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Abstract

Holographic models gained a lot of interest in the condensed-matter community in the last
decade. People are interested in these models since they might be able to capture some of
the features observed in strongly correlated states of matter. An example of such a highly
correlated state of matter is the ”strange” metallic phase, which is a metallic phase where the
electrons of the system are strongly coupled. In this thesis we try to study these strange metal-
lic phases using a holographic hyperscaling-violating model. Concretely, the thermoelectric
transport properties of the system will be determined.
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Chapter 1

Introduction

Condensed-matter theory has continuously been inspired by the creation of new materials.
Throughout the years lots of new classes of materials have been discovered. With each new
type of material condensed-matter physicists face the challenge to understand these new
observed phenomena. This might seem trivial since the basic rules describing electrons and
atomic nuclei have long been known. Still, while these basic principles cover the different
local descriptions, describing the physics of these new materials is often non-trivial and might
be seen just as fundamental as giving the basic rules describing the electrons and the nuclei.
Examples of these new physical phenomena include the appearance of fractional charge in
the fractional quantum Hall effect and the discovery of what is now known as ”conventional”
superconductivity.

One of the current phenomena is the appearance of metallic compounds which seem not
to be described by the well-established theory for metals. A class of these materials are
called ”strange” metals, they were first discovered as the metallic phase in high-Tc cuprate
superconductors.

Usually metals are described starting from a weakly interacting electron (-like) gas picture
(rigorously called a Fermi liquid). This Fermi liquid theory, developed by Landau, for a long
time seemed to give the theoretical understanding of all metallic states observed. Yet with
the discovery of high-Tc cuprate superconductors amongst others, metallic states were found
that are not described by this Fermi liquid theory. Thus the strange thing about these strange
metals is that the electron picture is actually the wrong place to start when describing these
metallic phases. There are numeral direct and indirect measurements (e.g. Refs. [1–4]) on
strange metals showing that these are strongly correlated states of matter that do not have a
quasiparticle description.

A striking feature of these cuprate superconductors, is that in the strange metallic regime (so
above Tc) the resistivity is two orders lower than that of conventional metals. Additionally
the temperature scaling of for instance the resistivity of the material behave very different
from the ones observed in conventional metals. This type of behaviour is common in a larger
class of strongly correlated electron materials. A famous characteristic of strange metals is
the observed linear scaling of the resistivity at all temperatures Fig. 1.1. This is very different
from conventional metals, where the resistivity has different power scaling and even saturates
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CHAPTER 1. INTRODUCTION 2

at high temperatures. Theoretically these strange metallic phases are very hard to understand

Figure 1.1: Resistivity of the cuprate strange metal Bi2+xSr2−yCu06+δ with respect to tem-
perature. Source: Ref.[3].

(that’s why it’s still a current topic). Since these are highly correlated phases (or fluid like
phases), they most probably cannot be treated perturbatively starting from a free particle
description. So one needs a different framework in which one is able to treat these strongly
correlated systems.
This is where the holographic correspondence comes in, since it gives a framework in which
one is able to do calculations on these strongly interacting systems. The holographic corre-
spondence was discovered by the string theorist Maldacena at the end of the 20th century
in Ref.[5]. According to the correspondence two seemingly unrelated theories (general relativ-
ity and quantum field theory) are, under certain conditions, equivalent. The correspondence
claims that one may consider a strongly coupled quantum field theory as the hologram of a
weakly coupled string theory (in other words gravity). The most important part of the duality
is that the difficult to compute quantum field theory is now expressed in terms of an easier to
solve gravitational problem. Due to this promising characteristic a lot of attention has gone
into describing strongly correlated states of matter using this holographic principle.
In this thesis a special class of gravitational theories is described, namely ones that result
in hyperscaling violating gravitational solutions. These theories give rise to strongly coupled
field theories in which space and time are not treated on equal footing, giving rise to non-
trivial dispersion relations. Additionally these models have anomalous scaling factors in the
field theory, so macroscopic quantities like entropy and free energy do not scale with their
naive scaling dimension. Furthermore, it turns out that the model studied has an additional
anomalous factor in the scaling of the charge of the system.
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The outline of the rest of this thesis is as follows:

Chapter 2: Condensed Matter Background
In this chapter we will shortly discuss the well-established Fermi liquid theory for ordi-
nary metals. In specific we consider the resistivity of an ordinary metal. We note that
experiments performed on strange metals gives different behaviour than is predicted by
Femi liquid theory. In the second part we give a short introduction to strange metals
and what makes them different from conventional metals.

Chapter 3: The Holographic correspondence
This chapter will give a short introduction into the essential dictionary of the holographic
correspondence. The basic concepts needed later in the thesis will briefly be reviewed.
The goal of the chapter is to give the reader some intuition on how one could use
holography to model certain strongly correlated field theories.

Chapter 4: Strange Metals as HV Geometries
This chapter discusses the hyperscaling violating model that will be used throughout
this thesis. It turns out that this model is more involved than the standard approach
(Reissner-Nördstrom) and introduces one additional gauge field and an additional dila-
ton field on top of the minimal Reissner-Nördstrom description. In the beginning of
the chapter the explicit solution giving the model and it thermodynamic properties are
discussed. Additionally we will see that these models exhibit additional scaling param-
eters. At the end of the chapter we discuss general properties of hyperscaling violating
gravitational theories and the corresponding quantum critical field theories.

Chapter 5: Quantum Critical Dynamics
In this chapter we introduce the concept necessary to determine the dynamics of the
studied hyperscaling violating model. The procedure on how one could obtain the
correlation functions in the field theory from the gravitational theory is lined out here.
Additionally the identification of the field expansion with field theoretical quantities
such as source and vacuum expectation value are being made.

Chapter 6: Thermoelectric Transport of the EMD model
In the final chapter the transport properties of the hyperscaling violating model are
discussed. In particular, the frequency dependence of the optical conductivity is deter-
mined. The obtained results seem to suggest that momentum conservation is explicitly
broken. This cannot be the case since this is a Ward identity of the system, the expla-
nation turns out to be more subtle and it is still work in progress.

Chapter 7: Discussion and Outlook
We will end with a conclusion, discussion and outlook.



Chapter 2

Condensed Matter Background

In order to know why something is strange we first need to know what is normal. In the
first part of this section we give a short introduction into the well-established Fermi liquid
description of ordinary metals, with a focus on the resistivity of the metals. In the second
part we talk about the strange metallic phase and why it can not be described by a Fermi
liquid theory. It turns out that the description of the strange metallic phases is quite hard
and one thus needs unconventional frameworks to be able to describe them theoretically.

2.1 Ordinary metals and the Fermi-liquid

The following sections will give a brief introduction into the well-established description of
ordinary metals, Refs. [6, 7] will be followed quite closely throughout this section. The current
understanding of the usual metallic state has been initiated by Drude’s work at the beginning
of the twentieth century, which described the metal as an gas of weakly interacting electrons.
While this was a good model to describe the conductivity of metallic states it had problems
explaining the observed heat conductivity. In the classical picture every electron has to con-
tribute 3kb/2 to the specific heat of a metal, this is much larger than the specific heat observed
in experiments. The solution came when Pauli formulated the Pauli exclusion principle [8],
initially for electrons, which was later extended to general fermions

Statement 2.1.1. No two electrons can occupy the same quantum state.

In the absence of interactions one finds that the ground state of a gas of free electrons is given
by a filled Fermi-sea of occupied states up to a specific momentum kF (the Fermi momentum),
where the higher energy states are unoccupied. Additionally this gives rise to a surface right
at the Fermi-momentum (kF ), which is called the Fermi-surface. Low energy excitation of
the free electron gas are given by slightly deviating from the ground state around the Fermi-
surface, these are called particle-hole excitations. These are thus given by promoting an
electron from slightly below the Fermi-energy to above the Fermi-energy.

This already resolved the problem of the observed heat conductivity with respect to Drude’s
weakly interacting electron gas model. Since in the Fermi-gas picture only a small fraction
of the electrons are contributing to the heat capacity. Which is due to the fact that only
states near the Fermi surface (so within a energy gap of kbT ) are able to carry heat. The
predictions made by the non-interacting free-Fermi-gas picture matched very well with the

4



5 2.1. ORDINARY METALS AND THE FERMI-LIQUID

temperature dependencies found by measurements done on metals. But it remained unclear
how a non-interacting theory of free electrons could so well describe a system where obviously
interactions are important, such as the coulomb interaction between the electrons.
The answer to the last question was provided by Landau’s Fermi-Liquid theory (1956). The
key idea behind Landau’s Fermi-Liquid theory rests on the notion of adiabaticity. Consider
a low energy eigenstate state of the non-interacting Fermi-gas and suppose the interactions
in the system are turned on slowly. Laundau argued that in this case these eigenstates of the
non-interacting system would adiabatically transform into the eigenstates of the interacting
system. (So labels associated to the low energy eigenstates of the system are robust against
perturbations, while the states themselves might not be.) Therefore there is a one-to-one
correspondence with the low energy excitations of the Fermi-gas and the interacting Fermi-
Liquid, where the particle of the Fermi-Liquid are referred to as quasiparticles. Thus despite
the potentially strong interactions between the electrons, the low energy excitations near
the Fermi surface still behave like weakly interacting particles and holes, which are called
quasi-particles.
The dispersion relation of the quasiparticles resemble those of the free electrons, but with a
modified inertial mass m→ m∗, which one may see as the effective mas of the quasiparticle.
Furthermore it can be shown using Fermi’s golden rule that these quasiparticles are long lived
near the Fermi surface and thus form a proper bases.

2.1.1 Resistivity of ordinary metals

The resistivity ρ of an ordinary metal may semi-classically be expressed in terms of the mean
free path l which is the average distance an electron moves before a collision

ρ ∝ 1/l. (2.1)

It follows that at low temperatures (temperatures lower than the Debeye temperature, T �
TD) the resistivity of the metallic state is dominated by electron-electron (Umklapp) scattering
and scattering of impurities of the metal. Impurities give rise to a constant temperature
dependence of the resistivity, where the electron-electron scattering gives rise to a temperature
squared dependence of the resistivity

ρ ∼ Aimp +Be,eT
2. (2.2)

At larger temperatures (above the Debeye temperature) the electron-phonon interactions start
to dominate, this gives rise to a linear scaling of the resistivity with temperature

ρ ∼ Ce,phT. (2.3)

It turns at that at even larger temperatures the resistivity of an ordinary metal start to
saturate, this is called the Mott-Ioffe-Regel condition.

Mott-Ioffe-Regel condition

In an ordinary metal the mean free path of electrons conducting the current in the metal
is typically much larger than the lattice spacing of the metal. If we heat up the material
the mean free path of the electrons should decrease, since it is now more likely to scatter of
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Figure 2.1: Resistivity of Ti1−xAlx alloys for several percentages x of Aluminium. In this fig-
ure we see saturation of the resistivity at high temperatures. Source: Mooij, 1973 and Ref.[7].

phonons in the metal and thus the resistivity of the metal keeps increasing with temperature.
The Mott-Ioffe-Regel bound states that the mean free path can’t keep decreasing indefinitely,
but has to saturate when the mean free path of the electrons becomes comparable to the
lattice spacing of the metal. This saturation is due to the fact that a semi-classical picture
does not make sense any more when the mean free path l becomes comparable to the lattice
spacing d, l ∼ d. Since at this moment the uncertainty of the wave vector k becomes of the
size of the Brillouin zone, thus quantum mechanically one is not able to localize the electron
more than the lattice spacing by the Heisenberg uncertainty principle. Since the mean free
path now saturates at large temperatures, the resistivity also has to saturate, again this bound
is called the Mott-Ioffe-Regel bound. An experimental example of the resistivity saturation is
given in Fig. 2.1. There the resistivity of Ti1−xAlx for several percentages of doping is plotted
against the temperature of the metal, we can clearly see that in these metals the resistivity
saturates at high temperatures.

2.2 What is a strange metal?

The strange metallic phase was first discovered as the metallic phase of high-Tc cuprate su-
perconductors, see Fig. 2.2. These are layered materials consisting of superconducting copper
oxide layers separated by spacer layers. As already discussed in the introduction, the strange
metallic phase is not described by the well-established Fermi-Liquid theory. For instance a
famous feature of the strange metallic phase is that the resistivity scales linearly with temper-
ature from Tc up to as high temperatures as one can measure [2], see Fig. 1.1. This violates the
quadratic temperature dependence predicted by Fermi liquid theory additionally the strange
metallic phase does not satisfy the Mott-Ioffe-Regel bound [4, 7] and the resistivity just keeps
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Figure 2.2: The phase diagram of a high-Tc cuprate is shown. On the horizontal axe the
doping of the cuprate is given, while on the vertical axes the temperature of the cuprate is
given. Source: Ref.[9].

on increasing linearly while raising the temperature of the strange metal. These observations
are not consistent with a long lived quasiparticle description of the metallic phase we just
mentioned. There are additional measurements for instance on the Hall resistivity, where
the temperature dependence is also different from what would be expected in a quasiparticle
description. This suggests that a long lived quasiparticle description of strange metals is the
wrong place to start. It turns out that the electrons in a strange metallic phase are strongly
interacting, due to the chemistry of in this case the copper oxides which amplify the Coulomb
interactions between the electron. The result is that the electrons in a strange metal are highly
correlated, which means that the conductance in strange metals has more similarities with
a fluid-like picture than with the well established gas-like picture described in the previous
section.
So we have just seen that the electrons in the strange metallic phase are strongly correlated
and there is no quasiparticle description of these strange metallic phases. Understanding these
highly correlated fluid-like phases using field theory is quite hard since the electrons are so
strongly correlated it is unlike one is able to treat these metallic phases fundamentally starting
from a free theory using a perturbative approach. As mentioned in the introduction we need
a framework in which we are able to treat these strongly correlated states of matter. It turns
out that the holographic correspondence may be of use here. Since using the correspondence
we are able to treat our difficult to solve strongly coupled field theory as the hologram of an
solvable gravitational theory. This is what will be explored in the next chapters.

Remark. So far we have not discussed the superconducting region of the phase diagram
in Fig. 2.2, this is not because we are not interested in the superconducting regime. To un-
derstand the superconducting regime of a metal the metallic state from which it forms should
must be understood. For instance our current understanding of conventional superconductiv-
ity relies on Fermi liquid theory as a starting point. This is some additional motivation for
understanding the strange metallic phase better.



Chapter 3

The Holographic correspondence

As mentioned in the previous chapters, in order to treat strange metals properly we need a
framework in which we are able to treat a system of strongly coupled particles (electrons in
our specific case). The holographic correspondence is such a framework in which we might be
able to treat these strongly interacting phases of matter, since it tells us that we may consider
strongly interacting quantum field theories (which are near to impossible to describe) as the
hologram of a semi-classical gravitational theories, in which calculations are much easier. A
downside of using the holographic correspondence to describe strongly correlated states of
matter, is that the connection with the underlying microscopic physics is not clear any more.
In this chapter we will treat the basic ingredients to use the holographic correspondence
as a calculational device. There is already a lot of good literature giving an introduction
to the holographic correspondence e.g. Refs.[10–14], for a more extensive introduction into
holography we refer to the literature which was just mentioned.

This chapter is organised in the following way, we start with a short motivation on the original
correspondence proposed by Maldacena. In Section 3.1.2 we discuss the precise correspon-
dence between gravitational theories and the strongly coupled quantum field theories. In
special, we discuss a simple example of how one could use the obtained mapping to determine
the correlation functions of strongly coupled field theory using a holographic calculation in
gravity. The above tells us how we could determine the response functions of the quantum
field theory, but does not tell us what the thermodynamic equilibrium quantities of the quan-
tum field theory such as temperature and density correspond to in the gravitational theory.
In short since we want to describe a field theory at nonzero temperature and nonzero den-
sity we need to know how to describe those field theories in a holographic context, this is
done in Section 3.2. Furthermore in holography it is often not clear which operators of the
quantum field theory correspond to which fields in the gravitational theory. Symmetries of
the gravitational fields and the corresponding quantum field theory operators are now an
important guide. In Section 3.3 we describe how local gauge symmetries of the gravitational
fields should correspond global symmetries in operators of the strongly coupled quantum field
theories which gives us an useful guide. We end this chapter with a summary of how one
could use the holographic correspondence as a computational device, which is usually called
the holographic dictionary.

8



9 3.1. THE BASIC CORRESPONDENCE

3.1 The basic correspondence

The original correspondence has been proposed by Maldacena in Refs.[5, 15]. It described a
duality between a type IIB superstring theory on AdS5 × S5 and a N = 4 super-conformal
Yang Mills with gauge group SU(N) in 3+1-dimensions. The general form of the holographic
correspondence relates stringy quantum gravity to a class of quantum field theories. Currently
stringy quantum gravity is poorly understood and difficult to perform calculations in. However
there is a special limit one could consider in the string theory, which reduces the difficult string
theory into (well understood) classical general relativity. This limit in the field theory side
corresponds to considering the strong coupling ’t Hooft matrix large-N limit. This leads to
the following statement

Statement 3.1.1. A d+2 dimensional classical gravitational theory on AdSd+2 has a dual
description as the large-N limit of a strongly coupled field theory in d + 1 dimensional flat
spacetime.

So currently we have a duality between the gravitational AdS solution and the super-conformal
Yang-Mills theory with four supercharges and gauge group SU(N). It turns out that the
above is just an example of the holographic correspondence and many more examples of
dualities between gravitational theories and quantum critical field theories exist. At the
moment it is only clear that the theories are related and not how they are related, the relation
between the gravitational theory and the strongly coupled quantum field theory is explained
in Section 3.1.2. But let us first motivate the initial correspondence a bit more.

3.1.1 Motivating the correspondence

It has just been described that gravitational theories living in AdSd+2 have a dual strongly
coupled field theory description, which is actually a conformal field theory. It namely turns
out that the N = 4 super-Yang-Mills theory described above has an extensive symmetry
group. Besides being invariant under translations, rotations and Lorentz boost it additionally
is invariant under scale transformations. Actually this field theory turns out to be invariant
under the full conformal group.
A strong argument in favour of Maldacena’s conjecture may be given from basic properties of
CFTs and AdS spaces. Namely if two theories are equal it is expected that their symmetries
match. It turns out that the isometry group SO(2, d + 1) of AdSd+2 is exactly matching
with the conformal symmetry group SO(2, d + 1) of a conformal field theory living in d + 1
spacetime dimensions. This relation gets even more precise if you move to the boundary of
AdS space where the isometries of the spacetime reduce to the conformal transformations [11].
A strange feature of the correspondence stated above is that it conjectures a duality between
two theories living in different spacetime dimensions. To get a feeling for this apparent mis-
match between the spacetime dimension, one may consider the famous Bekenstein-Hawking
area law [16, 17] for the entropy of a black-hole. The statement is that in semi-classical gravity
black-holes are thermal objects and have an entropy proportional to the area of the black-hole

SBH =
c3A

4G~
.

In short the above formula says that the maximum entropy in a spacetime scales with the
area of the boundary and not with the volume of spacetime. This entropy is much smaller



CHAPTER 3. THE HOLOGRAPHIC CORRESPONDENCE 10

then the entropy of a quantum field theory which scales with the volume of the system. One
might argue that the entropy of spacetime is related to the entropy of a quantum field theory
living in one dimension less.
An interpretation of the additional dimension appears when we deform away form pure AdS
and the pure CFT, at that point the radial direction in the gravitational theory is related to
the energy scale of the field theory.

3.1.2 The GKPW formula

Soon after the first paper by Maldacena the precise dictionary between properties of the field
theory and the dual gravitational theory was worked out by Gubser, Klebanov, Polyakov [18]
and independently Witten [19]. Thus it is now called the GKPW rule. In essence the GKPW
rule relates the generating functional of the field theory to the partition function of the
gravitational theory. This statement will be made a bit more precise later. Let us first take a
step back, in a field theory all the correlation functions can be obtained from the generating
functional

ZQFT ({hi(x)}) ≡
〈
ei

∑
i

∫
dx hi(x)Oi(x)

〉
QFT

, (3.1)

where in the above Oi(x) are the operators of the field theory and hi(x) are the sources of the
generating functional. One can extract all n-point correlation functions by taking functional
derivatives of generating functional (3.1) with respect to the sources hi(x). For a gravitational
theory it is a bit more involved to construct the right partition function. In the case where
the spacetime has a boundary, observables of the theory can be defined on the boundary of
spacetime. One may for instance consider Dirichlet boundary conditions (boundary value is
fixed) and thus construct a partition function of the gravitational theory as a function of the
boundary values {hi(x)} of the bulk fields {φi}

Zgrav.({hi(x)}) =

∫ φi→hi
(ΠiDφi) eiSgrav.[{φi}]. (3.2)

The above is already written down in a very suggestive form. The GKPW rule namely states

Zgrav.({hi(x)}) = ZQFT ({hi(x)}). (3.3)

An essential part of the dictionary is that there is a one-to-one correspondence between
operators in the field theory and fields in the gravitational theory. Thus to every operator
Oi(x) there is an associated source hi(x) which is the boundary value of a gravitational bulk
field.
In order to see which operator corresponds to which field one typically looks at the symmetries
of the fields and the operators, since there is no general recipe at hand. So for instance a
scalar operator in the field theory should correspond to a scalar field in the gravitational bulk.

