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Abstract

Primordial black holes might make up dark matter, and their abundance is a sensitive
probe of the amount of small-scale fluctuations in the early universe and of the
theory of inflation that sourced them. In this thesis, we present a calculation of
their formation probability in the radiation era directly from the density matrix of
any inflationary state seeding the density perturbations for their production, using
the Wigner function to define probability distributions of the relevant quantum
fields. For Gaussian states and a Gaussian distribution of the overdensities, this
yields a well-defined prescription to link the local power spectrum to the nonlocal
probability of a region to collapse. We find corrections to previously found results
due to nontrivial momentum correlators, and suggest that these might also influence
the formation criteria. Extensions of this method to study non-Gaussianity and
shape-dependence of the formation criteria are within reach.
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Definitions and conventions

In this thesis, we use the natural units h̄ = c = 1. We will also use both Newtons
gravitational constant G and the reduced Planck mass M2

p = (8πG)−1, which we
will occasionally set to one.
Our Fourier transform convention is:

f̃(k) =

∫ ∞
−∞

dxe−ikxf(x).

Our metric signature is (−,+,+,+).

We denote four-vectors xµ with Greek indices, and three-vectors xi with Latin indices.

Throughout, we use lower-case for comoving coordinates and momenta, and capital
letters for physical coordinates and momenta. We will also often denote the norm of
a 3-vector ~k by k.
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Introduction

The nature of dark matter is one of the greatest and most enduring mysteries in
physics, and perhaps in all of science. After over 80 years of searching, we still
cannot claim to have any knowledge about what it consists of, apart from that it
barely interacts with regular matter, is nonrelativistic and nonbaryonic and is found
in halos around galaxies. [1] There is a wide variety of theories on what it could be
though, from unknown subatomic particles, to clouds of gas, to even a change in the
laws of gravity itself. One particularly interesting candidate for dark matter is the
primordial black hole (PBH) [2]. These are black holes that form right after the big
bang, in the first second of the universe, from the collapse of large overdensities in
the extremely dense primordial plasma [3, 4]. They can form with any mass and size,
from subatomic to supermassive, depending on the size of the overdense region. This
makes them not only interesting as dark matter candidates, but also as the source of
the absurdly massive black holes in the centres of galaxies or the black hole binaries
measured by LIGO.

The amount of PBHs that form is determined by how many sufficiently large
overdensities are caused by metric and matter fluctuations in the early universe. To
calculate this, we need to both know when an overdensity is sufficiently large and
what the distribution of overdensities is like. The first question already proves to
be a very tough one, with multiple criteria defined over the years yielding different
results. We will follow the results from Musco [5], who posed a criteria in terms of
the compaction function for a spherical volume, which is defined as:

C(r, t) =
2GδM(r, t)

2a(t)r
,

where δM(r, t) is the excess mass in the volume and a the scale factor. To determine
the distribution of C, we need to relate it to the primordial curvature perturbations.
This is possible because the mass excess can be related to the density perturbation,
which is sourced by the curvature perturbations via a relativistic Poisson equation.
Inflation then tells us what the fluctuations are like. In particular, for the commonly
accepted slow roll (SR) scalar field inflation, these perturbations are way too small
to form any PBHs, since it predicts that the spectrum is nearly scale invariant and
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the perturbations at large scales measured in the cosmic microwave background
(CMB) and large scale structure (LSS) are really small. Therefore, to form any
significant amount of PBHs a theory beyond SR single field inflation is needed. We
will not study these theories specifically, but take a general power spectrum with
enhancement on small scales as our input. The main purpose of this thesis is then
to calculate the PBH abundance for any such theory.

To calculate the probability of a certain region collapsing to a PBH, we need to
calculate the probability of the field C(r, t) to have a given value. This is most
naturally done in the framework of the Wigner function, where we can properly
define a probability distribution for the quantum field in the Gaussian state that
describes inflation. Using this, we can calculate a probability distribution for C
from first principles with only the density matrix or the Gaussian correlators of
the inflationary theory as input. It turns out however, that not only the curvature
power spectrum plays a role, but also the momentum correlators. These are not
usually taken into account in numerical studies, and are often not very well known
in theories of beyond slow roll inflation, so one of the main messages of this thesis is
that more attention should be paid to them, both in numerical simulations of PBH
formation and analytical studies of beyond slow roll inflation.

Using this framework, and integrating over the momentum correlators, we then
calculate the probability of PBH formation and find a formula that both extends
results found earlier and specifies how the power spectrum in Fourier space should
be related to the mass scale of the PBH that forms. It is found that the amount of
PBHs that form is very dependent on the amplitude of the enhancement on small
scales, and hence that any inflationary model producing enough PBHs to be dark
matter must be extremely fine-tuned, or have some mechanism stabilising it at the
value needed to produce the right amount.

In this thesis therefore, we find a general framework with which the amount of PBHs
that forms can be calculated from any Gaussian theory of inflation. This formalism
also allows us to take into account how the evolution of cosmological perturbations
affects the formation of primordial black holes. Therefore, this can rule out certain
theories that produce too much PBHs, since they can at most be all of the dark
matter in the universe. Also, if PBHs were ever to be detected, this would rule
out theories that produce too little of them. In particular, the standard slow roll
scalar field inflation produces no primordial black holes, so any discovery would mean
that this cannot be the full picture. Black holes formed from stellar collapse have a
minimal mass on the order of a solar mass [6], so any measurement of a lighter black
hole would mean a discovery of a PBH, since no other formation mechanisms are
known. Similarly, if studies of galactic dynamics would show that the supermassive
and intermediate mass black holes need to have primordial origins, this would mean
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that inflation cannot be described by slow roll alone. The amount of PBHs in our
universe is intimately linked with the specifics of inflation, and might be the only
way to probe its small scale behaviour.
In chapter 1 of this thesis we review how the dark matter mystery became apparent
in the last 80 years, the numerous evidence for its existence and how PBHs can
solve this mystery. Along the way, we will develop some basic results in cosmology
for later use, and describe what the criteria are for the formation of PBHs. In
chapter 2 we introduce inflation and the framework of cosmological perturbation
theory with which we can describe the fluctuations in the early universe that source
the overdensities that collapse to form the PBHs. In chapter 3, we introduce the
Wigner function formalism with which we will calculate the probability density for
C. In chapter 4 we present our results for the calculation of the probability of PBH
formation in the early universe for a number of theories of inflation. Chapter 5 is
reserved for a discussion of our main results and in appendices we present some
important technical details of our calculations.
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Chapter 1

The dark universe

1.1 Evidence for dark matter

For over eighty years, physicists have been puzzled by the missing matter in the
universe. In this section, we will briefly mention the main pieces of evidence from
different observations that have guided the search, as well as describe some of the
most studied candidates and how they fare under experimental scrutiny. We will
mostly follow [1].

1.1.1 First hints

The first known mention of ”dark matter”, perhaps somewhat suprisingly, predates
its first observation by over 30 years. Astronomers in the late nineteenth and early
twentieth century were well aware that a significant portion of the mass in our galaxy
could be in objects that do not emit any light. However by studying the velocity
dispersion of the stars in our neighbourhood, it was concluded by astronomers such
as Ernst Öpik in Estonia and Jacobus Kapteyn in Groningen that the amount of
”dark matter” in the universe was small [1].

The first suggestion that this might not be the complete picture came when as-
tronomers started looking at structures outside our galaxy. In the 1930s, Fritz
Zwicky was studying the motion of galaxies in a number of clusters, among which
was the Coma cluster when he noticed that the relative velocities of the galaxies
were much bigger than expected [7]. By the virial theorem, these velocities are
related to the total mass of the system, which could also be estimated from the
luminosity of the galaxies. The mass he inferred from the velocities was 400 times
greater than what was expected from the visual sources, leading him to conclude
that most of the matter in the cluster was dark. We know now that this factor of 400
is mainly due to the fact that he used a value for the Hubble constant which was off
by an order of magnitude, but taking this into account still a large mismatch remains.
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At the time, this discovery was not seen as a big breakthrough, but rather as
a sign of how little was known about galaxies, which were only discovered barely
twenty years earlier. Zwicky himself thought this dark matter consisted of ”nebulae
in the form of cool and cold stars, macroscopic and microscopic solid bodies, and
gases”[8]. Another popular explanation was that the clusters were not actually
virialised but rapidly expanding, and that application of the virial theorem was
therefore invalid. In the following years however, these theories started to lose ground.
Surveys of the amount of gas in galaxies found way too little to explain the large
velocities, and it was also realised that the galaxies could not be rapidly expanding,
since they would then have already evaporated a long time ago. Astrophysics was
left with a mystery, which would only get more puzzling when the next experimental
evidence came in.

1.1.2 Rotation curves

The rotation of stars around the centres of galaxies had already been studied since
the 1930s. However, it was only in the early 1970s that measurements on the rotation
velocity could be reliably made far away from the centre of galaxies. This could then
be compared with optical and 21 cm data which determined the distribution of stars
and gas inside galaxies, which found that most of the visible mass of a galaxy is near
its core, and that the density falls off exponentially at large radii. From this it would
be expected that the rotation velocity also falls off at larger radii, as is the case for
orbits around a point mass. This turned out not to be the case: the rotation curves
remain constant up to the edges of galaxies. The most natural explanation was that
there is not just visible mass in galaxies, but also invisible mass, dark matter, in a
halo surrounding the galaxy. In figure 1.1, some of the data from 1972 showing this
effect can be seen, but it must be noted that there were many different groups doing
these experiments, all finding the flattening of the curves. At the end of the decade
these results, and with them the fact that most of the mass in galaxies was dark,
had become well-accepted.

1.1.3 Evidence from cosmology

In the end, the most convincing evidence for the existence of dark matter arguably
came from cosmology. In the 1970s and 80s, accurate calculations and experiments
on the early universe made it clear that only a small fraction of the matter in the
universe could consist of baryons. In this section, we will broadly sketch the basics
of cosmology and explain how these measurements could be made.

The starting point of cosmology is the fact that the universe is homogeneous and
isotropic on large scales. The isotropy has been observationally confirmed by the large
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Figure 1.1: Rotation curves for a number of galaxies as found by Rogstad and
collaborators in 1972 [9]. In the left column the density of gas is plotted, and on the
right the rotation velocity, both as a function of the distance from the centre. The
flattening can clearly be seen.
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Figure 1.2: The temperature fluctuations in the cosmic microwave background. The
temperature difference between patches is of the order of 10−5T0, with T0 ≈ 2.7K.
Image: ESA and the Planck Collaboration.

scale structure of galaxies and especially by the isotropy of the cosmic microwave
background (CMB). The temperature fluctuations seen in figure 1.2 are only on the
order of 10−5, so this assumption seems to be pretty good. This does not directly
imply homogeneity, but an isotropic but inhomogeneous universe in which we are at
the centre of concentric homogeneous shells seems very unrealistic and contrived.

It has been known for a while that the only homogeneous and isotropic metric with
which the universe can be described is the Friedmann-Robertson-Lemaitre-Walker
(FLRW )metric, given by:[10]

ds2 = −dt2 + a2(t)(
dr2

1− κr2
+ r2dΩ2), (1.1.1)

where a(t) is the scale factor, dΩ2isand κ is a parameter that determines the global
curvature and hence geometry of the universe: it is flat for κ = 0, positively curved
and spherical for κ > 0 and negatively curved and hyperboloidal for κ < 0. The
evolution of the scale factor is determined by the Einstein equations:

Rµν −
1

2
Rgµν =

1

M2
p

Tµν , (1.1.2)

where Rµν is the Ricci tensor, R the Ricci scalar and Mp = (8πG)−1 the reduced
Planck mass. The background of all matter sources of cosmological relevance can be
described by a perfect fluid with pressure p and density ρ, such that we have the
following stress-energy tensor:

T νµ = diag(−ρ, p, p, p). (1.1.3)
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The equation of state of the fluid is described by the parameter ω ≡ p
ρ , which plays

an important role in the evolution of the universe as we shall see. We also introduce
another very important quantity here: the Hubble parameter:

H(t) ≡ ȧ(t)

a(t)
. (1.1.4)

This roughly describes how fast the expansion of the universe is happening, and
gives the natural length scale of the problem, namely the Hubble length H−1 which
will play a very important role in inflation. In terms of this, the Einstein equations
then become:

H2 =
ρ

3M2
p

− κ

a2
(1.1.5)

and

Ḣ +H2 =
ä

a
= − 1

6M2
p

(ρ+ 3p), (1.1.6)

which are called the first and second Friedmann equation. From the second equation
we see the importance of the value of ω. If ω > −1

3 , ä < 0 and the expansion of the
universe slows down as time goes on, but if ω < −1

3 , the expansion accelerates.

At early times, the universe was extremely hot and dense, and therefore most of the
particles were relativistic: the total energy came mainly from their kinetic energy.
This is called the radiation dominated era. As the universe cooled down, the mass of
the particles became the dominant source of energy and the universe entered the
matter dominated era, in which most of the matter is nonrelativistic. In this case,
we have ω = 0, but for the fluid of relativistic particles in the radiation era we have
ω = 1

3 . The dark energy that dominates our universe has ω = −1, but we will not
be concerned with it further in this thesis, as it is negligible during the formation of
PBHs.
It is also useful to transform the metric to conformal time dτ = dt

a , such that it
becomes the conformal Minkowski metric with a scale factor in front:

ds2 = a2(τ)(−dτ2 + d~x2), (1.1.7)

for which an equivalent to the Friedmann equations can also be derived.
By integrating these equations, we find the evolution of a and ρ. The results for this
are shown table 1.1, for both regular and conformal time.
One argument for dark matter came from experimental studies of the first Friedmann
equation 1.1.5, measuring both H and ρ. A significant part of the cosmological
community in the 1980s and 90s believed that the total density of the universe
should be equal to the critical density ρc = 3M2

pH
2, or, in other words, that the

curvature κ should be 0. This flatness of the universe was also predicted by the
newly postulated theory of inflation. Therefore, when measurements of visible matter
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w ρ(a) a(t) a(τ)

MD 0 a−3 t2/3 τ2

RD 1
3 a−4 t1/2 τ

Λ −1 a0 eHt −τ−1

Table 1.1: Evolution of various parameters as a function of both conformal and
physical time for a universe dominated by matter (MD), radiation (RD) or a vacuum
energy (Λ).

found a density much smaller than the critical density, it was proposed that dark
matter could explain this discrepancy. Dark matter only turned out not to be enough
however, and it was only when dark energy was discovered that it was found that the
universe is flat after all. In fact, current CMB experiments show that κ is negligible
to very high precision[11], and something that was at first a problem for inflation
now is one of its strongest predictions.

