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Abstract

Recently, in the search for the nature of dark matter, interest in alternatives to the WIMP-
paradigm has been renewed. One such an alternative is the idea that dark matter consists
of primordial black holes (PBHs), which were created by the gravitational collapse of over-
dense regions in the early universe. It was recently realized that a previously unrecognised
regime of in�ation exists, in which the slow-roll (SR) approximation breaks down, giving
rise to the so-called ultra-slow-roll (USR) regime. During this regime, the primordial power
spectrum can experience rapid growth, and therefore give rise to more PBHs. In this thesis,
we match a period of USR in�ation to a period of SR in�ation, and analyse the growth of
the curvature perturbations. We do this with taking corrections of order ε, which are often
neglected, into account. We also make sure the background (the scale factor and Hubble
parameter) is smoothly matched. We see that the background does change only with order
ε. We also get a rapid growth in the curvature spectrum, which can account for a higher
concentration of PBHs.
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Notation

In this thesis, we use the following conventions:

• We work in natural units: c = ~ = 1 ,

• We set the reduces Planck mass to one: Mp = 1,

• We use the sign convention for the Minkowski metric ηµν : (−1,+1,+1,+1),

• We use the Einstein summation convention,

• We use Greek indices for values µ, ν, ρ, σ = 0, 1, 2, 3 and Latin indices for i, j = 1, 2, 3.
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Chapter 1

Introduction

Cosmology aims to describe the origin and evolution of the universe, and while much has
been learned about this the last couple of decades, there are still many questions left to
be answered. Some of these questions are about one of the most speculated about eras
in the universe: the era of in�ation. Adding an era of in�ation to the conventional Big
Bang model solves the Horizon and Flatness problems, which both describe the need for
extremely �ne-tuned initial conditions to give rise to the current universe. Furthermore,
in�ation gives an explanation for the origin of the Large Scale Structure (LSS). Besides
creating seeds for this LSS, in�ation can also predict the existence of a certain kind of dark
matter, namely Primordial Black Holes (PBHs).

In this thesis we �rst introduce the concept of Dark Matter, the prime candidate for dark
matter, the WIMP (weakly interacting massive particle), and the reason why the existence
of primordial black holes is still a scenario to take seriously. After that the concept of
classical in�ation is introduced and the most used model and tools to describe it are
presented. Then we will add quantum �uctuations and their evolution to this model. In
order to achieve this, we need to explain the Slow-Roll model, and when and why it breaks
down, and add some statistics for comparison with observations. Finally we will have all
we need to discuss the results of this thesis, and compare them to earlier research.

1.1 Dark Matter

These times are exciting times to be a cosmologist. New measuring techniques give new
insights into the cosmos that possibly ask for new physics. One of the biggest unanswered
questions in cosmology today is that of dark matter. In this chapter we will explain why
it is not known what dark matter is, when we are quite sure of its existence and why there
is a new interest in this �eld. We start with a short history of dark matter.

1.1.1 History

In this section we closely follow [1, 2].
The history of dark matter is longer than one might imagine. Already around the year
1900 there were mentions of dark bodies in the universe that were needed to make sense
of it. An early dynamical estimate of the percentage of dark matter in the Milky Way
was done by Lord Kelvin in 1904 in his lecture notes [3]. He came to this estimate by
treating the stars in the Milky Way as particles in a gas. By looking at the observed
velocities of the stars, he also got an upper limit for the density of stars within a certain
volume. While this was arguably a di�erent question from what we are dealing with now,
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1.1. DARK MATTER CHAPTER 1. INTRODUCTION

thinking about this extra, unseen matter can been thought of as the �rst baby steps in
this direction. Henri Poincaré reacted to this, using the phrase �matière obscure� (dark
matter in English) for the �rst time, by saying that by Kelvin's predictions there should
be little to no dark matter [1]. In respectively 1922 and 1933 the Dutch physicists Jacobus
Kapteyn and his student Jan Oort also published important works about the amount of
dark matter in the Milky Way, while in England James Jeans was working on the subject
too. Up until this point, astronomers were still thinking of very faint stars, meteoric and
nebulous matter, whose densities could be obtained by extrapolation from the luminous
matter. In the next few decades, this changed.

