensity

For understanding and interpreting the climatology of our dataset, it is necessary to assess how well the
dataset with detections represents the truth of lightning. The climatology described in this chapter is
strongly affected by detection efficiency changes in time. Documentation provided by Météorage (the
provider of KLDN detections to KNMI; personal communication - Stéphane Pedeboy) points at homo-
geneity issues in the detection dataset. This documentation demonstrates that the detection efficiency in
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Figure 12: Total number of detections per summer half year as far as available and processed, over all KOUW-
regions with FLITS and KLDN. The main source of detection data is drawn as continuous line and other detections
are drawn as dashed lines.

the southern and western regions should have increased in the autumn of 2015, due to the implementation
of extra sensors in the UK. Among these sensors is one in Shoeburyness, east of London. Additionally, the
same happened over the northern regions of The Netherlands in June 2017: extra sensors were installed
in De Kooy (near Den Helder) and Eelde (at Groningen Airport).

The consequences for the detection dataset are remarkable: in 2015, there are 186.627 detections in
the summer half year (and around 10.000 in region 6 have been processed wrongly!), whereas in 2016 this
number increases to 703.368. In 2017, this number is 450.740 over the same period.

Unfortunately, there is no detection system that is evidently homogeneous, such that even trying
to make any potentially robust correction for aforementioned inhomogeneities is hardly possible. The
reason for this is amongst others that detection systems have differential sensitivity for cloud to ground
and intracloud lighting, due to the frequency range over which they detect and differential sensitivity as
function of the distance at which a discharge occurs. Even when using a homogeneous detection set for
corrections, single events will not be reflected properly in any potential correction of the detection dataset,
as can be concluded from [De Vos, 2015]. Lastly, the large interannual variability in lightning activity does
not help for the potential of corrections.

However, the KNMI FLITS detections are still available until February 2016. This means that the
dataset of full half-year detections covering 2015 can be used. It contains a total of 270.793 discharges,
of which 256.117 have been detected that overlap in region and time stamp with KLDN. This number of
270.793 is clearly a positive anomaly compared to years available in FLITS detections, 2004-2015 (Figure
12). These years had a persistent operational sensor set, except some minor disruptions (more than 99.5%
complete), which makes the detection set much closer to homogeneous in time. The number of discharges
in summer half years within the FLITS dataset are 101.380-333.881, averaging at 215.920. These numbers
illustrate that the 2016 and 2017 numbers of discharges in the KLDN dataset absolutely don’t fit in the
FLITS climatology and that FLITS has even more detections in 2015 than KLDN (when assuming a
stationairy climate). In other words: it looks like the 2015 detection dataset of FLITS would be likely
underestimating the detections that would have been made by KLDN if 2015 would be homogeneous with
2016. KLDN has even fewer detections than FLITS in 2015, so KLDN likely underdetects in that year.

Therefore, two experiments with adjusted numbers of detections in 2015 are conducted, to investigate
potential dependence of the forecast skill on inhomogeneity in KLDN detections. The first one is by
replacing KLDN lightning intensities by FLITS lightning intensities in 2015. The second is by simply
doubling KLDN detections, which is very crude and arbitrary. However, there are very strong indications
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Figure 13: Transformed (at power 1
4

) of lightning detections by KLDN versus coinciding transformed (at power 1
4

)

number of FLITS detections over April 15th to October 15th of 2015. The 1:1-line is added for convenience. The
region number is shown as colour for each sample.
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Table 3: Conditional quantiles of thunderstorm intensity (in discharges per 5 minutes) for four lead times and with
the standard KLDN detections, as well as for some perturbation experiments. The 50%, 80%, 90% and 95% values
are shown in the table. In addition, for the standard KLDN detections, the number of thunderstorm cases is given.

KLDN KLDN, 2015 FLITS KLDN, 2015 doubledValid time
(UTC) No. cases 0.50 0.80 0.90 0.95 0.50 0.80 0.90 0.95 0.50 0.80 0.90 0.95

03-09 381 11 45 104 164 10 44 104 161 14 58 129 199
09-15 685 13 49 102 228 13 50 110 228 16 60 128 238
15-21 699 19 87 255 437 19 104 289 448 21 113 288 510
21-03 401 16 73 182 292 17 78 185 345 20 92 197 380

that 373.254 discharges in the KLDN lightning intensity dataset in 2015 is at least more likely to be
realistic in comparison to the rest of the KLDN dataset than 186.627.

Another reason to use not only FLITS as alternative truth is found in Table 3. It shows that for the
valid times between 03 and 15 UTC, climatology when KLDN observations in 2015 are replaced by FLITS
are hardly affected in terms of distribution. Though, as shown in Figure 13, the ranking of events will
change order.

In addition, FLITS detections of 2015 leads to a slightly different set of thundery cases, whereas
doubling KLDN maintains all thundery cases. So with FLITS in 2015, some of the cases, ranking of cases
and eventual lightning intensities are adjusted, whereas doubling KLDN is a straightforward and linear
adjustment. For the verification, the combination of adjustments makes the adjusted set with FLITS
detections in 2015 somewhat less comparable to the reference KLDN than the set with doubled KLDN
intensities in 2015.

The intensities shown in Table 3 show also the range of training thresholds used, since the lowest
threshold is the median (q0.50) and the highest q0.95 for training (Table 1). For 25 to 100 discharges per
5 minutes, the two adjusted truth experiments will show whether the skill would have the potential to
change and how, if the observations would be more homogeneous. That means: it gives an indication
whether some skill in discrimination between severe and ordinary thunderstorms could increase and with
a very rough estimate of the change in skill. However, since lightning detection systems are far from
convertible into each other, this may be significantly off reality. Besides this, it is of interest whether
the upper lightning intensity quantiles and thresholds up to which skill persists change with an adjusted
number of detections.

It is emphasised that a correction could also be appropriate for the 2017 network changes in KLDN, in
particular in the northern regions, and that a 2015 region-dependent and intensity-dependent correction
would potentially remove some non-linearity issues, but this study is in no way an attempt to find out
details of dissimilarities in lightning detection datasets. However, it is useful to address dissimilarities
shortly. An example of regional dependence of lightning intensity as derived from non-homogeneous
detection systems is shown in Figure 13. It can be seen in this figure that region 11 probably has a large
difference in detection efficiency between KLDN and FLITS: most of these orange points are clearly below
the 1:1-line. Regions 8 and 9 may suffer similar issues and there is some indication of non-linearity, as the
deviation from the 1:1-line looks stronger for higher intensities. In contrast, region 1 (purple) seems to
have a slightly higher detection efficiency in 2015 in KLDN than in FLITS, with points above 1:1-line.
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5 Results on comparison of statistical methods

In this chapter the results of a comparison between the statistical methods are explained in detail. First
it describes how the hyperparameter settings have been selected. Special attention is paid to the number
of predictors that is included in the fits. Subsequently, the comparison between (E)LR and QRF is
done for the two predictands (thunderstorm occurrence and lightning intensity), hereby computing several
verification measures.

5.1 Quantile regression forests: hyperparameters

5.1.1 Number of predictors tried for each split (mQRF )

For the QRF, there are several hyperparameters that are used in the initial cross-validations (see Table 1).
The eventual hyperparameter selection is done with the 90 and 15 potential predictor sets only, because
both sets gave very similar results.

The first hyperparameter is mQRF . It appears to be the most important hyperparameter from the
tests, considering the results of the cross-validation: 27 out of 28 cross-validation results (7 lead times, 2
potential predictor sets and 2 predictands) lead to the same first selection. The tests of 2, 6 and 10 for
mQRF lead to different results, with mQRF = 2 usually being clearly better and sometimes equally good
as the best of the other two options.

The interpretation of the hyperparameter selection that even with many predictors, there is always
useful information contained in any predictor plane. If QRF searches in a six dimensional space, it is
searching for a very good split among many potential splits, which in a late stage of building a tree can
restrict how random the trees are and enlarge among trees. If trees are more random, various correlated
predictors can more likely complement each other than when trees are more similar.

5.1.2 Minimum terminal node size (sQRF )

The next hyperparameter is the minimum size of a sample in the terminal node in a tree (sQRF ), which
turns out to be less crucial in the end: settings 3, 9 and 15 are tested (Table 1). Eventually, for thun-
derstorm occurrence forecasts, sQRF = 15 always leads to better results than any of the smaller values of
sQRF . For the lightning intensity forecasts, the signal is slightly less convincing with sQRF = 9 as most
skillful setting when skillful forecasts can be made for the 15 potential predictors set. For the 90 potential
predictors set, there is a mixture of preferences among the seven lead times: sQRF of both 3 and 9 are
chosen three times. In the end, the decision that sQRF = 9 is the selected setting for lightning intensity
forecasts is made, because then the sets of 15 and 90 have the same settings for the two hyperparameters
described in this section. With this, we assume that the selected hyperparameter settings are also good for
models based on other potential predictor sets. Visualisation of verification scores leading to the selection
are not shown in this thesis.

It can be said that thunderstorm occurrence forecasts favour a larger sample size in the terminal node
than lightning intensity forecasts, which is partly explained by the larger unconditional training dataset for
thunderstorm occurrence forecasts. In the lightning intensity dataset, QRF needs to find more similarity
between samples and hence smaller sQRF , because that dataset covers only a region of predictor space in
which thunderstorms occur. For thunderstorm occurrence forecasts, it could be interesting to test some
larger values of the hyperparameter.

5.1.3 Number of predictors (nQRF )

The results shown in this section are based on the initial cross-validation. A comparison is made be-
tween the results from different initial potential predictor sets on forecasting thunderstorm occurrence
and intensity using QRF. Figure 14 shows the effect of the presence of many or fewer predictors on the
scoring of QRF models during the full elimination process for two lead times, initially each 10 elimination
steps. For the last 20 predictors the effect of each single elimination step is shown. Elimination is stopped
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(a) Forecasts of 00z + 3 to + 9 hours verified.

(b) Forecasts of 00z + 15 to + 21 hours verified.

Figure 14: Brier skill score as function of number of predictors for QRF initial cross-validation on probabilistic
thunderstorm occurrence forecasts. The mean score over 12 regions is indicated as dot, with error bars indicating
1σreg from the mean score.

when 2 predictors are left. The most general feature is that starting with 2 predictors (the end of the
elimination), the skill seems to go to some saturation level when increasing the number of predictors.
However, for the +3 to +9 hours forecast, the maximum skill score with 15 potential predictors seems to
be reached at around 10 predictors. In the other cases, the maximum score is typically reached with the
maximum number of predictors, but the BSS for 228 potential predictors does not exceed that with 40 and
90 potential predictors when all potential predictors are included as predictors in all sets. Furthermore,
with the same number of predictors (after elimination steps), the smaller sets have better skill scores than
the 228 potential predictor set.

Error bars give the scoring standard deviation of the 12 regions in Figure 14. These are typically smaller
with smaller potential predictor sets, so they are the smallest with 15 potential predictors. This means
that eliminating many predictors before having a ”best” prediction is ineffective for skillfully forecasting
thunderstorm occurrence. It only increases computational costs.

It is essential to note that error bars shown in Figure 14 are by no means informative about the
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(a) Verification score (BSS) for forecasts of 00z + 3 to + 9 hours.

(b) Verification score (BSS) for forecasts of 00z + 15 to + 21 hours.

Figure 15: Brier skill score as function of number of predictors for QRF initial cross-validation on probabilistic
lightning intensity forecasts. Three regional intensity thresholds are shown: 39 discharges per 5 minutes (squares),
81 discharges per 5 minutes (circles) and 150 discharges per 5 minutes (crosses).

significance of any difference: the 12 KOUW-regions on which the (one) standard deviation is based,
can be strongly correlated in thunderstorm occurrence and intensity. That means, if region 5 has a
thunderstorm on a certain day, it is very likely that some other regions will have thunderstorms too on
that day, especially the neighbouring ones. So for any significance estimate, one would have to correct for
correlations between all the regions. Furthermore, if significance tests would be applied to test differences
in (optimal) BSS between the potential predictor sets, these differences are not going to be significant,
with results being as close as in Figure 14.

The dependence of QRF performance on potential predictor set and its change during the elimination
process for intensity thresholds is shown in Figure 15. Although the skill scores are less stable than for
thunderstorm occurrence prediction, a saturation of skill with increasing number of predictors can still be
identified and it can be seen that the skill scores are more or less constant for the biggest set with more
than 90 predictors. Having a potential predictor set larger than about 90 predictors is not likely to help
improving lightning intensity forecasts notably. Since (extended) logistic regression does not profit from
so many predictors simultaneously being implemented in a model and it only would select the best few
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Figure 16: Comparison of Brier skill score as a function of lead time for all methods predicting thunderstorm
occurrence, with µreg ± σreg (indicated by error bars). Note that in some cases, two potential predictor sets lead to
the same fit for LR.

whereby it profits mostly from complementary variables, for (E)LR it neither makes sense to use very
large datasets of 228 potential predictors. Therefore, in the remaining sections, the search for optimal
thunderstorm forecasting models is limited to those models using 91 potential predictors at maximum.

Since we have identified the saturation-like behaviour of QRF when it is stepwise eliminating individual
predictors and that it does not suffer from overfitting notably, it can be said that using the 91 potential
predictor set for QRF is generally at least as useful as a smaller predictor subset of this set after elimination
in practice and the full set of 91 potential predictors will be used as biggest potential predictor set from
now on: nQRF = nset.

