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Chapter 1

Introduction

This work is concerned with outlining a method of calculating energies of bound states in
quantum field theories. However, before moving on to explaining the method itself, we would
like to take a moment to motivate it. We will do so by answering some questions that the
reader may have, starting with the most natural one: why study bound states in the first
place?

Why study bound states?

First of all, there is a purely theoretical motivation for studying bound states – the setup
of quantum field theory was motivated by scattering problems, and bound states present
us with a different approach to understanding it. As we will see, perturbation theory in its
usual sense cannot apply to bound state physics, because of the implicit assumption that the
interaction energy in a process is much smaller than the kinetic energy. Because of this, a
different sort of perturbation theory has to be developed, leading to a better understanding
of the theory.

Secondly, a vast majority of objects available for experimental study are in fact bound
states. An atom, a nucleus of an atom, a meson or baryon are all sources of empirical infor-
mation to check the respective theories describing them. In fact historically, the hydrogen
atom was at the center of theory development, ever higher precision of experiments revealing
first the fine, later the hyperfine structure and the Lamb shift. All of these quantities can
now be measured to an extremely high precision not only in hydrogen, but in other exotic
atoms such as positronium (e�e� bound state) and muonium (µ�e� bound state, the µ�µ�

state is called “true muonium”), providing us with precision tests of the validity of QED.
The energy splittings and decay rates of these atoms can be explained within QED, without
adding any additional parameters, and the theoretical predictions are largely in agreement
with experiment, though there still are some problems. The situation is worse in QCD,
where all observable particles are almost by definition bound states. As of yet, there is no
calculation of meson masses from first principles, without addition of any new parameters to
the theory – a problem closely related to understanding confinement in QCD. Which brings
us to the next question...
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Why study them in field theory rather than quantum mechanics?

Apart from the obvious need for higher precision calculations in hydrogen-like atoms, that
cannot be met by quantum mechanics, there are other reasons to study bound states in field
theory. Consider heavy quarkonia, which are predominantly non-relativistic. There is a well
known similarity between the spectra of heavy quarkonia and that of positronium, motivating
the use of the Cornell potential to describe mesons. Attempts have been made to construct a
quantum mechanical quark model to explain the energy splittings in charmonia, however this
type of models suffers from a high number of free parameters, originating from the potential
that has to be postulated ad-hoc. Moreover, despite the number of parameters, the precision
of predictions is far from accurate by QED standards. This naturally raises a question: can
this potential be obtained directly from QCD by making a suitable approximation? There
are attempts to do this too, though only partially successful. Even though the number of
parameters is reduced, the confinement potential is still put in by hand, thus reducing the
overall reliability of the method. Another common issue that models of this sort have, is the
disagreement between the free quark mass and the constituent quark mass. Even though it
is understood that quarks in mesons are “dressed” and their mass as appearing in the model
need not be the same as the free mass, in principle there is no reason why the constituent
mass should be impossible to calculate from first principles. Rather, this is a downfall of
these types of models, that simply have the constituent mass as a parameter.

Aside from proper understanding of meson masses, recent discoveries of states that do
not fit into the conventional quark model also call for a consistent treatment of bound states.
In order to understand whether a given particle is a charmonium state, or a meson molecule,
or a tetraquark, one obviously needs a reliable field theoretical description of bound states.

Why positronium?

The method we outline is quite general and can in principle be applied to any theory (granted
that the system is mostly non-relativistic). However, in order to demonstrate it we have
picked a particular example to work with – computing the hyperfine splitting in positronium.
There are several reasons for doing that. The first one being the isolated nature of the
problem – positronium to a very high degree of precision is purely electrodynamic, unlike for
instance hydrogen, where the size of the proton starts playing a role at some point. This lets
us work with QED, without adding any additional assumptions. Therefore the precision of
the calculation rests on the validity of the method, rather than the theory itself – something
that would not be possible if we worked on a problem in nuclear physics for instance, where
the approximations done in the process of establishing the effective theory would also need
to be questioned after obtaining the result.

Another reason is the abundance and precision of experimental data on positronium,
something that would not be available had we chosen to work on exotic mesons, for instance.

Lastly, positronium is a two body problem, the simplest case for bound states. We will
discuss possible applications of this method to three body problems at the end of this work.
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Chapter 2

Propagator

2.1 The Propagator as a Green’s Function

Although the discussion in this section applies to propagators of any theory, here we will
focus on a particular example for clarity. We will consider a massive scalar field with the
familiar Lagrangian:

L � 1

2
φ BµBµφ� 1

2
m2φ2 � Lint. (2.1.1)

Why is the 2-point Green’s function (GF) called the propagator? Written out explicitly:

∆px2 � x1q � xΩ|Tφpx1qφpx2q|Ωy . (2.1.2)

Since the theory is translation invariant, the expectation value may only depend on the
coordinate difference. Assuming t2 ¡ t1:

∆px2 � x1q � xΩ|φpx2qφpx1q|Ωy , (2.1.3)

which is the analogue of x~xpt2q|~xpt1qy in quantum mechanics. So the 2-point GF may be
interpreted as the amplitude of a particle propagating from position ~x1 to ~x2 within the time
frame t2 � t1, hence the name – the propagator.

In an attempt to better understand the physical meaning of the propagator, let us first
consider a particular case with Lint � 0 – the free theory. We denote the propagator for
this theory as ∆0. Of course because of translational invariance the propagator will not
depend on both coordinates x1 and x2, but rather on the relative coordinate x2 � x1 � x.
To make this explicit, let us shift the center of the coordinate system so that it coincides
with x1, in which case x12 � x and x1 � 0. After this adjustment, it becomes obvious that
the propagator only depends on x:

∆0pxq � x0|Tφpxqφp0q|0y . (2.1.4)

If x0 � t ¡ 0, φp0q is going to act first, whereas if t   0, then φpxq acts first. We can express
this using step functions:

∆0pxq � θptq x0|φpxqφp0q|0y � �
1� θptq� x0|φp0qφpxq|0y . (2.1.5)
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Now let us demonstrate that the propagator defined in this manner is also the GF of the
Klein-Gordon equation (KGE). We have to prove the following equation holds:

pB2 �m2q∆0pxq � iδpxq. (2.1.6)

(The factor of i may in principle be absorbed in the definition of the propagator, however we
would rather keep it outside so that the propagator may later be generalized to an n-point
GF.)Let us start by taking the time derivatives of ∆0pxq:

Bt∆0pxq �δptq x0|φpxqφp0q|0y � θptq x0|Btφpxqφp0q|0y
� δptq x0|φp0qφpxq|0y � �

1� θptq� x0|φp0qBtφpxq|0y . (2.1.7)

One of the canonical commutation relations states that field operators at different space
points commute at the same times. So since the δptq vanishes everywhere but at t � 0,

δptq x0|rφpxq, φp0qs|0y � 0. (2.1.8)

And Bt∆0pxq becomes:

Bt∆0pxq � θptq x0|Btφpxqφp0q|0y �
�
1� θptq� x0|φp0qBtφpxq|0y . (2.1.9)

Taking one more time derivative:

B2
t∆0pxq �δptq x0|Btφpxqφp0q|0y � θptq x0|B2

t φpxqφp0q|0y
� δptq x0|φp0qBtφpxq|0y �

�
1� θptq� x0|φp0qB2

t φpxq|0y .
(2.1.10)

This time we can use the second commutation relation, to show:

δptq x0| rBtφpxq, φp0qs |0y � �iδptqδp~xq � �iδpxq (2.1.11)

Computing the space derivative of ∆0pxq is straightforward:

∇2∆0pxq � θptq x0|∇2φpxqφp0q|0y � �
1� θptq� x0|φp0q∇2φpxq|0y . (2.1.12)

Combining eq. (2.1.10), eq. (2.1.12) and the KGE for φpxq, we get:

�B2
t∆0pxq �∇2∆0pxq �iδpxq � θptq x0|p�B2

t �∇2qφpxqφp0q|0y
� �

1� θptq� x0|φp0qp�B2
t �∇2qφpxq|0y

�iδpxq �m2∆0pxq
(2.1.13)

And finally,
pB2 �m2q∆0pxq � iδpxq. (2.1.14)

We have established that the propagator is the GF of the KGE. This means that if a source
is added to the KGE, the solution of the resulting non-homogeneous KGE can be written
down using the propagator ∆pxq. Before doing that, however, we should solve eq. (2.1.14)
for ∆0pxq itself. We can achieve that by Fourier transforming the equation:

p�p2 �m2q∆0ppq � i. (2.1.15)
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We are tempted to immediately take the inverse Fourier transformation and write down the
solution as:

∆0pxq ?� �i
p2πq4

»
d4p

eipx

p2 �m2
. (2.1.16)

However, after taking a look at the rhs of this equation, we see that the integrand diverges
when the particle goes on-shell at p2 � �m2. In what follows, we demonstrate the proper way
to regularize this integral as well as provide an explanation for the fact that the propagator
diverges when the particle goes on-shell.

2.2 The Feynman-Stueckelberg propagator and its poles

Let us see how the system behaves when we add the simplest interaction term to it, an
interaction with a real outside source Jpxq:

L � 1

2
φ BµBµφ� 1

2
m2φ2 � Jφ. (2.2.1)

The equation of motion for this theory is the non-homogeneous KGE:

pB2 �m2qφpxq � �Jpxq. (2.2.2)

Since we have established that ∆0pxq is the GF for this equation (though we still need to
regularize eq. (2.1.14)!), we can write down the solution:

φpxq � φ0pxq �
»
d4y

1

i
∆0px� yqJpyq, (2.2.3)

where φ0pxq is the solution of the homogeneous KGE, and the second term,

φJpxq �
»
d4y i∆0px� yqJpyq (2.2.4)

is the disturbance created by the source. Let us focus on this term, and see how the prop-
agation of this disturbance is affected by the choice of the propagator regularization. Use
eq. (2.1.16) to obtain:

φJpxq ?� 1

p2πq4
»
d4y d4p

eippx�yq

p2 �m2
Jpyq. (2.2.5)

Identifying the Fourier transformation of Jpyq, and splitting the integration variables:

φJpxq ?� 1

p2πq4
»
dp0 d

3p
e�ip0tei~p�~x

�p2
0 � ~p 2 �m2

Jpp0, ~p q

� 1

p2πq4
»
d3p ei~p�~x

»
dp0

e�ip0t

�p2
0 � ~p 2 �m2

Jpp0, ~p q.
(2.2.6)

Assume for the moment that t ¡ 0. In this case we can attempt to compute this integral in
the complex plane, by completing the contour below the real axis. If the arc is parametrized
by p0 � Reiθ, θ P rπ, 2πs, then the exponential on the arc is:

expp�ip0tq � expp�iR cos θtq exppR sin θtq. (2.2.7)
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Since sin θ   0 for this range of θ, as R Ñ 8, the integral on the arc vanishes, and the
contour integral reduces to the integral over the real axis. The same is true for t   0 if we
close the contour above the real axis this time.

For t ¡ 0, the residue theorem then states that the result of the integral is:

φJpt ¡ 0q ?� � 2πi

p2πq4
»
d3p ei~p�~x

¸
p�0

e�ip
�

0 t Res
! 1

�p2
0 � ~p 2 �m2

Jpp0, ~p q
)
, (2.2.8)

where p�0 are the poles of the integrand. The important thing to notice here is the following:
the exponential factor e�ip

�

0 t determines the late-time behaviour of the field disturbance.
In particular, it is the pole that is closest to the real axis that has the slowest vanishing
exponential, so it is the dominant contribution to the sum. Already, we can see that the
poles of the propagator determine how source disturbances propagate at late times, however
we are yet to identify said poles with physical particles of the theory.

Up until this point we have ignored the fact that the integrand has two poles on the
contour of integration, which make the integral we are considering divergent:

p�0 � �
a
~p 2 �m2 � �Ep~p q. (2.2.9)

There are several different ways in which one can integrate around these poles, and ultimately,
the deciding factor in the prescription we adapt should be the physical meaning of the results
we obtain by shifting them in one manner or another.

Let us try to understand the effect of the following prescription:

φJpt ¡ 0q ?� �2πi

p2πq4
»
d3p ei~p�~x

¸
p�0

e�ip
�

0 t Res
! 1

�pp0 � iεq2 � ~p 2 �m2
Jpp0, ~p q

)
, (2.2.10)

the effect of which is simply shifting the two poles below the real axis by ε. Assuming that
the source is sufficiently regular, the integral is evaluated as follows:

φJpt ¡ 0q ?� �2πi

p2πq4
»
d3p ei~p�~x

�
e�ipE�iεqt lim

p0ÑE�iε

!
� p0 � E � iε

pp0 � E � iεqpp0 � E � iεqJpp0, ~p q
)
�

eipE�iεqt lim
p0Ñ�E�iε

!
� p0 � E � iε

pp0 � E � iεqpp0 � E � iεqJpp0, ~p q
)	
,

(2.2.11)

and after taking the above limits:

φJpt ¡ 0q ?� �2πi

p2πq4
»
d3p

2E

�
� JpE, ~p qeip~p�~x�Etq � Jp�E, ~p qeip~p�~x�Etq

	
. (2.2.12)

Now we would like to identify these plane waves for de Broglie waves for relativistic particles.
We only expect to see the first term – it corresponds to a particle with momentum ~p and
energy Ep~p q �

a
~p 2 �m2. So in order to suppress the second term originating in the

p�0 � �Ep~p q pole, instead of shifting the below the real axis, we shift it above the real axis.
This results in the late φJ :

φJpt ¡ 0q � 2πi

p2πq4
»
d3p

2E
JpE, ~p qeip~p�~x�Etq, (2.2.13)
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and the early φJ :

φJpt   0q � 2πi

p2πq4
»
d3p

2E
Jp�E, ~p qeip~p�~x�Etq. (2.2.14)

Doing this allows us to interpret the wave in eq. (2.2.14) as one corresponding to a particle
with momentum �~p and energy E, because the seemingly wrong sign in the evolution expo-
nential arises because of considering negative times, that is propagating the field backwards
in time. Now, if we reverse this “backward propagation”, we get a particle with momentum
�~p being absorbed by a source, in contrast to what we see in eq. (2.2.13), where a particle
of momentum ~p is being emitted by the source. The above prescription of shifting the poles
allows for a propagator that can describe bot of these processes.

