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Hoi

(...), it appears increasinlgy likely that dark matter

is not simple after all.

– S. Furlanetto, 2019 [1]

But it never was!

– T. Prokopec, Journal Club discussion, 2019



Abstract

In this thesis, different conformal extensions of the Standard Model are studied. A gen-
eral framework of quantum and thermal field theory is given to determine the effective
potential up to one-loop order for general models. Also, it is found by studying symmetry-
breaking patterns based on research from grand unified theories, that many models might
have an strongly first-order electroweak phase transition, which can induce strong gravi-
tational wave signals and baryogenesis. By determining multiple constraints on conformal
extensions of the Standard Model from theoretical and experimental considerations, two
new models are introduced: the adjoint fSU(N)cSM and the MfSU(N)cSM. For both the
complete particle mass spectrum is calculated. Also, the already well-studied SU(2)cSM
is considered as a benchmark model for a numerical program, CosmoTransitions. The
program is used to study the electroweak phase transition of the three models and for the
SU(2)cSM new results are found compared to previous work. For the two new models,
unfortunately, no phase transition has been found, but a descriptive analysis is given for
the temperature-dependence of their minima.
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Notation and conventions

Unless mentioned otherwise, the following notation and conventions are used throughout
this thesis:

• All equations are in natural units to improve their readability:

c = ~ = kB = 1 (1)

• For renormalization procedures, the MS-scheme is used. Furthermore, any diver-
gent integrals are solved by dimensional regularization.

• Gauge freedom is fixed by working in Landau gauge. This means no ghosts have
to be taken into account.

For readability purposes, many recurring terms are abbreviated after their first ap-
pearance in this thesis. Here an overview of all abbreviations used throughout this thesis
are given:

• adjoint fSU(N)cSM: Conformal extension of the Standard Model with a SU(N)
gauge group, a scalar under the adjoint representation of this gauge group and
Dirac fermions, as defined in Section 4.3

• BSM: Beyond the Standard Model physics

• CKW-matrix: Cabibbo-Kobayashi-Maskawa matrix

• CMB: Cosmic Microwave Background

• CP: Charge Parity

• CW-mechanism: Coleman-Weinberg mechanism

• EWPT: Electroweak Phase Transition

• GUT: Grand Unified Theory

• HTL: Hard Thermal Loop

• IR/UV: Infrared and Ultraviolet

• ITF: Imaginary Time Formalism

• LISA: Laser Interferometer Space Antenna

• MfSU(N)cSM: Conformal extension of the Standard Model with Majorana fermions
and a SU(N) gauge group, as defined in Section 4.4

• RSB: Radiative Symmetry breaking

• RTF: Real Time Formalism

• SNR: Signal-to-Noise Ratio

• SGWB: Stochastic Gravitational Wave Background
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2 CONTENTS

• (c)SM: (Conformal) Standard Model

• SSB: Spontaneous Symmetry Breaking

• TFT: Thermal Field Theory

• VEV: Vacuum Expectation Value

As a last remark, this thesis is written at the level of second-year master students.
Therefore a general understanding of quantum field theory is assumed, as well as a basic
knowledge of cosmology.



Chapter 1

Introduction

With the experimental measurement of the Higgs boson in 2012 [2–4], the complete par-
ticle zoo of the Standard Model (SM) has been found. The Higgs boson gives all the
other SM particles their masses through spontaneous symmetry breaking (SSB) via the
Brout-Englert-Higgs mechanism [5, 6]. This means there are no free parameters in the
SM, except for the Higgs mass mh = 125.06 GeV and its vacuum expectation value
v = 246 GeV. Yet this raises the question why these parameters exactly have these val-
ues? Is there some underlying process, which sets the energy scales, or is there perhaps
something special with this particular energy scale? The SM is not able to provide any
answers, as all predicted particles are found and all experiments agree perfectly with the
SM predictions. So one is naturally urged to look beyond the SM, towards new physics,
in search of answers.

Perhaps the most intriguing mystery in the SM is the hierarchy problem. It states
that it is extremely unlikely that the Higgs mass is as light as it is under influence of
quantum corrections. Since the SM is ultra-violet (UV) complete and renormalizable, it
can be valid to very high energies. So no new physics is needed up to the Planck scale
(∼ 1018 GeV), but it is hard to believe that up to this scale the Higgs’ bare mass exactly
cancels the quantum corrections, both of order 1018 GeV, up to a factor of ∼ 100 GeV.
One could compare this to putting an ice cube in the oven and expecting that the 1020

hot air particles exactly bounce off each other in such a way, that they do not impart
thermal energy on the ice cube, leaving it frozen. This ’fine-tuning’ seems unnatural and
therefore one would like to change the SM in such a way that there is no need for it.

By getting rid of the bare mass altogether by making the SM conformally invariant
(i.e. no preferred mass scales in the Lagrangian), one clears the need for fine-tuning
and protects the Higgs mass from quantum corrections [7]. For this, one needs a mech-
anism to dynamically generate the required mass scale of the Higgs boson. Currently,
there are two main fields of interest to provide this mechanism. First of all, supersym-
metry breaking could generate a mass scale by introducing supersymmetric partners to
all the SM particles. However, experiments, including the measurement of the Higgs
mass, have severely constrained supersymmetric models [8]. The second mechanism that
could account for the generation of the Higgs mass scale is radiative symmetry breaking
(RSB) [9]. Conformal models can produces mass scales radiatively through inclusion of
higher-order quantum-loop corrections, which break the symmetry of a conformal model.

The most minimalistic conformal model is the conformal SM (cSM) [7, 9]. The cSM
could generate the Higgs mass via RSB and hence no fine-tuning is needed. However,
this is only possible for a large self-coupling of the Higgs field, which in turn leads to
troublesome Landau poles below the Planck scale for the running coupling constant of
the top quark [10, 11]. So what is needed are conformal extensions of the SM, which can
generate all known SM masses, but do not produce Landau poles. Multiple models have
been proposed in recent years: extending the SM with a real or complex scalar [12, 13],

3



4 CHAPTER 1. INTRODUCTION

multiple scalars [14], gauge groups [10, 15–18] and fermions [14, 19, 20]. These mod-
els can also potentially solve other problems, such as dark matter, neutrino masses and
baryogenesis. How conformal extensions can address these problems, will be discussed
in Chapter 3.

If one would extend the cSM to include more particles in the electroweak sector (i.e.
coupled to the Higgs boson, but ’hidden’ from the rest of the SM), RSB becomes pos-
sible. The natural question to ask next is when this radiative symmetry-breaking has
taken place. Kirzhnits [21, 22] was the first to recognize that symmetry restoration of
the electroweak theory must have taken place in the early Universe for high enough tem-
peratures. The electroweak phase transition (EWPT) from the symmetric phase, where
the Higgs VEV 〈h〉 = 0, to the broken phase with 〈h〉 6= 0, must have happened at
temperatures of the order of the electroweak scale ∼ 100 GeV. The interesting property
of conformal extensions is that the EWPT is generally a very strong first-order phase
transition (see Chapter 5), which could be a source of baryogenesis [23].

Besides baryogenesis, first-order phase transitions can also source gravitational wave.
At the critical temperature Tc these phase transitions have the symmetry-breaking and
symmetric minima coexisting as degenerate minima. When the Universe cools down fur-
ther, the symmetry-breaking minimum will become the global minimum, but the system
can be captured in the symmetric state (false vacuum) due to a barrier between the two.
Through quantum or thermal fluctuations the system can tunnel to the true vacuum
through the barrier. As these fluctuations have a statistical nature, not everywhere in
the false vacuum this tunneling will happen at the same time. Bubbles of true vacuum
will form and expand into the false vacuum, ultimately taking over the whole Universe.
Collisions of these bubbles are very energetic processes, as they contain the potential
energy between the true and false vacuum. This energy is transferred into heat and,
more interestingly, gravitational energy. The gravitational energy is radiated away in
the form of gravitational waves. As gravitational waves are not hindered by anything
in spacetime, they will propagate through the whole Universe, creating a gravitational
wave background.

This leads to another incentive to study conformal extensions. Since a few years, it is
experimentally possible to measure gravitational waves directly with the LIGO-detector.
Unfortunately, the peak sensitivity frequency range of LIGO is several orders of magni-
tude larger than the expected signal from an electroweak phase transition in the early
Universe, which is of the order of mHz. Future detectors are being constructed and the
most promising one is the Laser Interferometer Space Antenna (LISA) [24]. LISA is a
space-based gravitational wave detector in free-fall around the Sun, which measures de-
formations of space-time by observing interferometry of laser signals sent through space
over a distance of 2.5 million kilometers. This makes it sensitive in the same frequency
range as the expected gravitational wave signals from phase transitions in the early Uni-
verse [25–27].

The technological feasibility of LISA has already been demonstrated by LISA Pathfinder,
a smaller test version launched in 2015. LISA Pathfinder exceeded all expectations, as it
was originally designed to have a strain sensitivity an order of magnitude smaller than
that from LISA, but has exceeded the requirements for LISA on the entire frequency band
of LISA. These findings along with the first direct measurements of gravitational waves
have induced a renewed interest in conformal extensions, as they could be experimentally
measurable by LISA, which is scheduled to launch in 2034.
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As it stands, conformal extensions are a very promising field of research for both
theoretical and experimental reasons. However, if one wants to measure in 2034, which,
if any, conformal extension is the one that correctly describes nature, more knowledge
is needed on the signatures of different conformal extensions. Do they depend on the
particle spectrum of the model? And is there a way to discriminate between different
models? Are all extensions physically possible and can they solve other open questions
in physics, such as dark matter or baryogenesis?

In this thesis, a general attempt is made to analyze how conformal extensions can behave.
For this, first a solid theoretical groundwork of quantum and thermal field theory will
be given in Chapter 2. Next, in Chapter 3, theoretical and experimental constraints on
the particle spectra that might arise, are considered. Then in Chapter 4, three models
are introduced. First, the SU(2)cSM, which has been studied by preceding master theses
in the same Cosmology group[28, 29], is introduced as a benchmark model for numeri-
cal calculations. Then two new models are introduced, based on the considerations of
the previous two chapters, namely the adjoint fSU(N)cSM and the MfSU(N)cSM. These
models are analyzed in Chapter 6 with the numerical program CosmosTransitions [30],
which had not been used on conformal extensions yet. To better analyze these models,
first in Chapter 5 the EWPT and bubble nucleation is discussed in more technical detail.
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Chapter 2

Field theory tools for building
conformal extensions of the SM

The electroweak phase transition is described by its order parameter, the vacuum expec-
tation value (VEV) of the scalar field. In order to describe the dynamics of the VEV,
one can treat it as a classical field and write down an classical potential. This potential
can be improved by including quantum effects up to a certain loop order. As the phase
transition must have taken place at high temperatures in the early Universe, thermal ef-
fects must also be taken into account. The effective potential contributions for quantum
corrections are discussed in Section 2.1. Then it is explained how RSB can occur through
these quantum corrections in Section 2.2. For a discussion of the thermal corrections,
a theoretical introduction to Thermal Field Theory is given and the general one-loop
thermal corrections are given in Section 2.3.

2.1 Quantum corrections to the effective potential

To see how RSB can occur in a symmetric theory, first the effective one-loop potential
is needed. RSB can happen solely due to quantum fluctuations, so these are considered
first. The thermal fluctuations make the symmetry-breaking temperature dependent.
Calculation of quantum corrections to the effective potential can be done with the method
of the Effective action [31]. This has been done in detail in previous master theses [28, 29],
so here only a heuristic treatment is given. By varying the action and only considering
terms which are up to quadratic in the fluctuations, one can find the quantum one-loop
corrections.

V
(1)
eff (φ) =

i

2

∫
ddk

(2π)d
Tr log ∆−1(φ; k) (2.1)

here ∆−1(φ; k) is the inverse propagator, which depends on the particle species, which
can be scalars, fermions or gauge bosons. By using the MS-scheme to renormalize the
theory and working in Landau gauge, this can also be written as in Equation (2.2). The
result is generally given for all species of particles. For the complete derivation of the
effective potential using path-integral formalism for the different particle types, see [32].

V (1)(φ) =
1

64π2

∑
a

ξam
4
a(φ)

(
log

m2
a(φ)

µ2
− χa

)
(2.2)

ξa =


1 scalars

−4 Dirac fermions

−2 Majorana fermions

3 vector bosons

χa =


3

2
scalars + Dirac/Majorana fermions

5

6
vector bosons

(2.3)

7
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The constant ξa comes from the degrees of freedom of the particle species and the
minus sign from the fact that fermionic fields are treated as Grassmann variables. The
second constant χa is dependent on the renormalization scheme and accounts for the
counterterms needed to renormalize the theory. The mass terms m2

a are the tree-level
field-dependent mass eigenvalues of the mass matrix M2, which appears in the propaga-
tor:

∆−1 = k2 +M2 (2.4)

The mass matrix consists of mass terms from perturbative corrections to the prop-
agator and from tree-level mass terms in the Lagrangian. The latter is in this thesis
not possible, as classically conformal models do not have dimensionful (and thus mass)
terms in the tree-level potential. The perturbative corrections are discussed in more de-
tail in Section 2.3.2 for the thermal corrections and in the next section for the quantum
corrections.

2.2 RSB through quantum loop corrections

In models which have a classical scale symmetry (i.e. no tree-level mass terms), mass
scales can still dynamically be generated by quantum higher-order loop corrections
through radiative symmetry breaking or the Coleman-Weinberg mechanism (CW-mechanism)
[9]. The advantage of the CW-mechanism is that one does not have to manually insert
a mass, which is in line with the naturalness most theoretical physicists aim for [7]. The
symmetry gets broken by quantum loop effects and the scalar condenses to its VEV. So
this is not the same as, but definitely related to, the Brout-Englert-Higgs mechanism
[5, 6], which explains how the SM gauge bosons get their mass via EWSB [33–35]. Ra-
diative symmetry breaking can thus be used in extensions of the SM to account for the
VEV and mass of the SM-Higgs.

As there is no better way to explain RSB than by an example, massless scalar quantum
electrodynamics is considered just as in the original paper by Coleman and Weinberg.
[9]1 It will show how a tree-level conformal theory can symmetry-break to a preferred
mass-scale by radiative corrections.

2.2.1 RSB in massless scalar quantum electrodynamics

Perhaps the most simple theory which has radiative symmetry breaking, is massless
scalar quantum electrodynamics with a complex scalar field φ = φ1 + iφ2 coupled to
U(1) electromagnetism with coupling constant e. The bare mass of the scalar is set to
zero to give the Lagrangian:

L = −1

4
F 2
µν +

1

2
|Dµφ|2 −

λ

4!
|φ|4 + counterterms (2.5)

It can be easily seen that the minimum of the potential V ∼ |φ|4 is at (φ1, φ2) = (0, 0).
Now one can start to include quantum loop-corrections to compute the effective potential
Veff. Up to one-loop, one has first the tree-level diagram with four external φ’s and then
one-loop diagrams with internal φ1, φ2 and photon loops and 2n external scalar lines.

This yields the following effective potential with the terms in order of how they were
mentioned in the previous sentence as a function of the classical field φc:

Veff =
λ

4!
φ4
c + I(

1

2
λφ2

c) + I(
1

6
λφ2

c) + 3I(e2φ2
c)−

1

2
C1φ

2
c −

1

4!
C2φ

4
c (2.6)

Here I(x2) is a standard integral, which arises naturally from considering n-point
functions [31]. It can be solved using a Wick rotation and a cutoff term Λ:

1They also consider massless φ4-theory. However, as they also note, this theory only has symmetry-
breaking as an artefact of the perturbative expansion. Higher-order expansions would erase the minimum.
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Figure 2.1: All the relevant diagrams for up to one-loop quantum corrections of the
effective potential. The first line has the tree-level interaction and loop-diagrams with
scalar-loops. The second line shows the same for loop-diagrams with photon-loops. All
scalar lines can represent either φ1 or φ2. Picture adjusted from [36].