5.2 (Extended) logistic regression and number of predictors

For the (E)LR method, the only hyperparameter to be set is the number of predictors. The number
of predictors is set to the highest number for which the initial cross-validation verification shows an
increase of BSS for most of the regions (LR) or a clear majority of the verified intensity thresholds (ELR)
per lead time and potential predictor set. Sometimes, this criterion is somewhat arbitrary to judge,
but usually it is relatively clear. In addition, attention is paid to whether the model is consistent with
elementary relations, mainly that thunderstorm probability and intensity should increase with increasing
thermodynamic instability and with increasing hydrometeor concentrations. In a few cases, a model is
rejected due to the opposite relation. This is an indication of overfitting and the number of predictors is
in these cases decreased by one (with another check of consistency). For thunderstorm occurrence, it leads
to models with 1 to 4 predictors (typically nLR = 2) and for lightning intensity, it leads to 1 to 3 NWP
output predictors, in all but two cases of those presented in the remaining chapters having 1 or 2 physical
predictors. The selected predictors are further discussed in Chapter 6.

5.3 Thunderstorm occurrence forecasts: logistic regression versus QRF

The hyperparameters have been selected now (Sections 5.1 and 5.2) and therefore we continue with the
results of the final cross-validation in the remainder of Chapter 5 and in Chapter 6. In Figure 16 the BSS
with four potential predictor sets and the two methods for thunderstorm occurrence forecasts are shown
for seven lead times. From this figure, it is clear that QRF91 is probably the most skillful method, closely
followed by QRF40. Logistic regression is never more successful than these methods in terms of skill score
distribution among regions, though no significance testing is done. Among the logistic regression sets,
LR40 is usually the most successful method, based on the BSS. For logistic regression, the skill score is
not regularly increasing with increasing potential predictor set size; therefore the skill of LR looks less
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stable in this figure. An important reason for that is that LR only profits from selected predictors and
otherwise suffers from overfitting, whereas QRF exploits the full potential predictor set without suffering
from overfitting. However, for QRF it can be seen that for all lead times, the saturation-like increase as a
function of potential predictor set size is still present. In other words, the skill rapidly increases when the
number of potential predictors goes from 4 to 15 for all lead times. The average BSS typically increases
less rapidly from 15 to 40 predictors and only very slightly from 40 to 91 predictors. The uncertainty
margins based on the BSS standard deviation among 12 regions are similar between QRF40 and QRF91,
except for the +3 to +9 hour forecast, where it shrinks going from 40 to 91 predictors. The last important
feature of the figure is that QRF is not better than LR when having only 4 potential predictors, but likely
worse.

Besides these intercomparison results between methods and potential predictor sets, it can be seen that
the forecasts centered around 18 UTC on the first day are most skillful followed by those centered around
12 UTC on the first day, as expected (highest climatological probabilities). It can also be identified that
the average BSS always decreases if one jumps 24 hours forward in time (so for the same valid times); this
is also consistent with expectations.

Thunderstorm occurrence forecasts have also been verified with reliability diagrams. Out of 48 combi-
nations of valid time and region, only two combinations turned out to have somewhat diminished reliability
at high thunderstorm probabilities (30-90%), namely the extreme northwestern region at night and the
extreme southeastern region during daytime. These are largely independent of the potential predictor set
and method used and are therefore not shown.

5.4 Lightning intensity predictions: extended logistic regression versus QRF

5.4.1 Cross-validation strategies

Due to the inhomogeneity issues described in Section 4.4, the results from the random final cross-validation
procedure (but where all regions for a day are grouped) are effectively used instead of the one where we test
on a year and train on the other two, for analysing the performance of lightning intensity forecasting models.
All lead times indicate similar or better performance with the random cross-validation (see Appendix B).
One could argue that randomly distributing days between test and train dataset could improve skill due
to some correlations between previous case and current case in both predictor and predictand outcome.
However, the predictand (observed transformed lightning intensity) correlations between subsequent and
current case within all regions and for four valid times have been calculated. These are 48 combinations,
of which 47 range between -0.23 and +0.26, with 15 negative correlations and 33 positive correlations.
Part of the correlations are influenced by structural seasonal variations in lightning intensity, as in July
and August typically more severe thunderstorms occur. Nonetheless, one region had a strong correlation
of 0.68 for one valid time . This is region 1 for 21-03 UTC, where only 25 cases occur with only three cases
of interest above 25 discharges per 5 minutes. With the given sign changes in aforementioned correlation
coefficients no significant artificial skill is suspected due to the random cross validation strategy.

5.4.2 Brier skill scores of four potential predictor sets

The comparison of BSS for four potential predictor sets with the two methods and for seven lead times
for lightning intensity forecasts is shown in Figure 17. Now, the confidence intervals indicate uncertainty,
as the error bars in scoring show the upper and lower bound of the 95% confidence interval as obtained
from 1000 block bootstrapping samples.

Verification scores of both lightning intensity thresholds show that typically ELR is not stably gaining
information from giving it more potential predictors; the BSS of all potential predictor sets are within
each other’s 95% uncertainty bars. This is likely caused by the large set of potential predictors: with
a big potential predictor set the initial cross-validation leads to different predictor selections than the
final cross-validation frequently. The initial cross-validation provides the number of predictors selected
for the final model and this number can be sensitive to the predictor selection. Therefore the connection
between the initial and final cross-validation weakens when there are many potential predictors, leading to
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(a) 50 discharges per 5 minutes

(b) 250 discharges per 5 minutes

Figure 17: Comparison of Brier skill score as a function of lead time for all methods for the indicated intensity
threshold, with confidence intervals based on 1000 block bootstrapping samples indicated by error bars.

non-optimal settings, which can cause that models are more prone to overfitting. In principle, this should
not happen, but small datasets are particularly vulnerable. Note that the initial cross-validation on which
the number of predictors is selected contains only around 4

9 of the datasets containing 381-699 samples for
training for each valid time (Table 3). In QRF this would not be such a big problem, as extra information
in a potential predictor set may rarely be used by hardly being selected for splitting and the skill likely
goes to nearly constant values with large potential predictor sets (see Figure 15).

Among the QRF models it can be seen that QRF4 is typically worse than the other models, and its
confidence interval sometimes is clearly lower than confidence interval of the other models at 50 discharges
per 5 minutes. This means that it can be considered as not competitive to the other methods. Usually,
QRF15 is close to QRF40 and QRF91. In general, the mean BSS of the QRF40 and QRF15 methods at
lead time of +33 to +39 hours for the threshold of 250 discharges/5 min are at the bottom of the BSS
confidence interval of the ELR15, ELR40 and ELR91 methods. This is probably because QRF cannot
predict intensities that have not occurred in the (relatively small) training set, whereas ELR allows for
some extrapolation (Equation 2). This happens with +33 to +39 hour forecasts at 250 discharges per 5
minutes, because it is above q0.95 (see Table 3).

Since conditional probabilities are studied here and only thunderstorm cases are present in the dataset
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for testing and training, results are in general not as stable as for thunderstorm occurrence due to the small
sample sizes. This leads to somewhat more varying results between different lead times, but illustrates
that it is not yet appropriate to draw definitive conclusions between the 15, 40 and 90 potential predictor
sets for lightning intensity forecasts, especially because homogeneity issues might be relevant for the choice
of the preferred method (see Section 4.4).

5.4.3 Reliability of QRF and ELR

Another important verification method is the reliability diagram, which shows whether a certain forecast-
ing probability bin (for example 10-20% probability) is indeed associated with an observed predictand
probability frequency that resembles this probability bin (see Section 3.4.1). The reliability diagrams of
+39 to +45 hour forecasts of ELR40 and QRF40 are shown as illustrative example in Figure 18.

The QRF and ELR reliability diagrams show differential behaviour: the ELR method (Figure 18a,
right) shows often (almost) exponentially decaying histograms of relative issuing frequency as a function
of forecast probability for the high quantiles shown (q0.90) in this example. On the other hand, QRF
(Figure 18b, right) shows relative frequencies that are still high for the lowest probability bin of 0-10%,
but frequently linearly decaying or constant issuing frequency for the next few probability bins, namely
10-20% and 20-30%. Therefore, the two reliability diagrams in this example show that QRF is more likely
to issue forecasts with higher probabilities than ELR and the diagrams also show that QRF typically keeps
this reliability up to higher probabilities. This can be seen, because the red lines of ELR with 1 predictor
and QRF with 40 predictors are close to the optimal 1:1-line, for QRF up to the 60-70% probability bin
and for ELR up to the 40-50% probability bin in Figure 18. Only one of the points below these probability
bins are deviating clearly from the 1:1-line. Similar behaviour is found for some other lead times, of which
reliability diagrams are shown in Appendix C.

An important reason for the identified behaviour is that ELR makes assumptions on the shape of
the PDF of the predictand. For ELR, the exponential distribution of issued probabilities will typically
be the consequence of the shape of PDFs of transformed predictand and predictor(s) conditional on
thunderstorm observations; the transformed predictand distribution clearly has a long tail (Figure 11) and
for many continuous predictors this will hold as well. QRF may discriminate higher and lower probabilities
empirically based on combinations of predictor values and since there are many trees that are random,
this empirical part is combined with smoothing.

Since there is no clear signal that QRF or ELR typically performs better than the other based on BSS,
higher forecast probabilities and better reliability with ≈ 50% probabilities of QRF can be paid off by
slightly larger forecasting errors when high lightning intensities are unlikely (say: 5% probability), which
occurs more frequently for q0.90 of the lightning intensities. For practical application and operational use,
the reliability advantage of QRF is more favourable even though forecast quality might in general not
improve, as warnings are not likely to be issued with very low probabilities. For operational and practical
use, good reliability is desirable in combination with ability of the model to distinguish high probabilities
of exceeding a high intensity threshold well from near-zero probabilities.

5.4.4 Continuous ranked probability skill score

In Table 4, the continuous ranked probability skill scores of ELR40 and QRF40 models can be found
(see Section 3.4.1). It shows that the unweighted CRPSS for ELR40 ranges between -0.05 and +0.05.
This means it is not more skillful in predicting the full lightning intensity distribution than climatology.
However, QRF40 is successful in doing so: the skill scores vary between 0.10 and 0.19. The clear reason for
this is that by intending to predict high intensities optimally, ELR is explicitly trained on the upper half
of the observed lightning intensity distribution, whereas QRF is not trained on specific thresholds, but on
the full empirical distribution. In the verification, ELR therefore does worse at low lightning intensities
than QRF, as the whole lightning intensity distribution is verified with the unweighted CRPSS.

For verification purposes, the weighted CRPSS (wCRPSS) has also been calculated, with a weight
of 0.1 for lightning intensities up to 25 discharges per 5 minutes and 1.0 for lightning intensities above
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(a) ELR Harmonie00z +39 to +45 hours (selected: 1 predictor)

(b) QRF Harmonie00z +39 to +45 hours

Figure 18: Reliability diagrams of ELR40 and QRF40 forecasts, with both relative frequency of an event (LHS) and
relative forecasting frequencies per forecast probability bin (RHS) for each lead time at lightning intensity of 250
discharges per 5 minutes (q0.90). Note that for ELR, final models made with 1 to 4 predictors are all validated, but
the model with 1 predictor (red) was selected in this case with the initial cross-validation verification.
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Table 4: Unweighted and weighted continuous ranked probability skill score for the ELR40 and QRF40 models per
lead time.

Lead time (h)
CRPSS Weighted CRPSS
ELR40 (-) QRF40 (-) ELR40 (-) QRF40 (-)

03 - 09 0.045 0.147 0.223 0.285
09 - 15 0.019 0.154 0.162 0.237
15 - 21 -0.033 0.190 0.158 0.230
21 - 27 -0.051 0.128 0.151 0.205
27 - 33 0.033 0.140 0.213 0.252
33 - 39 -0.007 0.098 0.129 0.184
39 - 45 0.002 0.136 0.134 0.176

25 discharges per 5 minutes (Section 3.4.1). The wCRPSS reflects the forecast skill at high intensities
specifically: its value for QRF40 is systematically 0.04 to 0.08 higher than ELR40. This is very likely
related to the identified higher frequency that high probabilities are issued by QRF than by ELR, as
discussed in Section 5.4.3. In practice, ELR tends to infrequently issue relatively high probabilities (for
example 40%) of exceeding a high intensity threshold, whereas QRF is more frequently able to forecast the
higher probabilities of exceeding a high intensity threshold. In such cases when a high lightning intensity
is indeed observed, ELR has the measured intensity systematically in the higher region of the CDF (low
probability to be exceeded) compared to QRF, having the measured intensity typically more toward the
centre of the CDF. This leads lower wCRPSS of ELR compared to QRF, whereas the BSS appears to
be hardly affected. BSS can be hardly affected if ELR gives slightly lower probabilities than QRF in
most verification samples when a threshold is not exceeded. Therefore, the CRPSS can add information
about how good forecasts are and the systematically better skill of QRF in the wCRPSS indicates that
QRF would likely be preferential in operational use, even though the BSS does not indicate systematic
differences between QRF and ELR.

For the ELR91, QRF15 and QRF91 predictor sets, the behaviour of both weighted and unweighted
CRPSS as a function of lead time closely resembles the pattern of the models with 40 potential predictors
for the same method. In all cases, QRF40 performs the best and QRF is clearly better than ELR, but
with small differences between different potential predictor sets. For thunderstorm occurrence forecasts
QRF40 is also optimal together with QRF91 (Section 5.3) and it is used in the next chapter to conduct
more experiments.

5.4.5 BSS as function of threshold: QRF40 and ELR40

Verification with BSS has been done between 25 and 400 discharges per 5 minutes with steps of 25
discharges per 5 minutes. Figure 19 shows that the BSS generally decreases with increasing lightning
intensity, since the peak in BSS is typically observed with intensities of 25 or 50 and sometimes 75
discharges per 5 minutes. This is consistent with expectations as the observations still have a balanced
distribution with many records above and many below the threshold leading to better sampling/more
samples (see Chapter 4 and Table 3). At +21 to +27 hours ahead however, ELR40 has its peak around
200 discharges per 5 minutes, whereas QRF40 shows a small decrease in BSS with increasing lightning
intensity threshold. The maximum BSS of ELR40 at 200 discharges per 5 minutes is not significant though,
but none of the lead times show a significant difference between ELR40 and QRF40.