The first clear evidence from cosmology that dark matter had to exist came from
calculations on nucleosynthesis: the formation of the first atomic nuclei in the early
radiation era around three minutes after the big bang. When the nuclear reactions
causing this formation were carefully studied, it was found that the relative abun-
dance of the different nuclei produced in this process like H-1, deuterium, He-3
and He-4 was strongly correlated with the total baryon density in the universe. By
comparing the calculations with the observed deuterium abundance in the universe,
it was already shown in 1972 that only 10% of the critical density could consist of
baryons [12], and the constraints only got stronger as time went on, proving that
baryons only make up a tiny fraction of the universe. The current constraint on
baryon density is about Ωb ' 0.05 [11].

The second piece of evidence came from the temperature fluctuations in the CMB.
Even though it is very homogeneous, there are still tiny temperature fluctuations.
There are peaks and troughs in the power spectrum of these fluctuations, coming
from acoustic density waves in the plasma of the early universe. The amplitude
of these peaks turns out to be directly related to the total baryon density in the
universe and again, measurements of the height of this peak confirmed that most of
the energy in the universe could not be in baryonic matter.
In other words: dark matter could not just consist of dark stars or gas clouds made
out of regular protons and neutrons, it had to be something else completely.
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1.2 The candidates

As it became clear that dark matter was real, the question what it actually was
naturally arose. The gas and dark planets and stars had been ruled out, especially
after it was shown that it could not consist of baryons. The fact that it remains in
spread out halos around galaxies and that it was not detected at all yet meant that
it must interact very weakly with regular matter. A natural guess was then that it
could be some nonbaryonic subatomic particle.

The first subatomic particle suggested as a candidate for dark matter was the neu-
trino. It has all the right properties: it is not a baryon, stable, neutral and interacts
very weakly with other matter. However, simulations of galaxy formation ruled that
dark matter could not consist of a fluid of relativistic particles. As we will see later,
if the universe is dominated by a relativistic fluid the collapse of perturbations into
structure is suppressed, and if dark matter would be relativistic, or ”hot ”, this would
still be the case now, and the large scale structure that is observed could never have
formed. Therefore, dark matter needs to be nonrelativistic, or ”cold”, at late times.

The next main candidate, and still a serious contender, is an undiscovered Weakly
Interacting Massive Particle, or WIMP. These are also neutral, stable particles
that interact very weakly with regular matter, but as opposed to the neutrino they
are taken to have large masses, so that they quickly become nonrelativistic as the
universe expands. An important reason why these were such a popular candidate
was that particles with exactly these properties were predicted by supersymmetric
extensions of the standard model. Supersymmetry predicts that every particle has
a superpartner which is a boson if the particle is a fermion and vice versa, but
otherwise has all the same quantum numbers. This means that there can be a wide
range of neutral, heavy particles in these theories, and constraints coming from the
fact that the proton has not been found to decay generically make the lightest of
these particles stable.
Another factor playing into their popularity is the so-called WIMP miracle. If a
particle that only interacts through the weak force is produced in the early universe,
and then freezes out and goes out of equilibrium through the expansion of the
universe, its predicted abundance is within an order of magnitude of the dark matter
abundance. This generated a lot of excitement, and WIMPs became the leading
candidate for a while.

Thus, the search for these WIMPs begun. This took a number of forms: for instance,
the LHC was not only constructed to find the Higgs boson, but also to look for the
superpartners predicted to be the WIMPS. A more direct way of searching for them
is to put a big vat of xenon under a mountain and wait until one of them hits a
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(a) Recent data from the WIMP search by the Xenon1t collaboration
[13]. All WIMP-neutron cross-sections above the lines are excluded by the
respective experiments. It can be seen the constraints have improved by
orders of magnitude in the last years.

(b) In this figure, the cross-section of WIMPs predicted by a sampling
of supersymmetric models coming from string theory are compared with
results from the LHC and Xenon1T. It can be seen that most models are
excluded, and that the ones that are still allowed can be ruled out by the
next upgrade of the Xenon1T experiment. Taken from [14].

Figure 1.3
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nucleus, causing scintillations that can be detected.

After twenty years of searching, there are still no signs of WIMPs today. This does
not mean that they are ruled out as dark matter candidates, but the situation is
becoming slightly worrying. The models that produce the WIMP miracle have been
ruled out, and the same goes for many others. In figure 1.3 the latest results of the
Xenon1t collaboration are shown, together with a number of models for WIMPs
where the coupling constants have been sampled from supersymmetric theories
coming from certain compactifications in string theory. These are by no means all
possible models, but the picture is clear: there is no evidence yet, and the available
parameter space is shrinking rapidly through the LHC and Xenon1T constraints.

Another option for subatomic particles making up dark matter are light scalars,
of which the axion is the most prominent candidate. Axions are predicted by the
Peccei-Quinn mechanism, which is proposed as the solution to the strong CP-problem,
explaining why the strong force only violates CP-symmetry very weakly. As opposed
to the WIMPs, they are very light, neutral particles, but they can form through
mechanisms that ensure they become nonrelativistic early on [15]. Similarly as for
the WIMPs, experiments are being conducted to look for them and they have not
yet been found, but they are certainly not ruled out yet [1].

Other than having dark matter be some new particle, another possibility is that
the measured effects can be explained by a modification of the laws of gravity. In
this proposal, Newton’s second law is not valid any more at very small accelerations,
but gets modified such that instead of F = ma, we have F = ma2/a0. In this case
of modified Newtonian dynamics (MOND), the flattening of the rotation curves
arises naturally, without assuming any dark matter halo at all. When more general
galactic dynamics like the Tully-Fisher relation between the luminosity and rotational
velocity of spiral galaxies also turned out to be explained by this framework, a lot of
enthusiasm was generated. However, MOND turns our not to fare too well at larger
sizes than galaxies: the dynamics of clusters still require some form of other dark
matter, and it also has a hard time explaining the cosmological evidence. It is also
rather nontrivial, yet claimed to be possible, to write down a theory that has this
type of behaviour while still being consistent with the measured expansion of the
universe and solar system tests of gravity.

Another blow to MOND, or any theory hoping to explain dark matter as some
non-material effect, was the observation of the bullet cluster in 2006. This consists
of two clusters of galaxies, shown in figure 1.4, that have just collided and passed
though each other. Most of the visible matter in the system is in clouds of gas that,
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Figure 1.4: The bullet cluster, in which dark matter found through lensing is shown
in purple and regular matter found by x-ray observations shown in pink. We see the
two separate right in front of our eyes [16].
Figure credit: X-ray: NASA/CXC/CfA/ M.Markevitch et al.; Lensing Map:
NASA/STScI; ESO WFI; Magellan/U.Arizona/ D.Clowe et al. Optical image:
NASA/STScI; Magellan/U.Arizona/D.Clowe et al.

once they collided, interacted significantly with each other and slowed each other
down. The gas got heated up and, as a result, emitted x-rays that were measured
and shown in pink in the figure. It was also studied where most of the mass in
this system was through lensing, and it turned out that most of the mass, shown in
purple, had not undergone any slowing and passed right through the other cluster.
As most of the visible mass of the system is in the clouds, this must be caused by
dark matter, which does not get slowed down by electromagnetic interactions. We
see the separation between dark and regular matter happening right in front of our
eyes, and this is very hard for a theory like MOND to explain, and at the same time
arguably the strongest proof of the existence of dark matter yet.
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1.3 Primordial Black Holes as a solution

The candidate for dark matter we are concerned with in this thesis are primordial
black holes (PBHs). These are black holes that form during the first second of the
universe, as opposed to the ”regular” black holes which form from supernovae at the
end of the life of massive stars and can only occur a few hundred millions years into
the universe at the earliest.
During this first second, the density of the universe is extremely high, and large
enough fluctuations in it can cause a region to stop expanding and instead col-
lapse gravitationally and form a black hole. This was first realised by Novikov and
Zel’dovich in the 1960s, even though they did not use the term black hole yet[4].
The idea was further worked out on by Hawking and his PhD student Carr, who
produced a number of papers on them in the early 1970s, working out their basic
properties [3, 17, 18].

For instance, it was realised that they could form with any mass depending on the
size of the overdensity that collapsed, including masses much smaller than those of
black holes forming during stellar collapse. This meant that the Hawking radiation
which was being proposed at the same time might actually be measurable if these
very tiny black holes existed, so it should come as no surprise that Hawking in
particular was very interested. Furthermore, since black holes formed in supernovae
can only be on the order of a solar mass at the lightest [6], any measurement of
a lighter black hole will mean a discovery of a PBH, as no other mechanisms are
known for their production.

It was also realised that they mostly form at the same scale as the Hubble radius,
meaning that the lightest PBHs form first, and the heaviest form latest. This is
because the Jeans length, the minimal length for an overdensity to collapse instead
of oscillate and disperse, is of the order of the Hubble radius in the radiation era, and
hence only regions of this size can collapse [17]1. Another key observation, already
made by Novikov and Zel’dovich was that PBHs have to be very rare during the
radiation era when they form. The energy in the radiation dominated fluid decays
as a−4 as the universe expands, because it gets both diluted and redshifted. The
PBHs however only dilute, and hence the energy density in them only decays as a−3.
This means that the current density of PBHs that form at time t, ΩPBH, is related
to the density at formation, β, by:[2]

1If a sufficiently large overdensity of a super-Hubble size forms, a primordial black hole of
super-Hubble size would form. Such a black hole would not collapse, but instead it would encompass
the whole Universe, inside which the expansion would continue. Since large super-Hubble regions
are required for the formation of such black holes, we expect that their formation will be suppressed
with respect to the sub-Hubble ones. Nevertheless, their formation probability will be non-vanishing.
We leave a more detailed estimate for the probability of their formation for future work.
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ΩPBH ' βΩr(1 + z) ∼ 106β

(
t

1s

)−1/2

(1.3.1)

where z is the redshift at which the PBHs form, and Ωr is the density of radiation
in the universe now. This means even a small fraction of PBHs at formation can
have a significant density today, and because we know that when integrated over all
masses ΩPBH ≤ ΩDM , this places stringent constraints on β.

1.4 Current constraints on PBHs

The idea that dark matter might consist of compact, dark objects has been considered
for a long time. These Massive Compact Halo Objects (MACHOs) might seem much
more natural candidates for dark matter than WIMPs , but early observations were
not kind to them. The main way to measure the abundance of MACHOs is to look
at how they bend the light from stars, quasars or gamma ray bursts passing through
the halo of the Milky Way by gravitational lensing. Starting in the late 1980s, there
have been many surveys looking for this, and while they observed a small number of
events it was too little for all the dark matter in the halo to consist of MACHOs of
a broad mass range[19]. As it became accepted that dark matter was nonbaryonic,
attention shifted towards unknown elementary particles as candidates.

However, with the lack of success these particle models have had in the past 20 years,
the constraints on the PBH abundance from lensing do not look that bad at all.
Because PBHs form in the first second of the universe, they are already nonbaryonic
when nucleosynthesis happens three minutes in, and therefore avoid this constraint
where the other MACHOs fail. A recent summary of the constraints on the current
abundance of PBHs is shown in figure 1.5.

From this figure it seems that there are no windows left in which PBHs of a single
mass can make up all of dark matter. However, whereas the constraints coming
from lensing, the large scale structure and the photon background are seen as strong,
the indirect and accretion constraints are a lot less certain. For instance, the NS
constraint at around 1020 to 1024 g comes from the fact that light PBHs will get
captured by neutron stars and quickly swallow them. Then, the observation of old
enough neutron stars places constraints on the PBH fraction. These are however
very dependent on the dark matter density at the centres of galaxies where these
neutron stars reside. This value is not very well known, and the one used in the
original study has been disputed[2]. Also, this picture is only for monochromatic
distributions, which is where dark matter is made of PBHs with only a single mass.
For broader distributions, it is possible for wider regions where the constraints are
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Figure 1.5: The current constraints on the fraction of dark matter that can consist
of PBHs with mass M, for a monochromatic distribution. Coloured regions are
excluded, with the blue regions being excluded by lensing surveys, the red by indirect
observations, the yellow by accretion effects on the CMB, the green by the distribution
of the large scale structure and the pink by the non-observation of hawking radiation
of PBHs in the extragalactic photon background. Taken from [2].

weak to allow enough PBHs.

In the end, it turns out there are still three windows in which PBHs can make up all
of dark matter [20]. The first are subatomic PBHs, with a mass of around 1017g,
and an event horizon of around 10−11cm. Furthermore, there are sublunar black
holes with a mass of less than 1024g, a range that might be open up to 1020g if the
neutron star constraints are not to be trusted. This is slightly less than the mass of
the moon, hence the name. Lastly, there are intermediate black holes with masses of
1− 103M�. These could also make up the black holes found colliding by LIGO.

Up to now we have only considered PBHs as the solution to the dark matter problem.
However, this is not the only reason why they are interesting. They might also
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explain where the black holes we see colliding in LIGO come from, or might be the
seeds of the supermassive black holes in the centres of galaxies, explaining their huge
mass since PBHs can form with almost any mass.

There is one further observation that is relevant to PBHs, namely that all pertur-
bations that we know of in the early universe are very small. The temperature
fluctuations in the CMB are of the order 10−5, and the distribution of galaxy clusters
is extremely homogeneous on very large scales. For a PBH to form, we need large
fluctuations, so this poses a problem. For any significant formation to occur, some
kind of enhancement of the fluctuations on small scales is necessary. It is simply
not known how homogeneous the early universe was at very small scales, so this
enhancement is not excluded, but there is also certainly no evidence for it. How
large exactly these fluctuations have to be is a question we will spend most of this
thesis answering.

1.4.1 SVT decomposition

To look at what kind of fluctuations are needed to form PBHs, we first need to know
how to describe fluctuations in the early universe in general. The main quantities of
interest describing the state of the universe are the metric and stress-energy tensor.
As mentioned before, for a PBH to form we need a region that has a large density
fluctuation, and for this from the Einstein equation that relates density to curvature,
we can already guess we will need significant curvature fluctuations. Taking into
account the symmetry of the metric and stress-energy tensor we can write them in a
general perturbed form as:

ds2 = −(1 + 2Φ)dt2 + 2a(t)Bidx
idt+ a2(t) [(1− 2Ψ)δij + 2Eij ] dxidxj (1.4.1)

and

T 0
0 = −(ρ+ δρ)

T 0
i = (ρ+ p)avi

T i0 = −(ρ+ p)
(
vi −Bi

)
/a

T ij = δij(p+ δp) + Σi
j

, (1.4.2)

where ρ̄ and p̄ are the background density and pressure. There are a lot of different
perturbations in these equations: the potentials Ψ and Φ, a spatial vector pertur-
bation Bi and a symmetric 3-tensor Eij are the metric perturbations, and in the
stress-energy tensor we have the density perturbation δρ, pressure perturbation δp,
momentum density perturbation vi and anisotropic stress Σi

j : 10 degrees of freedom
in both the metric and stress-energy tensor. Fortunately, we do not have to keep
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track of all these quantities, in fact, it turns out we only have to focus our attention
on one.