In the 1930's, papers by multiple authors began to appear in which �ndings of large discrep-
ancies between the mass of a galaxy calculated by observing visible matter and calculated
by looking at the velocity dispersion were covered[4, 5, 6]. The most known of these is by
Fritz Zwicky. He studied the Coma Cluster using data from Edwin Hubble and Milton
Humason [7], and compared its velocity dispersion to the theoretical one, and found a
huge mass discrepancy. From this he concluded that there is much more dark matter than
luminous matter, but just like Oort and Kapteyn thought this was ordinary non-luminous
matter: "We must know how much dark matter is incorporated in nebulae in the form of
cool and cold stars, macroscopic and microscopic solid bodies, and gases."[8, p. 218] This
discrepancy was not immediately accepted as a reason for the existence of dark matter by
the scienti�c community. Instead, after more studies on clusters of galaxies, other pos-
sibilities were proposed. For example, Viktor Ambartsumian proposed that the velocity
dispersion was high due to galaxies that were not part of a stable cluster, whereas Zwicky
assumed that the cluster would be in equilibrium. However, in that case the lifetime of
the clusters would be much less than the lifetime of the universe, which also contradicts
observations. In 1961, at a conference in Santa Barbara, the conclusion was that both
solutions were far from perfect and more information was needed. In the following decades
many theories were introduced, but there were not enough constraints to rule them out.

In the 1970's, with the help of the 21-cm line and radio astronomy, astronomers began
to notice something strange: the rotation curves of galaxies were �at, when they were
expected to decline (see �gure 1.1). In the famous study of Vera Rubin and Kent Ford,
in which they did spectroscopic measurements of the rotation of the Andromeda Nebula,
it was found that the velocity as a function of the radius was almost constant. They did
not draw the conclusion that there must be dark matter, but these kind of arguments were
the ones that would later �nally start to convince the scienti�c community of the existence
of dark matter. But we need to keep in mind that, at this time, the astronomers that
worked on the rotation curves were mostly not the ones that worked on the velocity dis-
persion. In both �elds, the �ndings were not seen as conclusive evidence for the existence of
dark matter, and as such, there was no consensus about the interpretation of all these data.

This changed when due to the downfall of the steady state universe theory and the ob-
servation of quasars, cosmology as a �eld sparked new interest and combined Einstein's
General Relativity and astrophysics. Theoretical cosmologists were pondering the question
of an open/closed universe, and argued from a philosophical standpoint, that they would
like it to be closed. However, for the universe to be closed, it needed to have a mass density
of two orders of magnitude higher than it seemed to have. So cosmologists went looking
for this extra mass, and �nally the �at rotation curves and mass discrepancy came together.

In 1974, two papers [10, 11] were published in which the two results were both mentioned
as reasons to believe in this unseen mass. The �at rotation curves and mass discrepancy
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CHAPTER 1. INTRODUCTION 1.1. DARK MATTER

Figure 1.1: Rotation curves side by side with the azimuthally averaged hydrogen surface
densities, which were thought to be a measure of the total mass density. [9]

were now seen as more a solution than a problem, it was evidence of the missing mass
that was needed for the more philosophical point of a closed universe. Since then, most
of the scienti�c community has been convinced there is some missing mass, or dark matter.

At �rst, it was thought that dark matter was just non-luminous matter, for example dust
or gas clouds. However, these clouds would be visible when blocking the light of stars.
Furthermore, the theory of nucleosynthesis predicts the abundance of the elements given a
certain abundance of baryons. From the abundances of elements like helium and lithium, it
is found that baryonic matter can only make up about a sixth of the matter in the universe.