When comparing QRF40 and ELR40, QRF seems to perform better in terms of BSS for +9 to +21
hour forecasts in the skillful threshold range. For +21 to +27 hours the best method based on BSS
changes as a function of threshold. For +3 to +9 and +27 to +45 hours, ELR seemws to perform better.
These results are more or less consistent with Table 4: when the wCRPSS difference is maximum between
ELR40 and QRF40 (0.07), QRF40 shows the best BSS for thresholds that have been verified; for lead
times with smaller differences between QRF40 and ELR40 (0.04-0.06), ELR40 has the best BSS for verified
thresholds. When forecasting +21 to +27 hours ahead with a wCRPSS difference of 0.05, the best method
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changes as a function of lightning intensity threshold. It should be noted that wCRPSS also takes into
account thresholds for which BSS is not shown in Figure 19, such that BSS and wCRPSS do not need to
be fully consistent.

If Figure 19 is interpreted in context of the unconditional climatology, both QRF and ELR are skillful
at 95% confidence up to q0.993 to q0.995 in the first 33 hours, depending on the lead time and method. At
longer lead times the quantiles decrease to q0.989, except ELR at +39 to +45 hours (q0.992).
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(a) +3 to +9 hours (b) +9 to +15 hours

(c) +15 to +21 hours (d) +21 to +27 hours

(e) +27 to +33 hours (f) +33 to +39 hours

(g) +39 to +45 hours

Figure 19: BSS of QRF40 and ELR40 as a function of lightning intensity for seven lead times. The four highest
training quantiles are also given at the top (if within axis limits).
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6 Role of specific predictors, predictor groups and lightning de-
tection system

In this chapter, the value of individual predictors and physical groups of predictors for the probabilistic
thunderstorm forecasts is investigated, to understand their role in the thunderstorm forecasts. Three ex-
periments are carried out with the 40 potential predictor sets, namely leaving out vertically integrated
buoyancy measures of parcels (no CAPE), cloud content in the NWP model (no mph) and lastly the
precipitable water-instability combinations (no PWinst), which are new in this study. With these experi-
ments it can be understood what happens with forecast models if a group of predictors is removed from
the potential predictor set. Results are analysed both from verification perspective and the role predictors
have in fits, namely their selection in case of LR and their importance in case of QRF. The experiments
have been summarised in Table 2. The verification of the elementary 15 potential predictor set (Section
2.2.6) is also displayed in figures as comparison and the chapter starts with experiments on thunderstorm
occurrence forecasts.

Furthermore, we investigate the impact of modifying the lightning detection dataset on the verification
scores (Section 6.5). In the last paragraph (Section 6.6) LR models are compared among lead times to
give more insight in post-processed thunderstorm forecasts as function of lead time and valid time.

6.1 Comparison of the potential predictor sets: thunderstorm occurrence

With the no CAPE experiment, 8 potential predictors are omitted, namely both surface based and most
unstable CAPE, CIN and combinations of MUCAPE and MUCIN and MUCAPE-microphysics combina-
tions; see Appendix A. Furthermore, when we do the no PWinst experiment, six predictors are removed
from the set of 40 potential predictors. Lastly, 4 potential predictors are removed with the no mph
experiment: snow, graupel and their combinations with MUCAPE.

Figure 20 shows the results when these three combinations of potential predictors are removed. For
thunderstorm occurrence predictions, it can be seen that removing the PWinst predictors has little influ-
ence on the BSS. However, removing microphysics or CAPE results in a slight reduction in the skill of
the QRF forecasts; these results are not tested for significance, but the signal is consistent between lead
times. Only the +15 to +21 hours forecast is not affected when the microphysics is removed from the
potential predictor set. In the QRF experiments, the removal of CAPE seems affect the verification scores
most negatively, based on these seven runs. Except for the +33 to +39 hours forecast, the 15 potential
predictor set performs worse than any of the three removal experiments. Additionally, the skill scores of
QRF at +39 to +45 hours are very close together.

The results for logistic regression are less consistent and only the removal of microphysics has a con-
sistently negative effect on all lead times, with on average also the largest negative effect. None of these
effects are significant, but the signal persists through different lead times. For the +9 to +15 hours fore-
cast, the LR40 and LR no mph perform the worst of all based on average BSS. Furthermore, for lead
times longer than 9 hours, the QRF40, QRF no CAPE and QRF no mph all perform better than all of
the LR-experiments, with in the +3 to +9 hour forecast approximately equal performance between the
best LR-runs and QRF no CAPE and QRF no mph runs.

6.2 Predictor importances: thunderstorm occurrence

6.2.1 QRF: importance as a function of lead time

In order to investigate the importance of a predictor in QRF, the time series of the predictor of interest
is randomly reordered, which removes its predictive capacity. For both the ordinary and reordered time
series, the prediction accuracy of QRF is evaluated on independent samples. By analysing the prediction
accuracy with both ordinary and reordered sample order, an permutation importance measure is calculated
(as mentioned in Section 3.2.3). The procedure is done for all predictors separately. When many correlated
predictors are present, part of the benefits of one predictor will be absorbed by other predictors, such that
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Figure 20: Comparison of Brier skill score for thunderstorm occurrence as a function of lead times for the standard
LR40 and QRF40 methods and the two methods with no CAPE, no mph and no PWinst potential predictor sets.
In the figure µreg ±σreg is indicated by error bars. Note that in some cases, two potential predictor sets lead to the
same fit for LR. The LR15 and QRF15 predictions from the previous chapter are also included for convenience.

two very strongly correlated variables (r approaches 1) will share all of their importance measure if they
are both present in the predictor set, but one of them gets all of the importance when the other would be
eliminated. This has some effects on the importance measure [Gregorutti et al., 2016]; the permutation
importance measure is the best importance measure that can be used in the QRF fitting package [Wright
and Ziegler, 2017] used according to [Gregorutti et al., 2016]. For a random variable the permutation
importance has an expected value of 0 with some spread and is to some extent depending on the random
components in each QRF, whereas large values are obtained for important predictors.

When studying the importance measures of only QRF40 as a function of lead time, a few other in-
teresting patterns pop-up. It can be seen in Figure 21 that importance of predictors for forecasts valid
in the night and morning (21 UTC to 9 UTC) is very similar among all lead times. During daytime (9
to 21 UTC), when surface based convection occurs more frequently than in the night and morning, the
importance of LNB, SBCAPE and its combination with SBCIN increase strongly. SBCAPE is approxi-
mately as important as Modified Jefferson, MUCAPE and the MUCAPE-graupel combination between 9
and 15 UTC. Additionally, a pattern with increasing importance of graupel, K-index, maximum Fateev
and minimum Adedokun2 Index during daytime periods can be seen. This feature is very clearly present
and therefore it seems a robust result. Besides this, it can be seen that Θw,850,max is in all cases more
important on the second day than on the first day. Therefore the crosses are to the right of the circles
for this predictor. For most predictors, consistent signals like this do not arise, but for Jefferson index
(increasing on day 2) and MUCAPE-MUCIN as combined predictor (decreasing on day 2), this pattern is
also found. It may be chance that some of these patterns arise though, as differences between day 1 and
2 are relatively small.

The general pattern in Figure 21 is that MUCAPE as integrated measure of thermodynamic instability
is the most important predictor and Modified Jefferson is competitive as bulk approximation. Furthermore,
the microphysics and other bulk instability measures such as Jefferson index (closely correlated to Modified
Jefferson) and K-index (as well as SBCAPE and LNB during daytime) do clearly provide information on
thunderstorm occurrence and are ranked high. A more intermediate rank is taken by Θw,850,max, but it
gives another type of information than predictors that neighbour it with intermediate-to-high ranking.
Other predictors informing QRF about moisture, wind profile, circulation (MSLP, dp

dt ) and (solely) CIN
do not seem to be essential for improving thunderstorm forecasts. They end up with low importance in
Figure 21. In summary, the depth and magnitude of instability and occurrence of showers is found very
important and the potential wet bulb temperature is informative for thunderstorm occurrence forecasts
with QRF.
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Figure 21: The permutation importance measure of QRF40 fits for seven lead times with thunderstorm occurrence
forecasts, averaged over three final cross-validations. The colour of a symbol indicates the time of the day; circles
indicate that the centre time of the forecast lies in the first 24 hours and crosses indicate a centre time on the
second day.

6.2.2 QRF: importance change in no CAPE and no mph experiments

The permutation importance measure can give an indication as to the alternative information that QRF
uses, when one or more predictors are removed. Some general signals as they are found in Figure 22 are
now discussed. A clear feature in this figure at +9 to +15 hours is the strong increase in the importance
of column graupel and LNB (both q0.90 and maximum) in the no CAPE experiment compared to the full
QRF40 models. Furthermore, Θw,850,max, maximum K-index, maximum Modified Jefferson and Fateev
show strong increases. At lead times of +15 to +21 and +33 to +39 hours (not shown), the signal is the
same, although the increase in K-index is sometimes replaced by a variant of Bradbury index, which is
strongly correlated to K-index.

In the night and morning (up to +9 hours lead time and +21 to +33 hours lead time), CAPE is generally
replaced by indicators of moisture and warm air in the lower atmosphere, with some bulk (potential or
conditional) instability indicators over the 850 to 500 hPa layer also becoming more important. An example
is shown in Figure 22. That means, instead of graupel, Fateev and Modified Jefferson, the potential wet
bulb temperature at 850 and 925 hPa are more important in combination with Bradbury and/or K-index
and Jefferson index.

The removal of graupel and snow is solved by the models with using MUCAPE and/or its combination
with CIN more intensively, Θw,850,max and varying instability/PW combinations are also used more inten-
sively during nighttime (Figure 22). Additionally, Bradbury based at 925 hPa, Adedokun2 Index, LNB,
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(a) +9 to +15 hours

(b) +21 to +27 hours

Figure 22: The permutation importance measure of QRF models averaged over three final cross-validations; a linear
correction for the number of potential predictors in a potential predictor set is applied. Some predictors have zero
importance, because they are left out in that fit.
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Table 5: First selected predictor in LR for three experiments, per valid time based on three-fold final cross validation
with seven lead times. Sorting models by valid time means that the predictors on forecasting day one and two are
merged in the same row. Other predictors used for LR40 can be found in Appendix D.

Valid time (UTC) Predictor
Selection frequencies (1st pred.)
LR40 LR40 no CAPE LR40 no mph

03-09
ModJefferson max 1 6 1
MUCAPE graupel pows max 2 0 0√
MUCAPE +MUCINmax 3 0 5

09-15

MUCAPE graupel pows max 3 0 0
MUCAPE snow pows max 2 0 0√
MUCAPE +MUCINmax 1 0 6

ModJefferson max 0 5 0
Trans Graupel col max 0 1 0

15-21
ModJefferson max 5 6 5√
MUCAPE +MUCINmax 1 0 1

21-03
ModJefferson max 2 3 2√
MUCAPE +MUCINmax 1 0 1

Fateev, Θw,925,max, SBCAPE and K-index are predictors that are more informative to QRF for certain
lead times.

In summary, there is a little consistency among the lead times in how some of the information contained
in CAPE is replaced in QRF models: Θw,850,max and either maximum of Jefferson or Modified Jefferson
(which are strongly correlated) have a more important role when CAPE is not available as predictor, with
scattered signals among the roles of other predictors. For graupel the signal is even more obscure if several
lead times are compared.

6.2.3 LR predictors

In Table 5 the first predictors selected during the forward predictor selection of LR40 and two removal
experiments are shown. Four predictors dominate the table: maximum Modified Jefferson,√
MUCAPE +MUCINmax and the two MUCAPE-microphysics combinations. Modified Jefferson is

the most important predictor from the LR40 between 15 and 3 UTC and the CAPE composites between
3 and 15 UTC. When all CAPE predictors are removed, it is very clear that Modified Jefferson is the
most favourable predictor to replace MUCAPE composites, with 20 selections as first predictor out of
21. Transformed graupel is only selected once as first LR predictor. With the no mph experiment, it
can seen that the models have a tendency towards more consistency, with the most unstable CAPE-CIN
combination dominating between 3 and 15 UTC and Modified Jefferson doing so between 15 and 03 UTC.
The dispersion of first LR predictors means that the three types of predictors are approximately similar in
their ability to discriminate between non-thunderstorm and thunderstorm conditions. It is consistent with
Figure 21, except for that untransformed MUCAPEmax does not fit well in a logistic regression curve,
which is because its relation to thunderstorm occurrence does not resemble a logistic curve. Therefore
composite predictors such as

√
MUCAPE +MUCINmax have been created and the composite predictors

with microphysics or CIN are preferred.

The second, third and fourth predictors of LR40 are shown in Appendix D. Besides the predictors that
also appear as first predictors (and are already discussed), we see that Boyden index and Jefferson index
appear twice as second selected. The Jefferson index complements LR models with similar information
as Modified Jefferson, as their definition difference is only the inclusion of the dew point depression at
700 hPa and both are strongly correlated. Boyden is different from the other instability indices because
it only assesses a lapse rate in the layer below 700 hPa compared to 700 hPa via thickness, whereas other
instability indices describe mainly conditional instability between layers of 850 and 500 hPa. Furthermore,
pressure, moisture convergence (divergence) and helicity are used complementary to instability indices in

Page 60 of 99



(a) 50 discharges per 5 minutes

(b) 250 discharges per 5 minutes

Figure 23: Comparison of Brier skill score as a function of lead times for the standard LR40 and QRF40 methods
and the two methods with no CAPE, no mph and no PWinst potential predictor sets. The 95% confidence for
indicated intensity is based on 1000 bootstrapping samples is indicated by error bars. Note that in some cases, two
potential predictor sets lead to the same fit for ELR. The ELR15 and QRF15 predictions from the previous chapter
are also included for convenience.