First of all, we see all sorts of different perturbations entering as scalars, spatial
vectors or spatial 2-tensors. For instance, the metric perturbation Ψ is a scalar, and
Bi is a 3-vector. We can fully decompose the metric perturbations into 4 scalars, 2
transverse vectors and a transverse and traceless tensor.

Then by studying the equations of motion it turns out the scalars, vectors and tensors
do not mix at linear order [21]. Therefore, we can treat all of these perturbations
separately. We are only interested in the scalars, since the density perturbation
is a scalar and is hence only sourced by the vectors and tensors at second order.
The vector modes also decay quickly with the expansion of the universe and are not
produced by inflation.

Another great simplification comes from the fact that in general relativity, we are
free to choose our coordinate system however we like, and we should still able to
describe the universe with it. Choosing coordinates essentially is making the choice
of a slicing of spacetime: we choose a certain stack of 3d-hypersurfaces and define
these as having a given time. They should be defined such that the worldline of any
particle travelling through spacetime threads all of these constant time hypersurfaces,
but for the rest we are completely free to pick them however we like.

This choice has a large influence on all of the perturbations we just defined. Consider
for instance an unperturbed homogeneous universe, with a density ρ(t). If we now
change our time coordinate in a space-dependent fashion as t′ = t + δt(~x, t), the
density will no longer be constant for a given time. Perturbations appear, even
though all we have done is change coordinates, which we are free to do; the physics
should still describe a homogeneous universe. This goes to show that not all of
these perturbations are physical. In fact, what we will turn out to be able to do is
approximately the opposite. By choosing our coordinates in a smart way and under
some assumptions, we will be able to set all but one of the scalar perturbations to
zero, leaving us with only one function sourcing the density contrast and the PBH
formation. This will be worked out in detail in chapter two. For now, we just assume
there is only one scalar perturbation to deal with, given by ζ, which is a metric
perturbation appearing as:

ds2 = −dt2 + a(t)2e2ζ(t,~x)d~x2. (1.4.3)

From this, it can be seen that ζ is can be interpreted as a local volume perturbation:
taking the determinant of the metric yields −a6e6ζ(~x,t), so the perturbation of the
volume element d4x

√
−g at a given point goes like e3ζ(~x,t). Furthermore, the 3D

Ricci scalar on the constant time hypersurfaces is given by 4∇
2

a2
ζ, so ζ can also be
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interpreted as a spatial curvature perturbation. Applying the Einstein equations to
this metric, we find the following equation, relating ζ to the density perturbation
δρ(~x, t) = ρ(~x, t)− ρ̄(t):

δρ

ρb
(r, t) ' − 1

a2H2

8

9
e−5ζ(r)/2∇2eζ(r)/2 (1.4.4)

where ρb is the background energy density, and it must be noted that we have
assumed perturbations much larger than the Hubble radius, which is reasonable as
we will see in the next chapter [22]. Because of homogeneity, both ζ and δρ only
depend on the radial coordinate. Hence, we have found that ζ sources the density
contrast δρ, which again sources the PBH formation, as overdensities collapse to
form them. Expanding this equation to first order in ζ we find the following:

δρ

ρb
' − 1

a2H2

4

9
∇2ζ. (1.4.5)

This can be thought of as a relativistic version of the Poisson equation, and from
this we can see that ζ can also be thought of as a gravitational potential.

By definition, ζ has zero expectation value, so the main measure of the fluctuations
is the correlation function 〈ζ(~x, t)ζ∗(~y, t)〉. Assuming homogeneity, this will only
depend on r = |~x − ~y|. We will mostly use this in Fourier space, so it is useful to
define the dimensionless power spectrum as:

〈ζ(~x, t)ζ∗(~y, t)〉 =

∫ ∞
0

dk

k
Pζ(k, t)

sin(kr)

kr
. (1.4.6)

With this definition, the power spectrum is given in terms of the Fourier modes of ζ
as:

Pζ(k, t) =
k3

2π2
|ζ(k, t)|2 (1.4.7)

where because of the homogeneity of the theory all quantities are a function of the
radial coördinate only. This Fourier transform for a spherical symmetric system is
explicitly worked out in section 3.6.

1.4.2 Naive criteria for PBH formation

In this section, we sketch the usual calculation of the primordial black hole fraction
in the universe [23, 24, 25, 26, 27]. The main quantity describing this, which we will
spend a lot of effort calculating in this thesis is β(M), defined as the fraction of the
energy of the universe that is in PBHs of mass M at the moment they form:
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β(M) =
ρPBH(M)

ρtot
|t=tformation . (1.4.8)

Usually, it is assumed that a PBH forms if either ζ or the overdensity δρ/ρ is bigger
than some threshold. The input for these critical values has mostly come from
simulations of PBH formation, and the correct way of stating the criterion is still a
highly contentious topic. Most commonly, a critical overdensity δρc is used in the
literature, but this calculation is also sometimes presented with a ζc, which we will
follow here for ease of connecting to the previous and later parts. The fraction of
the universe in PBHs of mass M is then equal to the probability that ζ is greater
than ζc in a region that, if it collapses, forms a PBH with mass M.

For ζ then a Gaussian probability distribution is assumed. The variance is given by
the power spectrum, yielding:

P (ζ) =
1√

2πPζ
e
− ζ2

2Pζ . (1.4.9)

In general though, the problem is that both the overdensity and curvature perturba-
tion are local quantities, but the mass of the PBH that forms depends on the size
of the collapsing region. To account for this, the perturbation is smoothed below a
certain scale R. What this means in practice is that instead of ζ(~x, t), the variable
used is:

ζ(R, ~x, t) =
1

V

∫
d~x′ζ(~x′, t)W (|~x− ~x′|/R) (1.4.10)

where W is called the window function, which implements an averaging over per-
turbations on all scales smaller than R. V is a normalization factor determined by
the volume of the window function. This function is nonunique: Gaussians and step
functions have both been considered in the literature, and give significantly different
answers. The smoothened power spectrum is then given by:

σ2(R) =

∫ ∞
0

W 2(kR)Pζ(k). (1.4.11)

Then, the probability for a region of physical radius R to collapse and form a PBH
is given by:

P (R) =

∫ ∞
ζc

P (ζ)dζ =

∫ ∞
ζc

√
1

2πPζ(R)
e
− ζ(R)2

2Pζ(R) (1.4.12)

Now as PBHs form at horizon crossing, the mass can be related to the radius of the
collapsing region. This will be worked out in detail later, for now the point is that
we can find a function R(M), allowing us to solve the above integral and get:
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β(M) =
1

2
erfc(

ζc
2Pζ(R(M))

) (1.4.13)

Where erfc(x) is the complimentary error function, defined as

erfc(x) =
2√
π

∫ ∞
x

dte−t
2
. (1.4.14)

This is the expression for β often seen in literature, but there are some problems
with it. First of all, there is no unique way to do the smoothing, and different ways
produce different results. Secondly, this calculation feels a bit naive: in the early
universe, ζ(~x, t) is a field, in fact during inflation even a quantum field. In a full
treatment of these fluctuations an expression like

∫
dζ just does not make sense: the

integral should be replaced by a path integral over all profiles for ζ. Furthermore, in
this framework it is not completely clear which mass a PBH will eventually have if
the perturbation is great enough to form a PBH on multiple scales.

In this thesis, we will try to improve on this calculation by doing it from first
principles, taking the field-theory nature of it into account and using a different
criterion for PBH formation, based on recent numerical studies.

1.4.3 Muscos criteria

Last year, Ilja Musco published two papers, one together with Cristiano Germani,
in which the precise criteria for PBH formation were carefully determined using
numerical simulations of PBH formation, with the aim of clearing up the large
amount of confusion that had arose because many studies used different methods,
approximations and implementations [5, 22]. We will use their results as the criteria
for PBH formation, although it seems unlikely that this will end all discussion
surrounding the topic. As it turns out, the right variable to use is the compaction
function C, defined by:

C(R, t) ≡ 2GδM(R, t)

R(R, t)
. (1.4.15)

This is a nonlocal quantity, defined for a region of radius R at time t, with R(r, t) =
areζ(r,t) the physical radius of the sphere. δM(R, t) is the excess mass in the region,
defined as:

δM(R, t) = 4π

∫ R

0
dR′δρ(R′)R′2dR′ (1.4.16)

where δρ is the perturbation of the energy density.
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A PBH will then form from a region of radius R if:

- C(R, t) > Cc
- C(R, t) is at its maximum , so ∂RC(R, t) = 0.

From numerical simulations it was found that the actual value of Cc depends slightly
on the shape of the overdensity. However, this dependence is greatest for shapes
that have very steep density gradients like a step function overdensity profile. We
expect these perturbations to be much rarer than smoother profiles, and since Cc
is greater for them anyway we will ignore them and take the representative value
Cc = 0.45. For a full treatment however, we would like to take the shape-dependence
into account and this is certainly interesting for future work.

Furthermore, in Musco’s papers the first criterion is not only expressed in terms of
C, but also in terms of another nonlocal perturbation measure δ. They are equal at
the maximum of C in the long wavelength approximation, and since PBH formation
happens precisely at this scale the two ways of expressing the criterion are equivalent.

We note that the second criterion tells us the scale at which a given perturbation
collapses to a PBH, so the radius of the region that collapses is always well-defined
by this.
For implementing these criteria, we need to know how to determine C from the
perturbations in the early universe, and what kind of probability distribution results
from this. To do this, in the next chapter we will study the primordial perturbations
and what is commonly accepted to be their source, inflation, so that in the end we
can relate C to these quantities and determine the amount of PBHs that form from
any theory of the perturbations in the early universe.
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Chapter 2

Cosmological perturbation
theory

In this chapter we study the source of the fluctuations in the early universe that seed
the PBHs in detail, and in particular we will look at inflation, the most accepted
theory of how these came to be. It was introduced in the 1980s to solve a number
of problems with the traditional hot big bang theory [28, 29, 30], and has been
consistent with experiments ever since. In the first parts of this chapter we will
follow [21] closely, but use the notation of [31] and [32].

2.1 Inflation

2.1.1 Why inflation

The first problem solved by inflation is the horizon problem. In our universe we
have the comoving horizon, which is the maximal distance a light ray could have
travelled since the big bang. This is also exactly the amount of conformal time that
has passed since the beginning of the universe. Two points separated by more than
it can never have been in causal contact, since they have had no time to exchange
information. It is given by:

τ =

∫ t

0

dt′

a(t′)
=

∫ a

0
d ln(a)

1

aH
. (2.1.1)

Here, 1
aH is a very important quantity called the comoving Hubble radius, which

plays a large role in inflation. Even though it is a comoving quantity, we will also
often just call it the Hubble radius, but note that it is not a physical, but a coordinate
distance. By the Friedmann equations its evolution is given by:

1

aH
= H−1

0 a
1
2

(1+3w). (2.1.2)
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For a universe dominated by a component with ω > −1
3 , the comoving Hubble radius

only increases with time. This means the integral in equation 2.1.1 is also increasing,
so the horizon also increases. In other words, the size of patches of the universe that
are in causal contact with each other are always increasing. As for both a radiation
and matter dominated one has ω > −1

3 , this is the case for the standard hot big
bang model. This poses a problem when looking at the CMB however.

The CMB is incredibly homogeneous: the temperature fluctuations are only of the
order 10−5. It was emitted 380.00 years after the big bang, so the particle horizon
was a lot smaller than today. This means that perturbations on the largest scales
we see in the CMB today, which stretch across the entire visible universe, were far
outside the horizon when the CMB was emitted. However, they still have the same
temperature despite never having been in causal contact with each other. There
are even significant correlations between the temperature fluctuations on scales that
were far outside of the horizon at the time of emission. The question of how this is
possible is called the horizon problem.

Another reason to introduce inflation is the flatness problem. As mentioned before,
recent CMB and large scale structure measurements have found the global curvature
of the universe, κ, to be very small. This poses a problem because the amount of
energy in the curvature of the universe, Ωκ, only decays as a−2 when the universe
expands. In particular, it behaves like 1

a2H2 , so it depends on the comoving Hubble
radius. Cold matter and radiation scale as a−3 and a−4 respectively, so they decay
much faster. This means that if Ωκ is so small today, it must have been even smaller
in the early universe. The flatness of the universe today requires an extremely
fine-tuned flatness earlier, and there is no intrinsic reason why the curvature should
be so small.

It turns out a solution to both of these problems is a period of accelerated expansion
before the beginning of the radiation era, which is called inflation. During such a
period, the comoving Hubble radius does not increase, but decreases with time. This
means that two seemingly causally disconnected patches of the CMB were actually
in causal contact before inflation, and could equilibrate, after which the Hubble
radius decreased during inflation, making it seem as if they could never have been in
contact. Put differently, the comoving horizon is now much larger than the comoving
Hubble radius after inflation because the integral in 2.1.1 has a large contribution
from the early times when the Hubble radius was much bigger. This means the
horizon problem is solved. The flatness problem is also solved by such a period,
because if the Hubble radius decreases, the curvature contribution to the universe
also decreases. Hence, a period inflation automatically drives the universe towards
the observed flatness.
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Inflation does not only solve these problems, but also gives us the source of the
fluctuations on all scales in the universe, because of the period of rapid, accelerated
expansion. As we will see, quantum fluctuations get blown up to huge scales during
inflation and become the seeds of all the structure we see today. These also seed the
overdensities that might collapse to form PBHs, so it is of great interest to us to
investigate them.

2.1.2 Single scalar field inflation

Then, the question is what could cause such a period of rapid expansion. The
condition of having an accelerated expansion is equivalent to the universe being
dominated by a fluid with equation of state ω < −1

3 , as can be seen from the second
Friedmann equation 1.1.6.

The most common way that this behaviour is produced is by having the universe be
dominated by the potential energy of a single scalar field φ, the inflaton. The action
describing this theory is:

S =

∫
d4x
√
−g
[

1

2
R+

1

2
gµν∂µφ∂νφ− V (φ)

]
. (2.1.3)

Assuming a homogeneous FLRW background such that φ = φ(t), the equation of
motion for φ becomes:

φ̈+ 3Hφ̇+
dV

dφ
= 0. (2.1.4)

Calculating the energy-momentum tensor from this action yields that it takes a
perfect fluid form with: [21]

ωφ =
φ̇2 − 2V (φ)

φ̇2 + 2V (φ)
(2.1.5)

from which it can be seen that for a large enough potential V (φ), ω can actually be
negative and small enough for accelerated expansion.

