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Abstract

The effects of Kerr BH superradiance alongside ultralight boson fields has been poorly studied
within electromagnetic radiation. Motivated by the Event Horizon Telescope results, we explore
the observational implications using gravitational lensing. In order to do so, we review some
key concepts like Detweiler’s approximation and gravitational lensing. Later, we provide a
fitted formula for the spin evolution and for measuring the spin of a Kerr black hole in terms
of the shadow for an equatorial observer. We find that the spindown and mass change due
to superradiance instability can be observable by changes in the black hole shadow, leaving
a characteristic imprint and therefore making it distinguishable from other possible spindown
processes. Furthermore, assuming one can measure the mass of the black hole, we develop a
method of measuring the ultralight boson mass by means of measuring the angular diameter
of the black hole shadow.
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Introduction

From the first detection of gravitational waves in 2015 [11], the interest in gravitational wave
sources has drawn the attention of the scientific community. This new window of radiation
opens up the possibility to observe and discover new physics even beyond the Standard Model.
One example of this is black hole (BH) superradiance. BH superradiance is a dissipative
effect triggered by the scattering of monochromatic waves with frequency ω off rotating BHs
satisfying:

ω < mΩH , (1)

where ΩH is the angular velocity of the event horizon and m the magnetic quantum number
of the wave. As a consequence the BH loses energy and angular momentum while the wave
is amplified 11. Since the existence of an event horizon in a stationary and axisymmetric
spacetime automatically implies the existence of an ergoregion [22], the Kerr metric provides a
good background to study superradiance.

The first realisation of such phenomena was first studied by Teukolski and Press [33], where
they proposed the "Black hole bomb", an unstable system where a spherical mirror surrounding
the BH is reflecting back an electromagnetic field that gets amplified every time, resulting in
an "explosion" due to the electromagnetic pressure. Later, Zouros and Eardley studied the
case of massive particles strongly coupled to the BH [44], where the mass of the particle serves
as a natural mirror and therefore triggers an instability. The small coupling was studied by
Detweiler [55], who solved the Klein-Gordon equation and gave an analytical expression of the
imaginary part of the frequency, the so called "Detweiler’s approximation".

For the superradiance instability to be significant enough to manifest in an astrophysical
system, the Compton wavelength of a field has to be comparable to the size of the BH. This is
realized for ultralight bosons with small but non zero rest mass. In particular, for masses in
the range 10−9 − 10−21eV, astrophysical BHs can become sensitive detectors, serving as tests
for fundamental physics theories [66]. One of these particles is the QCD axion with a rest mass
(in the QCD frame) of µ ≤ 6 · 10−10eV or axion-like particles that are also interesting dark
matter candidates. [77].

The superradiance through the axion yields the Axionic BH Atom [66] (also called Grav-
itational atom for general bosonic particles or, as we prefer, Gravatom), a coupled system
consisting of a cloud made of particles bounded to the BH, where the bounded system acts as
an hydrogen atom and gravitons would be emitted by transitions between energy levels. The
gravitational waves emitted by this phenomena can be detected with Advanced LIGO [88], and
therefore we can constrain the mass of the ultralight boson. In this work we will treat general
ultralight bosons and eventually discuss the case of the axion, which is a (pseudo)Nambu-
Goldston boson.

Recently, the Gravatom has also been studied in a binary system with a BH as a com-
panion [99], where it has been shown that, analogously to atomic physics, there can exist Rabi
resonances (due to level mixings induced by the gravitational interaction with the companion)
which gravitational wave signals can be feasibly detected by LISA.

1Superradiance is similar to the Penrose process, where an incoming particle decays within the ergoregion
producing an ingoing negative-energy particle (as perceived by an observer at infinity) and an outgoing particle
with more energy than the incoming one.
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This year the first image of a black hole in radiofrequency was released by the Event Horizon
Telescope [1010], showing the possibility to measure the shadow of the black hole, i.e. the area at
which photons either fall into the black hole or reach the observer. This new instrumentation
allow us to measure with an angular resolution up to the order of micro-arcseconds, therefore
making possible to explore electromagnetic radiation in regions of the order of the gravitational
radius for supermassive black holes. Altough far from arbitrary good angular resolution, a lot
of work is being done towards the improvement of the instrumentation [1111]. In this study
we develop a method for studying BH superradiance using gravitational lensing, in particular
looking at the shadow of the black hole. The structure is as follows: in the first chapter
we will derive Detweiler’s approximation, solving the Klein-Gordon equation and applying an
asymptotic matching expansion. Later, in the second chapter, we will explore the dynamics of
the cloud around the BH and, by means of studying the different time-scales, we will constuct
a physical picture of the system. Next, we will introduce gravitational lensing and focus in the
Kerr BH, discussing the possibility of using gravitational lensing in order to compute the mass
of the boson by observational signatures of the cloud. Finally we discuss the conclusions and
open problems regarding the Gravatom.



Chapter 1

Detweiler’s approximation

In order to study the interaction of an ultralight boson with a Kerr BH we will solve the
Klein-Gordon equation in a Kerr metric background. We make emphasis that, for now, we are
not extrictly considering an axionic particle. QCD axions, for example, are pseudo-Goldstone
bosons, so they have quartic terms in the lagrangian that account for self-interactions, which
will be important in discussing the dynamics of the cloud (see 2.42.4). Once we manipulate
the Klein-Gordon equation in a suitable form, we can read an effective potential which can
account for a good part of the physical phenomena. We will discuss this potential and obtain
the maximum and minimum value of the Schwarzchild case. Finally we will solve the differential
equations at large and small distances and match the solutions, giving an expression for the
imaginary part of the frequency, which we will use in order to discuss the time-scales associated
to the process.

1.1 Differential equation
We begin by solving the Klein-Gordon equation:

(�− µ2)φ = 0, (1.1)

where µ = MG/~c for a particle of mass M. The metric in Boyer-Lindquist coordinates
(t, r, θ, φ) is

ds2 =−
(

1− 2Mr

Σ

)
dt2 − 4Mar sin2 θ

Σ
dtdϕ+

Σ

∆
dr2

+ Σdθ2 +
(
r2 + a2 +

2Ma2r sin2 θ

Σ

)
sin2 θdϕ2, (1.2)

where

∆ = r2 + a2 − 2Mr , Σ = r2 + a2 cos2 θ. (1.3)

M is the mass and J = aM is the angular momentum of the BH. One of the properties of the
Kerr BH is the existence of an ergoregion. The ergoregion is the location at which an observer
is forced to co-rotate with the BH and is defined as the region between the ergosphere rergo =
M +

√
M2 − a2 cos2 θ, an infinite redshift surface, and the event horizon r+ = M +

√
M2 − a2.

In order to solve the differential equation, that is separable in the chosen Boyer-Lindquist
coordinates, we use the Laplace-Beltrami operator and take the ansatz [1212]

φ = e−iωteimϕR(r)Θ(θ), (1.4)

which accounts for a stationary solution (i.e. that the system remains in the same state as the
time change). We separate eq. (1.11.1) into

1

sin θ
∂θ(sin θ∂θ)Θ(θ) +

(
λ− a2κ2 cos2 θ − m2

sin2 θ

)
Θ(θ) = 0, (1.5)
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∆∂r(∆∂r)R(r) +
[
ω2(r2 + a2)2 + a2m2 − 4Marωm−∆

(
λ+ a2ω2 + µ2r2

)]
R(r) = 0 (1.6)

where κ2 ≡ µ2 − ω2. Using Θ(θ) = y(x) and x = cos θ, Eq. (1.51.5) becomes

d

dx
[(1− x2)

d

dx
y(x)] +

(
λ− a2κ2x2 − m2

1− x2

)
y(x) = 0. (1.7)

We see that it is the differential equation for the spheroidal wave equation (see appendix A.1A.1)

d

dη
[(1− η2)

d

dη
Sml(−ic, η)] +

(
λml + c2η2 − m2

1− η2

)
Sml(−ic, η) = 0,

with the identification η = x and c2 = −a2κ2. Thus, the eigenfunction is y(x) = Sml(−ic, cos θ).
Note that for c=0 the eigenfunctions are the Legendre polynomials. Meixner- Schäfke normal-
ization [1313] yields the shperoidal harmonics

Zlm(θ, ϕ) =
[2l + 1

4π

(l −m)!

(l +m)!

]1/2
Slm(−ic, cos θ)eimϕ, (1.8)

that satisfies
∫

Ω
Z∗lmZl′m′d(cos θ)dϕ = δll′δmm′ . To write Eq. (1.61.6) in a Schrödinger-like form,

we perform the following coordinate transformation

dr∗
dr

=
r2 + a2

∆
,

and substitute X(r) =
√
r2 + a2R(r). We then obtain[

d2

dr2
∗

+
(
ω2 − V

)]
X(r) = 0,

with the effective potential

V = − a2m2

(r2 + a2)2
+

4Marωm

(r2 + a2)2
+ ∆

[
λ+ a2ω2 + µ2r2

(r2 + a2)2
− ∆(2r2 − a2)

(r2 + a2)4
+

2r(r −M)

(r2 + a2)3

]
. (1.9)

In the new coordinates the limits to the event horizon and to infinity are, respectively, limr→∞ r∗ =
∞ and limr→r+ r∗ = −∞. The effective potential is ploted in fig. 1.11.1. We see that we have a
centrifugal bareer close to the ergoregion followed by a potential well. From this picture we can
already see that it is possible for a particle to be trapped in a keplerian orbit around the Kerr
BH if its energy is below the asymptotic value of the potential. If a particle is trapped in the
potential its wavefunction will be ingoing at the horizon and outgoing at infinity, representing
a bound state. In the next sections we will find the minimum and maximum values of the
effective potential, so we can discuss the existence of bound states in terms of the gravitational
coupling Mµ.

1.1.1 Extremal values of the effective potential
In order to find the minimum analytically one must find the solution of a sixth order polynomial,
which is a hard task to archieve. What we can try to do is to find the minimum of the
Schwarzschild case (a = 0). The potential reads

VSchw = (r − 2M)
2M + r

[
l(l + 1) + r2µ2

]
r4

, (1.10)

and the corresponding minimum is

rmin =
l(l + 1)

3Mµ2
+

A

3Mµ2
+
l2(l + 1)2 − 9

(
l2 + l − 1

)
µ2M2

3Mµ2A
,
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Figure 1.1: Qualitative plot of the potential (1.91.9) depending on r. The vertical
line close to the origin is the position of the event horizon and the further vertical
line corresponds to the ergoregion at θ = π/2. The purple arrows represent the
spreading of the bound state wavefunction.

with

A ≡
{
l3(l + 1)3 − 27

2
l(l + 1)

(
l2 + l − 1

)
µ2M2 +

3

2

[
324

(
l2 + l − 1

) (
l2 + l + 1

)2
µ6M6−

3l2(l + 1)2(l(l + 1)(9l(l + 1) + 14) + 9)µ4M4 + 5184µ8M8
]1/2
− 108µ4M4

}1/3

.

If we plot this minimum and the Kerr effective potential we see that it is well approximated
by the Schwarzschild case (see fig. 1.21.2).

The maximum correspond to the real part of one of the potential minima, explicitly

rmax = Re

{
l(l + 1)

3Mµ2
−

22/3
(
1 + i

√
3
)
A

6Mµ2
− (1− i

√
3)(l2(1 + l)2 − 9(−1 + l + l2)M2µ2)

6Mµ2A

}
.

(1.11)

Again, we can plot the maximum of the potential for different spin values (Fig. 1.31.3) and see
that it is a good approximation, roughly, up to spins a/M = 0.3.

1.1.2 Boundary conditions and limit solutions
By looking at the effective potential we see that bound states are formed if ω2 . µ2. These
bound states are trapped in the potential well so that part of the wavefunction will be outgoing
to infinity and part of it will be ingoing to the event horizon (see fig. 1.11.1).

For large radii we find X(r) ∼ e±ikr∗ ∼ e±ikr with k =
√
ω2 − V (r →∞) =

√
ω2 − µ2.

As we want an outgoing wave the corresponding sign is (+). Thus

R(r) =
A√

r2 + a2
ei
√
ω2−µ2r , (1.12)
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Figure 1.2: Plot of the minimum of the Schwarzschild potential (purple vertical
line) for the Kerr effective potential for diferent spin parameters and a fix value
of Mµ = 0.4 and l = m = 1. Top left: a/M = 0. Top right: a/M = 0.3. Bottom
left: a/M = 0.6. Bottom right: a/M = 0.9
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Figure 1.3: Plot of the maximum of the Schwarzschild potential (purple vertical
line) for the Kerr effective potential for diferent spin parameters and a fix value
of Mµ = 0.4 and l = m = 1. Top left: a/M = 0. Top right: a/M = 0.3. Bottom
left: a/M = 0.6. Bottom right: a/M = 0.9
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is the solution for an outgoing wave in the infinity limit.
For the event horizon limit we must discuss the boundary conditions. In the coordinate

frame we may think of a solution corresponding to an ingoing wave. However, this is not
correct because the wave must be ingoing for a physical observer rather than the coordinate
frame. What this means is that we cannot just take X(r) ∼ e−ikr∗ but we must take into
account the frame dragging effect of the Kerr black hole. Let us take an observer near the
horizon. As a consequence the observer moves whitin the ergosphere with an angular velocity
dϕ
dt = ΩH = a

2Mr+
(see appendix A.2A.2). The wave solution for the observer takes the form

φ ∝ e−i(ω−mΩH)te±ikr∗ . Taking into account k =
√
ω2 − V (r → r+) = ω − mΩH . The

observer must see an ingoing wave and therefore we must choose the sign of k opposite to the
sign of (ω −mΩH):

m < 0 : φ ∝ e−i(ω+|m|ΩH)teikr∗ = e−i(ω+|m|ΩH)tei(ω+|m|ΩH)r∗ (∀ω) (1.13a)

m > 0 : φ ∝ e−i(ω−|m|ΩH)teikr∗ = e−i(ω−|m|ΩH)tei(ω−|m|ΩH)r∗ (∀ω > mΩH) (1.13b)

φ ∝ e−i(ω−|m|ΩH)te−ikr∗ = ei|ω−mΩH |te−i|ω−mΩH |r∗ (∀ω|0 < ω < mΩH).
(1.13c)

Hence,

R(r) =
B√

r2 + a2
e−i(ω−mΩH)r∗ . (1.14)

1.2 Matching solutions
In the limit of small frequencies, i.e., when the Compton wavelength of the field is much larger
than the size of the BH, we can perform a matched asymptotic expansion. We divide the
problem in three regions: the far, near and overlapping-region. We take the limits r−r+ �M
and r − r+ � 1/ω for the far and the near-region, respectively. Then we match the solution
of both regions in the limit where M � r − r+ � 1/ω. Additionally one has the bound
state condition ω2 . µ2 and the small mass coupling Mµ � 1. The region in which our
approximations are valid is depicted in fig. 1.41.4.