I(x2) = i

∫
d4k

(2π)4

∞∑
n=1

1

2n

(
x2

k2 + iε

)n
= − i

2

∫
d4k

(2π)4
ln

(
1− x2

k2 + iε

)
=
x2Λ2

32π2
+

x4

64π2

(
ln
x2

Λ2
− 1

2

)
(2.7)

This is similar to Equation (2.1), which is what one would expect. The expression is still
logarithmically and quadratic divergent. So to cancel the divergences, the counterterm
constants C1 and C2 are fixed. By requiring that the second derivative of Veff must be
zero for some value φc = M , C1 is fixed. Similarly, one can require that:

d4Veff

dφ4
c

∣∣∣∣
φc=M

= λ (2.8)

Fixing C1 and C2 in this way, will cancel the divergent terms from the integrals I(x)
for almost all values of M . However, the value M = 0 would lead to an IR-divergence due
to the logarithmic term. So one needs to choose an arbitrary mass scale φc = M , as there
is no natural mass scale in this model. In conclusion, starting from a conformal model
without any preferred mass scales, due to quantum loop-corrections one will end up with
a mass scale in the theory. The precise value of this scale is just a matter of choice as
one can reparametrize the coupling constant λ, which is just the renormalization group2.

If one now chooses M = 〈φ〉 with 〈φ〉 the minimum of the effective potential, the following
effective potential is found after rewriting it using renormalization conditions:

Veff =
3e4

64π2
φ4
c

(
ln

φ2
c

〈φ〉2
− 1

2

)
(2.9)

Veff is plotted along with the tree-level potential in Figure 2.2. This example thus
clearly illustrates the way RSB can take place, but it is not the full story. It is also
possible to calculate one-loop corrections from thermal fluctuations via thermal field
theory. These corrections can induce symmetry breaking at high enough temperatures
by introducing a mass dependence on temperature, which would imply a phase transition.
So the corrections discussed in this section form the zero-temperature effective potential
(along with the tree-level potential), whereas the next section will discuss the finite-
temperature effective potential.

2So no real new dimensionful parameter is added, it should be viewed more like defining the unit of
mass, which is called dimensional transmutation.
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Figure 2.2: Plot of the tree-level potential (blue) and the effective potential Veff (orange).
It is clear that symmetry breaking takes place and the minimum changed from φc = 0
to φc = 〈φ〉. Both potentials have been rescaled in order to exemplify the symmetry
breaking.

2.3 Thermal corrections to the effective potential

Already in 1972, it was found that spontaneously broken symmetries can be restored at
high temperatures [21]. This means that if one wants to study symmetry breaking in
the early Universe, one can not use the standard quantum field theory, which is valid in
the vacuum, but one needs a modification in the presence of a thermal bath. The field
theory of interest for this is thermal field theory (TFT).3

2.3.1 Thermal Field Theory

TFT is used to describe large sets of interacting particles in a thermodynamical environ-
ment. These interactions include non-Abelian gauge theories, which are present in the
SM and possibly in extensions of the SM. As has been mentioned, quantum field theo-
ries can exhibit phase transitions and TFT is the tool to describe them. TFT uses the
standard path-integral formalism, but includes temperature as a complex time variable
in the Boltzmann factor (t = iτ = −iβ = −i/T ) via a Wick rotation. The resulting
integral over time can be solved with two different formalisms.

The first formalism is the imaginary-time formalism (ITF), first introduced by Mat-
subara [45], which sums over the Matsubara frequencies from the Fourier transform. All
fields now become functions of imaginary time. The advantage of this formalism is that
one can use the known Feynman rules with only slight modifications. The disadvantage
is that observables, which are real time, can only be computed by doing an analytical
continuation to the the real time axis.

The other approach is real-time formalism (RTF), where one solves the integral by choos-
ing a contour in the complex plane and use contour integration. This yields everything
directly in real time, but introduces 2×2-matrices as propagators, making the Feynmann
rules more complicated. In this thesis, ITF is used to find the thermal contributions to
the effective potential, as these require the calculations of multiple Feynmann diagrams.

Just as for the zero-temperature effective potential, one-loop thermal corrections can
be found by varying the action. This is the same quantity as in Equation (2.1):

V (1)(φ) =
1

2(2π)4

∫
d4k log[k2 +m2(φ)] (2.10)

Here k = (~k, k4) is the four-momentum in the loop. The integral over imaginary time
is now rewritten into a sum over Matsubara frequencies (ωn = 2πnT for bosons and

3For further reading, one can turn for a general discussion to [37–39] and a discussion in the context
of phase transitions (in the early Universe) to [23, 40–44]
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ωn = (2n+ 1)πT for fermions).∫
dk4

2π
f(k4)→ T

∞∑
n=−∞

f(k4 = iωn) (2.11)

The integral is now split into a zero-temperature and finite-temperature contribution.
The zero-temperature contribution is already discussed in the previous section. The sum
over Matsubara frequencies can be evaluated by replacing it with a standard contour in-
tegral and then solving both the contour integral and the angular coordinates, leaving the
integration over the radial component of the momentum k. Here the radial momentum
is rescaled to k → k/T , which yields an extra factor of T 3:

V
(1)
T (φ) =

T 4

2π2

∫ ∞
0

dk k2 log[1− e−
√
k2+m2(φ)/T 2

] (2.12)

Generalizing this to different types of particles and introducing the notation JB,F for the
thermal functions, the thermal part of the effective one-loop potential becomes:

V
(1)
T (φ) =

T 4

2π2

∑
a

naJa

(
m2
a(φ)

T 2

)
(2.13)

where the thermal functions are defined as:

JB/F (y2) =

∫ ∞
0

dxx2 log[1∓ e−
√
x2+y2 ] (2.14)

Common expansions for the thermal functions JB and JF are the high-temperature limit
(m(φ)/T � 1), which can be analytically computed:

JB(y2) = −π
4

45
+
π2

12
y2 − π

6
y3 − 1

32
y4 log

y2

aB

− 2π7/8
∞∑
m=1

(−1)m
ζ(2m+ 1)

(m+ 2)!
Γ(m+ 1/2)

(
y2

4π2

)m+2

(2.15)

JF (y2) =
7π4

360
− π2

24
y2 − 1

32
y4 log

y2

aF

− π7/2

4

∞∑
l=1

(−1)l
ζ(2l + 1)

(l + 1)!
(1− 2−2l−1)Γ(l + 1/2)

(
y2

π2

)l+2

(2.16)

where aB = 16aF = 16π2e3/2−2γE

From the bosonic thermal function, one can already see that for high temperatures, there
will be a cubic contribution to the potential. This is important, since a cubic term can
generate a barrier between two minima, which results in a first-order phase transition.
For certain values of the scalar fields, it is possible that there are imaginary terms in
the effective potential, due to this cubic term. This has a physical meaning, as the
imaginary terms indicate a physical instability in the model. The imaginary part of the
effective potential indicates thus that the system is not in a thermal equilibrium and that
one should not use the one-loop approximation, but the full non-equilibrium formalism
[46]. Combining Equations (2.2) and (2.13) now yields all the one-loop corrections to the
effective potential.

2.3.2 Daisy resummation

For the thermal part the one-loop expansion is not the complete story as was already
recognized directly during the first papers on the effective thermal potential [22, 47].
Perturbativity breaks down for high temperatures, where higher order loops contribute
as much as or more as the tree-level and one-loop terms, due to infrared (IR) diver-
gences (the zero-momentum modes ω0). As fermions do not have zero frequency modes
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(ωn = (2n + 1)πT 6= 0 ∀n), they do not suffer from these IR divergences. For high
temperatures, the IR-divergent diagrams need to be resummed. This procedure is called
Daisy resummation, since the problematic divergent diagrams are of the (super)Daisy
class (see Figure 2.3).

Figure 2.3: Schematic representation of the Feynman diagrams belonging to the daisy
(left) and superdaisy (right) class. The name originates from their similarity to the daisy
flower. Originally, these diagrams were first named ring diagrams [36].

The Daisy resummation can be done in two ways. Both rely on calculating the one-
loop self energy Π(m2(φ), T ) at finite energy in the infrared limit, which is given by:4

Π(m2(φ, T ) =
∂2

∂φ2

(
V (0)(φ) + V (1)(m2(φ)) + V

(1)
T (m2(φ), T )

)
(2.17)

The main difference between the two methods is how to implement the resummed
propagator as a mass correction back into the effective potential:

∆resum(φ, T ) =
1

P 2 −Π(m2(φ), T )
(2.18)

The Arnold-Espinosa method

Historically, the first method to calculate the Daisy correction is the Arnold-Espinosa
method [41]. This method consists in replacing the mass m2(φ) by an effective mass
m2(φ, T ), which is now also dependent on temperature T via the self-energy Π:

m2(φ, T ) = m2(φ) + Π(m2(φ), T ) (2.19)

This replacement must only be done at the level of the m3-terms in the high-temperature
expansions as given in Equation (2.15). These terms namely originate from zero-frequency-
(ω0-)modes, which are the cause of the IR-divergences [43].5 One can calculate this

through and ends up with effectively adding an extra term V
(1)
daisy to the effective poten-

tial:

V
(1)
daisy(φ, T ) = − T

12π

[
m3(φ, T )−m3(φ)

]
(2.20)

However, the validity of this method was quickly questioned [48] for higher-order correc-
tions and more complicated theories, which included non-Abelian gauge symmetries.

Parwani method

The second method is the Parwani method [49], which will be used in this thesis. It
determines thermal contributions from the pole of the effective gauge or scalar propagator
1/(P 2 −Π(p0, ~p))6. The induced thermal mass is then equal to the real part of this pole
at zero momentum:

4In this case, taking the infrared limit corresponds to calculating the self-energy at zero external
momentum, which is calculated by taking the second derivative of the one-loop effective potential.

5The IR-divergence comes from zero-momentum in the loops for zero-frequency modes
6Here Pµ = (p0, ~p) is the external 4-momentum
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m2
thermal = Π0 (2.21)

so that m2
eff = m2 + m2

thermal. The effective mass is then swapped in for all mass
terms in the effective potential (Equations (2.2) and (2.13)). The thermal self-energy
also ensures the renormalizability of the thermal effective potential as the resummed
propagator in Equation (2.18) is only UV-divergent at zero temperature, which is already
handled by the counterterms of the zero-temperature effective potential.

Thermal self-energy

Now the last, but definitely not least, step is to actually determine the self-energy. Cal-
culating the self-energy up to any order is in ITF similar to the standard perturbative
approach for self-energy in quantum field theory of T = 0. However, now one has to
identify all diagrams with IR divergences that contribute to the propagator.

Figure 2.4: The resummed scalar propagator in terms of higher-order self-energy correc-
tions.

These diagrams will have vertices where all corresponding momenta are soft, which
requires a resummation and inclusion of an effective vertex and propagator. This is called
the hard thermal loop effective theory (HTL effective theory), which seems counterintu-
itive. The name comes from the assumption that the loop momenta of the resummed
diagrams are hard, otherwise perturbativity will still break down. As only one-loop is
considered, the resummed vertex is not needed in this thesis and one only needs to fo-
cus on the propagator. Vertices will have always one or more hard momenta from the
resummed propagators.

A general discussion of calculating scalar, gauge boson and fermion propagators can
be found in [50]. However, for this thesis only the self-energy is needed to one-loop.
In general, the one-loop self-energies can now be calculated using ITF for scalars and
gauge bosons. The self-energies will depend on the model as a fermion loop will give a
different contribution than a scalar loop. To explicitly calculate all possibilities has no
higher purpose for this thesis, so only the general final contributions from loops to the
self-energy are given here. The explicit calculations for the scalar self-energy are given
in Appendix B and the one for the gauge bosons can be found in [42].

Figure 2.5: The six contributing one-loop diagrams to the gauge propagator. First, the
3- and 4-point gauge-interactions in (a) and (b). Three contributions from scalar loops
in (c), (d) and (e), where the latter is a ghost-loop. Lastly, a fermion-loop in (f). Picture
taken from [42].

All possible one-loop diagrams contributing to the scalar self-energy are given in
Figure B.1. They lead to the following general formula for the thermal mass of a scalar
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field:

m2
s,thermal =

6λ+ 3g2C2(rs) +Ncλ
2
f

12
T 2 (2.22)

where λ is the self-coupling constant of the scalar field, g the coupling to the gauge
bosons, C2(rs) the quadratic Casimir invariant for the representation rs of the scalar field
and finally Nc the number of colours of the fermion with coupling λf . Note that in models
with more than one scalar, not only self-interactions must be taken into account, but also
interactions between the scalars. This is just recounting possible Wick contractions and
adding a similar term to Equation (2.22). For the gauge boson self-energy Πµν with
gauge coupling g, one can draw six different possible one-loop Feynmann diagrams as
shown in Figure 2.5. Diagrams (a),(b) and (e)7 yield a term proportional to the quadratic
Casimir invariant C2(rGB), where now rGB is the representation of the gauge bosons.
The quadratic Casimir invariant depends on the gauge group and the representation and
is for a general SU(N) gauge group given by:

C2(r) =


N2 − 1

2N
r = fundamental representation

N r = adjoint representation

(2.23)

The scalar-loop diagrams (c) and (d) depend on the number of scalars Ns and likewise
the fermion-loop diagram (f) depends on the number of fermions Nf

8. Together they
yield:

m2
GB, thermal =

g2T 2

6

(
2C2(rGB) +

Nf
2

+
Ns
4

)
(2.24)

where a factor of two is added for the gauge boson contributions, compared to [42].9

Note that in the IR-limit, transverse polarizations of the gauge bosons have no thermal
mass, so only longitudinal degrees of freedom receive a thermal mass contribution. This
is directly derivable from the expression of the momentum-dependent gauge self-energy
(Equation (2.24) is in the soft-limit, where it is independent of external momentum) [50]:

ΠT = m2
GB, thermalx[(1− x2)Q0(x) + 1] (2.25)

ΠL =
m2

GB, thermalK
2

k2
(1− xQ0(x)) (2.26)

where Q0(x) is the Legendre function of the second kind and x ≡ k0
k . In the soft-limit

x→ 0, so ΠT = 0 and ΠL = m2
GB, thermal as expected. Equations (2.22) and (2.24) can be

checked for the values of the SM as calculated in [36]. As there are many different defini-
tions used in papers for values as Nf or Ns, Equations (2.22) and (2.24) agree with the SM
values, if one uses the following values. Nf = 12 = (spin)(colour)(particle/anti-particle)for
the top-quark, Nc = 3, Ns = 4 as the complex Higgs doublet has four real degrees of
freedom and C2(rs) = 3

4and C2(rGB) = 2 for the SU(2) gauge bosons and C2(rs) = 1
4

for U(1) . These thermal contributions to the SM particles are also given in Appendix A.

Now all the field theoretical tools are given and one can determine the effective potential
of any model by combining Equations (2.2) and (2.13) with the tree-level potential from
the Lagrangian and including the Daisy resummed thermal masses:

Veff(φ) = V (0)(φ) + V (1)(φ) + V
(1)
T (φ, T ) (2.27)

However, there are constraints on what one could do. In the next chapter, numerous
constraints are discussed, which will help with building conformal extensions of interest.

7Diagram (e) in Figure 2.5 is a ghost-loop diagram, which is gauge dependent. It is gauge fixed away
in the final result, but for completeness the diagram is shown here.

8Note that this is not equal to the number of colours of the fermion Nc.
9Equations (2.22) and (2.24) have been checked by comparing them to multiple explicit values in

literature [17, 36, 41, 49] and were correct apart from this factor of two, which was consistently incorrect.
Before the finish of this thesis, the possible mistake in [42] was not found.



Chapter 3

Theoretical and experimental
constraints

In the previous chapter, the field theoretical backgrounds need to build conformal ex-
tensions of the SM have been discussed. However, there do not seem to be any rules on
what a conformal extension maker could put in these models. Could he or she just add
any type of particle in any quantity and let it interact with other particles in whatever
way the maker would want them to interact? The logical answer is no, there are multiple
different aspects one needs to keep in mind when constructing a conformal model. In
this chapter, several of these constraints from both experimental as theoretical fields of
physics are discussed.

3.1 Relativistic degrees of freedom

One of the most important theoretical predictions by the most popular cosmological
model, ΛCDM [51], is the existence of a relativistic energy component [52] at the time
of the CMB. The radiation energy density of the Universe (besides the background of
CMB photons) at decoupling is given by:

ρrad = ργ

(
1 +

7

8

(
4

11

) 4
3

Neff

)
(3.1)

where ργ is the energy density of the CMB photons with a a temperature of Tγ = 2.728
K today. The free parameter Neff is the effective number of relativistic degrees of free-
dom. The SM predicts the value to be Neff = 3.046 from the three neutrino flavours as
neutrinos were still relativistic at the time of decoupling. The slight deviation from ex-
actly three is due to neutrino flavour oscillations and some uncertainty from the fact that
neutrinos likely did not decouple from the plasma instantaneously in the early Universe
[53]. If one would introduce new particles, it should be checked if any are still relativistic
(i.e. massless or very light) at time of decoupling. This would namely mean they would
affect the expected value of Neff.

