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Abstract

In this thesis we investigated Anderson Localization and Many Body Localiza-
tion [1] in two fermionic Hamiltonian models: the Heisenberg XXZ-model and
the N = 2 supersymmetric Hamiltonian [2]. Our main question is whether we
can �nd a MBL phase in the supersymmetric Hamiltonian.

In the �rst part of the thesis the implementation of the time evolution proce-
dure under a Hamiltonian has been implemented in the framework of ProjectQ,
a quantum computer simulator. For this the Suzuki-Tro�er approximation was
used and its performance was compared to direct calculations. We implemented
a quantum algorithm that estimates the second Renyi entanglement entropy of a
state. We have implemented an algorithm algorithm based on the Swap test and
an improved algorithm using �antum Amplitude Estimation. �e performance
of both methods was analyzed.

We have simulated the entanglement entropy through time and we have re-
produced previous results that show indication of Anderson Localization and
MBL within the XXZ model [3]. We have imposed randomness in the super-
symmetric Hamiltonian and found strong indications of an MBL phase in the
supersymmetric Hamiltonian.
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Chapter 1

Introduction

Classical computers perform local operations on single states. �antum systems
can be in a superposition of states, and the system may be entangled. �is makes
it inherently di�cult for classical computers to simulate quantum physics. In
1982 Richard Feynman proposed the �rst idea of a quantum computer, namely
to simulate physics with another physical system. He, however, did not know
how the application of such an idea would take place. With recent technical
breakthroughs we now do know what these systems might look like. And small
scale quantum computers with programmable qubits now actually exist.

In this thesis we will use the programming framework of ProjectQ to simu-
late quantum computers on a classical computer. A major application of quan-
tum computers is the simulation of physics. Although we have a tremendous
understanding of how the laws of physics work for the interactions of particles.
Applying these laws and simulating the evolution of the system becomes ex-
ponentially hard in the of particles for a classical computer. We introduce the
theory of how we can map Hamiltonians to quantum computers and how we
can simulate the evolution of a state under such a Hamiltonian.

We will introduce two Hamiltonian systems which we will examine. �e
Heisenberg XXZ model and the N = 2 supersymmetric Hamiltonian [2]. Of
the XXZ model it is known that for strong disorder in the on site potential the
system can become fully localized in a phase known as Anderson Localization.
Introducing particle interactions we leave this phase, but reach a phase called
Many Body Localization. �is phase has been of great interest in recent years.
For one, because it is the only known robust system that does not thermalize.
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Secondly because it remains a perfect insulator even with local interactions.

We recreate these known results in the framework of ProjectQ, and we �nd
indications of Many Body Localized behavior in the supersymmetric model a�er
we introduce randomness.
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Chapter 2

�antum Computations and
Algorithms

In this chapter we will introduce the basic notions of quantum computations a
number of well-known �antum Algorithms that will be use full in the remain-
der of this thesis. �ey build further on the preliminaries introduced before.

In this section we will introduce two algorithms that play an important role in
the application of quantum simulations. �e �rst is the �antum Fourier Trans-
formation (QFT), the quantum analog of the Fourier transform. �e second is the
�antum Phase Estimation (QAE) algorithm, for a given eigenstate |ψ〉 of some
unitary operatorU it estimates the corresponding eigenvalueU |ψ〉 = λ |ψ〉with
arbitrarily high precision. As we will see in the upcoming sections the phase es-
timation algorithm will be of great use, because many problems can be reduced
to phase estimation.

2.1 Preliminaries�antum Computations
�antum computers consist of quantum bits or qubits, that can be described as

vectors in
(
α
β

)
∈ C2 on the unit circle, i.e. |α|2 + |β|2 = 1. De�ning the Dirac

notation for the basis states

|0〉 =

(
1
0

)
|1〉 =

(
0
1

)
, (2.1)
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so a general state is wri�en as α |0〉+β |1〉. Systems with more qubits are tensor
products of the single qubits for example with two qubits we get

(
α1

β1

)
⊗
(
α2

β2

)
=


α1α2

α1β2

β1α2

β1β2

 = α1α2 |00〉+ α1β2 |01〉+ β1α2 |10〉+ β1β2 |11〉 .

(2.2)
A general state of n qubits is wri�en as

|ψ〉 =
n⊗
i=1

(αi |0〉+ βi |1〉) =
N−1∑
i=0

ci |i〉 , (2.3)

where |i〉 = |i1〉 . . . |in〉 where i1...in is the binary representation of i. A system
with n qubits is an element of C2n . �is exponential growth of the Hilbert space
is crucial for quantum computers and shows why it is impossible for computers
to simulate them for larger amount of qubits.

�e operators we can do on such states must leave the probabilities (i.e. the
1-norm) preserved. Operators U that this must be unitary i.e. UU † = I . In fact
any unitary is a quantum gate, and every unitary can be applied on a quantum
computer. Just like the local operations from a classical computer (AND, OR,
NOT, etc.) we also want our quantum computer to be build from a small set of
gates. �e gate set used in this work are the Pauli matrices.

σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
. (2.4)

�ese have the following operations on the basis states

X |0〉 = |1〉 Y |0〉 = i |1〉 Z |0〉 = |0〉 (2.5)
X |1〉 = |0〉 Y |1〉 = −i |0〉 Z |1〉 = − |1〉 . (2.6)

�ese gates are single qubit gates, we also have a 2-qubit gate. In the general
description of gates we only need the CNOT gate this gate applies a controlled
X-gate, i.e. we apply an X-gate on the second qubit if the �rst qubit is |1〉

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , (2.7)
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Figure 2.1: Application of 3 CNOT gates is the same as the Swap gate.

Figure 2.2: Image of the Bloch sphere, the axes are the rotation axes of the Pauli
gates.

this maps the 2-qubit states as follows

CNOT |00〉 = |00〉 CNOT |10〉 = |11〉 (2.8)
CNOT |01〉 = |10〉 CNOT |11〉 = |10〉 , (2.9)

and in fact we can control any unitary on a qubit, i.e. |c〉 |t〉 C−U−→ |c〉U c |t〉. A
Swap gate swaps two qubits

Swap |a〉 |b〉 = |b〉 |a〉 . (2.10)

�e Swap can be decomposed to three CNOT operations as shown in �gure 2.1.
Consider the Bloch sphere in �gure 2.2 in which all single qubit states repre-

sented. �e axes in the Bloch sphere are the axes the rotation operators of the
Pauli gates rotate around.
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Rx(θ) ≡ e−iXθ/2 = 1− iXθ/2 +
(iXθ/2)2

2!
− (iXθ/2)3

3!
+

(iXθ/2)4

4!
+ ...

(2.11)
= 1− iX(θ/2)− (θ/2)2I + iX(θ/2)3 + (θ/2)4I + ... (2.12)
=
(
1− (θ/2)2 + (θ/2)4 + ...

)
I − i

(
θ/2− (θ/2)3 + ...

)
X (2.13)

= cos(θ/2)I − i sin(θ/2)X, (2.14)

thus we see a rotation around around an axis in the Bloch sphere is a linear com-
bination of Pauli matrices.

�e fact that we can make every state combined with the CNOT operator,
actually allows us to build any n qubit unitary operator [4]. �is theorem is
known as strong universality.

2.2 Preliminaries ProjectQ
Our quantum algorithms are implemented in the ProjectQ framework. ProjectQ
is an open-source quantum simulator in Python developped at the ETH Zürich
that uses an intuitive syntax. ProjectQ translates all the commands to the back-
end, this can be a real quantum computer or their own quantum simulator.

To use the so� one initializes an engine, this is in our case a simulator. Next
you initialize the amount of qubits you want, these are initialized in the |0〉 state

1 from p r o j e c t q impor t MainEngine
2 eng = MainEngine ( )
3 q = eng . a l l o c a t e q u r e g ( 3 )

Its syntax is similar to how one would write down the operation himself, e.g.
if we apply a Hadamard gate

1 from p r o j e c t q . ops impor t H
2 H | q [ 0 ]

A Hadamard gate brings basis states into superposition H |0〉 = 1√
2
(|0〉 + |1〉)

and H |1〉 = 1√
2
(|0〉 − |1〉). So if one would measure the qubit in the computa-

tional basis we would get |0〉 or |1〉 with 50 % probability. Before measuring one
should always perform the �ush() command. �is is because ProjectQ waits be-
fore applying the operations because it sometimes can optimize the calculations,
when you �ush() all operations that it still needs to do are being done/
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1 Measure | q [ 0 ]
2 p r i n t ( f ” Measured { i n t ( q [ 0 ] ) } ” )

in our case we measured a 0. A CNOT operator is implemented as follows
1 from p r o j e c t q . ops impor t CNOT
2 CNOT | ( q [ 0 ] , q [ 1 ] )

where q[0] is the control qubit and q[1] the target qubit. As we’ve mentioned
before we can write any unitary with just the Pauli gates and CNOT operator.
�is means we can simulate any unitary in ProjectQ.

2.3 �antum Fourier Transform
In mathematics an important tool is the Fourier transformation. It appears in a
wide range of problems from signal processing to the diagonalization of a Hamil-
tonian in physics. It turns out that it is possible to do the quantum analog of a
discrete Fourier transformations on a quantum computer. In mathematics the
discrete Fourier transform is de�ned on a vector of complex inputs (x0, ..., xN−1)
of length N that outputs a vector (y1, ..., yk), where

yk ≡
1√
N

N−1∑
j=0

xje
2πijk/N . (2.15)

�e quantum Fourier transform (QFT) is the same transformation but instead
of a vector of inputs it transforms a state onto an othonormal basis |0〉 , ..., |N − 1〉

|j〉 → 1√
N

N−1∑
k=0

e2πijk/N |k〉 . (2.16)

Where we now sum over k instead of over j by convention. We see that the
quantum Fourier transform is the product of the matrix with entries e2πijk/N at
(k, j)

FN =
1√
N


...

. . . e2πijk/N . . .
...

 (2.17)

9



An important property of the discrete Fourier transform is that any two columns
j, j′ are orthonormal

N−1∑
k=0

1√
N
e−2πij′k/N 1√

N
e2πijk/N

=
1

N

N−1∑
k=0

e2πi(j′−j)k/N =
1

N

N−1∑
k=0

(
e2πi(j′−j)/N)k

=
1

N

1− e2πi(j′−j)

1− e2πi(j′−j)/N =

{
1 if j′ = j

0 otherwise ,
(2.18)

where we have used Taylor’s theorem for x = e2πi(j′−j) in the last step for j′ = j

1

N
lim
x→1

1− x
1− x1/N

=
1

N
lim
x→1

−1
−1
N
x
N−1
N

= lim
x→1

1

x
N−1
N

= 1. (2.19)

And if j′ − j 6= 0 it is equal to an integer and the numerator becomes 0.

Since any two columns of FN are orthonormal we havr F †NFN = I , thus F is
a unitary operator. �erefore it can be implemented on a quantum computer. We
will derive its corresponding quantum circuit similar to [5]. To do this we rewrite
the output of the quantum Fourier transform in its tensor product representation,
taking N = 2n, where n is the number of qubits we have. Expanding j in |j〉 in
its binary representation

j = j1j2...jn, (2.20)

where all ji are 0 or 1, we have

j = j12n−1 + j22n−2 + ...+ jn20. (2.21)

In the exponent of the quantum Fourier transform j is divided by N = 2n. Note
that j/N can be wri�en as so-called binary fraction

0.j1j2...jn = j1/2 + j2/2
2 + ...+ jn/2

−n.

Now we can rewrite
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FN |j〉 =
1√
N

N−1∑
k=0

e2πijk/N |k〉

=
1

2n/2

2n−1∑
k=0

e2πijk/2n |k〉

=
1

2n/2

2n−1∑
k=0

e2πij(
∑n
l=1 kl2

−l) |k1...kn〉

=
1

2n/2

∑
k1∈{0,1}

...
∑

kn∈{0,1}

e2πij(
∑n
l=1 kl2

−l) |k1...kn〉

=
1

2n/2

∑
k1∈{0,1}

...
∑

kn∈{0,1}

n⊗
l=1

e2πijkl2
−l |kl〉

FN |j〉 =
1

2n/2

n⊗
l=1

∑
kl∈{0,1}

e2πijkl2
−l |kl〉

=
1

2n/2

n⊗
l=1

(
|0〉+ e2πij2−l |1〉

)
=

(
|0〉+ e2πij2−1 |1〉

)
. . .
(
|0〉+ e2πij2−n |1〉

)
2n/2

=

(
|0〉+ e2πi j1j2...jn−1e2πi 0.jn |1〉

)
. . .
(
|0〉+ e2πi 0.j1j2...jn |1〉

)
2n/2

=

(
|0〉+ e2πi 0.jn |1〉

)(
|0〉+ e2πi 0.jn−1jn |1〉

)
. . .
(
|0〉+ e2πi 0.j1j2...jn |1〉

)
2n/2

.

(2.22)

We see that on every qubit there has been a controlled application of multiple
Rk gates

Rφ ≡
(

1 0

0 e2πi/2k .

)
(2.23)

�e state of the �rst qubit |0〉 + e2πi 0.jn |1〉 = |0〉 + (−1)jn |1〉 is the same as a
Hadamard on the qubit |jn〉. For the second qubit the state is the same as applying
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Figure 2.3: �antum circuit for the implementation of the �antum Fourier
Transform. �e order of the qubits is still reversed compared to equation (2.22).
Also the outcomes on the rights should be multiplied by a normalization factor

1√
2

. Image taken from [5].

a Hadamard and then a controlled Rn (before we applied the Hadamard on the
�rst qubit),

|jn−1〉
H−→
(
|0〉+ e2πi 0.jn−1 |1〉

)
(2.24)

Cjn−R2−→
(
|0〉+ e2πi 0.jn−1jn |1〉

)
. (2.25)

We see that we can create the m-th qubit from equation (2.22) by applying a
Hadamard on |jn−m〉 and then a series of appropriate controlled R gates on the
qubits |jl〉 for which l > m. �e quantum circuit for this scheme is shown in �g
2.3.