The potential that does the job is shown in figure 2.1. The inflaton starts off at high
values of the potential, and then rolls down the potential slow enough such that the
potential energy stays dominant over the kinetic energy for a long enough time to
solve the problems, until it eventually settles down at the minimum.
By the second Friedmann equation 1.1.6, the condition that ä is positive is equivalent
to having that

3

2
(ωφ + 1) < 1 (2.1.6)
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Figure 2.1: The potential for slow roll inflation: the inflaton starts on the right, and
rolls down the potential slow enough such that the potential energy keeps dominating.
Figure from [21].

By the expression for ωφ and the second Friedmann equation this can be expressed in
terms of φ̇ and Ḣ, namely in terms of the first slow roll parameter, which is defined
as:

ε ≡ − Ḣ

H2
=

φ̇2

2H2
. (2.1.7)

The condition 2.1.6 then becomes ε < 1. To remain in this state long enough, the
acceleration of the field must also be small. This is determined by the smallness of
the second slow roll parameter, η, defined by:

η ≡ ε̇

εH
= − φ̈

Hφ̇
. (2.1.8)

|η| < 1 ensures that ε does not change rapidly, which could end the domination of
potential energy. If both ε and η are small, slow roll inflation takes place, and the
accelerated expansion of the universe can be sustained for a long enough time to
solve the flatness and horizon problems. As φ̇ is very small, we have ω ≈ −1, and
this means the scale factor grows exponentially, meaning H remains constant. This is
all approximate, as ε and H both slowly change as the inflaton rolls down the potential.

The above discussion is very phenomenological: we simply assumed the existence of
a scalar field with nice properties, and gave no further motivation. There are many
different potentials that can be chosen to fulfil the slow roll conditions, and there
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are even more alternative models of inflation with multiple fields, modifications to
gravity and still there are many more models. Although the concept of inflation in
general does make predictions that can be tested, it is very hard to distinguish these
different models, and this is in fact one of the reasons why we are so interested in
PBHs: their formation depends on the small scale predictions of these models that
can not be conceivably tested any other way.

2.2 Cosmological perturbations for slow roll inflation

In the next sections, we will calculate what the fluctuations predicted by single field,
slow roll inflation are. For this, we first need to study cosmological perturbations
more carefully than before to see how to describe these fluctuations, also for other
theories of inflation.
We look at a scalar field in a FLRW background, and study small perturbations
around the homogeneous solution. This means we have:

φ(~x, t) = φ̄(t) + δφ(~x, t), (2.2.1)

gµν(~x, t) = ḡµν(t) + δgµν(~x, t) (2.2.2)

and

Tµν(~x, t) = T̄µν(t) + δTµν(~x, t). (2.2.3)

As discussed in chapter 1, we can limit ourselves to the scalar perturbations for
looking at PBH formation. The scalar sector of the perturbed metric is given by:[21]

ds2 = −(1 + 2Φ)dt2 + 2a(t)∂iBdxidt+ a2(t) [(1− 2Ψ)δij + 2∂i∂jE] dxidxj (2.2.4)

where Ψ, Φ, B and E are the four scalar degrees of freedom.
The perturbed stress-energy tensor is given by:

T 0
0 = −(ρ+ δρ)

T 0
i = (ρ+ p)avi

T i0 = −(ρ+ p)
(
vi −Bi

)
/a

T ij = δij(p+ δp) + Σi
j

(2.2.5)

with δρ and δp the density and pressure perturbation, and δq, which is defined such
that ∂iδq = vi, is the momentum density.
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As discussed in chapter 1, we have the freedom to choose any coordinate system
or gauge we want in general relativity. The results we get should not depend on
our choice, but the perturbations in the metric and stress-energy tensor can be
gauge-dependent, like the density perturbation we saw before. This can of course be
resolved by fixing a gauge immediately, but it then becomes very hard to compare
calculations done in different gauges, and to relate these perturbations to observables.
Fortunately, it turns out we can define a scalar perturbation that is gauge invariant
and can be related directly to observables in linear perturbation theory. Because
it is gauge invariant, we get the same results for it no matter which gauge we use
to calculate it, and therefore predictions for the observables also do not depend on
the gauge, so we lose the ambiguity. To define this scalar, we have to study how
the perturbations change under gauge transformations. We consider an infinitesimal
gauge or coordinate transformation:

t→ t+ α

xi → xi + δij∂jβ.
(2.2.6)

Applying this transformation to the metric yields that the scalar metric variables
transform as:

Φ → Φ− α̇
B → B + a−1α− aβ̇
E → E − β
Ψ → Ψ +Hα

(2.2.7)

and the scalar matter perturbations δρ, δp and δq transform as:

δρ → δρ− ρ̇α
δp → δρ− ṗα
δq → δq + (ρ̄+ p̄)α.

(2.2.8)

From these, we can construct a variable that is a gauge invariant combination of
matter and metric perturbations, namely the comoving curvature perturbation:

ζ = Ψ− H

ρ+ p
δq. (2.2.9)

From the transformations of Ψ and δq it is easy to see that this is invariant under
gauge transformations. Another very important property of ζ is that for adiabatic
perturbations it follows from Einstein’s equations that ζ is constant on super-Hubble
scales. Slow roll inflation produces only adiabatic perturbations, so outside of the
Hubble radius, ζ̇ = 0. This is the reason we are able to use a formula only valid far
outside of the Hubble radius to describe what happens as perturbations cross it, and
also the key to understanding the power spectrum predicted by inflation.
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Perturbations on a given comoving scale were inside the comoving Hubble radius
before inflation, then at some point during inflation when is was shrinking, they
crossed it. They spent some time outside of the Hubble radius, until they re-entered
it during the matter or radiation dominated era as it was growing again. Therefore,
the perturbations that went on to source structure formation in the early universe
had not changed since they exited the horizon during inflation. In other words, the
initial conditions for the subhorizon evolution of the perturbations in our universe
are set by the value they had when they first exited the horizon, and because their
physical scale was much smaller at the time, these perturbations were given by the
quantum fluctuations in the field.
A schematic of this process can be seen in figure 2.2

Figure 2.2: Schematic of the evolution of perturbations in the inflationary universe,
Quantum fluctuations at early times exit the Hubble radius and remain constant
afterwards, while the scale they are at gets stretched because of the expansion of the
universe. After they re-enter in the radiation era, they source the fluctuations in the
universe on all scales. Figure from [21].

2.3 The Mukhanov action

To calculate what the quantum fluctuations in ζ were like, we need to derive an
action principle for it first. The gauge choice we will make to do this and for the rest
of this thesis is to set all perturbations in the inflaton to 0, so δφ = 0. Because the
inflaton, which dominates the universe is unperturbed, we have δq = 0. Furthermore,
we use the rest of our gauge freedom to set E = 0. This gauge is called the comoving
gauge, and it is convenient for us because we want to track the perturbations through
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inflation into the radiation era, when the inflaton is not around any more. If we would
not gauge this degree of freedom away, we would need to translate the perturbations
in it to those of the radiation fluid density, and it is unclear how to do so.

The action for the comoving curvature perturbation is most easily derived in the
ADM formalism. As was mentioned before, part of choosing a gauge is specifying
a certain slicing of spacetime into constant time hypersurfaces. The idea behind
this formalism is that it allows us to split the information of the metric into that of
the spatial metric on the hypersurfaces and into constraint fields determining the
relation between them. The metric is therefore written as [33]:

ds2 = −N2dt2 + gij
(
dxi +N idt

) (
dxj +N jdt

)
. (2.3.1)

Here gij is the metric on a spatial slice, and the fields N(~x) and Ni(~x) are called the
lapse and shift function. These will turn out to be constraint fields with no dynamics
on their own, and they relate the spatial metrics on different slices with each other:
N determines how quickly the time evolves, and the vector Ni determines how much
the coordinates shift when going to a different slice.

In the comoving gauge, we will take gij = a2(t)e2ζδij . Note that this is only to first
order equivalent to the definition of the perturbations in equation 2.2.7, but since
we only calculate the action to second order only this is no problem, and with this
form the calculations become a lot easier. Because we have gauged away all of the
perturbations in the inflaton, we only need to look at the perturbed action for the
metric to determine the dynamics. We can then calculate the action for ζ starting
from the Einstein-Hilbert action:

S =
M2
p

2

∫
d4x
√
−gR. (2.3.2)

We can then substitute the ADM form of the metric into this action and expand
up to second order in ζ. This yields an action only in terms of ζ, N and Ni. We
can then solve the equations of motions given by this action for the lapse and shift,
and plug the solutions back into the action. Then, after quite some more work one
arrives at the following:

S =
M2
p

2

∫
d4xa32ε

[
ζ̇2 − a−2 (∂iζ)2

]
. (2.3.3)

This was first derived by Mukhanov and others in the 90s [34]. Note that the first

slow roll parameter ε = − Ḣ
H2 shows up in this action, even though we have made no

assumption of slow roll anywhere. To quantize this action, it is easiest to go to a
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variable that will canonically normalise it, so that there is no time-dependent term
in front of the kinetic term. This will put it in the form of a harmonic oscillator
from which we know how to proceed. The right variable is called the Mukhanov
variable, and it is defined by:

v ≡ zζ (2.3.4)

where

z2 ≡ a2 φ̇
2

H2
= 2a2ε. (2.3.5)

Now if we also switch to conformal time, we can write the action as:

S(2) =
M2
p

2

∫
dτd3x

[(
v′
)2

+ (∂iv)2 +
z′′

z
v2

]
. (2.3.6)

This can be seen as the action of a simple harmonic oscillator with a time-dependent
frequency z′′/z.
We then expand v into Fourier modes:

v(~x, τ) =

∫
d3k

2π3
v~k(τ)ei

~k·~x. (2.3.7)

Because of the homogeneity, the mode functions only depend on the norm of ~k,
denoted as k. By varying the action, the equation of motion for the modes vk then
becomes:

v′′k +

(
k2 − z′′

z

)
vk = 0. (2.3.8)

This is known as the Mukhanov-Sasaki equation. To derive the evolution of the
perturbation, this equation needs to be solved, which is quite hard in general because
z′′/z can be a complicated function of time. However, we will see that for certain
backgrounds it is possible.

2.4 Quantization of cosmological perturbations

Next, we quantize this action by promoting v to an operator. Its conjugate momentum
is then v′, and hence the canonical commutation relations are:

[v̂(~x, τ), v̂′(~y, τ)] = iδ(3)(~x− ~y). (2.4.1)

We want to look at the Fourier modes, which we decompose into creation and
annihilation operators by:

v̂~k = vk(τ)â~k + v∗k(τ)â†~k
(2.4.2)
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which we would like to satisfy the canonical commutation relations:[
â~k, â

†
~k′

]
= (2π)3δ3

(
~k − ~k′

)
. (2.4.3)

To satisfy both this and the canonical commutation relations for v and its momentum,
one can show that we need Wrongskian of the mode functions vk to be i:

W [vk(τ), v∗k(τ)] = v∗
′
k vk − v∗kv′k = i (2.4.4)

This places one constraint on the mode functions v we will need later.

We will now solve the Mukhanov-Sasaki equation 2.3.8 in a de Sitter background
(ω = −1, H constant) to find the power spectrum. Even though slow roll inflation
is not perfectly described by de Sitter because H is not actually constant, and a
constant H would mean ε = 0, the result can still be used to find the power spectrum.
For this, we take ε to be non-zero despite H being constant. The result found by
using this method agrees with the correct answer found by solving equation 2.3.8 for
the actual, almost de Sitter background to first order in the slow roll paramters[32],
so for simplicity we will only consider a de Sitter background. For ω = −1 we have
a ∝ − 1

τ , so we get:

z′′

z
=
a′′

a
=

2

τ2
. (2.4.5)

This means the equation for the mode functions we need to solve is:

v′′k +

(
k2 − 2

τ2

)
vk = 0. (2.4.6)

The solutions to this equation are given by:

vk(τ) = α(k)
e−ikτ√

2k

(
1− i

kτ

)
+ β(k)

eikτ√
2k

(
1 +

i

kτ

)
(2.4.7)

where α(k) and β(k) are free complex parameters. We see that the mode functions
are not unique: there are four undetermined real numbers. The requirement that
the Wrongskian is i sets |α(k)|2 − |β(k)|2 = 1, which fixes one of them. One more
can be seen as an overall phase, which does not contribute to the power spectrum
which goes like |v(k, τ)|2. This leaves two arbitrary, unspecified real numbers.

The freedom to choose these numbers is related to the fact that in curved spacetime,
the vacuum is not uniquely defined. Making a choice for these therefore comes down
to making a choice for a specific vacuum of the theory. One very common choice
is to require that an observer far in the past, when all of the relevant modes were
deep inside the horizon would see the vacuum of Minkowski space. Note that we
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are doing this calculation in de Sitter space, so inflation has no beginning and this
concept makes sense. If this observer sees no expansion, the equation for the modes
becomes v′′k + k2vk = 0. Hence, we can impose the solution to this as a boundary
condition at τ = −∞, so we require:

lim
τ→−∞

vk(τ) =
e−ikτ√

2k
. (2.4.8)

Together with the Wrongskian condition this implies that α(k) = 1 and β(k) = 0.
This choice of vacuum is called the Bunch-Davies vacuum, and is commonly used
in the literature. There is a flaw in the reasoning above however: in the limit of
τ → −∞, the physical momentum goes to infinity as a → 0. Therefore, gravity
becomes strongly interacting, and as we are only working to second order in the
perturbations the equations for the modes do not apply any more. It is possible to
work around this and properly define a vacuum by only looking at states at finite
times, the so-called adiabatic vacuum, but we will not be concerned with this and
do our calculation in the Bunch-Davies vacuum for simplicity.