The effective number of relativistic degrees of freedom can be experimentally found from
observations of temperature and polarization anisotropies of the CMB. Current Planck
data have found increasinlgy constrained values of Neff = 3.15± 0.23 for data up to 2015
[54] and even Neff = 2.99±0.17 from data up to last year [53]. These values are consistent
with the SM value and leave little to no room for any new particles contributing to Neff.

3.2 CP-violation and baryogenesis

One of the bigger questions of cosmology is the asymmetry between baryonic matter and
anti-matter with η = (ηB−ηB̄)/ηγ = 6.176±0.148 ·10−10 [55]. It is not possible that the

15
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Universe started with a net number of baryons, as inflation predicts that this would be
completely wiped out after a period of inflation. So apparently there has been a period
in the early Universe1, which allowed for baryogenesis, the net production of baryons. It
was found by Sakharov that baryogenesis can occur in an Universe with baryon number
equal to zero if three conditions hold [57]:

1. There must be reactions that change baryon number B

2. Charge (C) and charge-parity (CP) violation

3. Departure from thermal equilibrium

Violation of baryon number is obviously needed to produce more matter than anti-
matter. However, C-symmetry would balance this with processes which produce more
anti-matter than matter. Likewise, CP-symmetry would produce equal numbers of left-
handed baryons as right-handed anti-baryons (and vice-versa). Lastly, thermal equilib-
rium has CPT-symmetry, which also could reverse any effects from CP violation. So one
needs to be away from thermal equilibrium to break CPT-symmetry.

Even though the SM is able to fullfill all conditions, the asymmetry it can theoretically
produce is too small to explain the existing amount of baryonic matter [58, 59]. The
first condition can be fullfilled during an electroweak phase transition, however the Higgs
mass is too small to induce a strong enough first-order transition in the SM. Furthermore,
the amount of CP-violation is also not enough. This means that beyond the SM physics
is needed to account for the measured asymetry. And as will be seen in Chapter 5,
conformal extensions of the SM naturally possess strong first-order electroweak phase
transitions.

An straightforward example of how CP-violation can occur, can be seen from the follow-
ing Yukawa interaction [60]:

−LY ukawa = Yijψ̄LiφψRj + Y ∗ijψ̄Rjφ
†ψLi

A CP-transformation would look this:

CP (ψ̄LiφψRj) = ψ̄Rjφ
†ψLi

This means that LY ukawa is CP-invariant if Yij = Y ∗ij . So in this case one can introduce
”spontaneous CP-violation” by assuming a complex phase in Yij . This process, for
example, is also the reason of the small CP-violation in the CKM matrix in the SM [61]
and can also be introduced in new conformal extensions.

3.3 Vacuum stability

Any new scalar potential that is introduced for new physics beyond the Standard Model
(BSM), must be bounded from below or in other words, vacuum stability is necessary up
to the Planck scale. If the potential would not be bounded from below, a scalar affected
by this potential could never find a lowest stable energy state. For a single scalar (e.g.
the Standard Model Higgs boson) one can easily deduce the bounds by themselves. A
quartic coupling λφ4 is not bounded from below for λ < 0. However, for multiple scalars
interacting with each other in a quadratic form λabφ

2
aφ

2
b , this is not always obvious. In

this thesis, only conformal models are considered, so there are only quartic terms in the
scalar potential, but terms with dimensionful couplings could have been ignored anyway,
since these terms are negligible compared to the quartic terms in the limit of large field
values [62].

1It can be shown that the asymmetry must have existed already at early times (T & 40MeV), see e.g.
[56] for a discussion.
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As it turns out, the question of boundedness from below can be reduced to demand-
ing that the matrix λab is copositive2 [62, 63]. For 2× 2- and 3× 3-matrices, the criteria
for copositivity can be explicitly found. The following matrices are of interest for the
models that will be introduced in Chapter 4.

:

A2×2 =
1

8

(
2λ1 λ2

λ2 2λ3

)

A3×3 =
1

8

2λ1 λ2 0
λ2 2λ3 λ4

0 λ4 2λ5


The conditions for copositivity for A2×2 are:

λ1 ≥ 0, λ3 ≥ 0

λ2 ≥ −2
√
λ1λ3

(3.2)

and for the three-dimensional case A3×3:

λ1 ≥ 0, λ3 ≥ 0, λ5 ≥ 0

λ2 ≥ −2
√
λ1λ3√

λ1λ5 ≥ 0 (3.3)

λ4 ≥ −2
√
λ3λ5

2
√
λ1λ3λ5 + λ2

√
λ5 + λ4

√
λ1+

√
(λ2 + 4

√
λ1λ3)(2

√
λ1λ5)(λ4 + 2

√
λ3λ5) ≥ 0

The last statement is a simplification of either of the following two inequalities being
true:

2
√
λ1λ3λ5 + λ2

√
λ5 + λ4

√
λ1 ≥ 0

detA3×3 = 8λ1λ3λ5 − (λ2
2λ5 + λ2

4λ1) ≥ 0
(3.4)

The conditions in Equations (3.2) and (3.3) will be used in Chapter 6 to determine
appropriate values for the coupling constants for the models that will be introduced in
Chapter 4. As a taster, the SU(2)-case for one of the models (the adjoint fSU(N)cSM
in Section 4.3) is already given, as this is slightly different than the A3×3, which is
applicable to the MfSU(N)cSM that is introduced in Section 4.4. The scalar potential
for the adjoint fSU(N)cSM looks in matrix-form as:

A3×3 =
1

8

2λ1 λ2 λ2

λ2 2λ3 + 2λ4 2λ3

λ2 2λ3 2λ3 + 2λ4

 (3.5)

This gives the following copositivy constraints:

λ1 ≥ 0, λ3 + λ4 ≥ 0

λ2 ≥ −2
√
λ1(λ3 + λ4)

λ3 ≥ −|λ3 + λ4| (3.6)

2|λ3 + λ4|
√
λ1 + 2λ2

√
λ3 + λ4 + 2λ3

√
λ1

+|(λ2 + 2
√
λ1(λ3 + λ4)|

√
2λ3 + 2|λ3 + λ4| ≥ 0

2Copositive is short for conditionally positive and a copositive matrix A is defined by xTAx ≥ 0 for
any non-negative vector x ≥ 0. [62]
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3.4 Dark matter relic abundance

In Section 4.1.4 it will be outlined how the newly added particles in conformal extensions
can behave as possible dark matter candidates. There are some constraints on what
cosmologists think dark matter should be. The most well known is the dark matter
abundance in the Universe compared to the universal critical density ρc [53]:

ΩDM =
ρDM

ρc
= (0.12010± 0.0012)h−2 (3.7)

where h ≈ .7 is the Hubble expansion rate today in units of 100 km per sec per Mpc.
The relic dark matter abundance ρDM of a dark matter candidate is calculated from its
number density nDM time-dependence in thermal equilibrium and should not be higher
than the experimentally found value [16]:

dnDM

dt
= −3HnDM(t)− (n2

DM(t)− n(eq)2
DM )〈σv〉annihilation (3.8)

where the last term is the thermally averaged annihilation cross section of the dark
matter candidate, which can be deduced from its interaction processes (see e.g. [64, 65]).
A small sidenote, is that the annihilation process can inject energy into the intergalactic
medium, which can be seen in the CMB. The parameter which can be constrained by
CMB measurements is [53]:

pann ∼
〈σv〉annihilation

mDM
< 3.5 · 1028cm3s−1GeV−1 (3.9)

3.5 Higgs boson mass and VEV

The current mass of the Higgs boson is mH = 125.09 ± 0.21 (stat.) ± 0.11 (syst.) GeV
and the VEV is given by 〈h〉 = 1√√

2G0
F

≈ 246.22 GeV, where G0
F is the reduced Fermi

constant [2]. Any proposed model will need to return these two values as they determine
all the other (experimentally verified) masses of the SM. So these values will constrain
the set of free parameters of new models.

3.6 LHC limits on heavy dark Higgs mass

The SM Higgs boson can decay into different other SM particles, but it can perhaps also
decay into any new particles in a conformal extension. The exact decay width Γ is being
more and more precisely measured, meaning the portal coupling to a dark sector such
as in the discussed models in this thesis, becomes more and more constrained. One can
write down the decay rate for a scalar particle h in these models:

Γtot
h = η ΓSM

h + Γdark
h (3.10)

Here η is a measure of how much of the total decay width is determined by the ’visible’
decays in the SM. The decay width is not directly measurable, but ATLAS and CMS
have been able to constrain the signal strength parameter µh > 0.81 [3, 4], defined by:

µh =
σ(pp→ h)

σSM(pp→ hSM)

BR(h→ χχ)

BRSM(hSM → χχ)

= η2 ΓSM
h

Γtot
h

≈ η (3.11)

Here σ and BR are the production cross section and branching ratios of the candidate
Higgs particle h in our models and the SM Higgs hSM. The particles χ are all the SM-
particles into which the Higgs boson can decay (i.e. quarks, leptons and gauge bosons).
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In the last step, it is used that Γdark
h � η ΓSM

h along with Equation (3.10). So this re-
sults in the constraint η > 0.81, where η can be calculated from the interaction terms
in the Lagrangian of the different models. To circumvent the problem discussed here,
the general assumption is that the Higgs-like scalar in these models is the lightest of the
scalars, so decay to dark scalars is kinetically not allowed. Likewise, only dark particles
with Mdark . 62.5 GeV can be the products of the Higgs boson decay.

It is not the aim of this thesis to rigorously check for the models if the theoretical
decay width will exceed the experimental bounds, yet it is of importance to note that
future upgrades of the LHC will be able to severely constrain any possible conformal
extensions. It is always possible to choose the free parameters in such a way that the
massive particles in the dark sector are heavy enough. It could be that not all particles
attain a mass for certain symmetry breaking patterns (see also Section 4.1.4), which
could complicate satisfying the constraint. However, this would also be problematic for
the effective number of relativistic degrees of freedom, as discussed in Section 3.1.

3.7 Perturbativity

Closely related to the constraint of vacuum stability of the model up to the Planck scale
is the requirement that the model must also be perturbative up to the Planck scale
∼ MP ≈ 2.435 · 1018. This is achieved by requiring all running coupling constants to
be bounded by 2π [14]. For a specific model, this is determined by considering all the
renormalization group equations and solve them. Typically as boundary conditions for
these differential equations the values at the energy scale of the top quark mass Mt ∼ 173
GeV are used. For general gauge groups, all two-loop renormalization group equations
can be found in [66].

In this chapter, a list of theoretical and experimental constraints on conformal extensions
of the SM have been given. Not all are directly as relevant for this thesis, as the aim is
to see what types of conformal extensions can be made. Therefore the constraints used
in this thesis are the ones mentioned in Sections 3.2, 3.3 and 3.5. The other constraints
are left for future research. Now one can turn to actually introducing new conformal
extensions of the SM in the next chapter.
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Chapter 4

Examples of conformal
extensions

In constructing a dark matter model, there is a wild variety of choices one can make and
only a limited number of limitations (see Chapter 3) . One could say that ”anything
goes”. However, by demanding a conformal model with (potentially) experimentally
measurable signatures, there are some statements one can make. To begin with, one
would like a phase transition to be possible in the scalar part of the theory to ensure a
measurable signature. More specifically, the general aim is to construct a model in such
a way that a strong first-order phase transition occurs, which in turn can be seen via
gravitational waves. Analyzing the symmetry-breaking patterns of general models and
thus finding phase transitons is done in Section 4.1.

In Chapter 2 the general field theory techniques needed to build a conformal extension
to the SM have been discussed. As doing this for a specific model is not a trivial task,
three examples are studied in this chapter. The first model is the SU(2)cSM [15] and is
perhaps the most minimal way of constructing a conformal model, as will be discussed
in Section 4.2. As this model has been studied already, it is used in later chapters as a
benchmark for numerical calculations. Then two new models will be introduced, which
have a larger zoo of particles. This will come with extra difficulties during construction,
but will also yield more interesting characteristics1.

4.1 Symmetry-breaking in general gauge groups

Before one can identify the symmetry breaking in a specific model, there is need to
explore which gauge groups are of interest and how they could reduce to lower rank
symmetry groups. Because in this case, it is found that not everything is possible and
gauge groups are even severely restricted in how they can break the symmetry.

This field has been heavily researched in the seventies, when an unification was found
between electromagnetism and the weak interaction by Glashow, Salam and S. Weinberg
[33–35]. The belief (or hope) was that the other forces could also be unified by a Grand
Unified Theory (GUT) in a larger symmetry group. This intensified research into sym-
metry breaking from all kinds of symmetry groups, since there was little experimental
data to rule out much.2 One could say that the current field of dark matter is at a similar
point in terms of experimental knowledge and thus freedom in choosing symmetry groups
for dark matter models. Therefore one can luckily rely on the research done in the ’70s.

Considering the Standard Model turned out to be a collection of unitary gauge groups

1See 3.
2Notable exceptions from this are the absence of proton decay ruling out SU(5) and constraints due

to the absence of magnetic monopoles.
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Figure 4.1: The mexican hat potential for a scalar particle with a U(1) symmetry

(SU(3)×SU(2)×U(1)), this discussion of possible symmetry breakings will restrict itself
to the groups SU(N) and the special orthogonal groups SO(N) seeing that they behave
rather similar.

4.1.1 Symmetry breaking patterns in SU(N) and SO(N)

The question of how symmetry breaking takes place is in essence a geometrical problem
of what symmetries are preserved if the global minimum is no longer at the origin. The
easiest example is the well-known ”Mexican hat”-potential for a U(1) symmetric scalar
particle as shown in Figure 4.1.

The particle has a U(1) symmetry at its maximum, but can roll down the potential
in any given direction and spontaneously break the symmetry. In the case of SU(N)
and SO(N), the problem is similar, but multidimensional and therefore impossible to
visually solve.

In a very mathematical approach to generally find the symmetry breaking pattern for a
quartic Higgs potential, it was conjectured in 1971 [67] that any irreducible representation
of a symmetry group G breaks down to its maximal little groups3 on its minima.

4.1.2 Example of a symmetry breaking analysis

This is explicitly proven for different representations of SU(N) and SO(N) in [68–71],
but a more conventional (i.e. less technical) method was used by by Li in [72] along with
some corrections in [73]. To show how a symmetry breaking pattern can be found for a
particular symmetry group, one can consider the example of the second-rank symmetric
tensor in the O(N) group, which is completely anolog to the adjoint representation of
SU(N) [72].