LR40 models in one or a few cases; they give information about forcing, low level moisture and organisation
of convective cells (helicity), but do not appear very frequently in LR-equations.

In summary, like with QRF, instability indices are by far the most important for thunderstorm predic-
tion in the LR models closely followed by microphysical predictors and then by a little information about
forcing that is used. This order is largely consistent with QRF importance measures, although information
about low level air mass (Θw,850,max) is used by QRF (Figure 22), but not by LR.

6.3 Comparison of the potential predictor sets: lightning intensity

The impact on skill scores for experiments with QRF verified on lightning intensity forecasts is generally
small when removing a certain type of predictor and acts in both directions (Figure 23). Typically, the
microphysics has small impact and CAPE typically the strongest.

For ELR it can be said that the microphysics scheme typically does not influence forecast skill, except for
the last lead time at +39 to +45 hours. This is because microphysical predictors are usually absent in the
models; the lightning intensity forecast is conditional on thunderstorm occurrence. When thunderstorms
occur, graupel and snow should be present in Harmonie, if Harmonie simulations are correct. The graupel
and snow content in Harmonie should therefore not be very informative for conditional thunderstorm
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Table 6: First ELR predictor for three experiments, per valid time based on three-fold final cross validation with
seven lead times. Sorting models by valid time means that the predictors on forecasting day one and two are merged
in the same row. Second predictors used for ELR40 can be found in Appendix D.

Valid time (UTC) Predictor
Selection frequency (1stpred.)
ELR40 ELR40 no PWinst

03-09

Bradbury PW1 6 0
Bradbury min 0 2
DPT 850 max 0 1
K index max 0 2
ThetaW 850 max 0 1

09-15

Bradbury 925 min 1 1
Bradbury min 1 1
K index max 3 3
Adedokun1Index neg min 1 1

15-21
Bradbury PW1 1 0
K index max 5 6

21-03

Boyden PW1 1 0
K index max 1 1
MUCAPE q0.90 1 1
Boyden max 0 1

intensity predictions. Removal of CAPE and PW-instability combinations, has small impacts in both
directions. For no CAPE and no mph, this small impact is expected, because these predictors turn
out to be not selected by ELR, but for no PWinst, this is at first not expected. This is because PW-
instability combinations are important for conditional thunderstorm intensity predictions, which is about
to be clarified in the next section, Section 6.4, and Table 6.

6.4 Predictor importances: lightning intensity

6.4.1 ELR predictors

The important predictors for lightning intensity forecasts for ELR40 and ELR no PWinst are shown in
Table 6. For 03-09 UTC valid times, there is clearly a preferred predictor in Bradbury PW1. At other
valid times, K-index is preferred over other predictors, but Bradbury and its versions with precipitable
water are also included, just like Boyden and its combinations with precipitable water and Adedokun1
index. Most unstable CAPE is used once at nighttime. These variables are generally strongly correlated
in the conditional dataset, the part of the dataset where thunderstorms are actually observed. To give
an example: in the whole Harmonie dataset, the correlation coefficient between maximum K-index and
minimum Bradbury index is -0.83, but for the thundery cases, which are used in the intensity prediction,
it decreases to -0.89. These predictors correlate with transformed lightning intensity with comparable
magnitudes, namely 0.51 and -0.50. Both will therefore be similarly good predictors of lightning intensity
and they can replace each other. With high values for K-index or low values for Bradbury index, large
variation in lightning intensity occurs, whereas low lightning intensities occur at high values of Bradbury
index.

Physically, it is reasonable that Bradbury index and K-index relate well, especially in moist conditions
(which is typically the case in Dutch thunderstorm environments): K-index adds temperature and dewpoint
at 850 hPa; it subtracts the 700 hPa dew point depression from this and the 500 hPa temperature.
Bradbury index is equal to the potential wet bulb temperature difference between 850 hPa and 500 hPa.
In moist environments, dew point temperature and wet bulb temperature go to the temperature with
increasing moisture; the wet bulb temperature is in the middle between the two others. After conversion
of wet bulb temperature to potential wet bulb temperature, qualitative effects do not change. Moreover,
in drier mid-tropospheres, both the dew point depression and potential wet bulb temperature at 500 hPa
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will go down.

More of the potential predictors used have strong correlations among each other due to the fact that
many use 850 and 500 hPa temperature. In addition, many instability indices correlate with transformed
lightning intensity at a magnitude similar to maximum Bradbury and maximum K-index: conditional on
thunderstorms, the correlations vary typically between 0.45 and 0.53 (sometimes of negative sign).

When the PW-instability combinations are omitted, they are replaced partly by their original instability
indicator and partly by other covariates, such as dew point and Θw at 850 hPa during the morning hours
and K-index for all valid times.

6.4.2 QRF40 predictors

In QRF40 fits, we mainly find the same important predictors as those that are first predictor in ELR40
(Table 6); see Appendix E. In addition to those important for ELR, predictors that turn out to be important
at many or all lead times, are maxima of precipitable water and LNB. Furthermore, they are the PW2
versions of the PW-instability combinations and Bradbury based at 925 hPa. During the daytime, the
maximum of MUCAPE is also important. For 15 to 21 UTC valid time, a few additional important
predictors are found. However, the result is much more dispersed among predictors with this predictand
than with the thunderstorm occurrence predictand, which indicates that all information is to some extend
useful. Nonetheless, information about forcing and organisation of convection is ranked low, with coast,
moisture convergence, pressure and its tendency, shear, helicity and CIN on the low end of the importance
measure. Additionally, snow and Fateev have low importance values. All together, it means that steepness
of lapse rates between 850 and 500 hPa and to a lesser extent instability depth and total or low layer (up
to about 3 km/700 hPa) moisture content are most informative when making lightning intensity forecasts.
A detailed figure of the importance measures can be found in Appendix E.

6.5 Sensitivity of intensity forecasts to lightning detection perturbations

Since the lightning intensity observations are inhomogeneous (Section 4.4), two sets of adjusted lightning
detections in 2015 are used to gain some insight in what the variation in expected value of skill scores caused
by inhomogeneity among and within years might be. The random cross-validation strategy (Section 3.3)
is used for training and verification of the forecasts with adjusted truth. Although the uncertainty range
would normally indicate the estimate for variation of the verification skill score, it is not necessary that
the best score estimate for the homogeneous truth would fall with 95% certainty within the uncertainty
range of the reference dataset with undisturbed KLDN detections. To estimate some uncertainty related
to inhomogeneity of lighting detections, the detection dataset is modified in two ways.

Note that only the detection data of 2015 have been adjusted. In contrary, the documentation of
Météorage [personal communication - Stéphane Pedeboy] shows that significant effects on detections will
also have occurred due to the installation of extra sensors in De Kooy and Eelde in June 2017. The main
interests are to what extent expected skill may be vanishing or growing due to inhomogeneity, to show
whether the ranking of statistical methods can be affected, and whether there is large variability in the
intensity threshold up to which forecasts are skillful. It is important to note that conditional quantiles of
lightning intensity are influenced by the ”truth” set (see Table 3), so a change in skillful quantiles are also
of interest. Results for the two thresholds of 50 and 250 discharges per 5 minutes are shown in Figure 24.
Improvements of best estimate for BSS can be seen among all lead times if doubled detections in 2015 are
assumed as ”truth”. The BSS increases for this detection set by up to almost 0.1 at the 50 discharges per
5 minutes threshold for +3 to +9 hours (QRF), +21 to +27 hours (ELR) and +27 to +33 hours (QRF
and ELR). In the latter case the best estimate of the doubled detections for 2015, the BSS is at the top
of the 95% confidence interval of the reference detections. Note that for the most interesting lead time,
+15 to +21 hours and +39 to +45 hours (highest lightning intensities, see Table 3 in Section 4.4), the
difference among the generated detection sets is small with well overlapping confidence intervals. For the
FLITS detections, the BSS is always closer to the reference detection set than for doubled detections and
with strongest deviations between +21 and +27 hours for ELR (around 0.06 of BSS-value). This is where
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(a) 50 discharges per 5 minutes

(b) 250 discharges per 5 minutes

Figure 24: Comparison of Brier skill score as a function of lead times for the reference LR40 and QRF40 fits
and those with modified truths with FLITS detections in 2015 (”FLITS”) and doubled KLDN detections in 2015
(”doubled”). In the figure the 95% confidence for indicated intensity is based on 1000 bootstrapping samples is
indicated by error bars.

the least skillful forecast at threshold of 50 discharges per 5 minutes is made by ELR40 for the reference
detections. BSS goes both up and down frequently with FLITS detections for 2015, with QRF giving
mostly increases. This would indicate that especially QRF suffers from inhomogeneity in the detections,
since the best estimate for BSS goes up with respect to the reference 13 out of 14 times.

At 250 discharges per 5 minutes, Figure 24 shows some minor changes in BSS, up to about 0.05.
The doubled 2015 detections lead to mostly higher best estimates of BSS than reference detections, the
exception is ELR at +21 to +27 hours. FLITS gives mostly higher BSS with QRF40 than the reference
set. But for +21 to +27 hours, the detection set with FLITS detections in 2015 is notably worse than the
reference set and the doubled set also performs worse. Usually, the differences between QRF and ELR are
more similar within one lead time than those between the different detection sets for different lead times,
but among different lead times there is no clearly preferred method.

In both figures, the most skillful statistical method varies among detection sets and lead times. This
points out that the ranking can change just due to uncertainty in the observation.

The figures showing the uncertainty in BSS as function of threshold for each lead time are in Appendix
F. For the +3 to +9 hours forecast 95% confidence, skill persists up to 150 discharges per 5 minutes in
the QRF40 experiment with doubled intensities in 2015, whereas this is only up to 75 discharges per 5
minutes for the standard QRF40 and ELR40. It means that significant impact is seen at this lead time
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Table 7: Summary of LR models for the no CAPE run with only one predictor as presented in Section 6.2.3, with
intersection, predictor and coefficient of the model as function of forecast time. Given are model coefficients for
three final cross-validations and their average. Additionally, the 10% and 50% thunderstorm probability predictor
values are given and the difference between these two. Note that firstly all predictors refer to their spatial and
temporal maxima, so that this part is omitted from their name.

Forecast time (h) First predictor x Coefficient x(P = 0.1) x(P = 0.5) ∆x

03-09
ModJefferson 0.864 32.79 35.33 2.54
ModJefferson 0.920 32.80 35.19 2.39
ModJefferson 0.766 32.63 35.50 2.87

Average 03-09 ModJefferson 0.850 32.74 35.34 2.60

09-15
ModJefferson 0.661 31.77 35.09 3.33
ModJefferson 0.734 32.04 35.03 2.99
Trans. col. graupel 5.009 0.98 1.42 0.44

Average 09-15 (2 models!) ModJefferson 0.698 31.91 35.06 3.16

15-21
ModJefferson 0.723 32.00 35.04 3.04
ModJefferson 0.741 32.19 35.15 2.96
ModJefferson 0.822 32.49 35.16 2.67

Average 15-21 ModJefferson 0.762 32.23 35.12 2.89

21-27
ModJefferson 0.797 32.77 35.53 2.76
ModJefferson 0.804 32.63 35.36 2.73
ModJefferson 0.708 32.86 35.97 3.10

Average 21-27 ModJefferson 0.800 32.75 35.62 2.86

27-33
ModJefferson 0.739 32.49 35.46 2.98
ModJefferson 0.757 32.57 35.47 2.90
ModJefferson 0.691 32.36 35.54 3.18

Average 27-33 ModJefferson 0.729 32.47 35.49 3.02

33-39
ModJefferson 0.569 31.49 35.35 3.86
ModJefferson 0.604 31.62 35.25 3.64
ModJefferson 0.551 31.51 35.50 3.99

Average 33-39 ModJefferson 0.574 31.54 35.37 3.83

39-45
ModJefferson 0.572 31.74 35.58 3.84
ModJefferson 0.623 32.01 35.53 3.53
ModJefferson 0.664 32.18 35.49 3.31

Average 39-45 ModJefferson 0.620 31.98 35.53 3.56

when replacing the observed truth in 2015 with an alternative truth, because the skillful range in quantiles
will persist longer as well: up to above q0.90 instead of otherwise below that. The extension of the skillful
range is a general feature when doubled 2015 intensities are used. The extended skillful range is especially
clear for both alternative experiments at +33 to +39 hours. However, at +15 to +21 hours, all methods
have skill until the highest threshold verified and shown, except the ELR40 with reference detections.

6.6 Analysis of LR models as function of lead time

Decreasing sharpness due to increasing errors in forecasts of an important predictor in time can be demon-
strated from model coefficients of LR models where that predictor is included. Sharpness of a predictor can
be seen as the tightness of the part of its distribution associated with the gradient in predictand outcome,
so in our case thunderstorm occurrence probability gradient. Hereto we shortly look at the no CAPE
models (Table 5), because it selects 20 times out of 21 maximum Modified Jefferson as first predictor.
This can be interpreted as a high predictor consistency among lead times. However, among lead times
that are not exactly 24 hours apart, strict conclusions cannot be drawn, as the predictor values for which
models should lead to a constant thunderstorm probability (for example 50%) may vary during the diurnal
cycle and furthermore sharpness of associated predictor can vary with the diurnal cycle.
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Table 7 shows the model composition of LR models with the no CAPE experiment. What can be seen
clearly see is that the model coefficients decrease when the lead time increases by 24 hours: from +3 to
+9 hour forecasts to +27 to +33 hour forecasts the average decrease is 0.12 or 14% per day and from
+15 to +21 hour forecasts to +39 to +45 hour forecasts it is 0.14 or 19% per day, averaged over the three
final cross-validations. Comparing +9 to +15 hour forecasts with +33 to +39 hour forecasts, there are
models for only two final cross-validations, since one of them picks graupel as best predictor. They have
an average coefficient decrease of 0.11 or 16% per day.