This interpretation is due to Feynman and Stueckelberg, and the prescription required
to shift the poles in the proper way is:

∆0pxq � �i
p2πq4

»
dp4 eipx

p2 �m2 � iε
. (2.2.15)

This manner of thinking also lets us interpret the poles at negative energy as antiparticles
(absorbing a positron is the same as emitting an electron), but of course in this theory the
distinction is quite artificial, and we would have to consider a complex field for a description
containing particles and antiparticles with opposite charges.

We have established already in eq. (2.2.8) that the pole of the propagator closest to the
real axis determines how fields behave at late times, allowing us to interpret the energy at
which the pole occurs to be the energy (or if we are in the rest frame, the mass) of the
particle corresponding to the field – of course this means that the propagator diverges when
the field goes on-shell.

This is true in general for other GF’s as well, but in a bit of a different way. We will see
in section 3.2 that if incoming particles can form and propagate as a bound state, this also
results in a pole in the GF. We will be interested only in two body bound states, so we only
consider 4-point GFs, however this is true in general as we will show.

2.3 The propagator in an interacting theory

As we have seen in the previous section, at late times field disturbances look like plane waves,
which allows us to associate them with their corresponding particles. However, there is an
interesting point to be made here: plane waves propagate indefinitely – so the particle never
decays. And yet, obviously, unstable particles exist, and we hope that field theory is able to
predict their decay widths. So how is this instability indicated on the propagator?

For us to consider decaying particles, we have to abandon the free theory, since a particle
obviously cannot decay if it does not interact with other particles. Of course computing
the propagator in an interacting theory is also much harder, however we can make use of
perturbation theory and the Dyson equation. In perturbation theory, we consider the prop-
agator to be free initially, and add the corrections coming from interactions perturbatively.
For instance, some of the loop diagrams contributing to the electron propagator in QED are
shown on fig. 2.3.1.
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Figure 2.3.1: Contributions to the full electron propagator.

The diagrams contributing to the propagator can be divided into two categories: the re-
ducible ones and irreducible ones. An irreducible diagram is a diagram that cannot be
reduced to two different diagrams by cutting a single electron line – the three top diagrams
in fig. 2.3.1 are all examples of irreducible diagrams. Reducible diagrams, on the other hand,
can always be cut into two or more irreducible diagrams – the two bottom diagrams in
fig. 2.3.1 are reducible, and the dashed line indicates where they can be cut to be reduced.

All of the one-particle irreducible diagrams make up what is called the one-particle ir-
reducible (1PI) kernel Σ. In general, the integrals corresponding to the loop diagrams
contained in Σ tend to be divergent – the problem that is solved by renormalization. As-
suming we have renormalized the theory by adding all of the appropriate counterterms to the
Lagrangian, the propagator is going to be given by a series iterating Σ – the Dyson series:

= + + + · · ·Σ Σ Σ

Figure 2.3.2: The Dyson series.

In this way we also include the reducible diagrams in a systematic way, of course.

∆ �∆0 �∆0Σ∆0 �∆0Σ∆0Σ∆0 � ... (2.3.1)

Σ = + + + · · ·

Figure 2.3.3: The one-particle irreducible kernel Σ.
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∆ � ∆0 �∆0Σ∆ (2.3.2)

Equation (2.3.2) is the Dyson equation and is central to our treatment of bound states.
In this case, the exact propagator is found to be:

∆ � �i
p2 �m2 � iΣ� iε

(2.3.3)

As one can see, the presence of interactions shifts the propagator poles, as expected. The
real part of iΣ simply accounts for the change in mass due to self-energy, and shifts the pole
such that it is at the physical (or renormalized) mass. So what happens if the kernel has an
imaginary part? The pole is then shifted into the imaginary plane:

�p�2
0 � ~p 2 �m2

R � i ImpiΣq � 0 (2.3.4)

Assuming that the imaginary part is much smaller than the real part, the positive pole is at:

p�0 � Ep~p q � i
ImpiΣq
2Ep~p q (2.3.5)

Let us now define

Γp~p q � �ImpiΣq
Ep~p q (2.3.6)

The reason for the minus sign in the definition will be clear soon. To understand the physical
meaning of Γ, let us return to eq. (2.2.10), and see how the exponential in the integral behaves
when p�0 � E � i

2
Γ:

φJpt ¡ 0q � �2πi

p2πq4
»
d3p ei~p�~xe�ipE�

i
2

Γqt Res
! 1

�p2
0 � ~p 2 �m2 � iε

Jpp0, ~p q
)
. (2.3.7)

The imaginary part of the pole position introduces a damping term to the wave:

φJpt ¡ 0q � e�
1
2

Γt, (2.3.8)

which is exactly what we expect for a decaying particle. We can then interpret this imaginary
contribution as the decay width of the particle. Although we should mention that the factor
is only damping as long as Γ ¡ 0, and actually increases the wave amplitude if Γ   0, so in
a unitary theory Γ will be positive.

11



Chapter 3

The Bethe-Salpeter equation

3.1 Dyson equation for the 4-point GF

The above discussion can be generalized for higher order GF’s, too. Since we will be mostly
interested in two-body bound states, we will only consider 4-point GF’s, or two-particle
propagators. We denote the free theory GF by S and the interacting theory GF by G.
Notice that since in the free theory there is no way for the particles to exchange momentum,
S is only a function of two variables – either the two momenta p1 and p2, or the total and
relative momenta P � p1 � p2 and k � p2 � p1. Whereas G is really a function of three
variables: the total momentum P , the initial relative momentum q � p2 � p1 and the final
relative momentum q1 � p4 � p3.

Diagrams contributing to the 4-point GF are shown on fig. 3.1.1. We can define the two-
particle irreducible (2PI) kernel analogously to the 1PI kernel and write down the Dyson
series relating G to S.

Figure 3.1.1: Diagrams that contribute to the 4-point GF

The 2PI kernel is all of the diagrams that cannot be cut into two by cutting only one
particle and one particle line, for which the sum of momenta is equal to the total momentum.
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For instance, the diagrams on the top row of fig. 3.1.1 are irreducible diagrams, and the ones
on the bottom are reducible, with the dashed line showing how they can be reduced. We
call the sum of all 2PI diagrams K, shown on fig. 3.1.2.

= + + + + · · ·
K

Figure 3.1.2: 2PI diagrams

Now, using this decomposition we can again write the Dyson series such that all of the
reducible diagrams are also included, as shown on fig. 3.1.3.

KKK KKK KKK+ + + . . .G =

Figure 3.1.3: The Dyson series for the 4-point GF

Resulting in:

Gpp1, p2; p3, p4q � Spp1, p2q � Spp1, p2qKpp1, p2; p3, p4qSpp3, p4q

�
»
dk1Spp1, p2qKpp1, p2; k1, q1qSpk1, q1qKpk1, q1; p3, p4qSpp3, p4q � ...,

(3.1.1)

where q1 � p1 � p2 � k1. This equation can be rewritten in a way similar to eq. (2.3.2), only
this time with a convolution instead of a multiplication:

Gpp1, p2; p3, p4q � Spp1, p2q �
»
dk1Spp1, p2qKpp1, p2; k1, q1qGpk1, q1; p3, p4q (3.1.2)

In principle, these fields can also have spin, in which case the GF will also depend on 4 spin
indices. The spin indices will also be convoluted in a similar way. Since equations become
quite cumbersome with both the convolutions explicit, we generally suppress at least one of
them. The notation we use is explained in Appendix A. Suppressing the integration over
relative momenta, we can rewrite this in a compact way:

G � S � SKG (3.1.3)

Which looks deceivingly simple, and very similar to eq. (2.3.2). However, one has to keep in
mind this is actually an integral equation, which makes it much harder to solve.

However, for our purposes here we need not solve this equation. Rather we will take
advantage of the fact that in the presence of a bound state which overlaps with the two
particle state described by G, the GF exhibits a pole and factorizes.

13



3.2 Factorization of GF near a bound state

We have stated before that in the presence of a bound state, the GF exhibits a pole. We
will consider a GF responsible for the scattering of n� r φ-particles into r φ-particles, which
means we will assume

p � p1 � � � � � pr � pr�1 � � � � � pn (3.2.1)

And the momentum space n-point function then is:

Gpp1, ...pnq �
»
dx1... dxne

�ip1x1 � � � e�iprxreipr�1xr�1 � � � eipnxn

� xΩ|Tφpx1q � � �φpxnq|Ωy .
(3.2.2)

Of course, the particular GF we are considering should have some sort of relationship with
the bound state – we do not expect positronium to show up as a pole in the GF describing
the electron-neutron scattering, for instance. Let us try to make this criterion exact. Assume
that there exists a single particle state |Ψy of mass M . The way for it to be connected to
this particular GF is for it to have a non-zero overlap with the fields:

xΨ|Tφpx1q � � �φpxrq|Ωy � 0. (3.2.3)

The assumptions have been listed, so we can move on to the proof. Consider first the time
ordering in eq. (3.2.2). Among all the possible time orderings of the n time variables present
here, let us focus on the contribution coming from the following one:

xΩ|Tφpx1q � � �φpxnq|Ωy � θpminrt1, ... trs �maxrtr�1, ... tnsq
� xΩ|T tφpx1q � � �φpxrquT tφpxr�1q � � �φpxnqu|Ωy � extras

(3.2.4)

which corresponds to the ordering in which all of the first r times is larger than all of the
remaining ones. We will omit the argument of the theta function going further. Now proceed
by inserting a complete set of states between the two time orderings:

xΩ|Tφpx1q � � �φpxnq |Ωy
�

¸
state

θ xΩ|T tφpx1q � � �φpxrqu |statey xstate|T tφpxr�1q � � �φpxnqu |Ωy

� extras.

(3.2.5)

Among all of the states, let us pick out the contribution of the single particle state |Ψy, and
push everything else into the extra terms:

xΩ|Tφpx1q � � �φpxnq |Ωy

�θ
»

d3p

p2πq3
1

2EΨ

xΩ|T tφpx1q � � �φpxrqu |Ψy xΨ|T tφpxr�1q � � �φpxnqu |Ωy
� extras.

(3.2.6)
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In each of the time orderings we can pick one of the coordinates to measure all the other
ones with respect to that one. Let us pick x1 in the first set and xr�1 in the second one.
Now we can rewrite φpx2q for example:

φpx2q � e�iP̂ x1φpx2 � x1qeiP̂ x1 . (3.2.7)

Rewriting every field in this manner, and defining x1j � xj � x1 for j � 1, 2, ... r:

xΩ|T tφpx1q � � �φpxrqu |Ψy � xΩ|T te�iP̂ x1φp0qeiP̂ x1e�iP̂ x1φpx12qeiP̂ x1 � � � e�iP̂ x1φpx1rqeiP̂ x1u |Ψy
� xΩ|T tφp0qφpx12q � � �φpx1rqu |Ψy eipΨx1

Similarly, defining x1j � xj � xr�1 for j � r � 1, r � 2, ... n:

xΨ|T tφpxr�1q � � �φpxnqu |Ωy � e�ipΨxr�1 xΨ|T tφp0q � � �φpx1nqu |Ωy (3.2.8)

Now let us go back to eq. (3.2.2) and change all of the integration variables to primed ones,
except for x1 and xr�1:

Gpp1, ... pnq �
»
dx1dx

1
2... dx

1
r dxr�1dx

1
r�2... dxn�

� e�ip1x1 � � � e�iprpx1r�x1qeipr�1xr�1 � � � eipnpx1n�xr�1q xΩ|� � �|Ωy
�
»
dx1... dx

1
ne

�ipp1�����prqx1eippr�1�����pnqxr�1e�ip2x12 � � � eipnx1n xΩ|� � �|Ωy
(3.2.9)

Finally, we also have to change the variables in the argument of the theta function:

minpt1, ... trq �t1 �minp0, t12, ... t1rq
maxptr�1, ... tnq �tr�1 �maxp0, t1r�2, ... t

1
nq

θpminrt1, ... trs �maxrtr�1, ... tnsq �θpt1 � tr�1 �minr0, ... t1rs �maxr0, ... t1nsq.
Use the integral representation of the theta function:

θptq �
»
dω

2π

i

ω � iε
e�iωt (3.2.10)

Putting everything together:

Gpp1, ... pnq �
»
d3pΨ

p2πq3
dω

2π
dx1... dx

1
ne

�ipp1�����prqx1eippr�1�����pnqxr�1e�ip2x12 � � � eipnx1n

� e�iωpt1�tr�1�minr0,... t1rs�maxr0,... t1nsqeipΨx1e�ipΨxr�1

� 1

2EΨ

i

ω � iε
xΩ|T tφp0qφpx12q � � �φpx1rqu |Ψy xΨ|T tφp0q � � �φpx1nqu |Ωy � extras

We can now take the x1 and xr�1 integrals. Let us focus on the x1 integral:»
dt1d

3x1e
ipp0

1�����p
0
r�EΨ�ωqt1eip~pΨ�~p1�����~prq~x1 � p2πq4δpp0

1�� � ��p0
r�EΨ�ωqδp~pΨ�~p1�� � ��~prq.
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Similarly, the integral over xr�1 will yield

p2πq4δpp0
r�1 � � � � � p0

n � EΨ � ωqδp~pΨ � ~pr�1 � � � � � ~pnq. (3.2.11)

Take the pΨ integral:

Gpp1, ... pnq �p2πq
4δpp1 � � � � � pnq

2Ep

»
dωdx12... dx

1
ne

�ip2x12 � � � eipnx1n

� δpp0
1 � � � � � p0

r � Ep � ωq i

ω � iε
e�iωpt1�tr�1�minr0,... t1rs�maxr0,... t1nsq

� xΩ|T tφp0qφpx12q � � �φpx1rqu |Ψy xΨ|T tφp0q � � �φpx1nqu |Ωy � extras,

(3.2.12)

where Ep �
a
~p 2 �M2. Since we are only interested in the pole around ω � 0, we can set

the argument in the exponential to zero, and take the ω integral:

Gpp1, ... pnq �p2πq4δpp1 � � � � � pnq i

2Eppp0 � Ep � iεq

�
»
dx12... dx

1
r xΩ|T tφp0qφpx12q � � �φpx1rqu |Ψy

�
»
dx1r�2... dx

1
n xΨ|T tφp0q � � �φpx1nqu |Ωy � extras

(3.2.13)

Identify the last two lines with matrix elements M1,r
Ψ and Mr�1,n:

Ψ , so that

Gpp1, ... pnq � p2πq4δpp1 � � � � � pnq i

2Eppp0 � Ep � iεqM
1,r
Ψ Mr�1,n:

Ψ � extras (3.2.14)

Notice that around the pole,

i

2Eppp0 � Ep � iεq �
i

2Eppp0 � Ep � iεq
p0 � Ep
p0 � Ep

� i

pp0q2 � E2
p � iε

� �i
p2 �M2 � iε

,

where we have redefined ε by absorbing a positive constant p0 � Ep into it.

Gpp1, ... pnq � p2πq4δpp1 � � � � � pnq �i
p2 �M2 � iε

M1,r
Ψ Mr�1,n:

Ψ � extras (3.2.15)

Hence the GF factorizes near the bound state pole: the matrix elements M1,r
Ψ and Mr�1,n:

Ψ

only depend on the incoming or outgoing momenta (and any other degrees of freedom, such
as spin) respectively. We now define the Bethe-Salpeter wavefunction in terms of these
matrix elements as follows:

Ψ � M1,r
Ψa

2Ep
sΨ � Mr�1,n:

Ψa
2Ep

, (3.2.16)
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so that in the proximity of the bound state pole

GÑ i
Ψpp1 � � � prqsΨppr�1 � � � pnq

p0 � Ep
. (3.2.17)

3.3 Bethe-Salpeter equation

Since the residue of the GF factorizes near the bound state pole, we can obtain an equation
for the Bethe-Salpeter wavefunction from the Dyson equation. Comparing the residues on
the two sides of eq. (3.1.3) for the case of the 4-point GF:

Ψpp1, p2qsΨpp3, p4q �
»
dk1Spp1, p2qKpp1, p2; k1, q1qΨpk1, q1qsΨpp3, p4q, (3.3.1)

Ψpp1, p2q �
»
dk1Spp1, p2qKpp1, p2; k1, q1qΨpk1, q1q, (3.3.2)

or schematically
Ψ � SKΨ (3.3.3)

One has to keep in mind that this equation only holds near the bound state pole, where
pp1 � p2q2 � �M2. Equation (3.3.2) is known as the Bethe-Salpeter equation (BSE) [9].

We should mention that an equation for sΨ can also be obtained by resuming the Dyson
equation in a different way

G � S �GKS, (3.3.4)

which leads to the dual BSE sΨ � sΨKS. (3.3.5)

Going forward we will only discuss eq. (3.3.3), but everything applies for the dual equation
as well.
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Chapter 4

The Quasipotential approach to BSE

4.1 Salpeter equation

The BSE is a four dimensional integral equation, with its kernel given by an infinite series
in the coupling constant, which makes it extremely hard to solve. The first consistent
approximation to this equation was developed by Salpeter [8]. Salpeter’s approach involves
replacing the exact kernel by its dominant part – the Coulomb interaction:

iKCp~p q � � e2

|~p |2γ
p1q
0 γ

p2q
0 . (4.1.1)

This approximate kernel is static, that is it has no energy dependence, which seems like it
would simplify the equation, since one can now integrate the rhs of the equation over the
relative energy. This is exactly how Salpeter proceeded, and obtained a three dimensional
integral equation. It was possible to introduce retardation effects in this kernel, making
the equation exact in principle. However, this zeroth order equation itself was not exactly
solvable, forcing one to use perturbation theory to first obtain a zeroth order solution, and
use more perturbation theory on top of it to get corrections to the Coulomb kernel. This was
further complicated by the fact that the wavefunctions of the Salpter equation depend on the
relative energy of constituents. All these problems combined make the scheme increasingly
more awkward to apply for higher order corrections.

Another problem of the Salpeter equation we should mention is the wrong infinite mass
limit. One would expect to recover the Dirac-Coulomb equation in the limit where the mass
of one of the two constituents becomes infinite. But this is not the case for the Salpeter
equation [6], which demonstrates a problem with the formalism. To be clear, one can actually
recover the right infinite mass limit by including not only the Coulomb ladder diagrams, but
also the crossed ladder diagrams. Obviously, this in itself complicates matters further.

The modern approach to approximating the BSE problem is more involved to account for
all the problems researchers have encountered in the past. As the example of the Salpeter
equation shows us, it is important to have a solvable zeroth order problem that already
accounts for some of the reduced mass dependence. Further, it helps if the wavefunctions
of the zeroth order problem do not depend on the relative energy of the constituents. Here
we will present a variation of an approach satisfying these conditions, and use it to solve for
energy levels of positronium in QED.
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4.2 Reducing the BSE to the Schödinger-Coulomb equa-

tion

4.2.1 The freedom of propagator choice

Recall the Dyson equation for the renormalized 4-point GF:

GR � SR � SRKRGR. (4.2.1)

We would like to reduce this equation to an exactly solvable three dimensional equation,
without making approximations that cannot be accounted for in perturbation theory. There
are several ways of doing that [1,2,6] which all rely on replacing the renormalized two particle
propagator SR by a simpler three dimensional propagator, which approximates its behaviour
well in the non-relativistic regime – the regime appropriate for bound state calculations
in positronium, muonium or hydrogen (some very early work in this area that lead to this
approach was done by Logunov, Tavkhelidze and Faustov [7], [3]). For now we will not specify
the exact form of the simplified propagator, but work with a generic one to demonstrate how
the reduction happens.

Since we are changing the propagator, in order for the equation to remain exact, we have
to somehow account for this change elsewhere. This is achieved by by adding compensating
changes to the kernel in a way shown below.

GR � S0 � S0KGR (4.2.2)

The K in eq. (4.2.2) has to be related to the KR in eq. (4.2.1) in such a way that the GF
resulting from the iteration does not change. Let us assume for now that S0 has an inverse.
Multiply eq. (4.2.1) by S�1

R from the left, and eq. (4.2.2) by S�1
0 from the left to obtain:

S�1
R GR � 1�KRGR,

S�1
0 GR � 1�KGR.

It follows, that in order for eq. (4.2.2) to hold:

K � KR � S�1
R � S�1

0 , (4.2.3)

and indeed if the kernel is transformed in this way, eq. (4.2.2) and eq. (4.2.1) are equivalent.
The same can be done for the case where S0 is not invertible, though it is somewhat

harder to demonstrate. In order to show this we have to consider the truncated GF, defined
below:

GR � SR � SRGTSR, (4.2.4)

so that GT is just the GF with the external propagators truncated. Rewriting eq. (4.2.1) in
its explicit iterative form makes the explicit form of GT clear:

GR � SR�SRKRSR � SRKRSRKRSR � ...

GT � KR �KRSRGT .
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We now require that a similar equation holds for GT with a different propagator and a
transformed kernel.

GT � K �KS0GT (4.2.5)

It can be explicitly shown that these equations hold if K is chosen in the following way:

K � KR �KRpSR � S0qK. (4.2.6)

Since we are choosing S0 to approximate SR as well as possible, the terms of higher order in
pSR � S0q are expected to be negligibly small, allowing us to approximate the transformed
kernel by

K � KR �KRpSR � S0qKR � ... (4.2.7)

This is an important point that should be stressed: even though in principle the equation for
GT with a propagator of choice S0 and a kernel transformed so as to fit this choice K is exact,
there is in fact no hope to find an exact solution to this equation. Instead, what eq. (4.2.7)
allows us to do is incorporate corrections (corrections due to a changed propagator) at any
order of pSR � S0q that we need to match experimental precision.

One can now go back to the untruncated GF, by attaching S0 propagator legs to GT .
The resulting GF G is:

G � S0 � S0GTS0. (4.2.8)

In this case, unlike in the case where S�1
0 exists, the GF resulting from a change of the

propagator is not the same as GR:
G � GR. (4.2.9)

However, if G were expressed in terms of GR, we could check whether the bound state poles
of these two GF’s are the same. From eq. (4.2.4) and eq. (4.2.8):

G � S0 � S0S
�1
R pGR � SRqS�1

R S0. (4.2.10)

Since neither of the free two particle propagators SR and S0 can have bound state poles, it
is clear from eq. (4.2.10) that G and GR indeed have the same bound state poles.

In conclusion, irrespective of whether the propagator of choice S0 is invertible or not,
the renormalized two particle propagator can be replaced by S0, as long as a compensating
transformation is performed on the kernel KR. As stressed by Lepage [6], one is free to
choose any two particle propagator that suits the problem at hand, precisely because of this
fact.

4.2.2 Approximating the kernel

Let us assume we have chosen an S0, and the Dyson equation for G now has the following
form:

G � S0 � S0KG, (4.2.11)

where K is given by eq. (4.2.7) in terms of KR, SR and S0. By a suitable choice of S0 this
equation can be reduced to a three dimensional one, however another problem remains: K
is given by a twofold infinite series. First of all it contains KR – the two particle irreducible
kernel given by an infinite series of diagrams with increasing powers of the coupling constant.
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Secondly, it contains the terms of the type KRpSR�S0qKR, correcting for the change of the
propagator. This difficulty is treated in the following manner: we pick the part of K that
generates the dominant part of the bound state pole (we call this contribution K0) and treat
the rest of K in perturbation theory which we will outline in section 4.3.

Assuming we have picked K0 as well, the Dyson equation becomes

G0 � S0 � S0K0G0, (4.2.12)

where G0 is the GF that results after this particular pick of K0. Let us name the bound state
energies of G0 as tE0

nu, and those of G as tEnu. These sets of energies will be related to each
other by the perturbation theory in δK � K � K0. In the case of hydrogen-like atoms in
QED, the Coulomb exchange (or something that is approximately the Coulomb exchange)
seems like a reasonable pick for K0. The Coulomb exchange will emerge in this framework
as a part of the single photon exchange in KR. In this case, we can immediately see that the
simplest corrections contained in δK are:

C − 0 T

Figure 4.2.1: Simplest contributions to δK.

And the simplest correction coming from KRpSR � S0qKR would be:

Figure 4.2.2: Simplest contribution from KRpSR � S0qKR.

where we have replaced the full kernel KR by single photon exchange.
Before discussing how exactly one calculates the shift in energy levels produced by

these corrections, we will show how an appropriate choice of the propagator leads to the
Schrödinger equation from eq. (4.2.12).