However now we are le� with the qubits in reversed order, to restore this we
do a number of Swap operations to obtain the appropriate state. We can reverse
all the qubits by just swapping |jl〉 and |jn−l〉 for all integer l ≤ n/2.

Since we can apply a swap gate by applying 3 CNOT gates we need at most
3n/2 extra gates to apply the swapping needed at the end. Until the swapping we
have applied at most n gates to every qubit, since we have n qubits there are at
mostO(n2) gates that we have to apply. �is is exponentially faster than the best
classical algorithm for the discrete Fourier transform. For example FFT, the Fast
Fourier Transform, takes O(N log(N)) = O(n2n). While this sounds like we
found an exponential improvement over one of the most important algorithms
in the world, this isn’t quite true. We cannot directly access the amplitudes in
the wave function since the whole state is in a quantum superposition. But for
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some applications it is not necessary to know all the values of the amplitudes
and we only use the properties of the Fourier transform, as we will see in the
next algorithm.

2.4 �antum Phase Estimation
Suppose we have a unitary operator U and an eigenvector |u〉 of U , such that
U |u〉 = λ |u〉, and we want to estimate the complex number λ. It turns out the
Fourier transform gives us an e�cient way to implement the estimation of λ in
a quantum circuit. Since U is unitary the eigenvalue λ has norm 1, and can be
wri�en as e2πiφ for some angle φ ∈ [0, 1). Suppose that φ = 0.φ1 . . . φt can be
wri�en with t bits of precision. If this is not possible, we get arbitrarily close to
φ by using a higher number of bits of precision. To see why this is possible take
ε > 0, then there always exists an N such that

∑∞
i=N+1 1/2i < ε. �en take

the number of qubits to be N , and take as approximation φ̃ = 0.φ1 . . . φN , then
‖φ − φ̃‖ < ε. Approximating φ arbitrarily well implies we can do approximate
λ well.

�e quantum phase estimation algorithm works as follows

• Initialize |0t〉 |u〉

• Apply the H⊗t to the �rst register −→ 1√
2t

∑2t−1
k=0 |k〉 |u〉

• Apply the map |k〉 |u〉 7→ |k〉Uk |u〉, obtaining 1√
2t

∑2t−1
k=0 |k〉Uk |u〉 =

1√
2t

∑2t−1
k=0 e

2πikφ |k〉 |u〉

• Apply QFT−1 = QFT† to the �rst register −→ |φ〉 |u〉

• Measure the �rst register φ

• Calculate λ = e2πiφ

�e quantum circuit of the �antum Phase Estimation is given in Figure 2.4.
Note that the controlled operations of U in the second register perform the op-
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Figure 2.4: �antum circuit for the estimation of the phase φ. Note that we have
not performed the inverse QFT and the states on the right have to be multiplied
by 1√

2
to be normalized. Image taken from [5].

eration

|k〉 |u〉 = |k1k2...kt〉 |u〉 (2.26)
→ |k1k2...kt〉Uk120+k222+···+kt2t−1 |u〉 (2.27)
= |k1k2...kt〉Uk120+k222+···+kt2t−1 |u〉 (2.28)
= |k〉Uk |u〉 . (2.29)

�us when applying the controlled operation U , we have to apply this operator
2k times on the k-th qubit. It could be that the multiplication of U can be done
more e�ciently, for example if the operator was U = ADA†, we have Uk =
ADkA†, since AA† = I , such optimizations are implemented automatically by
ProjectQ.

If we would implement the phase estimation algorithm on a quantum com-
puter the pseudo code would be the following.

In short, the reason phase estimation is useful is because it can be used to
estimate eigenvalues of unitary operators. �e problem of solving a phase esti-
mation is so common that o�en the short notation of the quantum circuit in �g
2.5 is used.
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Algorithm 1: �antum Phase Estimation algorithm to estimate the eigen-
value of some eigenvector of a unitary
1 function �antumPhaseEstimation(U , |u〉, t)
Input : Unitary U , eigenstate |u〉, estimation precision t qubits initialized

to |0〉
Output: Approximation of the corresponding eigenvalue of the λ

2 |0t〉 |u〉 ; // initial state

3 1√
2t

∑2t−1
k=0 |k〉 |u〉 ; // H⊗t on �rst register

4 1√
2t

∑2t−1
k=0 |k〉Uk |u〉 ; // apply controlled power of U

5 1√
2t

∑2t−1
k=0 e

2πikφ |k〉 |u〉 ; // result of U |u〉
6 |φ1...φt〉 |u〉 ; // apply inverse QFT on �rst register
7 φ1...φt

Figure 2.5: Schematic overview of �antum Phase Estimation, the slashed line
denotes a bundle of qubit wires. �e state |u〉 is an eigenstate ofU and the output
in the measurement is the estimation of the angle φ of the eigenvalue λ = e2πiφ

corresponding to the U |u〉. Image from [5]
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�e di�cult problem, however, is �nding the corresponding eigenvector |u〉
of some unitary operator U . It is again important to realize that we do not neces-
sarily need to know all the amplitudes in the wave function of |u〉, only that it is
an eigenstate ofU . �is reasoning can even be made stronger, since the eigenvec-
tors of a unitary form an orthonormal basis {|ui〉}i we can write a general state
|ψ〉 as a linear combination of the eigenvectors |ψ〉 =

∑
i si |ui〉. Performing the

quantum phase estimation procedure we obtain

|0t〉 |ψ〉 =
∑
i

si |0t〉 |ui〉

−→
∑
i

si
1√
2t

2t−1∑
k=0

|k〉 |ui〉

−→
∑
i

si
1√
2t

2t−1∑
k=0

|k〉Uk |ui〉

=
∑
i

si
1√
2t

2t−1∑
k=0

e2πikφi |k〉 |ui〉

−→
∑
i

si |φi〉 |ui〉 . (2.30)

Measuring the �rst register in the computational basis collapses the register to
some state |φj〉, and we get as output an eigenvalue of some random eigenvector
of U distributed according to the distribution of |si|2.

2.5 �antum Amplitude Estimation
�e technique of �antum Amplitude Estimation (QAE) introduced in [6] can
be used to estimate the amplitude of state in superposition provided that we can
re�ect through this state. �e technique can be described as follows:

Let H denote the Hilbert space representing the state space of a quantum
system, and suppose we have a Boolean function χ : Z → {0, 1} that induces a
partition ofH into a direct sum of two subspaces, a good subspace and a bad sub-
space. �e good subspace is spanned by the basis states |x〉 for which χ(x) = 1,
and the bad subspace is the orthogonal complement. Let A be a unitary trans-
formation that creates |Φ〉 = A |0n〉. �en write |Φ〉 = |Φ1〉 + |Φ0〉 as a super-
position of the (non-normalized) good (|Φ1〉) and bad (|Φ0〉) components of |Φ〉.
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�en amplitude estimation is the problem of estimating a = 〈Φ1|Φ1〉, the prob-
ability that a measurement of |Φ〉 gives the good state. For this we introduce the
operator Q

Q = −AS0A−1Sχ, (2.31)

where S0 is the re�ection that maps |0n〉 → − |0n〉 and leaves all other states
untouched. And Sχ changes the sign if the state is a good state

|x〉 →

{
− |x〉 if χ(x) = 1

|x〉 if χ(x) = 0.
(2.32)

�e operator Q is unitary, hence the eigenvalues have norm 1, and it con-
sists of two re�ections thus it has determinant 1. Its eigenvalues can be wri�en
as λ± = −e2iθ where cos2(θ) = 〈Φ1|Φ1〉 = a. By applying the quantum phase
estimation procedure from the previous section to the operator Q we can get
arbitrarily close, by using more ancillary qubits, to estimate the angle θ by only
using one state |Φ〉. With an estimation of θ we can then calculate the value c
we are interested in.

17



Chapter 3

�antum Simulations

Simulations of quantum chemistry and quantum many-body systems are im-
portant applications. For example simulating the moleculair interaction of a
medicine in our body increases our understanding of the working of the medicine.
�e search for catalysts in the industry relies on knowing how materials interact.
Catalysts lower the activation energy needed for a chemical interaction. Under-
standing chemical interactions be�er can help us �nd new catalysts. �e govern-
ing quantum physical equations that describe these interactions are well known
and understood. However the implementation of these laws yields exponentially
many equations that need to be solved. Classical simulations are inherently local
operations that work on only a few bits at a time, while quantum physics consists
of superpositions and is inherently non-local. Already for systems of 50 particles
it becomes impossible to exactly simulate the quantum physics because the state
space becomes too large to even store on a computer.

In 1982 Richard Feynman proposed to tackle these problems by using stan-
dard physical systems to simulate other physical systems [7]. �is lead to the idea
of doing quantum simulations with quantum operations on a quantum computer
[8]. �e Schrödinger equation describes the time evolution of a quantum state
|ψ(0)〉 under some Hamiltonian H . In the Schrödinger picture this is wri�en as

e−iHt |ψ(0)〉 = |ψ(t)〉 . (3.1)

�e question we will answer in this chapter is how one can use quantum com-
puters to simulate physics and how we can build a circuit of the time evolution
of some general Hamiltonian H to be applied on a state.
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To do this we �rst introduce two important quantum algorithms that we will
be used o�en in this thesis. �e �antum Fourier Transform (QFT) and the
�antum Phase Estimation Algorithm. Furthermore we will show how the im-
plementation of �antum Simulations in the quantum programming framework
of ProjectQ, for this we will use the library of OpenFermion which translates the
physics of a problem to the language of quantum simulators.

3.1 Hamiltonian Simulation
A potentially important area of quantum computation is the simulation of the
time evolution of a physical system described by a Hamiltonian. If we have an
initial state |ψ〉 governed under a Hamiltonian H and if H itself is time inde-
pendent, the the time evolution of a general state is given by the time dependent
Schrödinger equation

i~
∂

∂t
|ψ(t)〉 = H |ψ(t)〉 . (3.2)

For simplicity we will set the constant ~ to 1 (this rescales the time into time steps
of ~). We can rewrite equation (3.2) to its equation in the Schrödinger picture

e−iHt/~ |ψ(0)〉 = |ψ(t)〉 , (3.3)

here e−iHt/~ is the operator that time evolves some state by a time step t. For
simplicity we can set the constant ~ to 1 (this rescales the time into time steps of
~) to get

e−iHt |ψ(0)〉 = |ψ(t)〉 . (3.4)

Note that at every time step the operator is unitary since e−iHteiHt = I . As men-
tioned before we can approximate any unitary with a quantum circuit [4]. �e
approach we will follow is to build the unitary e−iH∆t for some �xed time step
∆t as a quantum circuit of gates, time evolution would then just be applying this
unitary to a state a certain amount of times.

�ere are many applications where it is necessary to solve this problem. In
quantum chemistry one wants to simulate the interactions between molecules
to e.g. understand the interaction between a medicine and a receptor on a cell.
Although the governing quantum mechanical equations of the interactions be-
tween particles are well known and can be wri�en down in a Hamiltonian. Clas-
sically it is hard to simulate the time evolution of a larger system because the
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size of the Hamiltonian is exponential in the number of particles.

If one would simulate the interaction of 40 fermionic modes for example, we
would need to save and do operations on 240 di�erent amplitudes, if saving one
amplitude takes 16 Bytes of RAM memory we would need 16 TB of RAM mem-
ory to save the wave function. It is clear that large systems, become impossible
to simulate. While for a quantum computer we can have this, because to sim-
ulate 40 fermionic modes a quantum computer only needs 40 qubits. Between
electron spins and qubits there is a one to one mapping, this is not true for a
general particle but one can always use multiple qubits to simulate the particle
interactions.

3.1.1 Pauli basis time evolution
We claimed it is possible to simulate the unitary e−iH∆t on a quantum computer,
but it might not seem clear how this can be done for a general Hamiltonian. As
shown in equation (2.11) we can calculate the exponents of Pauli gates. If our
Hamiltonian is in the Pauli basis we could calculate the exponent of all the terms
and �nd the time evolution unitary. To illustrate this we will now �rst show
how to simulate a Hamiltonian that consists of single Pauli gates on every qubit.
Consider the all Z gate Hamiltonian

H = Z1 ⊗ · · · ⊗ Zn, (3.5)

then the action of the unitary e−iH∆t applied to a state |ψ〉 yields

e−iH∆t |ψ〉 =
∑
k

1

k!
(−iH(∆t))k |ψ〉

=

(
1− iH(∆t)− (∆t)2

2!
+
iH(∆t)3

3!
+

(∆t)4

4!
+ . . .

)
|ψ〉

=

(
1− (∆t)2

2!
+

(∆t)4

4!
+ . . .

)
|ψ〉 − i

(
(∆t)− (∆t)3

3!
+ . . .

)
H |ψ〉

= cos((∆t)) |ψ〉 − i sin((∆t))(−1)Parity |ψ〉
= e−Parity it |ψ〉 , (3.6)

where Parity denotes the parity of the state in the computational basis, and we
have used that H2 = I . We can conclude that time evolution in this case is just
the multiplication of the phase e−Parity it. We can realize this in a quantum circuit
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Figure 3.1: �antum circuit that applies the time evolution operator e−iHt, where
H = Z1 ⊗ · · · ⊗ Zn. Image from [5].

by se�ing up an ancilla qubit as the parity of the system and then applying e−iδtZ
unitary to the ancilla qubit. Se�ing up the ancilla as the parity of the system can
be done by applying a CNOT between every qubit and the ancilla where the an-
cilla qubit is the target. �is circuit is shown for 3 qubits in Figure 3.1.