This increase in model coefficients with increasing lead time indicates the widening distribution of
Modified Jefferson values that are connected thunderstorm occurrence (probabilities): the difference be-
tween predictor values associated with 10% probability and those with 50% probability increase over 24
hours lead time, as shown in the last column of Table 7. The predictor value associated with 50% prob-
ability increases with time. In other words, larger instability and smaller 700 hPa dew point depression
are required when the lead time increases by 24 hours, to issue the 50% probability of thunderstorms.
Therefore the decrease in sharpness of forecasts with time can be seen in Table 7. Lastly, the threshold
of maximum Modified Jefferson above which thunderstorms are more likely to occur than not, is almost
constant among lead times: 35.0 to 35.6 with one outlier of 36.0. Note that Modified Jefferson does not
include a substraction of the constant 8 in this dataset, which is commonly done.
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7 Case studies

The following two cases studies are to demonstrate potential weaknesses of statistical post-processing mod-
els to predict thunderstorm occurrence well. Very low (non-zero) thunderstorm probabilities do not imply
that thunderstorms cannot occur given the meteorological situation, as the forecast probability should
match the observed frequency in a reliable forecasting system. The forecast probabilities issued with both
statistical methods are reliable (Chapter 5). The thunderstorm probability should relate well to and be
connected to meteorological variables and atmospheric dynamics/meteorological synopsis surrounding the
environment of the potential thunderstorm occurrence. In principle, limitation of (synoptic) meteorolog-
ical information to one, two or a few predictors could lead to imperfect estimation of probabilities due
to lacking information in the assessment of the model, when the potential information is available and
useful, even if in a verification with a large dataset shows that a forecasting model is generally reliable.
Whether forecasts are really unreliable in certain subregions of predictor space is hard to demonstrate
if these regions are poorly sampled. Two thundery cases where probability estimates were very low are
studied in detail.

The previous statement implicitly favours the use of QRF with many variables. It should explicitly be
stated that this does not mean that with 40 or 91 variables, all information is captured and used well by
QRF. First of all errors in NWP model forecasts can deviate from the eventual outcome, affecting estimates
of thunderstorm probability after post-processing. This could give very low probabilities in both LR and
QRF with thunderstorms occurring. This section shows that LR is more vulnerable to misinterpreting the
meteorological situation, while both methods could make errors when the model output is not realised in
the real atmosphere. It is specifically noted that the cases studied here were those cases in the dataset
that are at first seemingly unsuitable for thunderstorms based on the important predictors that are found
in Chapter 6, with low values of maxima of MUCAPE and Modified Jefferson index.

7.1 Cold air advection over North Sea and Benelux on April 17th 2016

On April 14th and 15th a mobile ridge of high pressure southwest of Iceland moves southeastward with
low pressure over the Norwegian Sea, causing a cold air mass east of Greenland to flow southward towards
Scotland. Interaction with a northeastward moving baroclinic wave/low over the Channel region causes this
cold air mass in the lower and mid troposphere to bend eastward towards The Netherlands in the wake of
this baroclinic low pressure system on April 16th and 17th (Figure 25). The sea water has already warmed
due to the three previous weeks which had been warmer than normal [KNMI, 2016]. Both the warm sea
surface temperature and warm land temperatures lead to a conditionally unstable lower troposphere. On
the front (eastern) end of the eastward moving trough, an extensive area with showers is triggered with
the entrance of an area with upward motions in the lower few kilometres of the troposphere. This area
passes The Netherlands from northwest to southeast during daytime. Detections of thunderstorms occur
in the central regions from south to north between 09 and 15 UTC and in the central and western of the
southernmost regions between 15 and 21 UTC, with in total 23 detections.

At +39 to +45 hours, LR40 gives an extremely low probability of 0.0002 for the southwestern region
(10), even though four predictors are selected and used, including maximum Modified Jefferson. This is
not strange, as the maximum Modified Jefferson is forecast to be 20.4 ◦C and maximum MUCAPE with
entrainment correction forecast is 72 J/kg, with LNB’s up to 3400 m. The other regions have MUCAPE
values below 150 J/kg as well and the model has no graupel. Nonetheless QRF40 predicts 2% thunderstorm

Table 8: Thunderstorm occurrence probabilities issued for region 10 for April 17th 2016 by QRF40 and LR40, valid
between 15 and 21 UTC.

Model
Probability (-)
LT +15 to +21h LT +39 to +45h

LR40 0.0019 0.0002
QRF40 0.0181 0.0186
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(a) April 15th 00UTC (b) April 17th 00UTC

Figure 25: Reanalysis of the April 2016 case by NCEP/GFS. Shown are MSLP (white contours), geopotential height
of 500 hPa (black lines) and layer thickness between 500 and 1000 hPa (colours). Retrieved from [wetter3.de, nd].

probability, based on the set of 40 potential predictors.

On the day itself, low thunderstorm occurrence probabilities are still issued by the LR40 models for
region 10. At lead time of +15 to +21 hours, this is caused by low values of maximum Modified Jefferson
index: 25.4 ◦C. Maximum of MUCAPE and LNB are also low, at 113 J/kg and 3777 m. Surrounding
regions have higher values for both of these important predictors in the Harmonie forecast with a maximum
LNB up to about 4700 m, but maximum MUCAPE is only up to 200 J/kg in 11 regions and 245 J/kg
the other region (8, the central southern region). Modified Jefferson is peaking the highest in region 8
at 30.2 ◦C. The neighbouring region 11 where discharges have also been detected had probabilities of 2%
according to LR and 11% according to QRF40. Maximum probabilities over all KOUW-regions are 7% in
region 8 with LR40 and 23% with QRF40 in the same region.

When we dive further into the best available observed vertical atmospheric profile, obtained 200 km
east of the region of interest and three hours before the thunderstorms happened, a cold profile in the lower
troposphere (Figure 26) can be seen that is close to neutral with respect to the state of an adiabatically
lifted near-surface parcel, up to slightly above 4000 meters height. The profile is moist up to 2500 meters
height. The roughly 4 km is in good agreement with the maximum level of neutral buoyancy reforecast data
per region. Temperature at these levels is between -20 and -25 ◦C. Just ahead of the trough the atmosphere
will be enriched with low level moisture, partly due to upward motions and near-surface convergence of
low level winds. This could lead to conditionally unstable profiles and with small convective inhibition
also to showers that likely reach just over 4 kilometres height in the vertical with top temperatures almost
as low as -25 ◦C. Based on the experiments by [Takahashi, 1978], this condition in combination with
sufficient local graupel and ice concentrations would lead to potential lightning occurrence. Based on this
assessment, the probability issued by LR40 for +15 to +21 hours is very low. Situations like this one,
with a low LNBmax of 4 or 5 km and the detection of a thunderstorm happen more often in the winter
half year in The Netherlands and less frequently in the summer half year, because the convective cloud
tops are usually not cold enough for lightning initiation.

Furtheremore, Modified Jefferson is strongly limited as useful predictor in this case. As can be seen in
Figure 26, the much warmer air at 500 hPa would surpress high Modified Jefferson values and MUCAPE
is neither high. This causes problems for logistic regression technique, which preferentially selects these
predictors or predictors derived from them as discriminator for thunderstorms (Table 5). QRF can still
use combination of many other variables to find out that thunderstorms could occur: importantly, when
thunderstorm occurrence probability versus maximum level of neutral buoyancy and maximum Modified
Jefferson index is plotted (as in Figure 10), the plot shows that the Modified Jefferson maximum values
of Table 7 are always good indications for thunderstorm occurrence probability. When LNB maxima
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Figure 26: Radio sounding of Essen (WMO 10410) of April 17th 2016, which is the nearest available. Green lines
show dry adiabats, blue lines saturated adiabats and purple lines are isolines water vapour mixing ratio. The black
lines show observed temperature (RHS) and dew point profile (LHS), with a grey line indicating the behaviour of a
near-surface parcel after it would be adiabatically lifted. Retrieved from [University of Wyoming, nd].

are between 4000 metres and 5500 metres (5500-6000 metres is approximately at 500 hPa) it gives low
empirical thunderstorm probabilities of 5% when maximum Modified Jefferson is approximately 24-32,
whereas otherwise its value should be at least 32 for such thunderstorm probabilities.

7.2 Thunderstorms in the night of July 22nd to 23rd 2016

On July 22nd and 23rd a warm air mass is located over the Benelux and Germany, previously brought
in this region by a southerly flow (see Figure 27). There is a small low pressure system in the lower
troposphere, oriented from WNW-ESE into southern Germany. Some low level upward motion has likely
been caused by the diurnal cycle and some additional upward motion occurs in the surroundings of the
low pressure system where the low level flow is convergent, though the two components are probably not
unrelated. Over the west of The Netherlands lies a stationary frontal zone (large Θw,850 gradient) with
mild air mass west of it.

In the conditionally unstable air, thunderstorms develop during nighttime over southern regions near
the Dutch-Belgian border. This is not surprising, since Harmonie forecast of 24 hours earlier produces
maximum MUCAPE-values in the southeastern regions of 200-300 j/kg and maximum LNB of 6-8 km.
However, in KOUW-region 7 the forecast MUCAPE is only 24 J/kg at maximum and the maximum Mod-
ified Jefferson is only 26.1 ◦C. Lastly, LNB does not reach above 3011 metres. Intuitively, the conditions
in region 7 are not suitable for a thunderstorm, but in many other regions conditions were suitable. This
is reflected by both LR40 and QRF40 predicted probabilities: 8 to 41% in the LR40 model for regions
8-12 and 18 to 50% according to QRF40. Note that there is only one forecast available, because the
nearest forecast covers +21 to +27 hours and Harmonie runs only 48 hours ahead. Regions 7, 8, 10 and
11 turn out to get thunderstorms during this night, with 7 lightning detections in region 7 and 843 in
total. For region 7, probabilities issued are 0.09% by LR40 and 0.99% by QRF40. The small but non-
marginal thunderstorm probability is reflected by other predictors than those earlier in this section, such
as the minimum Adedokun2 Index in that region: -0.6 ◦C. Near zero and positive values of this predictor
indicate favourable thunderstorm conditions (see also [Haklander and Van Delden, 2003]).

7.3 Concluding summary of two cases

Some predictors can be very sensitive to minor forecasting errors in both space and time and atmospheric
non-linearities. As illustrated with Section 7.1, many convective indices may miss relevant information in
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(a) see Figure 25 for meaning of colours/lines (b) Pseudo-Θe,850 (indication for moisture/tempera-
ture at 850 hPa like Θw,850) in colours and MSLP in
white contours

Figure 27: Reanalysis of July 23rd 2016 00z by NCEP/GFS. Retrieved from [wetter3.de, nd].

specific cases due to their common use of 500 hPa temperature and if an inversion or very stable (and
potentially neither unstable) layer is slightly below this level, many predictors could miss the information
indicating a potential thunderstorm occurrence. On the other hand, CAPE calculations can be sensitive to
the layer (for example layer depth) and entrainment assumptions, if entrainment is applied. Furthermore,
graupel and snow inform a post-processing model about precipitation and cloud contents and can be useful
in particular cases like Adedokun2 Index is in Section 7.3, but these may not or barely pop-up as affecting
the large sample scores.

Although the use of the 500 hPa values of variables as temperature or Θw is identified as a limitation
(sometimes), the 500 hPa level is likely close to an optimum: by making a Modified Jefferson index with
600 hPa temperature for example, almost all of the individual thunderstorm cases will have high values for
this index. The case of Section 25 would have a large value for this index, but additional non-thunderstorm
cases with an inversion or very stable layer between 500 and 600 hPa can be included as suspected potential
thunderstorm events based on the new index with 600 hPa temperature, while the cloud top temperature
is in fact too warm for thunderstorm occurrence. Based on Figure 10, most thunderstorm cases happen
when LNBmax is above 500 hPa (5.5-6.0 km) and the exploitation of this level is probably close to an
optimum for thunderstorm occurrence forecasts. Some comprehensive testing of a (good) convective index
with various pressure levels (such as 600, 550, 500, 450 hPa) may provide more insight. In addition,
MUCAPE from specific temperature layer(s) associated with lightning intiation by [Takahashi, 1978] can
provide extra insight. Such optimisation of individual predictors derived with Harmonie output is beyond
the scope of this study.