Figure 1.4: Region in which the approximations are valid. This is: M �
r − r+ � 1/ω, M � 1/µ and ω2 . µ2.

In this limit the separation constant λ of eqs. (1.51.5) and (1.61.6) behaves as [1414]

λ = l(l + 1) +O(a2ω2), (1.15)

which, for Mω � 1,

λ = l(l + 1) +O(a2ω2) ≤ l(l + 1) +O(M2ω2) ' l(l + 1). (1.16)

Therefore the spheroidal harmonics (1.81.8) reduce to spherical harmonics

Ylm(θ, ϕ) =
[2l + 1

4π

(l −m)!

(l +m)!

]1/2
Plm(cos θ)eimϕ. (1.17)
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1.2.1 Far region solution
In addition to the general approximation, Mµ � 1, the far limit approximation corresponds
to r � r+ +M . Within this limit we only keep the dominant terms of (1.61.6) (see appendix BB).
This yields

d2

dr2
[rR(r)] +

[2Mµ2

r
− κ2 − l(l + 1)

r2

]
rR(r) = 0. (1.18)

By doing the following substitutions [55]

ν ≡Mµ2/κ, χ ≡ 2κr, (1.19)

we arrive to the Whittaker equation [1313]

d2

dχ2
[χR(r)] +

[
− 1

4
+
ν

χ
− l(l + 1)

χ2

]
χR(r) = 0. (1.20)

The solution of this equation is related to the confluent hypergeometric function of first kind
and second kind (or Whittaker functions) (see appendix A.3A.3). As an analogy to the hydrogen
atom case, we can define the reduced radial function P (χ) ≡ χR(r). The general solution is

P (χ) = C1χ
l+1e−χ/2U(l + 1− ν, 2l + 2, χ) + C2χ

l+1e+χ/2U(l + 1 + ν, 2l + 2,−χ) ,

where C1 and C2 are constants and U(a, b, χ) is the confluent hypergeometric function of the
second kind. In analogy to the hydrogen atom [1515] (demanding a non-divergent behavior at
r → 0) we set ν− l−1 ≡ n with n a non-negative integer. This can be seen more clearly by the
fact that the confluent hypergeometric function of the second kind U(a, b, z) at small values of
z behaves as U(a, b, z) ∝ z1−b/Γ(a). Hence, in order for the wavefunction to be zero for z → 0
one must impose a = −n with n a non-negative integer such that Γ(a)→∞.

The complex frequency (due to the dumping of the wave or, in other words, because we
have quasi-normal modes) ω = ωR + iΓ will have Γ < 0 or Γ > 0 for stable and unstable
modes respectively. Therefore, assuming slowly growing instabilities, we treat the imaginary
part of the frequency as a first-order perturbation, i.e., κ = κR

(
1− ωR

κ2
R
iΓ
)

+O(Γ2) where the
quantities with subindex R correspond to those with the real part of the frequency. The real
part of the frequency satisfies

κ2
R ≡ µ2 − ω2

R = µ2
( µM

n+ l + 1

)2

. (1.21)

Taking µM � 1, i.e. considering ultralight bosons, we find

ωR ≈ µ
[
1− 1

2

( µM

n+ l + 1

)2]
= µ+O(µM)2, (1.22)

and the perturbation yields ν = ν + µ2MωR

κ3
R

iΓ ≡ ν + δν. Therefore

iΓ =
δν

M

( µM

n+ l + 1

)3

. (1.23)

Hence, for slowly growing instabilities, the imaginary part of the frequency will induce a
complex ν such that ν − l − 1 = n− δν. Applying the boundary conditions at infinity we set
C2 = 0. The solution at infinity takes the form

R(r) = C1(2κr)le−κrU(−n+ δν, 2l + 2, 2κr). (1.24)

In order to proceed to the matching, we have to expand the solution at infinity at small
values of r. In order to do so, we use the Maclaurin series of the confluent hypergeometric
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function of second kind and take the behavior at 2κr � 1. Hence we only take into account
the following terms

U(a, b, z) ' Γ(−b+ 1)

Γ(1 + a− b)
+ z1−bΓ(b− 1)

Γ(a)
. (1.25)

Therefore, the solution in the far region, in the limit of 2κr � 1, becomes

R(r) =C1
(2κ)lΓ(−2l − 1)

Γ(−2l − n+ δν − 1)
rl + C1(2κ)−l−1 Γ(2l + 1)

Γ(−n+ δν)
r−l−1 . (1.26)

1.2.2 Near horizon solution
In the near horizon region we take the approximation r − r+ � 1/ω. The differential radial
equation within this limit is

∆∂r(∆∂r)R(r) + [r4
+(ω −mΩH)2 − l(l + 1)∆]R(r) = 0 . (1.27)

Substituting z = r−r+
r−r− we find

z(1− z)∂2
zR(z) + (1− z)∂zR(z) +$2

(1− z
z

)
R(z)− l(l + 1)

(1− z)
R(z) = 0 , (1.28)

with $ the superradiant factor defined as

$ ≡ (ω −mΩH)
r2
+

r+ − r−
. (1.29)

Since every second-order ordinary differential equation with at most three regular singular
points can be transformed into the hypergeometric differential equation (see appendix A.4A.4),
we can express the radial function as R(z) = zi$(1−z)l+1F (z) [1616] . Then, Eq. (1.281.28) becomes

z(1− z)∂2
zF (z)− [(l + 1 + 2i$)(l + 1)]F (z)

+
[
(1 + 2i$)− [2(l + 1) + 2i$ + 1]z

]
∂zF (z) =0 .

(1.30)

As expected, this differential equation corresponds to the hypergeometric differential equation
with the following parameters:

a = l + 1 + 2i$, b = l + 1, c = 1 + 2i$, (1.31)

The most general solution near z = 0 (i.e. r = r+) is

R(z) = Az−i$(1− z)l+1
2F1(a+ 1− c, b+ 1− c; 2− c; z)

+Bzi$(1− z)l+1
2F1(a, b; c; z) . (1.32)

This solution represents an ingoing and outgoing wave. As discussed in Sec. 1.11.1 we only want
an ingoing wave and therefore we set B = 0. Since we are looking for the behavior at large
r (i.e. z → 1), we must shift the equation from z to 1 − z. This can be done with Euler’s
hypergeometric transformations. Therefore, taking the limit r →∞ i.e. (1− z)→ r+−r−

r

R(r) =AΓ(1− 2i$)
[ (r+ − r−)−lΓ(2l + 1)

Γ(l + 1)Γ(l + 1− 2i$)
rl +

(r+ − r−)l+1Γ(−2l − 1)

Γ(−l − 2i$)Γ(−l)
r−l−1

]
, (1.33)

where we have used the property 2F1(a, b; c; 0) = 1.
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1.2.3 Matching
Once we have computed the far and near-region solutions we match them to obtain the solution
in the overlapping region. The matching yields

(r+ − r−)−l

Γ(l + 1− 2i$)

Γ(2l + 1)

Γ(l + 1)

Γ(−2l − n+ δν − 1)

Γ(−2l − 1)
= (2κ)l, (1.34a)

(r+ − r−)l+1

Γ(−l − 2i$)

Γ(−2l − 1)

Γ(−l)
Γ(−n+ δν)

Γ(2l + 1)
= (2κ)−l−1. (1.34b)

Dividing eq. (1.34b1.34b) by eq. (1.34a1.34a) and using the gamma function property [1717] Γ(z+1) = zΓ(z),
the imaginary part of the frequency reads (see appendix CC)

Γnlm = −2
r+

M
(µ−mΩH)(µM)4l+5γnlm, (1.35)

where

γnlm ≡
24l+2(2l + n+ 1)!

(l + n+ 1)2l+4(n!)

[ l!

(2l)!(2l + 1)!

]2 l∏
k=1

[
k2
(

1− a2

M2

)
+ 4r2

+(µ−mΩH)2
]
.

As expected, for ωR ∼ µ > mΩH the imaginary part decays. However, if the superradiance
condition ωR ∼ µ < mΩH is satisfied, the imaginary part becomes positive and indicates an
instability. As the field has an exponential dependence φ ∝ e−iωt = e−iωReΓt the growth is
exponential with a growth timescale τsr = 1/Γnlm. The frequency is

ωnlm ' µ

[
1− 1

2

(
µM

n+ l + 1

)2
]
− 2i

r+

M
(µ−mΩH)(µM)4l+5γnlm. (1.36)

As we can see, the real part of the frequency follows a hydrogen-like spectra with principal
quantum number ñ = n+ l + 1. This is the so-called Detweiler’s approximation.

From eq. (1.351.35) we can already see that the imaginary part of the frequency, for Mµ � 1
decreases with increasing l. Since −l ≤ m ≤ l, the maximum value of Γnlm for a given Mµ
will be given by m = l, with m such that the superradiance condition is satisfied. This can
be explained by the form of the potential: the centrifugal barrier increases with l, so that the
fastest growing modes will be those that enter the ergoregion easily, therefore the ones passing
through a lower barrier, with smaller l, and being as high as possible in the well, therefore the
ones with largest projection on the black hole rotation axis m = l [1818]. The radial quantum
number has a mild influence [66] so for consistency we will fix it to be n = l − 1, although the
following analysis is valid for any combination of quantum numbers.



Chapter 2

Time-scales and evolution

Let us review what we have done until now: within some approximations we have solved the
Klein Gordon equation of an ultralight boson (such as an axion) and computed the real and
imaginary parts of the frequency for a bound state in a keplerian orbit. This result leads to
two possible scenarios: the bosonic wavefunction gets exponentially supressed for Γnlm < 0 or
it grows exponentially for Γnlm > 0, triggering an instability. The more interesting case is the
latter, where the condition Γnlm > 0 translates in the superradiant condition (11). Within this
regime we will have an extraction of energy from the black hole to the bosonic wavefunction and
a filling of different energy levels following a hydrogen-like spectra, therefore forming a cloud
around the BH. In this section we aim to give a summary about the dynamics of superradiance
instability following [66].

Figure 2.1: Pictorial description of the bosonic cloud around the BH. Following
the analogy with the hydrogen atom, and considering axions as the ultralight
bosons, instead of electrons emitting photons we have axions emitting gravitons.
Picture taken from [1919].

Using the Bohr approximation one can estimate the size of the cloud being

rc '
(

ñ

µM

)2

M =

(
ñ

α

)2

rg, (2.1)

where ñ = n+l+1 and in the last step we have adopted the common notation in the references,
being rg = GM/c2 the gravitational radius of the black hole and α = µrg the analogous of

14
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the atomic fine-structure constant, which in our units are equal to M and Mµ respectively.
Analogously one can also estimate the velocity of a particle in the level ñ,

v ' α

ñ
. (2.2)

On the other hand, taking ω ∼ µ one can constrain the velocity by means of the superradiance
condition

α = µrg ∼ ωrg < m
a

2rgr+
rg =

m

2

a

r+
, (2.3)

such that

v <
m

2ñ

a

r+
<

1

2
, (2.4)

which means that the cloud is moderately relativistic, where the upper bound is satisfied for
a = M and ñ ∼ l = m � 1. If we have an estimate of the velocity we can also estimate the
temperature of the cloud by identifying the temperature with the average kinetic energy of a
particle, which in the non-relativistic case α/l� 1 is given by

KBTc =
1

2
µ〈v〉2.

For the mean velocity we will take the velocity corresponding to the dominant mode of the
cloud l̃

〈v〉 ' α

l̃
,

and therefore the temperature reads

Tc =
µ

2KB

(
α

l̃

)2

.

By means of eq. (2.42.4) we see that the temperature is bounded by

Tc <
µ

8KB
= 1.4× 10−8K

( µ

10−11eV

)
.

Finally, we can estimate the mass of the cloudMc as the difference between the initial and final
mass of the BH after the instability [2020]. In order to do the computation we will use eq. (2.72.7)

Mf −Mi =
ω

m
(Jf − Ji),

which yields

Mc = Mi −Mf =
ω

m
(Ji − Jf ) =

ωJi
m
− 4ωMfrg,fαf

m2 + 4α2
f

' ωJi
m

=
ωaMi

m
= Mi

αi
m

a

rg
, (2.5)

where for the final angular momentum of the BH we used eq. (2.32.3) in the saturation of the
superradiance condition and we have assumed αf � 1. In fig. 2.22.2 we have plotted the ratio
of the mass of the cloud to the mass of the black hole for µ = 0.7 × 10−11eV and a = 0.8M
(which we treat in sec. 2.32.3). The case of mass 10M� corresponds to a mass coupling of α = 0.5
such that our approximations are valid up to that value. We see that, for a more conservative
value of M , the mass of the cloud is of order of 10% the mass of the black hole.