In this case, the scalar field has the symmetric property φij = φji and also Tr{φ} = 0.
The most general potential, including the assumption that a mass term µ for the scalar
is generated via an unspecified mechanism, can be written as:

V (φ) = −1

2
µ2(φijφji) +

1

4
λ1(φijφji)

2 +
1

4
λ2(φijφjkφklφli) (4.1)

or equivalently: = −1

2
µ2 Tr

[
φ2
]

+
1

4
λ1 Tr

[
φ2
]2

+
1

4
λ2 Tr

[
φ4
]

(4.2)

where now the analog to the SU(N) adjoint representation is obvious. As the matrix φ
is real and symmetric, it can be diagonalized: φij = δijφi with i = 1, . . . , N . However,
the components φi are not all independent, because of the trace condition. By adding a
Lagrange multiplier g to the potential, this is taken into account:

V (φ) = −1

2
µ2
∑
i

φ2
i +

1

4
λ1

(∑
i

φ2
i

)2

+
1

4
λ2

∑
i

φ4
i − g

∑
i

φi (4.3)

3The definition of a maximal little is group is the largest group, which does not contain an other
maximal little group, that contains singlets in its subrepresentations.
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Then the minimum of this potential is given with the following condition:

∂V

∂φi
= µ2φi + λ1φi

∑
j

φ2
j + λ2φ

3
i − g = 0 (4.4)

Interestingly, one can prove that φi can only take three different values φ1 ,φ2 and φ3.
They each must satisfy Equation (4.4). By subtracting one from the others, the conditons
become:

−µ2 + λ1

∑
j

φ2
j + λ2(φ2

1 + φ1φ2 + φ2
2) = 0 (4.5)

−µ2 + λ1

∑
j

φ2
j + λ2(φ2

1 + φ1φ3 + φ2
3) = 0 (4.6)

One can again subtract these equations from each other, yielding the simple condition:

φ1 + φ2 + φ3 = 0 (4.7)

If there would have been another distinct solution φ4, the same procedure could be done
to find φ2 + φ3 + φ4 = 0. However, this must imply that φ1 = φ4, so indeed only three
different values for φi are possible. So φ can be written as a diagonal matrix with n1

entries of φ1, n2 entries for φ2 and n3 entries for φ3:

φ1 + φ2 + φ3 = 0 (4.8)

n1 + n2 + n3 = N (4.9)

n1φ1 + n2φ2 + n3φ3 = 0 (4.10)

The last condition is just the trace condition and the set of equations means that φ2 and
φ3 can be written in terms of φ1 and the potential can be written as:4

V (φ) = −a(n1, n2, n3)φ2
1 + b(n1, n2, n3)φ4

1 (4.11)

Now minimizing the potential with respect to φ1 and one yields the potential value at
the minimum:

Vm = −µ
4

4

1

λ1 + λ2f(n1, n2, n3)
(4.12)

From this, one can now deduce the smallest minimum by determining the values for n1,
n2 and n3, which yield the minimum or maximum value of f . This depends on if λ1

and λ2 are negative or positive. In summary, one can find that the possible symmetry
breaking patterns are:

• O(N)→ O(dN2 e)×O(bN2 c) for λ1 > 0 and λ2 > 0

• O(N)→ O(N − 1) for λ1 > 0 and λ2 < 0

So this example shows how one can systematically determine possible symmetry
breaking patterns in the presence of a mass term for a certain symmetry group and
representation of φ.

4The exact expressions of a and b, as well as f are not given here, as they are too lengthy and not
needed for the purpose of this section. They can be found in Appendix C.
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4.1.3 Resulting symmetry breaking patterns

Now a general overview of the possible resulting symmetry breaking patterns are given
below for scalar particles in the fundamental and adjoint representations. Li also discusses
(anti-)symmetric tensors, but for the simplicity of this thesis, these are not considered
here.

• Single dark scalar in the fundamental representation
SU(N) =⇒ SU(N − 1)
SO(N) =⇒ SO(N − 1)

• k dark scalars in the fundamental representation
SU(N) =⇒ SU(N − k)
SO(N) =⇒ SO(N − k)

• Single dark scalar in the adjoint representation
SU(N) =⇒ SU(dN2 e)× SU(bN2 c)× U(1)
SO(N) =⇒ SO(N − 2)

The adjoint result for SO(N) is taken from [69]. Note that in the case of multiple scalars
for SU(N) and SO(N), it is possible to break the symmetry completely by adding
k = N − 1 scalars. The given patterns are for a negative coupling constant, which is
required from the boundedness from below of the potential, which will be explained in
detail later in 3.3.

Another possibility is to let the scalar particle transform under two representations5,
which has also been studied by, among others, Li. However, again for the sake of sim-
plicity, these options are ignored. One can note that it is not always the case that the
symmetry completely breaks down, but that there will be a leftover symmetry group. For
now, it can be concluded that typically SU(N) and SO(N) gauge groups have very clear
symmetry breaking patterns. This can be used to predict the behaviour of conformal
extensions as the relic symmetries will also behave in a certain way in nature. In the
next section it will be made clear what these remaining symmetry groups can be.

4.1.4 Resulting particle behaviour of symmetry groups

As the previous section has shown, symmetry breaking can leave a residual symmetry in
the hidden sector. These symmetries determine the present day behaviour of the particles
in the extension. These particles could be very natural candidates for dark matter as
they are weakly-interacting with the SM particles. So it is of interest to consider different
types of relic symmetries and how they could behave as possible dark matter candidates.

SU(m) symmetry

The most interesting relic symmetry would be the non-Abelian gauge group SU(m). The
gauge bosons in such a group are the dark analogue of QCD and they can self-interact
for even the simplest possible extensions [74] without any additional matter content. It
is theorized that QCD has bound states of gluons, called glueballs, as gluons can self-
interact. There has not been any experimental evidence for this, but the theoretical
evidence is strong [75]. Likewise, the self-interaction of a non-abelian gauge group in
the hidden sector could also theoretically produce bound states. As in literature, these
gauge bosons are mostly referred to as X-bosons, these bound states could be referred
to as ’X-balls’. If these X-balls have a lifetime of the order of the age of the Universe or
larger, they can account for the observed dark matter relic density. This mainly depends
on the temperature scale Λ at which the X-bosons go from a plasma to the confined state
of X-balls and the number of degrees of freedom geff = 2(m2 − 1). Experimentally, Λ is
constrained by the self-interaction cross section and lies rather close to ΛQCD ∼ 300MeV
[74]. In conclusion, depending on the exact particle spectrum in the hidden sector apart
from the SU(m) gauge group, the gauge bosons could be a viable dark matter candidate.

5In representation form, that would be for example (M,N) for the two groups SU(N) and SU(M).
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U(1) symmetry

A relic U(1) symmetry needs a Z2 symmetry to give stable particles, which corresponds
to a charge conjugation symmetry [76]. Through symmetry breaking the gauge field must
have become massive and is the natural DM candidate [65]. If the gauge field is mass-
less, one has ’dark electromagnetism’ with a corresponding dark photon [77]. However,
relativistic degrees of freedom are heavily constrained by Planck (see Section 3.1 for the
complete discussion) and thus are dark photons likely not a viable option.

Another interesting option for dark matter is the possibility of cosmic strings, which
can be created by local U(1) symmetry [78]. However, this is outside the scope of this
thesis.

4.2 The benchmark model: SU(2)cSM

As have been argued, extending the SM with one singlet scalar field would require a large
coupling between the Higgs doublet and the singlet. However, this also leads to a Landau
pole below the Planck scale (∼ 1016 GeV) [10]. The simplest way to overcome this, is
by gauging the new scalar field under a new gauge group, while keeping it singlet under
the SM gauge groups. So one could state that the most minimal classically conformal
with an extended scalar (and gauge) sector is by considering a new scalar Φ acting as a
doublet under a new gauge group SU(2)X .6 This whole sector acts trivially under the SM
gauge groups to ensure that experimental measurements of the SM are not affected. The
model is referred to as the SU(2)cSM [10, 15, 64, 81]. The scalar potential for SU(2)cSM
is given by:

V (0(H,Φ) = λ1(H†H)2 + λ2(H†H)(Φ†Φ) + λ3(Φ†Φ)2 (4.13)

Here H is the SM scalar doublet and there are four free parameters λ1 (the ’old’ self-
coupling of the SM Higgs), λ2, λ3 and gX , where gX is the gauge coupling constant of the
SU(2)X gauge group. It has been found that RSB can take place in SU(2)cSM and can
reproduce the correct particle spectrum of the SM for a wide range of different parameter
choices [10]. Two of the parameters are fixed by the known experimental values of the
Higgs boson mass and VEV, which has been explained in Section 3.5.

4.2.1 Mass eigenvalues of SU(2)cSM

Of experimental interest for the phenomenology of this model at the present day are the
zero temperature mass eigenvalues, which follow from the zeroth order effective potential:

V (0)(h, φ) =
1

4
(λ1h

4 + λ2h
2φ2 + λ3φ

4) (4.14)

Here the two symmetries of the potential,the weak SU(2) and SU(2)X , are used to rewrite
the classical tree-level potential in terms of only the radial fields h and φ. The two cor-
responding background fields in the effective potential will be denoted by ~h = (0, 0, 0, h)

and ~φ = (0, 0, 0, φ) as well to illustrate their origin.

Now one can compute the scalar masses by simply calculating the Hessian of the tree-level
potential:

6SU(2) is the simplest gauge group one can consider, as the coupling constant in the smaller gauge
group U(1) generically develops a Landau pole. There do exist exceptions for certain choices of param-
eters (see e.g. [79, 80]).
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m2
h,φ(h, φ) =

1

2

(
3λ1 +

λ2

2

)
h2 +

1

2

(
3λ3 +

λ2

2

)
φ2

±

√[(
3λ1 +

λ2

2

)
h2 −

(
3λ3 +

λ2

2

)
φ2

]2

+ 4λ2
2h

2φ2 (4.15)

m2
G,G±(h, φ) = λ1h

2 +
λ2

2
φ2 (4.16)

m2
G̃,G̃±

(h, φ) = λ3φ
2 +

λ2

2
h2 (4.17)

Here G(±) and G̃(±) are the Goldstone bosons of the weak and SU(2)X sector, respec-
tively. The gauge bosons in the new sector are referred to as X-bosons and thus the other
massive particles are given by:

mW (h) =
gh

2
, mZ(h) =

√
g2 + g′2h

2

mX(φ) =
gXφ

2
, mt(h) =

yth√
2

(4.18)

In further calculations the Goldstone contributions are neglected. They have been shown
to be negligible [10] and furthermore carry all the gauge dependence, leaving the effective
potential approximately gauge independent if they are left out. Also, only the top quark
is considered as the masses of the other quarks are so small that they do not effect the
calculations enough to be of importance. Both these choices will also be made in the
models that will be introduced in the next sections.

One can now write down the full effective potential using Equations (2.2) and (2.13)
and the thermal mass corrections are given in Appendix A. As has been explained, only
the scalars and the longitudinal gauge bosons gain thermal masses. The study of the
phase transition of SU(2)cSM will be done in Chapter 5.

As was discussed in Chapter 3, there are many characteristics conformal extensions can
have that are relevant in different fields of research. Most notably, these types of mod-
els can contain dark matter candidates or have CP-violating interactions, which could
explain matter-anti-matter inequality. That is why it is interesting to consider not just
the most minimal model, but also more complicated gauge groups and possibly extra
fermionic degrees of freedom. So that is why two new models are introduced in the next
two sections.

4.3 The adjoint fSU(N)cSM

Part of the original goal of this thesis was to analyze the dependence of signatures of
the model (i.e. gravitational wave spectra as will be shown in Chapter 6) on the models
new gauge group. Therefore it is of interest to construct a model with a general gauge
group in its new sector, which has degree N . If the degree is kept general, little change is
expected compared to the N = 2 case, which is SU(2)cSM, as it is still possible to write
down the potential in terms of radial fields and the other Goldstone fields are neglected.
The only difference is then the number of gauge bosons. This means that the phase tran-
sition will evolve in a similar way, but the strength of the transition will slightly increase
[18]. However, one could also choose the new scalar to be in a different representation
than the fundamental representation.

An obvious choice would be the adjoint representation, which has not been studied
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extensively yet.7 The last ingredient for this model will be a set of Dirac fermions, also
gauged under the SU(N)-symmetry and a Yukawa coupling with the scalar fields and
coupling strength yX . These fermions will get their mass via the adjoint scalar and can
possibly induce CP-violating interactions.

So to summarize, the model contains a SU(N) gauge group with N2−1 gauge bosons X, a
scalar in the adjoint representation of this gauge group and N gauged Dirac fermions. As
any model needs a proper name, this model will be referred to as the adjoint fSU(N)cSM
in the remainder of this thesis, where f stands for the added fermions. This means one
can write down the following tree-level potential (with at least two scalar field terms):

V (0) = λ1

(
H†H

)2
+ λ2

(
H†H

)
Tr
[
Φ2
]

+ λ3 Tr
[
Φ2
]2

+ λ4 Tr
[
Φ4
]

(4.19)

The full Lagrangian is given in Appendix A. So for this model a set of six new pa-
rameters is introduced: (λ1, λ2, λ3, λ4, gX and yX) and there is a general dependence on
N . Again two of these parameters are fixed trough the experimental Higss mass and VEV.

Just as for the SU(2)cSM model, global symmetries can be used to simplify the ex-
pressions. However, this is different for the adjoint representation. A scalar field in the
adjoint representation is a hermitian and symmetric N ×N -matrix with complex fields
φji and the trace identity φii =0, which indeed yields N2 − 1 degrees of freedom as ex-
pected. Hermitian, symmetric matrices are always diagonalizable [72], so the matrix can
be rewritten in terms of N real scalar fields φi (as the matrix must still be Hermitian).
This means the potential can be rewritten with the following sets of reparametrizations:

2
(
H†H

)
=

4∑
i=1

h2
i ≡ h2 , 2 Tr

[
Φ2
]

=

N∑
i=1

φ2
i ≡ φ2

4 Tr
[
Φ4
]

=

N∑
i=1

φ4
i (4.20)

It is not possible to rewrite
∑
φ4
i into only terms depending on φ2,8 thus in this model

N + 1 fields must be considered instead of the two fields in SU(2)cSM. This will make
it harder to analyze any characteristics of this model. So in terms of real scalar fields h
and φi, the tree-level potential becomes:

V (0)(h, φi) =
λ1

4
h4 +

λ2

4
h2

(
N∑
i=1

φ2
i

)
+
λ3

4

(
N∑
i=1

φ2
i

)2

+
λ4

4

N∑
i=1

φ4
i (4.21)

4.3.1 Mass eigenvalues

The next step is to determine the mass eigenvalues from the Hessian of the tree-level
potential in Equation (4.21). Remembering that h2 =

∑
h2
i , the following second deriva-

tives are computed:

7An example would be [16], however they do not include the second quartic trace term in the tree-
level potential. That means they do not consider the most general possible model and it also greatly
simplifies calculations of the mass eigenvalues, as will become apparent further down.

8In [70] a method is mentioned to do this by introducing a new parameter λ′ = λ3 +αλ4. However, α

is a rescaling parameter of the scalar fields and thus make λ′ field-dependent: λ′(φ̂). Argumentation for
the validity of this rescaling can be found in [68], but it is unclear how this would affect the behaviour
of the model. It could be of interest in future research to compare this method with the general model.
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∂2V (0)

∂ha∂hb
= δab

(
λ1h

2 +
λ2

2

N∑
i=1

φ2
i + 2δa4λ1h

2

)
(4.22)

∂2V (0)

∂φa∂φb
= δab

(
λ2

2
h2 + λ3

N∑
i=1

φ2
i + 3λ4φ

2
a

)
+ 2λ3φaφb (4.23)

∂2V (0)

∂ha∂φb
= δa4λ2hφb (4.24)

Here the indices a, b run from 1, . . . , 4 for ha and from 1, . . . , N for φa. It is clear that
there will be mixing terms between the Higgs field and the new scalar fields from the last
line in Equation (4.22). The masses of the SM Goldstone bosons are found to be:

m2
G,G±(h, φ) = λ1h

2 +
λ2

2
φ2 (4.25)

which is similar to SU(2)cSM as found in Equation (4.15). The other masses are more
difficult to compute, as it requires to find the eigenvalues of a (N + 1)× (N + 1)-matrix,
which is not generically possible analytically. However, as this matrix is again Hermitian
and symmetric and now all the entries are real, it must be possible to diagonalize the
matrix. Which is the same as saying that there exist eigenvalues of this matrix and in
this case the eigenvalues must also be real, even though no analytical expressions for the
eigenvalues can be given.

So, unfortunately, it is not possible to give analytical expressions for the scalar par-
ticles in this model with a general dependence on N . To be able to study possible phase
transitions within this model, two different scenario’s are studied. First, the large-N limit
is considered, comparable to the theory proposed by ’t Hooft to construct a field theory
for the strong interactions [82]. Secondly, the explicit case of N = 2 is considered.

The masses for the SM-particles remain unchanged and can be found in Appendix A.

The masses of the X-bosons are given by m2
X =

g2X
4 (φ2

1 + φ2
2) and the masses of the, in

this case two, fermions are m2
ψ1,2

=
y2X
8 φ

2
1,2.