In fact with this procedure we can simulate any Hamiltonian that consists of
a single Pauli or Identity gate per qubit

H =
n⊗
k=1

σki , (3.7)

where k denotes the kth qubit and σ ∈ {I,X, Y, Z}. If in equation (3.1) one of
the local operators was a I instead of aZ we would just not apply the CNOT gate
to this qubit and the time evolution would still be exact. By using the following
relations of the Pauli matrices

X = HZH (3.8)
Y = Rx(π/2)Z Rx(π/2)†, (3.9)

we can apply a unitary on a X or Y term to transform it to a Z gate and the
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previously mentioned scheme can be applied.

3.1.2 Trotter-Suzuki Decomposition
We have seen that for a Hamiltonian given by a single term consisting of many
local Pauli operators we can make an exact quantum circuit to simulate its time
evolution on a state. In general, a Hamiltonian is just a sum of Hamiltonians of
the form (3.8), and o�en consists only of single-qubit and 2-qubit gates. Examples
of such Hamiltonians are the Ising model and the XXZ model [9]. Suppose we
have an Hamiltonian that can be wri�en as a sum of such local Hamiltonians

H =
m∑
j=1

Hj, (3.10)

wherem is polynomial in the number of qubits n. Our goal is to write a quantum
circuit for this general Hamiltonian similar as we have done for the single local
Hamiltonian. We would like to expand the time evolution of 3.10 as

e−i
∑m
j=1 Hjt

?
=

m∏
j=1

e−iHjt, (3.11)

but this is not correct, since exponentials of matrices do not commute in general,
i.e.eA+B 6= eAeB . To solve this we can use the Tro�er-Suzuki approximation
[10],

eA+B = eAB +O(‖A‖op‖B‖op), (3.12)
where ‖.‖op denotes the operator norm. So if A and B have a small operator
norm we can get approximately equal. We can use this approximation in the
Hamiltonian evolution operator by making the operator norm smaller, we do
have

e−i
∑m
j=1 Hjt = (e−i

∑m
j=1 Hjt/q)q, (3.13)

since
∑m

j=1Hj commutes with itself. �en the error for one time slice t/q be-
comes [11]

e−i
∑m
j=1 Hjt/q =

m∏
j=1

e−iHjt/q +O

(
‖H1‖op‖ . . . ‖op‖Hq‖t2

q2

)
, (3.14)

(3.15)
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and the error for the time step evolution t becomes

(e−i
∑m
j=1Hjt/q)q =

(
m∏
j=1

e−iHjt/q +O

(
‖H1‖op‖ . . . ‖op‖Hq‖t2

q2

))q

, (3.16)

=

(
m∏
j=1

e−iHjt/q

)q

+O

(
‖H1‖op‖ . . . ‖op‖Hq‖t2

q2

)
, (3.17)

where in the last line we used that the product of the unitaries on the le� add at
most linearly in the error so the dominating term in the error will be

q O

(
‖H1‖op‖ . . . ‖op‖Hq‖t2

q2

)
.

�is is the �rst Suzuki-Tro�er approximation of the time evolution unitary and
this approach was �rst introduced by Lloyd [8] in 1996. And this approximation
is the foundation of quantum time evolution and is makes it possible for us to
simulate quantum physics e�ciently within error bounds.

We have spliced the time evolution step t into q smaller blocks to remain with
a time evolution of a time step t. We could also rewrite the approximation for
the spliced time step ∆t = t/q. �is approximation would then be

e−i
∑m
j=1 Hj∆t =

m∏
j=1

e−iHj∆t +O
(
‖H1‖op . . . ‖Hq‖op(∆t)2

)
. (3.18)

We can write down a scheme for quantum time evolution for a time step t.

• Initialize a state |ψ(0)〉

• Generate the circuit U∆t of the time evolution operator e−i
∑m
j=1 Hj∆t

• Apply the circuit U∆t |ψ(0)〉 = |ψ(∆t)〉

• Loop the circuit t/∆t times

• Return the �nal result |ψ(t)〉

In conclusion we have shown that it is possible to simulate the time evolution
of n particles evolving under an Hamiltonian in the Pauli basis with an accuracy
we using only O(n) qubits.
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3.1.3 Jordan-Wigner Transformation
In the previous section we derived a circuit for a general Hamiltonian in the Pauli
operator basis. However in fermionic quantum many-body systems the Hamil-
tonian is o�en stated in the second quantization formalism. In this formalism
creation and annihilation operators are introduced which work on states repre-
senting modes in the Fock state basis. Where a |0〉 means there is not particle in
the mode and |1〉 that there is. �e creation (c†) and annihilation (c) operators
are applied on the fermionic modes in the Fock state basis

c† |0〉 = |1〉 c† |1〉 = 0 (3.19)
c |0〉 = 0 c |1〉 = |0〉 . (3.20)

Here in the Fock state basis a state is given |n0 . . . nj〉where ni denotes the num-
ber of particles in the i-th state. In our case we only consider the fermionic states
so ni ∈ {0, 1}. �e creation and annihilation operators have fermionic anticom-
mutation relations

{cj, ci} = 0 (3.21)
{c†j, c

†
i} = 0 (3.22)

{c†j, ci} = δi,jI, (3.23)

where {A,B} ≡ AB+BA is the anticommutator and δi,j is the Kronecker delta.
�ese creation and annihilation operators are very useful for describing quan-
tum many-body systems. �e counting operator that counts how many particles
there are on at site i can be described by c†ici. If there is no particle this opera-
tor returns 0, if there is particle it returns 1. �e operator c†icj describes particle
hopping, by annihilating a particle at site j then creating one at site i.

�e most general Hamiltonian in second quantization in the Born-Oppenheimer
approximation [12], ignoring the nuclear kinetic en nuclear nuclear interaction
terms, can be wri�en as

H =
∑
pq

hpqc
†
pcq +

1

2

∑
pqrs

hpqrsc
†
pc
†
qcrcs, (3.24)

where the �rst term represents the single-electron and the second term the Coulomb
electron-electron interaction.
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We want to translate this formalism to gates and states on a quantum com-
puter so that we can simulate the many-body physics corresponds to We �rst
havet to describe the Fock space and the creation and annihilation operators
in the framework we used in the last section. �e fermionic states in the Fock
space can already be perfectly represented by the computational basis states of a
qubit. �e Jordan-Wigner transformation introduced by Pascual Jordan and Eu-
gene Wigner in 1927 to map the spin operators to fermionic operators can be
used the other way round to map the fermionic operators in the second quanti-
zation to the spin-operators in the Pauli basis [13].

As an initial guess we could set cj = |0〉 〈1| and c†j = |1〉 〈0| where the
brackets are applied to the j-th qubit. From the relations in (3.21) we can write
using Pauli matrices

|0〉 〈1| =
(

0 1
0 0

)
(3.25)

=
1

2

(
0 1
1 0

)
+

1

2

(
0 1
−1 0

)
(3.26)

=

(
σxi + iσyi

2

)
(3.27)

|1〉 〈0| =
(

0 0
1 0

)
(3.28)

=
1

2

(
0 1
1 0

)
− 1

2

(
0 1
−1 0

)
(3.29)

=

(
σxi − iσ

y
i

2

)
. (3.30)

Although they obey the commutation relation for equal index

{cj, c†j} = |0〉 〈1| |1〉 〈0|+ |1〉 〈0| |0〉 〈1| (3.31)
= |0〉 〈0|+ |1〉 〈1| = I, (3.32)

they also commute if they have di�erent indices [c†j, ci], while fermionic oper-
ators must anticommute. By multiplying the operators by a phase dependent
on the general con�guration we can recover the correct commutation relations,
this phase dependent on the con�guration is a chain of −σz operators working
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applied to every site before the i-th site

ci =
i−1∏
k=0

(−σzi ) |0〉 〈1|i =
i−1∏
k=0

(−σzi )
(
σxi + iσyi

2

)
(3.33)

c†i =
i−1∏
k=0

(−σzi ) |1〉 〈0|i =
i−1∏
k=0

(−σzi )
(
σxi − iσ

y
i

2

)
(3.34)

2c†ici − 1 = 2 |0〉 〈0| − I = |0〉 〈0| − |1〉 〈1| = σzi . (3.35)

�ese still obey the commutation relation for equal index, but now for di�erent
indices we get phases, where we use

∏i−1
k=0(−σzi ) = e−iπ

∑i−1
k=0 c

†
kck (omi�ing the

σx, σy and using i > j without loss of generality)

{ci, c†j} = e−iπ
∑i−1
k=0 c

†
kckeiπ

∑j−1
k=0 c

†
kck + e−iπ

∑j−1
k=0 c

†
kckeiπ

∑i−1
k=0 c

†
kck (3.36)

= e−iπ
∑i−1
k=j c

†
kck + eiπ

∑i−1
k=j c

†
kck = 0 (3.37)

{ci, cj} = 0 (3.38)
{ci†, c†j} = 0, (3.39)

as desired.

Summarizing, the creation and annihilation operators transform similarly to
what one would expect from looking at the Pauli operators, but to preserve the
anticommutation relations they are multiplied with a chain of σz operators.
From this last de�nition we can derive nice expressions for the Jordan-Wigner
transform back to second quantization,

σxi = −(σz1 . . . σ
z
i−1)(ci + c†i ) (3.40)

σyi = i(σz1 . . . σ
z
i−1)(c†i − ci) (3.41)

σzi = |0〉 〈0|j − |1〉 〈1|j = (cic
†
i − c

†
ici). (3.42)

�is shows that for adjacent Pauli operators we can rewrite the Pauli z chain as

σxi σ
x
i+1 = (ci + c†i )σ

z
i (ci+1 + c†i+1) (3.43)

= (c†i − ci)(ci+1 + c†i+1) (3.44)
σyi σ

y
i+1 = −(c†i − ci)σzi (c

†
i+1 − ci+1) (3.45)

= −(ci + c†i )(c
†
i+1 − ci+1), (3.46)
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note that the σzi operator was applied from right to le� on the second quantized
operators.

�is that we can map the operators and the states in second quantization
to a system in a Pauli basis. Since we have seen that in the previous section
we can simulate the time evolution of these Hamiltonians in the Pauli basis to
arbitrary precision, we now can simulate the time evolution of second quantized
Hamiltonians as well. We have shown that Feynman’s conjecture that any local
quantum system can be simulated by a quantum computer is indeed true.

3.1.4 Hamiltonian Simulation in ProjectQ
So far we have given a theoretical basis of on the implementation of a quantum
circuit that evolves a quantum state in time. We have shown how a Hamiltonian
in terms of the Pauli operators can be simulated, and we have shown that there
exists a mapping from the second quantization formalism in the fermionic Fock
space to Pauli operators in the computational basis. �ese tools would allow us
to simulate quantum physics on a quantum computer with an exponential in-
crease in speed compared to classical simulations.

One of the main interest of this thesis is the implementation of the quantum
circuit for time evolution on a quantum simulator. In this section we will show
how to implement the procedure for time evolution of a second quantized Hamil-
tonian in ProjectQ.

We will use OpenFermion, an open-source chemistry package in Python for
quantum computers initiated by Google [14]. �e goal of OpenFermion is to pro-
vide a tool to generate and compile equations from quantum chemistry and quan-
tum many-body systems which can be translated to a quantum circuit to be used
on a quantum computer. It serves as a general framework that can be used in
di�erent quantum computing programming frameworks.

In the computer simulations in this thesis we will start from a Hamiltonian in
second quantized form. We will show how OpenFermion translates this into code
used in the ProjectQ framework. Fermionic creation and annihilation operators
a†p and aq for e.g. p = 2, q = 0 are represented as

1 from openfermion . ops impor t FermionOpera tor
2 a p d a g g e r = FermionOpera tor ( ’ 2 ˆ ’ )
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3 a q = FermionOpera tor ( ’ 0 ’ )

�e anticommutation relations from (3.21) are automatically taken into account
in future operations. An arbitrary fermionic operator working on multiple sites
such as W = a3a

†
2a
†
5a9 is wri�en as follows

1 from openfermion . ops impor t FermionOpera tor
2 W = FermionOpera tor ( ’ 3 2 ˆ 5 ˆ 9 ’ )

As shown before we can perform a Jordan-Wigner transformation on the Fock
space operators to get their representation in the Pauli basis, this representation
can then be used in ProjectQ. �e Pauli basis can also be wri�en as a sparse
matrix. �is representation is the classical representation and can be used for
classical simulations. In OpenFermion both these transformation are supported.
For a simple operator Q = a1 we obtain

1 from openfermion . t r a n s f o r m s impor t j o r d a n w i g n e r ,
g e t s p a r s e o p e r a t o r

2 Q = FermionOpera tor ( ’ 1 ’ )
3 ham jw = j o r d a n w i g n e r (W)
4 ham matr ix = g e t s p a r s e o p e r a t o r (W)

the output of the Jordan Wigner transformation equals
1 0 . 5 [ Z0 X1 ] +
2 0 . 5 j [ Z0 Y1 ]

�e output of the matrix will be in the sparse matrix form of SciPy, since there
are many more e�cient algorithms for sparse matrices. In the dense matrix form
we would get

1 m a t r i x ( [ [ 0 . + 0 . j , 1 . + 0 . j , 0 . + 0 . j , 0 . + 0 . j ] ,
2 [ 0 . + 0 . j , 0 . + 0 . j , 0 . + 0 . j , 0 . + 0 . j ] ,
3 [ 0 . + 0 . j , 0 . + 0 . j , 0 . + 0 . j , −1 .+0 . j ] ,
4 [ 0 . + 0 . j , 0 . + 0 . j , 0 . + 0 . j , 0 . + 0 . j ] ] )

With the Jordan-Wigner transformed operator we can calculate the time evo-
lution e−iQt of the operator Q. �e circuit for this evolution can be calculated
exactly as shown in (3.7). To do this in OpenFermion we include

1 from openfermion . u t i l s impor t t r o t t e r i z e e x p q u b o p t o q a s m as
t r o t

2 h a m t r o t = t r o t ( j o r d a n w i g n e r (Q) )

this returns a generator object which generates
1 [ ’H 1 ’ ,
2 ’CNOT 0 1 ’ ,

28



3 ’ Rz 0 . 5 1 ’ ,
4 ’CNOT 0 1 ’ ,
5 ’H 1 ’ ,
6 ’ Rx 1 . 5 7 0 7 9 6 3 2 6 7 9 4 8 9 6 6 1 ’ ,
7 ’CNOT 0 1 ’ ,
8 ’ Rz 0 . 0 1 ’ ,
9 ’CNOT 0 1 ’ ,

10 ’ Rx −1 .5707963267948966 1 ’ ]

�is is what we expect from the calculation in (3.7). If our Hamiltonian would
not have been local then OpenFermion would have applied the �rst order Suzuki-
Tro�er approximation. To get a be�er precision by splicing the time step we can
divide the Hamiltonian by m, get the circuit and then loop the circuit m times.