Statement 3.1.2. The GKPW rule, identifies the generating functional of the field theory
with sources {hi} with the gravitational bulk partition function where the asymptotic boundary
values of the fields φi corresponding to field theory operators Oi are given by the sources
{hi(x)}

ZQFT ({hi(x)}) =

∫ φi→hi
(ΠiDφi) eiSgrav.[{φi}]. (3.4)
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In the large-N limit this reduces to the on-shell action of classical gravity

ZQFT ({hi(x)})↔ eiSgrav.on−shell[{φi}]. (3.5)

Remark. While the dictionary derived by Gubser, Klebanov, Polyakov and Witten [18, 19] was
building on the specific examples from Maldecena, it was argued that the AdS/CFT duality
might be formulated on general holographic grounds and does not need explicit top-down
constructions from string theory. So above the ”universal dictionary” is formulated. Since
one does not always need the string-like origin, one may engineer the gravitational theory in
a ”bottom up” approach, to study the field theories of interest. This is what will be done
throughout this thesis.

3.1.3 Example: scalar field in AdS spacetime

To make the GKPW formula more explicit let us give an example, next we determine the
vacuum expectation value and response function for a scalar field in AdS spacetime by closely
following Ref. [10, Chapter 1.5].

To discuss the scalar field in AdS spacetime we first need to discus the the general bulk action
that has pure AdS spacetime as a classical solution

S = − 1

8πG

∫
dd+2x

√
−g
(
R+

d(d+ 1)

L2

)
. (3.6)

The first term in the above action is called the Einstein-Hilbert term with R the Ricci scalar.
The second gives a negative cosmological constant (or vacuum energy) characterised by the
length scale L. The classical equations of motion for the above action are given by1

Rµν = −d+ 1

L2
gµν . (3.7)

A solution to the above equations of motion is the AdS spacetime

ds2 = L2

(
−dt2 + dz2 + d~x2

z2

)
. (3.8)

In the above z = 1/r is the inverse radial coordinate of the gravitational bulk, so the critical
boundary is now located at z = 0, while the deep interior of the bulk is located at z = ∞.
Additionally t and ~x give the time and spatial directional of both the quantum critical field
theory and the gravitational bulk. It is a known fact that AdS spacetime is a maximally
symmetric spacetime with isometry group SO(2, d+1) [20]. A striking feature of the isometry
group is that the isometries of AdS spacetime turn exactly into the conformal transformations
(also SO(2, d + 1)) on the boundary of bulk z = 0, this together with the recently discussed
GKPW formula suggest that we may consider the quantum critical field theory as living on
the boundary of our maximally symmetric spacetime. Let’s now discuss this for a scalar field

1By taking the trace of the Einstein equations of motion one is able to obtain an expression for the Ricci
scalar. This may be used to simplify the Einstein equations of motion by eliminating the Ricci scalar from the
equations of motion.



CHAPTER 3. THE HOLOGRAPHIC CORRESPONDENCE 12

Consider now an additional scalar field φ in the bulk2

Sscalar = −
√
−g
(

1

2
(∇φ)2 +

m2

2
φ2

)
, (3.9)

where φ is thus dual to some scalar operator in the dual quantum critical field theory. Before
we can see the effect of the source h of this operator in terms of the scalar field φ, we first
need to solve the classical bulk equations of motion

∇2φ−m2φ2 = ∂2φ−m2φ2 = 0, (3.10)

with boundary condition φ(x, z) → h(x) on the conformal boundary z → 0. After this we
have to evaluate the above solution in the gravitational action (3.9) to obtain the generating
functional of the quantum critical field theory via the GKPW rule (3.5). Eq. (3.10) gives rise
to a second order differential equation (wave equation) in the AdSd+2 background spacetime,
the equation of motion may be solved by considering a Fourier transform with respect to only
the spacetime coordinates

φ(x, z) =

∫
ddk

(2π)d
dω

2π
φ(k, ω, z)e−iωt+ik·x. (3.11)

In these coordinates the equation of motion becomes(
z2∂2

z − zd∂z + z2

(
ω2 − k2 − (mL)2

z2

))
φ(k, ω, z) = 0. (3.12)

In order to understand the near boundary asymptotics of the scalar field, we consider the
above equation near the conformal boundary z → 0, which simplifies to(

z2∂2
z − zd∂z − (mL)2

)
φ(k, ω, z) = 0. (3.13)

By considering an asymptotic series expansion near the conformal boundary z → 0 we see
that the solution takes the form

φ(ω, k, z → 0) = φ0(ω, k)
( z
L

)∆−
+ · · ·+ φ1(ω, k)

( z
L

)∆+

+ . . . , (3.14)

with
∆±(∆± − d− 1) = (mL)2. (3.15)

So there are two integration parameters in expansion (3.14), namely φ0 and φ1. The meaning
of φ0 is what was previously called the boundary value h of φ and is thus interpreted as the
source of the scalar operator O in conformal field theory. The meaning of φ1 will become
clear in a moment.

Remark. Note that to extract the source h from expansion (3.14) we must get rid of the
factors in r. These factors have physical implications as we will show now. We have seen that
AdSd+2 has isometry group SO(2, d + 1), one of these isometries gives that AdS spacetime

2Note that in principle we should also have included the metric fluctuations of action (3.6). But since this
is quite involved and not serving the purpose of this example and consider the scalar field in what is known as
the probe limit (no back-reaction of the metric).
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is invariant under rescaling {t, x, z} → λ{t, x, z}. Knowing that the scalar field φ should also
be invariant under this rescaling we find that the source φ0 has to scale as φ0 = h→ λ−∆−h
in order for the scalar field (3.14) to be invariant. By recalling that h couples to the operator
O on the conformal boundary and noticing that the boundary theory should also be scale
invariant we deduce that under rescaling

O(x)→ λ−∆+O(λ−1x). (3.16)

This can easily be seen from the quantum critical boundary action (with xµ → λx̃)∫
dd+1x h(x)O(x) =

∫
λd+1dd+1x̃ h(λx̃)O(λx̃)→

∫
λd+1−∆−dd+1x̃ h(x̃)O(λx̃), (3.17)

using that ∆+ = d+ 1−∆− and the fact that the conformal boundary action should be scale
invariant. This is an important relation since it relates bulk properties to conformal scaling
dimensions of the operators of the quantum field theories. In this specific case the mass of
the scalar field determines the conformal scaling dimension of the scalar operator.

Let us next focus on the vacuum expectation value and the Green’s function of the operator O
corresponding to the scalar field φ. From the asymptotic expansion described above and the
GKPW formula’s Eqs. (3.3) and (3.5) we are able to give a formula for the vacuum expectation
value of the operator O

〈O(x)〉 =
1

ZQFT
δZQFT
δh(x)

=
δSGrav.(φ→ h)

δh(x)
. (3.18)

The scalar action (3.9) reduces to a boundary action when evaluated in the classical solution
of the field φ. Since the volume of the conformal boundary (z → 0) is diverging, we need to
take a cutoff at z = ε, the boundary action then take the form

Sscalar[φc] =− 1

2

∫
z=ε

dd+1x
√
−γnµφ∇µφ

=− 1

2

∫
z=ε

dd+1x
( z
L

)d(
φ0(ω, k)

( z
L

)∆−
+ · · ·+ φ1(ω, k)

( z
L

)∆+

+ . . .

)
∂z

(
φ0(ω, k)

( z
L

)∆−
+ · · ·+ φ1(ω, k)

( z
L

)∆+

+ . . .

)
=− 1

2

∫
z=ε

dd+1x
1

L

( z
L

)d(
∆−

( z
L

)2∆−
φ0(x)2 + (d+ 1)φ0(x)φ1(x) + . . .

)
(3.19)

In the above γ is given by the boundary metric and nµ is a radially outward pointing vector (i.e.
nz =

√
gzz). By taking the limit ε→ 0, we see that the first term in the above action diverges

while the second term is finite. The divergent terms are uninteresting to us and should be
dealt with more carefully by a renormalization procedure. We will ignore the renormalization
and just continue with the finite term here. Additionally note that we are working in the linear
response regime, this means φ1(x) = (δφ1(x)/δφ0(y))φ0(y). Using Eqs. (3.18) and (3.19) we
thus find

〈O(x)〉 ∝ φ1(x). (3.20)

To obtain the correct constant of proportionality we need to consider the renormalised bound-
ary action. We thus see that the subleading integration constant acts as the vacuum expec-
tation value of the scalar operator O, this turns out to be a quite general statement.
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Statement 3.1.3. The field theory source of an operator is given by the leading order inte-
gration constant (in this case φ0) in the near boundary expansion of the corresponding bulk
field. Additionally the vacuum expectation value of a quantum field theory operator is given
by the subleading integration constant of the near boundary expansion (in this case φ1) of the
corresponding bulk field.

Remark. While the above statement turns out to be quite general one should always check
if the conformal scaling dimensions of the source and VEV match to the conformal scaling
dimensions in the quantum critical field theory. One may already think of several source VEV
relations, for instance chemical potential is the source with (charge) density as the VEV. One
could also consider is a temperature gradient as source and a heat current as the VEV, or an
electrical field as the source and the VEV would be an electrical current.

We could additionally extract the Green’s function of the scalar field using a similar procedure.
First note that the general n-point connected correlation functions, sourced by the fields
{φi(x)}, are given by

〈O1(x1) . . .On(xn)〉 =
n∏
i

δ

δφn(xn)
logZQFT

∣∣∣∣∣
φ=0

=
n∏
i

δ

δφn(xn)
SGrav.

∣∣∣∣∣
φ=0

. (3.21)

Thus the Green’s function of an scalar operator in the boundary field theory is given by

GROO(x, x′) = 〈O(x)O(x′)〉 =
δ2 logZQFT
δφ(x)δφ(x′)

=
δ2SGrav.

δφ(x)δφ(x′)
. (3.22)

This together with the linear response argument made earlier gives

GROO ∝
φ1

φ0
. (3.23)

Thus by determining asymptotic near boundary integration constant of the bulk gravitational
fields we were able to extract all the correlation functions of the corresponding operators in
the strongly coupled field theory.

3.2 Thermodynamics

To describe strongly correlated materials in a realistic setting one needs to be able to describe
strongly coupled quantum field theories at nonzero temperatures and nonzero densities. In
this section it is discussed what nonzero temperature and nonzero density of the field theory
correspond to in the gravitational bulk theory. In other words we consider what should be
added to the gravitational theory in order for the corresponding quantum field theory to be
at nonzero temperature and nonzero density. We start each part with a short recap of how
one could describe nonzero temperature and nonzero density in quantum field theories and
then discuss what should be included in the gravitational theory such that the corresponding
field theory is at nonzero temperature and nonzero density.
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3.2.1 Holography at nonzero temperature

Nonzero temperature in field theories

In field theory temperature and Euclidean time are strongly related. What it boils down to
is, studying a field theory at nonzero temperature is equivalent to describing the same field
theory in imaginary time (Euclidean time) where the fields need to be periodic or anti-periodic
depending on whether we are describing bosons or fermions [21, Chapter. 7]

φ(0, x) = ±φ(β, x). (3.24)

The above periodicity follows from the euclidean time slicing procedure by which the partition
function of the field theory is defined. Let’s start by noting

e−βH = e−i
∫−iβ
0 Hdt = e−

∫ β
0 Hdτ , (3.25)

so we may think of e−βH as an evolution operator in imaginary time. Using the slicing
procedure outlined in Refs.[21, 22] we find that the partition function in terms of the path
integral is given by

Z =

∫
Dφ 〈φ| e−βH |φ〉 =

∫
Dφ e−

∫ β
0 dτL(τ,β), (3.26)

where L is the Lagrangian density of the system and the fields φ have to satisfy condi-
tion Eq. (3.24).

Remark. The periodicity may quickly be seen from the fact that a partition function is given
as the trace over the thermal weight factor. Interpreting β as imaginary time, from the slicing
procedure we notice that the field φ has to return to ± it’s initial value at Euclidean time β.

Nonzero temperature in holography

Next we need to add the concept of temperature in our gravitational theory. As a quick note,
introducing temperature adds a scale into the theory and thus breaks the scaling invariance of
the system. Since the scaling invariance is recovered at energies well above the characteristic
scale of the (in this case temperature) deformation we expect the gravitational theory to be
invariant towards it’s scale invariant boundary, which correspond to the UV of the field theory.
Using that black-holes are thermal objects, we may consider adding a black-hole to our grav-
itational theory in order to obtain a nonzero temperature in our field theory. It turns out
that the temperature and the entropy of the field theory are exactly given by the temperature
and entropy of the black-hole, see e.g. Refs. [11, 12]. In what follows next we outline how
to obtain the temperature of the field theory from a generic black-hole solution. Consider a
general static black-hole metric

ds2 = −gtt(r)dt2 +
dr2

grr(r)
+ gxx(r)dx2, (3.27)

where gtt and grr both vanish at the black-hole horizon. Upon performing to Euclidean
coordinates by means of a Wick rotation τ = it, we obtain

ds2 = gtt(r)dτ
2 +

dr2

grr(r)
+ gxx(r)dx2. (3.28)
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we make the assumption that the properties of the black-hole are reflected in the geometry near
the horizon where gtt and grr are vanishing. Next we focus on the region near the horizon.
Near the horizon r+ we may expand gtt and grr, expanding the metric w.r.t r around the
black-hole horizon r+ gives

ds2
E = g′tt(r+)(r − r+)dτ2 +

dr2

grr ′(r+)(r − r+)
+ gxx(r+)dx2 + . . . . (3.29)

Lets consider the following coordinate transformations

R = 2
√
r − r+/

√
grr ′(r+), (3.30)

θ =
1

2

√
g′tt(r+)grr ′(r+)dτ. (3.31)

The near horizon limit may now be written as

ds2
E = R2dθ2 + dR2 + gxx(r+)dx2 + . . . . (3.32)

As R→ 0 the prefactor in front of dθ vanishes, this means Euclidean time shrinks to a point.
Since the horizon is not a special point, this point is not allowed to be singular. To obtain
smoothness at the point R = 0 we need to insist the point R = 0 may be seen as the origin
of a polar coordinate system. We thus see θ needs a period of 2π

θ ∼ θ + 2π,

this implies τ has a periodicity of

τ ∼ τ + 4π/
√
g′tt(r+)grr ′(r+), (3.33)

Using our definition of temperature as the periodicity of the fields w.r.t. Euclidean time we
find

T =

√
g′tt(r+)grr ′(r+)

4π

∣∣∣∣∣
r+

(3.34)

as the temperature of our field theory.

Statement 3.2.1. Strongly coupled field theories at nonzero temperature are dual to black-
hole solutions in the dual gravitational theory. The temperature and the entropy of the black
are exactly the temperature and entropy of the dual field theory.

3.2.2 Holography at nonzero density

Finite density in a field theory

In a quantum field theory particle conservation is described by a global U(1) symmetry. Where
the U(1) symmetry is associated with a conserved current Jµ via Noether’s theorem, such
that the charge of the current is given by N = 〈Q〉 ≡ 〈J0〉. In statistical physics the grand
canonical ensemble describes a thermodynamic system at fixed volume V , temperature T and
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chemical potential µ. So a system that can exchange particles and heat with a reservoir. The
partition function in the grand canonical ensemble is defined as

Z = Tr
[
e−β(H−µN )

]
. (3.35)

As derived in Ref.[21, Chapter. 7] in field theory this amounts to modifying the action by the
following term ∫

dx µ N (x). (3.36)

Finite density in holography

So what does a global U(1) symmetry in the field theory corresponds to in terms of the
gravitational theory? In other words what is the dual description of a global U(1) symmetry?
As we will see in Section 3.3 the holographic correspondence states

Statement 3.2.2. Gauge symmetries in the gravitational theory correspond to global sym-
metries in the dual field theory.

Thus to describe a global U(1) symmetry in the field theory we therefore need to add a
Maxwell field to our spacetime. The minimal gravitational model is thus Einstein-Maxwell
theory

S = − 1

16πG

∫
dd+2x

√
−g
[(
R+

d(d+ 1)

L2

)
− 1

4e2
F 2

]
. (3.37)

Our main purpose is to describe field theories at nonzero temperature and nonzero density.
Regarding nonzero temperature, we have seen in the last section that this is achieved by
studying a black-hole solution in gravitational theory. Regarding nonzero density we have
learned that a gauge field sources a conserved current density in the dual field theory Jµ. If
we want nonzero density we need the density (charge) which is given by the time component
of the conserved current 〈ρ〉 = J0 to be nonzero. According to the holographic dictionary the
value of the fields near the critical boundary sources dual operators. Remembering that the
source of a density ρ is the chemical potential µ, we thus need to impose

lim
r→∞

At = µ, (3.38)

to have a finite density in the dual field theory.

3.3 Bulk gauge symmetries are global symmetries of the dual
QFT

In Section 3.1.2 it was described how one could obtain the correlation functions of the strongly
interacting quantum critical field theory from the corresponding gravitational theory. For this
to be useful one must know which fields correspond to which operators. As already discussed
in Section 3.1.2 symmetries of the fields and operators are an important guide. A special
class of symmetry will be discussed here, namely gauge symmetries. Examples of gauge fields
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include Maxwell fields Aµ and metric fields gµν . The claim is that gauge fields couple to
conserved currents, thus global symmetries. Let us illustrate this point for both the Maxwell
gauge field A2 and the metric gµν .
Consider a gauge field Aµ that is coupled in the boundary to a current Jµ. the gauge field
Aµ transforms to Aµ +∇µΛ under a gauge transformation, with Λ a scalar function nonzero
on the boundary and ∇µ is the covariant connection for the metric tensor γµν . Invariance of
the boundary action implies∫

∂Mr

dn−1x
√
−γ {AνJν} =

∫
∂Mr

dn−1x
√
−γ {(Aν +∇νΛ)Jν}

=

∫
∂Mr

dn−1x
√
−γ {AνJν − Λ∇νJν} .

(3.39)

Invariance of the bulk gauge requires ∇νJν = 0, thus Jµ is a conserved current due to a
U(1) global symmetry. One may see that the above procedure is general and validates the
statement that gauge fields couple to conserved conserved current of a global symmetry.
Another example of the local global symmetry correspondence is to consider local translations
of the metric and the Mawell gauge field which are invariant under diffeomorphisms

Aµ → Aµ − LξAµ = Aµ − ξν∇νAµ − (∇µξν)Aν ,

γµν → γµν − Lξgµν = γµν −∇µξν −∇νξµ.
(3.40)

For a translation in the ρ-direction one needs to consider ξν = δνρ . Under such a local
translation the boundary metric thus changes as

Sr =

∫
∂Mr

√
−γ
{

1

2
T abγab + JµAµ

}
→
∫
∂Mr

√
−γ

{
1

2
T ab (γab −∇aξb −∇bξa)

+ Jµ (Aµ − ξν∇νAµ − (∇µξν)Aν)

}

= Sr +

∫
∂Mr

√
−γ

{
ξν∇µTµν + ξνFµνJ

µ

}
.

(3.41)

Thus invariance under local translations implies

∇µTµν + FµνJµ = 0. (3.42)

This is exactly the conservation of energy-momenta for charged matter in a field theory.

Statement 3.3.1. Bulk gauge fields (e.g. Aµ, gµν) couple to conserved currents of global
symmetries in the quantum critical quantum field theory (e.g. Jµ, Tµν).

In practise matching operators and fields beyond their symmetries is often not possible. But
it mostly is not necessary to know the precise correspondence, since the gravitational bulk
theory is a self-contained description of a strongly quantum critical field theory. A downside
in approaching holography in this way is that the microscopic description of the dual field
theory is lost.
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3.4 Summary: the dictionary

In the previous sections the necessary tools to use the holographic correspondence as a com-
putational device were discussed. The rules lined out above form a dictionary how to translate
from one theory to the other. This goes by the name holographic dictionary.

Boundary: field theory Bulk: gravitational theory

field theory partition function gravitational partition function
scalar operator Oφ scalar field φ

energy-momentum tensor Tµν metric field gµν
global conserved current Jµ Maxwell field Aµ

global spacetime isometry local isometry
global symmetry local gauge symmetry

source of operator leading integration constant
VEV of operator subleading integration constant

nonzero temperature Hawking temperature of black-hole
entropy Bekenstein-Hawking entropy of black-hole

nonzero density/ chemical potential boundary value of Maxwell field At

Together with the GKPW formula discussed in Section 3.1.2 this gives us the tools to use
holography as a computational device for strongly coupled field theories.



Chapter 4

Strange Metals as Hyperscaling
Violating Geometries

In Chapter 1 we mentioned that strange metals are characterised by linear their scaling of the
resistivity w.r.t. the temperature for nearly all temperatures. This this scaling is alien to the
well established Fermi-Liquid theory used to describe ordinary metals. There are already two
things quite different in the strange metallic phase from the Fermi-Liquid phase, in a Fermi-
Liquid the resistivity has to scale quadratically with temperature for low temperatures and
at very large temperatures the resistivity should saturate at the Mott-Ioffe-Regel boundary.
While in the strange metallic phase the resistivity scales linearly with temperature at nearly all
temperatures, hence it does not satisfy the Mott-Ioffe-Regel boundary and additionally does
not scale quadraticly with temperature for low temperatures. It has already been argued in
earlier sections that in strange metals the electrons are strongly correlated and the metallic
phase is thus not well-described by quasiparticles any more, but more by something resembling
fluid. As already mentioned in the previous chapter the holographic correspondence could be
of used to describe strongly correlated states of matter, in special, strange metallic states of
matter. Holography namely gives a framework to describe strongly coupled quantum critical
field theories, at the expensive of not knowing the underlying microscopic physics any more.
In order to describe the strange metallic phase in a holographic context, by the dictionary
given in last section, the minimal model has to contain the a Maxwell field and a gravitational
field. The Maxwell field is needed to give a finite density to the boundary quantum critical field
theory (which is also conducting the current) and one always need a gravitational field, which
by the holographic dictionary corresponds to the energy-momentum tensor of the quantum
field theory. The minimal action to describe a strange metal is therefore

S =

∫
M
dd+2x

√
−g
(
R− d(d+ 1)− 1

4
FµνF

µν

)
.