4.3.2 Eigenvalues in large-N limit

In the large-N limit one has to explicitly keep track of the N -dependence of all terms in
the tree-level potential. By doing this properly, one can ultimately calculate the Hessian
in orders of N and ignore any sub-leading terms. The explicit dependence on N is found
most easily9 by rewriting the potential in its generator basis ta with a = 1, . . . , N2−1 for
the adjoint representation of SU(N). For this, the following identities from SU(N) group
theory are needed [83, 84]:

Φ =
∑
a

φat
a (4.26)

Tr
[
tatb

]
= Nδab (4.27)

Tr
[
tatbtctd

]
= δadδbc +

1

2
(δabδcd + δacδbd) +

N

4

∑
e

(fadefbce + dadedbce) (4.28)

∑
e

dadedbce =
1

3

∑
e

(fabefdce + facefdbe) + δabδdc + δacδdb − δadδbc (4.29)∑
a

εabcεaef = δbeδcf − δbfδec (4.30)

9’t Hooft originally constructed new Feynmann rules and summed the new diagrams, but for this
case that is not necessary.
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These identities can be used to rewrite the terms in the potential:

Tr
[
Φ2
]

=
∑
a,b

φaφb Tr
[
tatb

]
= N

∑
a,b

φaφbδab = N
∑
a

(φa)2 (4.31)

Tr
[
Φ2
]2

= N2

(∑
a

(φa)2

)2

(4.32)

Tr
[
Φ4
]

=
∑
a,b,c,d

φaφbφcφd Tr
[
tatbtctd

]
=
∑
a,b,c,d

φaφbφcφd

[
δadδbc +

1

2
(δabδcd + δacδbd) +

N

4

∑
e

(���
�:

fadefbce + dadedbce)

]

= 2
∑
a,b

(φa)2(φb)
2 +

N

4

∑
a,b,c,d,e

dadedbce

= 2
∑
a,b

(φa)2(φb)
2 +

N

12

∑
a,b,c,d

(
∑
e

(���
�:

fabefdce +���
�:

facefdbe) + δabδdc + δacδdb − δadδbc)

= 2
∑
a,b

(φa)2(φb)
2 +

N

12

∑
a,b

(φa)2(φb)
2

=
N − 24

12

∑
a,b

(φa)2(φb)
2 (4.33)

The final step is to compute the Hessian:

∂2V (0)

∂φx∂φy
= 4N2λ3(δxy

∑
a

(φa)2 + 2φxφy)

+N

(
λ2δxyh

2 +
λ4

3
(δxy

∑
a

(φa)2 + 2φxφy)

)

− 8λ4

(
δxy
∑
a

(φa)2 + 2φxφy

)
(4.34)

∂2V (0)

∂hx∂φy
= δx4Nλ2hφy (4.35)

The λ3-terms are leading order O(N2), whereas λ2 and λ4 contributions to the Hessian
are only of order O(N). So from this, one can conclude that to leading order in N the
mass spectrum of Φ should only depend on λ3 and the other terms are negligible. This
yields the following set of scalar masses:

m2
φ(φ) = 12N2λ3φ

2 (4.36)

m2
G̃

(φ) = 4N2λ3φ
2 (4.37)

Here there are N−1 Goldstone bosons with mass m2
G̃

. One can deduce from this that for
large N , the adjoint representation behaves similar to the fundamental representation.

4.3.3 Eigenvalues for N = 2: the adjoint fSU(2)cSM

The matrix that needs to be diagonalized is (N + 1)-dimensional. This is the same as
trying to solve a polynomial of degree N + 1, which is only possible for N = 2, 3. As
the analytical solution for a polynomial of degree 4 becomes incredibly unwieldy, in this
thesis only the case of N = 2 (i.e. a polynomial of degree 3) is considered.
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For N = 2, there are two new scalar fields φ1 and φ2. according to Equation (4.22)
the following matrix must be diagonalized:

M =

A B C
B D E
C E F

 (4.38)

where

A = 3λ1h
2 + λ2(φ2

1 + φ2
2)

B = λ2hφ1

C = λ2hφ2

D =
λ2

2
h2 + 3(λ3 + λ4)φ2

1 + λ3φ
2
2

E = 2λ3φ1φ2

F =
λ2

2
h2 + 3(λ3 + λ4)φ2

2 + λ3φ
2
1

Now one can write down the characteristic polynomial in terms of quantities of the matrix
M using basic linear algebra:

α ≡ Tr[M ] = A+D + F (4.39)

β ≡ det[M ] = ADF − C2D − E2A−B2F + 2BCE (4.40)

γ ≡ Tr
[
M2
]

= A2 +D2 + F 2 + 2(B2 + C2 + E2) (4.41)

0 = l3 − αl2 +
1

2
(α2 − γ)l − β (4.42)

The last line is the characteristic polynomial one has to solve to find the eigenvalues l.
The solution is exactly known and given by:

lk = −1

3

(
−α+ ξk−1Ξ +

α2 − 3
2 (α− γ)

ξk−1Ξ

)
for k ∈ {1, 2, 3} (4.43)

where

ξ = −1

2
+

1

2

√
3i (cubic root of 1)

Ξ =
3

√
−α3 +

9

4
α(α− γ)− 27

2
β +

1

2

√
−27∆ and

∆ =
1

4

(
−α6 + 20α3β − 108β2 + 4α4γ − 36αβγ − 5α2γ2 + 2γ3

)
Even though it was already determined for the general matrix that the eigenvalues should
be real, this is not immediately obvious from this expression. This is due to the so called
rule of casus irreducibilis [85], which states that the expression can be real despite the
fact that it cannot be written without complex numbers. However, this is not the only
problem with Equation (4.43). As it turned out, the expression is not well handled by
the numerical program CosmoTransitions, which will be introduced in Chapter 6. This is
solved by using an alternative geometrical expression from [86], which is better suited for
numerical computations. It dictates an algorithm, which yields the following eigenvalues:
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l1 =
α

3
+

√
6γ − 2α

9
cos(δ) (4.44)

l2 =
α

3
−
√

6γ − 2α

9

(
1

2
cos(δ)− 1

2

√
3 sin(δ)

)
(4.45)

l3 =
α

3
+

√
6γ − 2α

9
cos

(
δ +

2π

3

)
(4.46)

r =

√
9

6γ − 2α

[
β +

1

54
α
(
9γ − 5α2

)]

δ =


π
3 for r ≤ −1

0 for r ≥ 1

arccos(r) for − 1 < r < 1

The eigenvalues are named in such a way that l1 ≥ l2 ≥ l3 and thus l3 = m2
h, whereas l1

and l2 correspond to the masses of the scalars φ1 and φ2.

4.3.4 Thermal masses of the adjoint fSU(N)cSM

Using Equations (2.22) and (2.24) one can now write down the general thermal mass
contributions. First, for the gauge self-energy one needs to determine C2(r),Ns and Nf .
For this model, there are N2 − 1 real scalar degrees of freedom in the hidden sector, i.e.
Ns = N2 − 1. Nf is simply given by:

Nf = N(spin)(particle/anti-particle) = 4N (4.47)

Lastly, the quadratic Casimir invariant for the adjoint representation of SU(N) is simply
C2(ASU(N)) = N . Together, this yields:

m2
X,thermal(T ) =

2N + 2N + N2−1
4

6
g2
XT

2 =
N2 + 16N − 1

24
g2
XT

2 (4.48)

The scalar thermal mass contributions have besides the self-interaction terms λi also in-
teraction between the hidden and visible sector. For the SM Higgs, the total contribution
is:

m2
h,thermal(T ) = (

1

2
λ1 +

N2 − 1

12
λ2 +

3

16
g2 +

1

16
g′2 +

N

12
y2
t )T 2 (4.49)

And finally, for the scalars in the hidden sector:

m2
φ,thermal(T ) = (

1

2
(λ3 + λ4) +

1

12
λ2 +

N

4
g2
X +

N

3
y2
X)T 2 (4.50)

The thermal masses of the scalars is then obtained by diagonalizing the total mass matrix,
which is simply the Hessian, as defined in Equation (4.22), with an added diagonal matrix
with the terms in Equations (4.49) and (4.50) on the diagonal. In further calculations,
the diagonalization and calculation of corresponding eigenvalues is done numerically with
CosmoTransitions (see Chapter 6), so no explicit formulas are given for the eigenvalues.

4.4 The MfSU(N)cSM

The second model will turn out to be more generally calculable. This model also has
a SU(N) gauge group, but with the more ’standard’ fundamental representation for the
scalar field Φ. In addition a complex scalar singlet σ = σ1 + iσ2 interacts with Φ and
is coupled to Nf Majorana fermions with coupling strength Yij . This model is similar
to the model discussed in [14] with the main difference that they identify the Majorana
fermions as right-handed neutrino’s and thus include a Yukawa coupling with the SM.



32 CHAPTER 4. EXAMPLES OF CONFORMAL EXTENSIONS

The singlet could explain the small masses of light-handed neutrino’s via the type I or
type II seesaw mechanisms [87, 88]. So studying this combination has renewed interest
in the past years in extensions of the SM [89, 90]. In this model there are again N2 − 1
new gauge bosons. The model will be referred to as the MfSU(N)cSM to exemplate the
Majorana fermions it contains. The MfSU(N)cSM has the following tree-level potential:

V (0) = λ1(H†H)2 + λ2(H†H)(Φ†Φ) + λ3(Φ†Φ)2 + λ4(Φ†Φ)|σ|2 + λ5|σ|4 (4.51)

This model has seven new parameters (λ1, λ2, λ3, λ4, λ5, gX and Yij), where again
two can be fixed. So this means the model has five free parameters and the two general
choices of N and Nf . To constrain this freedom, Nf will be set to three in this thesis, as
it is the minimum number of fermion families needed to introduce CP-violating terms in
the CKW-matrix Yij .

10 However, for simplicity the matrix is taken to be diagonal and
Yii = Y during the numerical calculations in the following chapters. Again the global
symmetries of the effective potential are used to write the tree-level potential fully in
terms of radial fields h,φ and σ:

V (0) =
λ1

4
h4 +

λ2

4
h2φ2 +

λ3

4
φ4 +

λ4

4
φ2σ2 +

λ5

4
σ4 (4.52)

4.4.1 Mass eigenvalues

Similar to the adjoint fSU(N)cSM the Hessian is now calculated for the tree-level poten-
tial. This yields five different terms:

∂2V (0)

∂ha ∂hb
= δij

[
λ1h

2 +
λ2

2
φ2 + 2δa4λ1h

2

]
(4.53)

∂2V (0)

∂φa ∂φb
= δab

[
λ3φ

2 +
λ2

2
h2 +

λ4

2
σ2 + 2δa(2N+4)λ3φ

2

]
(4.54)

∂2V (0)

∂σa ∂σb
= δab

[
λ5σ

2 +
λ4

2
φ2 + 2δi2λ5σ

2

]
(4.55)

∂2V (0)

∂ha ∂φb
= δa4δb(2N)λ2φh (4.56)

∂2V (0)

∂φa ∂σb
= δa(2N)δb2λ4φσ (4.57)

Here the indices a, b run from 1, . . . , 4/1, . . . , 2N/1, 2 for h, φ and σ, respectively. This
means the Hessian matrix is diagonal, except for a 3× 3-block for every possible value of
N . This makes this model excellent to study analytically as the same algorithm as for
the N = 2 case for the adjoint FSU(N)cSM can be used, as given in Equations (4.44)

to (4.46). However, α,β and γ are now defined for the matrix M =

A B 0
B C D
0 D E

:

10As discussed in Section 3.2.
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α = A+ C + E

β = ACE −D2A−B2E

γ = A2 + C2 + E2 + 2(B2 +D2)

with

A = 3λ1h
2 +

λ2

2
φ2

B = λ2hφ

C = 3λ3φ
2 +

λ2

2
h2 +

λ4

2
σ2

D = λ4φσ

E = 3λ5σ
2 +

λ4

2
φ2 (4.58)

This gives three masses of scalar particles. Then there are the three SM Goldstone bosons
as given in Equation (4.25). Different from the adjoint fSU(N)cSM is that there are now
2N extra Goldstone bosons with masses11:

m2
Gφ

(h, φ, σ) =
λ2

2
h2 + λ3φ

2 +
λ4

2
σ2 (4.59)

m2
Gσ (φ, σ) =

λ4

2
φ2 + λ5σ

2 (4.60)

Furthermore, there are the masses of the X-bosons and the Majorana fermions:

m2
X(φ) =

g2
X

4
φ2 (4.61)

m2
ψ(σ) =

Y 2

4
σ2 (4.62)

As discussed in Section 4.2, the Goldstone bosons will be neglected in the next chapters
when the phase transition is studied.

Thermal mass corrections

The thermal mass corrections for this model are given straightforwardly from Equa-
tions (2.22) and (2.24), keeping in mind that Majorana fermions have a factor of 1

2 , but
are not gauged in this model:

m2
X,thermal(T ) =

2N +N/4

6
g2
XT

2 =
3Ng2

XT
2

8
(4.63)

m2
h,thermal(T ) = (

1

2
λ1 +

1

6
λ2 +

3

16
g2 +

1

16
g′2 +

N

12
y2
t )T 2 (4.64)

m2
φ,thermal(T ) = (

1

2
λ3 +

1

12
(λ2 + λ4) +

N

4
g2
X)T 2 (4.65)

m2
φ,thermal(T ) = (

1

2
λ5 +

1

12
λ4 +

Nf
12
Y 2)T 2 (4.66)

So now the complete mass spectrum is known for the discussed models and it becomes
possible to study the electroweak phase transition for each of them. Before any numerical
analysis is done, the electroweak phase transition is studied in more detail in the next
chapter.

11Note that there are 2N − 1 Gφ Goldstone bosons and 1 Gσ Goldstone boson.
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Chapter 5

The electroweak phase
transition

As has been already claimed earlier in this thesis, conformal extensions of the SM typically
predict strong first-order electroweak phase transitions at high temperatures. To better
understand why this happens and what the consequences are, the electroweak phase
transition is studied in this chapter. First the mechanism of the phase transition in
the early Universe is studied. Second, the ultimately measurable effect of this phase
transition is examined, which is the production of gravitational waves.

5.1 Theoretical framework of bubble nucleation

To analyze bubble nucleation, one needs a proper description of the phase transition and
all the relevant temperatures. First, a short description is given of the phase transition
itself. Next the important temperatures are examined in more detail and a discussion is
given of how to find these temperatures.

At very high temperatures, the complete Universe will be in its symmetric state. As this
is also the groundstate of the effective potential, this is a stable configuration. However,
the Universe will cool down while expanding and at some point a new local minimum
will start to form at a non-zero field value. At some point, the critical temperature Tc,
this minimum will become degenerate with the minimum at the origin and for lower tem-
peratures will even become the global minimum. For T < Tc, for particles in the local
minimum (the false vacuum) it will become energetically favorable to tunnel to the true
vacuum. The particle will tunnel at some point and a bubble of true vacuum nucleates
in the sea of false vacuum. However, the temperature corrections discussed in Chapter 2
yield cubic terms in terms of the scalar field (∼ φ3), which induces a barrier between
the two minima. Furthermore, conformal models typically have minima that are very far
apart[91]. These two facts make tunneling difficult for temperatures close to the critical
temperature.

One can describe the probability of this tunneling by solving the equation of motion
of a scalar particle φ. At zero temperature this can be done with quantum field theory
and the probability of tunneling per unit time per volume is given up to some prefactor
by [92]:

Γ(T ) ∼
(
S4(φ)

2π

)2

e−S4(φ) (5.1)

where S4 is the Euclidean action for the solution of the equations of motion:

S4(φ) =

∫
d4x

[
1

2

(
dφ

dt

)2

+
1

2
(∇φ)2 + V (φ, 0)

]
(5.2)

35
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Figure 5.1: Development of the symmetry-breaking minimum. The vertical axis is the
effective potential plotted for the field-value horizontally. For high-temperatures (left)
the symmetric minimum is the global minimum, but there exists an unstable minimum
at non-zero field value. At the critical temperature (right) the minima have become
degenerate. Bottom shows the bubble nucleation phase, where particles can still be in
the, now unstable, minimum at the origin. Through quantum or thermal fluctuations,
the particle can tunnel through the barrier to the global minimum and a true vacuum
bubble will nucleate.