4.2.3 Motivation for a choice of S0

Let us discuss the choice of the propagator. As we have mentioned before, there are many
different ways of choosing S0, and each one is valid provided the kernel is transformed
accordingly. We will use the choice of Bodwin, Yennie and Gregorio [2]. To make the
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reason for this particular choice transparent, we need to re-parametrize the momenta of
incoming and outgoing particles in terms of parameters more relevant to our problem. We
will be concerned with two bound states in QED – positronium (e�e�) and muonium (µ�e�),
each of them consisting of a particle and an anti-particle. Let us call the momentum of the
incoming (outgoing) electron Pe (P 1

e), and the momentum of the incoming (outgoing) positive
anti-particle Pp (P 1

p). Re-parametrize them in a following way:

P µ
e � E 1δµ0 � pµ, P µ

p � E2δµ0 � pµ (4.2.13)

P µ � P µ
e � P µ

p � pE,~0 q (4.2.14)

where P µ is the total momentum and we are carrying out all our calculations in the rest
frame of the bound state, so that E is the energy of the bound state. Since we know that both
of these systems are highly non-relativistic and weakly bound, we expect each constituent
of the bound state to be almost on its mass shell. This allows us to define

E 12 � m2
e � γ2, E22 � m2

p � γ2. (4.2.15)

Since the bound state is weakly bound, its energy E will be just below the total mass of
the constituents pme � mpq, so the energy of each constituent is just below its mass, too.
This, combined with the fact that were the energy to be higher than the mass (like it is for

scattering states), we would express E 1 and E2 in terms of relative momentum ~k:

E 12 � m2
e � ~k 2, E22 � m2

p � ~k 2. (4.2.16)

It is exactly these considerations that inspire the definition in eq. (4.2.15). But ultimately,
this is nothing but a re-parametrization, in which we replace the variable E by γ, since

E � E 1 � E2 �
a
m2
e � γ2 �

b
m2
p � γ2. (4.2.17)

Expressed in terms of E instead of γ, E 1 and E2 are

E 1 � E2 �m2
p �m2

e

2E
, E2 � E2 �m2

p �m2
e

2E
. (4.2.18)

Knowing that γ2 ! me,mp, we can expand eq. (4.2.17) in powers of γ2, to get some insight
into the physical meaning of γ:

E � me �mp � γ2

2

� 1

me

� 1

mp

	
. (4.2.19)

If we now define reduced mass as mr � memp{pme �mpq,

E � me �mp � γ2

2mr

. (4.2.20)

Here, one can clearly see that the γ term in the energy is the binding energy. Just to get
an estimate of how small γ is, let us consider the ground state solution of the Schrödinger-
Coulomb equation with binding energy E C

0 :

E C
0 � �mrα

2

2
. (4.2.21)
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We deduce that γ is of the order mrα for QED bound states, so it is indeed small compared
to constituent masses, as expected.

The re-parametrization described above is usually referred to as momentum routing,
and is in principle arbitrary. The way presented here treats the constituents symmetrically,
however this need not be the case. For instance, Gross [4] puts one of the particles (the

heavier one) on shell: E 1 � E � E2, E2 �
b
m2
p � ~k 2. Even though the end result of

the calculation cannot depend on momentum routing, the intermediate steps will, that is
why it is important to choose one appropriate to the problem. If the problem at hand is
positronium, it is more convenient to treat the two particles symmetrically, whereas if it is
muonium or hydrogen, the asymmetric treatment might be more efficient.

We will start from the bare particle anti-particle propagator:

∆
p1q
0 pPeq∆p2q

0 pPpq � �ip� {P e �meqp1q
P 2
e �m2

e � iε

�ip {P p �mpqp2q
P 2
p �m2

p � iε
. (4.2.22)

At this point we would like to explain the notation used to express this propagator. To make
the explanation clear, let us consider a particular contribution to the GF – single photon
exchange presented on fig. 5.3.2.

Pe P ′
e

−Pp −P ′
p

Figure 4.2.3: Single photon exchange contribution to the GF.

Evaluating this diagram, we get

single photon contr. �
�
∆p1qpP 1

eqpieγµq∆p1qpPeqs
�
∆µν

�
∆p2qp�Ppqpieγνq∆p2qp�P 1

pq
�
, (4.2.23)

where ∆µν is the photon propagator. Notice that the form in which a diagram would normally
be evaluated does not fit the form of the Dyson equation: in the Dyson equation, this
contribution has the form SpP, pqKpP, p, qqSpP, qq, where S is the two particle propagator.
However, in eq. (4.2.23) the single particle propagators appear on different sides of the
equation. In the notation we use, this contribution would be rewritten as

single photon contr. �∆p1qpPeq∆p2qpPpq
��
ieγp1qµ

	
∆µν

�
ieγp2qν

	�
∆p1qpP 1

eq∆p2qpP 1
pq

� SpP, pq Ks.p.pP, p, qq SpP, qq.
(4.2.24)

Notice that in the first line of eq. (4.2.24) we have kept the (1), (2) labels on the gamma
matrices in the kernel, so that it is clear how to reconstruct eq. (4.2.23). Even though this
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notation helps with bringing the equations in a more understandable form, one has to be
careful when using it. For instance, in eq. (4.2.25), one cannot directly multiply the gamma
matrices in {P e and {P p because those propagators may be attached to different vertices,
or even if they are attached to the same vertex (for instance the annihilation diagram for
positronium) they would have the kernel (for the case of positronium ieγµ) between them.
This fact is made more explicit by the notation chosen in Kinoshita [5], where the two particle
propagator is expressed via a tensor product b:

∆p1qpPeq∆p2qpPpq � �ip� {P e �meqp1q
P 2
e �m2

e � iε
b �ip {P p �mpqp2q

P 2
p �m2

p � iε
, (4.2.25)

however, we will refrain from using this notation here, as adding labels (1), (2) to matrices
seems to be more self-evident.

We will always use the label (1) for the electron, and the label (2) for the anti-particle,
be it a positron or an anti-muon.

Going back to the bare propagator in eq. (4.2.25), let use the momentum routing defined
above to find a suitable approximation to it. For now, let us focus on the denominator of
the equation:

1

pE 1δµ0 � pµq2 �m2
e � iε

1

pE2δµ0 � pµq2 �m2
p � iε

� 1

γ2 � p2 � 2E 1p0 � iε

1

γ2 � p2 � 2E2p0 � iε
. (4.2.26)

This expression can be split into a sum of two fractions in the following way:

� 1

2E

1

γ2 � p2 � iε

� 2E 1

γ2 � p2 � 2E 1p0 � iε
� 2E2

γ2 � p2 � 2E2p0 � iε

�
. (4.2.27)

Now focus on the expression in the brackets:�
1

γ2 � p2

2E 1
� p0 � iε

� 1

γ2 � p2

2E2
� p0 � iε

�
. (4.2.28)

As we have stated before, in the case we are interested in, the binding energy (parametrized
by γ � αmr) and the relative momentum are much less than the mass of the constituents.
So since E 1 � me and E2 � mp, we may neglect the fractions in the denominators, to obtain:�

1

�p0 � iε
� 1

p0 � iε

�
, (4.2.29)

which is just a limit representation of the Dirac delta:

lim
εÑ0

�
1

�p0 � iε
� 1

p0 � iε

�
� 2πiδpp0q. (4.2.30)
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Hence, in the non-relativistic regime the denominator of the propagator may be approximated
by

2πi
1

2E

1

γ2 � p2 � iε
δpp0q. (4.2.31)

We would like to stress yet again that the approximations made here do not make the solution
inexact, since as it was shown in previous sections, the choice of the propagator is arbitrary
as long as it has the right behaviour in the non-relativistic regime. The procedure by which
we find the propagator described here should be seen as a justification for our particular
choice rather than a derivation.

For now the propagator is approximated by

∆
p1q
0 pPeq∆p2q

0 pPpq � �2πi
1

2E

p� {P e �meqp1qp {P p �mpqp2q
γ2 � ~p 2 � iε

δpp0q, (4.2.32)

where we have set p0 � 0 because of the Dirac delta. Let us now deal with the numerator
structure of the propagator. We wish to split it into the part dominant in the non-relativistic
regime, and the remainder.

p�E 1γ0 � piγi �meqp1qpE2γ0 � piγi �mpqp2q

�
��1

2
pE 1 �meqp1� γ0q

�
� 1

2
pE 1 �meqp1� γ0q � piγi

	p1q
�
��1

2
pE2 �mpqp1� γ0q

�
� 1

2
pE2 �mpqp1� γ0q � piγi

	p2q
For each particle, the contribution in the square brackets dominates, and that is the part we
keep for both particles.

∆
p1q
0 pPeq∆p2q

0 pPpq � �2πi
pE 1 �meqpE2 �mpq

8E

p1� γ0qp1qp1� γ0qp2q
γ2 � ~p 2 � iε

δpp0q. (4.2.33)

This two particle propagator is what we will use in our analysis as S0:

S0 � �2πi
pE 1 �meqpE2 �mpq

4Emr

1

γ2

2mr

� ~p 2

2mr

� iε

p1� γ0qp1q
2

p1� γ0qp2q
2

δpp0q. (4.2.34)

To simplify the derivation of the Schrödinger equation, we will present here a shorthand
notation:

S0 � 2πi δpp0qNs̄, (4.2.35)

where we have defined

N � pE 1 �meqpE2 �mpq
4Emr

, s̄ � �1

4

p1� γ0qp1qp1� γ0qp2q
γ2

2mr

� ~p 2

2mr

� iε

. (4.2.36)

Notice that s̄ is proportional to the Schrödinger propagator, and the factor N is very close
to unity, since E 1 � me, E

2 � mp in the non-relativistic regime:

N � memp

pme �mpqmr

� 1. (4.2.37)
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Since we are free in the choice of the propagator, at first glance it seems that one can simply
drop the factor of N , and just use the rest of the expression. However, as we have stated
before having some of the reduced mass dependence accounted for in the propagator helps
avoid spurious complications in the future calculations [2].

4.2.4 Emergence of the Schrödinger equation

Let us now use this propagator in the BSE. First, notice that the very first term of the
expansion for the GF is simply the two particle propagator S0, yet since in the free theory
particles cannot exchange momenta, we have to force p � q in this term. Taking this fact
into account, the Dyson equation becomes:

GpP ; p, qq � p2πq4δpp� qqS0pP ; pq �
»

d4k

p2πq4S0pP ; pqKpP ; p, kqGpP ; k, qq. (4.2.38)

Now, impose S0pP ; pq � 2πiδpp0qNs̄p~pq, and consider the open form of the Dyson equation:

GpP ; p, qq � p2πq4δpp� qqS0pP ; pq � S0pP ; pqKpP ; p, qqS0pP ; qq
� S0pP ; pqKpP ; p, kqS0pP ; kqKpP ; k, qqS0pP ; qq � ...

Notice that the first term can be rewritten as

δpp� qqδpp0q � δpp0qδpq0qδp~p� ~q q (4.2.39)

and each other term in the expansion contains SpP ; pq and SpP ; qq, which means that every
term will contain δpp0qδpq0q, such that we can rewrite G as

GpP ; p, qq �p2πq2 sGpP ; ~p, ~q qδpp0qδpq0q (4.2.40)

Using this expression in eq. (4.2.38):

sGpP ; ~p, ~q q � p2πq3iNs̄p~p q �
»

d3k

p2πq3Ns̄p~p qi
sKpP ; ~p,~k q sGpP ;~k, ~q q, (4.2.41)

where we have integrated over k0, and defined K̄ such thatsKpP ; ~p,~k q � lim
p0,k0Ñ0

KpP ; p, kq. (4.2.42)

The GF factorizes near a bound state pole at En:

GpP ; p, qq Ñ i
ΨnppqsΨnpqq
E � En

(4.2.43)

sGpP ; ~p, ~q q Ñ i
ψnp~p q sψnp~q q
E � En

(4.2.44)

Comparing the residues of the right side and the left side of eq. (4.2.41) at En, we obtain
the modified BSE:

ψnp~p q � Ns̄p~p q
»

d3k

p2πq3 i
sKpP ; ~p,~k qψnp~k q. (4.2.45)
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Keep mind, that the Dirac indices are suppressed in all these expressions. Really, ψn is a
matrix, and s̄ is a two matrix. This of course has to do with possible spin orientations of
the electron and the anti-particle. Let us use the expression for s̄ eq. (4.2.36) and write the
Dirac indices out explicitly but suppress the momentum convolution:

pψnqab � N

4

p1� γ0qp1qea p1� γ0qp2qbf
� γ2

2mr

� ~p 2

2mr

� iε

i sKef ;ghpψnqgh. (4.2.46)

Since p1� γ0qp1� γ0q � 0, it follows from eq. (4.2.46) that

p1� γ0qaa1pψnqab � 0 p1� γ0qb1bpψnqab � 0

p1� γ0qTψn � 0 ψnp1� γ0qT � 0. (4.2.47)

There are four orthonormal matrices Xsm satisfying these relations, and we choose them in
such a way that they are the eigenvectors of the spin operator.

Xsm �
�

0 ξsm

0 0



(4.2.48)

ξ00 � 1?
2

�
1 0
0 1



ξ10 � 1?