As a summary we have listed all the parameters in table D.1D.1, where we show the corre-
spondent expression and some typical values.
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Figure 2.2: Ratio of the mass of the cloud Mc and the mass of the black hole
M for µ = 0.7× 10−11eV and a = 0.8M and different l = m and n = l+ 1 levels.

Cloud parameter Expression Typical values

Radius rc =

(
ñ

α

)2

rg 2.5× 1037Km
[
ñ2

(
10M�
M

)(
10−12eV

µ

)]
Velocity v ' α

ñ
0.07c

[
ñ−1

(
M

10M�

)( µ

10−12eV

)]
Temperature Tc =

µ

2KB

(
α

l̃

)2

3× 10−11K

[
l̃−2

(
M

10M�

)2 ( µ

10−12eV

)3
]

Mass Mc = Mi
αi
m

a

rg
0.6M�

[(
M

10M�

)2 ( µ

10−12eV

)( a

0.8rg

)(
1

l

)]

Table 2.1: Summary of the derived parameters. Here we show the expression in
Planck units and some typical values in SI units forM = 10M� and µ = 10−12eV.

2.1 Energy balance
In this section we investigate the effect of superradiance in the energy balance. In particular
we will follow [2121], where the energy balance is derived using Hawking’s area theorem. We will
see that, as said before, the superradiance condition implies an extraction of energy from the
black hole that translates in a decrease in the mass and spin of the BH. The area of a Kerr
BH is [2222]

A = 4π(r2
+ + a2),

differentiating the area yields

δA = 16π
r2
+ + a2

r+ − r−
(δM − ΩHδJ), (2.6)
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with J the BH angular momentum, r− = M−
√
M2 − a2 and ΩH the horizon angular velocity.

For a given field we can relate its energy and angular momentum to the one of the BH. Let’s
consider a Kerr spacetime with Killing vectors ξµ(t) ≡ ∂µt and ξµ(ϕ) ≡ ∂µφ. Their respective
conserved energy fluxes are

εµ = −Tµν ξν(t), lµ = Tµν ξ
ν
(ϕ),

such that the energy and angular momentum flux through a hypersurface dΣµ are

δE = εµdΣµ, δL = lµdΣµ.

Taking a spherical surface dΣµ = nµr
2dtdΩ with nµ the (radial) outgoing normal vector to the

surface, the ratio between energy and angular momentum is given by

δE

δL
= −T

r
t

T rϕ
.

Considering a scalar field φ(t, r, θ, φ) = f(r, θ)e−iωteimϕ with energy-momentum tensor

Tµν = ∇µφ∇νφ− gµν
(

1

2
∇αφ∇αφ+ V (φ)

)
.

yields

δE

δL
= −T

r
t

T rϕ
= −∇

rφ(−iωφ)

∇rφ(imφ)
=
ω

m
. (2.7)

Conservation of angular momentum and energy implies that a change of the angular momentum
and energy of the wave, will occur at expenses of a change of angular momentum and energy
of the BH: δL = δJ and δE = δM . Therefore, subtituting in eq. (2.62.6) we obtain

δM =
ω

16π

r+ − r−
r2
+ + a2

δA

ω −mΩH
. (2.8)

The area theorem implies that δA ≥ 0 [1919] and, if the superradiant condition is met, the field
extracts energy from the horizon δM < 0.

2.2 Kinetic equations
In order to study the dynamics of the cloud, it is natural to look at the different time-scales of
possible physical phenomena involved in the dynamical evolution of the cloud. As before, we
are not assuming that the boson is an axion, although in sec. 2.42.4 we will discuss the axion case.
We will start, first of all, looking at the kinetic equations. Later, we will discuss the possibility
of gravitational wave emission and, last but not least, the possible phenomena emerging from
considering the axion, where we will look at axion non-linear effects by the cloud itself.

Given that the superradiant time-scale Γ−1
nlm is larger than the dynamical time-scale of

the black hole rg we can assume a quasi-adiabatic evolution and treat the non-linear effects
as perturbations since these will become relevant when the system is still in the quasi-linear
regime [66][2323]. Therefore the set of kinetic equations corresponding to the occupation numbers
Ni for different levels is

dNi
dt

= ΓijNj + ΓijkNjNk + ... . (2.9)

For simplicity we have dropped Ni-independent terms corresponding to spontaneous emission.
The linear regime corresponds to truncation of the set of equations up to the first term, by
which we will start with.
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2.2.1 Instability time-scale
For the superradiance process, the linear coefficient corresponds to the imaginary part of the
frequency given by

Γij = δijΓi , (2.10)

where the index corresponds to some level and Γi is given by eq. (1.351.35). In order to put some
numbers we need to fix either the mass of the BH or the mass of the boson. We will fix the
mass of the BH to be M = 6M� and change the mass of the boson as well as the energy levels.

l= 1

l= 2

l= 3

l= 4

0.0 0.5 1.0 1.5 2.0 2.5

0.01

1

100

104

106

108

μ (10-11eV)

Γ
n
lm

-
1
(y
r)

Figure 2.3: Instability time-scale. We plot the time-scale τsr = 1/Γnlm as a
function of the mass µ of the particle for m = l = n+ 1 and different values of l.
We have chosen a BH with mass M = 6M� and spin a = 0.8M .

As we can see in fig. 2.32.3, in agreement of what we said in sec. 1.21.2 the fastest level is
the one with the smallest l and m = l. In fig. 2.42.4 we see that the instability increases with
the spin, so the instability time-scale will be shorter for large spins. This can be seen by
looking at eq. (1.351.35), where for a fixed frequency ω and µ, the magnitude of the instability will
increase with the angular velocity of the ergoregion, which increases with the spin of the BH.
Physically this means that the faster the BH rotates, the faster the field extracts energy from
it and therefore the instability time-scale is shorter.

One may wonder if it is possible to have electromagnetic emission but, as showed in [66], in
the case of the axion, the axion-photon conversion is too slow to be relevant for the dynamics
of superradiance.

In the next section we explore the gravitational wave emission, which correspond to non-
linear terms in (2.92.9).

2.2.2 Cloud depletion time-scale
One can reasonably expect that, as an analogy of the hydrogen atom, the bosons will emit
gravitons due to level transitions and one-graviton annihilation of two bosons (since our space-
time is curved this can happen, contrary to flat spacetime, where it’s forbidden by energy
and momentum conservation). The latter is of special interest since the cloud can eventually
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Figure 2.4: Inverse of the time-scale for different spins. We plot the imaginary
part of the frequency Γnlm as a function of the mass µ of the particle for different
values of a. We have chosen a BH with mass M = 6M� and l = 1, n = l−1 = 0.
We show the inverse value in order to have a clear plot, otherwise the logarithmic
scale takes negative values.

deplete annihilating all the bosons into gravitons, which will play an important role into the
evolution of the system. We will follow the same strategy as the literature ([88],[99]), this is,
from the power and energy consevation we will compute the mass evolution and identify the
time-scale. For the power of the gravitational wave emission via annihilation, due to the heavy
computational cost, we will use the flat approximation formula of ref. [2424], which is a good
approximation of the numerical results for α� 1 and also agree with the numerical results of
ref. [2020]. This formula is obtained by computing the perturbation of the metric in the Einstein
field equation, in the flat metric background. For a detailed computation and discussion we
refer to ref. [2424]. The expression for the power reads

dEgw

dt
= Cnl

(
Mc(α)

M

)2

αQl ,

where Mc(α) is the mass of the cloud, eq. (2.52.5), and

Cnl =
16l+1l(2l − 1)Γ(2l − 1)2Γ(l + n+ 1)2

n4l+8(l + 1)Γ(l + 1)4Γ(4l + 3)Γ(n− l)2
, Ql = 4l + 10 .

Assuming that there is no other process that extracts mass from the BH (e.g. accretion disks),
conservation of energy implies that −Ṁc = ˙Egw. This condition yields

Mc(t) =
Mc,0

1 + t/τGW
,

with Mc,0 the initial mass of the cloud and τGW the time-scale of the process,

τGW =
l

Cnl

(rg
a

)
Mα−(Ql+1) . (2.11)
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We will see that the depletion time-scale is orders of magnitude larger than the instability
time-scale. In order to compute the annihilation rate we will use the following formula:

Γa ≡
˙Egw

2ω
. (2.12)

We divide the power by the frequency of the emitted graviton in order to get the rate of
emission of a single graviton. Altough we didn’t make use of the annihilation rate, we will use
this result when discussing the evolution of the system (sec. 2.32.3), where we will se that the
effect of the cloud depletion is significant only in the saturation of the superradiance condition.

2.3 System evolution
When the superradiance condition is saturated one can compute the Regge trajectories, the
lines in the BH spin vs BH mass plane at which, for a given level, superradiance will stop
developing. The condition is given by the equality (2.32.3) and yields

a

rg
=

4mαf
m2 + 4α2

f

, (2.13)

with αf corresponding to the final BH mass. In fig 2.52.5 we have plotted the Regge trajectories
with the additional condition of the instability to last less than the age of the Universe (∼
1010yr). Therefore, we can only be able to observe superradiance in black holes inside the
shaded regions corresponding to different levels.
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0.0
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Figure 2.5: Regge trajectories. Plot of the black hole spin (a/M) vs the
black hole mass M in units of solar mass. The axion mass has been set to
µ = 0.7 × 10−11eV. The trajectories are computed by requiring that the time-
scale of the instability is less than the age of the Universe in order to discuss the
observational properties.

Taking into account the phenomena described until now we can construct a qualitative
picture of what it is happening within the system (see fig. 2.62.6). First of all, a Kerr black hole
interacts with the ultralight boson (which until now can be an axion field or not) and a cloud
is formed. We will consider the l = m = n + 1 = 1 level. Within this scenario we will have
emission of gravitational waves (GWs) due to transitions between different levels. As the cloud
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Spinning BH Cloud formation by SR BH spins down SR condition saturated

Spin-up fed by bosonsSpin-down by SR 
from next level

Spin remains constant in the Regge trajectory

Old level population is 
not enough to spin-up 
and the BH spins down

Process repeats

GWsGWs

Figure 2.6: Pictorial description of the evolution of the BH-ultralight boson
system. This description corresponds to neglecting axion non-linear effects.

is growing due to superradiance, it extracts mass and spin from the BH until the superradiance
condition is saturated for the l = m = 1 level (see sec. 2.12.1). Once this happens, superradiance
will stop for the l = m = 1 level and the l = m = 2 level will start growing. Looking at
the kinetic equations we see that the cloud depletion by GWs will be less important in the
beggining of the superradiant process and will be significant when the superradiance condition
is saturated. Indeed, the kinetic equation reads

dN

dt
= ΓnlmN − ΓaN

2,

with

Γnlm = −r+

rg
(µ−mΩH)α4l+5γnlm, (2.14)

Γa =
˙Egw

2ω
=

rg
2l2

Cnlα
4l+11

(
a

rg

)2

. (2.15)

Hence, for α � 1 the cloud depletion is not significant for the evolution of the system until
Γnlm = 0 with the saturation of the superradiance condition. Therefore, after superradiance
saturation, the remaining cloud will start emitting GWs due to one graviton annihilation of
two bosons and will also start feeding the BH, which results in a spin-up of the system. The
feeding of the BH by bosons happens atfer the saturation of the superradiance condition, i.e.
ωl=m=1 > ΩH (see eq. (2.82.8)). At this point we have a competition between the spin-up due to
the l = m = 1 level and the spin-down due to the l = m = 2 level. Using the kinetic equations
this translates into the condition ∣∣∣∣dNl=m=1

dt

∣∣∣∣ =

∣∣∣∣dNl=m=2

dt

∣∣∣∣ ,
which gives Nl=m=1 =

∣∣∣Γ322

Γ211

∣∣∣Nl=m=2. In this stage the BH remains in the Regge trajectory
al=1/rg for a long time until the l = m = 1 level gets depopulated. Now when Nl=m=1 <∣∣∣Γ322

Γ211

∣∣∣Nl=m=2 the spin-down due to the l = m = 2 level wins and the process starts again until
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reaching the next Regge trajectory al=2/rg, where it will keep going until the superradiance
rate is too slow to be possible. In order to put some sumbers, similar to [88], let’s consider a
6M� BH with spin a = 0.8M and a boson field of µ = 0.7× 10−11eV. With these parameters
the BH will start populating the l = m = 2 level (upper red dot of fig. 2.52.5). This process wil
take the order of one and a half years, where the BH will spin down to a = 0.57M and remain
in the red line (second red dot) for 105yr (eq. (2.112.11)). After the l = m = 2 cloud dissipates,
superradiance will start populating the l = m = 3 level, which will take of the order of 8×104yr
until reaching the purple line (purple dot), with a spin a = 0.40M , where it will remain for
1011yr.

2.4 Axion non-linearities
Another source of non-linear terms in (2.92.9) is the axion self-interaction. Since the axion
is a (pseudo)Nambu-Goldstone boson, the axion Lagrangian must contain the quartic self-
interaction term

L = −1

2
gµν∇µφ∇νφ−

1

2
µ2φ2 +

1

16

(
µ

fa

)2

φ4 , (2.16)

where fa is the decay constant, the scale of spontaneous symmetry breaking. In the non-
relativistic limit the axion field can be expressed as

φ =
1√
2µ

(e−iµtψ + eiµtψ∗) , (2.17)

where the field ψ varies in a timescale larger that µ−1. If one computes the action and drops
all rapidly oscillating terms, one obtains an effective, non-relativistic action

Snr =

∫
dx4√−g

[
− 1

2µ
∇αψ∗∇αψ −

i

2
g0α (ψ∗∇αψ − ψ∇αψ∗)− µ

(
g00 + 1

2

)
ψ∗ψ +

1

16f2
a

(ψ∗ψ)
2

]
,

(2.18)

which describes an interacting Bose-Einstein Condensate (BEC), since it leads to the non-linear
Gross-Pitaevskii equation. If the atractive force between bosons gets stronger as the number
of bosons increase, there will be a competition between potential and self-interaction energy
of the cloud [66]

α

r
∼ ψ∗ψ

8f2
a

.