In order to describe the field theory at nonzero temperature one must consider the black-hole
solution of the above minimal action. The black-hole solution of the above action is well known
and is called the Reissner-Nordström black-hole solution. It turns out that this minimal model
does not capture all the features of the strange metallic phase yet. For instance it does not
reproduce the observed linear resistivity for all temperatures, another problem with the model
is that is has nonzero entropy at zero temperature, which makes the solution unstable at low
temperatures.

20
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In this chapter we discuss a model which arguably does not have these problems, at the expense
of complicating the model, namely we consider an Einstein-Maxwell-dilaton action to describe
the gravitational bulk. The action under consideration contains a metric field, which by the
holographic dictionary corresponds to the energy-momentum tensor. Additionally the action
has two Maxwell fields, where one of them corresponds to a (charge) current in the quantum
field theory and the other one by the dictionary should also couple to a conserved current,
but the physical interpretation is quite unclear. Lastly the model contains dilaton field, which
together with the second gauge field gives rise to a hyperscaling-violating geometry. We will
see that observables dual to hyperscaling-violating backgrounds have two additional critical
exponents z and θ. These hyperscaling-violating backgrounds are important in describing
compressible states of matter which do not have a quasiparticle description.

As we will see, for certain values of these critical exponents resistivity scales linearly with
temperature, which as discussed before is an important feature of strange metallic behaviour.
Additionally one is able to consider limits of the critical exponents in which the entropy of
the corresponding quantum field theory is vanishing at zero temperature.

This chapter is organized in the following way, we start by giving a short general introduc-
tion into hyperscaling-violating geometries and how one could interpret the critical exponents
z and θ. Additionally the scaling of the entropy and resistivity as a function of tempera-
ture is discussed for general hyperscaling violating geometries. In Section 4.2 we discuss a
hyperscaling-violating black-hole solution to the studied Einstein-Maxwell-dilaton action, and
discuss the thermodynamic equilibrium properties of the corresponding quantum field theory
by using the dictionary discussed in last section. Lastly in Section 4.3 we discuss some general
anomalous scaling properties of several physical observables that arise in the dual field theory
of these Einstein-Maxwell-dilaton theories. Useful references besides the ones cited in the
sections are Refs.[10, 11, 22, 23].

4.1 Hyperscaling-violation

Before we start discussing the Einstein-Maxwell-dilaton bulk action, let us first introduce
hyperscaling violating geometries in a more general setting. Like the name suggest, we are
considering geometries that do not satisfy hyperscaling, we will see shortly what this means.
To start hyperscaling-violating metrics give rise to a more general class of scaling metrics than
the usual AdS-metric (3.8) and has a more general scaling symmetry {t, ~x} → {λzt, λ~x}. The
geometry takes the form

ds2 =
( r
R

)−2θ/d
(
−r2zdt2 +

dr2

r2
+ r2d~x2

)
. (4.1)

Here R is a constant of integration and should not be mistaken for the Ricci scalar which enters
in the gravitational action, z and θ correspond to the dynamical critical exponent and the
hyperscaling-violating exponent respectively, of which the meaning will be explained shortly.
These metrics are called hyperscaling-violating metrics, since they violate the hyperscaling for
nonzero θ, which basically means that macroscopic observables do not scale with their naive
scaling dimension any more. Additionally for z 6= 1 one finds that the symmetry group only
includes the scaling symmetry, spacetime translations and rotations, this is a bit less extensive
than the conformal group which follows form AdS spacetime. The metric in Eq. (4.1) does
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not appear to be scale invariant under Lifshitz rescaling

{t,x, r} → {λzt, λx, r/λ}, (4.2)

since the metric rescales as ds2 → λ2θ/dds2 near the scale invariant boundary. This would
mean that the metric (4.1) does not remain invariant under the Lifshitz scale transform (4.2),
but remains conformally invariant. The scaling {t,x, r} → {λzt, λx, r/λ} must be combined
with a scaling of parameters in the solution that leave the field theory invariant, so under
the above scale transformation we additionally need the integration constant R to also scale
R → λR. This transformation of the metric amounts to the fact that operators in the dual
field theory acquire an anomalous dimension, since the boundary action obtains factors of R
which also scales with λ. Unlike AdS spacetime hyperscaling-violating geometries turn out
not to be a solution to pure gravity. Thus we need a slightly more complicated model to
describe them, Einstein-Maxwell-dilaton models are one of them. We look at such a model
in Section 4.2. Let us now go into a bit more detail on the critical exponents z and θ.

4.1.1 Hyperscaling-violation parameters z and θ and the strange metallic
phase

We have seen that hyperscaling-violating metrics have two critical exponents z and θ corre-
sponding to the dynamical critical exponent and the hyperscaling violating exponent respec-
tively. The dynamical exponent or Lifshitz exponent z gives that time scales differently than
space. Effectively speaking for large z low-energy excitations are present at a large range of
momenta (for finite z, we have ω ∼ kz). As we mentioned before
The hyperscaling violation factor θ gives an anomalous scaling dimension to the free energy
(and entropy density) of the critical boundary theory with respect to it’s naive engineering
dimension. We will see in the next sections that that the free energy density f and the entropy
density have the following scaling dimensions

[f ] = [s] = d− θ,

where we would naive expect this to be the number of spatial dimensions of the quantum field
theory. Thus one may think of θ as changing the effective dimension the theory lives in. This
scaling property is not present in classical matter and hint’s at the fact that strange metals,
if properly described by hyperscaling-violating models, are true quantum objects, possibly
controlled by long range quantum entanglement.

Example 4.1.1. A conventional example of a theory with a nonzero hyperscaling-violation
exponent θ, would be the low temperature thermodynamics of the Fermi-Liquid. To capture
the low temperature thermodynamics of a Fermi-Liquid in a hyperscaling-violating geometry
one needs

z = 1, θ = d− 1.

Where z = 1 follows from the linear dispersion relation near the Fermi-surface and θ is given
by the dimension of the Fermi-surface which is motivated by the effective dimensionality
d− θ = 1 of the chiral fermions near the Fermi-surface [10, Section 4.2].

Having discussed the critical exponent z and θ we now discuss it’s implications on for instance
the thermodynamic of the corresponding quantum field theory. In addition we like to discuss
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what values for the critical exponents z and θ need to be chosen in order to describe the
strange metallic phase using a hyperscaling-violating geometry.

In Section 4.2.1 we find that at sufficiently large temperatures the entropy scales as

s ∝ T
(d−θ)
z . (4.3)

Remark. We must note here that this is an approximate expression, where this relation holds
at sufficiently large temperatures. Only in the critical limit z →∞, with θ/z = η fixed, is the
above expression exact. Actually the Einstein-Maxwell-dilaton model that we will discuss in
the next section still has a nonzero entropy at zero temperature only considering the above
limit makes sure that the entropy vanishes at zero temperature.

As outlined in Refs.[24, 25] in the hydrodynamical regime the resistivity of the strange metal
has to scale with the viscosity of the the system ρ ∼ η. A famous result from the hydro-
dynamical region of holography is that the viscosity (η) scales linearly with entropy density
(s) [26]

η

s
=

1

4π
. (4.4)

By combining Eqs. (4.3) and (4.4) we notice that in the hydrodynamical regime the resistivity
has to scale like

ρ ∼ T
(d−θ)
z . (4.5)

This equation is already quite relevant for describing the strange metallic phase. Since in
the strange metallic phase linear scaling of the resistivity w.r.t. temperature[2–4] is observed,
that is also what should come out here. This already restricts the possible choices of z and θ
a lot and gives θ = d− z.
Let us first discuss an interesting limit, namely the limit z → ∞, with θ/z = η fixed. This
limit has the interesting phenomenology of z =∞, thus low-energy excitations are present at
all momenta (we can see this from the case for finite z, where we have ω ∼ kz). Additionally,
the entropy density vanishes at zero temperature. We immediately notice that the entropy
density for this limit behaves like

s ∝ T η, (4.6)

in the above limit. Using Eq. (4.5) it is found the resistivity of the strange metallic phase has
to scale like

ρ ∼ T η. (4.7)

To match the observations done in strange metals e.g. Refs.[2–4] we need linear scaling of the
resistivity, we thus need to consider theories with η = 1.

Lastly let us first briefly comment on the number of spatial dimension needed to describe
the strange metallic phase. Since cuprate superconductors are known to behave like two
dimensional layered materials, we need to describe a strongly coupled field theory in 2 + 1
spacetime dimensions in order to describe the strange metallic phase which is observed to be
the metallic state in high-Tc cuprates.

Before we start and introduce the EMD dilaton let us first look at the constraints on the
critical exponents needed to have a sensible boundary theory.
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Remark. Note that Eq. (4.7) is exact and thus extends to zero temperature. Additionally
note that we could also have used the method described in Ref.[10, Section 3.4.2] to derive
the temperature dependence of the DC conductivity1.

4.1.2 Null energy conditions

In order to describe a sensible physical theory the bulk theory needs to satisfy certain energy
conditions. These energy conditions assure that the energy density can not be negative. The
most important one for holographic purposes is the Null-energy condition, the bulk spacetime
satisfies the null-energy condition if

Gµνkµkν ∝ Tµνkµkν ≥ 0,

where kµ is an arbitrary future pointing null-vector and Tµν the bulk spacetime energy momen-
tum tensor and Gµν the Einstein tensor. In a holographic context the Null-energy conditions
are important since it makes sure the bulk shrinks fast enough as one moves in the bulk [27].
Other reasons why one wants the Null-energy conditions to be satisfied in a holographic con-
text is that it ensures the renormalization procedure makes sense [28]. The above null energy
condition for hyperscaling violating spacetimes (4.1) reduces to

(d− θ) (d(z − 1)− θ) ≥ 0,

(z − 1)(d+ z − θ) ≥ 0.

This means that the exponents z and θ are no longer independent, for instance for positive z
we need

θ < d.

Furthermore we notice that the limit z →∞, θ → −∞ with θ/z = η fixed does not violate the
null energy conditions. Additionally θ = d− z with z ≥ 2d

d+1 does not violate the above Null
energy conditions either. We checked the two cases above explicitly, since these are the cases
that give rise to linear scaling of the resistivity w.r.t. temperature according to Eq. (4.5).

4.2 Einstein-Maxwell-dilaton black-brane solution

Having just discussed hyperscaling-violating geometries and some properties of it. We have
seen that for certain choices of the critical exponents z and θ these hyperscaling-violating
models might be able to capture the physics of the strange metallic phase. In this section
we consider a black-hole solution of an Einstein-Maxwell-dilaton model which asymptotically
gives rise to a hyperscaling violating geometry. We look at the black-hole solution since by
the dictionary discussed in Chapter 3 we need a black hole solution to study the strongly
coupled quantum field theory at nonzero temperature. In the next few sections we discuss
the hyperscaling-violating black-hole solution of the Einstein-Maxwell-dilaton action under
consideration and determine the equilibrium thermodynamics which by the holographic dic-
tionary is given by the bulk background solution.

1A calculation in sort following the mentioned reference gave σDC ∼ T (d+2Φ−θ−2)/z, which does not agree
with the resistivity mentioned in Eq. (4.5). The meaning of Φ will become clear in Section 4.3.
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UnlikeAdS spacetimes hyperscaling-violating spacetimes are not pure gravity solutions. There-
fore we need a more extensive bulk theory to describe them. In this case we study an Einstein-
Maxwell-Dilaton theory with two Maxwell (gauge) fields

S = − 1

16πG

∫
dd+2x

√
−g

[
R− 1

2
(∂φ)2 + V (φ)− 1

4

2∑
i=1

eλiφF 2
i

]
. (4.8)

Here R is the Ricci scalar, φ the dilaton field (scalar field), Ai are given by the two Maxwell
fields and V (φ) = V0e

(2θ/(dβ))φ, with β =
√

2d(1 + α)(α+ z − 1). In Appendix A the
hyperscaling-violating black-hole solution for this model is derived. Since the derivation
of the classical black-hole solution is done in Appendix A, we state the result here. The
hyperscaling-violating metric is given by

ds2 = r−2 θ
d

(
−r2zf(r)dt2 +

dr2

r2f(r)
+ r2d~x2

)
, (4.9)

with

f(r) = 1− m

rz+d−θ
+

Q2

r2(z+d−θ−1)
. (4.10)

In the above m may be interpreted as the mass of the black-hole and Q as it’s charge. We
can use the above parameter to set the temperature and chemical potential of the quantum
critical field theory respectively. Additionally notice that f(r)→ 1 as we approach the critical
boundary of the gravity theory (r →∞), so pure hyperscaling violation is recovered towards
the critical boundary which describes the UV of the quantum field theory. The background
solutions for the gauge fields and the dilaton field are given by

F1rt =
√

2(z − 1)(z + d− θ)e
θ(1−d)/d+d√

2(d−θ)(z−1−θ/d)
φ0
rd+z−θ−1,

F2rt = Q
√

2(d− θ)(z − θ + d− 2)e
−
√
z−1−θ/d
2(d−θ) φ0r−(z+d−θ−1),

eφ = eφ0r
√

2(d−θ)(z−1−θ/d).

(4.11)

Note that the above solution is not defined for the case θ = d since we have divergences in our
solutions in that case. We see that Eq. (4.10) gives a black-brane solution where the radius
of horizon (rH) is determined by f(rh) = 0

r
2(d+z−θ−1)
H −mrd+z−θ−2

H +Q2 = 0. (4.12)

By the holographic dictionary derived in Chapter 3 we note that the above black-hole solution
determines the equilibrium thermodynamics of the system. This is what we will explore in
the next few sections.

4.2.1 Thermodynamic properties of the Einstein-Maxwell-dilaton model

The black-hole solution of the above action Eq. (4.8) determines the thermodynamic equilib-
rium properties of the system. In the next sections these thermodynamic properties for the
gravitational black-hole solution Eqs. (4.9) and (4.11) will be determined.
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Nonzero density and chemical potential

In Section 3.2.2 it was described how to add a nonzero density into a strongly coupled quantum
critical field theory in terms of the gravitational theory. The conclusion of this section was
that the chemical potential of the quantum critical field theory corresponds to the source of
the density operator, where the holographic dictionary thus gives

lim
r→∞

A2,t(r) = µ. (4.13)

For the our gravitational background solution Eq. (4.11) we thus obtain

A2,t(r) = µ

(
1−

(
r

r+

)−(z+d−θ−2)
)
. (4.14)

In terms of the parameters z, θ, φ0 and Q we thus find

µ = Q

√
2(d− θ)

(z + d− θ − 2)
e
−
√
z−1−θ/d
2(d−θ) φ0r

−(z+d−θ−2)
+ . (4.15)

Where z, θ, φ0 and Q are given by the Lifschitz scaling parameter, hyperscaling violating
parameter, anomalous parameter and the charge of the potential. The integration constant
φ0 will become relevant later since it introduces an additional anomalous scaling for the scaling
of the gauge fields.

Nonzero temperature

In Section 3.2.1 we discussed that a nonzero temperature in the strongly coupled field theory
corresponds to considering a black-hole(brane) solution in the gravitational theory of the
correspondence. We discussed that the temperature of the field theory is identical to the
Hawking temperature of the black-hole. Additionally we derived the Hawking temperature
by considering the black-hole geometry in the Euclidean time formalism. It was found that
the Hawking temperature is given by

T =

√
g′ττg

rr ′

4π

∣∣∣∣∣
r+

, (4.16)

with r+ the outer event horizon. Using that the event horizon is defined by f(r+) = 0,
the radial derivates of the above metric components, for the black-hole(brane) solution given
in Eqs. (4.9) and (4.10), become

g′ττ (r+) = r2z−2θ/df ′(r+), grr ′(r+) = r2+2θ/df ′(r+).

This implies the temperature of the field theory is given by

T =
r1+z

+ f ′(r+)

4π
=

1

4π

(
(z + d− θ)m

rd−θ+

− 2(z + d− θ − 1)Q2

r
z+2(d−θ−1)
+

)
. (4.17)
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Using that f(r+) = 0 to eliminate m we find

T =
(z + d− θ)

4π
rz+

(
1− (d+ z − θ − 2)Q2

(z + d− θ)
r
−2(z+d−θ−1)
+

)
. (4.18)

In terms of the chemical potential defined in Eq. (4.15) the temperature is given by

T =
(z + d− θ)

4π
rz+

(
1− µ2 (d+ z − θ − 2)2

(d− θ)(z + d− θ)
e

√
2(z−1−θ/d)

(d−θ) φ0r−2
+

)
. (4.19)

For the entropy it will be useful to determine the horizon radius in terms of the temperature
of the black-hole. Starting from Eq. (4.18) we find that for sufficiently large temperatures we
may express that outer black-hole horizon r+ as a series expansion in 1/T as

r+ =

[
4π

(z + d− θ)

]1/z

T 1/z

(
1− µ2 (d+ z − θ − 2)2

(d− θ)(z + d− θ)
e

√
2(z−1−θ/d)

(d−θ) φ0r−2
+

)−1/z

'
[

4π

(z + d− θ)

]1/z

T 1/z(
1 + µ2

(
4π

(z + d− θ)

)−2/z (d+ z − θ − 2)2

z(d− θ)(z + d− θ)
e

√
2(z−1−θ/d)

(d−θ) φ0T−2/z + h.o.

)
.

(4.20)

where h.o. stands for higher order terms in inverse temperature.

Entropy

In Section 3.2.1 it was argued that the entropy of our critical field theory is identical to the
entropy of the black-hole solution in the gravitational side of of the correspondence. The
entropy of a black-hole is given by the Bekenstein-Hawking entropy which states that the
black-hole entropy has to scales as the area of the horizon AH of the black-hole(brane). To
make this more concrete, the area of the horizon is defined as

AH =

∫
r=r+

ddx
√
detgij , (4.21)

where i, j run over all indices except t and r. For the hyperscaling violating background given
in Eqs. (4.9) and (4.10) we obtain

AH = rd−θ+ Vold. (4.22)

This implies that the entropy density scales like

s ∝ rd−θ+ . (4.23)

Using the expansion of the outer black-hole horizon in terms of the temperature Eq. (4.20)
an expansion of the entropy density s in terms of temperature T is obtained for sufficiently
large temperatures

s ∝ T (d−θ)/z

(
1 + µ2

(
4π

(z + d− θ)

)−2/z

(d− θ)(d+ z − θ − 2)2

z(d− θ)(z + d− θ)
e

√
2(z−1−θ/d)

(d−θ) φ0T−2/z + h.o.

)
,

(4.24)
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where h.o. stands for higher order terms in inverse temperature. At lowest order in 1/T we
thus see that

s ∼ T
d−θ
z . (4.25)

This result has already been used in Section 4.1.1. There it was used to determine which z
and θ might be able to capture strange metallic behaviour.

4.3 Anomalous scaling of transport properties

Having just discussed the thermodynamics of the EMD model used in Section 4.2, in this
section we treat this EMD model on a more general footing. Namely we will discuss the
quantum critical scaling dimensions of multiple observables in terms of three critical expo-
nents {z, θ,Φ}. It turns out that to properly characterise the scaling of the studied EMD
model a a third critical exponent, besides z and θ is needed [29–33, 33, 34]. We have already
seen that θ gives rise to an anomalous factor with which the overall metric scales. The ad-
ditional exponent Φ captures the additional anomalous scaling of the physical bulk Maxwell
field2A2. In this section Ref.[33] will mainly be followed.

We have seen in Section 4.1 that the hyperscaling-violating metric is invariant under the
following scale transformation

η : {t, ~x, r} → {λzt, λ~x, r/λ}. (4.26)

From the above scaling transformation we are able to assign the following scaling dimensions
to space and time (and thus also momentum, frequency and temperature)

[k] = −[x] = 1, [ω] = −[t] = [T ] = z. (4.27)

We have seen in Section 4.2.1 that the entropy has scaling dimension

[s] = d− θ. (4.28)

Since we know that the scaling dimension of the free energy is given by [f ] = [s]+[T ], therefore
the free energy density and the energy density acquire the following scaling dimension

[f ] = [ε] = d− θ + z. (4.29)

Thus we can think of hyperscaling violation as an anomalous dimension in the energy density
operator. In Chapter 6 we will see that hyperscaling violating model discussed in Section 4.2
needs an additional critical exponent to be properly characterised. As we have discussed,
this additional anomalous scaling happens in the gauge fields, a natural choice to incorporate
this into our scaling analyses is to add an exponent Φ that leads to anomalous scaling of the
charge density operator. This leads to the observation that now charged critical fluctuations
are distinct from critical fluctuations contributing to the entropy

[n] = d− θ + Φ. (4.30)

2Note that in principle we should also take the anomalous scaling of the field A1 into account, but since it
is unknown to us what physical observables it corresponds to we omit it in this discussion.
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From the conservation of charge and conservation of energy

∂tn+∇j = 0, ∂tε+∇jQ = 0, (4.31)

we find the critical scaling dimensions of electrical current and the heat current

[j] = d− θ + Φ + z − 1, [jQ] = d− θ + 2z − 1. (4.32)

The scaling dimensions of the currents imply the following scaling dimensions of the Maxwell
field A2, the chemical potential and the electrical field

[A2,i] = 1− Φ, [A2,0] = z − Φ, [µ] = z − Φ, [E] = z + 1− Φ. (4.33)

So currently we have derived in a somewhat general setting the scaling dimensions of several
observables of the strongly coupled quantum field theory3. These scaling dimensions will
become important in the next chapters since they give an additional way to check whether
the identification of the sources and the VEVs of the quantum field theory are correct as
described at the end of Section 3.1.2.