�e matrix form of the Hamiltonian that we can generate in OpenFermion
gives the operator in the classical case. To create the time-evolution operator
e−iHt we can do direct matrix exponentiation of H . Since H will be sparse we
can use optimized algorithms to do this e�ciently.

1 impor t s c i p y
2 t i m e e v o = s c i p y . l i n a l g . s p a r s e . expm ( ham matr ix )

It is important to note that our numerical simulations are underneath still clas-
sical. ProjectQ, a�er optimization of the circuit, applies all operations on the
entire wave function as classical operators. �is means that all our numerical
quantum simulations are still classically implementable. In fact, the only di�er-
ence between the numerical quantum simulation and the classical simulation of
directly exponentiating the matrix is the error of the Suzuki-Tro�er approxima-
tion. �us, the numerical quantum simulation is the classical information with
an error. �e quantum simulation should therefore by construction always ap-
proach the solution of the classical simulation.

�e algorithm to time evolve an initial state |ψ(0)〉 by some time step t and
q splices is given below.
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Algorithm 2: Time evolution procedure of a Hamiltonian in second quan-
tization.
1 function TimeEvolution ( wavefunction, Hamiltonian, t, q )
Inputs : �e coe�cients of the states in the wave function of |ψ(0)〉,

Hamiltonian in second quantization, time t, number of splices
q

Outputs : Time evolved state |ψ(t)〉
2 |ψ(0)〉 ← INITIALZIE(wavefunction) ; // initial state
3 H ← FermionicOperator(Hamiltonian) ; // initialize Hamiltonian
4 Hjw ← JordanWigner(H) ; // Jordan-Wigner transformation
5 Evoq ← Trot(Hjw/q) ; // Creation of e−iH/q

6 for i = q to i = 0 do
7 |ψ(t′ + q)〉 Evoq←− |ψ(t′)〉 ; // Loop spliced time evolution

8 return |ψ(t)〉 ; // Return time evolved state

One might have the impression that the time evolution procedure of a state
on a quantum computer is the same as the classical evolution but only quicker.
�is is however not the case, a�er the quantum time evolution procedure we
have the time evolved state but in a superposition. �erefore we do not know
the full wave function, in contrast to a classical time evolution case. In the case
of quantum time evolution, and many quantum algorithms in general, the fact
that we can apply the algorithm is not enough. We also need to be able to extract
some useful information out of the �nal system. An example of a way to do
this is the application of the �antum Phase Estimation algorithm. If we know
that our time evolved state |ψ(t)〉 is the eigenvector of some unitary operator U
we can approximate its eigenvectors e�ciently using only one initialization of
|ψ(t)〉. A way to do this will be introduced in the next chapter.
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Chapter 4

Entanglement Entropy

Entropy is an important concept in quantum information theory. It measures
how much uncertainty there is in the state of a system and is related to the
amount of microstates there can be in a known system known characterized by
Boltzmann’s entropy formula

S = kB lnW, (4.1)

whereW is the number of microstates there are corresponding to a given macrostate.
�e second law of thermodynamics states that the entropy of an isolated system
may never decrease over time and thus such systems evolve towards a thermody-
namic equilibrium. In this chapter we will use the concept of entropy as de�ned
in quantum information theory as a measure of entanglement between two sys-
tems.

In 1948 Claude Shannon introduced the concept of classical information en-
tropy, known as the Shannon Entropy [15]

H(X) ≡ −
∑
x

px log px, (4.2)

where p1, ..., pn is the probability distribution of some discrete variable X . �e
concept of information entropy can be used to quantify the amount of informa-
tion there is in X .

�e Shannon entropy is associated with a classical probability distribution.
�e entropy of quantum states was de�ned similarly already in 1932 when von
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Neumann introduced the concept of entropy of a quantum state as known as the
Von Neumann Entropy [16]

S(ρ) ≡ −Tr [ρ log ρ], (4.3)

where ρ is a density matrix. In this de�nition classical probability distributions
are replaced by density operators. A useful way to rewrite this de�nition is

S(ρ) = −
∑
x

λx log λx, (4.4)

where λx are the eigenvalues of the density matrix ρ in a Hilbert spaceH.

�e concept of the von Neumann entropy is to quantify how much a state is
away from a pure state. For a pure state one has ρ = |ψ〉 〈ψ|which has eigenvec-
tor |ψ〉 with eigenvaleu 1 and thus it has von Neumann entropy 0. �e entropy
is maximal if all λx are equal, in that case we have

S(ρ) ≤ −
∑
x

1

dim(H)
log

(
1

dim(H)

)
≤ dim(H)

dim(H)
log (dim(H))

≤ log (dim(H)) . (4.5)

If a density matrix is a probabilistic sum of pure states, i.e.

ρ =
∑
x

px |ψx〉 〈ψx| , (4.6)

we say that the state ρ is mixed. �e von Neumann entropy then gives a measure
to how mixed the state actually is.

4.1 Renyi Entropy and Entanglement Entropy
�e concept of the von Neumann entropy can be extended to a broader family
of information measures known as the Renyi entropies. �ese are de�ned as

Rα =
1

1− α
log(Tr[ρα]), (4.7)
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which in the limit for α→ 1 converges to the von Neumann entropy. �e Renyi
entropies behave similarly as the von Neumann entropy and for α > 1, Rα is
bounded by the von Neumann entropy. As we will see later in this chapter, the
Renyi entropies are useful because for integer values α ≥ 2 it is possible to cal-
culate them on a quantum computer.

Extending the concept of quantum entropies we introduce the entropy of
entanglement. �is is a measure for a many-body quantum state and measures
how entangled two parts of the system are. In the case we create a bi-partition
A,B of the state ρ where the two parts together make the entire state, the von
Neumann entanglement entropy is de�ned as the Von Neumann entropy on the
reduced states ρA or ρB . �e reduced states can be obtained by performing a
partial trace on the other subsystem

ρA = TrB[ρ] ρB = TrA[ρ]. (4.8)

�e entanglement entropy then becomes

S(ρA) = −Tr[ρA log ρA], (4.9)

which again can be extended to a broader family of entanglement entropies
known as the Renyi entanglement entropies

Rα(A) =
1

1− α
log(Tr[ραA]) =

1

1− α
log

(∑
i

λαi

)
, (4.10)

where λi are the eigenvalues of ρA. By the Schmidt decomposition we can write
any state |Ψ〉A,B ∈ A⊗B as [17]

|ψ〉 =
∑
i

si |ei〉 ⊗ |fi〉 , (4.11)

where si > 0, and {|ei〉}i and {|fi〉}i are two orthonormal sets. In this basis the
reduced states ρA and ρB can be rewri�en as

ρA =
∑
i

s2
i |ei〉 〈ei| ρB =

∑
i

s2
i |fi〉 〈fi| , (4.12)

and we see that the eigenvalues of both reduced states are equal, and thus

Rα(A) = Rα(B)
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for all values of α.
In this thesis we are interested in the second Renyi entanglement entropy

R2(ρ) = − log(Tr(ρ2
A)) (4.13)

�e reason is that we can calculate this quantity on a quantum computer, as we
will show later. What we will do for a general state |Ψ〉 is to time evolve this
by the time evolution operator e−iHt, where H is the Hamiltonian of the sys-
tem, and calculate the second Renyi entanglement entropy at every time step
we make. Using this approach we can make statements about how the system
evolves through time.

To show the non-triviality behind the entanglement entropy we will calculate
the entanglement entropy of |ψ〉 = 1√

3
(|00〉+ |01〉+ |10〉), where system A has

the �rst qubit and system B the second. �is state is clearly entangled since
measuring |1〉 for the �rst qubit tells us what the second qubit is, however it is
not fully entangled, since measuring |0〉 does not give us information. Writing
out ρ = |ψ〉 〈ψ| we get

ρ =
1

3

(
|00〉 〈00|+ |00〉 〈01|+ |00〉 〈10|+ |01〉 〈00|+ |01〉 〈01|+ (4.14)

|01〉 〈10|+ |10〉 〈00|+ |10〉 〈01|+ |10〉 〈10|
)

=
1

3

(
|0〉 〈0|A ⊗ |0〉 〈0|B + |0〉 〈0|A ⊗ |0〉 〈1|B + |0〉 〈1|A ⊗ |0〉 〈0|B

+ |0〉 〈0|A ⊗ |1〉 〈0|B + |0〉 〈0|A ⊗ |1〉 〈1|B + |0〉 〈1|A ⊗ |1〉 〈0|B
+ |1〉 〈0|A ⊗ |0〉 〈0|B + |1〉 〈0|A ⊗ |0〉 〈1|B + |1〉 〈1|A ⊗ |0〉 〈0|B

)
, (4.15)
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tracing out the B subsystem we get

=
1

3

(
|0〉 〈0|A ⊗ |0〉 〈0|B + |0〉 〈0|A ⊗����|0〉 〈1|B + |0〉 〈1|A ⊗ |0〉 〈0|B

+ |0〉 〈0|A ⊗����|1〉 〈0|B + |0〉 〈0|A ⊗ |1〉 〈1|B + |0〉 〈1|A ⊗����|1〉 〈0|B
+ |1〉 〈0|A ⊗ |0〉 〈0|B + |1〉 〈0|A ⊗����|0〉 〈1|B + |1〉 〈1|A ⊗ |0〉 〈0|B

)
(4.16)

ρA =
1

3

(
|0〉 〈0|A + |0〉 〈1|A + |0〉 〈0|A + |1〉 〈0|A + |1〉 〈1|A

)
=

1

3

(
2 |0〉 〈0|A + |0〉 〈1|A + |1〉 〈0|A + |1〉 〈1|A

)
(4.17)

ρ2
A =

1

9

(
4 |0〉 〈0|+ 2 |0〉 〈1|+ |0〉 〈0|+ |0〉 〈1|+ 2 |0〉 〈1|

+ |1〉 〈1|+ |1〉 〈0|+ |1〉 〈1|
)

(4.18)

=
1

9

(
5 |0〉 〈0|+ 3 |0〉 〈1|+ 2 |1〉 〈0|+ 2 |1〉 〈1|

)
(4.19)

R2(A) = − log Tr[ρ2
A] = − log

(
7

9

)
≈ 0.363. (4.20)

So determining the entanglement entropy is not trivial. Classically this becomes
increasingly more di�cult for larger states, because the states become exponen-
tially larger. However, as we will see in this chapter, it is possible to calculate the
entanglement entropy on a quantum computer.