Integrating both sides over the volume and taking into account that N =
∫
d3x ψ∗ψ, we can

obtain the threshold as a function of the number of bosons

N ≥ 16παf2
ar

2
c ∼ 16πf2

ar
2
g

(
l4

α3

)
,

and relate it to the mass of the cloud Mc = Nµ,

Mc

M
≥ 2

l4

α2

f2
a

M2
Pl

. (2.19)

Above this mass the self-interaction energy becomes more important than the potential energy
and the form of the cloud cannot be described by the hydrogenic solutions. If the self-interaction
energy grows enough, the cloud will colapse in what is called a Bosenova, an effect associated to
the BEC. If a Bosenova occurs, part of the cloud falls into the BH and the rest escapes to infinity
emitting a gravitational wave burst [88]. This will spin-up the BH and start superradiance again,
therefore entering into a cycle of Bosenova explosions until enough energy is radiated away such
that superradiance cannot happen again.
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In order to study the effects of the self-interactions in the level-mixing, i.e. having more
than one level populated at the same time, one can use the Bogoliubov approximation and
express the wavefunction as ψ = ψ0 + δψ where ψ0 is the field in the most populated level and
δψ is a perturbation in the field occupying a different level [66]. Solving the equation for the
perturbation, obtained by the action, yields

δψ = e−i(ω0t−m0ϕ)
(
u(r, θ)e−i(δωt−δmϕ) − v∗(r, θ)ei(δωt−δmϕ)

)
,

which is a mix between positive and negative frequencies (Bogoliubov quasiparticles). This mix
of frequencies can either favor or disfavor the superradiant process since each frequency can
be in different energy levels. We refer to ref. [66] for a discusion and derivation of the results.
In there, after computing the energy flux at the horizon and using the results of the WKB
approximation for α� 1, they relate the perturbation terms to the Gross-Pitaevskii equation
and find that, for the perturbation to be superradiant, the mass of the cloud must follow

Mc

M
≤
∣∣∣∣Γl+1

Γl−1

∣∣∣∣1/2 2
l4

α2

fa
M2
Pl

, (2.20)

or, in terms of the number of axions,

N ≤
∣∣∣∣Γl+1

Γl−1

∣∣∣∣1/2 16παfa
2r2
c ,

where Γl+1 and Γl−1 are the instability rates (computed in the Detweiler approximation) of
the level above and below the most populated one. This introduces extra factors to take into
account in the evolution of the cloud. In particular, going back to the example discussed
above, when the l = m = 2 level gets saturated, superradiance for l = m = 3 will not occur
until inequality (2.202.20) is satified. We see that if a superradiant level is populated enough, the
number of particles can be larger than the right hand side and hence superradiance can be
supressed.



Chapter 3

Gravitational lensing by a Kerr
black hole

Figure 3.1: First image of a BH in the radiofrequency spectrum done by the
Event Horizon Telescope. The BH mass is estimated to be 6.2+1.1

−0.6 × 109M� and
is located at 16.8± 0.8Mpc. Image taken from [1010].

Although far from the needed resolution, a lot of advance in observing a black hole has been
done. One of the most recent examples is the first image of a black hole in the radiofrequency
band by the Event Horizon Telescope [1010] (fig. 3.13.1). The following chapters aim to answer the
following question: can we observe, i.e., measure the effect of such a BH-cloud system? In
order to find a proper answer we will start with a review of gravitational lensing, then study
a spherically symmetric BH (e.g. Schwarzschild BH) and finally the Kerr BH. In the next
chapter we will modelize and discuss the effect of the bosonic cloud and finally the observational
properties of such system.

24
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3.1 Introduction to gravitational lensing
Gravitational lensing is the phenomena by which light gets deflected by the gravitational
influence of a massive body. It was one of the first experimental tests of the theory of General
Relativity. This effect is due to the spacetime curvature near a planet, a star or whatever
cluster of matter (e.g. galaxy clusters). For the introduction we will follow ref. [2525] and for
the black hole lensing we will mainly follow ref. [2626] and [2727].

Figure 3.2: Weak deflection limit and strong deflection limit. In the strong
deflection limit the green circle corresponds to the photon sphere, the region at
which photons execute unstable circular orbits and can either fall into the black
hole or scape to infinity and reach the observer.

The strategy for studying gravitational lensing consists of computing the geodesics of pho-
tons reaching the observer taking into account different parameters such as the observer ori-
entation, the impact parameter or the spin of the black hole. In general the equations are
solved in two limits, namely the weak deflection limit (WDL) and the strong deflection limit
(SDL) (see fig. 3.23.2). The weak deflection limit is the assumption that the distance of closest
approach rm of the photon is larger than the gravitational radius, i.e. rm � rg. It is called the
weak deflection limit because the deflection of the photon geodesic decreases with the distance
of closest approach (see eq. (3.43.4)). On the other hand, the strong deflection limit takes into
account that the distance of closest approach is close to the gravitational radius, where the
deflection is important and the photon can perform loops around the black hole in unstable
circular orbits.

3.2 Spherically symmetric black hole
Consider a general static spherically symmetric spacetime

ds2 = −A(r)dt2 +B(r)dr2 + C(r)dΩ2, dΩ2 ≡ dθ2 + sin2 θdϕ2 . (3.1)

In order to study the deviation of a particle (which can be a photon) by a (spherically
symmetric) star, e.g. the Sun, we will consider the plane θ = π/2 and by means of constants
of motion we will derive the integrals of motion. For this spacetime the conserved quantities
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Figure 3.3: Parameters related to the deflection of light.

read (we will see this in detail for the Kerr black hole)

L = C(r)
dϕ

dλ
, E = −A(r)

dt

dλ
.

Furthermore we can use that gµνuµuν ≡ κ with κ = 0 for massless particles and κ = −1 for
massive particles. After some manipulation we get(

dϕ

dr

)2

=
B(r)

C(r)2
(
κ
L2 − 1

C(r) + E2

L2A(r)2

) . (3.2)

On the other hand we can also get the following equation corresponding to a Newtonian effective
potential (second and third term)

1

2

(
dr

dλ

)2

+
L2

2C(r)B(r)
− E2

2A(r)B(r)
− κ

2
= 0,

which considering a photon in a circular orbit in the point of closest approach r = rm, i.e.
dr/dλ|r=rm = 0 yields

E2

L2
=
A(rm)

C(rm)
.

Inserting this in equation (3.23.2) we obtain

ϕ =

∫
b

√√√√ B(r)

C(r)
[

κ
b2L2 + C(r)

A(r) − b2
]dr , (3.3)

with b2 = L2/E2 = C(rm)/A(rm) being the impact parameter. The impact parameter is
defined as the closest distance to the origin that the particle would reach if moving in a
straight line determined by its initial velocity v far from the origin [2828]. If we compute the
angular momentum of a photon of linear momentum p approaching the black hole from far
away

L = rp sin θ = bp ,
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and considering that for a photon p = E we see that indeed we obtain b = L/E. Defining the
light coming from infinity to be at ϕ = 0 we can express the deviation of light from going into
a straight line as ∆ϕ = ϕ − π. Einstein solved this integral assuming that r ≥ rm � 2M (in
the weak deflection limit) yielding the Einstein angle,

∆ϕ =
4M

b
, (3.4)

with b ' rm.

Figure 3.4: Geometry of the system. The observer’s sky plane is perpendicular
to the line joining the observer and the black hole.

We can also relate the Einstein angle to the angle at which an observer in the Earth will
detect the photons coming from a source behind the black hole. Looking at fig. 3.43.4 we see that

π − (
π

2
− θE)− (

π

2
− θS) = θE + θS =

4M

b
.

Taking into account that

tan θS =
b

rS
, tan θE =

b

ro
,

and using the small angle approximation tan θ ' θ yields the Einstein ring

θE =

√
4MrS

ro(ro + rS)
. (3.5)

This is the angular distance at which an observer detects the photons coming from the source,
where they will form a ring of light around the black hole. This is due to the rotational
symmetry around the observer-BH line. We also have Einstein rings for a Kerr black hole
when the observer is situated in the pole.

3.3 Kerr black hole
Kerr black holes are not spherically symmetric (but axisymmetric), so the treatment of geodesics
is not as easy as the Schwarzchild case. It makes useful to use the Hamilton-Jacobi formalism



CHAPTER 3. GRAVITATIONAL LENSING BY A KERR BLACK HOLE 28

for the geodesics since this treatment permits to write down our physical quantities in terms
of integrals of motion. In order to derive the corresponding integrals of motion we will use two
concepts: the conserved quantities and geodesic equation. A conserved quantity is defined as a
physical parameter (or a combination of them) conserved along a geodesic, which corresponds
to a symmetry of the system. In general relativity a conserved quantity G along a geodesic is
given by a Killing vector kµ associated to such a symmetry

G = kµu
µ, uµ =

dxµ

dλ
≡ ẋµ,

where uµ is the four-velocity along a geodesic parametrized by the affine parameter λ. For the
Kerr spacetime we have two Killing vectors, kµ = (1, 0, 0, 0) and mµ = (0, 0, 0, 1), coming from
the fact that the metric does not deppend explicitly on t and ϕ. Therefore the two conserved
quantities are

E ≡− kµuµ = −gtµuµ = −pt ,
L ≡mµu

µ = gϕµu
µ = pϕ ,

this is, conservation of energy and conservation of angular momentum with respect to the
symmetry axis. In the last equality we have used the second concept: geodesic equation.
The geodesic equation is equivalent to the Euler-Lagrange equation associated to a lagrangian
L = 1

2gµν ẋ
µẋν , with the corresponing conjugate momentum pµ = ∂L/∂ẋµ = gµν ẋ

ν . Using the
Hamilton-Jacobi equation

H

(
xµ,

∂S

∂xµ

)
+
∂S

∂λ
= 0 , (3.6)

being H = 1
2gµν ṗ

µṗν the Hamiltonian, has the advantage that one can obtain an extra integral
of motion by using the separability of the Boyer-Lindquist coordinates [2929]. The Jacobi action
S is therefore

S = −1

2
κλ− Et+ Lϕ+ S(r,θ)(r, θ) = −1

2
κλ− Et+ Lϕ+ S(r)(r) + S(θ)(θ) ,

where we have assumed that the extra term of the action is separable and used gµνuµuν ≡ κ.
Inserting this ansatz in (3.63.6) and after some manipulation one obtains

∆

(
dS(r)

dr

)2

− κr2 − (r2 + a2)2

∆
E2 +

4Mra

∆
EL− a2

∆
L2 + a2E2 + L2 =

= −
(
dS(θ)

dθ

)2

+ κa2 cos2 θ + a2 cos2 θE2 − cot2 θL2 ,

such that the left hand side is r-dependent and the right hand side is θ-dependent, so each side
must be equal to a constant W. The equations are therefore

dS(r)

dr
= ±

√
R(r)

∆
,

dS(θ)

dθ
= ±

√
Θ(θ) ,

where, defining Q =W − (L− aE)2,

R(r) = P 2 −∆(κr2 +W) , (3.7)

Θ(θ) = Q− cos2 θ
[
a2(κ− E2) + L2 sin−2 θ

]
, (3.8)

P = E(r2 + a2)− aL . (3.9)



CHAPTER 3. GRAVITATIONAL LENSING BY A KERR BLACK HOLE 29

Finally, the Jacobi action reads

S = −1

2
κλ− Et+ Lϕ±

∫ θ√
Θ(θ)dθ ±

∫ r
√
R(r)

∆
dr. (3.10)

Differentiating the Jacobi action with respect to the constants of motion gives a constant and
therefore the integrals of motion are obtained by deriving with respect to (W, κ, E, L),∫

dθ

±
√

Θ(θ)
=

∫
dr

±
√
R(r)

, (3.11)

λ = ∓
∫ θ a2 cos2 θ√

Θ(θ)
dθ ∓

∫ r r2√
R(r)

dr, (3.12)

t = ∓
∫ θ a2E cos2 θ√

Θ(θ)
dθ ∓

∫ r E(r2 + a2)r2 + 2Mar(L− aE)

∆
√
R(r)

dr, (3.13)

ϕ =

∫ θ L sin−2 θ

±
√

Θ(θ)
dθ +

∫ r a(2MrE − aL)

±∆
√
R(r)

dr. (3.14)

Now we have four integrals of motion for four spacetime parameters for geodesics characterized
by the set of parameters (W, κ, E, L).

3.3.1 Observer frame
In order to constrain what an observer in the Earth will see, first of all we have to define
the observer’s sky. In order to define the observer’s sky we can make use of the fact that
Boyer-Lindquist coordinates reduce to euclidean coordinates at infinity ro → ∞. As in [2626],
we will assume that the BH is rotating in the z-direction, with a > 0 being counterclockwise in
the positive direction (see fig. 3.53.5) . The Boyer-Lindquist coordinates of the observer will be
(ro, θo, 0) and the source will be located at (rS , θS , ϕS). The observer will see a photon coming

Figure 3.5: Geometry of the system. The observer’s sky plane is perpendicular
to the line joining the observer and the black hole.

in a straight line from the direction given by the tangent vector of the photon curve in the
position ro of the observer. This curve is parametrized by r such that r2 = x2 + y2 + z2. The
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tangent vector ~T to the curve at the observer position is given by

~T =

(
dx

dr

∣∣∣∣
r=ro

,
dy

dr

∣∣∣∣
r=ro

,
dz

dr

∣∣∣∣
r=ro

)

=

(
sin θo + ro cos θo

dθ

dr

∣∣∣∣
r=ro

, ro sin θo
dϕ

dr

∣∣∣∣
r=ro

, cos θo − ro sin θo
dθ

dr

∣∣∣∣
r=ro

)
.