4.4 Summary

In this chapter we looked at an EMD model as a model to describe strange metallic phases.
These EMD models give rise to hyperscaling-violating geometries, it turns out that these
geometries under certain conditions look promising in describing strange metallic phases. In
the main part of this chapter we stated the black-hole solution to the studied EMD action
and we studied the thermodynamics of the black-hole solution which by the holographic
dictionary gives the thermodynamic equilibrium properties of the quantum field theory. In
the last part of this section we described the critical scaling dimensions of several observables
of the quantum field theory, for instance the electrical current and the heat current. The need
for the scaling analyses will become clear in the next chapters, because it will give us a way to
check if the identification of the sources and VEVs of the quantum field theory are correct.

3The precise value of Φ wil become clear in the next chapters and is most easily obtained from the scaling
of the conductivity.



Chapter 5

Quantum Critical Dynamics

In the previous chapter we discussed the equilibrium properties of the black-hole solution to
the studied EMD model. In this chapter we set up the necessities to determine the correlation
functions (or dynamics) of the studied EMD model. In Section 3.1.3 the correlation functions
of a scalar field in AdS spacetime were determined. Determining the correlation functions
for the EMD model discussed in the previous chapter will be similar to the example given
in Section 3.1.3, only a lot more involved. Indeed we have to determine the correct asymptotic
expansion for the fluctuations of the EMD fields. And determine the right sources and VEVs
in the expansion by using the holographic dictionary, the second order boundary action and
the scaling arguments given at the end of the previous chapter. From the sources and VEVs
of the theory, the Green’s functions can easily be extracted.
This chapter is organized in the following way, we start with a general discussion of how to
extract Green’s functions of the field theory by considering dynamic fluctuations on top of a
static bulk background. After this general introduction we determine the classical equations
of motion for the fluctuations on top of the EMD black-hole solution, which will be done
in Section 5.3. Since we want to determine the thermoelectric transport properties in our
EMD model it is sufficient to consider only the frequency dependence of fluctuations. For
this reason we may consider the zero momentum limit of the equations of motion for the
fluctuations, this is carried out in Section 5.4. In Section 5.5 we determine the asymptotic near
boundary expansion of the fluctuations, from which by the holographic dictionary discussed
in Chapter 3 one should be able to identify the sources and VEVs of the dynamical fluctuations
of the quantum field theory. In the remainder of this chapter the unrenormalised boundary
action is given as a check for of the identification of the sources and the VEVs. Furthermore
critical scaling dimensions of the sources and VEVs of the system are looked at as a check of
the identification of the VEVs.

30
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5.1 Holographic response functions

In this the next two sections it is explained how to extract the dynamical correlation function
from a general gravitational bulk model. Since the bulk background solution only describes
the equilibrium properties of the system, the dynamics has to added in the form of dynamical
fluctuations. We will line out this procedure below. Let’s start by considering a general set of
M fields {ΦJ}J=1,...,M where J denotes the different fields. The corresponding action is given
by

S[{ΦJ}] =

∫
dd+2L[{ΦJ}].

As seen in the previous chapters the classical black-brane solution of this action gives the
equilibrium properties of the system. In order to obtain the Green’s functions of the system
it is needed to expand the action up to second-order in fluctuations of the fields

ΦJ → ΦJ + δΦJ , (5.1)

S[{ΦJ}]→ S[{Φc,J}] + δΦ†J
δ2S[{Φc,J}]
δΦJδΦJ

δΦJ + . . . . (5.2)

The classical solution to the second order action gives what is called the linearised equations
of motion. The linearised equations of motion lead to a set of in the case M , coupled ordinary
differential equations for the dynamical perturbations (5.1). Since we are truncating the
action at second order, we find that the second order action becomes a boundary action
when evaluated at the classical solution. This boundary action might in principle contain
divergences which need to be regularised by adding the right counter term boundary action
to the system. By the holographic dictionary the full boundary action after regularisation
assumes the form

δ2Sbdy =

∫
∂M

dd+1k
M∑
I

δ〈OI〉δΦI
s, (5.3)

we thus see that the dynamical fluctuations in the vacuum expectation values δ〈OI〉 can
be extracted from the boundary action. In the next few sections we cover the holographic
computations needed to determine the Green’s function of the quantum critical operators
in the quantum critical field theory in the case we have coupled operators. Without going
into details a general Green’s function for multiple coupled operators, in frequency space, is
determined by

δ〈OI〉(ω, k) =
∑
J

GROIOJ (ω, k)δΦs
J(ω, k). (5.4)

In the above δ〈OI〉(ω, k) is the change in the expectation value of the operator OI due to the
addition of the dynamical (space and time dependent) sources δΦJ and GROIOJ (ω, k) is defined
as the retarded Green’s function. From the holographic dictionary discussed in Chapter 3 it
is known that expectation values and sources are given by the near-boundary behaviour of
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bulk fields {ΦJ} dual to operators {OJ}1. Therefore

GROIOJ =
δ〈OI〉
δΦs

J

.

In the uncoupled problem using linear-response theory one obtains GOOδΦs = δ〈O〉, from
which the Green’s function is simply extracted by taking the ratio of the expectation value
and the corresponding source term.
Notice that in the case of coupled operators a change in a single operator, say 〈OI〉 will be
given as a linear combination of changes in all source terms. In the coupled problem it is
not enough to know a single solution to the linearised equations of motion to extract the full
Green’s function, a nice way to proceed from here is lined out in Ref.[35], which we will follow
in Section 5.2.
It’s important to note that the boundary conditions of the dynamical fields play an important
role in the physics that is obtained. Since we are interested in retarded Green’s functions
we need to impose the correct boundary conditions to obtain them, it turns out that the
boundary conditions at the horizon describing retarded Green’s functions are the infalling
boundary conditions.

5.1.1 Infalling boundary conditions near the horizon

In this section we derive the near-horizon boundary conditions corresponding to retarded
Green’s functions in the quantum field theory, in doing so Ref.[10, Section 3.3] is closely
followed.
Let’s start by considering an Euclidean black-hole spacetime solution. In Euclidean spacetime
the solution of the dynamical fluctuations near the horizon (r → r+) assume the form

δΦJ± ' αJ(ω, k)(r − r+)±βJ . (5.5)

Where αJ(ω, k) is a prefactor that does not depend on r. In many cases the exponent assumes
the form

βJ = ωn/(4πT ), (5.6)

with ωn the Matsubara frequency and T the temperature. Since real time retarded Green’s
functions are obtained from Euclidean Green’ functions by analytic continuation in the upper
half plane (ωn > 0), we have to consider ωn > 0. For ωn > 0, it is clear that the regular
solution of Eq. (5.5) is the one that decays as r → r+, thus for Eq. (5.6)

δΦJ ' αJ(ω, k)(r − r+)βJ .

To obtain the real time equations form the Euclidean equations we have to perform a Wick
rotation iωn → ω. We find that the regular boundary conditions at the horizon in Euclidean
time translate to infalling boundary conditions in real time

δΦinfalling,J ' αJ(ω, k)(r − r+)−iβJ . (5.7)

1The near-boundary behaviour has the same form at zero and nonzero temperature since, putting a black-
hole in the spacetime changes the geometry in the interior of the gravitational theory (which correspond to
the IR physics of the field theory), but leaves the critical boundary of the bulk intact (which corresponds to
the UV of the field theory).
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In order to see why this behaviour is infalling we have to restore the time dependence (for
ease of use consider βJ given by Eq. (5.6))

δΦinfalling,J ' αJ(ω, k)e−iω(t+ 1
4πT

log (r−r+)),

which corresponds to modes moving towards r = r+ as t increases. So in order to study
retarded Green’s functions we must consider infalling boundary conditions at the black-hole
horizon.

5.2 Extract coupled Green’s functions

Having established the correct boundary conditions and the near-boundary solution for the
dynamical fluctuations, we are able to determine the coupled Green’s functions for the quan-
tum critical field theory. The linearised equations of motion which we discussed in the sections
above give a set of M at most second-order differential equations. In general we may have that
N ≤M differential equations are coupled and therefore need N different initial conditions to
describe them. Since we have a system of mostly second-order ordinary differential equations
considering infalling boundary conditions restricts one of the two degrees of freedom. The
other one is determined by the prefactors αJ in Eq. (5.7). Since the differential equations
are linear, we are able to characterise the independent solutions to the linearised equations of
motion by considering linearly independent sets of prefactors

{αJ}J=1,...,M .

Example 5.2.1. In order to obtain the coupled Green’s function we need to define a set of
M linearly independent vectors ~α(m)(ω, k). An example of such a linearly independent set
would be

~α(1) =
(
1, 1, . . . , 1

)
,

~α(2) =
(
1,−1, . . . , 1

)
,

...

~α(m) =
(
1, 1, . . . ,−1, . . . , 1

)
,

...

~α(M) =
(
1, 1, . . . ,−1

)
.

For each of the solutions we are able to find the associated source and expectation value of the
fluctuations. We are thus able to construct two matrices where each vector is corresponding
to a linearly independent solution

A =


δΦ1

s,1 δΦ1
s,2 . . . δΦ1

s,M

δΦ2
s,1 δΦ2

s,2 . . . δΦ2
s,M

...
...

. . .
...

δΦM
s,1 δΦM

s,2 . . . δΦM
s,M

 , B =


δ〈O1〉1 δ〈O2〉1 . . . δ〈OM 〉1
δ〈O1〉2 δ〈O2〉2 . . . δ〈OM 〉2

...
...

. . .
...

δ〈O1〉M δ〈O2〉M . . . δ〈OM 〉M

 . (5.8)
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The coupled retarded Green’s function is now determined by

AGR = B. (5.9)

We have thus seen that if the values of the sources and VEVs of the quantum field theory
for different initial conditions are known, that the Green’s functions easily can be extracted.
The next part of this chapter will be concerned with determining the sources and VEVs for
the dynamical fluctuations on top of the studied EMD background.

Remark. Note that we assumed linear response between the vacuum expectation values and
the sources of the operators in Eq. (5.9).

5.3 Dynamics of the EMD black-brane solution

In the previous sections we discussed how to obtain the retarded Green’s functions in a general
setting. In the next sections we will setup the necessities needed to obtain the coupled Green’s
function for the black-brane solution to the EMD model discussed in Chapter 4. Let’s start
by considering the EMD action

S = − 1

8πG

∫
dd+1x

√
−γK − 1

16πG

∫
dd+2x

√
−g

[
R− 1

2
(∂φ)2 + V (φ)− 1

4

2∑
i=1

eλiφF 2
i

]
,

(5.10)

The above action contains a gravitational field gµν , a dilaton field φ and two gauge fields Ai.
Action (5.10) is equal to the action given in Section 4.2 with the addition of the Gibbons-
Hawking-York boundary term. In order to have proper Dirichlet boundary conditions in
gravitational theories with a boundary the Gibbons-Hawking-York term should be added to
the theory. We thus need this additional boundary term in order to have a well-defined
boundary theory.
The classical black-brane solution to the EMD action is given in Eqs. (4.9) to (4.11) and
the precise derivation of this background is done in Appendix A. To add dynamics into our
holographical setup we need to introduce dynamical fluctuations on top of our classical black-
brane solution

gµν → gµν + hµν , φ→ φ+ δφ, Ai,µ → Ai,µ + ai,µ. (5.11)

The total action up to second-order in fluctuations is worked out in Appendix B. As described
in the first section of this chapter, by considering the classical solution of the obtained action
a set of equations is obtained, called the linearised equations of motion. Considering the vari-
ational derivative w.r.t. the dilaton fluctatuations δφ of the second order action determined
in Appendix B we obtain the linearised equation op motion for the dilaton fluctuations

√
−g
(
V ′′(φ) +

λ2
i ρiFirt
4
√
−g

)
δφ+ ∂µ

(√
−ggµν∂νδφ

)
+

1

2

2∑
i=1

λiρi∂rai,t

+ grr∂rh
α
α +

1

2

√
−ggrr

2∑
i=1

λie
λiφFi,trFi,trh

tt = 0.

(5.12)
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A similar procedure w.r.t. the gauge field fluctuations a1,ν and a2,ν gives the following lin-
earised equations of motion

1

2
∂µ

(√
−geλiφFµνhαα

)
− ∂α

(√
−geλiφFβ νhαβ

)
+ ∂µ

(√
−geλiφhνβFβ µ

)
+ ∂µ

(√
−gλiδφeλiφFµν

)
+ ∂µ

(√
−geλiφfµν

)
= 0.

(5.13)

Again, by considering the variational derivative of the second order action determined in Ap-
pendix B w.r.t the metric fluctuations hαβ one obtains the following set of linearised equations
of motion

1

2
hαβ

[
R− 1

2
(∂φ)2 + V (φ)− 1

4

2∑
i=1

eλiφF 2
i

]
− 1

2
gαβRµνh

µν + 2Rναh
ν
β

+
1

2
gαβ∇ν∇µhµν +

1

2
∇α∇βhµµ −

1

2
gαβ∇λ∇λhµµ

− 1

2
∇µ∇αhµβ −

1

2
∇ν∇βhνα +

1

2
∇λ∇λhαβ

+
1

2

2∑
i=1

eλiφ (Fi,tαFi,tβ)htt

+
1

2
gαβ

[(
−(∂µφ)∂µ + V ′(φ)− 1

4

2∑
i=1

λie
λiφF 2

i

)
δφ− 1

2

2∑
i=1

eλiφFifi

]

− (∂αφ)(∂βδφ) +
1

2
gµν

2∑
i=1

(
λie

λiφFi,αµFi,βνδφ+ 2eλiφFi,αµfi,βν

)
= 0.

(5.14)

The above set of equations determine the dynamics of the EMD model. We will see in the
next sections that by solving these equations near the critical boundary of the bulk, the
sources and VEVs of te quantum field theory may be identified. By considering the full
solutions to the linearised equations of motion with infalling boundary conditions, the values
of the sources and VEVs for different initial values can be obtained and allows to extract the
retarded Green’s functions of the dual field theory, as described in the previous section.
As we will see in Chapter 6, in order to determine the the response functions needed for ther-
moelectric transport it is sufficient to consider the equations of motion in the zero momentum
limit. This is done in the next section.

5.4 Dynamics of EMD bulk fields at zero momentum

In order to simplify Eqs. (5.13) and (5.14) let us first exploit the rotational invariance of our
system to set the momentum of the gauge and metric fields to be in the x-direction, so that
k = (ω, kx, 0). Thus the fluctuations on top of the background solution take the form

Ai,µ → Ai,µ + e−iωt+ikxxai,µ(r),

gµν → gµν + e−iωt+ikxxhµν(r).
(5.15)

By considering a discrete symmetry y → −y, with y a boundary direction orthogonal to
x. We see that the fluctuations now decouple by their parity, into a transverse component
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and longitudinal component. The thermoelectric response functions are in the longitudinal
component, which in d = 2 + 1 dimensions is given by

{htt, htx, hxx, hyy, ai,t, ai,x, hrr, htr, hxr, δφ}. (5.16)

For both the metric hµν and the gauge fields ai,x the corresponding physical observables should
be invariant under a gauge transformation in the fields. For the metric this is diffeomorphism
invariance, while for the gauge field this is a U(1) gauge symmetry. For our purposes it is
convenient to work in a gauge where

hrµ = 0,

ar = 0.
(5.17)

There are still some gauge degrees of freedom left, which lead to pure gauge solutions. Under
the above gauge choice the set of longitudinal fluctuations become

{htt, htx, hxx, hyy, ai,t, ai,x, δφ}. (5.18)

As will be seen in Chapter 6, only the responses of hxt and a2,x are relevant for describing the
thermoelectric transport2, additionally we will see that it suffices to consider the linearised
equations of motion in the zero momentum limit kx → 0. The relevant linearised equations
of motion for thermoelectric transport are now given by the x-component of the linearised
gauge field equations (5.13). The other relevant equation is given by the rx-component of the
linearised equations Eq. (5.26) w.r.t. to metric perturbation. Those equations were chosen
because they form a closed set of differential equations containing just the fields needed in
the zero-momentum limit. Note that in principle we could have included the xt-component
of the linearised equations of motion of the metric, but this one should be a superposition
of the three linearised equations of motion that we have just mentioned. Since the linearised
equation of motion w.r.t. rx-component is much simpler than the the one obtained from
varying w.r.t. hxt-component we use rx-component.
The x-component of of the linearised equations of motion for the gauge fields a1,x and a2,x (5.13)
are given by

∂µ

(√
−geλiφ̄fµxi

)
+ ∂µ

(√
−geλiφhxβFβ µ

)
= 0, (5.19)

using gauge choice (5.17) and ansatz (5.15) the x-component of the linearised equations of
motion for the gauge fields a1,x and a2,x in the zero momentum limit (kx → 0) becomes

ω2
(√
−ggttgxxeλiφ̄ai,x

)
− ∂r

(√
−ggrrgxxeλiφ̄∂rai,x

)
− ∂r

(√
−geλiφgrrgxxgtthxtFi,rt

)
= 0.

(5.20)
Note that the above equations only depend on a1,x, a2,x and hxt.
The rx-component of the linearised equations of motion for the metric fields 5.26 is given by

∇µ∇rhµx +∇µ∇xhµr −∇λ∇λhrx −
2∑
i=1

gtteλiφFirtfxt = 0, (5.21)

2Note that the response of the field a1,x is not relevant for thermoelectric transport. Although this field is
dual to a conserved current δ〈Jx1 〉, the interpretation of this current is unknown. As we see later a2,x gives rise
to fluctuations the electrical current δ〈Jx2 〉 and hxt gives rise to fluctuations in the heat current δ〈JQ〉, so those
are the two necessary fields to describe thermoelectric transport.
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at zero momentum (kx → 0), using gauge choice Eq. (5.17), the above equation reduces to

iωrθ−2zh′xt
f

− 2ihxtωr
θ−2z−1

f
+
iθhxtωr

θ−2z−1

f

+
iω

f

(
eλ1φ0r2(θ−z−d)F1,rta1,x + eλ2φ0r−2F2,rta2,x

)
= 0.

(5.22)

Where

f(r) = 1− m

rz+d−θ
+

Q2

r2(z+d−θ−1)
.

Again note that also rx-component of the linearised equation of motion of metric just depends
on the fields a1,x, a2,x and hxt for gauge choice (5.17) in the zero momentum limit. So in
the end we have three coupled second order differential equations, which depend on the fields
a1,x, a2,x and hxt, describing thermoelectric transport. Next to the fields hxt and a2,x needed
to determine the thermoelectric response of the system we have an additional field a1,x of
which the physical meaning is unclear to at the moment of writing.

Supplement: equations of motion for the hxt component

If consistent, this equation should be a superposition of the constraint equation following from
the gauge fluctuations of the metric and the spatial fluctuations of the gauge fields.

1

2
htx

[
R− 1

2
(∂φ)2 + V (φ)− 1

4

2∑
i=1

eλiφF 2
i

]
+
(
Rtt +Rxx

)
htx

− 1

2
∇µ∇αhµβ −

1

2
∇µ∇βhµα +

1

2
∇λ∇λhαβ

+
1

2
gµν

2∑
i=1

(
eλiφFi,tµfi,xν + eλiφFi,xµfi,tν

)
= 0.

(5.23)

5.4.1 Linearised equations of motion in the EMD background solution at
zero momentum

The linearised equations of motion at zero momentum given in the beginning of this section
still have background fields in them Fi,µν , φ and gµν , for which the expressions are given
in Section 4.2. By considering the linearised equations of motion of the gauge fields Eq. (5.20)
in the EMD background solution given in Section 4.2. We find that the linearised equation
of motion for a1,x becomes

ω2
(
rθ−z−d−3eλ1φ̄0a1,x

)
f

+ ∂r

(
frθ+z−d−1eλ1φ̄0∂ra1,x

)
+ ρ1∂rh

x
t = 0. (5.24)

Evaluated on the EMD background solution the linearised equation of motion for a2,x gives

ω2
(
rz−θ+d−5eλ2φ̄0a2,x

)
f

+ ∂r

(
frz−θ+d−1+ 2θ

d eλ2φ̄∂ra2,x

)
+ ρ2∂rh

x
t =

ω2
(
rz−θ+d−5eλ2φ̄0a2,x

)
f

+ ∂r

(
fr3z−θ+d−3eλ2φ̄0∂ra2,x

)
+ ρ2∂rh

x
t = 0.

(5.25)
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The linearised equation of motion for the metric component Eq. (5.21) may be simplified
by multiplying it with

√
−ggrr. Evaluated on the EMD background solution this modified

equation of motion becomes

√
−ggxxgttgrr∂rhxt −

2∑
i=1

ρiai = 0,

=⇒ r−z−θ+3+d∂rh
x
t +

2∑
i=1

ρiai = 0.