4.2 Swap Test
In this section we will show how to calculate integer Renyi entropies for a gen-
eral quantum state. Classically one would need to know the full wave function of
a state to calculate the entropy and this is not always possible. �ere is however
a quantum algorithm that can calculate the Renyi entropy on a quantum com-
puter provided we have two copies of the quantum state. Since by the no-cloning
theorem it is not possible to clone an arbitrary state one needs to have a routine
from some initial state that we can do twice. For example in the case of the time
evolution of an initial state, we could prepare the initial state twice and perform
the same time evolution on both systems to get two copies of the time evolved
state.
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�e algorithm makes use of the Swap gate. One can also apply the Swap
operator to a subsystem A of the state. �is operator is denoted as SwapA and
when applied on two equal states |φ〉A,B |φ〉A′,B′ we get

SwapA |φ〉A,B |φ〉A′,B′ = |φ〉A′,B |φ〉A,B′ . (4.21)

Note that even though we applied the SwapA operator to the same state the new
state is completely di�erent from the old one. �is becomes clear in the next
example where subsystem A is the �rst qubit and B the second

SwapA
1√
2

(|00〉+ |11〉) 1√
2

(|00〉+ |11〉)

=
1

2
SwapA(|00〉 |00〉+ |00〉 |11〉+ |11〉 |00〉+ |11〉 |11〉)

=
1

2
(|00〉 |00〉+ |10〉 |01〉+ |10〉 |01〉+ |11〉 |11〉) (4.22)

It turns out that the expectation of the Swap gate 〈Ψ| Swap |Ψ〉 = Tr(ρ2),
where |Ψ〉 = |ψ〉 |ψ〉.
And 〈Ψ| SwapA |Ψ〉 = Tr(ρ2

A). We will show this �rst for a cyclic operator Cn
that cyclically permutes the states as

Cn |a1, a2, ..., an〉 = |a2, a3, ..., an, a1〉 , (4.23)

then for Tr ρ⊗nCn we obtain

Tr ρ⊗nCn =
∑

a1,...,an

〈a1, ..., an| ρ⊗nCn |a1, ..., an〉

=
∑

a1,...,an

〈a1, ..., an| ρ⊗n |a2, ..., an, a1〉

=
∑

a1,...,an

〈a1| ρ |a2〉 〈a2| ρ |a2〉 ... 〈an−1| ρ |an〉 〈an| ρ |a1〉

=
∑
a1

〈a1| ρn |a1〉 (4.24)

= Tr ρn, (4.25)

where in (4.24) we have used the completeness relation of the Hilbert state that∑
a |a〉 〈a| = I .
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Since the Swap gate is the cyclic operator C2 we now have

〈Ψ| Swap |Ψ〉 = Tr(〈ψ| 〈ψ| Swap |ψ〉) |ψ〉
= Tr(|ψ〉 〈ψ| ⊗ |ψ〉 〈ψ| Swap)

= Tr(ρ⊗2C2)

= Tr(ρ2). (4.26)

Note that for any integer n > 1 we can calculate the n-th Renyi entropy in
this way by simply taking n copies of the density matrix to obtain (4.25)

Tr[ρn] = 〈ψ|⊗nCn |ψ〉⊗n . (4.27)

For the SwapA gate by separating |ψ〉 to |ψ〉A |ψ〉B we see that in the trace
Tr(ρ⊗2 SwapA) the subsystem B part is traced out so we get

〈Ψ| SwapA |Ψ〉 = Tr(ρ2
A).

A short quantum algorithm to calculate Tr(ρ2
A) would then be gives as in Figure

4.1.
In this circuit we bring a qubit in a superposition and apply a controlled

SwapA on the two systems |ψ〉 |ψ〉. �e application of the algorithm yields

|0〉 |Ψ〉 → 1√
2

(|0〉+ |1〉) |Ψ〉

→ 1√
2

(|0〉 |Ψ〉+ |1〉 SwapA |Ψ〉)

→ 1

2
((|0〉+ |1〉) |Ψ〉+ (|0〉 − |1〉) SwapA |Ψ〉)

→ 1

2
(|0〉 (|Ψ〉+ SwapA |Ψ〉) + |1〉 (|Ψ〉 − SwapA |Ψ〉). (4.28)

A�er measuring the �rst qubit we get the probabilities

P|0〉 =
1 + 〈Ψ| SwapA |Ψ〉

2
(4.29)

P|1〉 =
1− 〈Ψ| SwapA |Ψ〉

2
. (4.30)

�erefore a�er repeated measurements we can estimate the probabilities and
thus the value of

〈Ψ| SwapA |Ψ〉 = Tr(ρ2
A).
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Figure 4.1: �antum circuit that applies a controlled Swap gate on a subsystem
of two equal states. Image taken from [18]

�is can be ued to calculate R2 = − log(Tr(ρ2
A)). By the Central Limit �eorem

this converges to the mean probability with an accuracy of ε ∼ 1/
√
N , whereN

is the number of measurements we have made. So for a given accuracy ε > 0 we
would need O(N2) measurements.

�is shows that a�er measuring our resulting state is

1√
2

(|Ψ〉 ± SwapA |Ψ〉) , (4.31)

so it is not clear how to extract further information from it anymore. �erefore
we have to repeatedly initialize and time evolve the system, it is clear that this
method is not an e�cient way to calculate the Renyi entropies. However as we
will see, there exists a technique called �antum Amplitude Estimation that can
e�ciently calculate this probability and only need few measurements as shown
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in [18].

4.3 Estimation using QAE
In our previous algorithm the aim was to to estimate the value of c = 〈Ψ| SwapA |Ψ〉.
If we de�ne the state |Ψ̃〉 = SwapA |Ψ〉�is is a problem that can be solved ef-
fectively by the �antum Amplitude Estimation procedure from section 2.5. We
can decompose this in the good part and the bad part as we have done before in
the QAE procedure

|Ψ̃〉 = c |Ψ〉+
√

1− c2 |Ψ⊥〉 , (4.32)
where |Ψ〉 is the good part en |Ψ⊥〉 the bad part orthogonal to the good part and
we want to estimate c. To do this we follow the method used in [18] but now
with a slightly di�erent operator Q. We use the same idea to apply two re�ec-
tions to get an operator of which the eigenvalues are dependent on c and we can
�nd these eigenvalues by the phase estimation procedure.

�e operator O used to do this is de�ned as

O = SwapA V, (4.33)

where

V = I− 2 |Ψ〉 〈Ψ| (4.34)

this operator maps |Ψ〉 to − |Ψ〉 and all other states to itself. Since applying
SwapA twice equals the identity, the SwapA operation is indeed a re�ection.
SwapA re�ects around an axis in the space spanned by |Ψ〉 and |Ψ⊥〉 as shown
in Figure 4.2.

�e operatorO consists of two re�ections and thusO itself is a rotation with
eigenvalues −e2iθ, where

cos2(θ) =
〈Ψ| SwapA |Ψ〉+ 1

2
. (4.35)

Using the quantum phase estimation procedure we can get the value of the eigen-
value with arbitrarily high precision.
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Figure 4.2: Le�: Re�ection of a state through the |Ψ⊥〉 axis. Right: Re�ection of
a state around the dashed line that represents the SwapA operation.

We now derive expression (4.35). In matrix-form the operation of the opera-
tor on the subspaces |Ψ〉 =

(
1
0

)
and |Ψ⊥〉 =

(
0
1

)
can be wri�en as

V =

(
−1 0
0 1

)
. (4.36)

Its operation in the space spanned by |Ψ〉 and |Ψ⊥〉 is shown in �g. 4.2.

To get the matrix form of the SwapA gate we calculate its operation on |Ψ⊥〉.
Since applying the Swap operation twice is the same as the identity mapping we
get for |Ψ⊥〉

|Ψ〉 = c SwapA |Ψ〉+
√

1− c2 SwapA |Ψ⊥〉
= c2 |Ψ〉+ c

√
1− c2 |Ψ⊥〉+

√
1− c2 |Ψ⊥〉

(1− c2) |Ψ〉+ c
√

1− c2 |Ψ⊥〉 =
√

1− c2 SwapA |Ψ⊥〉
|Ψ̃⊥〉 = SwapA |Ψ⊥〉 =

√
1− c2 |Ψ〉+ c |Ψ⊥〉 . (4.37)

From this we see that the Swap gate is a re�ection with matrix

SwapA =

(
c

√
1− c2

√
1− c2 −c

)
. (4.38)

40



�e operator O has as a matrix form

O =

(
−c

√
1− c2

−
√

1− c2 −c

)
, (4.39)

of which the eigenvalues are

0 = det

(
−c− λ

√
1− c2

−
√

1− c2 −c− λ

)
0 = (−c− λ)(−c− λ) + 1− c2

0 = λ2 + 2λc+ 1

(λ+ c)2 = c2 − 1

λ = −c± i
√

1− c2. (4.40)

Since c ∈ [0, 1] we can write c = cos(2φ) for some φ ∈ [0, π), then the
eigenvalues become

λ± = − cos(2φ)± i
√

1− cos(2φ)2 = − cos(2φ)± i sin(2φ) (4.41)
= −(cos(2φ)± i sin(2φ)) = −e±i2φ, (4.42)

where cos(φ)2 = 1+cos(2φ)
2

= 1+〈Ψ|SwapA|Ψ〉
2

, and the statement in eq. (4.35) has
been veri�ed. Note that

−1

2
(λ± + λ̄±) =

1

2
(e±2iφ + e−±2iφ) (4.43)

= cos(2φ) = 〈Ψ| SwapA |Ψ〉 = Tr[ρ2
A] (4.44)

�us independent from what eigenvalue we get from the quantum phase es-
timation we can always calculate the Renyi entropy by adding the complex con-
jugate.

We see that using QAE we can estimate the value 〈Ψ| SwapA |Ψ〉 with arbi-
trary precision and using only one initialization of |Ψ〉. �is is a huge improve-
ment compared to the algorithm showed previously in terms of the number of
initialization we have to make, but this comes at the price of using more qubits.
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4.3.1 �antum circuit of operator O
We will now show how one can implement the scheme of the QAE algorithm
into gates to apply on a quantum computer, where we follow the implementa-
tion as it was done in [18]. �e main part of the quantum circuit has to do with
the implementation of the re�ection operator V in O, since the SwapA operator
consists of 3 CNOT gates its implementation is easy to do. �e operator O is
controlled implemented on an ancillary qubit, since we will use the operator for
quantum phase estimation.

�e method used to prepare the re�ection V is similar to the AS0A−1 op-
erator that only re�ects the state |Ψ〉 = A |02n〉 . �is operator �rst ’unpacks’
the state |Ψ〉 to the all zero-state then sends only |02n〉 → − |02n〉, then per-
forming a controlled Z-gate on the �rst qubit, where this gate is controlled on
all other qubits being in the |0〉 state. �en we bring the zero-state back to the
state |Ψ〉. �is procedure can be made more general, if we have an operator Q
of which |Φ〉 is an eigenstate with known eigenvalue qΨ. Se�ing up the Fourier
Transform of the eigenvalue |F [qΨ]〉 = 1√

N

∑N−1
k=0 e

2πiφk |k〉, where φ ∈ [0, 1) is
such that qΨ = e2πiφ. We then do a reverse application of the �antum Phase
Estimation procedure as shown in section 1 and bring |Ψ〉 |F [qΨ]〉 to |Ψ〉 |0m〉,
where m is the number of qubits we use for the Fourier Transform of qΨ. �e
quantum circuit for this procedure is shown in �g. 4.3

We will show how the quantum circuit for the desired input state Ψ that we
use. Firstly note that if Q |Ψ〉 = qΨ, then Q† |Ψ〉 = 1

qΨ
|Ψ〉, since Q is unitary.

Now the controlled implementation of the operator O works as follows, for the
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Figure 4.3: �antum circuit of the controlled implementation of the operator
O = SwapA V , where V = 1 − 2 |Ψ〉 〈Ψ|. �e operator Q has the desired state
|Ψ〉 as an eigenstate and the corresponding eigenvalue qΨ is known beforehand.
�e Fourier Transform of the eigenvalue is stored in ancillary qubits, and the
inverse of the �antum Phase Estimation procedure is applied. �e open balls
in the controlled Z gate mean that the gate is controlled on the |0〉 state instead
of the |1〉 state.

desired state input state |Ψ〉 and an ancillary qubit |x〉:

|x〉 |Ψ〉 |F [qΨ]〉 = |x〉 |Ψ〉
2m−1∑
k=0

e2πiφk |k〉

C−(Q†)k−→ |x〉
2m−1∑
k=0

(Q†)k |Ψ〉 e2πiφk |k〉

= |x〉 |Ψ〉
2m−1∑
k=0

1

qkΨ
e2πiφk |k〉

= |x〉 |Ψ〉
2m−1∑
k=0

e−2πiφke2πiφk |k〉 = |x〉 |Ψ〉
2m−1∑
k=0

|k〉

H−→ |x〉 |Ψ〉 |0m〉
C−Z−→ (−1)x |x〉 |Ψ〉 |0m〉
C−(Q)k−→ (−1)x |x〉 |Ψ〉 |F [qΨ]〉
C−SwapA−→ (−1)x |x〉 SwapxA |Ψ〉 |F [qΨ]〉 ,

so we see that the circuit works as expected for the desired input state |Ψ〉. For
some general state input |Φ〉 only its overlap with the |Ψ〉 would be re�ected,
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while the rest would remain the same. Writing out a general state in the overlap-
ping part with |Ψ〉 and a non-overlapping part we get |Φ〉 = cΨ |Ψ〉+

∑
i ci |φi〉,

where |φi〉 span the basis of |Ψ⊥〉. �en applying the quantum circuit the over-
lapping part would be controlled re�ected while the rest stays the same so

|x〉 |Φ〉 |F [qΨ]〉 = |x〉 (cΨ |Ψ〉+
∑
i

ci |φi〉) |F [qΨ]〉 (4.45)

−→ |x〉

(
(−1)xcΨ |Ψ〉 |0m〉+

∑
i 6=0

ci |φi〉 |i〉

)
(4.46)

= |x〉

(
(1− 2x)cΨ |Ψ〉 |0m〉+

∑
i 6=0

ci |φi〉 |i〉

)
(4.47)

−→ |x〉 (|Φ〉 − 2xcΨ |Ψ〉) |F [qΨ]〉) (4.48)
−→ |x〉 SwapxA (|Φ〉 − 2xcΨ |Ψ〉) |F [qΨ]〉) . (4.49)

With the controlled operator wri�en as a quantum circuit we can now apply the
�antum Phase Estimation Algorithm to estimate the eigenvalue of the operator
O to an arbitrarily high precision ε > 0 using only one initialization of |Ψ〉 and
O(log(1/ε) qubits to store its value.

We apply the same circuit for the �antum Phase Estimation Algorithm as
in �gure 2.4 to estimate the eigenvalues of operator O. Note that compared to
the algorithm in �g 4.1 we now use many more ancillary qubits, we needO(1/ε)
qubits to store the eigenvalue of O and we need to store the Fourier Transform
of the eigenvalue ofQ. �is trade-o� is justi�ed because the new algorithm only
needs one initialization of |Ψ〉. However �nding an operator Q of which |Ψ〉 is
an eigenstate is not an easy task because we don’t know the full wave function
of |Ψ〉 (if we did we could classically calculate Tr[ρ2

A]).