2.5 The power spectrum of slow roll inflation

We have now found the mode functions for slow roll inflation in de Sitter:

vk(τ) =
e−ikτ√

2k

(
1− i

kτ

)
. (2.5.1)

To find the power spectrum for ζ, we recall that:

Pζ =
k3

2π2
|ζ(k, τ)|2 (2.5.2)

and that v = Mp

√
2a2εζ. Using all of these, and evaluating it at the first Hubble

crossing we find:

Pζ(k) =
H2
∗

4M2
pπ

2ε∗
(2.5.3)

where the subscript ∗ means that the quantity is evaluated at the Hubble crossing
k = aH. This has no time-dependence any more because when it is outside the
Hubble radius it remains constant. The perturbations only start evolving again
when crossing it in the radiation or matter dominated era, and as we only look
at the spectrum at Hubble crossing we can ignore this. Now because inflation is
not described by a perfect de Sitter background, this quantity is not completely
independent of k: ε and H slowly decrease during inflation, and smaller modes
exit the horizon at later times, so every mode has a slightly different amplitude,
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determined by the value of ε and H when it first crossed the horizon. This leads us
to write the power spectrum as:

Pζ(k) = Pζ∗(
k

k∗
)ns−1, Pζ∗ =

H2
∗

4π2ε∗
. (2.5.4)

Here the deviation from scale invariance is parametrized by ns being different from
one, and k∗ is some momentum scale, with the ∗ now meaning evaluated at the first
Hubble crossing of k∗. It turns out that ns can be expressed in the first and second
slow roll parameters as:[21]

ns = 1− 2ε− η. (2.5.5)

Since these parameters are small in slow roll inflation, it predicts a power spectrum
that has a slight deviation from scale invariance [35]. A scale invariant spectrum,
also called the Zel’dovich spectrum, had already been introduced ten years earlier as
a candidate to descibe our universe based on considerations from nucleosynthesis
calculations, the entropy and the large scale structure [36]. The small deviation from
scale invariance predicted by inflation has since been confirmed by the CMB data,
with the latest results from the PLANCK satellite being [11]:

ns = 0.965± 0.004 (2.5.6)

Pζ∗ =
(
2.101+0.031

−0.034

)
× 10−9. (2.5.7)

The success of this prediction is one of the reasons why inflation is the best-supported
theory of what causes fluctuations in the early universe. However, for PBH for-
mation, there is a problem: the amplitude of these fluctuations seems to be very small.

As the formation of PBHs requires a significant peak in the power spectrum, they
cannot be produced in a universe described by just SR inflation: the perturbations
on large scales are just too small to allow for large enough perturbations on small
scales. Therefore, if PBHs are to be produced in the early universe, something else
must be going on.

2.6 Beyond slow roll inflation

Slow roll inflation predicts an almost scale invariant spectrum of very small fluc-
tuations, so there cannot be any large fluctuations at small scales. To get this
enhancement of fluctuations that might form PBHs, we therefore need to look at
other models. One way in which the power spectrum might become enhanced at
small scales is if the inflaton enters a state of ultra slow roll (USR) during inflation.
As the name suggests, during such a period the inflaton rolls down the potential
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Figure 2.3: The power spectrum caused by a period of USR as found by Garcia-
Bellido and Ruiz Morales in [37], calculated both in the slow roll approximation and
exactly using numerics. In their notation, ζ = R.

even slower than during SR inflation, such that ε goes to zero, and the accelera-
tion of the field, sourced by the second slow roll parameter η, becomes important.
This can be caused by a flat region in the inflaton potential such as an inflection point.

Several of these models have been studied recently [37, 26, 38], and it has been
shown that in this case the power spectrum is still given by equation 2.5.3, so it is
still inversely proportional to ε. This means that it will grow significantly when ε
approaches zero. These perturbations must be nonadiabatic, because it is no longer
true that ζ̇ = 0. It has been claimed that it is possible for this growth to only happen
at small scales, and hence give rise to the enhancement that is both consistent with
large scale constraints from the CMB and LSS yet is large enough on small scales
to form PBHs[37].The power spectrum determined in this paper is shown in fig-
ure 2.3, where it is indeed clear that there is a significant enhancement on small scales.

Instead of trying to parametrize this or any other specific beyond slow roll theory
of inflation, we will study power spectra that have enhancement on small scales in
general. Our goal is then to develop a framework to calculate the PBH abundance
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for any given theory. We will take the enhanced power spectra to have the form:

Pζ(k, τ) = PSR(k, τ)(1 +Af((k − k0)/a)) (2.6.1)

Where f(K −K0) is a function that switches on above a physical scale K0.

2.7 Evolution of mode functions in the radiation era

As PBHs can start to form when a perturbation re-enters the Hubble radius during
the radiation era, it is useful to know how the perturbations evolve afterwards. We
will find that they decay quickly, which means the assumption that PBHs only form
right after Hubble crossing is valid.

When the universe is dominated by hydrodynamic matter, the derivation of the
Mukhanov action can be generalised to: [34].

S(2) =
1

2

∫
dτd3x

[(
v′
)2 − c2

s (∂iv)2 +
z′′

z
v2

]
. (2.7.1)

Where c2
s is the speed of sound dp

dρ for adiabatic fluctuations. This enters because for
a matter or radiation dominated universe, the scalar fluctuations are transported
by sound waves in the cosmic fluid. Note that for the inflationary state we have
c2
s = −1, in which case this reduces to the action seen previously. From this we have

again the Mukhanov-Sasaki equation for the mode functions:

v′′k −
(
c2
sk

2 +
z′′

z

)
vk = 0. (2.7.2)

In the radiation era we have that ε = 3
2(ω + 1) = 2, and hence z′′

z = a′′

a . We also
have that a(τ) ∝ τ , and c2

s = 1
3 ,so the Mukhanov-Sasaki-equation reduces to:

v′′k = −k
2

3
vk. (2.7.3)

Solving this and switching back to ζ yields:

ζrad(k, τ) = α(k)
eikτcs

2a(τ)
√

2kcs
+ β(k)

e−ikτcs

2a(τ)
√

2kcs
(2.7.4)

where we have added some factors independent of τ to simplify our calculation later.
This describes how the mode functions evolve in the radiation era. The factors of a
come from switching back to ζ from v. Here we already see that these modes decay
like a−1. To connect this to the result of the mode functions during inflation, we
need to match this form to the value of ζ when inflation ends, at τ = τe. If inflation
ends during a slow roll phase, we then have ζ̇ = 0. This might not be true in general
for PBH-forming theories, so it might be interesting to see how this changes the
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subhorizon evolution of the modes.
For now however, if ζ0(k) is the mode frozen on superhubble scales predicted by
inflation, the constants α and β are determined by requiring:

ζrad(τe, k) = ζ0(k) (2.7.5)

ζ̇rad(τe, k) = 0 (2.7.6)

Performing this matching for τe = 0, we find that for modes inside the Hubble radius
we have:

Pζ(k, τ) = Pζ,0(k)
sin2(kτ/

√
3)

3k2a(τ)2
(2.7.7)

Where Pζ,0(k) is the power spectrum coming from inflation. Hence, the power
spectrum decays as a−2 ∝ τ−2 inside the horizon, and the perturbation quickly
disperses.
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Chapter 3

The probability for the
compaction function

In this chapter we calculate the probability distribution for the compaction function
C, so that we can calculate the probability that it is greater than the critical value
in chapter 4. To get to this, we first calculate the distribution of the curvature
perturbation, and then relate the two to each other.

As we saw in the last section, according to the theory of cosmological inflation
perturbations in the early universe on all scales are sourced by quantum fluctuations
that got blown up by a period of rapid expansion. This means that quantum effects
are important for them, and we should take them into account. The quantum state
of a system is completely described by its density matrix, which is the starting point
of the calculations in this section.

3.1 The Wigner function

To calculate the probability that a PBH forms in a given region of space, we need
to calculate the probability that a quantum field has a certain value: we need the
probability distribution for a quantum field. This can be determined in a natural
way from a field-theoretic extension of the Wigner function. To study its properties,
we first introduce it in quantum mechanics. The Wigner function of a state is defined
as:

W (x, p, t) =
1

2π

∫ ∞
−∞

dy〈x+
y

2
|ρ(t)|x− y

2
〉e−ipy (3.1.1)

where ρ is the density matrix of the state. This has the following properties that
make it look a lot like a probability distribution on phase space:
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∫ ∞
−∞

dpW (x, p; t) =

∫ ∞
−∞

dy〈x+
y

2
|ρ(t)|x− y

2
〉δ(y) = 〈x|ρ(t)|x〉 (3.1.2)

and similarly, ∫ ∞
−∞

dxW (x, p; t) = 〈p|ρ(t)|p〉 (3.1.3)

For pure states, these are just the wavefunctions of the state, so these are clearly
probability distributions. We also have that

∫∞
−∞ dpdxW (x, p; t) = 1 because Tr(ρ) =

1. It seems like the Wigner function behaves as expected for a probability density.
The only problem is that it is in general not positive: already for the exited states
of a simple harmonic oscillator it is no longer positive on all of phase space. This
means it can clearly not be interpreted as a probability in this case. Fortunately,
there is a class of states for which it is always positive, the Gaussian states, for which
the density matrix and hence also the Wigner function have the form of a Gaussian.
These are also precisely the states that are produced during inflation, so we can use
the Wigner function as a probability density on phase space for the state of ζ and
its canonical momentum field Π. As these are fields, we need to study the Wigner
function in Field theory.

3.2 Wigner function for Gaussian states in QFT

Defining the Wigner function unambiguously is harder in QFT than in quantum
mechanics. The way in which time- and spatial dependence enters in its definition is
very different, so there does not seem to be an obvious generalization. The way out
of this is the functional Schrödinger picture[39], in which the two are separated from
the onset. What this comes down to is that we first pick a given time, and then only
look at the constant hypersurface of that time. Hence, we can describe the state of
the field ζ by only looking at every point on the hypersurface: |ζ〉 = Π~x|ζ(~x)〉. In
this way we break covariance, but we have fixed our coordinates already anyway, so
this is no problem. Using this separation of space and time the Wigner function can
be defined as:

W[ζ,Πζ , t] =

∫
Dφ〈ζ +

φ

2
|ρ(t)|ζ − φ

2
〉 exp{−i

∫
d~xΠζ(~x)φ(~x)} (3.2.1)

where the fields are only functions of position, so we can interpret Dφ = Π~xdφ(~x).
We then want to evaluate this for a Gaussian state, the states that describe inflation,
and calculate the probability distribution of ζ from it. The density matrix of a
Gaussian state in the functional Schrödinger picture is given by:[40]
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〈φ|ρ(t)|φ′〉 = N exp{−1

2

∫
d~xd~y[φ(~x)A(~x, ~y, t)φ(~y) + φ′(~x)B(~x, ~y, t)φ′(~y) (3.2.2)

− 2φ(~x)C(~x, ~y, t)φ′(~y)]. (3.2.3)

Where A,B and C are functions defining the density matrix that follow the von
Neumann evolution equation for it. For notational simplicity in the upcoming parts,
we will see φ(~x) as a vector and A(~x, ~y, t) as a matrix, so that we can define:

A · φ :=

∫
d~xφ(~x)A(~x, ~y, t) (3.2.4)

which is again a vector, and with this product quantities like φT ·A · φ are scalars.
We assume a homogeneous universe, so the operators must be symmetric.

We note that the density matrix must be Hermitian, so the expression should be
invariant under at the same time complex conjugation and switching φ and φ′, or
transposing the operators if we see them as matrices. This means we must have
A∗(~x, ~y) = B(~y, ~x) and C∗(~x, ~y) = C(~y, ~x). The normalization N can be determined
from the requirement Tr(ρ) = 1, but we will not specify it here: we will only properly
normalise our probability at the last moment.
Filling this into the definition for the Wigner function, completing the square and
integrating over φ yields:

W [ζ,Πζ ] ∝ exp{−1

2
[ζT · O1 · ζ + ζT · O3 ·Πζ + ΠT

ζ · O2 ·Πζ ]} (3.2.5)

with:

O1 =
1

2

[
A+B + 2C − (A−B) · (A+B − 2C)−1 · (A−B)

]
(3.2.6)

O2 = 2(A+B − 2C)−1 (3.2.7)

O3 = −i[(A−B) · (A+B − 2C)−1 + (A+B − 2C)−1 · (A−B)]. (3.2.8)

Because A∗ = B and C = C∗, these are real operators, and ζ and Π are real fields,
so the Wigner function is manifestly nonnegative, and we can interpret it as the
probability distribution on phase space for the state defined by A, B and C.

3.3 From power spectra to the Wigner function.

It is possible to express all the operators that enter the density matrix of a Gaussian
state in terms of correlation functions of the field and its momentum, by noting that
all expectation values of operators can be written in terms of the density matrix as:
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〈ζ(~x)ζ(~y)〉 = Tr[ρ̂(t)ζ(~x)ζ(~y)]. (3.3.1)

Using this, one can derive the following expressions: [40]

〈ζ̂(~x)ζ̂(~y)〉 =
1

2
(AH − C)−1 (~x, ~y; t)′ (3.3.2)

1

2
〈{ζ̂(~x), Π̂(~y)}〉 = −1

2
(AH − C)−1 ·AH̄(~x, ~y; t) (3.3.3)

〈Π̂(~x)Π̂(~y)〉

=
1

2

[
1

2
A† · (AH − C)−1 ·A+A · (AH − C)−1 ·A† − C · (AH − C)−1 · C

]
(~x, ~y; t)

(3.3.4)
Where AH and AH̄ are the Hermitian and anti-Hermitian parts of A, which also
determine B completely via A† = B. This means we can also take a given form of the
power spectrum and momentum-field and momentum-momentum correlators as our
input. This means we can work directly with the general enhanced power spectrum
defined in chapter 2. What to choose for the momentum correlators is much harder
to say in general. For slow roll inflation they are negligible, as Π = ζ̇ = 0, but in
other scenarios there is generally little known about their form.

There is no reason in principle for there to be a criterion just on ζ: the value of Π
might also influence whether a PBH forms. For instance, it is conceivable that a
PBH will not form even when the criterion for C is satisfied if Π = ζ̇ is such that
the fluctuation will very rapidly decrease, causing it to disperse before it has fully
collapsed. Therefore, in principle, we would also expect a criterion for Π to determine
if a region will collapse to a PBH. As far as we know, there have been no numerical
studies conducted investigating this. Therefore, we will only focus on the criterion
for ζ. However, we hope that this will inspire numerical investigations into the effect
of large momentum fluctuations on PBH formation.