(5.26)

Using the above three equations of motion we are able to start determining the thermoelectric
transport coefficients of the EMD model. To do so we first need to perform the asymptotic
boundary expansion in order to identify the sources and VEVs of the system. This will be
done in the next section.
Before determining the asymptotic behaviour of the dynamical fluctuations, we need to con-
sider the correct boundary conditions for this system. It is argued in Section 5.1.1 that the
correct boundary conditions in the gravitational side of the correspondence (corresponding to
retarded Green’s functions) are the infalling boundary conditions. In the near-horizon limit
of Eqs. (5.24) to (5.26) the infalling boundary conditions of the fields are given by

a1,x ∝ α1(r − r+)−
iω

4πT ,

a2,x ∝ α2(r − r+)−
iω

4πT ,

hxt ∝ αh(r − r+)1− iω
4πT .

(5.27)

Remark. Note that the constants α1, α2 and αh in the above near-horizon infalling boundary
conditions are not linearly independent as we will see in the next section. It turns out that
there are only two degrees of freedom in the above infalling near-horizon expansion.

5.5 Asymptotic expansion near critical boundary

In this section we will determine the asymptotic near boundary behaviour of the fields
hµν , ai,µ. This behaviour is important since as noted before in Chapter 3 the free inte-
gration constants of the expansion may be linked to the sources and VEVs of the dynamical
fluctuations of the quantum field theory.
Let’s start by considering the ansatz for large r (thus near boundary)

a1,x(r) = rα1

( ∞∑
n=0

a
(n)
1 r−n

)
, (5.28)

a2,x(r) = rα2

( ∞∑
n=0

a
(n)
2 r−n

)
, (5.29)

hxt (r) = rγ

( ∞∑
n=0

h(n)r−n

)
. (5.30)

Remark. In principle we should have included additional logarithmic terms in the expansions.
For the purpose of this thesis this is not necessary though, since the values of z and θ of
interest give rise to even solution in r.
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To determine the factors α1, α2 and γ, the leading order behaviour of the linearised equations
of motion Eqs. (5.24) to (5.26) is considered with ansatz Eqs. (5.28) to (5.30). This gives rise
to the following equations at leading order

eλ1φ0∂r

(
rθ+z−d−1∂ra1,x

)
+ ρ1∂h

x
t = 0, (5.31)

eλ2φ̄0∂r

(
r3z−θ+d−3∂ra2,x

)
+ ρ2∂rh

x
t = 0, (5.32)

r−z−θ+3+d∂rh
x
t +

2∑
i=1

ρiai = 0. (5.33)

Substituting Eq. (5.33) into Eqs. (5.31) and (5.32) we find

a
(0)
1 eλ1φ0∂r

(
rθ+z−d−1∂rr

α1

)
− rz+θ−d−3

(
ρ2

1a
(0)
1 rα1 + ρ1ρ2a

(0)
2 rα2

)
= 0, (5.34)

a
(0)
2 eλ2φ̄0∂r

(
r3z−θ+d−3∂rr

α2

)
− rz+θ−d−3

(
ρ1ρ2a

(0)
1 rα1 + ρ2

2a
(0)
2 rα2

)
= 0. (5.35)

Next we can make a distinction between two cases.

Case 1. α1 6= α2, Eq. (5.34) automatically implies α1 > α2. Due to the assumption, Eq. (5.34)
assumes the form

a
(0)
1

{
eλ1φ0α1(α1 + θ + z − d− 2)− ρ2

1

}
rα1+z+θ−d−3 = 0. (5.36)

The factors of α1 that solve the above equation are

α±1 =
d+ 2− z − θ

2
±
√

(θ + z − d− 2)2

4
+ e−λ1φ0ρ2

1. (5.37)

Since ρ2
1 = 2(z+d− θ)(z−1)eλ1φ0 by Eq. (A.29) it follows that the above equation simplifies

to

α±1 =
d+ 2− z − θ

2
±
√

(θ + z − d− 2)2

4
+ 2(z + d− θ)(z − 1) (5.38)

=
d+ 2− z − θ

2
± 3z + d− θ − 2

2
. (5.39)

In the special case θ = d− z Eq. (5.38) assumes the form

α±1 = 1± (2z − 1). (5.40)

Remark. Note that the above powers are related to powers in hxt by Eq. (5.33) therefore,

α±h =
z + θ − d− 2

2
±
√

(θ + z − d− 2)2

4
+ 2(z + d− θ)(z − 1),

=
z + θ − d− 2

2
± 3z + d− θ − 2

2
.

(5.41)
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In the case θ = d− z this becomes

α±h = −1± (2z − 1). (5.42)

For Eq. (5.35) we note that the diverging factor Eq. (5.38) is not playing a role in the leading
behaviour of Eq. (5.35), therefore the leading order equation for a2,x(r) becomes

eλ2φ̄0∂r

(
r3z−θ+d−3∂rr

α2

)
= ∂r

(
rz−θ+d−1eλ2φ̄∂rr

α2

)
= 0. (5.43)

This implies that

α2 = 0 or α2 = −3z + θ + d+ 4 = θ − z − d+ 2− λ2β, (5.44)

with β =
√

2(d− θ)(−θ/d+ z − 1).

Case 2. α1 = α2, it can quickly be seen that this leads to a contradiction and is thus an
invalid assumption.

We thus see that the integration constants of the near-boundary expansion are associated to
the powers of r determined in Case 1, similar to example performed in Section 3.1.3.

Remark. It can be seen from the linearised equations of motion that the prefactors in Eqs. (5.29)
and (5.30), related to the subleading powers derived in Eqs. (5.41) and (5.44), are indepen-
dent of prefactors related with higher powers in r. In short this is due to fact that they
have no contribution in the leading part of the equation and this only couples to even further
subleading terms in the expansion.

One could next determine all the coefficients in between the leading order and the sublead-
ing order determined above. These coefficients should follow from substituting Eqs. (5.28)
to (5.30) into the linearised equations of motion to obtain constraint equations for each indi-
vidual power in r. For the specific case where θ = d− z a relevant set of constraints is given
by3

ω2eλ1φ0a
(0)
1,x − 2ρ1h

(−2z) = 0,

−2h(−2z) + ρ1a
(−2z)
1,x + ρ2a

(0)
2,x = 0,

(2z − 2)h(0) + ρ1a
(0)
1,x = 0,

(2z)eλ1φ0a
(0)
1,x + ρ1h

(0) = 0,

(2− 2z)eλ2φ0a
(2−2z)
2,x + ρ2h

(0) = 0,

−2zh(2−4z) + ρ1a
(2−4z)
1,x + ρ2a

(2−2z)
2,x = 0.

(5.45)

It was found above that there are five free parameter in the near-boundary expansion (given

below by the different colours, uncoloured means they depend on both a
(s)
2,x and h(0))

3Note that in determining the constraints we used f(r) = 1, while this statement certainly hold for high
orders at lower orders in the expansion the terms containing f will be relevant.
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a1,x(r) = rd+z−θ
(
a

(0)
1,x + a

(θ−d−z)
1,x rθ−d−z + · · ·+ a

(2−d−3z+θ)
1,x r2−d−3z+θ + . . .

)
,

a2,x(r) = a
(s)
2,x + a

(2−2z)
2,x r2−2z + · · ·+ a

(v)
2,xr

3z−θ+d−4 + . . . ,

hxt (r) = r2z−2
(
h(0) + h(2−2z)r2−2z + h(−2z)r−2z + · · ·+ h(2−d−3z+θ)r2−d−3z+θ + . . .

)
.

(5.46)

So in the above boundary expansion we have five free parameters, the holographic dictionary
stated in Chapter 3 gives us that the sources and VEVs are probably given by the free
integration constants of the theory. In the case of the field a2,x we are quite confident that

a
(s)
2,x is the source for conserved current fluctuations δ〈Jx2 〉 and a

(v)
2,x is the vacuum expectation

value of the conserved current fluctuations δ〈Jx2 〉. For hxt it not obvious to determine the right
source and VEV from the holographic dictionary since we have three integration constants
in the expansion. In first instance one would say that h(0) is the source corresponding to the
δ〈T tx〉-component of the fluctuations in the energy-momentum tensor, since it is associated
to the dominant power. Which integration constant in the expansion takes up the role of
the VEV is not clear from the expansion alone. In the next section we take a look at the
unrenormalised second order boundary action relevant for thermoelectric transport. Note
that the fully renormalized boundary action determines the VEV, but the unrenormalized
boundary action might give hints to determine the VEV, just as in Section 3.1.3.

Remark. Note that we obtained four degrees of freedom from the expansion in Case 1, the
fifth degree of freedom is called h(2−2z) in the expansion above. This is a constant shift in
the solution of hxt , it is a degree of freedom since only derivatives of hxt enter in the linearised
equations of motion given in Eqs. (5.24) to (5.26).

Example 5.5.1. In the case θ = d − z, z = 3 and d = 2 the following near-boundary
expansion is found4

a1,x(r) =−
√

3/2e
− 1

2

√
5
3
φ0h(0)r6 −

√
2/3e

1
2

√
5
3
φ0r4

+µa
(s)
2,x

− (1/
√

6)

(
e
− 1

2

√
5
3
φ0r6

+ + (2/3)e
1
2

√
5
3
φ0r4

+µ
2 − (1/12)e

− 1
2

√
5
3
φ0ω2

)
h(0)

+ (1/
√

6)

(
3e

1
2

√
− 5

3
φ0h(−10) − 2e

1
2

√
5
3
φ0r8

+µ
2h(0)

)
r−4 + . . . ,

a2,x(r) =a
(s)
2,x + r4

+µh
(0)r−4 + (1/12)ω2h(0)r−6 + a

(v)
2,xr

−8 + . . . ,

hxt (r) =h(0)r4 + h(−4) − (1/12)

(
12r6

+ + 8e

√
5
3
φ0r4

+µ
2 + ω2

)
h(0) + h(−10)r−6 + . . . .

(5.47)

4The µ2 terms in the above expansion are coming from the the subleading terms in f .
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5.6 The unrenormalised boundary action

The holographic dictionary states that the partition function of the quantum critical field the-
ory and the partition function of classical gravity are equal. Since the second-order perturbed
action determined becomes a boundary action when evaluated on the classical solution, as
stated in Section 5.1, we see that the correlation functions of the quantum field theory can be
extracted form the second order boundary action by the GKPW rule. Thus the holographic
correspondence states that the renormalized boundary action has the form

Sren =

∫
∂M

∑
I

δ〈OI〉δΦI .

Thus in order to identify the correct vacuum expectation values for the system, we thus
need to consider the fully renormalised second order boundary action. Since determining the
correct counterterms in the EMD backgrounds is quite involved and one usually goes to the
Hamilton-Jacobi formalism to determine the counterterms [36–38], we in first instance look
at finite part of the unrenormalized boundary action.
The boundary action relevant for determining thermoelectric transport is given by

δ2S∂M,optical conductivity =

∫
dd+1x

√
−h

{
− 1

2
nρh

µν∇µhρν +
3

4
nρh

µν∇ρhµν − nρhρν∇µhµν

+
1

2
nr
∑
i

eλiφgttgrrai,xh
x
t Fi,rt +

1

2
nr
∑
i

gxxgrreλiφai,xfi,rx

}
.

(5.48)

In the EMD background solution, given in Eqs. (4.9) to (4.11), the above boundary action
reduces to

δ2S∂M,optical conductivity =
1

2Rθ

∫
d2+1x

{
hxt r

2+d−z−θ
[
r
f ′

f
hxt + ((2θ/d) + 2z − 4)hxt − 3r∂rh

x
t

]

−
2∑
i=1

ρiai,xh
x
t + eλiφgxxrθ−z−2ai,xfi,rx

}
.

(5.49)

In terms of the integration parameters of UV expansion (5.46) the above second order bound-
ary action becomes

δ2Sbdy =
1

Rθ

∫
dd+1x

{
divergent terms + κ0h

(0)h(0) + κ1h
(0)h(2−d−3z+θ) + κ2h

(2−2z)h(0)

+ γ1e
λiφ0a

(s)
2,xa

(v)
2,x + subleading terms

}
.

(5.50)

We indeed see that the identified source of current fluctuations a
(s)
2,x couples to a

(v)
2,x, which

may thus be interpreted as the VEV of the current fluctuations as expected. The interpre-
tation of the VEV in the metric expansion is still not fully clear and one probably needs the
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fully renormalized boundary action to determine the correct expression for the VEV. Since
h(2−d−3z+θ) is the only integration constant that couples in a direct manner to the source h(0)

we use this as example of VEV in the next sections.

Remark. The above boundary action is not renormalized, proper renormalization might change
the precise form of the boundary action. Additionally in Appendix B we did not take into
account second-order fluctuations of the Gibbons-Hawking-York boundary term, this in prin-
ciple changes the boundary action too. In spite of these difficulties we may still use the above
boundary action to check our initial guess for the sources and VEVs of the boundary theory
are correct, since they should give finite contributions to the boundary action.

5.7 Critical scaling dimensions of the identified sources and
VEVs in position space

As we have seen in Section 4.3 the physical observables of the EMD model have certain critical
scaling dimensions. If the identifications of the sources and the VEVs in the previous sections
are correct they must obey the scaling dimensions given in Section 4.3. In this section we will
check the critical scaling dimensions of the integration constants given in expansion (5.46) and
check whether they satisfy the critical scaling dimensions derived in Section 4.3. In the next
chapter the critical scaling dimensions of physical sources will be determined, which forms a
check of the identification of the sources.

To recap, in Section 4.3 amongst others the general scaling properties of electrical and heat
currents were discussed under the scaling transformation (4.26) in the presence of an additional
critical scaling exponent Φ, next to z and θ. It turns out that this additional constant is
necessary to capture the right scaling behaviour of the studied EMD model. As argued
in Section 4.3, it is most natural that this additional exponent Φ captures the anomalous
scaling dimension in the charge density operator (4.30)

[n] = d− θ + Φ.

It will be seen in the next chapter (from the conductivity) that in the studied EMD background
the value of the critical exponent Φ must be given by

Φ =
θ

d
+
λ2β

2
. (5.51)

This additional anomalous scaling factor Φ stems from the fact that parameter eλ2φ is not
scale invariant but actually scales according to

eλ2φ0 → λλ2βeλ2φ0 ,

under the scaling transformation5

η : {t,x, r} → {λzt, λx, r/λ}. (5.52)

5In principle we could also rescale in momentum space, which is defined by a Fourier transform. The two
scaling dimension can easily be related by a Fourier transformation.
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As was discussed in Section 4.1 this scaling must additionally be combined with scaling of the
parameter

R→ λR,

to leave the field theory invariant.
Let us start by determining the critical scaling dimensions of the source and VEV of current
fluctuations δ〈Jx2 〉 as determined by the asymptotic expansion of a2,x. As we noted before, the
holographic dictionary gives that the Maxwell field A2 must be dual to a conserved current
〈Jx2 〉 in the boundary field theory. Here we check the scaling dimensions of the source and
VEV of the current δ〈Jx2 〉, as determined by the asymptotic expansion of a2,x. As mentioned
in the beginning of this section, if the identification of the VEV was correct it’s critical
scaling dimension should be the same as the scaling dimension of the electrical current given
in Section 4.3.
Using the scaling properties of the gauge field derived in Section 4.3 it is noted that the
x-component of the gauge field A2 transform like

a2,x(ηx)→ λ−1+Φa2,x(η−1x),

ax2(ηx)→ λ1−Φax2(η−1x).
(5.53)

The scaling of the source a
(s)
2,x in expansion (5.46) is therefore

a
(s)
2,x(x)→ λΦ−1a

(s)
2,x(η−1x). (5.54)

We thus see that the critical scaling dimension of the source a
(s)
2,x is given by

[a
(s)
2,x] = 1− Φ. (5.55)

This is precisely the scaling dimension of an electrical field as derived in Section 4.3. Further-

more under scale transformation Eq. (5.52), the VEV a
(v)
2,x transforms like

a
(v)
2,x(x)→ λ1+θ−z−d−Φa

(v)
2,x(η−1x). (5.56)

It is thus noted that the VEV a
(v)
2,x has scaling dimension

[a
(v)
2,x] = d+ z + Φ− θ − 1, (5.57)

This is exactly the scaling dimension of an electrical current as found in Eq. (4.32), which is
what we expected from the interpretation as a charge current δ〈Jx2 〉.

Example 5.7.1. The critical scaling in Eq. (5.56) was determined from the known scaling
of a gauge field and the scaling of the radial component r (see Section 3.1.3 for an additional
example)

ã
(v)
2,x(x̃)r̃θ−z−d+2+ 2θ

d
−λ2β = λ−1+Φa

(v)
2,x(x)rθ−z−d+2+ 2θ

d
−λ2β

= λ−1+Φa
(v)
2,x(x)rθ−z−d+2−2Φ

= λ−1+Φ+θ−z−d+2−2Φa
(v)
2,x(η−1x̃)r̃θ−z−d+2−2Φ

= λθ−z−d+1−Φa
(v)
2,x(η−1x̃)r̃θ−z−d+2−2Φ,

=⇒ a
(v)
2,x(x)→ λ1+θ−z−d−Φa

(v)
2,x(η−1x).

(5.58)
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Next we determine the critical scaling dimensions of the source and VEV of fluctuations in the
tx-component of the energy-momentum tensor δ〈T tx〉 as determined by the asymptotic expan-
sion of hxt . The source of energy-momentum fluctuations δ〈T tx〉 in the metric expansion (5.46)
is most probably given by the leading term h(0) in the expansion, as discussed in the previous
section. In principle the VEV is everything that couples to the source in the renormalized
boundary action. In this case only hxt

(2−d−3z+θ)(x) is considered since it couples directly to
the source in boundary action (5.49). It is fine to consider only the scaling of hxt

(2−d−3z+θ)(x)
since other terms that couple to h(0) in the boundary should have the same critical scaling
behaviour in order to have a well defined boundary action.
Under scaling transformation (5.52) the metric should scale like

hxt (x)→ λ1−zhxt (η−1x), (5.59)

Under the above scaling transformation the source h(0) thus has to scale as (see e.g. Exam-
ple 5.7.1)

hxt
(0)(x)→ λz−1hxt

(0)(η−1x). (5.60)

Thus the critical scaling dimension of the source h(0), of fluctuations in the tx-component of
the energy momentum tensor δ〈T tx〉, is accordingly given by

[h(0)] = 1− z. (5.61)

Like the source of current fluctuations δ〈Jx2 〉, the interpretation of the scaling dimension of
h(0) will become clear in the next section. Next under the scale transformation in (Eq. (5.52))
the associated VEV scales like

hxt
(2−d−3z+θ)(x)→ λ1−2z+θ−dhxt

(2−d−3z+θ)(x). (5.62)

We thus see that the critical scaling dimension of the VEV δ〈T tx〉 must be given by

[hxt
(2−d−3z+θ)] = d+ 2z − θ − 1. (5.63)

This is exactly the critical scaling dimension of the heat current derived in Eq. (4.32), which
was to be expected since we need δ〈T tx〉 to have the same critical scaling dimension as the
heat current6.
We have thus seen that the identified VEVs in the asymptotic expansion (5.46) exactly scale
as was expected by the scaling analysis performed in Section 4.3.

Check: invariance of boundary action under scale transformations

If the scaling dimensions of the sources and the VEVs determined above are correct than the
second order boundary action should be invariant under the scale transformation (5.52). In
this section we check the scaling of the zeroth order part of the second order boundary action.
Let is first discuss the part of the boundary action in Eq. (5.50) which only depends on the
gauge field a2,x. In the boundary action the source and the VEV must couple like∫

dd+1x a
(s)
2,µ(x)a

(v)µ
2 (x). (5.64)

6This can be seen from the definition of the heat current which is defined as JQ,i ≡ T ti−µJ i. Where T ti is
the ti-component of the energy-momentum tensor, µ the chemical potential and J i is the i-component of the
electrical current.
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Since we know the scaling of the gauge field in the bulk we are able to extract the conformal
scaling behaviour on the field theory side. The scaling of the boundary action is thus given
by

S ′bdy =
1

R′θ

∫
dd+1x′ eλ2φ′0a′(s)x (x′)a

′x(v)
2 (x′)

=
1

λθRθ

∫
dd+1(λz+dx) λθ−z−d−λ2βλλ2βeλ2φ′0a(s)

x (x)a
x(v)
2 (x),

=

∫
dd+1x a(s)

x (x)a
x(v)
2 (x) = Sbdy.

(5.65)

Thus the boundary is scale invariant under the above conformal transformation, which is
precisely what was expected.
Next we consider the scaling behaviour of the second order boundary action while considering
only the metric field hxt . Similar to the previous discussion for the scaling of the identified
VEV in the asymptotic expansion of hxt , we will only check the scaling of the boundary metric
for the term h(0)h(2−d−3z+θ). This is due to the fact that the other terms in the boundary
action should scale in precisely the same way. In the boundary theory the source and VEV
of the metric should couple like ∫

dd+1xh
(s)
xt (x)h(v)xt(x). (5.66)

The scaling of the boundary action is thus given by

S ′bdy =
1

R′θ

∫
dd+1x′h

′(s)
xt (x′)h′(v)xt(x′) =

1

Rθ
1

λθ

∫
dd+1(λz+dx)h

(s)
xt (x)λ−2zh(v)xt(x),

=
1

Rθ
1

λθ
λd−z

∫
dd+1xh

(s)
xt (x)h(v)xt(x),=

1

Rθ
λθ

λθ

∫
dd+1xh

(s)
xt (x)h(v)xt(x)

=
1

Rθ

∫
dd+1xh

(s)
xt (x)h(v)xt(x) = Sbdy.