The two case studies show that the combination of many predictors gives additional information, which
sometimes may prevent seemingly conservative estimates of thunderstorm probabilities. In addition, it
helps improve representation of thunderstorm cases in the training dataset for forecasting models, which
can be achieved with a longer time series.
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8 Discussion

8.1 Performance of QRF compared to (E)LR

8.1.1 Thunderstorm occurrence forecasts

Quantile regression forests (QRF) is explored as a technique to forecast (severe) thunderstorms over
The Netherlands by comparing them to (extended) logistic regression (LR) models and in that sense
findings complement those by [Whan and Schmeits, 2018]. QRF is found to be valuable in the context
of probabilistic thunderstorm forecasts and is particularly favourable, though it is found that careful
pre-selection of predictors upon physical arguments may help leading to improved forecasts that are not
obtained when applying the stepwise elimination algorithm that is used often in statistical studies (see
[Gregorutti et al., 2016]). This is demonstrated with 40 and 90 potential predictors leading to better BSS
than 228 potential predictors in an initial cross-validation experiment (Figure 14). Though a saturation of
forecasting skill with increasing number of predictors when applying QRF is identified, our experiments do
not always show that using all predictors gives the best result. As far as we are aware, aforementioned two
findings are not shown in any meteorological context with QRF. Despite that these general features are
identified in the results, they cannot be made robust with 95% confidence intervals, because uncertainty
in BSS is too large. The saturation behaviour is largely consistent with results obtained in the statistical
literature by [Gregorutti et al., 2016]; their results are more robust though, because they apply various
statistical methods for variable selection/elimination and estimate confidence intervals during eliminations
of predictors.

It is important to note that for thunderstorm occurrence LR can objectively give similarly good results
as QRF when a dataset of few potential predictors is used for both methods; this is shown with a dataset
of 4 potential predictors and based on best estimate of BSS (Figure 16). Additionally, LR does not stably
profit from increasing the number of potential predictors; a reason is that with the initial cross-validation
only a few LR predictors will effectively be selected, even if the potential predictor set is extended with
many predictors. Both findings are consistent with [Whan and Schmeits, 2018] when they compare use
of one predictor (Harmonie precipitation) with a potential predictor set of 41 predictors for probabilistic
precipitation forecasts using ELR, QRF and a third method. A reason for enhanced benefits of many
predictors in QRF is that random subsamples are used to build many random trees in QRF and not just
one mathematical function with all the training data at once as with LR, likely increasing robustness of
the QRF model and also smoothing probabilistic forecasts in predictor space with high weight of near
neighbours in predictor space (especially near neighbours in important predictors).

The saturation of skill scores we find will likely occur in any forecasting problem with appropriate
use of the information contained in the data due to the chaotic nature of the atmosphere that results
in uncertainty in future atmospheric state, even if conditions that will lead to thunderstorms would be
understood perfectly. The latter is very unlikely to be reached.

8.1.2 Lightning intensity forecasts

For lightning intensity predictions, QRF does not outperform ELR based on BSS (Figure 17), but CRPSS
indicates better performance by QRF than by ELR (Table 4, in accordance with reliability diagrams
(Figure 18 and Appendix C). It is found that QRF sometimes is able to issue high probabilities and still
be reliable, where the probabilities issued by ELR frequently show an exponential decay leading to medium
and high probabilities not or hardly being issued. On the other hand, ELR has the ability to profit from
the imposed transformation of lightning intensities by extrapolating to higher intensities than present
in the training set, but may simultaneously suffer from assumptions on the forecast distribution. The
assumption is that ELR always issues a PDF of the same shape in transformed lightning intensity space,
which is a reason that high intensities are hardly getting medium or high probabilities. The advantage
of QRF is that it is purely empirical and does not assume a shape for forecast intensity PDF. A similar
reliability feature can also be found in the reliability diagrams of 20 mm per hour precipitation forecasts for
several lead times in [Whan and Schmeits, 2018] when comparing ELR and QRF. Note that the lightning
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intensity probabilities are conditional, in contrary to those by [Whan and Schmeits, 2018]; unconditional
probabilities are only equal to conditional probabilities when the thunderstorm occurrence probability is
100%.

If the unconditional quantiles (includes non-thunderstorm cases) up to which we can make skillful
lightning intensity forecasts are computed based on 95% uncertainty in the BSS, it ranges up to about
q0.994 in the first 33 hours for both QRF and ELR (Section 5.4.5), which varies from 100 discharges per 5
minutes between 03 and 15 UTC to almost 400 discharges per 5 minutes between 15 and 21 UTC. This
quantile is generally similar or slightly higher than in the study by [Whan and Schmeits, 2018] in the
first 24 hours, where unconditional predictions were compared to climatology using a similar sample size.
However, the upper range of skillful quantiles is not directly comparable: as it has been demonstrated,
accuracy and homogeneity of the predictand dataset (lightning detections) is important for the upper
skillful threshold. It would be interesting to conduct an experiment where conditional probability may
extend the skillful range of thresholds compared to an equivalent non-conditional probability forecast when
using the same potential predictor set and predictand: for example with rainfall forecasts as in [Whan and
Schmeits, 2018] by training conditional high intensity forecasts with a subset of a dataset with samples
exceeding a precipitation threshold of 2 or 3 mm/h (eliminating most stratiform precipitation but not the
convective cases that are of main interest), using for example ELR and QRF. Another useful experiment
would vary the composition of the training set, such that one selects only a subset to make the relative
frequency that a high threshold is exceeded higher in the training set.

8.2 Exploitation of complementary predictors for deep convection forecasts

8.2.1 Potential of complementary predictors for thunderstorm occurrence

Shortcomings of individual thunderstorm predictors have been explained and it has been demonstrated
how use of many complementary predictors from NWP output is beneficial for improving short term (+3
to +45 hours) forecasts of deep convection, when attempting to discriminate thundery conditions from
non-thundery conditions, even if some are strongly correlated. BSS increases when adding meaningful
predictors. A detailed discussion on individual predictors is found in Section 8.3.

Many preceding studies have also shown that use of complementary predictors is beneficial when aim-
ing to forecast deep convection, by [Doswell et al., 1996] by describing the ingredient based approach
thoroughly and additionally by (many) others, such as [Schmeits et al., 2005, 2008], [Van Zomeren and
Van Delden, 2007], [Púčik et al., 2015], [Ahijevych et al., 2016] and [Whan and Schmeits, 2018]; the latter
two show how combining many predictors can be beneficial with (Q)RF. The statistical post-processing ap-
proach can also be used fruitfully to gain physical and forecasting insights (we have tried to illustrate this).
Therefore, it is encouraged that operational forecasters, severe weather researchers and post-processing
researchers collaborate to understand extremes from different perspectives to share physical,
practical/operational and statistical insights.

8.2.2 Potential of complementary predictors for lightning intensity

For lightning intensity forecasts, the indications that many predictors can add complementary information
are not strong. Limitations that may have obscured differences between methods and potential predictor
sets in BSS, are the small dataset, with only 381 to 699 cases per valid time (Table 3) and inhomogeneity
in lightning detections (Figure 12). Since the results can be strongly affected by the two limitations, the
results that have been obtained on lightning intensity predictions are not definitively conclusive from an
objective point of view. Furthermore, collecting a homogeneous lightning detection set in time on the
national or continental spatial scale and decadal time scale will serve science, but observation techniques
are usually progressing along with technology.

To circumvent the issue of inhomogeneity, two different lightning detection datasets have been used
to investigate some uncertainty related to inhomogeneity. The results from these so-called inhomogeneity
experiments show that ordering of ELR and QRF in lightning intensity forecasts may depend on it (Figure
24 and Section 6.5), which is a main reason that results are not conclusive. Furthermore, the BSS increases
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typically a bit when the detections of 2015 are modified to likely an improved representation of 2015
from the climatological point of view. But lightning detection datasets are not well comparable and
some individual cases could strongly deviate in detected lightning intensity between different detection
datasets, making detections in essence inconvertible. Especially for QRF the improvement of BSS is a
consistent feature after modifying the KLDN detections in 2015; one would probably expect improved
scores compared to the reference KLDN dataset for a homogeneous lightning detection set based on these
experiments, in particular for QRF. The QRF method likely profits in particular when lightning detections
are more representative, because it strongly depends on representativeness of the empirical distribution
in a training sample, whereas ELR assumes a distribution around the training samples for which other
regions in predictor space can also be used with some extrapolation.

8.2.3 Removal experiments

While it has been shown that neither QRF nor (E)LR are highly dependent on a single type of poten-
tial predictor, good indications of consistent but small BSS improvements with CAPE and microphysics
predictors are demonstrated for thunderstorm occurrence forecasts with QRF. This feature is only stably
present with microphysical predictors for LR models (Figure 20). Investigation of thunderstorm occur-
rence in predictor planes shows that an extra predictor typically gives additional information to refine
probabilistic forecasts, but the predictors together build a stable framework such that any extra predictor
indeed should on average not give more than some refinement of the forecasts and have relatively larger
implications in just a few cases (a small region in predictor space) within the large verification set. Since
CAPE-predictors and microphysical predictors have been shown to be very important for both QRF and
LR, the small refinements and slight BSS improvements for thunderstorm occurrence forecasts made by
adding these very important predictor types suggest that we may be close to optimal thunderstorm occur-
rence forecasts that are possible with the available NWP output and that most of the variability is indeed
probabilistic and resulting from forecast uncertainty, but not or hardly from missing predictor information.
The role of CAPE-predictors is to some extent taken over mainly by maxima in Modified Jefferson and
Θw,850 in both LR and QRF models at all lead times, while other signals of CAPE and graupel/snow
replacements are noisy and diffuse.

8.3 Predictors

8.3.1 Thunderstorm occurrence

Selection frequencies (LR) and predictor importance (QRF) can give useful information about the physical
interpretation of predictor relevance. QRF shows that SBCAPE and its combination with SBCIN are
much more important during daytime (09 to 21 UTC) than during nighttime, consistently with physical
arguments, namely that convection is often driven by warm surface/boundary layer during daytime (Figure
21). Additionally, maximum Modified Jefferson is a very good thunderstorm occurrence discriminator in
The Netherlands based on both LR and QRF. Part of the strong discriminative performance may be due
to that Modified Jefferson takes into account both air mass instability (1.6Θw,925−T500) and moisture via
the dew point depression at 700 hPa. The dew point depression term will typically go to zero locally when
a deep convective cloud (potential lightning producer) is present in the weather model, which can lead
to a local maximum in Modified Jefferson in the shower that would have been smoothed in a hydrostatic
model, where all convective clouds are parameterised. In other words, in non-hydrostatic models Modified
Jefferson may be relatively more favourable than in hydrostatic models.

Consistently with the no CAPE and no mph experiments both LR and QRF show that maximum
column graupel and maximum MUCAPE as well as their product are very helpful for thunderstorm
occurrence predictions. Moreover, indices of atmospheric instability in general appear to be very important
for thunderstorm forecasts. The initiation of showers and air mass/moisture are less important; forcing is
even lower on the list. Selection frequency and predictor importance also help to identify which predictors
may substitute each other (Section 8.2.3).

In the previously made and currently operational statistical post-processing model for thunderstorm

Page 73 of 99



occurrence [Schmeits et al., 2008] Jefferson appeared to be more favourable, which might be because
Hirlam is hydrostatic (see previous paragraph). Despite this, Jefferson and Modified Jefferson have a
strong correlation of 0.87 for their regional maxima and 0.83 for their mean values in the reforecasting
dataset. The most important predictor was ECMWF convective precipitation and its predictive value is
very likely replaced by column integrated graupel and snow (or their combinations with MUCAPE) in the
new statistical post-processing models for thunderstorms, while CAPE (as MUCAPE) is still frequently
selected in the new models; their predictive value is consistent with expectations.

We are aware of one other NWP post-processing study for thunderstorm forecasts above Europe (ex-
cluding The Netherlands) and none in a mild and humid region outside Europe. [Simon et al., 2018] use
ECMWF output for probabilistic thunderstorm occurrence forecasts over the Eastern Alps for 12-18 UTC
up to 5 days ahead. Their potential predictor set was strongly deviating from ours and their terrain that
is largely mountainous as well. Their most influential predictor is mean relative humidity at 700 hPa, fol-
lowed by temperature change at 700 hPa from 12 to 18 UTC and square root of convective precipitation.
Although importance of 700 hPa relative humidity (relative humidity above 70% as favourable condition)
connects to our finding that Modified Jefferson is informative, their predictor selections are generally not
so comparable. CAPE is among their 9 eventually applied predictors.

The selection of MUCAPE and Modified Jefferson maximum as important predictors is consistent
with regional maximum hourly precipitation QRF and ELR forecasts made by [Whan and Schmeits, 2018]
based on Harmonie output from an older model version, but on the other hand maximum Fateev is far less
important and as one would expect the wind speed at 500 hPa too (giving information about how long a
cell will reside at a place). Instead of column graupel or column snow they use cumulative precipitation
to include the presence of showers in Harmonie, which is of course more appropriate when forecasting
regional maximum precipitation.

Other thunderstorm occurrence models or forecasting evaluations are typically based on radio sounding
data. [Haklander and Van Delden, 2003] compared 6-hourly radio soundings from De Bilt with thunder-
storm occurrence in a 100 km radius from De Bilt and have found that Lifted Index performs as best
discriminator for whether a thunderstorm occurs. From the common predictors that we have studied,
Boyden Index, Adedokun2 Index and MUCAPE are also good discriminators in their study. Modified
Jefferson is called Jefferson evaluation (with almost the same definition, but Θw at 850 hPa instead of 925
hPa as we use) and has intermediate performance. Several aspects make it hard to compare both studies:
proximity soundings may be as far as 100 km and 6 hours away from a thunderstorm, which gives a very
limited description of the state of the atmosphere in and around the thunderstorm. Mainly instability and
larger scale moisture would correlate on larger spatial scales. The Harmonie reforecasting dataset is much
more detailed at 2.5 by 2.5 km resolution and hourly time steps, such that local extremes in both the
pre-convective and convective environment are included, whereas sounding information is very incomplete.