In practice the only operatorQ of which we know |Ψ〉 to be an eigenstate and
of which we know the eigenvalue is to reverse the unitary initialization of |Ψ〉
and do some operation on the original state and then initialize |Ψ〉 again. �is is
in fact the regular �antum Amplitude Estimation algorithm. �is does have the
advantage that we can choose the eigenvalue of the operator Q ourselves, and
by choosing qΨ = −1 as an eigenvalue we only need 1 qubit to store its Fourier
Transform. Also the implementation of the phase estimation of the operator O
a�er we have created a physical quantum circuit of O should not be di�cult.
Performing O2j just means we loop the qubits in the same circuit 2j times.
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4.4 Entanglement Entropy Simulation inProjectQ
We’ve now seen two algorithms that can estimate the value of Tr[ρ2

A] from two
copies of the state |ψ〉. In this section we present an implementation of both al-
gorithms using ProjectQ, an open source so�ware framework for quantum com-
puting in Python [19]. �e idea of ProjectQ is that it is a compiler framework
capable of compiling a quantum algorithm to a quantum simulator or various
types of hardware. In our case we will simulate the algorithms using a quantum
simulator that keeps track of the full wave function.

4.4.1 Swap Test
�e implementation of the �rst algorithm using the Swap test is as follows

Algorithm 3: Swap Test Procedure to estimate the entanglement entropy
between two subsystems A and B
1 function SwapTest ( wavefunction, A, B)
Inputs : �e coe�cients of the states in the initial wave function,

Subsystem A, Subsystem B, Number of runs Nruns
Outputs : Approximation of Tr[ρ2

A]
2 for i = Nruns to i = 0 do
3 |qAB〉 ← INITIALIZE(wavefunction) ; // initial state
4 |qAB2〉 ← INITIALIZE(wavefunction) ; // initial state
5 |0〉 ← |q0〉 ; // initialize ancilla
6 H(|q0〉) = 1√

2
(|0〉+ |1〉) ; // Hadamard gate

7 if |q0〉 then
8 SwapA(|qAB〉 , |qAB2〉) ; // Control Swap-gate

9 q0← |q0〉 ; // Measure ancilla

10 return (#(q0 = 0)−#(q0 = 1))/Nruns

We’ve used the conventions for quantum pseudocode from [5].
In �g. 4.4 the estimation of Tr[ρ2

A] is plo�ed against the number of runs. �e
value of Tr[ρ2

A] is calculated from (4.29)

Tr[ρ2
A] = P|0〉 − P|1〉, (4.50)
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Figure 4.4: Output of the implementation of Algorithm 3 in ProjectQ. �e value
of the estimation of Tr[ρ2

A] is plo�ed for the state |ψ〉 = |00〉+|10〉+|01〉√
3

, note that
a�er ∼ 400 runs the estimation has converged to around the true value.

the estimation of the probability of measuring |0〉 or |1〉 is updated a�er every
run. �e convergence of this probabilistic scheme is not very fast, especially con-
sidering for every time step we need to initialize the state |Ψ〉 again.

In the simulator every gate and operation is implemented as an operation
on the wave function and during the simulation it is possible to access the full
wave function. �is means that we can ’cheat’ in our simulations to make them
quicker. We could, for example, directly access the probability of measuring |0〉
or |1〉 in the �rst algorithm 4.28. In ProjectQ we implement this by accessing the
backend:

1 eng . backend . g e t p r o b a b i l i t y ( ’ 0 ’ , q0 ) −
2 eng . backend . g e t p r o b a b i l i t y ( ’ 1 ’ , q0 )

�is returns a value of 0.7777777777775295, which coincides with our calcula-
tion of 7

9
. Note that these operations are not possible to do on a real quantum

computer and are only done to improve the speed of the algorithm, by applying
enough runs we could estimate this value in the same way.
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4.4.2 �antum Amplitude Estimation
�e implementation for the �antum Amplitude Estimation scheme is as follows

Algorithm 4: �antum Amplitude Estimation procedure to estimate the
entanglement entropy between two subsystems A and B
1 function �antumAmplitudeEstimation(wavefunction, A, B, O, d)
Input : wavefunction, subsystemA, subsystemB, OperatorO, precision
Output: Approximation of Tr[ρ2

A]
2 |qAB〉 ← Initialize(wavefunction) ; // initial state
3 |qAB2〉 ← Initialize(wavefunction) ; // initial state
4 |q0〉 ← |0d〉 ; // initialize ancillas
5 H(|q0〉) ; // bring ancilla in superposition
6 for i = precision - 1 to i = 0 do
7 if |q0[i]〉 then
8 O2i(|qAB〉 , |qAB2〉)← |qAB〉 , |qAB2〉 ; // controlled O in the fourier

space

9 q0←MeasuredFourier(|q0〉, d) return q0

�is function outputs the values of the ancilla qubits used in the quantum
phase estimation algorithm. �ese qubits are measured in the computational
basis, and are the value of the angle φ of the eigenvalue of O namely λ± = e2πiφ.
By adding the complex conjugate as done in (4.43) we get the value of Tr(ρ2

A)

1

2

(
λ± + λ̄±

)
= Tr(ρ2

A). (4.51)

From the implementation in ProjectQ in �g 4.5 we see for our example of the
state |ψ〉 = |00〉+|10〉+|01〉√

3
that the convergence of the estimation of Tr(ρ2

A) to the
analytical value 7

9
goes very quickly, and we only need to initialize |Ψ〉 once. We

do need extra ancillary qubits. If we would have a quantum computer with a
large amount of qubits this would not be a problem, especially since the amount
of ancillary qubits only depends on the precision of the estimation, i.e. a very
large and complex state requires the same number of ancillary as our small prob-
lem if we want equal precision in its estimation. However in our simulator this
can be a problem, since we can only simulate 25 qubits on a regular computer.
To implement this procedure we would lose relatively many qubits compared to
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Figure 4.5: Output of the implementation of Algorithm 4.3 in ProjectQ. �e value
of the estimation of Tr[ρ2

A] is plo�ed for the state |ψ〉 = |00〉+|10〉+|01〉√
3

. �e con-
vergence to the exact value of 7

9
converges exponentially good in the number of

ancilla used.

how much we can use for the state we are interested in.

�e implementations of these functions in ProjectQ can be used to access
the entanglement entropy for every wave function. In the algorithms that follow
we will perform operations on quantum states and use these algorithms to access
the wave functions. As mentioned before we are simulating a quantum computer
and it is possible to save the entire wave function, something that is not possible
on a real quantum computer. �erefore to make the simulations more e�cient
we will not use the �antum Amplitude Estimation procedure, but we will do
the Swap test and cheat to get the probabilities.
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Chapter 5

Numerical Simulations of
Localization

An important statement in classical statistical physics is the concept of thermal-
ization. One of the statements we can make is that systems over time converge
to their thermal equilibrium, this is due to the ergodicity theorem that over time
every microstate becomes equally likely to be reached. In this chapter we will
extend the concept of thermalization to quantum states.

�ere are physical systems that do not thermalize over time. We will intro-
duce the Heisenberg XXZ model in di�erent con�gurations that are known to
exhibit localization instead of thermalization. We will introduce a model called
the supersymmetric Hamiltonian for which we will investigate if there is local-
ization over time.

�e method used to �nd loclization in these systems is a combination of the
previous chapters. We will time evolve an initial state under the Hamiltonian and
calculate the entanglement entropy at every time step. �e entanglement holds
crucial information for the characterization of di�erent forms of localization.

5.1 XXZ Model
In this section we will introduce and the one-dimensional spin-1/2 Heisenberg
XXZ model in a magnetic �eld. �is model has been studies in great detail and we
will use it to reference our �ndings with known results. Our goal is to simulate
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the time evolution of this system. �e XXZ model is an instance of the general
1d spin-1/2 Heisenberg mode which for a la�ice of size N (where the �rst site
has label 1) can be wri�en in the form

H =
∑

j∈{x,y,z}

Jj

N∑
i=1

σjiσ
j
i+1 + h

∑
i

σz. (5.1)

�e model describes nearest neighbor interactions in a spin chain, where the
interactions are Pauli operators on adjacent la�ice sites with corresponding in-
teraction strength Jj . �e entire la�ice is placed in a magnetic �eld with strength
h. We can introduce periodic or open boundary conditions by se�ing σN+1 = σ1

or σN+1 = 0 respectively. Note that o�en the Hamiltonian is de�ned as minus
our de�nition, this coincides with whether we see the completely aligned state
as the state with minimal or maxmial energy. I our setup we de�ne it as the state
with maximal energy, alas the plus sign in our de�nition.

�e Heisenberg XXZ model is an instance of the general model in which
J = Jx = Jy 6= Jz = ∆. In the following parts we will modify the model by
allowing the magnetic �eld to be random at every la�ice site denoted by hi where
the �eld strength hi will be chosen uniformly from the interval [−h/2, h/2] for
some h. Se�ing open boundary conditions we then get

H = J
N−1∑
i=1

σxi σ
x
i+1 + σyi+1σ

y
i+1 + ∆

N−1∑
i=1

σzi σ
z
i+1 +

N∑
i=1

hiσ
z
i . (5.2)

Since this model is already wri�en in terms of Pauli operators we can immedi-
ately apply it to the quantum programming framework of ProjectQ as mentioned
in section 3.1.4. But for the analysis in the upcoming sections it is useful to write
down the XXZ model in second quantized form. Filling in the second quantized
version of the product of neighboring Pauli operators was derived in equation
(3.43) we get

H = 2J
N−1∑
i=1

(c†ici+1 + c†i+1ci) + ∆
N−1∑
i=1

nini+1 − 2
N∑
i=1

hini (5.3)

where ni denotes the counting operator c†ici and we have omi�ed the constant
terms and constant terms dependent on the number of particles. �ese terms
are not interesting in the time evolution of the operator since they only add a
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global phase to e−iHt. We see that the J term corresponds to a fermionic hopping
strength and ∆ corresponds to nearest neighbor particle interaction strengths.

When we implement the time operator note that in this operator e−iHt a
general coe�cient of the Hamiltonian can be re-scaled in the time step. We will
therefore set the coe�cient J = 1/2, leaving the labels of the other coe�cients
the same for convencience. We can also omit the minus sign in the random mag-
netic �eld strength since we draw the coe�cients uniformly symmetric around
0. �e Hamiltonian then becomes

H =
N−1∑
i=1

(c†ici+1 + c†i+1ci) + ∆
N−1∑
i=1

nini+1 +
N∑
i=1

hini, (5.4)

where now we draw hi from [−h, h]. From now on we will use the XXZ model
in this form.

5.2 Supersymmetric Hamiltonian
In this section the supersymmetric la�ice structure is introduced. �e supersym-
metric model describes spinless fermions on a one dimensional la�ice of size N .
We say a Hamiltonian is N = 2 supersymmetric if it can be wri�en as the an-
ticommutator of two nilpotent fermionic generator Q, Q† [2]. In our model the
fermionic generators Q and Q†, also called supercharges, are de�ned as

Q† =
N∑
i=1

(1− ni−1) c†i (1− ni+1) (5.5)

Q =
N∑
i=1

(1− ni−1) ci (1− ni+1), (5.6)

where as in the XXZ model we can impose periodic or open boundary conditions.
Se�ing n0 = nN+1 = 0 or n0 = nN+1 we get open or closed boundaries. �ese
operators are nilpotent, Q2 = 0 and (Q†)2 = 0, see Appendix A.1. What both
operators do when applied to a state is to add or take away a particle if its adjacent
sites are empty. �e corresponding Hamiltonian

H = {Q,Q†}, (5.7)
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therefore always leaves the amount of particles �xed. Supersymmetric Hamilto-
nians are always positive semi-de�nite, using that the superoperators are nilpo-
tent we can show this

H = QQ† +Q†Q (5.8)
= QQ† +Q†Q+QQ+Q†Q† (5.9)
= (Q+Q†)(Q† +Q) = Y Y †, (5.10)

where Y = (Q + Q†) has det(Y ) 6= 0, thus H is positive semi-de�nite. �ere-
fore the energy E of any state H |ψ〉 ≥ 0. Supersymmetric Hamiltonians can
also be applied on higher level structures instead of chains and be implemented
with other supercharges. However these are not within the scope of this the-
sis. We will further investigate the Hamiltonian with open boundary conditions
introduced before and implement its time evolution in the quantum simulator
framework of ProjectQ.

By using the anticommutation relations the Hamiltonian can be rewri�en to

N∑
i=1

(1− ni−1)(c†ici+1 + c†i+1ci)(1− ni+2) +
N∑
i=1

(1− ni−1)(1− ni+1), (5.11)

the derivation of this expression is given in Appendix A.2. �is statement has
some parallels with the XXZ-model in equation (5.4). We can have hopping to
nearest neighbors if the original site has no neighboring particles and the target
state also does not have one. �e second term can be expanded

N∑
i=1

(1− ni−1)(1− ni+1) = N − 2F +
N∑
i=1

ni−1ni+1, (5.12)

whereF is the amount of fermions in the system. We see next to nearest neighbor
interactions instead of nearest neighbor interactions in the XXZ model.

5.3 Numerical Simulations
In this section we will show the results of the numerical implementation of the
before mentioned Hamiltonians. �e XXZ Hamiltonian and supersymmetric
Hamiltonian in the ProjectQ framework using the method described in section
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Figure 5.1: Di�erence in operator norm of the �rst Suzuki-Tro�er approximation
and with the direct exponentiation of the Hamiltonian. Hamiltonian used is a 8
site supersymmetric Hamiltonian as introduced in 5.12.