Equation (5.1) gives the probability of tunneling by quantum fluctuations. However, as
the Universe is at a finite temperature, thermal fluctuations are also able to induce tunnel-
ing. The integration over time, which as one remembers from Section 2.3, is now an inte-
gration over temperature, yielding simply a factor T−1. By replacing S4(φ)→ S3(φ)T−1

in Equation (5.1), one has the tunneling probability induced by thermal fluctuations:

Γ(T ) ∼ T 4

(
S3(φ)

2πT

)3/2

e−S3(φ)/T (5.3)

where the non-displayed prefactor has also produced a term T 3 in TFT. Again, φ is
the solution to the equations of motion for the now three-dimensional action. These
equations of motion can be generally given by:

d2φ

dr2
+
d− 1

r

dφ

dr
=
dVeff(φ, 0)

dφ
(5.4)

where d is defined as the dimension of the action Sd(φ) and r is the radial coordinate in
d-dimensional Euclidean space. In Section 5.1.1 it will be discussed that at some temper-
ature, the nucleation temperature Tn, enough bubbles of true vacuum nucleate to keep
up with the expansion of the Universe. This does not necessarily mean that the complete
Universe will phase transition to the true vacuum, but generally, Tn is considered as the
start of the phase transition. As the temperature decreases further, more and more bub-
bles will nucleate up to the point that from hydrodynamics one can say with certainty
that the whole Universe will become filled with the true vacuum. This is the percolation
temperature Tp and it will be discussed in Section 5.1.2.

The phase transition naturally generates a lot of energy, as due to the barrier and the
widespread minima, the potential energy difference between the false and true vacuum
is very large for conformal extensions. This is parametrized by the variable α, which
measures the released energy ∆V relative to the total radiation energy present in the
vacuum ρR:
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α ≡ ∆V

ρR
(5.5)

For conformal extensions, such as discussed in this thesis, α � 1. This energy is trans-
ferred to the plasma present in the early Universe, partially in terms of heat (exact
details are given in Section 5.2. For large α, this means the Universe will reheat to a
temperature Tr in a short amount of time. The reheating temperature is discussed in
Section 5.1.3. The Tp or the Tr signal the end of the phase transition. As the actual
process is more complicated, all temperature scales are now discussed in further detail
in the next sections. Then in the last section, the production of gravitational waves by
the bubbles is analyzed.

5.1.1 Nucleation Temperature Tn

This thesis uses the derivation from [93] to calculate the nucleation temperature. One
starts by considering the decay rate of the false vacuum, which is related to the tunneling
probabilities defined in Equations (5.1) and (5.3):

Γ(T ) ' max

[
T 4

(
S3

2πT

) 3
2

e−S3/T , R−4
0

(
S4

2π

)2

e−S4

]
(5.6)

Here S3 and S4 are the 3- and 4- dimensional Euclidean actions, which determine the
decay rate by thermal and quantum fluctuations, respectively. R0 is the typical size
of the nucleating bubble. For high temperatures, the tunneling typically takes place
through thermal fluctuations, so the max-function in Equation (5.6) is dropped and only
the term for S3/T is considered. Then one can define a nucleation temperature Tn at
which one bubble nucleates per Hubble volume:

N(Tn) =

∫ Tc

Tn

dT

T

Γ(T )

H(T )4
= 1 (5.7)

The Hubble rate comes from the Friedmann equations, where one takes into account the
cosmological constant contribution to the false vacuum as the vacuum energy density ρV
and the radiation domination via the radiation energy density ρR:

H2 =
1

3M2
pl

(ρR + ρV ) =
1

3M2
pl

(
T 4

ξ2
g

+ ∆V

)
= H2

V (χ−1 + 1) (5.8)

HV ≡
∆V

3M2
pl

(5.9)

ξg ≡
√

30/(π2g∗) (5.10)

χ ≡ ρV
ρR

=
ξ2
g∆V

T 4
(5.11)

Here g∗ = 106.75 is the number of degrees of freedom, the Planck mass is given by
Mpl = 2.435 × 1018 GeV and ∆V is the difference between the true and false vacua.
The temperature TV at which the vacuum energy is equal to the radiation energy is thus
defined by:

T 4
V

ξ2
g

= ∆V (5.12)

One can now make the assumption that below TV the vacuum energy dominates and
radiation dominates for T > TV , which yields two different Hubble rate regimes. At
sufficiently low temperatures, it is also correct to assume that ∆V is temperature-
independent.

H(T ) =

HR(T ) = T 2
√

3Mplξg
, T > TV

HV =
T 2
V√

3Mplξg
, T < TV

(5.13)
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With all this, it is possible to determine the critical value y = S3/T (or S4) for a
given temperature. Filling in equations 5.6 and 5.13 in 5.7, the condition becomes for
T < TV :

1 =
y

3
2 e−y9M4

plξ
4
g

(2π)
3
2

(∫ Tc

TV

dT ′

T ′
T ′4T ′−8 +

∫ TV

T

dT ′

T
T ′4T−8

V

)

y−
3
2 ey =

9M4
plξ

4
g

(2π)
3
2

(∫ Tc
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dT ′

T ′5
+ T−8

V

∫ TV

T

dT ′ T ′3

)

=
9M4

plξ
4
g

(2π)
3
2

(
−1

4
(T−4
c − T−4

V ) +
1

4
T−8
V (T 4

V − T 4)

)
=

9M4
plξ

4
g

4(2π)
3
2

(
2

∆V ξ2
g

− T−4
c − T 4

∆V 2ξ4
g

)
(5.14)

Obviously, for TV < T < Tc there is no vacuum energy contribution according to the
assumption. And for T > Tc the non-trivial minimum becomes a local minimum and
eventually disappears. So for all regimes, the condition becomes:

y−
3
2 ey =


9M4

plξ
4
g

4(2π)
3
2

(
2

∆V ξ2g
− T−4

c − T 4

∆V 2ξ4g

)
, for 0 < T < TV

9M4
plξ

4
g

4(2π)
3
2

(
T−4 − T−4

c

)
, for TV < T < Tc

0, for T > Tc

(5.15)

This yields the following plot:
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Figure 5.2: The critical value for S3/T plotted as a function of temperature. For T <
TV ≈ 124 GeV, the function is nearly constant.

5.1.2 Percolation temperature Tp

Another important quantity during bubble nucleation, is the percolation temperature Tp,
which is the temperature where enough of space is filled by true vacuum bubbles to suc-
cessfully complete the phase transition. Formally, it is the temperature at which enough
bubbles overlap that a long-range connectivity is possible. One can assume that this is
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therefore the temperature at which the phase transition ends. In a radiation-dominated
Universe, this critical temperature is given by the demand that the volume fraction con-
verted to the true vacuum I(Tp) = 0.34. Here 0.34 is the critical ratio between the
volume of equal-sized, randomly-distributed and possibly overlapping spheres and the
total volume of Euclidean space (in three dimensions) for which percolation occurs [94].

I(T ) is generally given by an expression in terms of the decay rate Γ(T ) and the scaled
comoving size of a bubble a(T )r(T, T ′):

I(t) =
4π

3

∫ Tc

T

dT ′

T ′H(T ′)
Γ(T ′)a(T ′)3r(T, T ′)3 (5.16)

The comoving size r(T, T ′) with T ′ > T is simply given by:

r(T, T ′) =

∫ T ′

T

vw dT̃

T̃H(T̃ ) a(T̃ )
=

∫ T ′

T

dT̃

T̃H(T̃ ) a(T̃ )
=

∫ T ′

T

dT̃

H(T̃ )
(5.17)

Here the general assumption is made that the bubble wall velocity vw is close to 1
and using furthermore that that the scale factor goes as a(T ) ∼ T−1. Then the volume
fraction converted to the true vacuum is:

I(T ) =
4π

3

∫ Tc

T

dT ′ Γ(T ′)

T ′4H(T ′)

(∫ T ′

T

dT̃

H(T̃ )

)3

(5.18)

However, as was mentioned in section 5.1.1, during bubble nucleation the Universe
cannot be assumed to always be radiation-dominated. For T > TV , vacuum contributions
must be taken into account. For I(T ) a second distinction must be made, which is that
bubbles can nucleate during radiation domination and keep on growing into vacuum
domination. So the equations for the different regimes (R, V and RV for radiation-,
vacuum- and radiation-to-vacuum domination, respectively) are, using 5.13:

rR(T, T ′) =
√

3Mpl ξg

(
1

T
− 1

T ′

)
(5.19)

rV (T, T ′) =

√
3Mpl ξg
T 2
V

(T ′ − T ) (5.20)

rRV (T, T ′) =

∫ T ′

TV

dT̃

HR(T̃ )
+

∫ TV

T

dT̃

HV

=
√

3Mpl ξg

(
1
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− 1

T ′
+
TV − T
T 2
V

)
=
√

3Mpl ξg

(
2

TV
− 1

T ′
− T

T 2
V

)
(5.21)

And similarly one finds from 5.18 the volume fraction I(T ) for different growth regimes
of the bubbles under the assumption that the decay rate is dominated by thermal fluc-
tuations:
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IR(T ) =
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(5.22)

IRV (T ) =
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2 e−S3/T

′
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T 2
V

)3
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Since IR(T ) is only applicable in the case that Tn > TV , which is not the case for
the models in this thesis, only IRV (T ) is used and denoted as I(T ). So the percolation
temperature can be found with the following condition:

I(Tp) = nc = 0.34 (5.24)

It must be noted that for temperatures lower than the percolation temperature, I(T )
is no longer correct. As after the percolation temperature is reached, it is assumed that
the phase transitions ends and the Universe starts reheating due to the released energy
during the phase transition. This will be discussed in the next section.

5.1.3 Reheating temperature Tr

The exact details of how reheating takes place are not of great importance, as long as
one can assume that the reheating happened fast [93]. The reheating starts as soon as
bubbles start to collide. The collision energy is then transferred to the plasma, which
heats up (see Section 5.2.1. The reheating temperature depends on the total released
energy as follow:

Tr = Tp(1 + α(Tp))
1
4 (5.25)

As will be explained in the next section, it is of importance at which temperature the
Universe ends bubble nucleation. As has been shown here, for phase transitions with
α � 1, such as the SU(2)cSM, nucleation ends at Tr. Note that most literature use
that the end of the phase transition is at percolation temperature Tp. Furthermore,
reheating can be of importance for baryogenesis [95]. As this is outside the scope of this
thesis, this is not further discussed, but it is interesting to note. Now all the relevant
temperatures are discussed, one can turn to the dynamics of bubbles, with in particular
bubble collisions and the resulting production of gravitational waves.

5.2 Bubble hydrodynamics

The nucleation and expansion of bubbles of true vacuum are enough to describe the dy-
namics of a phase transition. However, single spherical bubbles are not able to produce
gravitational waves, as follows from Birkhoff’s theorem: spherical objects can be consid-
ered as point-like in terms of gravitational field for an external observer. So a growing
spherical bubble is for the observer the same static object and cannot produce changes
in the gravitational field. The assumption that the bubble starts spherical and stays
spherical is justified by its large semiclassical action and surface tension [15].

This means one has to consider processes which arise during bubble collisions. These
will be able to generate gravitational waves. The parameters of interest during these
collisions are the speed of the bubble wall vw and the ratio of the vacuum energy density
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released to that of the total radiation energy in the plasma, called the latent heat α,
introduced in Equation (5.5). It can be written in terms of the the potential energy
difference between the true and false vacuum ∆V as introduced in Equation (5.11):

α =
ρV
ρR

=
∆V ξ2

g

T 4
(5.26)

Furthermore, part of the vacuum energy gets converted into kinetical energy of the
fluid and into gradient energy of the extra scalar field. The ratios of these are denoted
by κv and κφ, respectively. In this thesis, the bubble wall velocity vw ≈ 1 as the fields
involved in the phase transition (i.e. the new scalar fields) are typically weakly coupled
to the SM particles in the plasma and therefore perceive little ’friction’ from the hot
plasma during bubble growth.

The last important parameter is the average time scale of the phase transition per Hubble
time: β/H∗. One can easily see from Equation (5.1) that β can indeed be interpreted as
the transition time scale:

Γ(t) ∼ e−βt (5.27)

The timescale is the time between the start of the phase transition Tn and the end of the
phase transition, typically defined to be at Tp. If one assumes a quick phase transition
(Tn ≈ Tp), the timescale is given by:

β

H∗
= Tp

d(S3/T )

dT

∣∣∣∣
T=Tp

(5.28)

This definition will be used in the next chapter for the numerical calculations. One can
distinguish three different processes that contribute to the production of gravitational
waves:

• Bubble wall collisions

• Propagation (and dissipation) of soundwaves through the plasma after collision

• Turbulence

The three contributions will be explained further in the next sections, but for now
one can state that the expected measured energy in gravitational waves h2ΩGW for a
certain frequency f is given by [96]:

h2ΩGW ' h2Ωcoll + h2Ωsw + h2Ωturb (5.29)

5.2.1 Bubble collisions

The gravitational energy released during bubble collisions is from the scalar field involved
in the phase transition. To compute its contribution, the ’envelope approximation’ is used
(see [96] and references therein for a complete description). It assumes that a fraction
κφ of the energy is stored in a shell around the bubble walls. After collision, the energy
quickly dissipates away, so one can approximate that all the envelope energy is in yet-to-
collide bubble shells. Then one can calculate its contribution with numerical simulations,
which is given by:

h2Ω(f) = 1.67 · 10−5

(
H∗
β

)2(
κφα

1 + α

)2(
100

g∗

) 1
3
(

0.11v3
w

0.42 + v2
w

)
Senv(f) (5.30)

Senv(f) =
3.8(f/fenv)2.8

1 + 2.8(f/fenv)3.8

fenv =
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w

)(
β

H∗

)
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where h∗ is the inverse Hubble time at time t∗ of the GW production redshifted to today.
However, for models with massive vector bosons, as the models discussed in this thesis,
the contribution from bubble collisions is negligible [97]. These gauge bosons source a
friction term that prevents runaway bubbles1 (although it is still safe to assume vw ≈ 1)
and accumulate energy in their shells. So for this thesis, the contribution from bubble
collisions is not considered for determining gravitational wave spectra.

5.2.2 Soundwaves

Percolation of bubbles also produces motion in the plasma with a factor of κv. This
motion propagates through the plasma in the form of sound waves. Again one can
find an expression for the contribution to gravitational waves by considering numerical
simulations, albeit very difficult [98]. Acoustic production of gravitational waves is still
heavily researched and especially for strong phase transitions (i.e. α � 1). Current
numerical fits are given by [91]:

h2Ωsw(f) = 2.65 · 10−6

(
H∗
β

)(
κvα

1 + α

)2(
100

g∗

) 1
3

vwSsw(f) (5.31)

Ssw(f) = (f/fsw)3
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7
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)7/2
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(
β

H∗

)(
T∗

100 GeV

)( g∗
100

)1/6

For strong phase transitions, the dependence on α drops out. The peak frequency fsw

is related to the main scale of the transition, which is the average bubble separation
R∗ = (8π)

1
3 vw/β. Equations (5.30) and (5.31) differ roughly by a factor of β/H∗, which

is due to the fact that soundwaves contribute as a long-lasting source, generating grav-
itational waves well after collisions have taken place, whereas collisions are more or less
instantaneous. This again justifies that soundwaves are a more dominant contribution
to the gravitational wave spectra than bubble collisions. The temperature T∗ is the
temperature after collision, which one can identify as the reheating temperature.

5.2.3 Turbulence

The third contribution is induced by turbulence in the plasma. As the plasma is fully
ionized at GeV-temperatures, the main factor of turbulence is through magnetohydro-
dynamics (MHD). Just as for soundwaves, this is a long-lasting contribution, as one can
see in its contribution to the spectrum:

h2Ωturb(f) = 3.35 · 10−4

(
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) 3
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Sturb(f) =
(f/fturb)3
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where κturb is the fraction of latent heat transformed into MHD turbulence. The main
difference with the soundwaves contribution is the exponent for κ. It is found that the
dominant contribution is still from soundwaves, but for off-peak frequencies, turbulence
might start to dominate [91]. For this thesis, models with vw ≈ 1, α � 1 and no
runaway bubbles are studied and thus only contributions from soundwaves, as defined in
Equation (5.31) are considered:

h2ΩGW(f) = h2Ωsw(f) (5.33)

1Accelerating bubbles are typically called runaway bubbles.
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However, for other types of models with different features of the phase transition the
contributions might be related differently and careful consideration is needed.

In conclusion, for this thesis only the production of gravitational waves from sound-
waves is considered. These are long-lasting and, as can be seen from Equation (5.31),
are mainly dependent on the strength and duration of the phase transition, as charac-
terized by the quantities α and β/H∗. Now all theoretical issues surrounding conformal
extensions are discussed and in the next chapter, numerical results can be computed.
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Chapter 6

Numerical analysis

To study the electroweak phase transition described in Chapter 5 a numerical program
is needed to determine the bounce solution and calculate the Euclidean action for a
given temperature. Several programs exist at the moment, all with their advantages
and disadvantages[30, 99–101]. For this thesis, CosmoTransitions will be used[30]. It
is a Python-based script, which tries to analyze a given input theory (i.e. effective po-
tential), find its minima for different temperatures and derive the characteristics of the
corresponding (if present) phase transitions. Lastly, it finds the bubble wall profiles and
critical Euclidean action. For this thesis, the code has been expanded to also determine
the nucleation and percolation temperatures (as given in Section 5.1) as well as any
emergent gravitational wave spectra (as was explained in Chapter 5).