2

�
1 0
0 �1



ξ11 �

�
0 �1
0 0



ξ1,�1 �

�
0 0
1 0



With their orthogonality relation

tr
�
X:s1m1

Xsm
�
� X:s1m1

ab Xsm
ba � δss1δmm1 (4.2.49)

The solution then is a superposition of these matrices:

ψn �
¸
sm

Xsmφsmn , (4.2.50)

where φsmn will correspond to the wavefunction of the Schrödinger equation with spin quan-
tum numbers s,m. Expressing ψ in terms of φ:

¸
s2m2

Xs2m2

ab φs
2m2

n � N

4

p1� γ0qp1qea p1� γ0qp2qbf
� γ2

2mr

� ~p 2

2mr

� iε

i sKef ;gh

¸
s1m1

Xs1m1

gh φs
1m1

n . (4.2.51)

We would like to single out the equation for φsmn , to do that use the orthogonality relation
for the spin matrices:

¸
s2m2

X:sm
ba Xs2m2

ab φs
2m2

n � N

4

p1� γ0qp1qeaX:sm
ba p1� γ0qp2qbf

� γ2

2mr

� ~p 2

2mr

� iε

i sKef ;gh

¸
s1m1

Xs1m1

gh φs
1m1

n , (4.2.52)
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φsmn � N

4

�
p1� γ0qp1qX�smp1� γ0qp2q

�
ef

� γ2

2mr

� ~p 2

2mr

� iε

i sKef ;gh

¸
s1m1

Xs1m1

gh φs
1m1

n , (4.2.53)

φsmn � N
1

� γ2

2mr

� ~p 2

2mr

� iε

¸
s1m1

Xsm
ef i

sKef ;ghX
s1m1

gh φs
1m1

n . (4.2.54)

The trace on the right hand side of this equation represents how different spin states are
mixed through the kernel. We define a shorthand:pKsm;s1m1 � Xsm

ef
sKef ;ghX

s1m1

gh . (4.2.55)

Finally, let us restore the momentum convolution:

φsmn � N
1

� γ2

2mr

� ~p 2

2mr

� iε

¸
s1m1

»
d3k

p2πq3 i
pKsm;s1m1pP ; ~p, ~q qφs1m1

n p~q q. (4.2.56)

It remains to choose a suitable approximation of the kernel, K0. Let us choose the Coulomb
kernel corrected by a factor of 1{N (keep in mind that 1{N � 1, so K0 approximates the
Coulomb kernel well):

K0 � i
pieγ0qp1qpieγ0qp2q

|~p� ~q |2
1

N
� �ie2 γ

p1q
0 γ

p2q
0

|~p� ~q |2
1

N
(4.2.57)

pKsm;s1m1

0 � i
e2

|~p� ~q |2
1

N
δss1δmm1 (4.2.58)

As one can see, this choice of kernel leads to the Coulomb-Schrödinger equation:�
E0
n �

~p 2

2mr

	
φsmn p~p q � �

»
d3k

p2πq3
e2

|~p� ~q |2φ
sm
n p~q q, (4.2.59)

where we have identified the binding energy E :

E0
n � � γ2

2mr

. (4.2.60)

4.3 Perturbation theory

Let us summarize what we did leading up to this point. We have started with the renormal-
ized Dyson equation with the 2PI irreducible kernel KR:

GR � SR � SRKRGR. (4.3.1)

We have transformed the equation by a choosing a different propagator S0, yet keeping the
bound states poles unaltered through compensating changes in the kernel K:

G � S0 � S0KG,

K � KR �KRpSR � S0qK. (4.3.2)
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At this point the equation is still in principle exact, but hardly solvable. We proceed by
approximating the kernel K by its dominant part K0, to obtain an exactly solvable problem,
in this particular case, the Coulomb-Schrödinger equation:

G0 � S0 � S0K0G0. (4.3.3)

It remains to relate the exact poles of G, tEnu to the poles of the zeroth order GF G0, tE0
nu.

In order to do that, we should first relate the true GF G to the approximation G0 through
some sort of a perturbation expansion. This can be done by eliminating S0 form eq. (4.3.2)
and eq. (4.3.3). First notice that eq. (4.3.3) maybe rewritten by expanding the series on the
right side and resuming it in another way:

G0 � S0 �G0K0S0, (4.3.4)

S0 � p1�G0K0q�1G0. (4.3.5)

Using the transformed version of eq. (4.3.2):

G �p1� S0Kq�1S0.

�p1� S0Kq�1p1�G0K0q�1G0

�rp1�G0K0qp1� S0Kqs�1G0

�r1�G0K0 � S0K �G0K0S0Ks�1G0

�p1�G0δKq�1G0.

Expanding in powers of δK:

G � G0 �G0δKG0 �G0δKG0δKG0 �OpδK3q. (4.3.6)

We can use this result to relate En to E0
n. Take two arbitrary matrices A and B and note

the following result:

En � E0
n �

¾
Cn

dE

2πi
pE � E0

nqAGpEqB¾
Cn

dE

2πi
AGpEqB

, (4.3.7)

where Cn is the contour in the complex E plane that only contains one pole of G at En and
one pole of G0 at E0

n (as usual the sum over Dirac indices and the momentum convolution
is suppressed). We wish to keep corrections of order pδKq2, which means the numerator has
to be expanded to order pδKq2, but the denominator only needs to be expanded up to order
δK:

En � E0
n �

¾
Cn

dE

2πi
pE � E0

nqApG0 �G0δKG0 �G0δKG0δKG0qB¾
Cn

dE

2πi
ApG0 �G0δKG0qB

. (4.3.8)
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Notice the first term in the numerator is analytic, so it does not contribute to the contour
integral.

En � E0
n �

¾
Cn

dE

2πi
pE � E0

nqApG0δKG0 �G0δKG0δKG0qB¾
Cn

dE

2πi
ApG0 �G0δKG0qB

. (4.3.9)

Now let us consider the second term in the numerator:

2nd term �
¾
Cn

dE

2πi
pE � E0

nqAG0δKG0B

�
¾
Cn

dE

2πi
pE � E0

nqA
�
i

Ψ0
n
sΨ0
n

E � E0
n

� rG0

	
δK

�
i

Ψ0
n
sΨ0
n

E � E0
n

� rG0

	
B

�� rAΨ0
nsrsΨ0

nδKΨ0
nsrsΨ0

nBs,
where we have used the brackets to make several traces present in the expression more
evident. Each energy dependent term is to be evaluated at E0

n after integration, for now we
suppress the evaluation. Now, consider the third term:

3rd term �
¾
Cn

dE

2πi
pE � E0

nqAG0δKG0δKG0B

�
¾
Cn

dE

2πi
pE � E0

nqA
�
i

Ψ0
n
sΨ0
n

E � E0
n

� rG0

	
δK

�
i

Ψ0
n
sΨ0
n

E � E0
n

� rG0

	
δK

�
i

Ψ0
n
sΨ0
n

E � E0
n

� rG0

	
B

�� rAΨ0
nsrsΨ0

nδKΨ0
nsrsΨ0

nδK
rG0Bs � rAΨ0

nsrsΨ0
nδK

rG0δKΨ0
nsrsΨ0

nBs
� rA rG0δKΨ0

nsrsΨ0
nδKΨ0

nsrsΨ0
nBs � i

d

dE
rAΨ0

nsrsΨ0
nδKΨ0

nsrsΨ0
nδKΨ0

nsrsΨ0
nBs.

Now let us expand the denominator:

denom. � 1¾
Cn

dE

2πi
ApG0 �G0δKG0qB

� 1¾
Cn

dE

2πi
AG0B

�
1�

¾
Cn

dE

2πi
AG0δKG0B¾

Cn

dE

2πi
AG0B

�

� 1

irAΨ0
nsrsΨ0

nBs

�
1�

irAΨ0
nsrsΨ0

nδK
rG0Bs � irA rG0δKΨ0

nsrsΨ0
nBs �

d

dE
rAΨ0

nsrsΨ0
nδKΨ0

nsrsΨ0
nBs

irAΨ0
nsrsΨ0

nBs

�
Combining everything and only keeping terms up to pδKq2, we get

En � E0
n �irsΨ0

nδKΨ0
ns
�

1� irsΨ0
n

d

dE
δKΨ0

ns
	����
E�E0

n

� irsΨ0
nδK

rG0δKΨ0
ns
����
E�E0

n

(4.3.10)
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Chapter 5

Ground state HFS in positronium

5.1 Polarization vectors

In this section we will apply the method described above to calculate the hyperfine split-
ting in the ground state of positronium, in other words the mass difference between ortho-
positronium (o-Ps) and para-positronium (p-Ps). Recall that p-Ps is the triplet state with
aligned spins, such that the total spin is s � 1, and the projection can be m � �1, 0, 1.
Whereas o-Ps is the singlet state with s � 0, m � 0. As we have already mentioned the
spin matrices corresponding to these states are:

Xsm �
�

0 ξsm

0 0



(5.1.1)

ξ00 � 1?
2

�
1 0
0 1



loooooooooomoooooooooon

the singlet

ξ10 � 1?
2

�
1 0
0 �1



ξ11 �

�
0 �1
0 0



ξ1,�1 �

�
0 0
1 0



loooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooon

the triplet

(5.1.2)

For future convenience, let us express these states in terms of Pauli matrices and polarization
vectors:

ξ00 � 1?
2
1

ξ1m � 1?
2
~εpmq � ~σ

$'&'%
~εp0q � p0, 0, 1q

~εp�q � �1?
2
p�1, i, 0q

~εpmq � ~ε �pnq � δmn.

(5.1.3)

Notice that the subscript pmq on ~εpmq is not to be confused with a component of the vector,
but rather it spans a family of different vectors. However, whenever we write a subscript
without parentheses, such as εpmq i, we mean the i’th component of the vector ~εpmq. Since
in this calculation different polarizations are never mixed in the same equation, we will
generally suppress the subscript pmq until the very end of the calculation, where we restore
it.
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5.2 Ground state wavefunction

Solution of the Coulomb-Schrödinger equation in quantum mechanics are characterized by
three quantum numbers: the principal quantum number n, the angular momentum quan-
tum number `, and the magnetic quantum number m. Unless other interactions are added
perturbatively, the energy of different states only depends on the principal quantum number
and is completely degenerate in ` and m:

E0
n � �mrα

2

2n2
, n � 1, 2, 3... (5.2.1)

The way one generally proceeds in quantum mechanics, is to add small perturbations to
the original Hamiltonian, and calculate the resulting shifts in energy. For example, if one
considers spin-orbit coupling (LS-coupling) the energy corrections to states with different
angular quantum number ` will be different, breaking the degeneracy in `. This splitting of
states with different ` is known as the fine splitting. Notice that in the ground state n � 1,
the only allowed value for the angular momentum number is ` � 0, and fine splitting does
not appear.

What we will be mainly concerned with is the hyperfine splitting (hfs), which appears
because of the spin-spin coupling (SS-coupling). In this section we will calculate the hyperfine
splitting in the ground state for positronium using the quasipotential approach to the BSE
in QED. To do this, we need the ground state wavefunction and its Fourier transform:

φp~x q �
c
γ3

π
e�γr φp~p q � F

 
φp~p q( �c

γ3

π

8πγ

p~p 2 � γ2q2 (5.2.2)

We can also infer from eq. (4.2.60) and eq. (5.2.1) that

γ � mrα (5.2.3)

in the ground state. We can see from the wavefunction in position space, 1{γ is the Bohr
radius. If we now look at the momentum space wavefunction, we can see that γ acts as
somewhat of a natural energy cut-off, suppressing the wavefunction for high momenta. This
is crucial for the perturbation theory set up in section 4.3 to work. To better understand
why, consider the correction to the kernel K0

δK � KCpSR � S0qKC , (5.2.4)

and the resulting contribution to the energy shift:

δE �
»

d3p

p2πq3
d3q

p2πq3φp~p qiKCpSR � S0qKCφp~q q. (5.2.5)

By construction, S0 approximates SR well in the non-relativistic regime, such that pSR�S0q is
small. So in the non-relativistic regime, where the bulk of the wavefunction is concentrated,
the integral is suppressed by the small difference in propagators. In the relativistic regime,
where SR is not necessarily close to S0, the integral is suppressed by the wavefunction
itself. Understanding this structure of scales of the problem plays a key role in estimating
contributions to the energy from different kernel corrections since simply counting the number
of diagram vertices does not work.
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5.3 The transverse photon and annihilation

Let us move on to the actual calculation of the hfs. What correction to the kernel produces
it? Since we know the hfs exists because of the spin-spin interaction, we are looking for a
spin dependent kernel. Consider the simplest such kernel, transverse photon exchange:

Pe P ′
e

−Pp −P ′
p

T

Figure 5.3.1: Transverse photon exchange correction.

For this kernel, we have:sKef ;ghpP ; ~p, ~q q � �
ieγi

�
ge

�
ieγj

�
fh

∆ijp~p� ~q q (5.3.1)

The simplest correction to the energy from this kernel is

δEsm
T � i

� sψ sKψ� � »
d3p

p2πq3
d3q

p2πq3φp~p qX
sm
ef i

sKef ;ghpP ; ~p, ~q qXsm
gh φp~q q

�
»

d3p

p2πq3
d3q

p2πq3φp~p qTr
��
ieγi

�
Xsm

�
ieγj

�
X:sm

�
φp~q q

(5.3.2)

At this point we should mention a very important property of the BSE wavefunction ψ.
From eq. (4.2.46) it follows that large and small projectors don’t alter ψ provided they are
acted from the correct side:

ψ � P�ψP�, ψ: � P�ψ
:P� (5.3.3)

where

P� � 1

2
p1� γ0q P� � 1

2
p1� γ0q

P�P� � P� P�P� �P�P� � 0 P�P� � P�

P�γiP� � 0 � P�γiP�

(5.3.4)

It follows that

δEsm
T �

»
d3p

p2πq3
d3q

p2πq3φp~p qTr
�
P�

�
ieγi

�
P�X

smP�
�
ieγj

�
P�X

:sm
�
φp~p q � 0. (5.3.5)

The contribution from transverse photon exchange vanishes. The next thing we can check
is the annihilation diagram, for which the corresponding kernel is
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Figure 5.3.2: The annihilation correction.

sKef ;gh �
�
ieγµ

�
fe

�
ieγν

�
gh

∆µνpE,~0q. (5.3.6)

The energy correction resulting from this kernel is:

δEsm
a � i

� sψ sKψ� � »
d3p

p2πq3
d3q

p2πq3φp~p qX
sm
ef i

sKef ;ghpP ; ~p, ~q qXsm
gh φp~q q

� �ie2

»
d3p

p2πq3
d3q

p2πq3φp~p qTr
�
γµX

sm
�

Tr
�
X:smγν

�
∆µνpE,~0qφp~q q.