3.1.4. A url to the code can be found here A.4. �ese Hamiltonians will always
have non-commuting terms since di�erent Pauli operators don’t commute. As
shown in equation (3.17) the error of the approximation should be inversely pro-
portional to the number of slices we divide the time step. In �gure 5.1 this result
is has been calculated by comparing the operator norm of the direct matrix ex-
ponentiation with the circuit we get from OpenFermion.

We see that the error is inversely proportional to the number of splices we
made of our time step. �is was expected but it is a good con�rmation that we
can indeed simulate this model.

To visualize what action the time evolution of these Hamiltonians has on a
basis state we have plo�ed the probability density of measuring a state in a cer-
tain instance of a con�guration with J = 1,∆ = 1, h = 1. �is visualization is
shown in �gure 5.2. In the plot a 1 in the ket means the fermion is spin up, a 0
means spin down. We initialize the state in the |001〉 state and use open boundary
conditions. We see that the number of spin up states is not conserved through
time, a�er some time the |111〉 is a possible state to be measured, this means that
in this instance we had 3 random magnetic �eld strengths that pointed in the
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Figure 5.2: Visualization of the probability density at di�erent instances in time of
a particle initialized as |001〉 and time evolved under the XXZ model as described
in equation (5.4). A 1 means the fermion has spin up, a zero spin down.

same direction. �e visualization shows clearly what we would expect, we have
hopping to nearest neighbors and boundary e�ects.

In �gure 5.3 the time evolution of the initial state |001〉 is plo�ed. �is result
shows exactly what we would expect from the Hamiltonian in equation (5.12).
A�er the initialization of a fermion at the third la�ice site we see that it moves
to the middle state, and only a�er it it can also move to the most le� state.

As explained in the previous chapter an important quantity in physics that
we can also measure on a quantum computer is the second Renyi entanglement
entropy. �e largest chain that we can simulate e�ectively on a normal CPU is
of size 8, so in the remainder our plots will be of la�ices of this size.
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Figure 5.3: Visualization of the probability density at di�erent instances in time of
a particle initialized as |001〉 and time evolved under the supersymmetric Hamil-
tonian model as described in equation (5.12). A 1 means we have a fermion at
that site in the la�ice, a 0 means it is empty.

In �gure 5.4 the time evolution of the entanglement entropy was plo�ed. �e
state |01000010〉 was initialized in the ProjectQ framework and time evolved by
the method described in algorithm 2 and a�er every time step the second Renyi
entropy was calculated by algorithm 3 where we cheated by looking at the un-
derlying wave function and calculated the probabilities of measuring the |0〉 or
|1〉 ancilla with high probability.

�e time evolution of the second Renyi entropy in �gure 5.4 gives a mea-
sure on how entangled the two subsystems A, B are evolved through time. A
and B both consist of 4 qubits and they describe the �rst and second half of the
system. Initially there is no entanglement in state |01000010〉, then when we
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Figure 5.4: �antum simulation of the evolution of the entanglement entropy of
the state initial state |01000010〉 evolved under the supersymmetric Hamiltonian.
Plo�ed on the x-axis are the time steps of size 1 against the second Renyi entropy,
where the system was divided into two subsystemsA,B consisting of the 4 qubits
on the le� and right. �e Swap test procedure from Algorithm 3 was used here
we cheated to get high precision values.

time evolve the state the fermions start to move probabilistically to neighboring
states similar to as shown in �gure 5.3 and we get a superposition of new states.
�en whenever a particle crosses the boundary between subsystems A and B
we build up entanglement in the state. We see that the entanglement entropy in-
creases quickly and then remains high, this fact that it stops growing comes from
the �nite la�ice size and the �nite amount of fermions. �is gives a saturation
bound on the entanglement entropy, for a in�nite la�ice we expect the entan-
glement entropy to keep increasing. �e behavior of fast entanglement growth
to a saturation value coincides with the thermalization of states.

5.4 Eigenstate �ermalization Hypothesis
So far we have seen how we can time evolve general fermionic states under a
Hamiltonian and we have calculated the entanglement entropy at every time
step of this evolution. In this section we will show how the entanglement entropy
is an indicator of the phenomena of Anderson Localization (AL) and Many Body
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Localization (MBL) in condensed ma�er physics.

First we discuss thermalization in quantum systems. In classical statistical
mechanics thermalization is the process in which a system reaches thermal equi-
librium with maximal entropy. �is description relies on the ergodicity theo-
rem, that over time all microstates of the system are reached with equal prob-
ability. In quantum systems we cannot extend this reasoning because not all
states with equal energy E are reached. In the time evolution of some state
|ψ(0)〉 =

∑
αAα |Eα〉, where |Eα〉 are the eigenstates of the Hamiltonian the

coe�cients of the eigenstates only acquire a phase

|ψ(t)〉 = e−iHt |ψ(0)〉 =
∑
α

e−iEαtAα |Eα〉 . (5.13)

�e probability of measuring the state in an eigenstate |Eα〉 is pα = |Aα|2 will
therefore not change over time and depend completely on the initial state. In
contrast to classical states, which does explore di�erent states through the state
space by ergodicity.

We see that we need to develop a new notion of ergodicity to explain what
thermalization means in a quantum many-body se�ing, a notion for this has
been introduced in [20]. By comparison the classical microcanonical ensemble
we want that starting from a physical initial state that the observables of the
system reach the values of the microcanonical ensemble a�er in�nite time. �e
expectation of an observable Ô at in�nite time is

〈Ô〉t→∞ = lim
T→∞

1

T

∫ ∞
0

〈ψ(t)| Ô |ψ(t)〉 dt (5.14)

= lim
T→∞

1

T

∫ ∞
0

∑
α,β

A†αAβe
−i(Eβ−Eα)t 〈Eα| Ô |Eβ〉 (5.15)

=
∑
α

pα 〈Eα| Ô |Eα〉 , (5.16)

where in the last line we used that the o� diagonal terms oscillate at di�erent fre-
quencies and average out over long time [1]. Again we have the pα are set by the
initial state, so the way to de�ne thermalization to the equilibrium is by assum-
ing that the expectation values of the eigenstate and the operator 〈Eα| Ô |Eα〉
are the as in the microcanonical ensemble Omc(Eα).
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�e explanation for thermalization, that in ergodic quantum many body sys-
tems the eigenstates have thermal oberservables identical to the microcanonical
ensembles was introduced in [21] and [20], and is known as the Eigenstate �er-
malization Hypothesis (ETH). While all known thermalizing system obey ETH,
it is not known whether ETH is necessary for thermalization [1].

An implication of ETH is that all observables within a subsystemAwill have
thermal expectation values. �is implies that the reduced density matrix ρA is
thermal and therefore the entanglement entropy is equal to the thermodynamic
entropy of A [1]. It is known of the thermodynamic entropy that this grows lin-
early in time [22]. �e growth of the entanglement in the time evolution of a
system will be used to characterize its characteristics.

5.5 Anderson and Many Body Localization
Anderson localization also known as strong localization was introduced by Philip
Anderson in 1958 [23]. He proposed a la�ice model with strong random disor-
der, these disorders can be impurities defects in the la�ice or strong di�erent
magnetic �elds at each la�ice point. What one would might expect is a�er ini-
tializing a particle in such a la�ice due to the disorder the wave function will
sca�er and its localization will di�use on the la�ice and the wave function will
extend throughout the whole system. However what Anderson showed is that
if the disorder is large enough the interference with particles and the disorder
completely halt the particle and particles become exponentially localized in �-
nite regions of space [24], and interactions become negligible. �e concept of
Anderson localization is important in the understanding of insulators and the
transitions between insulating phases and metallic phases.

An indication of the occurrence of Anderson localization can be found in
the entanglement entropy. When a system becomes localized the entanglement
entropy will not grow anymore in time. We expect that in the occurrence of An-
derson localization in a �nite la�ice such as in �gure 5.4 a�er initialization in
a pure state the entanglement will grow from 0 to some value higher value and
remain constant through time. �is value will be much lower than the saturation
value of the entanglement entropy.
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It may seem that Anderson Localization is a non-thermalizing system since
by the localization the approach to equilibrium is not possible. Indeed theoret-
ically an isolated Anderson Localized system is an insulator and has zero con-
ductivity. However practically we will still have interactions in our system and
it was Anderson himself who showed that it is possible by the decay of a single
localized particle for the whole system to become delocalized again and break the
Anderson Localization [25]. �is brings the question whether there are systems
that break ETH while allowing interactions.

It turns out such systems exist. In recent years the existance of localized
phases at non-zero temperatures have been shown in low-dimensional disor-
dered systems [26]. �ese systems that remain a perfect insulator while having
interactions are called Many Body Localized (MBL) systems. In contrast to An-
derson localization these systems remain robust within interactions and small
perturbations. MBL systems are the only known robust systems that do not
thermalize in a closed system [1]. An explanation to why MBL systems remain
localized is the emergence of an integrable set of quasilocal integrals of motion
(LIOMs), which by integrability remain during the dynamics of the system and
prevent thermolization. A key characteristic of MBL is that the entanglement
entropy of the system will grow logarithmically in time [1], this is a very unique
characteristic that we will use in the remainder of this thesis.

�ere have been numerical simulations [3] using the Heisenberg XXZ model

H =
N−1∑
i=1

(c†ici+1 + c†i+1ci) + ∆
N−1∑
i=1

nini+1 +
N∑
i=1

hini, (5.17)

which under certain con�gurations of large enough disorder in the magnetic
�eld showed Anderson Localization and Many Body Localization. �e simula-
tions can be seen in �gure 5.5.

In the plot as an initial state the Néel state was chosen. �e la�ice size was
N = 50, and plo�ed are two di�erent Renyi entanglement entropiesR1 andR0.5

of the same Hamiltonian initialization. Two di�erent Hamiltonian initializations
were made: the random coe�ciencts were chosen from the interval [−5, 5] and
two values of ∆ were chosen. ∆ = 0 (saturing curves) and ∆ = 0.5 (growing
curves). �e data perfectly coincides with the predictions made earlier, we would
expect Anderson localization in the non-interacting case and indeed the entan-

59



Figure 5.5: Logarithmic plot of time against the R1 and R0.5 entanglement en-
tropies. �e initial state was a Néel state with la�ice size 50. �e system was
evolved under the XXZ Hamiltonian where the random magnitic �elds were cho-
sen uniformly from the interval [-5,5] and plo�ed are two initializations of the
interaction parameter ∆. ∆ = 0 (no interactions) corresponds to the saturating
curves, ∆ = 0.5 corresponds to the growing curves. Both are averaged over 100
plots.

glement entropy remains constant. Turning on the interactions in the Hamil-
tonian gives logarithmicly increasing entanglement entropy (linear in this plot
because it is a log-plot), which shows the system is in the MBL phase.

We reproduced these simulations on the quantum computing framework of
ProjectQ, for a la�ice of size 8. �is data is shown in �gure 5.6.

�is simulation shows the same behaviour of the entanglement entropy in
the di�erent cases such as in �gure 5.5. We see a�er the localization that the
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Figure 5.6: Logarithmic plot of the entanglement entropy from ProjectQ. Shown
are three con�gurations of the XXZ-Hamiltonian. ∆ = 1, h = 1 shows the
thermalizing phase, ∆ = 0, h = 5 shows the Anderson Localization phase and
∆ = 0.5, h = 5 shows the MBL phase. �e plots are averaged over 20 initializa-
tions.

entanglement entropy of Anderson localizing phase remains constant, the MBL
phase grows linearly and the thermalizing phase grows exponentially, which we
expect because it grows linear in time and thus exponential in a logartihmic plot.
�e key di�erence being the la�ice size, we used a la�ice of 8 and in [3] they used
specialized so�ware to go to the higher la�ice size of 50. �is is visible in the
MBL phase entanglement growth, this value also stabilizes a�er some time due
to the smaller la�ice size.

5.6 Localization Supersymmetric Hamiltonian
In the previous chapter we have seen that the XXZ model exhibits Anderson Lo-
calization and MBL. We posed the question if our supersymmetric Hamiltonian
could also have these localization phases, since the Hamiltonians are similar. To
this we must introduce random disorder in the supersymmetric Hailtonian and
the only way to do that without breaking the supersymmetry is by multiplication
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of some random factor λi with every term in Q

Q =
N∑
i=1

λi(1− ni−1)ci(1− ni+1). (5.18)

�e Hamiltonian then becomes
N∑
i=1

λiλi−1(1− ni−2)(c†ici−1 + c†i−1ci)(1− ni+1) +
N∑
i=1

λ2
i (1− ni−1)(1− ni+1)

=
N∑
i=1

λiλi−1(1− ni−2)(c†ici−1 + c†i−1ci)(1− ni+1) +
N∑
i=1

λ2
i

+
N∑
i=1

λ2
ini−1ni+1 −

N∑
i=1

λ2
i (ni−1 + ni+1), (5.19)

this derivation is done in Appendix A.3. Comparing the XXZ Hamiltonian

H =
N−1∑
i=1

(c†ici+1 + c†i+1ci) + ∆
N−1∑
i=1

nini+1 +
N∑
i=1

hini, (5.20)

we conject that the supersymmetric model will have no Anderson localization
since we can only tune the λi parameter we will always have interactions in the
model. To introduce disorder such as in the XXZ Hamiltonian, we need that the
on site potential is large enough compared to the hopping parameter (which is
1 in the XXZ model). Since these e�ects are average e�ects, this condition of
disorder translates in our case to

E[λ2] > cE[λ]2, (5.21)

we want the second moment to be some factor larger than the mean squared.
Rewriting this we get

E[λ2]− E[λ]2

E[λ2]
> (c− 1) (5.22)

σ2

µ2
> (c− 1)↔ σ

µ
>
√
c− 1, (5.23)

or in other words we want to draw our λi from a distribution which has the
desired property that σ/µ is large enough. What we also cannot allow is for
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λi to be negative since it would be not physical to have hopping parameters
which are negative. �ere are distributions that are positive and of which µ and
σ can be tuned as desired, the beta-distribution is an example of this. However
taking a continuous distribution with the desired property will always be heavily
centered to zero and have a large tail. �is is something we don’t want because
if we have a λi that is almost 0 we break the hopping in the chain. To counter
these problems we took a general normal distribution around 1, and cast all the
negative values to 0.1. �ese new distribution are not continuous and have a
new mean and sigma than before. We got some results as follows starting from
N (1, σ).