3.4 Probability for ζ

From the Wigner function, we can calculate the probability distribution for ζ by:

P [ζ] ∝
∫
DΠW [ζ,Π]. (3.4.1)

Where again, we will only normalise the probability at the very last moment. We
can perform the integral over Π most easily by switching to Fourier space. Because
of the translation invariance the operators diagonalise:
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P [ζ] =

∫
DΠ exp{−1

2

∫
d~k

(2π)3
ζ(~k)O1(~k)ζ(−~k)+ζ(~k)O3(~k)Π(−~k))+Π(~k)O2(~k)Π(−~k)},

(3.4.2)
where we have that ζ∗(~k) = ζ(−~k) and likewise for Π. We have these conditions
because ζ(~x) is real, so ζ(~x)∗ = ζ(~x). This also fixes the extra degree of freedom we
have seemingly gained by the transformation because ζ(~k) is now complex instead of
real. Now assuming isotropy and a spherically symmetric perturbation ζ(~x) = ζ(|~x|),
all of the operators and fields in k-space depend only on on the norm of ~k, which we
denote by k. This means we have ζ(~k) = ζ(k) so we can integrate over the angles,
yielding:

P [ζ] =

∫
DΠ exp{− 1

4π2

∫
dkk2(ζ(k)O1(k)ζ(k)+ζ(k)O3(k)Π(k)+Π(k)O2(k)Π(k))}.

(3.4.3)
This also means that ζ∗(~k) = ζ(−~k) = ζ(| − ~k|) = ζ(k), so the Fourier transform
of a spherical symmetric real function is also real. We can complete the square by
transforming:

Π(k) = Π̃(k)− ζ(k)

2O2(k)
O3(k). (3.4.4)

This then yields:

P [ζ] =

∫
DΠ̃ exp{− 1

4π2

∫
dkk2[ζO1ζ −

1

4
ζ
O2

3

O2
ζ + Π̃O2Π̃]}. (3.4.5)

The first two terms in the exponential can be taken outside of the path integral,
and the resulting path integral is a standard Gaussian path integral which yields
a constant factor related to the determinant of O2 that will only contribute to the
normalization. Because we will fix that later we neglect it here, yielding:

P [ζ] ∝ exp{− 1

4π2

∫
dkk2ζ(k)O(k)ζ(k)} (3.4.6)

where

O(k) = (O1(k)− O
2
3(k)

4O2(k)
). (3.4.7)

Once again, this expression does not just depend on the power spectrum, but also
on the ζ −Π and Π−Π correlators.
Usually, the momentum correlators are neglected. If inflation ends with a period
of slow roll, this is justified because in that case ζ̇ ≈ 0 for the modes crossing the
horizon. However, we have already noted that slow roll inflation only cannot produce
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PBHs. For any theory with enhancement of the fluctuations on small scales, these
momentum correlators might be significant, and therefore have to be taken into
account.

3.5 Connecting to correlation functions

In appendix IV it is shown that in terms of the correlation functions we have:

O(k, t) =
∆2(~k, t)

2〈ζ(~k, t)ζ∗(~k, t)〉
, (3.5.1)

where ∆2 is the Gaussian invariant defined in real space by: [40]

∆2(~x, ~y; t) = 〈ζ(~x)ζ(~y)〉〈Π(~x)Π(~y)〉 − 1

4
〈{ζ(~x),Π(~y)}〉2. (3.5.2)

Because of the homogeneity and isotropy, these correlation functions only depend on
k = |~k| in Fourier space. Furthermore, O depends not only on the power spectrum,
but also on the momentum-field and momentum-momentum correlation functions.
We have that ∆2 ≥ 1, with equality for a pure state, so the definition can also be
seen as a version of the uncertainty principle for general Gaussian states [40]. In the
pure case, O only depends on the power spectrum as:

O(k, t) =
k3

4π2Pζ(k, t)
. (3.5.3)

So assuming both a pure state and no criteria on the momentum perturbations the
probability for ζ reduces to:

P [ζ; t] ∝ exp{− 1

8π2

∫
dkk2ζ(k, t)k3Pζ(k, t)−1ζ(k, t)}. (3.5.4)

However, both of these assumptions might not be applicable. The Gaussian invariant
∆2 is intimately related to the amount of entropy and decoherence in the state. As
the name suggests, it is invariant in a quadratic theory like the one we study here,
but in the general evolution of the universe it is not, and it can increase, signifying
the decoherence of the state. A preliminary result of [41] suggests that even in
presence of small interactions, ∆2 can rapidly grow during inflation. To investigate
this fully is beyond the scope of this thesis however, and we will stick to the case of
∆2 = 1.

3.6 The compaction function in terms of the curvature
perturbation

In this section, we relate ζ to the compaction function, so we can transform the
probability we just described into one for C. Recall that the definition of the
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compaction function is:

C =
2GδM(r, t)

R(r, t)
. (3.6.1)

Where G is Newtons constant, δM(r, t) is the mass excess in a spherical region with
comoving radius r and R is the physical radius R(r, t) = a(t)reζ(r).

The mass excess can be found by integrating over the density perturbation inside
the sphere:

δM(r, t) = 4π

∫ R(r,t)

0
δρ(R′, t)R′2dR′. (3.6.2)

Making a transformation to r = Re−ζ(r)/a yields:

δM(r, t) = 4πa3

∫ r

0
dr′(1 + r′∂rζ(r′))eζ(r

′)r′2δρ(r′) (3.6.3)

Where δρ(r, t) = ρ(r, t)− ρ̄b(t) is the density contrast with the background energy
density ρb(t) = 3M2

pH
2(t).

From the Einstein equation we have the relativistic Poisson equation for δρ [22]:

δρ(r, t) ≈ −
24M2

p

9a2(t)
e−5/2ζ(r)∇2eζ(r)/2. (3.6.4)

Hence, to first order in ζ, which suffices for this thesis because we only look at the
second order action for ζ which only has quadratic terms, we have:

δM(r) = 4πa3

∫ r

0
dr′r′2δρ(r′), (3.6.5)

where we neglect any angular dependence of the perturbation: we assume that it is
spherically symmetric. This amounts to decomposing the perturbation into spherical
harmonics and only looking at the zeroth-order term: to take nonsphericity into
account we would have to look at higher order terms.
We ignore the time-dependence of all functions from now on in this section to make
the expressions more compact. C is a function of the radius of the overdensity that
might collapse to form a PBH. This means that we cannot simply treat C(r, t) as a
function of a point in space only dependent on the radial coordinate: we must treat
it as an integrated quantity that has no more dependence on angles: it described the
properties of a sphere with radius r. To make sense of how to Fourier transform C, it
is still convenient to introduce a non-integrated C(~x) as a function of position such
that:

C(r) =

∫
dΩC(~x). (3.6.6)
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Where the norm of ~x is r. Then C(~x) can be Fourier transformed using the usual
technique. In particular, we have:

C(x) =

∫
dΩx

∫
d~k

(2π)3
ei
~k·~x.C(~k) (3.6.7)

Now the only dependence on the angles of ~x is in the exponential, and this can be
integrated out, yielding:

C(r) = 4π

∫
d~k

(2π)3

sin(|~k|r)
|~k|r

C(~k). (3.6.8)

The only angular dependence is now in the unknown dependence of C(~k) on the
angles. This means we can formulate the fourier transform in terms of another
integrated quantity, namely:

C(k) =

∫
dΩkC(~k). (3.6.9)

Where from now on we denote |~k| = k, and likewise for other vectors. We get:

C(r) =
1

2π2r

∫ ∞
0

dkk sin(kr)C(k). (3.6.10)

Working out the inverse transformation in the same way yields:

C(k) =
4π

k

∫ ∞
0

drr sin(kr)C(r). (3.6.11)

These are the right definition for the Fourier transform of any quantity only dependent
on the radius, and we will use them throughout this thesis. From this, we can start
to express ρ(~k) in terms of C to in the end connect the results for ζ to the probability
of PBH formation.
We have:

C(k) = 4π

∫ ∞
0

dr
r

k
sin(kr)C(r) (3.6.12)

= 8πG

∫ ∞
0

dr sin(kr)
rδM(r)

kaeζ(r)r
(3.6.13)

= 32π2Ga2

∫ ∞
0

dr
sin(kr)

k

∫ r

0
δρ(r′)r′2dr′ (3.6.14)

to first order in δρ(r). Now δρ(r) is in fact not an integrated quantity: the density
perturbation is defined for every point in space, so it is in fact a function of r, θ
and φ that has trivial dependence on the angles because we look at a spherically
symmetric perturbation. This means we can reinstate the integral over the angles,
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which yields a factor of 1/4π, so that we get an integral over a 3D function to make
the process of Fourier transforming δρ more transparent. This yields:

= 32π2Ga2

∫ ∞
0

dr
sin(kr)

k

∫
d~xδρ(~x)θ(r − |~x|). (3.6.15)

Where we have implemented the boundary at a radius of r as a theta function. Next,
we Fourier transform ρ(~x) and θ(r − |~x|), which yields:

C(k) =
a2

2π4
G

∫ ∞
0

dr
sin(kr)

k

∫
d~xd~k′d ~k′′δρ(~k′)θ̃( ~k′′)ei~x·(

~k′+ ~k′′). (3.6.16)

Where we have for θ̃:

θ̃( ~k′′) =

∫
d~x′θ(r − |~x′|)e−i~x′·~k′ . (3.6.17)

Integrating over the angles and putting the theta function into the integration
boundary for the radial integral yields:

θ̃( ~k′′) = 4π

∫ r

0
dr′r′2

sin(r′| ~k′′|)
r′| ~k′′|

. (3.6.18)

Then the integral over the radius can be performed:

θ̃( ~k′′) =
4π

| ~k′′|3
(sin(| ~k′′|r)− | ~k′′|r cos(| ~k′′|r)). (3.6.19)

Note that θ̃ only depends on the norm of ~k′′, not the angles.
Now in the expression for C(k) we can perform the integral over ~x, which yields a
delta function of δ3( ~k′′ + ~k). Using this the integral over ~k′′ can be evaluated. This
yields:

C(k) =
4Ga2

π

∫ ∞
0

dr
sin(kr)

k

∫
d ~K ′δρ(~k′)θ̃(−~k′) (3.6.20)

C(k) =
16Ga2

k

∫
d~k′

δρ(~k′)

k′3

∫ ∞
0

dr sin(kr)(sin(k′r)− k′r cos(k′r)). (3.6.21)

The integrals over r do not converge at this point, but we can regulate them by
adding a term of e−εr to the integrand, with ε > 0 infinitesimal. Using this, it is
derived in appendix III that:∫ ∞

0
dr sin(kr) sin(k′r) =

π

2
[δ(k + k′)− δ(k − k′)] (3.6.22)

and
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k′
∫ ∞

0
drr sin(kr) cos(k′r) = −πk

′

2

∂

∂k
[δ(k + k′) + δ(k − k′)]. (3.6.23)

Because k and k′ are positive, the delta functions with a plus do not contribute, so
we have:

C(k) =
2Ga2

k

∫
d~k′

δρ(~k′)

k′3
(1 + k′

∂

∂k
)δ(k − k′). (3.6.24)

Now as we have assumed that the perturbation is spherically symmetric, δρ(~x) only
depends on the norm of ~x, and therefore δρ(~k) also has no dependence on the angular
integrals. Therefore, those integrals are trivial, and we find:

C(k) =
8πGa2

k

∫ ∞
0

dk′δρ(k′)(
1

k′
+

∂

∂k
)δ(k − k′). (3.6.25)

We can take the derivative over k out of the integral now, as nothing else inside
depends on it. Then we can evaluate the integral using the delta function, yielding:

C(k) =
8πGa2

k
(
1

k
+

∂

∂k
)δρ(k). (3.6.26)

Which can be rewritten as:

∂

∂k
(kδρ(k)) =

k2

8πGa2
C(k). (3.6.27)

Integrating 1both sides yields:

kδρ(k) = k2δρ(k)|k=0 +
1

8πGa2

∫ k

0
dk′k′2C(k′). (3.6.28)

Now we have that δρ should not diverge when going to very large scales, since
the density perturbation is known to be small at large scales and this would be
unphysical, so δρ(k)k2 goes to zero as k → 0. This means we get:

δρ(k) =
1

8πGa2k

∫ k

0
dk′k′2C(k′). (3.6.29)

δρ(k) can then be expressed in terms of ζ(k), using the relativistic Poisson equation
to first order in ζ:

δρ(r, t) = −
4M2

p

3a2(t)
∇2ζ(r). (3.6.30)

Now we can Fourier transform this expression, which yields:
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δρ(k) = −
4M2

p

3a2

∫
d~xe−i~x·

~k∇2ζ(r). (3.6.31)

δρ(k) =
4M2

pk
2

3a2

∫
d~xζ(r)e−i~x·

~(k) =
4M2

pk
2

3
ζ(k). (3.6.32)

So in the end, we find the relation:

ζ(k) =
3a2

4M2
pk

2
δρ(k) (3.6.33)

ζ(k) =
3

4k3

∫ k

0
dk′k′2C(k′). (3.6.34)

This can then be substituted into the expressions found for C in terms of ζ to
get the probability density for C. This nonlocal relation between the two has a
field-independent Jacobian, so it can be absorbed in the normalization. This yields,
reinstating the time-dependence:

P [C, t] ∝ exp{− 1

4π2

∫
dkk2 9O(k, t)

16k6
|
∫ k

0
dqq2C(q, t)|2}, (3.6.35)

now we can use that C(r) is real and only depends on the radial coordinate, and
therefore its Fourier transform C(q) is also real as noted in section 3.5. This means
we can write:

∝ exp{−1

2

∫
dqdq′C(q, t)K(q, q′; t)C(q′, t)}, (3.6.36)

where we have defined the kernel:

K(q, q′; t) =
9

32π2

∫ ∞
0

dk
O(k, t)

k4
θ(k − q)θ(k − q′)q2q

′2. (3.6.37)

This is then finally normalised to be a proper probability: we require∫
DCP [C] = 1. (3.6.38)

From which it is found by a standard Gaussian path integral that:

P [C; t] =
√

det(K) exp{−1

2

∫
dqdq′C(q, t)K(q, q′; t).C(q′, t)} (3.6.39)

Which is the probability distribution for C we set out to find in this chapter: it turns
out to be Gaussian, but with a complicated kernel. We will not need to calculate or
regulate the functional determinant of this kernel explicitly: it will drop out again
when we calculate the formation probability of PBHs in the next chapter.
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Chapter 4

Evaluating the probability

In this chapter, the probability distribution for C that was found in the last chapter
is used to determine the PBH spectrum for any given theory of inflation. For this, we
have to implement the criteria for PBH formation. The way we implement Musco’s
first criterion, which states that value of the compaction function has to be greater
than some critical value, is by adding in a step function to the path integral.

P (r, t)PBH =

∫
DCP [C; t]δ(∂rC(r, t))θ(C(r, t)− Ccrit) (4.0.1)

In this way, all of the profiles for which C(r, t) is not large enough are projected out,
and we are left with the fraction of profiles that forms a PBH, weighted with their
probability. This formula therefore describes the probability for a given sphere of
radius r at time t that there is a density fluctuation sufficiently large to surpass the
critical value and collapse into a PBH.