(5.3.7)

Let us first consider temporal traces µ, ν � 0, using the property of the wavefunction de-
scribed in eq. (5.3.3):

Tr
�
γ0P�X

smP�
�

Tr
�
P�X

:smP�γ0

�
� Tr

�
P�P�X

sm
�

Tr
�
P�P�X

:sm
�

� 0.

(5.3.8)

One can see that the temporal part does not contribute, so we should consider the spatial
part µ, ν � i, j:

Tr
�
γiX

sm
�

Tr
�
X:smγj

�
� Tr

��
0 σi
�σi 0


�
0 ξsm

0 0


�
Tr

��
0 σj
�σj 0


�
0 0

ξ:sm 0


�
� �Tr

�
σiξ

sm
�

Tr
�
σjξ

:sm
�
.

(5.3.9)

We can see that this part can produce hfs, because it might contribute different energy
shifts to the singlet and the triplet. Let us consider the contribution to the singlet state,

ξ00 � 1?
2
1:

Tr
�
γiX

00
�

Tr
�
X:00γj

�
� �Tr

�
σiξ

00
�

Tr
�
σjξ

:00
�

� �1

2
TrrσisTrrσjs

� 0,

(5.3.10)
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so this kernel does not contribute any energy to the singlet:

δE00
a � 0. (5.3.11)

Now, compute the contribution to the triplet, ξ1m � 1?
2
~εpmq � ~σ (we suppress the index pmq

on the polarization vector):

Tr
�
γiX

1m
�

Tr
�
X:1mγj

�
� �Tr

�
σiξ

1m
�

Tr
�
σjξ

:1m
�

� �1

2
εkε

�
n TrrσiσksTrrσjσns

� 2εkε
�
nδikδjn

� 2εiε
�
j .

(5.3.12)

Having computed the trace, we can compute the shift in energy:

δE1m
a � 2ie2

»
d3p

p2πq3
d3q

p2πq3φp~p qεiε
�
j∆

ijpE,~0qφp~q q, (5.3.13)

where we can now explicitly state the transverse photon propagator at zero momentum:

δE1m
a � 2ie2

»
d3p

p2πq3
d3q

p2πq3φp~p qεiε
�
j

i

E2
δijφp~q q

� 2e2

E2

�
~εpmq � ~ε �pmq

� » d3p

p2πq3
d3q

p2πq3φp~p qφp~q q

� 2e2

E2
φp~x � 0q2

(5.3.14)

As one can see, the energy shift only depends on the norm of the polarization vector, so
that every state in the triplet gets the same contribution. Since we are only interested in
the leading order contribution, we set E � 2

a
m2
e � γ2 � 2me, though in principle one can

see that even this kernel contributes to all orders in α, because of the γ dependence in the
denominator. This of course has to be taken into account when one computes the higher
order corrections. Substituting the value of the wavefunction, we get:

δE1m
a � δE00

a � meα
4

4
. (5.3.15)

This is the simplest contribution to the hfs in our framework. However, notice that this is
already impossible to obtain in the context of quantum mechanics, since there is no way to
account for annihilation.

5.4 Crossed cancelations

The next correction to consider in δK is the crossed photon exchange on fig. 5.4.1. Recall
that the simple two photon exchange is not in δK � KR�K0 �KRpSR�S0qKR� ..., since
it is a reducible diagram.
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Figure 5.4.1: The crossed photon contribution from δK.

δK /∈

Figure 5.4.2: The double exchange is not in δK.

However, there is indeed a diagram in δK that very much resembles the double exchange,
and it is contained in the propagator correction part KRpSR�S0qKR. If we simply take the
single exchange part of KR on both sides, and denote the difference of propagators with a
blob on the diagram, the contribution will look like fig. 5.4.3:

Figure 5.4.3: A contribution from KRpSR � S0qKR.

As we will demonstrate here, if these diagrams are treated together they need not be
computed, as they do not contribute to the hfs. We find this is easier to see if the transverse
and Coulomb photons are treated separately (although the mixed terms are also present of
course). Let us start by considering the contributions with two transverse photons.

5.4.1 Two transverse photons

Within this section, we call the crossed transverse contribution Kc and the double transverse
photon exchange Kd. The sum of the two is denoted KTT .
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T T T T

E ′δµ0 + pµ E ′δµ0 + qµE ′δµ0 + kµ

p− k k − q

E ′δµ0 + pµ E ′δµ0 + kµ E ′δµ0 + qµ

p− k k − q

−E ′δµ0 + pµ −E ′δµ0 + kµ −E ′δµ0 + qµ −E ′δµ0 + pµ −E ′δµ0 + kµ −E ′δµ0 + qµ

Figure 5.4.4: The contribution with two transverse photons.

Kc
ef ;gh �

»
d4k

p2πq4
�pieγ`q∆pE 1δµ0 � kµqpieγiq

�
ge

�pieγmq∆p�E 1δµ0 � kµqpieγjq
�
fh

�∆ijpp� kq∆`mpk � qq
(5.4.1)

To eventually compute the energy contribution, we first need to compute the trace

pKc � XefK
c
ef ;ghXgh. (5.4.2)

pKc �
»
d4k

p2πq4 Tr
�pieγ`q∆pE 1δµ0 � kµqpieγiqXpieγmq∆p�E 1δµ0 � kµqpieγjqX:

�
�∆ijpp� kq∆`mpk � qq

(5.4.3)

We can simplify this by doing two things: split electron and positron propagators into small
and large projectors and use eq. (5.3.3). Having done this, the propagators are

∆pE 1δµ0 � kµq � �i �E 1γ0 � k0γ0 � kiγi �me

�pE 1 � k0q2 � ~k 2 �m2
e � iε

� P�pE 1 � k0 �meq � P�pE 1 � k0 �meq � ~k � ~γ
Dpkq ,

(5.4.4)

∆p�E 1δµ0 � kµq � �i E 1γ0 � k0γ0 � kiγi �me

�p�E 1 � k0q2 � ~k 2 �m2
e � iε

� P�p�E 1 � k0 �meq � P�p�E 1 � k0 �meq � ~k � ~γ
Dp�kq ,

(5.4.5)

Dpkq � i
�� pE 1 � k0q2 � ~k 2 �m2

e � iε
�

(5.4.6)

where P�, P� are the large and small projectors. With this decomposition and eq. (5.3.3) in
mind, we can rewrite the trace in eq. (5.4.3) as

1

DpkqDp�kq Tr
�
P�pieγ`q

�
P�p...q � P�p...q � ~k � ~γ

�pieγiqP�X
�P�pieγmq

�
P�p...q � P�p...q � ~k � ~γ

�pieγjqP�X:
�
,

(5.4.7)
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where we have not stated the coefficients of projectors for now, and we have used the cyclicity
of the trace to move the P� from the very end to the very beginning. Now, we can use the
fact that an expression with an odd number of spatial gamma matrices between two same
projectors (such as P�pieγ`qP�) vanishes, to simplify the trace

1

DpkqDp�kq Tr
�
P�pieγ`q

��P�pE 1 � k0 �meq
�pieγiqP�X

�P�pieγmq
�
P�p�E 1 � k0 �meq

�pieγjqP�X:
�
,

(5.4.8)

where we have restated the coefficients of P� and P�. We can now commute the inner
projectors toward the outer ones such as P�pieγmqP� � P�P�pieγmq � pieγmq, and reabsorb
the projectors into the wavefunctions to get

�pE
1 � k0 �meqp�E 1 � k0 �meq

DpkqDp�kq Tr
�pieγ`qpieγiqXpieγmqpieγjqX:

�
. (5.4.9)

Let us state what pKc looks like after these simplifications, and move on to pKd for now.

pKc � �
»

d4k

p2πq4
pE 1 � k0 �meqp�E 1 � k0 �meq

DpkqDp�kq ∆ijpp� kq∆`mpk � qq

� Tr
�pieγ`qpieγiqXpieγmqpieγjqX:

� (5.4.10)

As we have stated before, the pKd contribution is of the form KT pSR � S0qKT , where KT is
transverse photon exchange. We will first compute the second part of this expression, that
is p�KTS0K

T q. Recall that the matrix part of S0 is simply P� for the electron and P� for
the positron. So the trace part of this contribution will be

Tr
�pieγ`qP�pieγiqXpieγjqP�pieγmqX:

�
� Tr

�
P�pieγ`qP�pieγiqP�XP�pieγjqP�pieγmqP�X:

�
� 0,

(5.4.11)

such that the contribution vanishes. This means we are left with the KTSRK
T bit of it,

which is simply eq. (5.4.3) with the vertex factors pieγmq and pieγjq exchanged:

pKd �
»
d4k

p2πq4 Tr
�pieγ`q∆pE 1δµ0 � kµqpieγiqXpieγjq∆p�E 1δµ0 � kµqpieγmqX:

�
�∆ijpp� kq∆`mpk � qq.

(5.4.12)

Since all of the arguments we used to simplify eq. (5.4.3) also hold for the trace in pKd, the

simplified version of pKd is simply eq. (5.4.10) with pieγmq and pieγjq exchanged

pKd � �
»

d4k

p2πq4
pE 1 � k0 �meqp�E 1 � k0 �meq

DpkqDp�kq ∆ijpp� kq∆`mpk � qq

� Tr
�pieγ`qpieγiqXpieγjqpieγmqX:

�
.

(5.4.13)
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Notice that when we add the two contributions pKc and pKd, we can use the anticommutation
relations for the Dirac matrices, tγj, γmu � �2δjm. Taking this into account,

pKc � pKd � �2e2

»
d4k

p2πq4
pE 1 � k0 �meqp�E 1 � k0 �meq

DpkqDp�kq ∆ijpp� kq∆`jpk � qq

� Tr
�pieγ`qpieγiqXX:

�
.

(5.4.14)

This is quite a lot simpler than what we had in the beginning, but still it is not obvious
why these diagrams do not contribute to the hfs. In order to understand that, we need to
integrate these contributions with the wavefunctions in order to find the energy contribution:

δE �2e2

»
d3p

p2πq3
d3q

p2πq3
d4k

p2πq4
pE 1 � k0 �meqp�E 1 � k0 �meq

DpkqDp�kq
�∆ijpp� kq∆`jpk � qqφp~p qφp~q qTr

�pieγ`qpieγiqXX:
�
.

(5.4.15)

Now, let us rename the dummy momenta ~pØ ~q, and the dummy indices `Ø i:

δE �2e2

»
d3p

p2πq3
d3q

p2πq3
d4k

p2πq4
pE 1 � k0 �meqp�E 1 � k0 �meq

DpkqDp�kq
�∆`jpq � kq∆ijpk � pqφp~q qφp~p qTr

�pieγiqpieγ`qXX:
�
.

(5.4.16)

Now, if we take into account that the transverse photon is even in momentum ∆ijppq �
∆ijp�pq, we can see that after this renaming, the only thing in eq. (5.4.15) that is changed
is the position of the gamma matrices in the trace

δE �2e2

»
d3p

p2πq3
d3q

p2πq3
d4k

p2πq4
pE 1 � k0 �meqp�E 1 � k0 �meq

DpkqDp�kq
�∆ijpp� kq∆`jpk � qqφp~p qφp~q qTr

�pieγiqpieγ`qXX:
�
.

(5.4.17)

If we now add eq. (5.4.15) to eq. (5.4.17), divide by 2, and use the anticommutation relation
again, we obtain

δE �2e4

»
d3p

p2πq3
d3q

p2πq3
d4k

p2πq4
pE 1 � k0 �meqp�E 1 � k0 �meq

DpkqDp�kq
�∆ijpp� kq∆ijpk � qqφp~p qφp~q qTr

�
XX:

�
.

(5.4.18)

Finally, we can see that indeed, this sum cannot contribute to the hfs, since the trace
Tr

�
XX:

� � 1, regardless of whether X is the singlet or one of the triplets, so that both the
singlet and the triplet get the same energy contribution, and there is no splitting produced.

5.4.2 A transverse photon and a Coulomb photon

The next thing to consider is the same contribution with one of the photons being a Coulomb
photon:
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E ′δµ0 + pµ E ′δµ0 + qµE ′δµ0 + kµ

p− k k − q

E ′δµ0 + pµ E ′δµ0 + kµ E ′δµ0 + qµ

p− k k − q

−E ′δµ0 + pµ −E ′δµ0 + kµ −E ′δµ0 + qµ −E ′δµ0 + pµ −E ′δµ0 + kµ −E ′δµ0 + qµ

Figure 5.4.5: The contribution with a transverse photon and a Coulomb photon.