The observer’s sky is defined as the plane perpendicular to the line joining the observer and
the black hole. The point at which the line intersects the plane is given by

(−β cos θo, α, β sin θo) = −ro ~T + (ro sin θo, 0, ro cos θo) =

=

(
−r2

o cos θo
dθ

dr

∣∣∣∣
r=ro

,−r2
o sin θo

dϕ

dr

∣∣∣∣
r=ro

, r2
o sin θo

dθ

dr

∣∣∣∣
r=ro

)
, (3.15)

where in the first term we multiply by the magnitude of the vector and in the second term
we add the location of the observer. From (3.153.15) we can directly read the coordinates in the
observer’s sky

α = −r2
o sin θo

dϕ

dr

∣∣∣∣
r=ro

, (3.16)

β = r2
o

dθ

dr

∣∣∣∣
r=ro

. (3.17)

In the following section we will relate the observer’s sky coordinates to the parameters describ-
ing the geodesics.

3.3.2 Shadow of the black hole
In order to consider the case of a photon from infinity and lensed by the Kerr BH, and reaching
an observer at infinity, we need to study null geodesics. Null geodesics (E = 1, κ = 0) are
described by the following set of differential equations from the integrals of motion

Σur = ±
√
R(r) , (3.18)

Σuθ = ±
√

Θ(θ) , (3.19)

Σuϕ = −
(
a− L

sin2 θ

)
+
aP

∆
, (3.20)

Σut = −a(a sin2 θ − L) +
(r2 + a2)P

∆
. (3.21)

The factor Σ can be absorbed in the affine parameter by using the Meno time dλ = Σdλ′.
In the Kerr black hole, because it is not spherically symmetric, the photons are not confined
in a plane but accquire a precesion movement. Note that turning points are defined by uµ =
dxµ/dλ = 0 and therefore the radial turning point rmin will be the largest positive root of
R(r) = 0, while the angular turning points (θmin, θmax) are the roots of Θ(θ) = 0. The
photon reaching the observer therefore moves in the following order rS → rmin → ro and
θS → θmin/max → θmin/max → · · · → θo.

Using the set of differential equations we can derive a relation between the parameters of the
geodesic and the observer’s sky coordinates. Using that dϕ/dr = uϕ/ur and dθ/dr = uθ/ur,
and taking the limit ro →∞ we obtain a relation between the observer’s sky coordinates and
the conserved quantities characterizing the geodesics

α = − L

sin θo
, (3.22)

β = ±
√
Q+ a2 cos2 θo − L2 cot2 θo . (3.23)
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(a) View perpendicular to the equatorial
plane (x, y, 0) in Boyer-Lindquist coordi-
nates, the spin is pointing outwards the
plane.

(b) Equatorial view.

Figure 3.6: Pictorial representation of the turning points [r̄+, r̄−] for unstable
orbits and the way the photons reach the observer, i.e., twisting around the
black hole and eventually escaping to infinity. In this case we are showing photons
coming from the observer side and behind the black hole, but actually the photons
coming to the equatorial plane can come from any direction due to the unstable
nature of the orbit.

Since the geodesics are parametrized by L and Q (or equivalently L and W), is useful to
explore the region of the parameter space (L,Q) at which photons that reach rmin can escape
to infinity [2626]. Rewriting (3.193.19) as

uθ
2

= Q+ a2 cos2 θ − L2 cot2 θ ,

and considering a photon crossing the equator θ = π/2, we obtain Q = uθ
2 ≥ 0. Taking into

account photons that return to infinity means that dur/dλ > 0 at r = rmin, i.e., moving away
from the BH. Hence, in order to know the limiting case, we set ur|r=r̄ = 0 and dur/dλ|r=r̄ = 0,
with r̄ being the lower bound of rmin. With these conditions we are able to solve Q and L in
terms of r̄

L(r̄) =
r̄2(r̄ − 3M) + a2(M + r̄)

a(M − r̄)
, (3.24)

Q(r̄) =
r3
(
4a2M − r(r − 3M)2

)
a2(M − r)2

. (3.25)

The limiting case Q = 0 yields two roots for r̄ outside the event horizon namely r̄+ and r̄−.
These roots are computed for a photon in the equator. In order to get some physical insight
we can substitute these roots in L(r̄), where we obtain L(r̄+) > 0 and L(r̄−) < 0, so we have
two different turning points: r̄+ for photons moving with positive angular momentum, i.e.,
rotating in the same sense as the black hole; and r̄− for photons moving with negative angular
momentum, counter-rotating with respect to the black hole [2626]. In fig. 3.6a3.6a we see a polar
view of the trajectory of photons coming from the observer side (bottom) that turn around and
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return to the observer; and photons coming from the opposite side which reach the observer
from the same point. In fig. 3.6b3.6b we see these points from the equatorial plane. From equation
(3.233.23) we can see that for photons to reach an observer, the argument inside the square root
must be positive or equal to zero. In the case of an observer in the equatorial plane the condition
reduces to Q ≥ 0, so the values r ∈ (r̄+, r̄−) correspond to photons reaching the equatorial
plane from all different inclinations. In the case that the observer is not in the equatorial plane
the condition for a photon to reach her/him is given by Q + a2 cos2 θ − L2 cot2 θ ≥ 0, which
roots will be smaller than [r̄+, r̄−].

-20 -10 10 20
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20
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Figure 3.7: Shadow of the Kerr black hole (outer curve) and black hole er-
goregion (inner curve). This corresponds to the black hole located at M87 with
M = 6.2× 109M� and ro = 16.8Mpc for an equatorial observer. The red corre-
sponds to a = 0, the purple is a = 0.6M and blue is a = 0.9998M .

Using basic geometry we can obtain the angular distances from α and β as α ' roθα and
β ' roθβ . The curve in the parametric space (θα(r̄), θβ(r̄)) is called the shadow of the black
hole and gives the limiting shape of the black hole seen by an observer (see fig. 3.73.7). This shape
is flattened in the side corresponding to the rotation of the black hole facing the observer. As
we argued before, this is because the turning points depend on the angular momentum of the
photons, differentiating between photons co-rotating and counter-rotating with the black hole.





Chapter 4

Measuring the ultralight boson
mass

Let us assume that we are able to observe a Kerr black hole in presence of an ultralight boson
field and with no external processes like accretion disks. We can have two cases corresponding
to the superradiance amplification or to an exponential supression of the field. The latter case,
contrary to the former, will not be of interest since it will not affect the dynamics of the black
hole. In the superradiance regime, as discussed in chapter 22, the black hole will lose up to a
10% of its mass and a considerably large percentage of spin. The gravitational lensing of light
by the black hole (discused in chapter 33) will be affected by the dynamics of the superradiant
process, leading to a characteristic observational signature. In this chapter we will compute
the spin evolution of the black hole and relate it to the shadow of the black hole seen by
an observer due to gravitational lensing. Later we will discuss the different possibilites of
observation depending on different scenarios and finally we will discuss the combination with
multi-messenger astronomy.

4.1 Spin and mass evolution
In order to know the observational properties of the superradiant instability we have to take
into account the change in the BH mass and spin. Therefore, we will study how the spin and
mass evolves with time and relate this to the shadow of the BH. In order to do so we will use
the equations derived in sec. 2.12.1. Ignoring external processes such as accretion, the differential
equations descriving the evolution of the system are [2323]

dJ

dt
= −dJc

dt
, (4.1a)

dJc
dt

= − l
µ

dEc
dt

(4.1b)

dEc
dt

=
dMc

dt
, (4.1c)

dM

dt
= −dMc

dt
. (4.1d)

Now, in order to compute the energy of the cloud we will use the strategy followed in
ref. [3030], i.e., relate the flux of energy through the horizon with the time evolution of the
field. For doing so, we take into account the killing vector associated to the time coordinate
ξµ = (1, 0, 0, 0) such that

∇µ(Tµγξ
γ) = ∇µTµ0 = 0.

33
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Horizon

Figure 4.1: Four-volume considered for the energy flux. The two spacelike
hypersurfaces tend to 0 when taking ∆t→ 0. We also show the correct direction
of the normal vector to each surface (null at the horizon, ingoing on the sides
and outgoing at infinity).

The way to relate the flux in the horizon to the time evolution of the field is considering a
semi-infinte four-volume formed by two spacelike hypersurfaces separated by ∆t and closed by
a timelike hypersurface at infinity and the BH event horizon. Then applying Gauss’ law and
taking ∆t→ 0 the integrals of the spacelike hypersurfaces cancel and therefore

dE

dt
=

∫
∂Σ

dΩTµ0kµ = − ∂

∂t

(∫
Σ

d3xTµ0nµ

)
, (4.2)

where

nµ = −(1, 0, 0,ΩH) (4.3)

is the normal vector pointing outside the surface. Since the only time-dependent part in the
scalar energy-momentum tensor is φ2 ∝ e2Γnlmt, the right hand side will pick up an overall
factor of 2Γnlm. Therefore,

dE

dt
= −2Γnlm

(∫
Σ

d3xTµ0nµ

)
= −2ΓnlmMc

where in the last step we have used the definition of the mass of the cloud. Using that the
change of the energy of the cloud is at expenses of a change of the energy of the black hole,
dE/dt = −dEc/dt, we get

dEc
dt

= 2ΓnlmMc . (4.4)

Now we can solve the system of differential equations numerically. For that, we have to choose
an initial value of the mass of the cloud. Following [3131], we will take different initial values (or
seeds) corresponding to different situations. The different seeds are Mc,0 = 10−9M0, being M0

the initial mass of the black hole, corresponding to a very small number of particles in the cloud
or alternatively to quantum fluctuations near the BH; and Mc,0 = 0.025M0, which correspond
to astrophysical scenarios where the BH is formed in presence of the cloud (either by collapse
or by a binary merger with a cloud). The results for an ultralight boson µ = 7×10−12eV and a
black hole with M0 = 6M� and J0/M

2
0 = 0.8 are shown in fig. 4.24.2. In order to cross-check our

code, we compared results with refs. [2323] and [3131]. We see that for the smallest seed the time
necessary for the cloud to grow and trigger the instability is roughly 10 times the superradiant
time-scale (it is the case for other choices of parameters such as the one in the references refered
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above), which makes sense if we think about the small initial number of particles. On the other
hand, for the astrophysical seed, we see that the spindown happens within the superradiant
time-scale (in this case is given by 1.5yr) and in both cases the final spin and mass of the
black hole are the same. In order to relate the spindown to the mass of the ultralight boson

Figure 4.2: Spin evolution for the case of an ultralight boson µ = 7× 10−12eV
and a black hole with initial mass M0 = 6M� and initial spin J0/M2

0 = 0.8 for
different seeds. The left and right columns correspond to the spin and mass of
the cloud and the black hole respectively.

and other system parameters we will use an ansatz and by means of the differential equations
governing the system we will obtain a fitting formula. By looking at the evolution for different
seeds wee see that for seeds larger than Mc,0 = 0.5M0 the evolution is well described by

J(t) = (J0 − Jf ) exp(−γJ t) + Jf , γJ =
2lΓnlm,0Mc,0

µ(J0 − Jf )
, (4.5)

M(t) = (M0 −Mf ) exp(−γM t) +Mf , γM =
2Γnlm,0Mc,0

(M0 −Mf )
, (4.6)

whereas for seeds 0.5M0 > Mc,0 ≥ 0.01M0 the evolution is more drastic and is well described
by

J(t) = (J0 − Jf ) exp
(
−γJ t− βJ t2

)
+ Jf , M(t) = (M0 −Mf ) exp

(
−γM t− βM t2

)
+Mf ,

(4.7)

βJ/M =
log(2)

t2∗
−
γJ/M

t∗
, t∗ =

2

γJ

Mc,0

Mc,f +Mc,0
,

where the subscript f denotes the value at the final state of the evolution and t∗ is the half-time
of the evolution (see appendix DD).

4.2 Black hole shadow
As we have seen in sec. 3.3.23.3.2, the shape of the shadow of the black hole is very sensitive to the
spin of the black hole. In this section we will further explore the properties of the black hole
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Figure 4.3: Evolution of the spin of the black hole with time. The solid line
represents the numerical solution to the set of differential equations (4.14.1) and the
dashed line is the semi-analytic solution (4.74.7) for a seed of M0,c = 0.025M0. We
see that is a good approximation. This plot corresponds to an ultralight boson
µ = 7× 10−12eV and a black hole with M0 = 6M� and J0/M2

0 = 0.8.

shadow and relate the angular diameter to the spin of the black hole.
In sec. 3.3.23.3.2 we provided a derivation of the shadow of the black hole for an observer ori-

entation of θo = π/2. Recall that in order to obtain the shadow for arbitrary orientations
one has to solve the equation Q + a2 cos2 θ − L2 cot2 θ = 0 and then compute both the con-
stants of motion and the maxium approach distance r̄ in order to obtain the parametric curve
(θα(r̄), θβ(r̄)). Since the shape of the shadow changes more significantly along the line θβ = 0,
we define the (angular) diameter of the shadow dsh as

dsh =
1

ro
(|θα(r̄+)|+ |θα(r̄−)|) , (4.8)

with r̄+/− being the maximum approach distance for prograde and retrogade photons. We
have chosen this particular direction because it is the one that changes the most with the spin.
Since r̄+/− cannot be expressed in a simple way (at least for any value of the spin, mass and
observer inclination) we have computed it numerically. If we consider a black hole like M87
(although the discussion is valid for any BH), the shadow diameter of the black hole changes
with spin as is showed in figure 4.44.4. We see that, due to the axial symmetry, the diameter seen
by an observer in the polar plane θo = 0 change less than the diameter seen by an equatorial
observer, where the deformation is maximal.