8.3.2 Lightning intensity

With predictor selection frequencies in ELR and perdictor importances in QRF, important conditional
thunderstorm intensity predictors have been identified. Bradbury index (regional minimum) and K-index
(regional maximum) are typically selected as good predictors for conditional lightning intensity forecasts
(Table 6). They are strongly correlated, especially if a thunderstorm occurs. Additionally, combining
Bradbury index and Boyden index with regional precipitable water values as was done using their regional
maxima works well. The conditional lightning intensity forecasts are not depending on these precipitable
water-instability combinations and neither on CAPE nor on microphysical predictors (Figure 23). Besides
this it is found that warm air mass with high Θw in the lower troposphere and boundary layer and
additionally large instability are favourable for high lightning intensities, which is consistent with the
parameterisation by [Lopez, 2016] and consistent with the expectation that cases as the Spanish plume
produce particularly high lightning intensities in The Netherlands. Evaluation of the models shows that
other information appears to be hardly used for lightning intensity forecasts.

In addition, Bradbury index was also the most frequently selected predictor in the previous severe thun-
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derstorm post-processing model based on Hirlam, ECMWF and the KNMI precipitation radar [Schmeits
et al., 2008]; this suggests that hydrostacy of the model does not affect the optimal lightning intensity
predictor. In a wider (forecasting/meteorological) perspective, it can be said that the mid-level lapse rate
in Θw has a good relationship with lightning intensity.

Few other similar studies to predict high lightning intensities have been carried out, but the study
by [Ahijevych et al., 2016] to predict mesoscale convective system (MCS) initiation is comparable to this
study: firstly because they use random forest (RF), furthermore they apply predictor ranking like it is
also done here (Chapter 6) and they show what happens to predictions when removing a specific type
of information (see also Section 8.4). Important predictors they find (see also Chapter 1) are terrain
information, precipitable water and radar reflectivity. In our study precipitable water is among the most
informative predictors in QRF (Appendix E) and LR via its combination with the Bradbury Index, but
they do not use many instability indices such as Bradbury index. On the other hand their predictand is
column integrated liquid water, which is likely to be strongly related to PW.

8.3.3 Limitation of our predictors and dataset

An important limitation of Modified Jefferson and many other convective indices is that they assess only
the 850 or 925 to 500 hPa temperature (and also often moisture availability; exception is the Boyden
index), but no shallower layer. Showers of 4-5 km deep can also lead to thunder as shown in Figure 10 and
Chapter 7). Sometimes this can lead to probabilistic estimates that are very likely poor, especially with
LR. This can be improved by combining information from LNB and other predictors such as Θw,850,max.
But probably, using a more direct predictor associated with lightning could be beneficial, in particular
convective cloud top temperature in the NWP models. This can involve masking convective regions using
for example vertical velocity or MUCAPE of a layer with a specific temperature.

A predictor that might be useful to improve is moisture convergence. Regional statistics based on
individual grid cells in Harmonie have been used, although larger spatial structures may contain more
information than these 2.5 by 2.5 km grid cells; importance measures from QRF and selection by LR do
not indicate it as important. [Van Zomeren and Van Delden, 2007] have found it as useful thunderstorm
predictor at 100 km resolution, but nonetheless suggest improvement with a higher resolution moisture
convergence field than they used. Moisture convergence might reveal valuable information on spatial scales
between 2.5 and 100 km. Predictors such as graupel which indicate the actual presence of showers may
diminish the additive value that moisture convergence could have. A second predictor that could have
been improved to a potentially more valuable one is the shear, by covering the layer below 850 hPa as
well. Lastly, it would be interesting to see whether latest probabilities from the previous run for the same
valid time could be beneficial as potential predictor.

Some extension of this work can be made by comparing predictor planes with the winter Harmonie40
reforecast dataset for some important predictors found in this study, such as maximum values of Modified
Jefferson, level of neutral buoyancy, MUCAPE, column graupel. Besides this deriving statistical post-
processing models with QRF and/or LR for the winter could be interesting and also a specific study of
aircraft induced lightning (AIL). It would be expected that such a winter lightning dataset gives similar
information as Figure 10 if it would be extrapolated towards a lower Θw,850,max climatology. This means
that one would expect thunderstorm probabilities increasing from near-zero with LNBmax of about 4000
m to high probabilities (0.5-1.0) when LNBmax increases to 7000-8000 metres. In the regions close to
Schiphol Airport where AIL thunderstorms can occur frequently, the probability increase might be located
at even lower LNBmax values and Modified Jefferson is expected to be a poorer predictor due to the
potential ability of relatively shallow showers to produce lightning and especially AIL.

8.4 Application in nowcasting-forecasting continuum

Other studies that use statistical tools and machine learning to improve forecasts of deep convection on
the very short term (up to 6 or 12 hours or even shorter) combine real time information, such as radar
imagery, satellite images, NWP output and lightning detection. This has been discussed in Chapter 1.
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One of the reasons that satellite and radar imagery is especially useful for the first hours, is that NWP
output is typically only available every 3, 6 or 12 hours, such that NWP output can become outdated
compared to satellite and radar imagery. Meteorologists ”nowcast” by smartly combining observations
and model output to extrapolate observations for the first hours. The current study uses NWP output
that may become outdated for the first lead time, the +3 to +9 hours forecast (during its availability).

For the currently operational version of the KNMI post-processing model for thunderstorms, by
[Schmeits et al., 2008], a smart ”radar and lightning detection advection” scheme based on Hirlam output
was applied. RF has been used for convective initiation and MCS initiation nowcasts in the United States
of America by [Mecikalski et al., 2015] (see Chapter 1) and [Ahijevych et al., 2016]. The extensive set
of experiments in the latter study demonstrates that especially extrapolated radar has added value in
optimising their forecasts and the former concludes that satellite and NWP output are complementary
forecasting convective initiation in the first hour. Therefore a very interesting extension of our study
could be to expand the QRF models by including satellite and radar information together with the NWP
output to search for potential improvement of the thunderstorm forecasts in the first hours. In the end,
such a dataset could make it possible to improve predictions in the nowcasting-forecasting continuum. In
some cases nowcasting might work 6 hours ahead while sometimes it might not work. If QRF can find
out when it should use which information, the first day could be optimised with some nowcasting data.
Additionally, ensemble information about showers and convection from few important predictors such as
column graupel may be helpful, such that QRF can compare NWP ensemble predictors with observations.
Such a study would require a very extensive potential predictor exploration and selection, because radar
and satellite imagery and NWP ensemble output could produce many additional predictors.

Furthermore, it might be interesting to build extreme weather post-processing models on sub-European
scale, using a larger dataset of high lightning intensities. A spatial limitation in such a study could be the
extension of domains of compatible operational Harmonie models, or other non-hydrostatic NWP models.
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9 Conclusions

Probabilistic models for thunderstorm occurrence and conditional lightning intensity with Harmonie de-
rived predictors have been made and evaluated. Based on model verification, experiments, case studies
and the discussion, we can draw the conclusions below.

Application of QRF for thunderstorm forecasts

It is found that quantile regression forests (QRF) is a beneficial technique to post-process numerical
weather prediction model output for thunderstorm occurrence and intensity forecasts at the short term.
Furthermore, it is demonstrated that large sets with complementary predictors are useful to improve
thunderstorm forecasts, even if some predictors are strongly correlated. The stepwise elimination strategy
applied to QRF, which is regularly applied in statistical studies, will not lead to an optimal predictor
selection, but properly merging information from machine learning and physical understanding can improve
statistical post-processing models.

Performance of QRF and (extended) logistic regression

Based on Brier skill score (BSS), QRF systematically performs better than logistic regression (LR) for prob-
abilistic forecasts of thunderstorm occurrence. For lightning intensity, fitting probabilistic post-processing
models is likely complicated by inhomogeneity in lightning detection dataset KLDN, although significant
forecast skill does not critically depend on strict homogeneity for the lower verified thresholds. The latter
holds for both extended LR and QRF.

Predictors

CAPE is not irreplaceable as thunderstorm occurrence predictor and direct predictors from the micro-
physics scheme neither are. Nonetheless, removing them as potential predictors for thunderstorm occur-
rence leads almost exclusively to degradation of BSS. New predictors containing precipitable water and
an instability index that have been constructed (see Section 2.4.2) are neither essential for the thunder-
storm forecasts. Among the various convective indices that have been developed, Modified Jefferson is
a very skillful and easily computable predictor to isolate (potential) thunderstorm situations from non-
thunderstorm situations over The Netherlands using non-hydrostatic NWP output; it has an important
limitation when regional maximum LNB is slightly below 500 hPa. Similarly, extremes in K-index (maxi-
mum) and Bradbury index (minimum) derived from non-hydrostatic NWP forecasts are both good indi-
cators for (conditional) lightning intensity. High lightning intensity forecasts almost exclusively depend
on information from instability indices and indicators of a warm, moist air mass.
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A Table of potential predictors

The table below provides a description of the potential predictor sets that have been used. The set of
lowest number of potential predictors in which the specified potential predictor is included, is given in
the last column of the table. This means that the 15 set consists of all potential predictors with 15 as
indication and those with 4 as indication and the 40 set consists of those with 4, 15 and 40 as indication.
For the selection of 25 extra predictors besides the elementary predictors (Section 2.2.6) when making the
40 potential predictor set, the QRF assessment of predictor permutation importance, selection frequency
and elimination order have been used to analyse the model fits with the 91 potential predictor set. This
selection step is partially arbitrary.

The ” ” with subsequent statistical measure (max, min, mean, q0.98, q0.90, q0.50, q0.10 and q0.02) refers
to the respective statistical measure of Harmonie output over 6 hours and within the whole KOUW region
of a variable that is computed for the predictor. When instead of these delta is used, it refers to the
difference between the maximum and minimum within 6 hours and one region. Furthermore, a name
starting with Trans refers to standard variables on which a power transformation has been applied and
pows refers to a composite to which a transformation has been applied. Lastly, q0.98 q0.02 stands for the

difference between q0.98 and q0.02 in a spatial box and a time bin.

Predictors investigated and pointed out as new potential predictors either due to more detailed repre-
sentation of microphysics in Harmonie than in Hirlam and ECMWF (Section 2.1) or in the search of new
potential information (Section 2.4.2) have been printed in bold in Table A-i.

Table A-i: Potential predictors in QRF91 and (E)LR91.

Predictor name Varable equation or full description In set
(min.
size)

MSLP max Mean sea level pressure (MSLP) 4
MUCAPE max ∫ LNB

LFC

g
Tv,p − Tv,env

Tv,env
dz

see Section 2.3

4

PrecipWater max ∫ TOA

Surf

ρqvdz

4

Trans Graupel col max {∫ TOA

Surf

ρqgraupeldz

} 1
5

4

dp
dt Region mean of 6 hour MSLP tendency 15
Bradbury min Θw,850 −Θw,500 15

Bulk shear 850 500 mean
√

(u850 − u500)2 + (v850 − v500)2 15
coast Indicator that equals 1 in coastal KOUW-regions (1-5

& 7) and 0 in others (6 & 8-12)
15

Helicity max ∫ z700

Surf

~k × (~v − ~c)× d~v

dz
dz

15

Helicity min
LNB max Maximum level where Θv,p = Θv,env

see Section 2.3
15
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MUCIN mean ∫ LFC

g
Θv,p −Θv,env

Θv,env
dz

where buoyancy is negative; see Section 2.3

15

ThetaW 850 max Potential wet bulb temperature 850 hPa (Θw,850) 15
Trans Moisture convergence max {∫ TOA

Surf

(∂ρuqv
∂x

+
∂ρvqv
∂y

)
dz

} 1
7

15

Trans Moisture convergence min

(
√
MUCAPE +MUCIN)max Square root of sum of convective available potential

energy and convective inhibition based on most un-
stable parcel

40

(
√
SBCAPE + SBCIN)max Square root of sum of convective available poten-

tial energy and convective inhibition based on surface
based parcel

40

Adedokun1Index neg min Θs,500 −Θw,850

(850 hPa originating parcel, no entrainment)
40

Adedokun2Index negMU min Θs,500 −Θw,mu

(most unstable layer, no entrainment)
In the original script, its negative value was provided.

40

Boyden max 0.1(z700 − z1000)− T700 − 200 40
Boyden PW1 (Boydenmax − 85)log(PrecipWatermax) 40
Boyden PW2 (Boydenmax − 85)PrecipWatermax 40
Bradbury 925 min Θw,925 −Θw,500 40
Bradbury PW1 (Bradburymin − 14)log(PrecipWatermax) 40
Bradbury PW2 (Bradburymin − 14)PrecipWatermax 40
DPT 700 max Dew point temperature at 700 hPa (Td,700) 40
DPT 850 max Dew point temperature at 850 hPa (Td,850) 40
Edward PW1 (Θw,925,max −Θw,500,min)log(PrecipWatermax) 40
Edward PW2 (Θw,925,max −Θw,500,min)PrecipWatermax 40
Fateev max T850 − T500 −DD850 −DD700 −DD600 −DD500 40
Jefferson max 1.6Θw,925 − T500 − 11 40
K index max T850 − T500 + Td,850 −DD700 40
LNB q0.90 See LNB max 40
ModJefferson max 1.6Θw,925 − T500 − 1

2DD700

Note that Modified Jefferson does not include a
substraction of the constant 8 in this dataset, which
is commonly done.