Within this section, we will again call the crossed contribution Kc, and the double con-
tribution Kd. Let us start with the crossed diagram:

pKc �
»
d4k

p2πq4 Tr
�pieγ0q∆pE 1δµ0 � kµqpieγiqXpieγ0q∆p�E 1δµ0 � kµqpieγjqX:

�
�∆ijpp� kq∆00pk � qq

(5.4.19)

We will proceed the same way we did before, by splitting the propagators into projectors,
and rewriting the wavefuntions. Then the trace in this expression is

1

DpkqDp�kq Tr
�
P�pieγ0q

�
P�p...q � P�p...q � ~k � ~γ

�pieγiqP�X
�P�pieγ0q

�
P�p...q � P�p...q � ~k � ~γ

�pieγjqP�X:
�
,

(5.4.20)

and by using the properties of projectors in eq. (5.3.4), we obtain:

� 1

DpkqDp�kq Tr
�
P�pieγ0q

��~k � ~γ�pieγiqP�X
�P�pieγ0q

��~k � ~γ�pieγjqP�X:
�

� e2

DpkqDp�kq Tr
�
P�

��~k � ~γ�pieγiqP�X
�P�

��~k � ~γ�pieγjqP�X:
�

� e2

DpkqDp�kq Tr
�
~k � ~γpieγiqX ~k � ~γpieγjqX:

�
(5.4.21)

With this, eq. (5.4.19) becomes

pKc �
»
d4k

p2πq4
e2

DpkqDp�kq Tr
�
~k � ~γpieγiqX ~k � ~γpieγjqX:

�
�∆ijpp� kq∆00pk � qq.

(5.4.22)

Following the logic of the previous section, we leave pKc for now, and turn to the double
photon diagram. Again, we consider two different contributions from this diagram separately.
Consider the �KTS0K

C part: sΨKTS0K
CΨ � N sΨKTΨ � 0, (5.4.23)
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where we have use the Schrödinger equation S0K0Ψ � Ψ, and the result for the transverse
photon.

Now, let us focus on the KTSRK
C part.

pKd �
»
d4k

p2πq4 Tr
�pieγ0q∆pE 1δµ0 � kµqpieγiqXpieγjq∆p�E 1δµ0 � kµqpieγ0qX:

�
�∆ijpp� kq∆00pk � qq

(5.4.24)

Consider the trace

1

DpkqDp�kq Tr
�
P�pieγ0q

�
P�p...q � P�p...q � ~k � ~γ

�pieγiqP�X
�P�pieγjq
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�

� e2

DpkqDp�kq Tr
�
~k � ~γ pieγiqXpieγjq~k � ~γ X:

�
,

(5.4.25)

in a manner similar to eq. (5.4.21). With this simplification

pKd �
»
d4k

p2πq4
e2

DpkqDp�kq Tr
�
~k � ~γ pieγiqXpieγjq~k � ~γ X:

�
�∆ijpp� kq∆00pk � qq.

(5.4.26)

As one can see, the only difference between eq. (5.4.22) and eq. (5.4.26) are the positions of
the gamma matrices in th trace. This allows us to simply use the anticommutation relations
when adding the two contributions to obtain

pKc � pKd �
»
d4k

p2πq4
ie3km

DpkqDp�kq Tr
�
~k � ~γ pieγiqX

 
γj, γm

(
X:

�
�∆ijpp� kq∆00pk � qq

�
»
d4k

p2πq4
�2ie3kj

DpkqDp�kq Tr
�
~k � ~γ pieγiqXX:

�
�∆ijpp� kq∆00pk � qq.

(5.4.27)

Of course, we still have to add the diagrams with the transverse and the Coulomb photon
exchanged:

The kernels corresponding to these diagrams can be obtained from eq. (5.4.19) and
eq. (5.4.24) by exchanging the appropriate vertex factors and photon propagators:

pKc1 �
»
d4k

p2πq4 Tr
�pieγiq∆pE 1δµ0 � kµqpieγ0qXpieγjq∆p�E 1δµ0 � kµqpieγ0qX:
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(5.4.28)

pKd1 �
»
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(5.4.29)
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Figure 5.4.6: The other contribution with a transverse photon and a Coulomb photon.

The traces in these contributions simplify in almost exactly the same manner as previously,
so here we just state the result

pKc1 �
»
d4k

p2πq4
e2

DpkqDp�kq Tr
�pieγiq~k � ~γ Xpieγjq~k � ~γ X:

�
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(5.4.30)
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(5.4.31)

pKc1 � pKd1 �
»
d4k

p2πq4
ie3km

DpkqDp�kq Tr
�pieγiq~k � ~γ X 

γj, γm
(
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�∆ijpk � qq∆00pp� kq
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p2πq4
�2ie3kj

DpkqDp�kq Tr
�pieγiq~k � ~γ XX:

�
�∆ijpk � qq∆00pp� kq.

(5.4.32)

At this point we can see that the structures of pKc1 � pKd1 in eq. (5.4.32) and pKc � pKd in
eq. (5.4.27), however we cannot yet simply add the traces and use the anticommutation re-
lations, since the photon propagators in the two contributions depend on different momenta.
However, keep in mind that we still have to convolute these kernels with the wavefunctions
φp~p q and φp~q q, and we can after having done that, exchange the names of the dummy mo-
menta ~p Ø ~q. After this, the photon propagators are the same in the two expressions, and
we can add them as we did before:

δEp pKc � pKd � pKc1 � pKd1q �
»
d3p

p2πq3
d3q

p2πq3
d4k

p2πq4
2e4kjkm

DpkqDp�kq Tr
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XX:

�
�∆ijpk � qq∆00pp� kq»
d3p

p2πq3
d3q

p2πq3
d4k

p2πq4
2e4kjki

DpkqDp�kq Tr
�
XX:

�
�∆ijpk � qq∆00pp� kq.

(5.4.33)
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Again, we can see the contribution is the same for the singlet and the triplet, so it need not
be computed.

5.4.3 Two Coulomb photons

Finally, we need to consider the contribution with two Coulomb photons:

+

C C C C

E ′δµ0 + pµ E ′δµ0 + qµE ′δµ0 + kµ

p− k k − q

E ′δµ0 + pµ E ′δµ0 + kµ E ′δµ0 + qµ

p− k k − q

−E ′δµ0 + pµ −E ′δµ0 + kµ −E ′δµ0 + qµ −E ′δµ0 + pµ −E ′δµ0 + kµ −E ′δµ0 + qµ

Figure 5.4.7: The contribution with two Coulomb photons.

The trace structure of the crossed diagram and the KCSRK
C part of the double exchange

will be the same:

Tr
�pieγ0q
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P�p...q � P�p...q � ~k � ~γ

�pieγ0qX
�pieγ0q
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P�p...q � P�p...q � ~k � ~γ

�pieγ0qX:
�

� Tr
�
P�pieγ0q

�
P�p...q � P�p...q � ~k � ~γ

�pieγ0qP�X
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�pieγ0qP�X:
�

� Tr
�
P�pieγ0q

�
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�pieγ0qP�X
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�pieγ0qP�X:

�
� �e4pE 1 � k0 �meqp�E 1 � k0 �meqTr

�
XX:

�

(5.4.34)

Again, we can see that neither of these diagrams produces any hfs.

5.5 Leading order two loop diagram

Because their evaluation is very lengthy, we will not check all of the two loop diagrams that
have to be checked, and instead only present the highest order contribution (references [2,5,6]
deal with these diagrams, and the former uses a propagator similar to ours) which is given
by the diagram shown on fig. 5.5.1, coming from the KRpSR � S0qKRpSR � S0qKR part of
the kernel correction.

In fact, we will only consider a particular part of this contribution given by

KCSKTSKC , (5.5.1)

shown on fig. 5.5.2 and we will discuss the other contributions such as

KCS0K
TS0K

C �KCSKTS0K
C �KCS0K

TSKC (5.5.2)
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C CT

Figure 5.5.1: The leading order two loop contribution to the hfs.

C CT

Figure 5.5.2: The KCSKTSKC part of the contribution.

in the end of this section.
We will call the first relative loop momentum k and the second one k1. Notice that

there are two 3-dimensional and two 4-dimensional integrals to be taken here: the ~p and
~q integrals that convolute the kernel with the wavefunction on both sides, and two loop
integrals over k and k1. In the case of this diagram, we can immediately evaluate the
wavefunction convolution integrals, because as we will see, they will simply follow from the
Schrödinger equation.

Let us start with the ~p integral. The only two things that depend on ~p are the wavefunc-
tion and the left Coulomb photon propagator, so let us drop everything else for now and
consider only these two things:

Ip~k q �
»

d3p

p2πq3
i

|~p� ~k |2
φp~p q. (5.5.3)

But the Coulomb-Schrödinger equation (eq. (4.2.59)) immediately tells us what the convo-
lution is (in the case of positronium, mr � me{2):»

d3p

p2πq3
1

|~p� ~k |2
φp~p q �

�
~k2 � γ2

mee2

�
φp~kq

�
c
γ3

π

�
~k2 � γ2

mee2

�
4πmeα

p~k2 � γ2q2

�
c
γ3

π

1

p~k2 � γ2q

(5.5.4)

Ip~k q � i

c
γ3

π

1

p~k2 � γ2q
(5.5.5)
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We can also take the ~q integral in exactly the same way, yielding

Ip~k1q �
»

d3q

p2πq3
i

|~k1 � ~q |2
φp~q q

� i

c
γ3

π

1

p~k12 � γ2q
.

(5.5.6)

These results are extremely helpful, since they allow us to see that to get the lowest order
contribution, we need to only consider the non-relativistic bits of the k and k1 loop integrals,
since both ~k and ~k1 are cut off by γ � meα{2. Recall that we have already approximated
the two-particle propagator in the non-relativistic regime in section 4.2.3, we state the result
here:

∆
p1q
0 pE 1δµ0 � kµq∆p2q

0 p�E 1δµ0 � kµq � �2πi
1

2E

p� {P e �meqp1qp {P p �mpqp2q
γ2 � ~k2

δpk0q, (5.5.7)

where

�{P e �me � P�pE 1 �meq � P�pE 1 �meq � ~k � ~γ
{P p �me � P�p�E 1 �meq � P�p�E 1 �meq � ~k � ~γ

(5.5.8)

Now, with all these considerations in mind, we can compute the energy shift due to this
kernel correction:

δEpCTCq � iγ3

4πE2

»
d4k

p2πq4
d4k1

p2πq4 p2πδpk
0qqp2πδpk10qq 1

pγ2 � ~k2q2
1

pγ2 � ~k12q2
∆ijpk � k1q

�Tr
�pieγ0q

�
P�p...q � P�p...q � ~k1 � ~γ

�pieγiq�P�p...q � P�p...q � ~k � ~γ
�pieγ0qX

�pieγ0q
�
P�p...q � P�p...q � ~k � ~γ

�pieγjq�P�p...q � P�p...q � ~k1 � ~γ
�pieγ0qX:

�
Using the properties of the projectors and spin matrices we have discussed before, the trace
can be simplified:

δEpCTCq � iγ3

4πE2

»
d3k

p2πq3
d3k1

p2πq3
1

pγ2 � ~k2q2
1

pγ2 � ~k12q2
∆ijp~k � ~k1q

�Tr
�pieγ0q

�
P�pE 1 �meq � ~k1 � ~γ

�pieγiq�P�pE 1 �meq � ~k � ~γ
�pieγ0qX

�pieγ0q
�
P�pE 1 �meq � ~k � ~γ

�pieγjq�P�pE 1 �meq � ~k1 � ~γ
�pieγ0qX:

�
Since γ0Xγ0 � �X and P�X � XP� � X

δEpCTCq � � iγ
3e6

4πE2

»
d3k

p2πq3
d3k1

p2πq3
1

pγ2 � ~k2q2
1

pγ2 � ~k12q2
∆ijp~k � ~k1q

�Tr
�
P�

�rE 1 �mes � ~k1 � ~γ
�
γi
�rE 1 �mes � ~k � ~γ

�
P�X

�P�
�rE 1 �mes � ~k � ~γ

�
γj
�rE 1 �mes � ~k1 � ~γ

�
P�X

:
� (5.5.9)
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Where we have again used the property of X to get the projectors out to make the next
step clear. Since an odd number of spatial gamma matrices sandwiched between two same
projectors vanishes:

δEpCTCq � � iγ
3e6pE 1 �meq2

4πE2

»
d3k

p2πq3
d3k1

p2πq3
1

pγ2 � ~k2q2
1

pγ2 � ~k12q2
∆ijp~k � ~k1q

�Tr
��p~k1 � ~γqγi � γip~k � ~γq

�
X
�p~k � ~γqγj � γjp~k1 � ~γq

�
X:

� (5.5.10)

Proceed by simplifying the following expression in the trace:

p~k1 � ~γqγi � γip~k � ~γq � k1mγmγi � γip~k � ~γq
� k1mp�2δim � γiγmq � γip~k � ~γq
� �2k1i � γip~̀ � ~γq

(5.5.11)

where we have defined ~̀ � ~k � ~k1. As we have seen in previous sections, it can be very
advantageous to exploit the innate symmetry of these equations, so why commute the ~k1

term and not the ~k?

p~k1 � ~γqγi � γip~k � ~γq � p~k1 � ~γqγi � kmγiγm

� p~k1 � ~γqγi � kmp�2δim � γmγiq
� �2ki � p~̀ � ~γqγi

(5.5.12)

We can now add the expressions to obtain a symmetrized version

p~k1 � ~γqγi � γip~k � ~γq � �pki � k1iq �
1

2

�
γi, ~̀ � ~γ

�
, (5.5.13)

doing this leaves us with four terms in the trace:

Tr
��

� pki � k1iq �
1

2

�
γi, ~̀ � ~γ

�	
X
�
�pkj � k1jq �

1

2

�
γj, ~̀ � ~γ

�	
X:

�
� pki � k1iqpkj � k1jqTr

�
XX:

�
� 1

2
pkj � k1jqTr

��
γi, ~̀ � ~γ

�
XX:

�
� 1

2
pki � k1iqTr

�
X
�
γj, ~̀ � ~γ

�
X:

�
� 1

4
Tr
��
γi, ~̀ � ~γ

�
X
�
γj, ~̀ � ~γ

�
X:

�
.