(5.67)

Again the boundary action is scale invariant as expected.
So we find that the zeroth order boundary action is invariant under rescaling (5.52) as ex-
pected.
In this section we looked at the critical scaling dimensions of the identified sources and VEVs
in the asymptotic expansion found in Section 5.5. We found that the identified VEVs scale

as was expected from general scaling argument given in Section 4.3. We found that a
(v)
2,x has

the scaling dimension of an electrical current, which strengthens the interpretation of a
(v)
2,x as

the VEV δ〈Jx2 〉. We did not find a closed expression for the VEV δ〈T tx〉, since the three terms
κ0h

(0)h(0), κ1h
(0)h(2−d−3z+θ) and κ2h

(2−2z)h(0) enter in the second order boundary action and
renormalization might change the relative factor between these three constants of integration
h(0), h(2−d−3z+θ) and h(2−2z) in the boundary action, which act as the VEVδ〈T tx〉. So probably
the renormalised boundary action is needed to determine the precise VEV δ〈T tx〉. We did find
that hxt

(2−d−3z+θ) has the same critical scaling dimension as the heat current, which is to
be expected from the VEV δ〈T tx〉. This means that the identification of h(0) as the source
probably is correct.

Remark. Note that scale transformation (5.52) also means R→ λR and eλ2φ0 → λλ2βeλ2φ0 .
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5.8 Scaling of Green’s function

At the start of this chapter we described that to capture the dynamics of the quantum crit-
ical field theory one needs to be able to determine the Green’s functions of the field theory.
In Section 5.1 it was also explained how to calculate these Green’s functions in a holographic
context. In this section we take a look at the scaling behaviour of the current-current corre-
lation function Gxx(ω) = 〈δJx2 δJx2 〉 = δ〈Jx2 〉/δa2,x. We treat this Green’s function, since this
(as will be seen later) determines the conductivity of the material.
One is able to obtain the scaling of the various parts of the Green’s function, by considering
the scaling of the associated source and VEV. Here as already mentioned the scaling of Gxx(ω)
is considered. The scaling behaviour of the different sources and VEVs in position space were
given in Section 5.7, this is related to the scaling behaviour in momentum space by a Fourier
transformation

ã(k̃) =

∫
dd+1x̃ ã(x̃)e−ik̃x̃ =

∫
dd+1(λd+zx) λ−∆a(x)e−ikx = λd+z−∆a(k). (5.68)

The behaviour of the Green’s function Gxx(ω) under scale transformation Eq. (5.52) is there-
fore given by

G̃x̃x̃(ω̃) ∼
ã

(v)
x̃ (ω̃)

ã
(s)
x̃ (ω̃)

∼ λ1+θ−z−d−Φ

λ−1+Φ

a
(v)
2,x(ω)

a
(s)
2,x(ω)

∼ λ2+θ−z−d−2ΦGxx(ω), (5.69)

with Φ = θ
d + λ2β

2 . It is thus found that for large frequencies Gxx asymptotically scales as

Gxx ∝ ω
d+z−θ−2+2Φ

z . (5.70)

This scaling will be used to describe the asymptotic behaviour of the optical conductivity in
the next section. The scaling dimensions of other components of the Green’s function can be
obtained using a similar procedure.

5.9 Summary

This was quite a technical chapter. We have seen in the previous chapter the black-hole
solution of the considered EMD model gives the thermodynamic equilibrium properties of the
model. In order to extract the dynamical properties of the EMD model one has to introduce
dynamical fluctuations on top of the equilibrium background solution. We started this chapter
with a general discussion on how to introduce dynamical fluctuations into the system and how
to extract the correlations functions (Green’s functions) from the introduced fluctuations.
In Section 5.3 we discussed the equations of motion for these dynamical fluctuations, of which
the ones relevant for thermoelectric transport were discussed in Section 5.4. We continued
by determining the near boundary asymptotic expansion for the relevant set of equations
in Section 5.5. The asymptotic expansion is important since by te holographic dictionary
stated in Chapter 3, the near-boundary expansion determines the sources and the VEVs of
the field theory in terms integration constants in the asymptotic expansion. In the remaining
part of this chapter we gave the unrenormalised boundary action and looked at the scaling
behaviour of the identified sources and VEVs in Section 5.5. It turned out that the sources
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and VEVs had the same scaling behaviour as was derived in Section 4.3. In the end we could
properly identify the source and VEV for the electrical current, while to determine the source
and VEV for heat transport one probably needs the renormalized boundary action. Lastly we
consider the behaviour of the current-current correlation function under scale transformation,
from which we could deduce the asymptotic behaviour of the Green’s function. This will
be useful in the next section where we look at te optical conductivity of the studied EMD
model.



Chapter 6

Thermoelectric Transport of the
EMD model

As stated previously we are trying to use the Einstein-Maxwell-dilaton described in Chapter 4
as a model for the strongly correlated strange metallic phase. In Chapter 4 we looked at the
equilibrium properties of the model, such as the entropy, temperature and the DC resistivity of
the metal. Additionally it had been discussed that, in order for the model to have the famous
linear resistivity w.r.t. temperature of the strange metallic phase, we needed to restrict the
possible choices of the critical exponents z and θ . The previous chapter was spend on setting
up the necessities to start determining the dynamical properties of the EMD model. The goal
of this section is to use the machinery that was setup in the previous chapter to determine
the thermoelectric transport properties of the studied EMD model. In specific we consider
the AC conductivity of the EMD model.

This chapter is organized in the following way, we start with a brief general discussion of
thermoelectric transport in metals. Next in Section 6.2 we discuss how to incorporate an
electrical field and a temperature gradient into the holographic description of the strongly
coupled field theory. Finally in Section 6.3 the conductivity of the studied EMD model is
discussed, we will see that the imaginary part of the conductivity behaves unexpected and
might make this model unsuitable for describing the strange metallic phase.

6.1 Thermoelectric transport

Usually, in in condensed-matter systems, electric and thermal transport couple together. We
are interested in response of the electrical current and the heat current to an applied external
electric field E and a temperature gradient −∇T . In general the thermoelectric conductivities
are given by the following relation(

J i

JQ,i

)
=

(
σij Tαij
T ᾱij Tκij

)(
Ej
−∇TT

)
. (6.1)

In the above JQ is the heat current

JQ,i ≡ T 0i − µJ i. (6.2)

49
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The coefficients in matrix (6.1) are thus defined as the responses to an external electric field
and temperature gradients. One directly sees that σ gives the conductivity of the material
since this is given by the response of the electrical current to an electrical field1. The resistivity
of the material is defined as the the inverse of the conductivity, thus ρ = σ−1. Response
matrix (6.1) gives rise to various thermoelectric transport coefficients used in condensed matter
literature. Let us give a few example of transport coefficients one could extract using the
response matrix (6.1). The Seebeck coefficient for example is the ratio of the voltage drop to
the temperature drop

Sij = (σ−1)ikαkj . (6.3)

The thermal conductivity governs the transport of heat in the absence of electrical currents
and is therefore given by

κ̄ij = κij − T ᾱik(σ−1)klαlj . (6.4)

Since our setup is isotropic in both spatial dimensions, all the conductivity coefficients are
diagonal and it is thus sufficient to consider a single direction to determine them.

With this at hand we can now start to look at determining these transport coefficients in
a holographic setting and hopefully start describing the strongly correlated strange metallic
phase using the studied EMD model.

Remark. Practically, one would not directly determine matrix (6.1) in holography using the
method described in Section 5.2, but rather first determine(

J i

T 0i

)
=

(
σij Tαij
T ᾱij Tκij

)(
Ej
−∇TT

)
(6.5)

and compute the transport matrix (6.1) from here.

6.2 Adding an electrical field and temperature gradient in
holographic models

Above we defined the responses of the electrical and the heat current w.r.t. to an external
electric field and a temperature gradient. To be able to determine these responses for the
strongly coupled quantum field theory described by the EMD background, we must be able to
include an electric field and and temperature gradient in the holographic calculations. In this
section we discuss how to describe an external electric field δE and a temperature gradient
−(∇T )/T in holographic calculations at zero momentum. We will describe a uniform electric
field δE and a uniform temperature gradient −(∇T )/T , which are frequency dependent.

Introducing an electrical field into the holographic model is done by imposing it through
an external gauge field. Recall that the x-component of an electric field is given by δEx =
δF2,xt = ikxδA2,t + iωδA2,x. We thus see that in the zero momentum limit (kx → 0) an
electrical may be imposed through an external gauge field by

δA2 =
1

iω
δEx. (6.6)

1We must emphasize here that electric or charged means nonzero density in this case, since we did not
include Coulomb interactions into the holographic picture.
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Introducing a temperature gradient into our system is a bit more involved see e.g. Ref. [10,
Section 5.3] which will be followed here. A nice way to introduce a temperature gradient to
our system is to Wick transform to Euclidean time and consider the rescaled coordinate t̃

t =
t̃

T
, (6.7)

where t̃ has periodicity t̃ ∼ t̃ + 1. In the new coordinate the time component of the metric
becomes

gt̃t̃ =
1

T 2
gtt. (6.8)

Imposing a temperature gradient T → T + xi∇iT we find

gt̃t̃ =
1

T 2

(
1− 2xi∇iT

T
+ . . .

)
gtt. (6.9)

A constant temperature gradient thus gives

δgt̃t̃ = −2e−iω̃t̃

T 2

xi∇iT
T

gtt, (6.10)

with ω̃ = ω/T . Next we perform a coordinate transformation

t̃→ t̃+ ξ t̃, ξ t̃ = ixi
∇iT
T

e−iω̃t̃

ω̃
. (6.11)

Where the effect of the coordinate transformation is given by

aµ → aµ − LξAµ = aµ − ξν∂νAµ − (∂µξ
ν)Aν

= aµ − ξν∇νAµ − (∇µξν)Aν ,

hµν → hµν − Lξgµν = hµν − ξν∂νgµν − (∂µξ
λ)gλν − (∂νξ

λ)gλµ

= hµν −∇µξν −∇νξµ.

(6.12)

Using Eq. (6.12) it is seen that the change in coordinates (6.11) leads to

δgt̃t̃ = 0, (6.13)

δgt̃x = −(∂xξ
t̃)gt̃t̃ = i

∇xT
T

e−iω̃t̃

ω̃
gt̃t̃ = i

∇xT
T

e−iω̃t̃

ω̃T 2
gtt, (6.14)

δAi,x = i
∇xT
T

e−iω̃t̃

ω̃
At̃ = i

∇xT
T

e−iω̃t̃

T ω̃
At. (6.15)

Transforming back to our normal time coordinates one obtains

δgtx = −∇xT
T

e−iωt

iω
gtt, (6.16)

δAi,x = −∇xT
T

e−iωt

iω
At. (6.17)
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On the boundary of the hyperscaling violating gravitational theory δgxt and δAx assume the
following form2

δgxt (r =∞) = −r2z−2∇xT
T

e−iωt

iω
, (6.18)

δA2,x(r =∞) = −∇xT
T

e−iωt

iω
µ, (6.19)

δA1,x(r =∞) = −∇xT
T

e−iωt

iω
A1,t(t). (6.20)

It is thus seen that an electrical field may be sourced through the integration constant a
(s)
2,x

and a temperature gradient is sourced through integration constants h(0) and a
(s)
2,x.

Remark. In principle one could argue that we did not take into account Eq. (6.20). In fact we
did since the asymptotic expansion of a1 contains no free integration constants, this equation

just gives that a
(0)
1,x ∼ h(0) sources a temperature gradient. This what we already stated above.

Check of the identification of the sources and VEVs using critical scaling dimen-
sions

If the equations Eqs. (6.18) and (6.19) are correct than the critical scaling dimensions of the
integration constants at the orders in the asymptotic expansion suggested by Eqs. (6.18)

and (6.19) must have the same scaling dimensions as ∇xTT
e−iωt

iω . Let’s check that here.

From Eq. (4.27) it is seen that ∇xTT
e−iωt

iω has the following scaling units[
∇xT
T

e−iωt

iω

]
= 1− z. (6.22)

It was seen in Section 5.4 that the source h(0) in metric expansion (5.46) is precisely the
coefficient corresponding to the power r2z−2. In Section 5.7 it was seen that the critical
scaling dimension of h(0) is given by

[h(0)] = 1− z. (6.23)

Which is the same scaling dimension as that of ∇xTT
e−iωt

iω as expected.

For the gauge field A2 the source a
(s)
2,x in expansion (5.46) has scaling dimension

[a
(s)
2,x] = 1− Φ. (6.24)

The scaling dimension of ∇xTT
e−iωt

iω µ follows from Eq. (4.33)[
∇xT
T

e−iωt

iω
µ

]
= 1− Φ. (6.25)

2If we perturb the boundary action with Eqs. (6.6) and (6.18) to (6.20) we find

δS =

∫
∂M

dd+1x

{
Tµνδgµν +

2∑
i=1

Jµi δAi,µ

}
=

∫
∂M

dd+1x

{
JQ,x

iω

−∇T
T

+
Jx2
iω
δEx

}
, (6.21)

where JQ,x = T tx − µ2J
x
2 − µ1J

x
1 .
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This precisely coincides with the scaling dimension of the source a
(s)
2,x.

So it seems that the powers of r in Eqs. (6.18) and (6.19) are correct since they lead to the
correct scaling behaviour.

6.3 Optical conductivity

The optical conductivity of a system is the linear response to a small external electric field

J i = σijEj , (6.26)

where J is the electrical current and E an electric field. To determine the optical conductivity
in holography we need to know the response of the current Jx with respect to an external
electric field. As we have seen in the previous section an electrical field is imposed through
an external gauge field δA2 = (1/iω)δEx. In linear response the response of the current Jx2
expectation value to a small perturbation is given by

δ 〈Jx〉 = Gxxδax. (6.27)

Using that δEx = iωδAx in the zero momentum limit (k → 0), one finds

δ 〈Jx〉 =
Gxx

iω
δEx. (6.28)

It is thus found that the frequency dependent optical conductivity is given by

σ(ω) =
Gxx

iω
. (6.29)

Since the operator δ〈Jx2 〉 does not decouple from for instance the xt-component of the energy-
momentum tensor δ〈T xt〉, we need to solve a matrix problem as discussed in Section 5.2,
in order to determine the optical conductivity of the studied EMD model. In Section 5.2
it was explained how one could obtain the matrix Green’s function (6.5) by determining the

sources {a(s)
2,x, h

(0)} and VEV’s {a(v)
2,x, h

(2−d−3z+θ)}3in the near boundary expansion for infalling
boundary conditions for several initial conditions. The Green’s function matrix is therefore
determined by (

a
(s),1
2,x h(s),1

a
(s),2
2,x h(s),2

)(
Gxx Gxh

Ghx Ghh

)
=

(
a

(v),1
2,x h(v),1

a
(v),2
2,x h(v),2

)
, (6.30)

where 1 and 2 on the different sources and VEV’s stand for the linearly independent solutions
of the linearised equations of motion. We obtained the above Green’s function by solving
the linearised equations of motion in Eqs. (5.24) to (5.26) numerically for infalling boundary
conditions and extracted the integration constants from the asymptotic behaviour for two
linearly independent initial conditions.
The real and imaginary part of the optical conductivity for several temperatures in the
case4θ = d − z, z = 3 and d = 2 are shown in Figs. 6.1 and 6.2. Where as explained

3One could argue that h(2−d−3z+θ) is not the full vacuum expectation value δ〈T xt〉 and we’re thus not
determining the matrix Green’s function given in Eq. (6.5). That is correct and the reason why we are only
focussing on the optical conductivity here. We are determining the linear response of h(2−d−3z+θ) here though,
which gives in important contribution to the xt-component of the energy-momentum tensor δ〈Txt〉.
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around Eq. (6.29) the AC optical conductivity was obtained from Green’s function (6.30) by
σ(ω) = Gxx/iω.
The real part of the conductivity is the part that is most directly measured, it may be inter-
preted as the inverse resistivity which quantifies how strongly a material resists or conducts
electric flow at a given frequency. The imaginary part of the conductivity describes the
response of the current by an applied electric field and is thus the reactive part.
Since the conductivity is a retarded Green’s function (6.29) and thus analytic in the upper
half plane, the real and imaginary part of the conductivity should thus related by the Kramer-
Kroning relations5

Re[GR(ω)] =
1

P

∫ ∞
−∞

Im[GR(ω′)]

ω′ − ω
, (6.31)

Im[GR(ω)] = − 1

P

∫ ∞
−∞

Re[GR(ω′)]

ω′ − ω
, (6.32)

where P denotes the Cauchy principle value.
Let us first discuss the expected asymptotic behaviour of the conductivity. Note that, the
frequency dependence of the Green’s function Gxx(ω) was determined in Section 5.8. Using
the expression of the conductivity in term of the Green’s function (6.29) one finds that the
optical conductivity asymptotically behaves like

σ(ω) ∼ ω
d−θ−2+2Φ

z ,

for large frequencies. This behaviour is indeed asymptotically seen in the numerically deter-
mined optical conductivities.
Let’s start by discussing the real part of the conductivity in Fig. 6.1, for large temperatures
T � µ we see that the presence of the chemical potential is not seen and the conductivities
quickly converge to their expected asymptotic scaling. Note that although it may seem that
the real part of all the conductivities in Fig. 6.1 are quite featureless, zooming in on the low
temperature solution (so where T � µ) in Fig. 6.3 shows that the conductivity first decreases
before it increases. This is most likely a feature of the chemical potential.
The most surprising figure is the figure for the imaginary part of the conductivity given
in Fig. 6.2, one would expect the imaginary part of the conductivity to behave like 1/ω for
small values of ω, since this is what is expected in systems where there is momentum con-
servation. Normally the 1/ω dependence of the imaginary part of the conductivity gives rise
to a delta peak at zero frequency in the real part of the conductivity, which is demanded by
the Kramers-Kronig relations. Normally this delta-peak in the real part of the conductivity
broadens when translational invariance is broken, by for instance a lattice [40], and becomes

4These values of z and θ were chosen since they give rise to linear scaling of the resistivity with temperature
as discussed in Section 4.1.1. The dimension of d = 2 was chosen, since the metallic phase mostly occurs as
the metallic phase in cuprate superconductors, which are effectively two dimensional. Additionally we chose
z = 3 and θ = −1, since this number was already large enough to see non-trivial behaviour due to the critical
exponents z and θ, while still small enough to make numerical predictions.

5A condition for the above Kramers-Kronig is that the Green’s function vanishes for |ω| → ∞. This is not
the case for our Green’s function and we need to introduce a modified Green’s function δGR that does satisfy
the condition. In Ref. [39] e.g. δGR(ω) ≡ GR(ω, T )−GR(ω, 0) was considered. For our purposes something it is
probably more useful to subtract the asymptotic behaviour of the Green’s function, since we’re only interested
in using this relation for small frequencies here.
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similar to a Drude-peak. This this Drude peak like initial decay of the real part of the con-
ductivity with the frequency ∼ ω−2/3 is observed in strange metals [41]. Since the imaginary
part of the conductivity in Fig. 6.4 does not have the typical 1/ω, it’s likely that the real
part of the conductivity does not have a delta-peak at zero momentum. As discussed, since a
Drude-like peak is observed in strange metals, it is important to understand why there is no
delta peak in the studied model.

In the next section we like to give a short discussion of why the delta peak is absent in this
particular EMD model, where we note that this is still work in progress so the arguments not
complete yet.

Remark. It turned out that numerically determining the values of the sources and VEV’s for
large values of z and −θ was quite a challenge. The reason for this is that for large z and large
negative values of θ (see Section 4.1.1) the powers of r in the near boundary expansion (5.46)
associated to the VEV’s in the quantum critical field theory become increasingly large. For
instance to determine the VEV’s for the case z = 3, θ = −1 and d = 2, one already needs
to obtain correct fit up to eighth order in r w.r.t. the numerically obtained solution for the
linearised equations of motion. Furthermore this order keeps increasing in steps of four as one
keeps increasing the value of z and accordingly θ. In the end we managed to determine the
Green’s function for the case where z = 3, θ = −1 and d = 2, which already turned out to be
quite non-trivial. If one likes to go to even larger values of z and −θ, the numerical precision
most probably needs to be improved.