We have not yet been able to implement Musco’s second criterion, that fixes the
scale of formation to be at the maximum of the compaction function. We expect that
ignoring this criterion will not change the mass spectrum very much, because PBHs
form from very rare perturbations. A radius at a given time where the compaction
function is large enough but not at its maximum will still form a PBH, but just with
a different radius. Because it only rarely happens that C > Cc, any such C will never
be far away from Cc. Therefore, the radius at which the criterion is fulfilled is never
far away from the radius of the region that will collapse. Because the radius will
directly determine the mass of the PBH, the mass spectrum of PBHs will only shift
slightly.
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4.1 Evaluating the path integral

In this section, we work out the calculation of the probability by this path integral.
The step function can be written as follows:

θ(C(r, t)− Ccrit) =
1

2πi

∫
dx

x− iε
eix(C(r,t)−Ccrit) (4.1.1)

=
1

2πi

∫
dx

x− iε
exp{−ixCcrit +

ix

2π2r

∫ ∞
0

dqq sin(qr)C(q)},

(4.1.2)

which yields for the total path integral:

P (r, t) =

√
det(K)

2πi

∫
DC
∫ ∞
−∞

dx

x− iε
exp{−ixCcrit (4.1.3)

+
ix

2π2r

∫
dqq sin(qr)C(q)− 1

2

∫
dqdq′C(q, t)K(q, q′; t)C(q′, t)}. (4.1.4)

Now we can complete the square to perform the integral over C by transforming:

C(q, t) = ˜C(q, t) +
i

2π2r

∫
dq′K−1(q, q′; t)q′x sin(q′r). (4.1.5)

Where K−1 is defined by:∫
dkK(q, k; t)K−1(k, q′; t) = δ(q − q′). (4.1.6)

In appendix II it is shown that an inverse for the kernel is given by:

K−1(q, q′; t) = −
∫ ∞

0
dk

16π2k4

9O(k, t)q2q′2
∂qδ(q − k)∂kδ(q

′ − k) + (q ↔ q′). (4.1.7)

This yields for the probability:

P (r, t) =

√
det(K)

2πi

∫
dxe−ixCcrit

x− iε

∫
DC exp{−1

2

∫
dqdq′C(q, t)K(q, q′; t)C∗(q′, t)

−1

2

∫
dqdq′

1

2π2r
qx sin(qr)K−1(q, q′; t)

1

2π2r
q′x sin(q′r)}.

(4.1.8)

The path integral over C is a standard Gaussian path integral, yielding:
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P (r, t) =
1

2πi

∫
dxe−ixCcrit

x− iε
exp{−1

2

∫
dqdq′

qx sin(qr)

2π2r
K−1(q, q′; t)

qx sin(qr)

2π2r
}

(4.1.9)

=
1

2πi

∫
dxe−ixCcrit

x− iε
exp{− x2

8π4r2

∫
dqdq′qq′ sin(qr) sin(q′r)K−1(q, q′; t)}. (4.1.10)

From this we find:

P (r, t) =
1

2πi

∫
dxe−ixCcrit

x− iε
exp{−x2g(r, t)} (4.1.11)

with

g(r, t) =
1

8π4r2

∫
dqdq′qq′ sin(qr) sin(q′r)K−1(q, q′; t). (4.1.12)

This function g(r, t) gives a dimensionless number depending on r and t which
contains the information about the power spectrum of the theory via the inverse
kernel.

We then need the following integral, which is proven in appendix I:∫ ∞
−∞

dx

x− iε
e−ixCc−g(r)x

2
= iπ erfc(

Cc
2
√
g(r)

). (4.1.13)

Applying this yields the following expression for the formation probability of a PBH:

P (r, t) =
1

2
erfc(

Cc
2
√
g(r, t)

). (4.1.14)

This is one of the main results of this thesis: the probability of a given sphere of
radius r at time t to collapse and form a PBH. In this formula the complimentary
error function behaviour of the naive equation 1.4.13 for the abundance is recovered,
but now with a highly nontrivial, well-defined function g(r, t) that depends on
K−1(q, q′; t), which again very nontrivially depends on the power spectrum. To
determine the probability from a given power spectrum, one needs to calculate:

g(r, t) = − 1

4π2r2

∫ ∞
0

dqdq′dk
16k4

9O(k, t)q2q′2
∂qδ(q − k)∂kδ(q

′ − k)qq′ sin(qr) sin(q′r)

(4.1.15)
where we have used that integral is symmetric in q and q′. This can be partially
integrated twice to yield:
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= − 4

9π2r2

∫ ∞
0

dqdq′dk
∂

∂k
[

k4

O(k, t)
]
∂

∂q
[
sin(qr)

q
]
sin(q′r)

q′
δ(q − k)δ(q′ − k) (4.1.16)

= − 4

9π2r2

∫ ∞
0

dk
kr cos(kr)− sin(kr)

k2

sin(kr)

k

∂

∂k
[

k4

O(k, t)
] (4.1.17)

with O(k, t) given by:

O(k, t) =
k3

4π2Pζ(k, t)
. (4.1.18)

In this way, the probability is uniquely defined from the power spectrum, without
having made any choice for a window function and having taken the full field theory
behaviour into account.

4.2 The probability for the enhanced power spectrum

At this point, we have assumed that perturbations can only form PBHs at scales
smaller than or equal to the Hubble radius. There is no reason why the probability
should be 0 for perturbations on super-Hubble scales however. We will still ignore
these cases as it is not clear to us how large super-Hubble perturbations will back-
react to the background. It is imaginable that a large enough perturbation might
stop inflation from proceeding in a region, invalidating the background evolution of
the scale factor that we assume and for instance form a super-Hubble black hole
within which the expansion might continue. A full treatment of the effect of this
backreaction on the stress-energy tensor is beyond the scope of this thesis, but might
be necessary to interpret the results and is certainly interesting in itself. This means
however, that we will only consider PBH formation at the scale of the Hubble radius.

As is shown in section 2.6 ,the compaction function for perturbations that cross the
horizon in the radiation era decreases quickly after Hubble crossing, so it is a good
approximation to only check if a perturbation is large enough to form a PBH at the
Hubble radius. This means only the power spectrum at horizon crossing is necessary
as the input for the calculation, and as g only depends on time through the power
spectrum, this makes it a function of radius only. As mentioned in chapter 2, we can
take the following form that is enhanced at small scales:

Pζ(k) = P0(
k

k∗
)ns−1(1 +Af(k − k0)). (4.2.1)

Here k∗ is a reference scale, P0 the amplitude of the background fluctuations, k0 the
scale above which the enhancement kicks in, f(x) a function that switches between 0
and 1 around x = 0 and A the magnitude of the enhancement. This is in reasonable
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Figure 4.1: The probability of a spherical region of the universe to collapse into a
PBH as a function of its physical radius. The chosen parameters are P0 = 2 ∗ 10−4,
A = 10, K0 = 1 and ns = 0.96. The scale of the radius is given by R0 = 2π

K0
.

agreement with the exact results for the model seen in chapter 2 for scales not too far
from the critical scale. At first we will use a step function for the switching function,
which actually yields an exact result. This will be compared with numerical results
from more physical, continuous functions later.

This means that we have:

1

O(k, t)
= 4π2P0k

ns−1
∗ kns−4(1 +Aθ(k − kc)). (4.2.2)

Filling this into the formula for g(r) gives:

g(r) = − 16

9r2

∫ ∞
0

dqdq′dk
k4

q2q′2
∂qδ(q−k)∂kδ(q

′−k)P∗0kns−4(1+Aθ(k−kc))q sin(qr)q′ sin(q′r).

(4.2.3)
It turns out this equation can be solved exactly, which yields:
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g(r, t) =
2−3−nsP0r

−2−ns

k3
0(ns − 3)π4

(−2nsAns(k0r)
2+ns

2F1(
ns − 1

2
,
3

2
,
ns + 1

2
,−k2

0r
2)

−2(1 +A)k3
0r

3ns(3− 4ns + n2
s)Γ(ns − 3) sin(nsπ/2)

+2nsA(k0r)
ns sin(k0r)(k0r(ns − 3) cos(k0r) + 3 sin(k0r))) (4.2.4)

(4.2.5)

where 2F1(a, b, c, x) is a hypergeometric function. This is already a rather compli-
cated answer for the very simplest case, so usually the integrals defining g have to be
performed numerically. What we see here is that the radius always enters as either
k0r or k∗r, where k0 and k∗ are the comoving switching scale and reference scale
from the slow roll power spectrum respectively. This is true in general, as these are
the only scales in the problem. As input for these however, we do not want to define
a comoving critical scale, but a physical scale K0 = k

a that does not evolve with the
expansion of the universe. Hence, r only enters as ar or the physical radius, which is
very useful when relating it to the mass of the PBH formed.

In figure 4.1, the probability that a region will collapse to form a PBH when its
radius crosses the Hubble radius is plotted against the physical radius of the re-
gion. In this plot, we clearly see that there is a switching behaviour, with the
probability being large for small radii and vice versa as expected. More PBHs
form at small radii, when the power spectrum is enhanced, and below the criti-
cal radius the power spectrum become approximately scale invariant again. The
scale of the oscillations is set by K0, and as we will see later they arise depending
on the steepness of the switch. It must be noted here that we have not chosen
a realistic value for P0, the slow roll background amplitude. In our universe, we
have P0 ∼ 10−9, so whereas the probability only goes to 10−100 in this plot on large
scales, for our universe Mathematica gives an absurdly small 10−25000000, although we
wonder whether numerics can be trusted for these minuscule numbers. This makes it
very clear nevertheless that no PBHs will form at all if there is only slow roll inflation.

4.3 Towards the PBH mass spectrum

We have up to now calculated the quantity P (r, t), which we took to be time-
independent because we evaluated it only at Hubble crossing, yielding the function
P (R), the probability of a sphere of physical radius R = a(t)r to collapse into a
PBH when this is the physical Hubble radius R = 1

H . To relate this to the mass
spectrum of PBHs at formation β(M), we need to know what the relation between
the radius of a collapsing sphere and the mass of the PBH that will form is. This
mass can be approximated by the following formula:[2]
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MPBH = γMH . (4.3.1)

Where MH is the background mass of the Hubble volume that collapses and γ is a
numerical parameter that depends on the details of the collapse and that simulations
put around 0.4. The mass of the Hubble volume can be directly calculated from the
radius by:

MH =
4π

3
R3ρ = 4πRM2

p (4.3.2)

where we have used the first Friedmann equation 1.1.5 for the background density.
Using these two equations, the radius of the region that will collapse is related to
the PBH mass by:

R =
MPBH

4πγM2
p

. (4.3.3)

Now the number density of PBHs of mass M at formation is the probability that
a region which, if it collapses, will form a PBH of mass M , will actually collapse.
Hence, we have an expression for β(M) in terms of P , given by:

β(M) = P (
MPBH

4πγM2
p

) (4.3.4)

which we can now calculate for any given Gaussian theory of inflation as long as we
know its correlators or density matrix. The mass formula we used is however just
an approximation: for a full description the mass of the PBH that forms has to be
found from the theory of critical collapse, which gives the following:

MPBH = kMH (δ − δc)
γ2 (4.3.5)

where δ is the overdensity integrated over the collapsing volume, γ2 is a critical
exponent and k a constant[2]. This formula means that PBHs with a wide range of
masses can form from a specific radius, making it more difficult to calculate β from
the probability. This might be possible to solve in our framework by introducing this
relation already inside the path integral, and writing the factor of δ that appears in
terms of C. However, this is beyond the scope of this thesis.

Another factor that might change the relation between β and P is accretion. If a
large amount of matter falls into a PBH after formation, it will be much heavier.
This can be thought of as an effective increase in γ [2], and this is not a very big
problem for describing the general behaviour of PBH formation because it only enters
in the equation for β multiplied with K0, and is hence completely degenerate with
it, provided the spectrum β(M) is not very broad. As K0 is a model-dependent
parameter that we are completely free to choose, only a nontrivial scale-dependence
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of the accretion rate might give qualitatively different results. For quantitative
investigations into PBH formation from a given theory of inflation however, this
effect might have to be taken into account.
We can now apply this and study the dependence on the switching profile by looking
at a more realistic power spectrum, namely:

Pζ(k) = PSR(k) (1 +A tanh(s(K −K0)) (4.3.6)

where the parameter s determines the steepness of the switch. The numerical results
for this power spectrum are shown in figure 4.2. From this it is clear that the
oscillations are caused by the quick transition between low and high power, and that
smoothing out this transition makes them dampen faster and eventually disappear.

Another thing to note is that the value of β at small scales, which directly translates
to the number of PBHs in our universe today, is highly model-dependent. The
probability at small scales is exponentially sensitive to the value of A assumed in
the model, so any theory predicting the right number of PBHs to form dark matter
today must be extremely fine-tuned or have some mechanism that stabilizes the
enhancement at precisely the right value. The formation probability is plotted against
M for a step function enhancement in figure 4.3, where it can be seen that it goes
to 1/2 for large values of A. This makes sense, as our model makes no difference
between over- and underdensities, and even if the fluctuations are large enough that
any overdensity will collapse to a PBH, there might just as well be an equally big
underdensity. Of course, the symmetry between over- and underdensities will fail
at much lower fluctuation sizes, as will many other assumptions we made along the
way, but it is nevertheless a good reality check.

Summing up, in this chapter we have shown how to calculate the probability of PBH
formation and the PBH mass spectrum from the probability distribution of ζ. We
ignored Musco’s second constraint, arguing that its effect would be small as PBHs
are rare, and got reasonable results that reduce to the erfc-behaviour found in the
naive calculation, but give a specific prescription for the smoothing and can take
significant momentum correlators into account.
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Figure 4.2: The PBH spectrum at formation β(M) for a hyperbolic tangent enhance-
ment function as in equation 4.3.6 with different steepness s: s = 2.5 in red, s = 5 in
green and s = 10 in blue. The other parameters are the same as in figure 4.1, and
we have set γ = 0.4. The mass is given in terms of the mass corresponding to the
collapse of a region with size 2π

K0
, M0 = πγ

K0
. Note that the last figure resembles the

exact result shown in figure 4.1, so in the limit s → ∞ the behaviour of the step
function is recovered.
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(a) The formation probability of a PBH at R = 0.2R0, with the same parameters otherwise
as in figure 4.1, plotted on a log scale against the relative enhancement of the amplitude
AP0.
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(b) The formation probability of a PBH at R = 0.2R0, with the same parameters as in the
above figure, but now plotted on a linear scale for large relative amplitude enhancements.
From this plot, it can be seen that the formation probability approaches 1

2 as the enhancement
becomes very large.