(5.5.14)

Notice that the first term cannot contribute to the hfs, so we ignore it from now on. Since
the variables ~k and ~k1 are dummy, we can rename ~k Ø ~k1, which does not affect any terms
in the integrand that are outside of the trace (the transverse photon is even in momentum).
However, the second and third term in the trace change sign since under this transformation
~̀Ø �~̀, such that their integral vanishes. This means that we only need to consider the last
term.

δEpCTCq � γ3e6pE 1 �meq2
4πE2

»
d3k

p2πq3
d3k1

p2πq3
1

pγ2 � ~k2q2
1

pγ2 � ~k12q2
1

~̀2

�
δij � `i`j

~̀2



� 1

4
Tr
��
γi, ~̀ � ~γ

�
X
�
γj, ~̀ � ~γ

�
X:

� (5.5.15)
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δEpCTCq � γ3e6pE 1 �meq2
4πE2

»
d3k

p2πq3
d3k1

p2πq3
1

pγ2 � ~k2q2
`k`m
~̀2

1

pγ2 � ~k12q2

� 1

4
Tr
�rγi, γksXrγi, γmsX:

� (5.5.16)

rγi, γks �
��rσi, σks 0

0 �rσi, σks


� �2iεika

�
σa 0
0 σa



(5.5.17)

δEpCTCq � �γ
3e6pE 1 �meq2

4πE2

»
d3k

p2πq3
d3k1

p2πq3
1

pγ2 � ~k2q2
`k`m
~̀2

1

pγ2 � ~k12q2

� εikaεimb Tr
�
σaξσbξ

:
� (5.5.18)

At this point, let us calculate the shifts for the singlet and triplet separately. Starting with

the singlet, for which ξ00 � 1?
2

δE00pCTCq � �γ
3e6pE 1 �meq2

4πE2

»
d3k

p2πq3
d3k1

p2πq3
1

pγ2 � ~k2q2
`k`m
~̀2

1

pγ2 � ~k12q2

� 1

2
pδkmδab � δkbδamqTrrσaσbs

� �2
γ3e6pE 1 �meq2

4πE2

»
d3k

p2πq3
d3k1

p2πq3
1

pγ2 � ~k2q2
1

pγ2 � ~k12q2

� �2
e6pE 1 �meq2
4E2p8πγq2 |φp~0q|2

(5.5.19)

Substituting the values for γ and E 1, at leading order we get

δE00pCTCq � �
�
E 1 �me

E


2
meα

4

4
� �meα

4

4
(5.5.20)

Whereas for the triplet ξ1m � 1?
2
~ε � ~σ

δE1mpCTCq � �γ
3e6pE 1 �meq2

4πE2

»
d3k

p2πq3
d3k1

p2πq3
1

pγ2 � ~k2q2
`k`m
~̀2

1

pγ2 � ~k12q2

� 1

2
pδkmδab � δkbδamqεcε�d Trrσaσcσbσds

� �γ
3e6pE 1 �meq2

4πE2

»
d3k

p2πq3
d3k1

p2πq3
1

pγ2 � ~k2q2
1

~̀2

1

pγ2 � ~k12q2

� 1

2

�
~̀2 Trrσaσcσaσds � `k`m Trrσmσcσkσds

�
εcε

�
d

(5.5.21)
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� �γ
3e6pE 1 �meq2

4πE2

»
d3k

p2πq3
d3k1

p2πq3
1

pγ2 � ~k2q2
1

~̀2

1

pγ2 � ~k12q2
� �

~̀2pδacδad � δaaδcd � δadδcaq � `k`mpδmcδkd � δmkδcd � δmdδckq
�
εcε

�
d

� 2γ3e6pE 1 �meq2
4πE2

»
d3k

p2πq3
d3k1

p2πq3
1

pγ2 � ~k2q2
p~̀ � ~εqp~̀ � ~ε �q

~̀2

1

pγ2 � ~k12q2

(5.5.22)

Now all that remains is to take this integral, for which we use the convolution theorem.
The theorem goes as follows: given three functions gp~x q, fp~x q, hp~x q and their Fourier
transforms, for their convolution, we have»

d3k

p2πq3
d3k1

p2πq3 gp
~k qfp~k � ~k1 qhp~q q �

»
d3x gp~x qfp�~x qhp�~x q. (5.5.23)

For this particular case, both gp~p q and hp~q q are simply equal to the ground state wavefunc-
tion, and fp~x q can be found by performing a Fourier transformation:

fp~x q �εiε�j
»

d3`

p2πq3
`i`j
~̀2

ei
~̀�~x

�� εiε
�
j

B
Bxi

B
Bxj

»
d3`

p2πq3
1

~̀2
ei
~̀�~x,

(5.5.24)

so that we can simply take derivatives of the Coulomb potential to find fp~x q

fp~x q � �εiε
�
j

4π

B
Bxi

B
Bxj

�
1

r



� 1

4πr3

�
p~ε � ~ε �q � 3p~ε � ~x qp~ε � � ~x q

r2



� 1

3
δp~r qp~ε � ~ε �q

(5.5.25)

At this point it should be clear that this is precisely the calculation done in quantum me-
chanics: this expression is nothing but the expectation value of the dipole field produced by
the “nucleus” interacting with the “electron” spin.

The first part of eq. (5.5.25) is concerning, because it looks like it might potentially split
the triplet itself (produce different energy shifts for different polarizations), which is not
something we expect. However, as we will now demonstrate, this contribution simply van-
ishes. Let us use the convolution theorem as well as eq. (5.2.2) to reduce the six-dimensional
integral to a 3-dimensional one:

δE1mpCTCq � 2γ3e6pE 1 �meq2
4πE2p8πγq2

»
d3x e�2γr

�
1

4πr3

�
1� 3p~ε � ~x qp~ε � � ~x q

r2



� 1

3
δp~r q

�
However, for any two vectors ~a and ~b»

dΩ p~a � r̂qp~b � r̂q � 4π

3
p~a �~b q, (5.5.26)
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so that indeed, the first part of the integral vanishes:»
dΩ

�
1� 3p~ε � ~x qp~ε � � ~x q

r2



� 0. (5.5.27)

Substituting the values for γ and E 1, at leading order we get

δE1mpCTCq �
�
E 1 �me

E


2
meα

4

12
� meα

4

12
(5.5.28)

Finally, combining eq. (5.5.20) and eq. (5.5.28), we get the leading order hfs contribution
coming from this diagram:

δE1mpCTCq � δE00pCTCq � meα
4

3
. (5.5.29)

5.5.1 More cancellations

Let us return to the parts of the KCpSR � S0qKT pSR � S0qKC that we disregarded in the
last section, eq. (5.5.2):

KCS0K
TS0K

C �KCSKTS0K
C �KCS0K

TSKC . (5.5.30)

The simplest of these is the first term. Notice that the transverse photon is placed
between two reference propagators S0. However, the electron (positron) line of S0 contains
the projector P� (P�), which leads to the transverse photon vertices to be left between two
of the same projector:

rP�pieγiqP�sp1qrP�pieγjqP�sp2q � 0, (5.5.31)

so that this contribution vanishes.
As for the other two contributions, we should first use the Coulomb-Schrödinger equation

(in its abstract form) to simplify them. The equation is

S0K0Ψ0 � Ψ0 (5.5.32)

with its conjugate sΨ0 � sΨ0K0S0. (5.5.33)

Here, the reference kernel K0 is approximately the Coulomb interaction, given by

K0 � 1

N
KC , N � pE 1 �meq2

4E 1me

� 1. (5.5.34)

But this lets us simplify the energy contributions from the second and third term in eq. (5.5.30):

�sΨ0KCSKT S0K
CΨ0looomooon

NΨ0

� sΨ0KCS0looomooon
N sΨ0

KTSKCΨ0

� �N sΨ0KCSKTΨ0 �N sΨ0KTSKCΨ0.

(5.5.35)
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Figure 5.5.3: Contributions from KRpSR � S0qKR.

As one can see, these are exactly the corrections considered in section 5.4.2. The reason we
do not consider them here, is because they need to be combined with the corrections shown
on fig. 5.5.3. In these corrections, the blob can either be S (which we expect to give higher
order corrections) or S0. The S0 part combines with the contributions from eq. (5.5.35) in
exactly the same manner as in section 5.4.2.

Considering all these cancellations, calls for a further rearrangement of the perturbation
expansion, so at to make these more explicit. It seems possible to obtain an expansion similar
to that of [2] rather than [1,6], but since we do not consider higher order corrections, we do
not pursue this further.
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Chapter 6

Conclusion

For positronium we confirm the well known result for the hfs at leading order, there are two
contributions – the Fermi splitting and the annihilation correction

∆Ehfs � meα
4

3
� meα

4

4
� 7meα

4

12
.

However, in its current state the calculation scheme presented here is not suitable for
computing higher order corrections. In order to go to higher orders one of two things can
done. We have mentioned several times that cancellations such as the ones presented in
section 5.5.1 point to a possible rearrangement of the perturbation expansion. Most prob-
ably, the perturbation expansion used in [2] will be more suitable to use with the reference
propagator we currently have.

Another way to go about this is to change the propagator itself. Notice that the com-
pensating kernel correction is proportional to the difference of propagators (the bare one
and the reference propagator). Which means that the simpler the propagator, the more
compensating corrections there are. So picking a more complicated propagator that is less
non-relativistic, would make for a simpler kernel. Of course this does not come for free, since
the reference equation (the Schrödinger equation in our case) is dictated by the reference
propagator, so a more complicated propagator leads to a more complicated wavefunction.
However in our experience, judging from the works [1] and [6] it is easier to deal with a more
complex wavefunction than a more complex kernel.
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Appendix A

Notation

A.1 Momentum convolution

The BSE with the Dirac indices suppressed is:

GpP ; p, qq � SpP ; pq �
»

d4k

p2πq4SpP ; pqKpP ; p, kqGpP ; k; qq, (A.1.1)

where P is the total momentum, p is the relative momentum of incoming particles and q is
the relative momentum of the outgoing particles. Normally, we write the equation as follows:

GpP ; p; qq � SpP ; pq � SpP ; pqKpP ; p, kqGpP ; k, qq, (A.1.2)

where the integration over intermediate relative momenta are implicit.

A.2 Dirac indices

The Dirac indices are also generally suppressed. To express how, let us consider the simplest
contribution to the 4-point GF in QED – single exchange.

a

b

c

d

e

f

g

h

It is obvious from this example that the GF will depend on four Dirac indices. We will
express that as Gab;cd, where the first two indices a, b pc, dq stand for the Dirac indices of
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the incoming (outgoing) electron and the anti-particle, respectively. Let us now consider the
GF for single exchange:

Gs.p.
ab;cd �

�
∆p1q
cg

�
ieγµ

�p1q
ge

∆p1q
ea

�
∆µν

�
∆

p2q
bf

�
ieγν

�p2q
fh

∆
p2q
hd

�
. (A.2.1)

We rearrange this to bring into the form required for the Dyson equation:

Gs.p.
ab;cd � ∆p1q

ea ∆
p2q
bf

��
ieγµ

�p1q
ge

∆µν

�
ieγν

�p2q
fh

	
∆p1q
cg ∆

p2q
hd

� Sab;ef Ks.p.
ef ;gh Sgh;cd, (A.2.2)

where we have defined:

Sab;ef � ∆p1q
ea ∆

p2q
bf Ks.p.

ef ;gh �
�
ieγµ

�p1q
ge

∆µν

�
ieγν

�p2q
fh

(A.2.3)

We would generally suppress the Dirac indices in eq. (A.2.2), and write it as

Gs.p. � ∆p1q∆p2q
��
ieγµ

�p1q
∆µν

�
ieγν

�p2q	
∆p1q∆p2q. (A.2.4)

The Dyson equation with the Dirac indices explicit, but the momentum convolution sup-
pressed is:

Gab;cd � Sab;cd � Sab;efKef ;ghGgh;cd, (A.2.5)

suppressing the matrix multiplication,

G � S � SKG (A.2.6)
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Appendix B

Conventions

h̄ � 1 c � 1

ηµν Ø diagp�1, 1, 1, 1q
Fourier transforms

fpkq �
»
dnxe�ik�xfpxq fpxq � 1

p2πqn
»
dnkeik�xfpkq

Fourier transform of the Green’s function:

Gpp1, p2, ...pnq �
»
dx1...dxn e

�ip1x1 ... e�ipnxn xΩ|Tφpx1q...φpxnq |Ωy

Canonical commutation relations for a scalar field:

rφp~x, tq, φp~y, tqs � 0 rφp~x, tq, Btφp~y, tqs � iδp~x� ~yq

Coulomb-Schrödinger equation in momentum space� ~p 2

2m
� E

	
Ψp~p q �

»
d3q

p2πq3
e2

|~p� ~q |2 Ψp~q q

Gamma matrices

tγµ, γνu � �2ηµν p�iγµBµ �mqΨ � 0

γ0 �
�

1 0
0 �1



γ1 �

�
0 σ1

�σ1 0



γ2 �

�
0 σ2

�σ2 0



γ3 �

�
0 σ3

�σ3 0



Pauli matrices

σ1 �
�

0 1
1 0



σ2 �

�
0 �i
i 0



σ3 �

�
1 0
0 �1
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