The program as it now stands, is able to completely work through an input model
and give all characteristics of importance in a matter of minutes, which makes it a fast
and useful tool. As the papers this thesis continues on1 used a different program (i.e.
AnyBubble [100] for the tunneling calculations and [102] for the thermal functions), this
chapter will provide some details of how CosmoTransitions works and the differences
with AnyBubble.

6.1 The over- and undershoot method

The main objective of CosmoTransitions is to determine the bubble profile along the
tunneling path and the corresponding critical Euclidean action, as has been explained in
Section 5.1. If CosmoTransitions has found two minima at a certain temperature T , it
tries to find a solution for the bubble’s equations of motion. These are given by:

d2~φ

dρ2
+
α

ρ

d~φ

dρ
= ∇V (~φ) (6.1)

Depending on if one is looking for tunneling at finite or zero temperature, α=2,3 and
ρ2 = r2, r2 − t2 respectively, where r is the spatial radial coordinate and t the time
coordinate. Lastly, ~φ is the vector which spans the scalar field space.

The equations of motion can be solved by the overshoot/undershoot method if the field
is only one-dimensional. One can think of this procedure as trying to roll a classical
particle on the inverted potential −V (φ). The particle starts at the global minimum
φglob and rolls down to the local minimum φloc for growing ρ as depicted in Figure 6.1.

So ρ acts as some kind of time in this case. At ρ → ∞ the particle should exactly
stop at φloc as very far outside the bubble, one expects the vacuum to still be the false
vacuum. If at ρ→∞ the particle over- or undershoots, the starting point was too close
or too far. Numerically, this method can be repeated until the initial point φtunnel is

1This thesis continues on the work of two previous papers [10, 15]
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Figure 6.1: The overshoot/undershoot method for a fictive inverted potential. As the
particle rolls down from the global minimum φglob (now a maximum), it tries to stop
precisely at φloc.

found to arbitrary precision. This point φtunnel should be thought of the point as where
the quantum particle appears again from under the barrier after which it rolls down fur-
ther to the global minimum φglob. Then one can calculate the Euclidean action between
φtunnel and φloc.

For multi-dimensional fields, the first step to solve the equations of motion are to re-
duce the problem to an one-dimensional one. This is done by guessing an initial path
~φguess in field space with parametrization coordinate x along the path. Next the equations
of motion are split into a parallel and a perpendicular direction:

d2x

dρ2
+
α

ρ

dx

dρ
=

∂

∂x
V [~φ(x)] (6.2)

d2~φ

dx2

(
dx

dρ

)2

= ∇⊥V (~φ) (6.3)

The first equation of motion can be solved by the overshoot/undershoot method as it is

the same as Equation (6.1). If ~φguess was correct, then the solution for Equation (6.2)will

also solve Equation (6.3). So now the path ~φguess must be deformed until it does. This

can be done by again thinking of this classically where ~φguess is a fixed path along which
a particle moves. As it rolls along the track, it will feel a force from the potential it is
rolling through. Naturally, the parallel force (and thus the speed of the particle) is given
by Equation (6.2) and the normal force trying to push it off the track is given by:

~Fnorm =
d2~φ

dx2

(
dx

dρ

)2

−∇⊥V (~φ) (6.4)

By splitting up the path in smaller segments, each part can be deformed in the
direction of ~Fnorm, forming a new path ~φ. This is repeated by the algorithm until the
path solves both Equations (6.2) and (6.2), i.e. ~Fnorm = 0. From this, the Euclidean
action can be calculated and used to determine the nucleation temperature.

6.2 Result for the benchmark model SU(2)cSM

As typically studying a phase transition numerically is very difficult for any numer-
ical program, CosmoTransitions is first tested on the known phase transition of the
SU(2)cSM. As will become clear, CosmoTransitions will yield different results than found
before, underlining the difficulty of correctly studying phase transitions numerically. As a
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Figure 6.2: Schematic picture of the deformation of a tunneling path under influence
of the underlying potential in two dimensions. The initial path (blue) is deformed in
the direction of the true tunneling path (green) through the normal force exerted by the
potential. Picture taken from [30].

guideline, the characteristic values found in [15] are calculated with the CosmoTransitions
package. The values found in [15] are given in Table 6.1.

# λ1 λ2 λ3 gX v [GeV] w [GeV] Tc [GeV] Tn [GeV] β/H∗ α

1 0.175 -0.0049 -0.0038 0.83 246 2200 281 22 597 447
2 0.149 -0.0065 -0.0058 0.94 246 1774 256 27 319 213
3 0.119 -0.0013 -0.0136 1.01 246 3611 568 60 265 170
4 0.122 -0.0050 -0.0104 1.05 246 1860 302 34 297 137
5 0.166 -0.0083 -0.0063 0.97 246 1648 244 24 325 245
6 0.120 -0.0019 -0.0079 0.92 246 2991 428 39 418 345
7 0.124 -0.0030 -0.0047 0.85 246 2411 318 28 434 361
8 0.139 -0.0095 -0.0093 1.08 246 1426 236 28 234 115

Table 6.1: Table with parameters and characteristics of the phase transition in the
SU(2)cSM for eight different benchmark points as found in [15].

They studied eight different benchmark points for the parameters and determined
the VEV’s at T = 0 (v and w), the critical and nucleation temperature Tc and Tn and
lastly the typical strength of the transition and its duration, given by β/H∗ and α,
respectively. As has become clear from the discussion in Section 5.2, percolation and
reheating temperature Tp and Tr are of bigger importance than previously thought. So
these found values for the eight benchmark points are also presented in Section 6.2.1 along
with the ones previously mentioned. In Section 6.2.2 benchmark point 7 is analysed and
multiple plots are presented to better show the phase transition.

6.2.1 Results on benchmark points

The values found by CosmoTransitions are given in Table 6.2. One can quickly see that
the values are very different from the ones in Table 6.1. Typically, the critical tem-
perature Tc is of comparable values, but the nucleation temperature Tn is an order of
magnitude smaller for the points analyzed in CosmoTransitions. As for lower tempera-
tures, the global minimum becomes even steeper, naturally the found α is much bigger
and the duration of the phase transition faster. And this also follows from the results.
As this order of magnitude difference in the nucleation temperature is alarming, further
inspection is needed to make sure that the results from CosmoTransitions are correct.
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This will be done by analyzing benchmark point 7 in more detail in Section 6.2.2, just
as was done in [15].

The reheating and percolation temperature have not been calculated before for the
SU(2)cSM. Interestingly, for all benchmark points the percolation temperature is around
half the nucleation temperature. This means that the phase transition is not instanta-
neous, but is completed in all cases and then reheating starts. A last remark must be
made on benchmark point 1. Unfortunately, CosmoTransitions was not able to properly
track the movement of the global minimum for different temperatures. From analyzing
the potential it was found that benchmark point 1 should have a similar phase transition
as the other benchmark points and this is thus no more than a numerical flaw from
CosmoTransitions.

# v [GeV] w [GeV] Tc [GeV] Tn [GeV] β/H∗ α Tp [GeV] Tr [GeV]

1 - - - - - - - -
2 247.21 1774.79 247.80 3.62 41.61 5.73 · 105 1.42 99.6
3 246.80 3599.17 516.70 16.05 41.48 3.34 · 104 10.9 216.98
4 246.14 1849.60 283.96 15.62 50.59 3.03 · 103 9.41 115.89
5 247.83 1651.91 237.19 4.87 41.74 1.48 · 105 2.26 95.52
6 245.31 2973.51 400.18 3.73 33.17 3.65 · 106 1.70 163.04
7 249.09 2430.76 308.15 0.74 26.79 7.8 · 108 .28 123.67
8 247.54 1426.52 226.23 16.96 57.27 8.62 · 102 10.93 310.32

Table 6.2: The values found by CosmoTransitions for the eight benchmark points given in
Table 6.1. New are the values for the percolation and reheating temperatures Tp and Tr.
For benchmark point 1, CosmoTransitions was not able to analyze the phase transition.

6.2.2 Figures of benchmark point 7

As CosmoTransitions is not finding the same values for the phase transitions as AnyBub-
ble, a closer look is needed into where this difference originates from. Perhaps the most
difficult part of analyzing a phase transition numerically, is finding the correct critical
tunneling action. So at what temperature does Equation (5.7) hold? This can be most
easily studied by constructing a plot for the found tunneling action as a function of tem-
perature. As this is also done in [15], the figures are compared in Figures 6.3 and 6.4.
As this is very hard to do numerically, this might be a good starting point to compare
the two.

Figure 6.3: The tunneling action for the
SU(2)cSM for benchmark point 7 as a
function of temperature T as found by
CosmoTransitions. The red line is the
critical tunneling action as calculated by
Equation (5.7).

Figure 6.4: The tunneling action for the
SU(2)cSM for benchmark point 7 as a
function of temperature T as found by
the AnyBubble program in [15]. A lin-
ear fit is done around Tn to estimate the
value of β/H∗.
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Now the difference becomes immediately clear. For temperatures smaller than ∼ 50
GeV, AnyBubble clearly starts showing scattered points. For temperatures > 50 GeV
the two plots match, so one would think that the smoother continuation of Figure 6.3
makes more sense. A possible explanation for the scattering of points found by Any-
Bubble is that for lower temperatures it becomes increasingly hard to numerically find
the minimum at the origin. This has two reasons. First, as mentioned before, the global
minimum becomes deeper and second, the barrier decreases for decreasing temperatures.
So relatively, the minimum at the origin becomes increasingly shallow and thus harder
to find for a numerical program. This could produce varying values of tunneling action
as seen in Figure 6.4.

Therefore the conclusion is now that the results from CosmoTransitions are correct. As
is seen in Table 6.2, the percolation and reheating temperatures have also been studied.
Equation (5.24) yields a condition for bubble percolation as a function of temperature.
The condition, along with the numerical values found for benchmark point 7 are shown
in Figure 6.5.

Figure 6.5: The volume fraction of the Universe inside bubbles of true vacuum I(T )
as a function of temperature T in blue. The red-dotted line is the critical fraction for
percolation as explained in Section 5.1.2. For values below the percolation temperature,
I(T ) is no longer correct as the Universe starts reheating.

In Figure 6.5 it seems as if I(T ) diverges for small temperatures, which should not
be possible for a ratio. However, as stated before, I(T ) is not well-defined for T < Tp as
the Universe starts reheating after percolation. So the divergence should be ignored in
this case.

The last figure of interest for benchmark point 7 is the actual tunneling trajectory during
this phase transition. As has been explained in Section 6.1, CosmoTransitions finds the
optimal tunneling path and this can be plotted on the potential. This has been done in
Figure 6.6.

One sees that the tunneling takes place along the φ-direction. This is exactly the
same as what was found in [15]. It should be noted that the particle actually tunnels
under the barrier, where the black line in Figure 6.6 implies incorrectly that the particles
moves over the barrier. This is just a graphical choice. After tunneling through the
barrier, the scalar particle rolls down the potential to the global minimum.
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Figure 6.6: 3D-plot of the effective potential of the SU(2)cSM near the origin of the two
scalar fields h and φ at the nucleation temperature Tn = 0.74 GeV. The black line is the
tunneling path found by CosmoTransitions. The barrier at φ ≈ 2 GeV is barely visible,
but is present.

6.2.3 The SGWB of the SU(2)cSM

Of course the final goal of introducing any conformal extension of the SM is to measure
its gravitational wave background. The predicted SGWB for the SU(2)cSM was also
shown in [15]. However, as all benchmark points turned out to have stronger and shorter
phase transitions, one would expect also different SGWB’s.

Furthermore, a new assumption is made with respect to the peak frequency fsw in Equa-
tion (5.31). This frequency must be red-shifted to present day, but the red-shifting didn’t
start from the nucleation temperature, as assumed in [15]. The Universe reheated af-
ter the phase transition and the gravitational waves are expected to source from these
temperatures. So red-shifting should be calculated from the reheating temperature until
present day, instead of from the nucleation temperature. This means that in Equa-
tion (5.31) one should identify T∗ = Tr.

Now computing the spectrum of gravitational waves produced by the electroweak
phase transition yields the curves plotted in Figure 6.7. The spectra are well above
the best2 expected sensitivity range of LISA [103].3 All seven benchmark points are
included in the figure, but not all are distinguishable from each other. Compared to
[15], the SGWB’s have stronger peaks at smaller frequencies. This is exactly what one
would expect, as the phase transitions are found to be stronger, but the signals are more
red-shifted as they come from higher temperatures.

6.3 Analysis of the adjoint fSU(2)cSM and MfSU(2)cSM

Even though the aim of this thesis is to stay as general as possible for the adjoint
fSU(N)cSM and MfSU(N)cSM, one still is required to pick values for the six and seven
parameters. As mentioned before, two of these parameters are fixed by the SM Higgs

2ESA has at the moment of writing not updated their expected sensitivity curves to account for
the surprisingly strong results from LISA Pathfinder, so here the best sensitivity curve of the original
requirements is used.

3Unfortunately, it is not possible to give a signal-to-noise ratio (SNR) for these spectra as the area
between the background and detector curves is not trivially related to the SNR [104]. If one would
compute the characteristic strain of the gravitational waves and plot them against the sensitivity curves,
the area would correspond to the SNR. However, computing the characteristic strain was not part of
this thesis and thus must be left for future research.
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Figure 6.7: The stochastic gravitational wave backgrounds for different benchmark points
of the SU(2)cSM. The expected sensitivity curve from LISA is also plotted (dashed line).

mass and VEV. Numerically, it is possible to check for these conditions in CosmoTransi-
tions for different values of the parameters. This has been done in [10] for the SU(2)cSM.
They also check for the running of the couplings and solve their RGE equations. Then
one can also check the stability of the potential (as discussed in Section 3.3) at the Planck
scale.

In the timespan of this thesis, it was not possible to implement these last two checks
in CosmoTransitions. However, a scan of the parameter space has been done for the
adjoint fSU(2)cSM and the MfSU(2)cSM with Nf = 3. The benchmark points found by
CosmoTransitions are shown in Tables 6.3 and 6.4. From the results, it is clear that for
very small deviations in the parameter values, large differences in the minima and Higgs
mass were found. This made it hard to find very different benchmark points, as many
million iterations must be performed to only find one set of points.

# λ1 λ2 λ3 λ4 gX yX v [GeV] wφ1 [GeV] wφ2 [GeV]

1 0.17248 -0.5599 0.6111 -0.3325 0.7159 0.01 245.2 142.2 142.6
2 0.17237 -0.5620 0.6193 -0.3397 0.7189 0.01 246.1 143.0 143.0

Table 6.3: Two benchmark points for the adjoint fSU(2)cSM. For both points, the Yukawa
coupling λf was set to 0.01 to simplify the parameter scan.

# λ1 λ2 λ3 λ4 λ5 gX Y v [GeV] wφ [GeV] wσ [GeV]

1 0.11629 -0.012817 0.090752 -0.08775 0.02160 0.8810 0.01 246.4 1501 2314
2 0.11634 -0.012852 0.090720 -0.08784 0.02187 0.8815 0.01 241.2 332.7 471.7

Table 6.4: Two benchmark points for the MfSU(2)cSM. For both points, the Yukawa coupling Y was
set to 0.01 to simplify the parameter scan.

Unfortunately, when analyzing the possible phase transitions in these models for the
given benchmark points, no phase transitions were found. The numerical analysis of these
phase transitions is very delicate. What is meant is that correct tracking of the minima
for different temperatures, highly depends on correctly fine-tuning the multiple precision
parameters of minimization procedures. This was also the case for the SU(2)cSM, where
at least the benchmark points were already known to behave properly, so for these models
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it is even more difficult. Due to the restriction of time for this thesis, it has therefore not
been possible to analyze the introduced models on their symmetry-breaking and phase
transitions. The expectation is that in future research this will be possible and that the
symmetry-breaking patterns discussed in Section 4.1 will appear.