Figure 4.3
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Chapter 5

Discussion and Conclusion

In this thesis, we have introduced a framework in which the probability of PBH
formation can be calculated directly from the density matrix of any state produced
by inflation. This results in an expression that reduces to the complimentary error
function description seen before, but extended and with a specific, well-defined
way to relate the local perturbations to the non-local collapse probability. These
probabilities for power spectra enhanced at small scales agree with our expectations,
but we are aware that number of assumptions have been made in coming to our
results. These are also main motivations for future work, since many of them might
be incorporated into this framework.

Firstly, we have only worked to leading order in ζ many times, whereas ζ is expected
to large when forming PBHs. This is not a problem in our derivation of the slow roll
power spectrum, since we take general power spectra as input for our calculation and
do not care how they were calculated. The place where this poses a problem is in the
relation between ζ and δρ, which we used to write ζ in terms of C. Another factor
is that the physical radius will also gain a ζ-dependence, complicating the matter
more. It will be interesting to study the full non-linear relation between the two,
and use this for the inversion. We expect that when ζ ∼ 1, the non-linear effects will
induce significant non-Gaussianity in the distribution for δρ, even if ζ is Gaussian.
A first study of these effects has been done recently in [42], and we hope to address
them within our formalism.

Another assumption we made is that PBHs only form for spherically symmetric
perturbations, allowing us to only consider spherical volumes. Although this is a
reasonable approximation because PBHs are rare at formation and form from Hubble
volumes which are spheres, it might be possible to take nonsphericity into account
by defining the compaction function for general volumes and relating it to ζ. It is
also unclear how this influences the criteria for PBH formation, so this might be an
interesting line of numerical research.
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A large reason why we introduced the Wigner function as probability distribution
for the system in chapter 3 was that the state produced by inflation is Gaussian.
While this has been confirmed by experiments, small non-Gaussianities might exist,
and if they do they can play a large role. Even small deviations from Gaussian
behaviour can have a large impact in the tail of a distribution, and because PBHs
are rare they form precisely from this tail, so we would like to expand our theory
to take small non-Gaussianities into account. This means that we have to include
higher order terms in our density matrix, and that the Wigner function might lose its
probabilistic interpretation. However, for small non-Gaussianities this should not be
a big problem, especially if we assume no constraints on the momentum correlators
and can integrate them out to get an always well-defined probability for ζ.

Finally, we would like to implement Musco’s constraints more completely. We have
argued why the ∂rC = 0 constraint will not alter the distribution very much, but
we would still like to include it. One way this might be possible is to add terms of
e−(∂rC)2/(2σ2) or θ(∂rC+y)−θ(∂rC−y) to the path integral, with y and σ parametriz-
ing how close to the radius a maximum has to be to count, but this is still work in
progress. Also, we have not implemented the shape-dependence of Cc at all. The
way this could be done is to let it be a functional of C in the path integral. The
challenge of determining this form and solving the resultant path integral is also left
for future work.

We have also seen that the momentum correlators are important for PBH formation,
both potentially for the formation criterion and in the probability density for C.
Because PBHs cannot form from just slow roll inflation, we have no reason in general
to expect them to be small. On the numerical side, to our knowledge it has not been
studied how this influences formation and on the theoretical side, there is also not
a lot known about what these correlators are like in theories of beyond slow roll
inflation: this is an active research topic.

The calculations done in this thesis show that any amount of PBHs can be produced
from inflation with an enhancement in the power spectrum on small scales, also
precisely enough for them to be dark matter. This amount is however very sensitive
to the size of the enhancement, and hence on the specific theory. Furthermore, since
we know very light PBHs do not exist in large enough quantities, the physical PBH
spectrum cannot be roughly scale invariant as it is in our model. Still, we have shown
that the amount of PBHs in the universe is also a sensitive probe of the details of
inflation, especially as any evidence of their existence will mean that the single field,
slow roll picture is incomplete. Therefore, we hope that further study in this subject
will allow us to shine more light on the mystery of what makes up the dark matter,
what exactly happened during inflation, or both.
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Chapter 6

Appendices

Appendix I

In this appendix, the following integral used in section 4.1 is solved:

I =

∫ ∞
−∞

dx

x− iε
e−ixCc−g(r)x

2
(6.0.1)

We can do this by noting that it is the Fourier transform of a product of functions,
and using that this is the convolution of the respective Fourier transforms this yields:

I = F(
1

x− iε
e−g(r)x

2
;−Cc) (6.0.2)

= F(
1

x− iε
) ∗ F(e−g(r)x

2
) (6.0.3)

=
1

2π

∫ ∞
−∞

dyF(
1

x− iε
; y − Cc)F(e−g(r)x

2
;−y). (6.0.4)

The first Fourier transform is given by:

F(
1

x− iε
; y − Cc) =

∫
dx

1

x− iε
eix(y−Cc). (6.0.5)

Here we note that the integrand goes to zero as Im(x) goes to ∞, so we can add a
half- circular contour above the real axis and the integral over this will go to zero as
the radius is taken to infinity and y−Cc > 0. Then there is one pole at x = iε inside
the contour, which is a simple pole with residue 1. By the residue theorem we have
that the integral yields 2πi.

If y − Cc < 0, a half-circular contour with radius tending to infinity can be added
below the real axis, and then the integral over this will go to zero. As there are no
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poles enclosed by this contour, by the residue theorem this integral yields zero, so
we get:

F(
1

x− iε
; y − Cc) = 2πiθ(y − Cc). (6.0.6)

Furthermore, by completing the square we have that:

F(e−g(r)x
2
;−y) =

∫
dxe−g(r)x

2−iyx =

√
π

g(r)
e−y

2/4g(r). (6.0.7)

This yields:

I =

∫ ∞
−∞

dyiθ(Cc − y)

√
π

g(r)
e−y

2/4g(r) (6.0.8)

= i

∫ Cc
−∞

dy

√
π

g(r)
e−y

2/4g(r) (6.0.9)

= iπerfc(
C

2
√
g(r)

). (6.0.10)
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Appendix II

In this appendix, we show the calculation of the inverse kernel used in chapter 3.
We prove that for:

K(q, q′; t) =
9

32π2

∫ ∞
0

dk
O(k)

k4
θ(k − q)θ(k − q′)q2q

′2. (6.0.11)

Its inverse is given by:

K−1(q, q′) = −
∫ ∞

0
dk

16π2k4

9O(k)q2q′2
∂qδ(k − q)∂kδ(k − q′) + (q ↔ q′). (6.0.12)

Using that K is symmetric, we have:

∫ ∞
0

dkK(q, k)K−1(k, q′) = −
∫ ∞

0
dkdpdp′

p′4O(p)

p4O(p′)

q2

q′2
θ(p−q)θ(p−k)∂kδ(p

′−k)∂p′δ(p
′−q′).

(6.0.13)
After partial integration of the derivative on the first delta function this yields:

= −
∫ ∞

0
dkdpdp′

p′4O(p)

p4O(p′)

q2

q′2
θ(p− q)δ(p− k)δ(p′ − k)∂p′δ(p

′ − q′) (6.0.14)

using that ∂kθ(p− k) = −δ(p− k). Now the integral over k can be done, yielding:

= −
∫ ∞

0
dpdp′

p′4O(p)

p4O(p′)

q2

q′2
θ(p− q)δ(p− p′)∂p′δ(p′ − q′). (6.0.15)

The integral over p can now be done using the delta function, which gives:

= −
∫ ∞

0
dp
q2

q′2
θ(p− q)∂pδ(p− q′) (6.0.16)

=

∫ ∞
0

dp
q2

q′2
δ(p− q)δ(p− q′) (6.0.17)

= δ(q − q′). (6.0.18)

Which is what we set out to prove.
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Appendix III

In this appendix we derive the following results that are used in chapter 3:∫ ∞
0

dr sin(kr) sin(k′r) =
π

2
[δ(k + k′)− δ(k − k′)] (6.0.19)

and

k′
∫ ∞

0
drr sin(kr) cos(k′r) = −πk

′

2

∂

∂k
[δ(k + k′) + δ(k − k′)]. (6.0.20)

At first, we have to note that these integrals clearly do not converge. However, we can
regularize them by adding to the integrands a term of e−εr with ε > 0 infinitesimal.
This yields for the first integral:

∫ ∞
0

dr sin(kr) sin(k′r)e−εr = −1

4

∫ ∞
0

dr[eikr − e−ikr][eik′r − e−ik′r]e−εr (6.0.21)

= −1

4

∫ ∞
0

dr(eir(k+k′+iε) + eir(−k−k
′+iε) − eir(k−k′+iε) − eir(k′−k+iε)) (6.0.22)

= −1

4
(
eir(k+k′+iε)

i(k + k′ + iε)
+

eir(−k−k
′+iε)

i(−k − k′ + iε)
− eir(k−k

′+iε)

i(k − k′ + iε)
− eir(k

′−k+iε)

i(k′ − k + iε)
)

∣∣∣∣r=∞
r=0
(6.0.23)

= − i
4

(
1

k + k′ + iε
− 1

k + k′ − iε
− 1

k − k′ + iε
+

1

k − k′ − iε
) (6.0.24)

= − i
4

(− 2iε

(k + k′)2 + ε2
+

2iε

(k − k)′2 + ε2
). (6.0.25)

The function ε
π(x2+ε2)

is also known as the Poisson kernel, and it reduces to the delta

function in the limit when ε→ 0. This means we have:

=
1

2
(

ε

(k + k′)2 + ε2
− ε

(k − k′)2 + ε2
) (6.0.26)

=
π

2
(δ(k − k′)− δ(k − k′)). (6.0.27)

Now we derive the second integral, which goes similarly:

k′
∫ ∞

0
drr sin(kr) cos(k′r)e−εr =

k′

4

∫ ∞
0

drr[eikr−e−ikr][eik′r+e−ik
′r]e−εr (6.0.28)
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=
k′

4

∫ ∞
0

drr(eir(k+k′+iε) − eir(−k−k′+iε) + eir(k−k
′+iε) − eir(k′−k+iε)) (6.0.29)

= −k
′

4

∫ ∞
0

dr(
eir(k+k′+iε)

i(k + k′ + iε)
− eir(−k−k

′+iε)

i(−k − k′ + iε)
+

eir(k−k
′+iε)

i(k − k′ + iε)
− eir(k

′−k+iε)

i(k′ − k + iε)
)

(6.0.30)

= −k
′

4
(

1

(k + k′ + iε)2
− 1

(k + k′ − iε)2
+

1

(k − k′ + iε)2
− 1

(k − k′ − iε)2
) (6.0.31)

=
k′

4

∂

∂k
(

1

k + k′ + iε
− 1

k + k′ − iε
+

1

k − k′ + iε
− 1

k′ − k − iε
). (6.0.32)

Using the same identities as before, this yields:

= −k
′

4

∂

∂k
(δ(k + k′) + δ(k − k′)). (6.0.33)
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Appendix IV

In this appendix we derive the result for O in terms of the correlation functions used
in section 3. We look at the density matrix for a Gaussian state, given by

〈
φ|ρ(t)|φ′

〉
= N exp

{
− 1

2

∫
d~xd~y[φ(~x)A(~x, ~y, t)φ(~y) + φ′(~x)B(~x, ~y, t)φ′(~y)

(6.0.34)

− 2φ(~x)C(~x, ~y, t)φ′(~y)]
}
. (6.0.35)

We have from the paper by Koksma, Prokopec and Schmidt[40]:

〈φ̂(~x)φ̂(~y)〉 = F (~x, ~y; t) =
1

2
(AH − C)−1 (~x, ~y; t)′ (6.0.36)

1

2
〈{φ̂(~x), π̂(~y)}〉 = ∂t′F

(
~x, t; ~y, t′

)∣∣
t=t′

=
1

2
Tr
[
ρ̂g(t){φ̂(~x), π̂(~y)}

]
(6.0.37)

= −1

2
(AH − C)−1 ·AH̄(~x, ~y; t) (6.0.38)

1

2
〈{π̂(~x), π̂(~y)}〉 = ∂t∂t′F

(
~x, t; ~y, t′

)∣∣
t=t′

=
1

2
Tr [ρ̂g(t){π̂(~x), π̂(~y)}] (6.0.39)

=
1

2

[
1

2
A† · (AH − C)−1 ·A+A · (AH − C)−1 ·A† − C · (AH − C)−1 · C

]
(~x, ~y; t).

(6.0.40)

And we have the expression for O we need to determine:

O(k, t) =

(
O1(k, t)− O

2
3(k, t)

4O2(k, t)

)
(6.0.41)

For which we have in real space:

2O1 = A+B + 2C − (A−B) · (A+B − 2C)−1 · (A−B)
O2 = 2(A+B − 2C)−1

O3 = −i
[
(A−B) · (A+B − 2C)−1 + (A+B − 2C)−1 · (A−B)

]
.

(6.0.42)

Because ρ is hermitian, we have A† = B and C† = C. This means we have that
A+B = 2AH , and A−B = 2iAH̄ , so these identities become:
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O1 = AH + C + 2AH̄ · (2AH − 2C)−1 ·AH̄
O2 = 2(2AH − 2C)−1

O3 =
[
AH̄ · (2AH − 2C)−1 + (2AH − 2C)−1 ·AH̄

]
.

(6.0.43)

From now on, we assume homogeneity and work in Fourier space, so the operators
diagonalize and are all just k and time-dependent. We can then just divide and
multiply their Fourier transforms. Doing this for the equations for the correlation
functions we find that:

AH − C =
1

2〈ζζ∗〉
(6.0.44)

and

AH̄ = −〈ζπ
∗ + πζ∗〉
2〈ζζ〉

. (6.0.45)

Then in terms of these, the operators become:

O1 = (AH + C) +
〈ζπ∗ + πζ∗〉2

2〈ζζ〉
(6.0.46)

O2 = 2〈ζζ∗〉 (6.0.47)

O3 = −2〈ζπ∗ + πζ∗〉. (6.0.48)

Filling this into equation 5.3.10 yields:

O = (AH + C) =
1

2〈ζζ∗〉
AH + C

AH − C
. (6.0.49)

This fraction is exactly the Gaussian invariant ∆2, which is defined in real space in
[40] as:

∆2(~x, ~y; t) = 〈ζ(~x)ζ(~y)〉〈Π(~x)Π(~y)〉 − 1

4
〈{ζ(~x),Π(~y)}〉2, (6.0.50)

where all the correlators are taken at equal time t. Therefore, we find the following
for O:

O(k, t) =
∆2(~k, t)

2〈ζ(~k, t)ζ∗(~k, t)〉
. (6.0.51)
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