40

MUCAPE q0.90 See MUCAPE max 40
MUCAPE snow pows max {∫ LNB

LFC

g
Tv,p − Tv,env

Tv,env
dz

} 1
4
{∫ TOA

Surf

ρqsnowdz

} 1
6

40

MUCAPE graupel pows max {∫ LNB

LFC

g
Tv,p − Tv,env

Tv,env
dz

} 1
4
{∫ TOA

Surf

ρqgraupeldz

} 1
10

40
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SBCAPE max Parcel starts at T2m and Td,2m
furthermore see MUCAPE max and Section 2.3

40

ThetaW 925 max Potential wet bulb temperature 925 hPa 40
Trans Snow max {∫ TOA

Surf

ρqsnowdz

} 1
3

40

dBoyden
dt Region mean of 6 hour tendency in Boyden index 91

Bulk shear 850 500 max see Bulk shear 850 500 mean 91

Bulk shear 850 700 max
√

(u850 − u700)2 + (v850 − v700)2 91
Bulk shear 850 700 mean 91
Cloud base max Height of cloud base (lowest point where grid cell

cloud cover exceeds 5
8 )

91

Cloud layers depth delta Difference between cloud base and cloud top 91
Cloud layers depth max 91
Cloud top max Height of cloud top (heighest point where grid cell

cloud cover exceeds 5
8 )

91

Cross Totals max Td,850 − T500 91
MSLP delta See MSLP max 91
DPT 500 max Dew point temperature at 500 hPa (Td,500) 91
DPT 600 max Dew point temperature at 600 hPa (Td,600) 91
LFC mean Level where Θv,p = Θv,env below CAPE layer

see Section 2.3
91

Lid Strength mean Vertical maximum of Θw,s − Θw for most unstable
parcel, below 500 hPa
see Section 2.3

91

LNB mean See LNB max 91
mean cloud cover Fraction of grid cells with defined cloud base within

KOUW-region
91

ModJefferson q0.90 See ModJefferson max 91
Moisture convergence q0.98 q0.02 Difference between 0.98 and 0.02 quantile of moisture

convergence (divergence) without power transforma-
tion of 1

7
see Trans Moisture convergence max

91

MUCAPE water pows max {∫ LNB

LFC

g
Θv,p −Θv,env

Θv,env
dz

} 1
4
{∫ TOA

Surface

ρqldz

} 1
10

91

MUCAPE q0.98 See MUCAPE max 91
MUCIN min See MUCIN mean 91
Rackliff min Θw,925 − T500 91
Rain acc max Accumulated hourly rainfall at ground level 91
SBCIN max Parcel starts at T2m and Td,2m

furthermore see SBCAPE max and Section 2.3
91

sin dd dif 500 850 q0.90 Sine of difference in wind direction between 500 and
850 hPa

91

Storm Travel max See [Whan and Schmeits, 2018] 91
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SWEAT max pows0.2 Severe weather thread index and its power transform
at power 1

5
SWEAT = 12Td,850 + 20(TotalsTotals − 49) +

3.88(
√
u2850 + v2850) + 3.88(

√
u2500 + v2500) + 125x

where x is the sine of difference in wind direction be-
tween 500 and 850 hPa

91

SWEAT mean 91
ThetaW 500 max Potential wet bulb temperature 500 hPa 91
ThetaW 925 850 diff max Θw,925 −Θw,850 91
ThetaWs 500 max Saturated potential wet bulb temperature 500 hPa 91
Totals Totals max T850 + Td,850 − 2T500 91
TQ max T850 + Td,850 − 1.7T700 91
Trans Cloud ice max {∫ TOA

Surface

ρqsdz

} 1
2

91

Trans Cloud water q0.98 {∫ TOA

Surface

ρqldz

} 1
5

91

Trans Rain max {∫ TOA

Surface

ρqraindz

} 1
3

91

U 500 delta u500 (u-component of 500 hPa wind speed) 91
U 500 min 91
U 700 min u700 91
U 850 delta u850 91
U 850 min 91
V 500 delta v500 91
V 500 min 91
V 700 mean v700 91
V 850 delta v850 91
V 850 max 91
Vertical Totals max T850 − T500 91
WSPD 500 delta Wind speed at 500 hPa 91
WSPD 500 mean 91
WSPD 850 delta Wind speed at 850 hPa 91
WSPD 850 min 91

In the table above, some symbols used are not yet defined. Their definition is given in Table A-ii.
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Table A-ii: Table explaining the variables that have not yet been explained in Table A-i

Symbol Value (if constant) Unit Description
Θv K, ◦C Virtual potential temperature

p Parcel value

env Environmental value
g 9.81 m/s2 Acceleration by gravity
z m Geopotential height
TOA Top of the atmosphere in model
Surf m Surface of atmosphere in model
ρ kg/m3 Air density
qv g/kg Specific humidity
qgraupel g/kg Specific mass ratio of graupel to moist air

lvl hPa Value at given vertical pressure coordinate
u m/s Wind speed, zonal component
v m/s Wind speed, meridional component
~k Unit vector in the vertical direction
~v m/s Wind speed as vector
~c m/s Assumed storm motion vector
T K, ◦C Temperature
DD K, ◦C Dew point depression, T − Td
qsnow g/kg Specific mass ratio of snow to moist air
ql g/kg Specific mass ratio of cloud liquid water to moist air
qs g/kg Specific mass ratio of cloud ice water to moist air
qrain g/kg Specific mass ratio of rain to moist air
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B Dependence on cross-validation strategy of lightning intensity
forecasts verification score

The results for two different cross-validation strategies for lightning intensity forecasts are shown in Figure
B-i. The two cross-validation strategies are firstly training on two years and testing on the third year
(“x-val by year”) and secondly generating three random subsets on two of which training is done from,
with model testing on the third random sample. The random strategy is selected for lightning intensity
forecasts. Typically, the scores are better when applying a random strategy. The random strategy is also
preferred, because the KLDN detections are found to be inhomogeneous (Section 4.4). However, for the
+21 to +27 hours forecasts, the verification scores with random cross-validation are not better for ELR40.
Additionally, some of the verification scores are also very close to each other, such as low thresholds at
+39 to +45 hour forecasts. Furthermore, a really big improvement is seen for QRF40 at +15 to +21 hour
forecasts and +21 to +27 hour forecasts. At +15 to +21 hours, all shown thresholds verified are skillfully
forecast with QRF40 and the random cross-validation strategy.
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(a) Harmonie00z +3 to +9 hours (b) Harmonie00z +9 to +15 hours

(c) Harmonie00z +15 to +21 hours (d) Harmonie00z +21 to +27 hours

(e) Harmonie00z +27 to +33 hours (f) Harmonie00z +33 to +39 hours

(g) Harmonie00z +39 to +45 hours

Figure B-i: Brier skill score of ELR40 and QRF40 as a function of lightning intensity with two cross-validation
strategies: one with verification by year and one with three randomly generated verification sets. The four highest
training quantiles are also given at the top (if within axis limits).
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C Reliability diagrams of QRF40 & ELR40

This appendix shows some additional reliability diagrams for QRF40 and ELR40 to illustrate the difference
between probabilities issued by both methods and their reliability. In all cases we look at q0.90 of the
conditional lightning intensity distribution for at all lead times; in the unconditional lightning intensity
distribution (cases without thunderstorm included), these translate to q0.994 for 21 to 9 UTC and q0.989 for
9 to 21 UTC, due to their relative thunderstorm occurrence frequency (see Section 4.1). The climatology
in Table 3 shows that this quantile is close to 100 discharges per 5 minutes for night and morning, 250
between 15 and 21 UTC and 175 between 21 and 03 UTC.

Note that the practical number of predictors in the ELR40 models is always one or two, although for
1-4 predictor ELR models lines have all been included. Additionally, it is important to note that the initial
cross-validation has not worked out well for example for +3 to +9 hour forecasts: the model with one
predictor has a higher skill, so the model with two predictors seems to be overfitting, whereas the initial
cross-validation is not indicating this overfitting. Nonetheless, it can be seen that probabilities of up to
30% are issued reliably with ELR and up to 40% for QRF at +3 to +9 hours lead time. This is the worst
among all conditional q0.90 forecasts. Although QRF has better reliability, the BSS of the model is 0.03
lower (Figure C-i a and b). The exponential decay (with increasing probability) of relative frequency per
probability bin in ELR is clear at this lead time. The same applies to the +9 to +15 hour forecasts: a
decay of relative frequency issued per probability bin with increasing probability can clearly be seen for
ELR, but not for QRF (Figure C-i c and d). Simultaneously, the forecast probabilities are reliable up to
the 60% bin for the +9 to +15 hour lead time, especially for QRF. Beyond this point, the probabilities
are not reliable, in part because they are hardly issued. Based on the BSS, QRF is also preferred for +9
to +15 hours. At +21 to +27 hours, the difference in issued probabilities and reliability between ELR and
QRF seems not so large.

The Figure C-i that belongs to this appendix consists of subfigures a to l, which are on
the next six pages, with one page for each valid time; the last valid time has been discussed
in Chapter 5 as example. The common caption is found on the last of these six pages.
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(a) ELR Harmonie00z +3 to +9 hours (selected: 2 predictors)

(b) QRF Harmonie00z +3 to +9 hours
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(c) ELR Harmonie00z +9 to +15 hours (selected: 1 predictor)

(d) QRF Harmonie00z +9 to +15 hours
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(e) ELR Harmonie00z +15 to +21 hours (selected: 1 predictors)

(f) QRF Harmonie00z +15 to +21 hours
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(g) ELR Harmonie00z +21 to +27 hours (selected: 2 predictors)

(h) QRF Harmonie00z +21 to +27 hours
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(i) ELR Harmonie00z +27 to +33 hours (selected: 2 predictors)

(j) QRF Harmonie00z +27 to +33 hours
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(k) ELR Harmonie00z +33 to +39 hours (selected: 1 predictor)

(l) QRF Harmonie00z +33 to +39 hours

Figure C-i: Reliability diagrams of ELR40 (a, c, e, g, i, k) and QRF40 (b, d, f, h, j, l) forecasts, with both relative
frequency of an event (LHS of each double figure) and relative forecasting frequencies per forecast probability bin
(RHS of each double figure) for lead times up to +39 hours. Shown lightning intensities are closest to q0.90 of the
intensity distribution for that valid time.

Page 91 of 99



D Table of additional predictors in (E)LR

The following tables are presented in addition to Tables 5 and 6. They indicate second, third and fourth
predictors in the logistic regression models based on the 40 potential predictor set, conditional on their
appearance in the final model and expected signs in front of the coefficient if appropriate (see Section 5.2).

Table D-i: Frequency table of predictor selection in LR40 per valid time, with second, third and fourth predictor
given if included the valid time. Each valid time is grouped with a common background color. Empty cells indicate
no selection (0 frequency).

Validtime Predictor Freq as 2nd Freq as 3rd Freq as 4th
Boyden max 1 2
Jefferson max 2
ModJefferson max 2

03-09 UTC

Trans Graupel col max 1 1 1
09-15 UTC ModJefferson max 3

ModJefferson max 1
MUCAPE graupel pows max 1
MUCAPE snow pows max 3

15-21 UTC

Trans Snow max 1
Boyden max 1 1
LNB q0.90 121-03 UTC
Trans Graupel col max 1
Helicity max 2 1
MUCAPE q0.90 1 2
Trans Snow max 1

03-09 UTC
√
SBCAPE + SBCINmax 1

MSLP max 2 1
Trans Moisture convergence min 1
Trans Moisture convergence max 1

15-21 UTC
√
MUCAPE +MUCINmax 1

21-03 UTC Trans Snow max 2

Table D-ii: Frequency table of second predictor selected per valid time in ELR40 models. Only two valid times have
two predictors in ELR40.

Validtime Predictor Freq as 2nd
03-09 UTC coast 2

dp dt 1
MUCAPE q0.90 1√
SBCAPE + SBCINmax 1

MSLP max 1
21-03 UTC MSLP max 1

MUCAPE q0.90 1
Boyden max 1
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E Importance of predictors in QRF40 for lightning intensity
forecasts

In Figure E-i, the permutation importance measure for lightning intensity forecasts is found per predictor
and lead time. The figure shows that predictors indicate the magnitude of convective instability and
air mass flowing in are typically the most important for conditional thunderstorm intensity predictions:
Θw, convective indices, their combinations with precipitable water and dew points at 700 and 805 hPa
always have relatively large importance (0.04 to 0.18). In addition, the ”Edward” predictor with vertical
and horizontal gradients in Θw included (both convective and baroclinic gradients), is among the more
important predictors. Other predictors have sometimes or mostly lower importances. Note that the total
of all importance is clearly larger for 15-21 UTC valid times.

Figure E-i: The permutation importance measure of QRF40 fits for seven lead times with lightning intensity
forecasts, averaged over three final cross-validations. The colour of a symbol indicates the time of the day; circles
indicate that the centre time of the forecast lies in the first 24 hours and crosses indicate a centre time on the
second day.
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F Dependence on “truth”/“observations”

The BSS as function of lightning intensity threshold for three different ”truths” for lightning intensity
forecasts is shown in Figure F-i. The figure shows that the range of skilfully forecast thresholds can
shift as a function of the truth, both in terms of climatological quantiles and absolute lightning intensity
threshold. Additionally, QRF profits most notably at many lightning intensity thresholds for +21 to +27
hour forecasts (Figure F-i d) when the truth is adjusted and regularly for some thresholds, for example
lower thresholds in +3 to +9 hour forecasts (Figure F-i a).
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(a) Harmonie00z +3 to +9 hours (b) Harmonie00z +9 to +15 hours

(c) Harmonie00z +15 to +21 hours (d) Harmonie00z +21 to +27 hours

(e) Harmonie00z +27 to +33 hours (f) Harmonie00z +33 to +39 hours

(g) Harmonie00z +39 to +45 hours

Figure F-i: BSS of QRF40 and ELR40 as a function of lightning intensity with the reference truth and two
modified truths: 2015 FLITS detections and 2015 doubled KLDN detections, including uncertainty margins (shaded
for reference truth and dashed lines for adjusted truths). The four highest training quantiles (if 400) are shown as
ticks: black = reference, dark grey = doubled, lighter grey = FLITS).
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