In ultimate instance we want to relate the shadow diameter to the spin of the black hole
analytically. In order to find an approximate solution we have assumed that the shadow
diameter changes as a power function

dsh ' A+B

[
1−

( a
M

)2
]δ
, (4.9)
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Figure 4.4: Angular diameter of the BH shadow for different observer inclina-
tions. This corresponds to the black hole located at M87 with M = 6.2×109M�
and ro = 16.8Mpc.
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Figure 4.5: Plot of the shadow diamater using the analytical formula (dashed)
and the numerical value.

where we have assumed that the spin must be squared because the shadow diammeter must be
invariant under the symmetry a → −a. Assuming an observer in the equatorial plane (since
the shadow diameter is similar to an observer at intermediate orientations) the easiest cases
to compute analytically are the ones for a = 0, a = 0.5M and a = M in such a way that we
are able to solve for each coefficient (see appendix EE). The equation for the shadow diameter
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reads

dsh =
3M

ro

{
3 + (2

√
3− 3)

[
1−

( a
M

)2
]δ}

, (4.10)

with

S ≡ sin
(π

9

)
+ sin

(
2π

9

)
, δ =

log
(

2
√

3−3
2
√

3S−3

)
log(4/3)

.

For comparison, in figure 4.54.5 we plot dsh with the numerical calculations and we see that it
provides a solid approximation. Now we can express the spin in terms of the shadow diameter
inverting eq. (4.104.10)

a

M
= ±

√√√√1−

(
rodsh
3M − 3

2
√

3− 3

)1/δ

, (4.11)

such that we can directly relate the measured shadow diameter of the black hole to the spin,
which will be used in the next sections.

4.3 Observational properties and measuring strategy
As we have seen in chapter 22, the time-scales and evolution of the Gravatom are of extremely
importance for observational purposes. A realistic astronomical observation time is of the order
of 5 yr, which can coincide with the spindown time-scale due to superradiance instability for a
suitable choice of parameters, namely the black hole mass and the boson mass. In an optimistic
scenario we would be able to observe a spinning down black hole due to a superradiance
instability with a time-scale from 1 to 10 years. An example of this is the case of a 6M� BH
and an ultralight boson mass µ = 0.7× 10−11eV that we have discussed in sec. 2.32.3, where the
time-scale was of 1.5 years.

The mass of the black hole - mass of the boson parameter space satisfying α < 0.5 and
a superradiance time-scale below 10 years is plotted in fig. 4.64.6 for modes l from 1 to 3 and
spins between a = 0.5M and a = M . Although fig. 4.64.6 refers to a superradiance time-scale,
we have to take into account the spin evolution of the system. Looking at fig. 4.34.3 we see
that the spindown of the black hole changes before superradiance finishes. In order to give an
estimation of the time at which the system changes fast enough to be observable, we will use
eq. (4.74.7) and define the observation time, tobs as the e-folding time of the evolution

tobs =
γ

2β

(√
1− 4β

γ2
− 1

)
, (4.12)

where we have assumed that the seeds are of astrophysical origin (i.e. 0.5M0 > Mc,0 ≥ 0.01M0).
Within this observation time, as plotted in fig. 4.74.7, we can observe a fast spin-down of black
holes of mass M ∼ M� − 107M� associated to a boson mass of µ ∼ 10−17eV− 10−10eV
starting from an initial spin between a = 0.5M −M , and for the modes l = 1, 2, 3.

The observational strategy is the following:

• Observation of the spindown of a Kerr black hole due to superradiant instability for a
period from 1 to 10 years.

• Measurement of the shadow of the black hole in the observer’s sky.

• Relate this change to a change in the spin of the black hole.

• Compute the superradiance time-scale and solve for the fastest mode.
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Figure 4.6: Parameter space satisfying α < 0.5 and a superradiance time-scale
from 1 to 10 years for l = 1, 2, 3 and a = 0.5M, ...,M . Higher number of modes
l are discarded.

• Compute the mass of the ultralight boson.

Assuming the fastest level l = m and a radial quantum number n = 0 (recall that the dep-
pendence in the radial quantum number n is mild. Here we choose n = 0 because it is a value
that maximizes the superradiant rate up to, at least, l = 3 [66]), the equations that we will use
to solve the system are

Γ0ll =− 2
r+

rg
(µ−mΩH)α4l+5 24l+2(2l + 1)!

(l + 1)2l+4

[ l!

(2l)!(2l + 1)!

]2
×

×
l∏

k=1

[
k2
(

1− χ2
)

+ 4r2
+(µ−mΩH)2

]
, (4.13)

µ =
l

2rg,f

af
r+,f

=
l

2rg,f

χf(
1 +

√
1− χ2

f

) , (4.14)

αf =
l3

8α0 (l − α0χ0)

1−

√
l − 16α2

0 (1− α0χ0)
2

l3

 , (4.15)

Mc,f =Mc,0 +M0 −Mf , (4.16)

χ(t) =(χ0 − χf ) exp
(
−γt− βt2

)
+ χf , (4.17)

γ =
2lΓnlm,0Mc,0

µ(J0 − Jf )
, (4.18)

β =
log(2)

t2∗
− γ

t∗
, (4.19)

t∗ =
2

γ

Mc,0

Mc,f +Mc,0
. (4.20)
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Figure 4.7: Parameter space satisfying α < 0.5 and an observation time-scale
from 1 to 10 years for l = 1, 2, 3 corresponding to the blue, red and purple
regions respectively, and a = 0.5M, ...,M . The values inside the colored region
are observable within 1 to 10 years, where higher modes were discareded, meaning
that they don’t belong to the parameter space for this range of observation time.
The lines are consequence of the quantized behavior of the boson.

where we have defined χ ≡ a/rg and t∗ is the half-time of the evolution. Relating the shadow
angular diameter with the spin allow us to compute the evolution of spin with time. From
eqs. (4.174.17) and (4.194.19),

γ =
log
(
Jo−Jf
J(t)−Jf

)
t2∗ − log(2)t2

t∗t(t∗ − t)
, (4.21)

where all the parameters are measurable. Using the equation for γ, eq. (4.184.18), we get

Γ0ll,0 l Mc,0

µ
=
J0 − Jf

2

log
(
Jo−Jf
J(t)−Jf

)
t2∗ − log(2)t2

t∗t(t∗ − t)
. (4.22)

Now, inserting eq. (4.144.14) into eqs. (4.134.13) and (4.224.22), and taking initial values, i.e. χ = χ0 and
M = M0, we obtain

Γ0ll,0 =− r+,0

(
χf
r+,f

)4l+5(
χf
r+,f

− χ0

r+,0

)
M4l+4

0

l4l+6(2l + 1)!

23(l + 1)2l+4

[ l!

(2l)!(2l + 1)!

]2
×

×
l∏

k=1

[
k2
(

1− χ2
0

)
+ l2r+,0

2

(
χf
r+,f

− χ0

r+,0

)2 ]
, (4.23)

2Γ0ll,0Mc,0
rg,f
χf

(
1 +

√
1− χ2

f

)
=
J0 − Jf

2

log
(
Jo−Jf
J(t)−Jf

)
t2∗ − log(2)t2

t∗t(t∗ − t)
. (4.24)

In order to compute the initial mass of the cloud Mc,0 we will use the equations for γ and β
and the fact that the final mass of the cloud is given by the difference of the black hole mass
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before and after superradiance, eq. (4.164.16). Using eqs. (4.184.18) and (4.194.19) we obtain

γ2

β
=

4M2
c,0

Mc,f log(2) +Mc,0(log(2)− 2)

1

Mc,f +Mc,0
. (4.25)

Using eq. (4.164.16) and solving the second order polynomial we obtain that the initial mass of the
cloud reads

Mc,0 = (Mf −M0)
γ
{√

4β log(2) + γ2 + γ [2 log(2)− 1]
}

4γ2 [log(2)− 1]− 4β
, (4.26)

where we are assuming that both the initial and final mass of the black hole are measurable
by methods other than measuring the shadow diameter (we will expand on this in sec. 4.44.4).
Once we know the initial mass of the cloud we can substitute it in eq. (4.244.24) such that we
can compute Γl−1,l,l and use eq. (4.234.23) in order to solve (numerically, using for instance the
function FindRoot of Mathematica) for the mode l. Once we know the mode l we can solve
for the mass of the ultralight boson using eq. (4.144.14).

4.4 Observation with multi-messenger astronomy
Multi-messenger astronomy is the combination of different astronomy messengers: electromag-
netic radiation, gravitational radiation, cosmic rays and neutrinos. These messengers differ in
the way they carry information (for instance gravitational waves and neutrinos pass through
matter) and are associated to different processes within the same source [3232]. One of the latest
examples of multi-messenger observation is the observation of a binary neutron star merger,
which was detected both in the gravitational wave and electromagnetic band [3333]. Taking into
account the gravitational wave signal of the system we can propose a scenario at which we
can use both messengers (gravitational radiation and electromagnetic radiation) in order to
observe and measure the black hole parameters as well as the ultralight boson mass.

4.4.1 Example: Black hole binary merger
One of the most challenging parts about studying a black hole is detecting it. To the date, the
available ways of detecting a black hole are from studying the motion of nearby stars, study the
position of stars changing by gravitational lensing or detecting X-rays from the presence of an
accretion disk. Now, recent detection of gravitational waves open up the possibility to detect a
black hole by the gravitational wave signature. In particular we have detected not only black
hole binary mergers but also, as mentioned before, neutron star binary mergers. Nowadays
the location of the gravitational wave source in the sky is a challenging task since we count
with two gravitational wave observatories. With new incorporations to the gravitational wave
detectors family such as KAGRA or IndiGO we would be able to infer the location of the source
accurately. Gravitational wave detectors alongside VLBI (very-long baseline interferometers)
or even SVLBI (space VLBI) provide a good array of multi-messenger observers. In order to
carry out the multi-messenger observation we propose the following strategy:

• Gravitational wave detection of a black hole binary merger

• Computation of the source position

• Observation with VLBI or SVLBI

• Measure of the shadow diameter during the spindown

• Measure of the gravitational wave signal due to level transitions

• Measure of the gravitational wave signal due to cloud depletion after the spindown
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This would allow us to cross-check results with multi-messenger astronomy. For complex fields,
the gravitational wave emission can be supressed for certain configurations [99]. Measuring the
instability by gravitational lensing would allow us to study these configurations. As an example
let’s take one of the gravitational wave detections, in particular the detection GW170729 [3434]:
a 50.6+16.6

−10.2M� and 34.3+9.1
−10.1M� black hole binary merger with a final black hole of mass

M = 80.3+14.6
−10.2M� and spin a/M = 0.81+0.08

−0.13 at a distance ro = 2750+1350
−1320Mpc. Let us fix an

ultralight boson mass of µ = 1.5×10−13eV. In the following example we will use the parameters
summarized in table 4.14.1. This combination of messengers can provide, for instance, the mass of
the black hole independently of measuring the shadow, therefore making us able to compute the
spin and solve the system or simply cross-check measurements. Although in order to observe

Parameter Value

Initial mass of the black hole M0 = 80M�

Initial spin of the black hole J0/M
2
0 = 0.80

Mass of the ultralight boson µ = 1.5× 10−13eV

Mode l = 1

Mass coupling α = 0.089

Distance from the observer ro = 2750Mpc

Observer orientation θo = π/2

Superradiant time-scale tsr = 4.92yr

Observation time-scale tobs = 3.1yr

Table 4.1: Parameters associated to the example. The superradiant and obser-
vation time-scales are computed from fixing the mass of the ultralight boson.
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Figure 4.8: Evolution of the shadow diameter with time for the mentioned
black hole.

this black hole we need an angular resolution of 10−15arcsecond due to the large distance, this
provides a good example of an observable spindown case. We could use our fitted formulas
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but, in order to be as accurate as possible, we will use the numerical solutions to have an idea
of what an observer would see. In fig. 4.84.8 we present the evolution of the shadow angular
diameter with time and in fig. 4.94.9 we present how it would look like to an observer in Earth.

We see that the fact that both the mass and spin change, for this case, makes the shadow
angular diameter expand and shrink, contrary to the intuitive picture that the shadow would
increase by the spindown. We can explain this behavior by computing the time derivative of
the shadow diameter,

d

dt
(dsh) =

d

dM
(dsh)

dM

dt
+

d

dJ
(dsh)

dJ

dt
= −2ΓnlmMc

(
d

dM
(dsh) +

l

µ

d

dJ
(dsh)

)
.

We see that since the prefactor 2ΓnlmMc is always positive in the superradiant instability,
what is happening is that the shadow in the begining changes faster with the spin (note that
the spin can change more than a 50%) while the mass did not change much. As time goes on,
the change in mass becomes noticeable and wins the competition against the change in spin.
If we look at our fitted formula for the shadow diameter, eq. (4.104.10), we see that the spin has
a term inversely proportional to the mass, therefore making a little change in mass noticeable
when the spin cannot balance the rate anymore.

As discussed before, being able to observe the spindown of the BH and measure the shadow
diameter will allow us to compute the mass of the ultralight boson, therefore enlightening, for
instance, the dark matter problem.
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Figure 4.9: Observation of the evolution of the shadow diameter with time (in
years) for the mentioned black hole. For comparison, in the last plot we have
plotted the shadow at t = 0 as a dashed line.



Conclusions and outlook

Alongside multi-messenger astronomy and, specifically, gravitational wave detectors, superra-
diance has probed to be one of the most promising mechansisms to study ultralight particles.
A lot of work has been done towards the gravitational wave detection of such a phenomena (
[66], [88], [99], [2020], [3535]), but little has been done regarding the electromagnetic spectrum ([3636]).
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Figure 4.10: Parameter space of mass of the black hole (in solar mass) vs the
black hole distance (in parsecs) satisfying dsh > 10−11as, being dsh the shadow
angular diameter. For this plot we have assumed an equatorial observer and an
extremal black hole spin since is the case of maximum change of the angular
diameter.