6.3.1 A hydrodynamic discussion of the absence of the delta peak

This discussion is still work in progress, which means that the arguments given are not com-
plete yet. We have just discussed the absence of the 1/ω behaviour in Fig. 6.2 and how this
likely leads to the absence of an delta peak at zero frequency in the real part of the conductiv-
ity. Let us first discuss what actually happens if the gauge field A1 is switched off. This can
easily be done by setting a1 to zero in the linearised equations of motion, but it is an incorrect
procedure since it does not take into account the back reaction of the field a1 on the metric
and the gauge field a2. Doing so anyway gives a conductivity of which the imaginary part is
shown in Fig. 6.4. We thus see the 1/ω behaviour is present, giving rise to a delta peak at
zero frequency in the real part of the conductivity. So, we can infer that back-reaction of the
gauge field a1, on the metric and the gauge field a2, kills the delta peak at zero frequency. In
first instance one would think the absence of the delta peak means that momentum conserva-
tion is broken. This is not the case since the system under consideration is still translational
invariant, from Section 3.3 and Appendix A.2 one finds that due to translational invariance
the following relation must hold

∂µT
µ
ν +

2∑
i=1

Fi,µνJ
µ
i = 0. (6.33)

Specifically for the hyperscaling violating background Eqs. (4.9) to (4.11) the above equation
up to first order in the zero momentum limit (k → 0) becomes

∂tT
t
x = δExρ2 + iωδa1,xρ1. (6.34)
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Figure 6.1: The real part of the conductivity for several temperatures is plotted against the
frequency of the external electrical field. To make the axes dimensionless σ/µ′ξ and ω/µ′ are

considered, where µ′ = µ
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Let us first discuss the hydrodynamic transport causing the delta peak in the usual case for
a single gauge field. In the case of a single gauge field translational invariance would give

∂tT
t
x = Exρ. (6.35)

As described in Ref.[10, Section 5.4.3] there is an additional relation between current and
generalised momentum

Jx ∼ cT tx + . . . , (6.36)

with c a constant zeroth order in frequency. It is claimed that Eqs. (6.35) and (6.36) give rise
to the presence of the delta peak in the real part of the conductivity, since now

Jx ∼ cT tx =
cExρ

iω
, (6.37)

thus the conductivity seems to have a part that scales like 1/iω

σ(ω) ∼ cρ

iω
.

This by the Kramers-Kronig relation gives rise a a delta function at zero frequency in the real
part of the conductivity, such that the conductivity is given by

σ(ω) ∼ cρ
[

1

iω
+ πδ(ω)

]
+ . . . .

In the particular EMD model that is studied throughout this thesis it seems that there is
no relation like Eq. (6.36) but rather than a constant term the lowest-order prefactor is first
order in frequency

Jx2 ∼ ωT tx + . . . , (6.38)

this actually kills the delta peak. All in all still a lot has to be understood in this section, for
instance the meaning of the field a1,x in the momentum equation (6.34) is not fully understood.
Additionally it is still unclear why the current in Eq. (6.38) is no longer at lowest order in ω
scaling with the momentum T tx but as frequency times momentum ωT tx.

6.4 Summary

We started this section with a short introduction into thermoelectric transport in condensed-
matter systems. In order to describe thermoelectric transport in holographic calculations
we need to know how to treat an electric field and a temperature gradient in a holographic
setting, which was done in Section 6.2. We found that an electric field is introduced by
imposing through in an external gauge field using Eq. (6.6). Additionally it was found that
an temperature gradient could be introduced in the holographic description by perturbing the
metric and the gauge fields simultaneously with Eqs. (6.18) and (6.20). Next in Section 6.3
we discussed the optical conductivity of the EMD model that was studied in this thesis. A
striking feature was the absence of the 1/ω behaviour in the imaginary part of the conductivity
near zero frequency. Normally this behaviour reveals the existence of an zero frequency delta
peak in the real part of the conductivity, by the Kramer-Kronig relations. Normally this peak
gives rise to a Drude-like peak when momentum conservation is broken and this Drude peak
is observed in strange metals [41]. It is thus important to find out why this peak is absent in
the studied EMD model. In the last part of this chapter we discussed a possible reason for
the absence of the delta peak.
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Chapter 7

Discussion and Outlook

7.1 Conclusion

In this thesis we studied an Einstein-Maxwell-dilaton model, as a description of a strongly
interacting field theory using the holographic principle. The hope was that this particular
EMD model could be used to model the strange metallic phase, which is a strongly correlated
state of matter that for instance occurs as the metallic state of high-Tc superconductors.

In the first chapter of this thesis we gave a short introduction into the physics of ordinary
metallic states and briefly discussed Fermi liquid theory. Additionally we introduced what
the strange metallic phase is, discussed why it can’t be described using Fermi liquid theory
and why it might be useful to consider the strange metallic phase from a holographic point
of view.

In the succeeding chapter the background to start using the holographic correspondence as a
computational device has been treated.

From Chapter 4 onwards the specific EMD model given in [42] was studied. The reason to
study such a EMD model is that it gives rise to a hyperscaling violating geometry. Such a
hyperscaling-violating geometry is characterised by two additional critical exponents z and θ,
these are the Lifshitz critical exponent and the hyperscaling-violating critical exponent re-
spectively, which change the effective scaling dimensions of the theory. Thus we consider such
an EMD model since it might be able to capture the physics of the strange metallic phase a
bit better than certain minimal models do, due to additional degrees of freedom z and θ.

In Chapter 4 we discussed the equilibrium properties of the EMD model under consideration.
Furthermore by considering the DC resistivity we could restrict the number of possible values
of the critical exponents z and θ by claiming the resistivity must obey the observed linear
scaling w.r.t. temperature in strange metals.

In the succeeding chapters the dynamical properties of the studied EMD model were discussed.
Starting with Chapter 5, this chapter starts with a general discussion on how to calculate the
dynamical correlation functions in terms of the gravitational bulk fields. In the second part of
this chapter we set up the necessities to start determining the dynamical correlation functions
of the EMD model under consideration.

In the final chapter thermoelectric transport was discussed. Using the setup of the previous
chapter the optical conductivity of the studied EMD model could be determined numerically.

Here the optical conductivity for the case z = 3, θ = −1 and d = 2 has been determined, these
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values of z and θ were chosen to satisfy linear scaling with temperature of the DC resistivity
observed in strange metals. While the real part of the conductivity seemed to behave as
expected. The imaginary part of the conductivity seemed a bit peculiar, since one would
expect it to behave like 1/ω for small values of ω. This was actually absent in the behaviour
of the imaginary part of the conductivity. This 1/ω scaling is namely crucial since it predicts
the presence of a zero frequency delta peak in the real part of the conductivity. This delta
peak is as discussed in Chapter 6 becomes a Drude peak when translational invariance is
broken. This Drude peak is actually observed in strange metals. It is thus important to find
out why this peak is absent in the studied EMD model.

7.2 Discussion and Outlook

To study the dynamics of the system, dynamical fluctuations on top of the hyperscaling-
violating background were considered. To treat these dynamical fluctuations we expanded the
full action up to second order, where minimizing this action gives us the linearised equations
of motion. This perturbative expansion works well when the fluctuations are small compared
to the background solution. It might be that the perturbative assumption breaks down in
certain regions of the bulk spacetime.

In Section 5.4 we used the unrenormalised boundary action to identify the source and VEV’s
of the system. Renormalization changes the precise form of the boundary action, this might
lead to an altered vacuum expectation value.

Additionally note is that the dynamics in this thesis, have been determined using linear
response.

In Chapter 4 we derived an relation for the DC resistivity of the studied EMD model as a
function of temperature. We found that the DC resistivity of the EMD model has to scale with

temperature like ρ ∼ T
d−θ
z . Doing so we used that the resistivity in the hydrodynamic regime

is proportional to the viscosity of the ”fluid”. By performing an independent calculation for the
DC conductivity following [10, Section 3.4.2] the following DC conductivity was found1σDC ∼
T (d+2Φ−θ−2)/z. Since the resistivity and the conductivity are related by ρ = σ−1, it seems
that the two calculations do not go together at first notice. So one could in the future try to
understand why these two calculations give different predictions for the conductivity.

An essential future direction is determining the renormalized boundary action of the theory,
there are already several papers who are renormalizing similar backgrounds e.g. Refs. [38, 43].
Note that the renormalization of these Lifshitz and hyperscaling-violating backgrounds is
mostly done in the Hamilton-Jacobi formalism [37].

Additionally it is interesting to find out why the conductivity of the particular model used
in this thesis does not have a delta peak at zero frequency. We already showed that this
quite likely has to do with back-reaction of the additional gauge field, since the conductivity
without the back-reaction of the additional gauge field does have the zero frequency delta
peak.

Once the renormalized boundary action is determined the thermodynamic transport coeffi-
cients should also be quickly obtainable, since the VEV δ〈T xt〉 is determined then.

In the future one may like to consider the limit z →∞ and θ → −∞, where θ/z = η, since it
has interesting physical properties and vanishing ground state entropy. In order to consider

1This calculation was performed on short notice and thus not checked for correctness.
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this limit, it will be useful to consider coordinate transformation of the form (or something
similar)

r̃ = rθ/d−1, t̃ =

(
θ − d
d

)
t, ~̃x =

(
θ − d
d

)
~x.

Using the above coordinate transformation the metric transforms to(
θ − d
d

)2

ds̃2 =

(
−r̃−2(θ−dz)/(θ−d)f̃(r̃)dt̃2 +

r̃(−4θ+2d)/(θ−d)dr̃2

f̃(r̃)
+
d~̃x2

r̃2

)
.

The advantage is that in the above coordinates one might be able to consider the limit z →∞,
with θ/z = η fixed, before doing the numerical calculations. In Refs.[44, 45] something similar
has already been done for the zero-temperature case.
Lastly, one could add coulomb interactions to the system by means of a double trace defor-
mation. This has already been for other backgrounds in Refs. [35, 46].
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Appendix A

Analytic Solution
Einstein-Maxwell-Dilaton Model

A.1 Einstein-Maxwell-Dilaton Model

We will start with the minimal model given in Ref. [42]

S = − 1

16πG

∫
dd+2x

√
−g

[
R− 1

2
(∂φ)2 + V (φ)− 1

4

2∑
i=1

eλiφF 2
i

]
, (A.1)

Where we consider the following potential

V (φ) = V0e
γφ. (A.2)

Equations of motion

To determine the equations of motion we first need

det (g + δg) = exp [tr log(g + δg)]

= det(g) exp
[
tr log(I + g−1δg)

]
= det(g) exp

[
tr g−1δg

]
= det(g) (1 + gµνδgµν)

= det(g) (1− gµνδgµν) ,

(A.3)

which implies

δg = ggµνδgµν = −ggµνδgµν . (A.4)

This now gives the following result

δ
√
−g = −1

2

1√
−g

δg =
1

2

√
−ggµνδgµν = −1

2

√
−ggµνδgµν . (A.5)
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Also note that R = Rµνg
µν . The equations of motion for the bulk part of A.1 are thus given

by

Rµν −
1

2
(∂µφ)(∂νφ)− 1

2

2∑
i=1

eλiφFi µλF
λ

i ν =
1

2
gµν

[
R− 1

2
(∂φ)2 + V (φ)− 1

4

2∑
i=1

eλiφF 2
i

]
,

∇2φ = −∂V (φ)

∂φ
+

1

4

2∑
i=1

λie
λiφF 2

i , ∇µ
(√
−geλiφFµνi

)
= 0.

(A.6)

Taking the trace of the first term of Eq. (A.6) we obtain

d

[
R− 1

2
(∂φ)2

]
+ (d+ 2)V (φ)− (d− 2)

1

4

2∑
i=1

eλiφF 2
i = 0

=⇒
[
R− 1

2
(∂φ)2

]
= −(d+ 2)

d
V (φ) +

(d− 2)

d

1

4

2∑
i=1

eλiφF 2
i

(A.7)

Plugging Eq. (A.7) back into Eq. (A.6) we obtain

Rµν −
1

2
(∂µφ)(∂νφ)− 1

2

2∑
i=1

eλiφFi µλF
λ

i ν =
1

2
gµν

[
−2

d
V (φ)− 1

2d

2∑
i=1

eλiφF 2
i

]
,

∇2φ = −∂V (φ)

∂φ
+

1

4

2∑
i=1

λie
λiφF 2

i , ∇µ
(
eλiφFµνi

)
= 0.

(A.8)

Let us now follow [42] by making the following ansatz for the metric, scalar and guage fields

ds2 = r2α

(
−r2zf(r)dt2 +

dr2

r2f(r)
+ r2d~x2

)
, φ = φ(r), Firt 6= 0. (A.9)

Solving Gauge fields

Using the Maxwell equations of motion we see

√
−g ∇µ

(
eλiφFµνi

)
=
√
−g ∂µ

(
eλiφFµνi

)
+
√
−geλiφ

(
ΓµµλF

λν
i + ΓνµλF

µλ
i

)
= ∂µ

(√
−geλiφFµνi

)
= 0,

(A.10)

in the third line we used Γµµλ = 1√
−g∂λ

√
−g. For the ansatz of our metric given in Eq. (A.9)

we have √
−g = r(d−1)+z+(d+2)α.

Plugging this back into Eq. (A.10) we obtain the following expression for Firt

∂r

(√
−ggrrgtteλiφFirt

)
= −∂r

(
r(d−2)α−z+(d+1)eλiφFirt

)
= 0, (A.11)

=⇒ Firt = e−λiφr(2−d)α+z−(d+1)ρi. (A.12)
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Solving the Dilaton field

By combining the tt and rr components of the Einstein equations the following result is
obtained

Rtt −Rrr = −1

2
grr(∂rφ)2. (A.13)

Using the metric ansatz (A.9) we get

Rtt −Rrr = −d(1 + α)(α+ z − 1)e−2αf(r). (A.14)

This implies

−r2−2α(∂rφ)2f(r) = −2d(1 + α)(α+ z − 1)e−2αf(r),

=⇒ (∂rφ)2 =
2d(1 + α)(α+ z − 1)

r2
.

(A.15)

This implies the solution of φ is given by

φ = φ0 ± log(r)
√

2d(1 + α)(α+ z − 1), (A.16)

which is equivalent to

eφ = eφ0r±
√

2d(1+α)(α+z−1) = eφ0rβ. (A.17)

Note that this solution is only well defined for d(1 +α)(α+ z− 1) ≥ 0. This condition follows
from the null energy condition, which implies

Tµνζ
µζν ≥ 0,

where ζµζ
µ = 0. Choosing ζµ = (

√
−gtt,

√
grr, 0), the null energy condition for action A.1

gives

Tµνζ
µζν ∝ Rµνζµζν = Rrr −Rtt = d(1 + α)(α+ z − 1)e−2αf(r) ≥ 0 (A.18)

=⇒ d(1 + α)(α+ z − 1) ≥ 0. (A.19)

Finding the metric

To find the metric for this system we use the ansatz for the metric given in Eq. (A.9). For
this metric ansatz the xx components of the Ricci tensor are given by

Rxx = −(α+ 1)r−α(d+2)−z−d+1 ∂r

(
rd(α+1)+zf(r)

)
. (A.20)

Thus the Einstein equations of motion Eq. (A.8) become

∂r

(
rd(α+1)+zf(r)

)
=
rα(d+2)+z+d−1

2(α+ 1)

[
2

d
V (φ) +

1

2d

2∑
i=1

eλiφF 2
i

]

=
rα(d+2)+z+d−1

2(α+ 1)

[
2V0e

γφ

d
+

1

2d

2∑
i=1

eλiφ
(
2grrgttF 2

irt

)]

=
rα(d+2)+z+d−1

(α+ 1)

[
V0e

γφ

d
− 1

2d

2∑
i=1

e−λiφρ2
i r
−2d(α+1)

]

=
rα(d+2)+z+d−1

(α+ 1)

[
V0e

γφ0rγβ

d
− 1

2d

2∑
i=1

e−λiφ0ρ2
i r
−2d(α+1)−λiβ

]
(A.21)
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Note that we inserted Eqs. (A.12) and (A.17) and made use of the ansatz φ = φ(r), Firt 6= 0.
Eq. (A.21) can be integrated out to yield(

rd(α+1)+zf(r)
)

=−m+
V0e

γφ0rα(d+2)+z+d+γβ

d(α+ 1)(α(d+ 2) + z + d+ γβ)

− 1

2d

2∑
i=1

e−λiφ0ρ2
i r
α(2−d)+z−d−λiβ

(α+ 1)(α(2− d) + z − d− λiβ)
,

(A.22)

=⇒ f(r) =−mr−d(α+1)−z +
V0e

γφ0r2α+γβ

d(α+ 1)(α(d+ 2) + z + d+ γβ)

− 1

2d

2∑
i=1

e−λiφ0ρ2
i r
−2d(α+1)+2α−λiβ

(α+ 1)(α(2− d) + z − d− λiβ)
.

(A.23)

Where m is the integration constant, which can later be related to the mass of the black hole.
To obtain an asymptotic hyperscaling violating metric (at r →∞) from Eq. (A.23) we need

γ = −2α

β
. (A.24)

Thus to find an hyperscaling violating metric we need to a non-trivial potential.

Determining integration constants

From metric ansatz (A.9) the Einstein equation for the dilaton field and Eq. (A.17) we find

∇2φ =
1√
−g

∂µ
(√
−ggµν∂νφ

)
= β

∂r(r
d(α+1)+zf(r))

r2α+d(α+1)+z−1

=
β

(α+ 1)

[
1

d
V (φ) +

1

4d

2∑
i=1

eλiφF 2
i

]
,

(A.25)

where the last line was obtained by using the first line of Eq. (A.21). Using the explicit
form of the dilaton potential (Eqs. (A.2) and (A.24)) the equation of motion for the scalar
field Eq. (A.8) now gives(

4β

d(α+ 1)
− 8α

β

)
V0e
−2αφ/β =

2∑
i=1

eλiφF 2
i

(
λi −

β

d(α+ 1)

)
=⇒

(
4β

d(α+ 1)
− 8α

β

)
V0e
−2αφ0/βr−2α = −2

2∑
i=1

e−λiφ0ρ2
i r
−2d(α+1)−λiβ

(
λi −

β

d(α+ 1)

) (A.26)

As a solution to the above equation we find

λ1 = − 2α(d− 1) + 2d√
2d(1 + α)(α+ z − 1)

, λ2 =

√
2(α+ z − 1)

d(α+ 1)
,

ρ2
1 =

(
4β

d(α+1) −
8α
β

)
2
(
λ1 − β

d(α+1)

)V0e
−2αφ0/β+λ1φ0 =

2V0(z − 1)

d(α+ 1) + z − 1
e
−
√

2d(α+1)
α+z−1

φ0

(A.27)
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ρ2 remains undetermined and can be identified with the charge of the solution. We fix V0 by
requiring the constant term in f(r) to be one. We thus obtain

1 =
V0e

γφ0

d(α+ 1)(α(d+ 2) + z + d+ γβ)
− 1

2d

e−λ1φ0ρ2
1

(α+ 1)(α(2− d) + z − d− λ1β)
,

=⇒ 1 =
2V0e

γφ0 − e−λ1φ0ρ2
1

2d(α+ 1)(d(α+ 1) + z)
=

V0e
γφ0

(dα+ d+ z − 1)(dα+ d+ z)
,

=⇒ V0 = (dα+ d+ z − 1)(dα+ d+ z)e−γφ0 .

(A.28)

And thus

ρ2
1 = 2(z + d− θ)(z − 1)eλ1φ0 (A.29)

Now it remains to check the tt and rr parts of the Einstein equations of motion. We only
need to check the tt part explicitly, since the rr-part follows directly from Eq. (A.13) and the
tt-part of the Einstein equations.

Hyperscaling violating solution

To summarise action (A.1) gives rise to a hyperscaling violating charged black brane solution
given by

ds2 = r−2 θ
d

(
−r2zf(r)dt2 +

dr2

r2f(r)
+ r2d~x2

)
,

F1rt =
√

2(z − 1)(z + d− θ)e
θ(1−d)/d+d√

2(d−θ)(z−1−θ/d)
φ0
rd+z−θ−1,

F2rt = Q
√

2(d− θ)(z − θ + d− 2)e
−
√
z−1−θ/d
2(d−θ) φ0r−(z+d−θ−1),

eφ = eφ0r
√

2(d−θ)(z−1−θ/d),

(A.30)

with

f(r) = 1− m

rz+d−θ
+

Q2

r2(z+d−θ−1)
. (A.31)

We used

Q2 = − 1

2d

e−λ2φ0ρ2
2

(α+ 1)(α(2− d) + z − d− λ2β)
,

=
1

2

e
−
√

2(α+z−1)
d(α+1)

φ0ρ2
2

(αd+ d)(αd+ z + d− 2)
.

Where we defined α = −θ/d, with θ the hyperscaling exponent. Note that the above solution
is not defined for the case θ = d since we have divergences in our solutions in that case. We
see that Eq. (4.10) gives a black brane solution where the radius of horizon (rH) is determined
by f(rh) = 0

r
2(d+z−θ−1)
H −mrd+z−θ−2

H +Q2 = 0. (A.32)
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A.2 Conserved currents in the QFT from bulk gauge degees
of freedom

First recall that Stokes theorem gives

∫
M
dnx

√
|g|∇µV ν =

∫
∂M

dn−1y
√
|γ|nµV ν , (A.33)

Where γij is the induced metric on the boundary of the manifold M and nµ is a vector
orthonormal to the boundary ∂M which is given by nµ = (

√
grr, 0) for metric ansatz (A.9).