For now, the visualisations of the effective potential are discussed for the two models.
First, the adjoint fSU(2)cSM. As the two new scalar fields φ1 and φ2 can be exchanged,
without changing any of the expressions, one would expect that the potential is also
symmetric along these two axes. This turns out to be indeed the case, so only the h−
and φ1-direction have to be shown to show the behaviour of the effective potential.

Figure 6.8: One-dimensional plots of the effective potential of the adjoint fSU(2)cSM for
benchmark point 1 in Table 6.3. The plots are given at the VEV-values of the other
fields.

Figure 6.9: One-dimensional plots of the effective potential of the MfSU(2)cSM for bench-
mark point 1 in Table 6.4. The plots are given at the VEV-values of the other fields.

For the adjoint fSU(2)cSM the minimum becomes degenerate around 200 GeV. This
is not completely clear from the φ1-figure in Figure 6.8, as the barrier is extremely small
along the φ1- and φ2-direction. One can conclude from this two figures that there is
likely a similar type of phase transition as for the SU(2)cSM model, where the scalar
field tunnels along the φ1/2-directions and then rolls down to the global minimum. It
will therefore be of great interest to study the phase transitions in this model with Cos-
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moTransitions.

The MfSU(2)cSM gives a more complicated picture. All directions have a clear symmetry-
breaking minimum for low temperatures, which disappears at high temperatures. How-
ever, the temperatures at which the minima are degenerate along a certain direction are
very different for the three fields. Especially the σ-field already has a global symmetry-
breaking minimum at temperatures around 6000 GeV. So this would indicate that tun-
neling would take place along the σ-direction. However, proper numerical tracking of
the minima is needed to make sure that in the three-dimensional potential this is not a
saddle point or the minimum is located elsewhere.

To conclude, CosmoTransitions is able to accurately track and describe the electroweak
phase transition of SU(2)cSM. However, to do this, precise settings are needed for the
numerical minimization procedures. As this could not be done in time for the adjoint
fSU(2)cSM and MfSU(2)cSM, this must be left for follow-up studies. However, one-
dimensional analysis of the effective potentials clearly indicates interesting phase transi-
tions, so these models are definitely of interest for a more extensive study.
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Chapter 7

Conclusion

It is safe to state that conformal extensions of the Standard Model are one of the most
promising theories of physics beyond the Standard Model. They are able to solve, or at
least give an answer to, some of the most interesting open problems in Cosmology and
particle physics. They can radiatively generate the Higss mass and VEV, which other-
wise is subject to an unnatural amount of fine-tuning. New particles in this conformal
extension are also able to stabilize the Standard Model up to the Planck scale. Moreover,
these particles can provide stable dark matter candidates and the extended scalar sector
will undergo a first-order phase transition. This phase transition could not only accom-
modate baryogenesis, but in addition sources a gravitational wave background, which
likely will be experimentally measurable in the near future.

These reasons were the original incentive to start on this study of conformal extensions
of the Standard Model. To properly study these type of models, a theoretical framework
of quantum and thermal field theory has been built in Chapter 2. With this framework,
an effective potential can be constructed for any model, which includes quantum-loop
and thermal-loop corrections. These corrections can induce a mass scale in the model
through radiative symmetry breaking, whereas there was originally no mass scale. Fur-
thermore, Daisy resummation has been discussed to control the perturbativity of the
thermal field theory. General expressions were found for the scalar and gauge boson
self-energies, which can be used for any model.

To narrow down the area of study, the possible theoretical and experimental constraints
on conformal extensions were discussed in Chapter 3. It was concluded that one has to
take into account what types of particles are added to any particular model, as they can
be dark matter candidates or source baryogenesis. Furthermore, their interactions with
the Higgs boson must be such that the SM values of the Higgs mass are retrieved.

In Chapter 4, old research on Grand Unified Theories has been reintroduced to give a
feeling on the possible symmetry-breaking patterns of, in particular, SU(N) and SO(N)
gauge groups. Again it was found that a general expression could be used, this time in
the form of a mathematical conjecture. Next, three models were introduced. The first
was the already studied SU(2)cSM, which could be used in later chapters as a bench-
mark model. Then two new models were built with a diverse particle spectrum. The
adjoint fSU(N)cSM is one of the few studied conformal extensions with a scalar sector
in the adjoint representation. The other model, the MfSU(N)cSM, has multiple scalar
interactions through three different scalars. Furthermore, it contains Majorana fermions,
which could be of great interest for neutrino research. The complete mass spectra of all
three models has been presented, where for the adjoint fSU(N)cSM, two different limits
had to be considered to keep the expressions analytical.

Before it was possible to numerically analyze the three models, first a description of the
electroweak phase transition was given in Chapter 5. As it turned out, it is possible to
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generally describe the electroweak phase transition for conformal extensions. The transi-
tion is typically strong and first-order and is therefore able to source gravitational waves.
To show this, the bubble nucleation and hydrodynamics have been studied and how the
process of bubble collisions can produce gravitational waves. This has been implemented
in the numerical program CosmoTransitions, which was introduced in Chapter 6. The
results from the numerical analysis for the SU(2)cSM were compared with previous re-
sults and were found to give a better description of the phase transition for this model.
With the improved numerical calculations, several quantities were worked out. Finally, a
plot of the expected stochastic gravitational wave background induced by the SU(2)cSM
was presented for all, but one, benchmark points. The peak frequencies were found to
lie well within the expected sensitivity range of LISA.

Lastly, benchmark points were found for the adjoint fSU(2)cSM and the MfSU(2)cSM.
Unfortunately, the numerical analysis has not been able to work out before the com-
pletion of this thesis. A short description of the models, based on plots of the effective
potential, was made and it could be concluded that the models behaved as expected.
This means future work is needed for these models, but the framework built in this the-
sis, can be concluded to be solid.

To conclude, the questions asked in the introduction are still standing. From the work
in this thesis, it is not yet possible to see if discrimination is possible between different
models. Also, the influence of the particle spectra and the gauge groups on measurable
quantities, such as the SGWB, are not yet studied. However, the thesis has been able to
give guidelines to what is and what is not possible for conformal extension of the Stan-
dard Model. They can still provide answers to the problems left by the Standard Model,
produce dark matter candidates and source baryogenesis. Different types of models can
radiatively generate the Higgs mass and VEV and have electroweak symmetry breaking.
So there is no need to constrain the research to the more minimalistic models as there
has been found no indication that more complicated models are ruled out. In the con-
trary, the latter might be able to provide even more solutions. The future prospects are
therefore encouraging for conformal extensions of the Standard Model and more research
must and will be done on them. And in 15 years, perhaps a little longer, we might know
for certain, whether one of these models is indeed the one that describes nature.



Appendix A

Full Lagrangian of the
conformal extensions

For completeness, both full Lagrangians are given with clarification of the seperate fields
and terms. In both Lagrangians the Standard Model Lagrangian LSM is not written
down explicitly and can be found in [105] for the Standard Model and for the conformal
Standard Model in [13]. The fields Gi are the Goldstone bosons of the Standard Model,
which form the pions after being eaten by the gauge bosons in the weak sector of the
SM.

A.1 Lagrangian of the adjoint fSU(N)cSM

Model 1 consists of a dark matter sector with scalar fields, which transform in the adjoint
representation under a SU(N) gauge group. There are also Dirac fermions gauged under
the same group.

Lmodel1 = LSM + λ1(H†H)2 + λ2(H†H) Tr
[
Φ†Φ

]
+ λ3 Tr

[
Φ†Φ

]2
+ λ4 Tr

[
(Φ†Φ)2

]
+ (DµH)†DµH + Tr

[
(D′µΦ)†D′µΦ

]
+ Tr[GµνG

µν ] (A.1)

+ iψ̄ /D
′
ψ + yX ψ̄Φψ

H =
1√
2

(
G2 + iG3

v + h+ iG1

)
(A.2)

Φ =
1√
2

φ1

. . .

φN

 (A.3)

ψ =
1√
2

(ψ1, · · · , ψN )T (A.4)

D′µ = ∂µ − igXXa
µta (A.5)

Here ta are the generators of the SU(N) adjoint representation.
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A.2 Lagrangian of the MfSU(N)cSM

The second model consists of three scalars of which two are in the dark sector. One is
gauged in the fundamental representation of SU(N), while the other is a complex scalar
singlet. The singlet also interacts with un-gauged Majorana fermions.

Lmodel1 = LSM + λ1(H†H)2 + λ2(H†H)(Φ†Φ) + λ3(Φ†Φ)2 (A.6)

+ λ4

(
Φ†Φ

)
|σ|2 + λ5|σ|4

+ (DµH)†DµH + (D′µΦ)†D′µΦ + Tr[GµνG
µν ]

+
i

2
ψ̄ /∂ψ + (∂µσ)

†
∂µσ + Y σψ̄ψ + h.c.

H =
1√
2

(
G2 + iG3

v + h+ iG1

)
(A.7)

Φ =
1√
2

(φ1 + φ2, · · · , φ2N−1 + φN )T (A.8)

ψ =
1√
2

(ψ1, · · · , ψNf )T (A.9)

σ =
1√
2

(σ1 + iσ2) (A.10)

D′µ = ∂µ − igXXa
µta (A.11)

The scalar fields are written in terms of real scalar fields h,Gi, φi and σi.

A.3 Thermal corrections to the Standard Model and
the SU(2)cSM

The effective potential in the Standard Model was first calculated by Carrington in
1992 [36]. The contributions from Daisy resummation (he referred to the diagrams as
ring diagrams) for the Standard Model particles are given below. As is explained in
Section 2.3.2, only scalars and the longitudinal gauge bosons acquire a thermal mass at
leading order.

The longitudinal masses in the gauge field basis (Aaµ and Bµ) are given by:

M2
L(h, T ) =

h2

4


g2 0 0 0
0 g2 0 0
0 0 g2 −gg′
0 0 −gg′ g′2

+
11

6
T 2


g2 0 0 0
0 g2 0 0
0 0 g2 0
0 0 0 g′2

 (A.12)

Diagonalizing this matrix yields the familiar basis of the W±µ , Zµ and photon γ [106]:

M2
WL

(h, T ) = m2
W (h) +

11

6
g2T 2 (A.13)

M2
ZL(h, T ) =

1

2
m2
Z(h) +

11

12

g2

cos2(θW )
T 2 +

∆

2
(A.14)

M2
γL(h, T ) =

1

2
m2
Z(h) +

11

12

g2

cos2(θW )
T 2 − ∆

2
(A.15)

∆2 = m4
Z(h) +

11

3

g2 cos2(2θW )

cos2(θW )

[
m2
z(h) +

11

12

g2

cos2(θW )
T 2

]
T 2 (A.16)

The gauge bosons in the SU(2)cSM have a mass similar to the Wµ-bosons. Ideally, one
would like to include a transition function between the thermal mass and the tree-level
mass [15]. This is due to the fact that the high temperature limit is not valid for field
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values around the VEV where the found tree-level mass is mX ∼ O(1 TeV) at GeV-scales
of temperature. Here one rather uses the tree-level mass. However, it was found that
including a tanh-like transition function, would force the local minimum away from the
origin.

MXL(φ, T ) = m2
X(φ) +

5

6
g2
XT

2 (A.17)



Appendix B

HTL calculation of the scalar
self-energy

The one-loop scalar self-energy is the most simple to determine. It can have contribu-
tions from loop diagrams with scalar-, fermion- and gauge-loops, as shown in Figure B.1.
This is for a Higgs-like scalar particle with general gauge and fermion interactions. For
conformal extensions, interactions with other scalars are also possible, but they can be
simply derived from the different multiplicity of the scalar loop diagram.

To do the calculations, one needs the different type of propagators and some standard
integral identities from TFT. They are given in Feynmann gauge for a general metric
gµν and K is the four-vector momentum K = (k0,~k). Note that the scalar and fermion
propagator seem similar, but differ in the allowed Matsubara frequencies ωn = (2n+1)πT
for fermions.

Scalar/fermion propagator: ∆(K) =
1

K2 −Π(k0,~k)
(B.1)

Gauge propagator: ∆ab
µν(K) = gµνδ

ab∆(K) (B.2)

T
∑
k0

∫
d3k

(2π)3
∆(K) =

T 2

12
(B.3)

Equation (B.3) can be easily derived using a complex contour integral for the sum and
then changing to spherical coordinates for the spatial integrals. Now everything is given
to calculate the scalar self-energy to one-loop order. The contributing diagrams are
shown in Figure B.1.

Figure B.1: Possible contributing diagrams to the one-loop scalar self-energy Π. The
diagrams have scalar-, fermion- and gauge-loops, respectively. Picture taken from [42].

First, the scalar loop is considered. Here a Higgs-like scalar is assumed, which is a
SU(2) doublet. Counting the number of possible Wick contractions gives a multiplicity
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of 6, however for any other scalar or a loop diagram with interactions between different
scalars this number can differ. So the vertex factor is 6λ, where λ is the self-interaction
coupling. Then the self-energy contribution from this loop-diagram is given by:

Πφ = 6λT
∑
k0

∫
d3k

(2π)3
∆(K) =

λT 2

2
(B.4)

The typical gauge contribution comes from two diagrams. The gauge coupling is here
denoted by g, ta are the generators of the gauge group and Q is the external momentum.
This yields the following contribution:

Πgauge = g2tatbT
∑
k0

∫
d3k

(2π)3

[
(2Q−K)µ∆ab

µν(K)(2Q−K)ν∆(Q−K) +
1

2
(−2gµν)∆ab

µν(K)

]
(B.5)

where the factor 1
2 is a symmetry factor of the second loop diagram. Now one uses

tatbδab = C2(r) with C2(r) the Casimir-invariant of the gauge group in representation r.
Also assuming soft external momentum, one can approximate (2Q −K)2 ≈ K2. Then
by shifting the loop momentum K → Q−K for the second diagram, the dependence on
the external momentum Q is completely eliminated:

Πgauge = g2C2(r)T
∑
k0

∫
d3k

(2π)3
[4∆(K)−∆(K)]

=
g2C2(r)T 2

4
(B.6)

Lastly, the fermion loop-diagram is calculated. The vertex factor depends on the number
of colours and is thus generally given by Ncλf . This gives the self-energy:

Πf = −Ncλ2
fT
∑
k0

∫
d3k

(2π)3
Tr
[
PL /K( /K − /Q)

]
∆(K)∆(K −Q) (B.7)

where a minus sign is added for the fermion loop. The trace is equal to:

Tr
[
PL /K( /K − /Q)

]
= 2K · (K −Q) = K2 + (K −Q)2 −Q2 (B.8)

As the external momentum is assumed to be soft, contributions of Q2 can be neglected.
This yields:

Πf = −Ncλ2
fT
∑
k0

∫
d3k

(2π)3
[∆(K) + ∆(K −Q)] (B.9)

The identity in Equation (B.3) differs a factor of − 1
2 for the fermion propagator due

to the different Matsubara poles in the complex contour integral. Again shifting the
momentum in the second term yields the final expression:

Πf =
Ncλ

2
fT

2

12
(B.10)

Putting all terms together, gives a general expression for the self-energy of a Higgs-like
scalar:

m2
φ,thermal =

6λ+ 3g2C2(r) +Ncλ
2
f

12
T 2 (B.11)

Again, note that for different models the multiplicity factors will differ.



Appendix C

Explicit expressions for the
symmetry breaking analysis

Here the explicit expressions for the terms a(n1, n2, n3),(n1, n2, n3)b and f(n1, n2, n3)
are given, as introduced in Section 4.1.2. The terms are for symmetry breaking of a
second-rank symmetric tensor in the O(N) group. The analysis can also be found in
appendix B of [72]. The terms are given by:

a(n1, n2, n3) =
µ2

2

1

(n2 − n3)2

[
n1(n2 − n3)2 + n2(n1 − n3)2 + n3(n1 − n2)2

]
(C.1)

b(n1, n2, n3) =
1

4(n2 − n3)4

[
λ1

(
n1(n2 − n3)2 + n2(n1 − n3)2 + n3(n1 − n2)2

)
+ λ2

(
n1(n2 − n3)4 + n2(n1 − n3)4 + n3(n1 − n2)4

) ]
(C.2)

f(n1, n2, n3) =
n1(n2 − n3)4 + n2(n1 − n3)4 + n3(n1 − n2)4

[n1(n2 − n3)2 + n2(n1 − n3)2 + n3(n1 − n2)2]
2 (C.3)
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