In this master thesis we have reviewed and studied the Gravatom and its evolution, where
we have seen that superradiant instability can be potentially observable due to feasible astro-
nomical time-scales. We have also studied gravitational lensing, focusing on the shadow of
a Kerr black hole and seen that it shows sensitivity to the black hole spin and mass. In an
attempt to measure the ultralight boson mass, we have modelized the spin evolution of the
black hole due to the superradiant instability and provided a fitted formula. Furthermore, we
have also studied the shadow of the black hole in more detail, providing numerical calculations
of the shadow angular diameter and also giving a fitted formula for an equatorial observer valid

45



CHAPTER 4. MEASURING THE ULTRALIGHT BOSON MASS 46

for any mass and spin. Combining the different equations and observable parameters allow us
to find the energy mode and initial mass of the ultralight boson cloud and finally solve for the
mass of the boson.

We have also given an idea of how to use this method alongside gravitational waves not only
as a cross-check but also as the only available method for certain complex field configurations,
showing an example with one of the gravitational wave detections. Furthermore, we see that
the superradiant instablity leaves a characteristic imprint in the shadow diameter, making it
distinguishable from other possible spindown processes. Figure 4.104.10 shows the parameter space
such that the angular resolution of the shadow is larger or of the order of micro-arcseconds,
therefore it would be worth to study the dynamical time-scales and the possible observation
with current telescopes like the Event Horizon Telescope (EHT).

Further studies in this line of research would include taking into account accretion and the
effects of the spindown in the magnification and caustics of the Kerr black hole. Numerical
computations in the quasi-adiabatic regime suggest that accretion play a very important role
[2323] in the development of the instability. Studying the spin evolution of supermassive black
holes with accretion disks can lead to potentially observational signatures within the angular
resolution of the EHT. During this master thesis we tried to reproduce the computations of
ref. [2626] in order to also relate the effects of the magnification and position of relativistic
images to the spin of the black hole but we did not include the results due to complications
and discrepances with the code. Also, it would be very interesting to construct the whole
observation picture taking into account the mentioned factors and the study of ref. [3636], where
in the case of the axion being the ultralight boson, they study the effects of the weak axion-
photon coupling in the polarization of light within the gravitational lensing effect. On the other
hand, given the interest in black hole binaries triggered by the gravitational wave detections
[99], it would be of interest to study the gravitational lensing effect of a binary including a
Gravatom.
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Appendix A

Mathematics preliminaries for
Chapter 1

A.1 Spheroidal wave function

A.1.1 Spherical case
When solving the Helmholtz equation in spherical coordinates(

O2 + k2
)
ψ = 0 , (A.1)

and using separation of variables ψ = R(r)Θ(θ)Φ(ϕ) we obtain the associated Legendre equa-
tion (via the change x = cos(θ) and Θ(θ) = y(x))

d

dx

[(
1− x2

) d

dx
y(x)

]
+

(
Q− m2

1− x2

)
y(x) = 0 . (A.2)

Here m2 is the angular separation constant between the ϕ and the r and θ dependence such
that

d2Φ

dϕ2
= −m2Φ , (A.3)

and Q is the separation constant between the r and θ dependence. The solution to this equation
are the associated Legendre polynomials

y(x) = Pml (x) = (−1)l(1− x2)m/2
(

d

dx

)m
Pl(x) , (A.4)

with

Pl(x) =
1

2ll!

(
d

dx

)l
(x2 − 1)l .

Then the solution reads, after normalization,

Ψnml = Rn(r)Ylm(θ, ϕ) . (A.5)

With Rn(r) the solution to the Bessel differential equation and Ylm the spherical harmonics
defined by

Ylm(θ, ϕ) =

[
2l + 1

4π

(l −m)!

(l +m)!

]1/2

Pml (cos θ)eimϕ .

where the overall factor comes from demanding 〈Yl,m|Yl′,m′〉 = δl,l′δm,m′ using the property
〈Pml |Pml′ 〉 = (l+m)!

(l−m)!
2

2l+1δl,l′ .

47



APPENDIX A. MATHEMATICS PRELIMINARIES FOR CHAPTER 1 48

A.1.2 Spheroidal case
The spheroidal coordinate system (ξ, η, φ) distinguish between a prolate or oblate configuration
and are depicted in fig. A.1A.1. Here, d is the interfocal distance and η and φ are parameters
describing the spheroidicity. The relation between prolate and oblate and Cartesian coordinates
is given in ref. [3737] and shown in Table A.1A.1.

Prolate Oblate

x =
d

2

√
(1− η2)(ξ2 − 1) cos(φ)

y =
d

2

√
(1− η2)(ξ2 − 1) sin(φ)

z =
d

2
ξη,

x =
d

2

√
(1− η2)(ξ2 + 1) cos(φ)

y =
d

2

√
(1− η2)(ξ2 + 1) sin(φ)

z =
d

2
ξη,

η ∈ [−1, 1], ξ ∈ [1,∞), φ ∈ [0, 2π] η ∈ [−1, 1], ξ ∈ [0,∞), φ ∈ [0, 2π]

Table A.1: Prolate and Oblate to Cartesian coordinates relations.

In order to change from the prolate to the oblate coordinate system one has to do the
change ξ → iξ and d→ −id. For simplicity we will write the equations in the prolate spheroidal
coordinates.

(a) Prolate (b) Oblate

Figure A.1: Prolate and oblate coordinate systems. Ilustrations taken from
[3838]

.

Analogously to the spherical case, in order to solve eq. (A.1A.1) one does the variable separation

Ψml = Rml(c, ξ)Sml(c, η)φm(ϕ) , (A.6)

such that the equation for the angular function Smn(c, η) reads

d

dη

[
(1− η2)

d

dη
Sml(c, η)

]
+

(
λml(c)− c2η2 − m2

1− η2

)
Sml(c, η) = 0 , (A.7)

with c ≡ 1
2kd. We see that this equation is very similar to eq. (A.2A.2) but now Q = Q(η). If c = 0

then we recover the spherical case and the solution is given in terms of the associated Legendre
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polynomials. In order to solve the differential equation one does the following expansion for
the spheroidal functions of the first kind

Sml(c, η) =

∞∑
r=0,1

dmlr (c)Pmm+r(η) , (A.8)

where the sum goes over all even values of r if l − m is even and over all odd values of r if
l −m is odd. One can easily see that λml(0) = l(l + 1) since the differential equation reduces
to the one obtained for the spherical case.

A.2 Horizon angular velocity
Let us consider a photon emmited in the ϕ direction at some radius r in the equatorial plane.
Considering its initial momentum to don’t have r or θ components, the null trajectory condition
is

ds2 = 0 = gttdt
2 + gtϕdtdϕ+ gϕϕdϕ

2 ,

such that

dϕ

dt
= − gtϕ

2gϕϕ
±

√
1

4

(
gtϕ
gϕϕ

)2

− gtt
gϕϕ

.

In the stationary limit surface gtt = 0 we have two solutions,(
dϕ

dt

)
+

= 0 ,

(
dϕ

dt

)
−

=
a

2G2M2 + a2
.

The first solution corresponds to a photon moving in the counter-rotating direction and the
second one corresponds to a co-rotating photon. Massive particles move more slow than photons
and get dragged along with the black hole rotation once crossed the stationary limit surface
(defined by KµKµ = 0, where Kµ is a killing vector). The event horizon angular velocity ΩH
is defined as the minimum angular velocity of a particle at the horizon. Hence

ΩH ≡
(
dϕ

dt

)
−

(r+) =
a

r2
+ + a2

=
a

2Mr+
. (A.9)

A.3 Whittaker equation
E.T. Whittaker [3939] proposed a function from which Parabolic Cylinder Functions, the Error
Function, the Incomplete Gamma Functions, the Logarithm Integral and Cosine Integral could
be derived from. This function is called Whittaker function,

Wk,m(z) =
Γ(k + 1

2 −m)

2π
e−1/2z+1/2iπzk

∫
(−t)−k−1/2+m

(
1 +

t

z

)k−1/2+m

e−tdt ,

where the path of integration begins at t = +∞ , and after encircling the point t = 0 in the
counter-clockwise direction returns to t = +∞ again. The t-plane is supposed to be dissected
by a cut from t = 0 to t = +∞.

Writing

v =

∫
(−t)−k−1/2+m

(
1 +

t

z

)k−1/2+m

e−tdt ,

we have

d2v

dz2
+

(
2k

z
− 1

)
dv

dz
+

1
4 −m

2 + k(k − 1)

z2
v = 0 .
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From the definition of Wk,m(z) we have Wk,m(z) = Ce−1/2zzkv with C being a constant.
Substituting v in terms of Wk,m(z) we get

d2W

dz2
+

(
−1

4
+
k

z
+

1
4 −m

2

z2

)
W = 0 ,

which is the Whittaker differential equation.

A.3.1 Relation to confluent hypergeometric functions
Whittaker equation is obtained from Kummer equation

z
d2w

dz2 + (b− z)dw

dz
− aw = 0 ,

by the following change of variables and substitutions

wWhit(z) = e−
1
2 zz1/2+mwKumm(z) , k =

1

2
b− a , m =

1

2
b− 1

2
.

The solutions to the Kummer equation are

M (a, b, z) =

∞∑
s=0

(a)s
(b)ss!

zs = 1 +
a

b
z +

a(a+ 1)

b(b+ 1)2!
z2 + · · · , (A.10a)

U(a, b, z) =
π

sin(bπ)

[
M(a, b, z)

Γ(1 + a− b)Γ(b)
− z1−bM(a+ 1− b, 2− b, z)

Γ(a)Γ(−b)

]
. (A.10b)

These are also called confluent hypergeometric functions of first and second kind, respectively.
The function U(a, b, z) is also called Tricomi function. Alternatively one can define the Whit-
taker functions of the first and second kind

Mk,m(z) = e−
z
2 z

1
2 +mM(

1

2
+m− k, 1 + 2m, z) , (A.11a)

Wk,m(z) = e−
z
2 z

1
2 +mU(

1

2
+m− k, 1 + 2m, z) . (A.11b)

In particular the second solution is the one of interest in this work. This is due to the behavior
of the Kummer functions at infinity: the function M(a, b, z) is not suitable for an assymptotic
treatment at large z (this can be seen looking, e.g., at the integral representation [4040]).This is,
in fact, the motivation that lead Whittaker to define the second Whittaker function Wk,m(z).

One of the most famous problems solved in terms of the hypergeometric functions is the
Schrödinger equation for the hydrogen atom. Depending on the literature one can see the use
of Mk,m or Wk,m without any specific criteria. These two functions regarding this problem are
equivalent in the sense that imposing boundary conditions makes them behave, as it should be,
equally. In particular one sets the first parameter, a, to be a non-negative integer. In the case
of the Whittaker function of the first kind Mk,m(a, b, z) this is done for the function to behave
as a polynomial for large values of z and then solve the problem of the behavior at large values
of z. On the other hand, for the Whittaker function of the second kind Wk,m(a, b, z), as we do
in this work, one imposes this condition in order to have a regular solution at small values of
z.

A.4 Transformation to hypergeometric differential equa-
tion

Any homogeneous linear differential equation of the second order with at most three distinct
regular singularities, in the extended plane can be transformed into the hypergeometric equa-
tion,

z(1− z)d2w

dz2 + (c− (a+ b+ 1)z)
dw

dz
− abw = 0 . (A.12)
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Let’s see how. The most general form of this kind of equations is [4141]

d2w

dz2 +

(
1− a1 − a2

z − α
+

1− b1 − b2
z − β

+
1− c1 − c2
z − γ

)
dw

dz

+

(
(α− β)(α− γ)a1a2

z − α
+

(β − α)(β − γ)b1b2
z − β

+
(γ − α)(γ − β)c1c2

z − γ

)
w

(z − α)(z − β)(z − γ)

= 0 ,

with a1 + a2 + b1 + b2 + c1 + c2 = 1. The complete set of solutions is denoted by Riemann’s
P-symbol

w = P

α β γ
a1 b1 c1 ; z
a2 b2 c2

 .

Eq.(A.12A.12) is then expressed as

w = P

 0 1 ∞
0 0 a ; z

1− c c− a− b b

 .

By means of a conformal map t = (kz + λ)/(µz + ν) one can map any two sets of distinct
points into each other and therefore

P

α β γ
a1 b1 c1 ; z
a2 b2 c2

 = P

 α̃ β̃ γ̃
a1 b1 c1 ; t
a2 b2 c2

 .

The reduction to the hypergeometric differential equation is given by

P

α β γ
a1 b1 c1 ; z
a2 b2 c2

 =

(
z − α
z − γ

)a1 (z − β
z − γ

)b1
P


0 1 ∞

0 0 a1 + b1 + c1 ;
(z − α)(β − γ)

(z − γ)(β − α)
a2 − a1 b2 − b1 a1 + b1 + c2

 .

One can obtain the Kummer equation as a limiting case of the hypergeometric differential
equation

w = lim
b→∞

P

 0 1 ∞
0 0 a ; z/b

1− c c− a− b b

 ,

and subsequently replacing the symbol c by b.