We are now able to integrate by parts such that the first variation of the action describing
the bulk will be zero for classical solutions and we will only remain with boundary terms

δSr =

∫
∂Mr

√
−γ

{
1

2
T abδγab +

2∑
i=1

Jµi δAi,µ +Oφδφ

}∣∣∣∣∣
r

. (A.34)

A.2.1 Conserved currents due to U(1) gauge symmetry

For the gauge fields the boundary term for the first variation of the action w.r.t. the gauge
fields is given by

∫
M
dnx
√
−g

2∑
i=1

∇µ
(

4δAi,νF
µν
i eλiφ

)
=

∫
∂Mr

dn−1x
2∑
i=1

√
−γ nµ

(
4Fµνi eλiφ

)
δAi,ν ,

=

∫
∂Mr

dn−1x
2∑
i=1

δAi,νJ
ν
i ,

(A.35)

where Jνi =
√
−γ nµ

(
4Fµνi eλiφ

)
. This boundary action should be invariant under U(1) gauge

symmetry, which implies that gauge field couple to conserved currents. Let me elaborate a bit
on this, the gauge field Aµ transforms to Aµ + ∂µΛ under a gauge transformation. Invariance
of the boundary action now implies

∫
∂Mr

dn−1x

2∑
i=1

δAi,νJ
ν
i →

∫
∂Mr

dn−1x

2∑
i=1

(δAi,ν + ∂νΛi)J
ν
i

=

∫
∂Mr

dn−1x

2∑
i=1

δAi,νJ
ν
i − Λi∂νJ

ν
i

(A.36)

Invariance of the bulk gauge requires ∂νJ
ν
i = 0.
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A.2.2 Conserved currents due to translational invariance

The action should be diffeomorphism invariant

aµ → aµ − LξAµ = aµ − ξν∂νAµ − (∂µξ
ν)Aν

= aµ − ξν∇νAµ − (∇µξν)Aν ,

hµν → hµν − Lξgµν = hµν − ξν∂νgµν − (∂µξ
λ)gλν − (∂νξ

λ)gλµ

= hµν −∇µξν −∇νξµ.

(A.37)

Specifically under a translation in the ρ-direction ξν is given by ξν = δνρ the boundary action
thus changes like

δSr =

∫
∂Mr

{
1

2
T abδγab +

2∑
i=1

Jµi δAi,µ

}

→
∫
∂Mr

{
1

2
T ab(δγab − ξν∂νγab − (∂aξ

λ)γλb − (∂bξ
λ)γλa)

+
2∑
i=1

Jµi (δAi,µ − ξν∂νAµ − (∂µξ
ν)Aν)

}
P.I.→ δSr +

∫
∂Mr

{
ξν∂µT

µ
ν + ξν

2∑
i=1

Fi,µνJ
µ
i

}
.

(A.38)

With T ab = 2
√
−γ
(
Kab −Kγab

)
, the unnormalized conjugate momentum to γab. Note that

Kab is given by the extrinsic curvature [47, 48] which is defined by ∇(anb), with n the radially
outward pointing vector of unit length. Thus invariance under gauge transformations

∂µT
µ
ν +

2∑
i=1

Fi,µνJ
µ
i = 0. (A.39)

In the zero momentum limit the boundary of our hyperscaling violating bulk space-time the
above above expression gives

∂0T
0
x +

2∑
i=1

Fi,0xJ
0
i = 0. (A.40)

Up to first order this gives

∂0T
0
x + δExJ

0
2 − iωδa0

1,xJ
0
1 = 0. (A.41)



Appendix B

Fluctuations in the
Einstein-Maxwell-Dilaton Action

In this appendix we determine the second order fluctuations of action (B.1)

S = − 1

16πG

∫
dd+2x

√
−g

[
R− 1

2
(∂φ)2 + V (φ)− 1

4

2∑
i=1

eλiφF 2
i

]
− 1

8πG

∫
dd+1x

√
−γK,

(B.1)

where K = γµν∇νnν . We will consider fluctuations of the type

gµν = ḡµν + hµν ,

φ = φ̄+ δφ,

Aµ = Āµ + aµ.

(B.2)

B.1 Fluctations of dilaton field and gauge fields

Second order fluctuations of the dilaton and gauge fields

δ2S = − 1

16πG

∫
dd+2x

√
−g

[
− 1

2
(∂δφ)2 +

1

2
V ′′(φ)δφ2

− 1

4

2∑
i=1

(
eλiφ(fi)

2 + 2λie
λiφδφfi,µνF

µν
i +

1

2
λ2
i δφ

2eλiφF 2
i

)]
,

(B.3)

We can split this into a second order bulk action and a boundary action

δ2Sbulk =
1

2

√
−g

[
δφ

(
� + V ′′(φ̄)− 1

4

2∑
i=1

(λ2
i e
λiφ̄F̄ 2

i )

)
δφ

− 1

2

{
2∑
i=1

ai,µ∇ν
(
eλiφ̄fµνi

)
− ai,ν∇µ

(
eλiφ̄fµνi

)
+

2∑
i=1

δφ
(
λie

λiφ̄F̄µνi ∇µ
)
ai,ν − ai,ν

(
λie

λiφ̄F̄µνi ∇µ
)
δφ

}]
.

(B.4)

71
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B.2 Metric fluctuations

In this section we’re interested in fluctuations with respect to the metric. We’re starting by
just considering the fluctuations of the Einstein-Hilbert action. The fluctuation of the volume
factor

√
−g is given by

√
−g − δg '

√
−g exp

{
1

2
gµνhµν −

1

4
δgµνhµν

}
'

√
−g
(

1 +
1

2
gµνhµν +

1

4

(
1

2
(gµνhµν)2 − δgµνhµν

))
.

(B.5)

And where the fluctuation of the inverse metric is

gµν = ḡµν + hµν

gµν = ḡµν − gµαgνβhαβ + gαβδg
µβδgαν ,

(B.6)

where δgµν = −gµαgνβhαβ and δ2gµν = gαβδg
µβδgαν . Next

Rµν = R̄µν + δRµν + δ2Rµν , (B.7)

with
Rρµλν = ∂λΓρνµ − ∂νΓρλµ + ΓρλσΓσνµ − ΓρνσΓσλµ. (B.8)

Up to second order the variation of the Ricci tensor is

δRρµλν = ∇̄λ(δΓρνµ)− ∇̄ν(δΓρλµ), (B.9)

δ2Rρµλν = ∇̄λ(δ2Γρνµ)− ∇̄ν(δ2Γρλµ) + δΓρλσδΓ
σ
νµ − δΓρνσδΓσλµ, (B.10)

where we used

∇̄λ(δΓρνµ) = ∂λ(δΓρνµ) + ΓρλσδΓ
σ
νµ − ΓσλνδΓ

ρ
σµ − ΓσλµδΓ

ρ
νσ. (B.11)

Using Eq. (B.9) the expansion of the Riemann tensor can be written as

Rρµλν =R̄ρµλν + ∇̄λ(δΓρνµ)− ∇̄ν(δΓρλµ) + ∇̄λ(δ2Γρνµ)− ∇̄ν(δ2Γρλµ)δΓ

+ δΓρλσδΓ
σ
νµ − δΓρνσδΓσλµ

=R̄ρµλν +∇λ(δΓρνµ)−∇ν(δΓρλµ) + ∇̄λ(δ2Γρνµ)− ∇̄ν(δ2Γρλµ)δΓ

− δΓρλσδΓ
σ
νµ + δΓρνσδΓ

σ
λµ.

(B.12)

Where ∇ is the covariant connection for the metric tensor gµν + hµν . And the first order
variation of the Christoffel symbol is given by

∇̄σ(hµν) = δ(∇σgµν) + δΓλσµḡλν + δΓλσν ḡµλ (B.13)

=⇒ δΓλσµḡλν + δΓλσν ḡµλ = ∇̄σ(hµν) (B.14)

=⇒ 2δΓλµν ḡσλ = ∇̄µhνσ + ∇̄νhσµ − ∇̄σhµν (B.15)

=⇒ δΓρµν =
1

2
ḡσρ

(
∇̄µhνσ + ∇̄νhσµ − ∇̄σhµν

)
. (B.16)
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In the last line of Eq. (B.12) we see terms which give a boundary contribution, while the last
term in Eq. (B.12) gives rise to a term in the linearised Einstein equations of motion of the
bulk. The second variation of the Einstein-Hilbert term is thus given by

δ2
(√
−gRµνgµν

)
=
(
δ2√−g

)
R̄+

(
δ
√
−g
)
R̄µνδg

µν +
(
δ
√
−g
)
δRµνg

µν

+
√
−ḡ
(
δ2Rµν

)
ḡµν +

√
−ḡδRµνδgµν +

√
−ḡR̄µνδ2gµν .

(B.17)

So these terms should just give rise to a boundary action and will not influence the linearised
equations of motion. So the bulk action obtained from the Ricci scalar must be given by

δ2S =

∫
dd+2x

√
−g

[
1

4

(
1

2
(δgµµ)2 + δgµνhµν

)
R− 1

2
gαβδg

αβRµνδg
µν

−
(
δΓλλσδΓ

σ
νµ − δΓλνσδΓσλµ

)
gµν +Rµν(δgνλδg

λµ)

]

=

∫
dd+2x

√
−g

[
1

4

(
1

2
(δgµµ)2 − gµαgνβδgµνδgαβ

)
R− 1

2
gαβδg

αβRµνδg
µν

− 1

2
(∇νδgαα)(∇µδgµν) +

1

4
(∇νδgαα)(∇νδgββ )

+
1

2
(∇σδgλµ)(∇λδgσµ)− 1

4
(∇λδgµσ)(∇λδgσµ) +Rµν(δgνλδg

λµ)

]
.

(B.18)

The above result can be checked against Ref.[49], where we note that there is a sign difference
between the answer obtained above and the one obtained in Ref.[49] and the same sign as
obtained in Ref.[50, Eq. (22.12)]. The reason for this is a different definition of the Ricci
tensor, where the difference in the indices of contraction precisely explain the sign difference.
Throughout this thesis we followed the conventions used in Ref.[20]. The boundary term
corresponding to the above action is given by

∫
dd+2x

√
−g

{
1

2
∇ρ
(
hααδΓ

ρ
µνg

µν
)
− 1

2
∇µ
(
hααδΓ

ρ
ρµ

)
−∇ρ

(
hµνδΓρµν

)
−∇ν

(
hµνδΓρρµ

)
+∇λ

(
δ2Γλµνg

µν
)
−∇µ

(
δ2Γλλµ

)}

=

∫
dd+1x

√
−γ

{
1

4
nρ
(
hγγ (2∇µhρµ −∇ρhαα)

)
− 1

4
nµ
(
hγγ∇µhαα

)
− 1

2
nρ
(
hµν

(
∇µhρν +∇νhρµ −∇ρhµν

))
− 1

2
nν (hµν∇µhαα)− 1

2
nλ

(
hλσ (2∇µhµσ −∇σhαα)

)
+

1

2
nµ
(
hλσ∇µhλσ

)}
(B.19)

By performing partial integration on Eq. (B.18) we obtain
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δ2S =

∫
dd+2x

√
−g

{
δgαβ

[
1

4

(
1

2
(gαβgµν)− gαµgβν

)
R− 1

2
gαβRµν + gβµRνα

]
δgµν

+
1

4
hαα∇ν∇µhµν +

1

4
hαβ∇α∇βhµµ −

1

4
hαα∇λ∇λhµµ

− 1

4
hαβ∇µ∇αhµβ −

1

4
hβµ∇ν∇βhµν +

1

4
hαβ∇λ∇λhαβ

} (B.20)

Where the total second order boundary action is given by

δ2S∂M =

∫
dd+1x

√
−h

{
1

4
nρ
(
hγγ (2∇µhρµ −∇ρhαα)

)
− 1

4
nµ
(
hγγ∇µhαα

)
− 1

2
nρ
(
hµν

(
∇µhρν +∇νhρµ −∇ρhµν

))
− 1

2
nν (hµν∇µhαα)− 1

2
nλ

(
hλσ (2∇µhµσ −∇σhαα)

)
+

1

2
nµ
(
hλσ∇µhλσ

)
− 1

4
nν (hαα∇µhµν)− 1

2
nµ (hµν∇νhαα) +

1

4
nν

(
hαα∇νh

β
β

)
+

1

4
nσ

(
hλµ∇λhσµ

)
+

1

4
nλ

(
hσµ∇σhλµ

)
− 1

4
nλ (hµσ∇λhµσ)

}
.

(B.21)

In the above h is the boundary metric and nµ = (
√
grr, 0) is the normal to the boundary.

Explicitly working out the second order terms of

δ
(√
−g
[
∇̄λ(δΓρνµ)− ∇̄ν(δΓρλµ)

]
gµν
)

=
1

2
δgαα

(
∇λ∇µδgµν −∇λ∇λδgββ

)
− δgµν

(
∇λ∇νδgλµ −

1

2
∇λ∇λhµν

)
+

1

2
δgµν∇ν∇µδgλλ.

(B.22)

Recall Stokes theorem Eq. (C.1)∫
M
dnx

√
|g|∇µV ν =

∫
∂M

dn−1y
√
|γ|nµV ν . (B.23)

The second order fluctuation of the Christoffel symbols is given by

0 = δ2 (∇σgµν) =
(
(δ2∇σ)gµν + (δ∇σ)δgµν

)
= δ2Γρµσgρν + δ2Γρνσgρµ + δΓρµσhρν + δΓρνσhρµ,

=⇒ δ2Γρµν = −1

2
hρσ (∇µhνσ +∇νhσµ −∇σhµν) .

(B.24)

B.3 Interaction between matter fields and the metric

The remaining second order fluctuations are given by
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δ2S =

∫
dd+2x

√
−g

{
1

4

(
1

2
(δgµµ)2 − δgµνhµν

)[
−1

2
(∂φ)2 + V (φ)− 1

4

2∑
i=1

eλiφF 2
i

]

− 1

2
gσγδg

σγ

(
1

2
δgµν(∂µφ)(∂νφ)−

(
δgαµgβν + gαµδgβν

) 1

4

2∑
i=1

eλiφFi,αβFi,µν

− (∂φ)(∂δφ) + V ′(φ)δφ− 1

4

2∑
i=1

(
λiδφe

λiφF 2
i + 2eλiφFifi

))

+

(
δgµν(∂µφ)(∂νδφ)− 1

4

(
δgαµgβν + gαµδgβν

) 2∑
i=1

(
λie

λiφFi,αβFi,µνδφ

+ eλiφfi,αβFi,µν + eλiφFi,αβfi,µν
))

+
1

4
δgαµδgβν

2∑
i=1

eλiφFi,αβFi,µν

}
.

(B.25)

By simplifying we obtain

δ2S =

∫
dd+2x

√
−g

{
δgαβ

[
1

4

(
1

2
(gαβgµν)− gαµgβν

)[
−1

2
(∂φ)2 + V (φ)− 1

4

2∑
i=1

eλiφF 2
i

]

− 1

4
gαβ(∂µφ)(∂νφ) +

1

4
gαβg

γσ
2∑
i=1

eλiφ (Fi,µγFi,νσ) +
1

4

2∑
i=1

eλiφFi,αµFi,βν

]
δgµν

−

[
δφ

1

2
(∂µφ∇µ) +

1

2

2∑
i=1

ai,µe
λiφFµνi ∇ν

]
gαβδg

αβ

−

(
δgαβ(∂αφ)(∂βδφ) +

1

2
δgαβgµν

2∑
i=1

(
λie

λiφFi,αµFi,βνδφ+ 2eλiφFi,αµfi,βν

))}
.

(B.26)

B.4 Fixing the gauge

We choose the same gauge as was chosen in [51]. We thus chose the gauge in which

hrµ = 0,

ar = 0.
(B.27)

There is are still some gauge degrees of freedom left, and we will construct pure gauge solutions
as a solution to this.

B.5 Linearised equations of motion

Using Eqs. (B.4), (B.20) and (B.26), we determine the linearised equations of motion for our
system.
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Linearised equations of motion δφ component

The linearised equations for the δφ component is given by(
� + V ′′(φ)− 1

4
(λ2
i e
λiφF̄ 2

i )

)
δφ− 1

2

2∑
i=1

(
λie

λiφF̄µνi ∇µ
)
ai,ν

+
1

2

(
(�φ) + V ′(φ)− 1

4

2∑
i=1

λie
λiφF 2

i + ∂µφ∇µ
)
gαβhαβ

−

(
∇β
(
∂αφh

αβ
)
− 1

2
gµν

2∑
i=1

λie
λiφFi,αµFi,βνh

αβ

)
= 0,

=⇒
√
−g
(
� + V ′′(φ) +

λ2
i ρiFirt
4
√
−g

)
δφ+

1

2

2∑
i=1

λiρi (δνt∇r − δνr∇t) ai,ν

+ grr∂rh
α
α −

(
∇β
(
∂αφh

αβ
)
− 1

2
gµν

2∑
i=1

λie
λiφFi,αµFi,βνh

αβ

)
= 0.

(B.28)

In the above we used �φ = 1√
−g∂µ (

√
−ggµν∂νφ) and

(√
−ggttgrreλiφFirt

)
= −ρi. In the

chosen gauge the above equation becomes

√
−g
(
V ′′(φ) +

λ2
i ρiFirt
4
√
−g

)
δφ+ ∂µ

(√
−ggµν∂νδφ

)
+

1

2

2∑
i=1

λiρi∂rai,t

+ grr∂rh
α
α +

1

2

√
−ggrr

2∑
i=1

λie
λiφFi,trFi,trh

tt = 0.

(B.29)

Linearised equations gauge field components

The linearised equations of motion for the gauge fields give:

∇µ
(
eλiφ̄fµνi

)
+

1

2

(
λie

λiφ̄F̄µνi ∇µ
)
δφ+

(
1

2
eλiφFµνi ∇µ

)
gαβhαβ

+

2∑
i=1

{
−∇β

(
eλiφFανi hβα

)
+ eλiφFαβ∇βhνα

}
= 0,

=⇒ ∇µ
(√
−geλiφ̄fµνi

)
− 1

2
ρi (δνt∇r − δνr∇t) (λiδφ+ hαα)

+

2∑
i=1

√
−g
{
−∇β

(
eλiφFανi hβα

)
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}
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(B.30)

Without covariant derivatives this becomes

1

2
∂µ

(√
−geλiφFµνhαα

)
− ∂α

(√
−geλiφFβ νhαβ

)
+ ∂µ
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)
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(√
−gλiδφeλiφFµν

)
+ ∂µ

(√
−geλiφfµν

)
= 0.

(B.31)
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Linearised equations of motion metric components

The linearised equations of motion for the metric components are given by

1

4

(
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µ
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4
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4
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4
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1
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2
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λie
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)
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(∂αφ)(∂βδφ)− 1

2
gµν

2∑
i=1

(
λie
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= 0

(B.32)

With gauge choice (B.27) the above equation becomes

1
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2
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eλiφFifi
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2
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(
λie

λiφFi,αµFi,βνδφ+ 2eλiφFi,αµfi,βν

)
= 0.

(B.33)

B.5.1 In summary; the equations of motion

So in summary we obtain the following equations of motion
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Linearised equation of motion dilaton field

√
−g
(
V ′′(φ) +

λ2
i ρiFirt
4
√
−g

)
δφ+ ∂µ

(√
−ggµν∂νδφ
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α
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tt = 0,

(B.34)

Linearised equations of motion gauge fields

1

2
∂µ

(√
−geλiφFµνhαα
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(√
−geλiφFβ νhαβ
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(B.35)

Linearised equations of motion metric perturbation
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(B.36)



Appendix C

Some First Order Boundary Terms

These are some notes on the first order boundary action.

C.1 First order boundary action

The boundary terms obtained from partial integration are not important for the classical field
equations in the bulk, but they are important to make the system finite on the boundary of
the space. First recall that Stokes theorem gives∫

M
dnx

√
|g|∇µV ν =

∫
∂M

dn−1y
√
|γ|nµV ν , (C.1)

Where γij is the induced metric on the boundary of the manifold M and nµ is a vector
orthonormal to the boundary ∂M which is given by nµ = (

√
grr, 0) for metric ansatz (A.9).

We are now able to integrate by parts such that the first variation of the action describing
the bulk will be zero for classical solutions and we will only remain with boundary terms

δSr =

∫
∂Mr

{
1

2
T abδγab +

2∑
i=1

Jµi δAi,µ +Oφδφ

}∣∣∣∣∣
r

. (C.2)

We will give the boundary terms below

metric For the metric tensor we need to add the Gibbons-Hawking-York boundary-term and
add a counter-term in the boundary. The counter-term is the same one as one would
obtain from the energy momentum tensor and may thus be inspired by [47]

dilaton field Using stokes theorem we obtain the following boundary term for the dilaton
field The boundary action of the first variation w.r.t. the dilaton field gives∫

M
dnx
√
−g∇µ (φ∇µφ) =

∫
∂M

dn−1x
√
−γ nµ (φ∇µφ) . (C.3)

The first variation of the action w.r.t. the scalar field is given by

δφSc =

∫
∂Mr

dn−1x
√
−γ (2nµ∇µφ) δφ,

=⇒ Oφ =
√
−γ (2nµ∇µφ) .

(C.4)
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Substituting the solution from Eq. (4.11) we obtain

δφSc =

∫
∂Mr

dn−1x
√
−γ (2nµ∇µφ) δφ,

=

∫
∂Mr

dn−1x
√
−γ
√
grr (2∂rφ) δφ,

=

∫
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√
−ggrr (2∂rφ) δφ

=

∫
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√
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r→∞→
∫
∂Mr

dn−1x
√

8d(1 + α)(α+ z − 1)
(
rd+z−θ

)
δφ.

(C.5)

In the above equation we used

√
−γ =

√
f(r)rd+z+(d+1)α =

√
f(r)rd+z−(d+1)θ/d (C.6)

and noted the fact that the leading term in f(r) is 1.

gauge fields For the gauge fields the boundary term for the first variation of the action w.r.t.
the gauge fields is given by

∫
M
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√
−g
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(C.7)
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Divergence on shell action

S = − 1

16πG

∫
dd+2x
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[
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]
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[29] B. Goutéraux. Charge transport in holography with momentum dissipation. 2014(4):
181, . ISSN 1029-8479. doi: 10.1007/JHEP04(2014)181. URL http://arxiv.org/abs/

1401.5436.
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