σ/1 σ′/µ′

0 0
0.2 0.2
0.4 0.39
0.6 0.56
0.8 0.68

We time evolve an initial state under the supersymmetric Hamiltonian in
which we introduce randomness as done in equation (5.19) and we have chosen
the coe�cients λi to be from the distributions we just created. We get the loga-
rithmic plot in time of the entanglement entropy as shown in 5.7. �ese plots are
created using the classical matrix exponentiation method as described in section
3.1.4. From the plots we see that for a higher value of σ/µ i.e. a higher disor-
der in the on-site potential compared to the hopping parameter, that the entropy
begins to grow linearly a�er �rst growing exponentially. �is suggests that our
system is indeed in the MBL phase. �is was not expected beforehand, in the
supersymmetric model in equation (5.19) we see that the interactions and the
onsite potential are both dependent on λ2

i and therefore we cannot tune these
coe�cients relative to each other. Also in the simulations in [3] the interaction
parameter ∆ was �xed while in our case it is randomly chosen.

An extra method to check if our system is in the MBL regime is to set the
interactions in the Hamiltonian to zero. In the MBL phase this should result in
a system in the Anderson localized phase. In our simulation in the ProjectQ we
can set up the Hamiltonian without the interacting term

∑N
i=1 λ

2
ini−1ni+1, we

also take away the interacting terms arising in the hopping term to get as �nal
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Figure 5.7: Logarithmic plot of the entanglement entropy from ProjectQ. Shown
are di�erent con�gurations of the supersymmetric Hamiltonian with a la�ice
size 8. �e coe�cients are drawn from a distribution initially a normal distri-
bution N (1, σ) for di�erent σ where all the negative values are cast to 0.1. �e
new σ/µ is shown in the legend. All the plots are averaged over 20 hamiltonian
con�gurations and 3 di�erent initial states with 2 qubits.

Hamiltonian

H =
N∑
i=1

λiλi−1(c†ici−1 + c†i−1ci) +
N∑
i=1

λ2
i −

N∑
i=1

λ2
i (ni−1 + ni+1). (5.24)

�is breaks the supersymmetry of the Hamiltonian. �e entanglement entropy
time evolved under this Hamiltonian in the setup where σ/µ = 0.56 is com-
pared to the previous case in which we found indication for MBL in �gure 5.8.
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�e �gure shows what we expected, a�er growing initially the entanglement
growth of the non-interacting case becomes constant, which indicates Anderson
Localization. Also a thermalizing state is plo�ed as reference.

Figure 5.8: Logarithmic plot of the entanglement entropy from ProjectQ. Shown
are 2 di�erent con�gurations of the supersymmetric Hamiltonian with a la�ice
size 8 and 1 con�guration of with no interactions. �e coe�cients are drawn
from a distribution initially a normal distributionN (1, 0.6) for di�erent σ where
all the negative values are cast to 0.1. �e new σ/µ value is 0.56. Two cases are
from the interacting Hamiltonian
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Chapter 6

Conclusion

One of the goals of this thesis was to implement a Hamiltonian system in the
framework of ProjectQ and simulate quantum time evolutions. We have in-
troduced the Jordan-Wigner transformation to bring Hamiltonians from second
quantization to Pauli operators, for this we used the OpenFermion framework.
With this we have presented the Suzuki-Tro�er approximation to arbitrarily
close generate the time evolution quantum circuit of such a Hamiltonian in Pauli
operators. �ese quantum circuits were implemented in the ProjectQ frame-
work and we have successfully simulated time evolution in the quantum simula-
tor. Also a classical quantum time evolution procedure was created using Open-
Fermion and the performance of the approximate quantum circuit was checked
against the classical direct calculation.

A second part of this thesis was to implement a quantum algorithm within
ProjectQ that could be used to calculate the second Renyi entanglement entropy
of a state. We have implemented the Swap test algorithm and the faster but need-
ing more ancillary qubits algorithm based on �antum Amplitude Estimation.
�e performance of both methods was analyzed.

Ultimately both concepts of quantum time evolution and entanglement en-
tropy were combined in creating calculating the time evolution of the entangle-
ment entropy of di�erent systems. �e systems of interest in this thesis were
the Heisenberg XXZ model and the N = 2 supersymmetric Hamiltonian. �e
concept of Anderson Localization and Many Body Localization (MBL) were dis-
cussed. In Anderson Localization particles don’t interact and become completely
localized on a la�ice chain, a characterization of this phase is no entanglement
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growth through time. However allowing for small interactions breaks the local-
ization and the system can become Many Body Localized, this is characterised by
logarithmic entanglement growth. �e Many Body Localized state is proven to
be a robust phase that does not vanish when one introduces small perturbations.
�is makes MBL phases the only known robust systems that violate the Eigen-
state �ermalization Hypothesis, which gives a statement on the convergence of
quantum states to thermal equilibrium.

It was shown in previous simulations that in con�gurations with enough dis-
order in the on site potential the Heisenberg XXZ model is in Anderson Local-
ization phase if there are no interactions and becomes in the MBL phase when
small interactions are introduced. �is was shown with the entanglement en-
tropy time evolution of the di�erent con�gurations. We have reproduced these
with the quantum simulator of the framework of ProjectQ. We conjectured that
the supersymmetric Hamiltonian could also have an MBL phase if we introduced
random disorder such that the site potential is large enough with respect to the
expected value of the random coe�cients of the hopping parameter. We found
strong indication that this is indeed the case.

�ese results allow for a number of possible future research question. One
concerning the the choice of the random coe�cients in the supersymmetric Hamil-
tonian. �ese can be chosen periodically at random and otherwise they are �xed
at 1, in the case of period of 3 la�ice sites interesting kink dynamics arise. Other
follow research includes out of time order correlators (OTOC’s) these were inves-
tigated in this thesis, but we did not manage to use them in this context. �e idea
of OTOC’s is however of importance in localized systems. One of the most im-
portant future researches is of course a physical implementation in a lab of these
systems, a physical realization of a MBL state would be of great signi�cance.
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Appendix A

Supersymmetric Hamiltonian

A.1
At �rst sight it might not seem clear why Q2 = (Q†)2 = 0. We will show
the result for Q, the result for Q† follows analogously. First we calculate the
commutation relation between a creation or annihilation operator and (1− ni).

ci(1− nj) = ci − cic†jcj
= ci − (δij − c†jci)cj
= ci − δijcj − c†jcjci
= ci − c†jcjci − δijcj
= (1− nj)ci − δijcj

c†i (1− nj) = c†i + c†jc
†
icj

= c†i + c†j(δij − cjc
†
i )

= c†i − c
†
jcjc

†
i + δijc

†
j

= (1− nj)c†i + δijc
†
i

Note further that the product of two number operators always commute since
their application on a state yields a number and keeps the state intact. Now we
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can show Q2 = 0

Q2 =
∑
i,j

(1− ni−1)(1− ni+1)cicj(1− ni−1)(1− ni+1)

=
∑
i,j

(1− ni−1)(1− ni+1)ci(1− ni−1)cj(1− ni+1)

=
∑
i,j

(1− ni−1)(1− ni+1)((1− ni−1)ci − δijcj)cj(1− ni+1)

=
∑
i,j

(1− ni−1)(1− ni+1)(1− ni−1)((1− ni+1)ci − δijcj)cj

=
∑
i,j

(1− ni−1)(1− ni+1)(1− ni−1)(1− ni+1)cicj

=

{
−
∑

i,j(1− ni−1)(1− ni+1)(1− ni−1)(1− ni+1)cjci, by commutation relations∑
i,j(1− ni−1)(1− ni+1)(1− ni−1)(1− ni+1)cjci, by relabelling i↔ j

and we conclude Q2 = 0.

A.2
We will show how the Hamiltonian in equation (5.11) can be transformed into
the Hamiltonian in equation (5.12).

With the commutation relations from the previous Appendix A.1 we will
commute all the annihilation and creation operators to one side in the Hamil-
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tonian.

H = {Q†, Q} = Q†Q+QQ†

=
∑
i,j

(1− ni−1)(1− ni+1)cic
†
j(1− nj−1)(1− nj+1)

+
∑
i,j

(1− ni+1)(1− ni−1)c†icj(1− nj−1)(1− nj+1)

=
∑
i,j

(1− ni−1)(1− ni+1)(cic
†
j + c†icj)(1− nj−1)(1− nj+1)

=
∑
i,j

(1− ni−1)(1− ni+1)(ci(1− nj−1)(1− nj+1)c†j + c†i (1− nj−1)(1− nj+1)cj)

=
∑
i,j

(1− ni−1)(1− ni+1)
(
((1− nj−1)ci − δi,j−1cj−1)(1− nj+1)c†j+

((1− nj+1)c†i + δi,j−1c
†
j)(1− nj+1)cj

)
=
∑
i,j

(1− ni−1)(1− ni+1)
(
((1− nj−1)ci(1− nj+1)c†j + (1− nj−1)c†i (1− nj+1)cj)−

δi,j−1c
†
j−1(1− nj+1)c†j + δi,j−1cj−1(1− nj+1)cj

)
=
∑
i,j

(1− ni−1)(1− ni+1)
(
(1− nj−1)

(
((1− nj+1)cic

†
j − δi,j+1cj+1c

†
j)

+ (1− nj+1)c†icj + δi−1,jc
†
j+1cj

)
− δi,j−1(1− nj+1)cj−1c

†
j + δi,j−1(1− nj+1)c†j−1cj

)
=
∑
i,j

(1− ni−1)(1− ni+1)(1− nj−1)(1− nj+1)(cic
†
j + c†icj)

+
∑
i,j

(1− ni−1)(1− ni+1)(1− nj−1)(−δi−1,jcj+1c
†
j + δi,j+1c

†
j+1cj)+∑

i,j

(1− ni−1)(1− ni+1)(1− nj+1)(−δi+1,jcj−1c
†
j + δi+1,jc

†
j−1cj)

=
∑
i

(1− ni−1)(1− ni+1)(1− nj−1)(1− nj+1)(cic
†
j − cjc

†
i + δi,j)

+
∑
i

(1− ni−1)(1− ni+1)(1− ni−2)(−cic†i−1 + c†ici−1)

+
∑
i

(1− ni+1)(1− ni+2)(−cic†i+1 + c†ici+1)
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=
∑
i,j

(1− ni−1)2(1− ni+1)2

+
∑
i,j

(1− ni−1)(1− ni+1)(1− nj−1)(1− nj+1)cic
†
j − (i↔ j)︸ ︷︷ ︸

=0 by relabeling

+
∑
i

(1− ni+1)(1− ni−2)((1− ni−1)c†i−1ci︸ ︷︷ ︸
→0

+c†ici−1)

+
∑
i

(1− ni−1)(1− ni+2)((1− ni+1)c†i+1ci︸ ︷︷ ︸
→0

+c†ici+1)

=
∑
i

(1− ni−1)2(1− ni+1)2 −
∑
i

(1− ni−1)︸ ︷︷ ︸
→1 by ci−1

(1− ni−1)(1− ni−2)c†ici−1

+
∑
i

(1− ni−1) (1− ni+1)︸ ︷︷ ︸
→1 by ci+1

(1− ni+2)c†ici+1

=
∑
i

(1− ni−1)2(1− ni+1)2 +
∑
i

(1− ni−2)c†ici−1(1− ni−1)

+
∑
i

(1− ni−1)c†ici+1(1− ni+2)

=
∑
i

(1− ni−1)(1− ni+1) +
∑
i

(1− ni−2)(c†ici−1 + c†i−1ci)(1− ni+1)

A.3
As mentioned the only randomness we can introduce in the Hamiltonian while
not breaking the supersymmetry (i.e. keeping theQ,Q† invariant) is multiplying
each term in the sum of Q.

Q =
∑
i

λi(1− ni−1)ci(1− ni+1),

this is the same as sending every creation and annihilation operator at site i to
λi times this operator. If we track the calculations in Appendix A.2 before we set
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any term to zero we get∑
i,j

λiλj(1− ni−1)(1− ni+1)(1− nj−1)(1− nj+1)(cic
†
j − cjc

†
i + δi,j)

+
∑
i

λiλj(1− ni−1)(1− ni+1)(1− ni−2)(−cic†i−1 + c†ici−1)

+
∑
i

λiλj(1− ni+1)(1− ni+2)(−cic†i+1 + c†ici+1),

tracking these factors in the summations over the Kronecker delta terms we get∑
i

λ2
i (1− ni−1)(1− ni+1) +

∑
i

λiλi−1(1− ni−2)(c†ici−1 + c†i−1ci)(1− ni+1)

A.4
Link to the github with the code used in this project. https://github.
com/philiplunel?tab=projects
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