Appendix B

Far region approximation

In order to check the approximation one can plot the coefficients of eq. (1.61.6). Let us define the
following functions

f(r) ≡ −κ2r4 + 2Mµ2r3 − 2M2r2κ2 − r2(M2ω2 + λ) + 2Mr(λ− 2Mωm+M2ω2) +M2(m2 − λ) ,

g(r) ≡ −κ2r4 + 2Mµ2r3 − r2λ ,

with λ = l(l + 1), such that eq. (1.61.6) reads

∆M∂r(∆M∂r)R(r) + f(r)R(r) = 0 ,

where f(r) and ∆M contain the terms of eq. (1.61.6) with the substitution a = M , since it provides
an upper boundary. g(r) is f(r) in the large distance and small mass coupling limit. If the
approximation is valid, the assimptotic behavior of both functions should be the same. In order
to see this clearly we can plot both functions in the regime at which the approximations are
valid. As an example let us take µ = 1/1001, ω = 1/1000 ∼ µ, such that the range of validity
will be until r = 1/ω = 1000 where we have set M = 1 for simplicity. If we plot both functions
we get an overlapping (fig. B.1aB.1a), so in order to get a better clue of the behavior we plot the
ratio between them f(r)/g(r) (fig. B.1bB.1b). We see that the linear term 2Mrλ is supressed for
large distances and therefore, for small mass coupling and r � r+ +M , the approximation
f(r) ∼ g(r) is valid.

So far we have only justified the function g(r) but, what about ∆M? Explicitly, ∆M =
r2−2Mr+M2, such that the first term of the differential equation reads, after the corresponding
expansion,

(r4 − 4Mr3 + 6M2r2 − 4M3r +M4)∂2
r + 2(r3 − 3Mr2 +M2r + 2M2r −M3)∂r.

The idea is to keep the dominant term in each parenthesis. For doing so, we will follow the
same strategy as before and look at the behavior of the functions. Again, looking at the ratio
between the function and the approximation we see that indeed the approximation is valid.
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(a) Plot of the functions f(r) (blue) and g(r) (orange). Due to
the overlapping one cannot distinguish them.
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(b) Plot of the rate f(r)/g(r). At large values of r we see that
the ratio approaches 1. Even if we are not looking at very large
distances, the approximation is good enough.

Figure B.1: Numerical example of the assymptotic behavior of the functions
f(r) and g(r).

.



Appendix C

Computations of gamma functions

Here we present the explicit calculations done for the different gamma functions. We use the
property zΓ(z) = Γ(z + 1) for every complex value z.

Γ(2l + 1) = (2l)!

Γ(l + 1) = l!

Γ(−l) =
Γ(−l + 1)

−l
=

Γ(−l + 2)

(−l)(−l + 1)
= · · · = Γ(1)

(−1)ll!

Γ(1 + l − 2i$) = (l − 2i$)Γ(l − 2i$) = (l − 2i$)(l − 2i$ − 1)Γ(l − 2i$ − 1) =

= · · · = Γ(1− 2i$)

l∏
k=1

(k − 2i$)

Γ(l − 2i$) =
Γ(−l − 2i$)

−l − 2i$
=

Γ(−l − 2i$ + 2)

(−l − 2i$)(−l − 2i$ + 1)
= · · · = Γ(−2i$)

(−1)l
∏l
k=1(k + 2i$)

=

=
Γ(1− 2i$)

2i$(−1)l+1
∏l
k=1(k + 2i$)

Γ(−2l − n− 1 + δν)

Γ(−n+ δν)
' Γ(−2l − n− 1)

Γ(−n+ δν)
=

(−n+ δν)Γ(−2l − n)

(−2l − n− 1)Γ(−n+ δν + 1)
=

=
(−n+ δν)(−n+ δν + 1)Γ(−2l − n+ 1)

(−2l − n− 1)(−2l − n)Γ(−n+ δν + 2)
=

=
(−n+ δν) . . . (−1 + δν)(δν)Γ(1)

(−2l − n− 1) . . . (1)Γ(1 + δν)
' (−1)2l+1δν

(n!)

(2l + n+ 1)!

Where we have used that δν � 1.
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Appendix D

Black hole spin evolution formula
derivation

In order to obtain equations (4.54.5) and (4.74.7) we first have to study the spin evolution and
see if we can apply any approximation to solve the problem. First, for comparison with the
literature, we will treat the case of a black hole of initial mass M0 = 107M� and initial spin
J0/M

2
0 = 0.8 for an ultralight boson of mass µ = 1× 10−18eV (Case I from now on). Later, we

will see the familiar case of the 6M� black hole with the same initial spin and a boson mass
of µ = 7 × 10−12eV (Case II from now on). We will start presenting the results and then we
will derive the fitted formulas (or ansatz ). The numerical solution and the fitted formulas for

Case M0 µ J0/M
2
0 l

I 107M� 10−18eV 0.8 1

II 6M� 7× 10−12eV 0.8 2

Table D.1: Summary of the different initial conditions for the spin evolution.

case I and II are plotted in fig. D.1D.1. For clearness we have omitted the plots corresponding to
the mass and spin of the cloud.

D.1 Seeds
As said in sec. 4.14.1, the numerical solution corresponds to solving the system of coupled dif-
ferential equations (4.14.1) for which one also has to provide a seed for the initial mass of the
cloud. Here we will treat the case of a seed 0.5M0 > Mc,0 ≥ 0.01M0, in particular the values
Mc,0 = 0.025M0 (astrophysical seed) and Mc,0 = 0.3M0 (massive seed). Since we have differ-
ent behaviors for different seeds, we will propose a different ansatz for each seed and use the
differential equations to compute the coefficients.

D.1.1 Massive seed
For the massive seed, noticing the exponential behavior of the numerical solution, we will use
the following ansatz for the spin (or equivalently angular momentum) evolution

J(t) = Ae−γt +B . (D.1)
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(a) Case I

(b) Case II

Figure D.1: Spin evolution for different seeds. The dashed lines correspond to
the respective ansatz or fitted formulas
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Applying initial conditions: J(0) ≡ J0 and J(t→∞) = Jf , yields

J(t) = (J0 − Jf )e−γt + Jf .

In order to compute the exponent γ we will use the spin differential equation,

dJ

dt
= −2l

µ
ΓnlmMc ,

and take the value at t = 0,

dJ

dt

∣∣∣∣
t=0

= −2l

µ
Γnlm,0Mc,0 ,

such that using the ansatz and solving for γ yields

γ =
2lΓnlm,0Mc,0

µ(J0 − Jf )
. (D.2)

Finally, the ansatz reads

J(t) = (J0 − Jf ) exp

(
−2lΓnlm,0Mc,0

µ(J0 − Jf )
t

)
+ Jf . (D.3)

It is worth to mention that when computing the dimensionless spin χ ≡ J/M2 we should take
into account the final and initial mass of the black hole,

χ(t) =

(
J0

M2
0

− Jf
M2
f

)
exp

(
−2lΓnlm,0Mc,0

µ(J0 − Jf )
t

)
+

Jf
M2
f

. (D.4)

where the final mass is given by (4.154.15)11. Analogously one can also repeat the same procedure
for the mass of the black hole, the mass of the cloud and the spin of the cloud. In general, the
fitted formula for the parameter p(t) reads

p(t) = (p0 − pf )e−γt + pf , γ =
dp

dt

∣∣∣∣
t=0

1

p0 − pf
. (D.5)

D.1.2 Astrophysical seed
The ansatz corresponding to the massive seed does not describe properly the behavior of the
astrophysical seed. This is because for this case the change is faster such that we have to take
into account one more order in the time evolution. For this case the ansatz is given by

J(t) = Ae−γt−βt
2

+B . (D.6)

where the coefficients A, B, γ are the same as for the massive seed. In order to compute the
β coefficient we need an extra condition. This condition will be the time t∗ at which all the
parameters envolved in the evolution are half of their total value. We can estimate this time
by looking at the derivative,

dJ

dt

∣∣∣∣
t=t∗

= −2l

µ
Γnlm,∗Mc,∗ ∼

Jf+J0
2 − J0

t∗
, (D.7)

1Of course we mention this for the interested reader that wants to use this expression as an alternative for
the numerical calculation. Notice that this can only be used for cases when the mass of the cloud is known
such that the final mass of the black hole can be computed. In order to do so one can use eq. (2.82.8),

M0 −Mf =M0
α0

l
χ0 −Mf

4M2
fµ

2

l2 + 4M2
fµ

2
,

and solve for Mf , which results in eq, (4.154.15)
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and, from the numerical computation, using that

Mc,∗ =
Mc,f +Mc,0

2
, Γnlm,∗ =

Γnlm,0
2

, (D.8)

yields

t∗ =
J0 − Jf

Mc,f +Mc,0

µ

l Γnlm,0
=

2

γ

Mc,0

Mc,f +Mc,0
. (D.9)

Now the extra condition is given by

J(t∗) =
Jf + J0

2
= (J0 − Jf )e−γt∗−βt

2
∗ + Jf ,

such that

β =
log(2)

t2∗
− γ

t∗
, (D.10)

and therefore the ansatz for the astrophysical seed reads

J(t) = (J0 − Jf ) exp

[
−2lΓnlm,0Mc,0

µ(J0 − Jf )
t

]
exp

[
−
(

log(2)− 2lΓnlm,0Mc,0

µ(J0 − Jf )
t∗

)(
t

t∗

)2
]

+ Jf .

(D.11)

Again, one can also repeat the same procedure for the mass of the black hole, the mass of the
cloud and the spin of the cloud. In general, the fitted formula for the parameter p(t) reads

p(t) = (p0 − pf )e−γt−βt
2

+ pf , γ =
dp

dt

∣∣∣∣
t=0

1

p0 − pf
, β =

log(2)

t2∗
− γ

t∗
. (D.12)



Appendix E

Black hole shadow power formula
derivation

Finding an exact formula of the angular diameter of the black hole shadow for all spins and
inclinations is difficult due to the difficulty of finding the maximum approach distance r̄ for
each inclination. The equation to solve is

Q+ a2 cos2 θ − L2 cot2 θ = 0 , (E.1)

where Q and L are determined by equations (3.223.22), (3.243.24) and (3.253.25):

α = − L

sin θo
,

L(r̄) =
r̄2(r̄ − 3M) + a2(M + r̄)

a(M − r̄)
,

Q(r̄) =
r3
(
4a2M − r(r − 3M)2

)
a2(M − r)2

.

In order to derive equation (4.104.10) we have computed the angular diameter numerically for all
inclinations. Because for inclinations different from 0 the shadow diameter is similar, we have
fixed θo = π/2 for simplicity. For this orientation, using (E.1E.1) we are able to set Q = 0. Since
our goal is to find an expression valid for all BH mass and observer distance we have proposed
an ansatz and computed each coefficient exactly and analytically, given that we can solve for
a = 0, a = 0.5M and a = M . The ansatz is given by

dsh(a) = A+B

[
1−

( a
M

)2
]δ

, (E.2)

where the spin is squared due to the symmetry a→ −a and the power δ is justified by looking at
the numerical computation, where we see that the derivative is divergent, therefore indicating
that δ < 1. In order to compute the three coefficients we need at least three values of the
diameter for different spins. Below we compute these values for the case a = 0, 0.5M,M .

Case a=0

For the case a = 0 we have to use the respective radial potential with a = 0 and rederive the
expressions for Q and L. The radial potential read

R(r) = r4 − (r2 − 2Mr)(Q+ L2) . (E.3)

Next, we set Q = 0 such that the shadow diameter will be given by

da=0
sh =

2

ro
|θα| =

2|L|
ro

. (E.4)
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Using the condition that the photon arrives to the observer dur/dλ|r=r̄ = 0 = ur|r=r̄ and
solving for L and r̄ yields r̄ = 3M and L = ±3

√
3M . Substituting in (E.4E.4) yields

da=0
sh =

6
√

3M

ro
, (E.5)

which is the familiar expression for the shadow of a Schwarzschild BH found in [2727].

Case a=0.5M

For a = 0.5M we have to proceed as in the last case and by means of the radial potential solve
for L and r̄. For this case the solution is given by

L− = −M
2

[
1 + 6 cos

(π
9

)
− 6 cos

(
2π

9

)
+ 6
√

3 sin
(π

9

)
+ 6
√

3 sin

(
2π

9

)]
,

L+ =
M

2

[
−1− 6 cos

(π
9

)
+ 6 cos

(
2π

9

)
+ 6
√

3 sin
(π

9

)
+ 6
√

3 sin

(
2π

9

)]
,

for r̄± = M
(
2 + cos (π/9)±

√
3 sin (π/9)

)
respectively. Hence, the shadow diameter reads

da=0.5M
sh =

1

ro
(|L−|+ |L+|) =

6
√

3M

ro

[
sin
(π

9

)
+ sin

(
2π

9

)]
≡ 6
√

3M

ro
S (E.6)

where in the last step we have defined S ≡ sin
(
π
9

)
+ sin

(
2π
9

)
.

Case a=M

For the case a = M we have to proceed in the same way as in the case a = 0.5M , i.e. solving
for L and r̄ for the fixed spin. The solutions are L+ = 2M for r̄− = M and L− = −7M for
r̄+ = 4M . Therefore

da=M
sh =

1

ro
(|L−|+ |L+|) =

9M

ro
. (E.7)

E.0.1 Finding the coefficients
Given the shadow diameters d0, dM/2 and dM for a = 0, a = 0.5M and a = M respectively,

the coefficients of the ansatz dsh(a) = A+B
[
1− (a/M)

2
]δ

read

A = dM =
9M

ro
, (E.8)

B = d0 −A = d0 − dM =
3M

ro

(
2
√

3− 3
)
, (E.9)

δ =
log
(

d0−dM
dM/2−dM

)
log(4/3)

=
log
(

2
√

3−3
2
√

3S−3

)
log(4/3)

. (E.10)

with S ≡ sin
(
π
9

)
+ sin

(
2π
9

)
and in the last step we have substituted the values of the shadow

diameters computed above. Finally, the expression for the angular shadow for an observer at
θo = π/2 read

dsh =
3M

ro

{
3 + (2

√
3− 3)

[
1−

( a
M

)2
]δ}

. (E.11)
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