Since the seventies, more evidence of dark matter has been found, most notably in the
Cosmic Microwave Background (CMB). Two telescopes (WMAP and Planck) measured
the relic photons from the time of recombination. Analysing the power spectrum obtained
from these measurements gives a ratio of cold dark matter to ordinary matter of about �ve
to one.

So while in the beginning of this story the term �dark matter� was used for non-luminous
matter, we see that currently Dark Matter is understood to be the unknown biggest part
of the universes matter density. The current de�nition no longer includes matter such as
meteors or cold stars. There are a couple of candidates that have been considered the last
couple of decades, mostly in the form of new particles. We will not go into detail for most
of them here, but let us mention what was the top candidate for some time.
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1.1. DARK MATTER CHAPTER 1. INTRODUCTION

Figure 1.2: Exclusion plot of the search for the spin-independent WIMP-nucleon cross
sections. The green shaded region is the region excluded by direct observation experiments,
while the orange shaded region is the �neutrino �oor�, the bound of the possibility of
measuring the WIMP before it gets obscured by the irreducible background from coherent
neutrino-nucleus scattering. Figure is taken from `Direct Detection of WIMP Dark Matter:
Concepts and Status' [13].

1.1.2 WIMPs

Currently it is estimated that 85% of the matter in the universe is dark matter. We can
divide the di�erent candidates for dark matter into cold dark matter and hot dark matter.
Hot dark matter consists of particles that move with almost the speed of light, while cold
dark matter moves slowly in comparison with the speed of light. Cold dark matter (CDM)
is also useful to explain the forming of structures.

For a long time it was widely believed that Weakly Interacting Massive Particles (WIMPs)
would be the answer to the question of dark matter. These hypothetical particles interact
gravitationally and through the weak force with other matter. For the WIMPs to be a
cold relic from thermal decoupling, there is a lower bound on its mass of a few keV.[12]
Furthermore, if we assume thermal production, we know from the observed dark matter
density the rate with which the particles self-annihilate must have a cross section of the
order of 10−26cm3/s. With Super-Symmetric arguments, a particle that interacted only
gravitationally and with the weak force with exactly these two features was predicted to
exist. This came to be known as the `WIMP miracle'. Immediately experiments were set
up to look for this particle, but as more time goes by, it becomes more and more probable
that we are not going to �nd it, see �gure 1.2. This failure to �nd WIMPs caused renewed
interest in other dark matter candidates, like Primordial Black Holes (PBH).
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CHAPTER 1. INTRODUCTION 1.1. DARK MATTER

1.1.3 Primordial black holes

So dark matter might be (partly) made up from primordial black holes. What do we know
about primordial black holes, and how can we �nd them?

While currently Black Holes can only be created out of the explosion of heavy stars, in
the early universe, the density of the universe was much higher, and therefore Black Holes
could be generated by relatively small density �uctuations. The existence of such black
holes was �rst predicted by Zel'dovich and Novikov in their 1966 paper [14]. At this time,
the term `black hole' was not yet used, but they mention singularities and Schwarzschild
radii in the early universe. In 1970, a paper by Stephen Hawking was published, in which
he predicted that a large number of objects with masses from 10−5g upwards could have
been created in the early universe due to density �uctuations [15]. Currently, we know
that these smallest PBHs, up to 1015g, must have evaporated due to Hawking radiation,
and are therefore not present in the current universe.

In 1996 a paper was published, in which the formation of PBH due to an in�ationary period
in the universe was proposed [16]. A PBH is formed in the early radiation-dominated uni-
verse, when an overdensity of about δρ

ρ = O(1) causes a region to gravitationally collapse
into a black hole. Such a black hole will then have the same mass as the mass contained in
the collapsed region. For this collapse to happen, we need sharp peaks in the primordial
power spectrum. This can possibly happen in some in�ationary models, from which we
will discuss one in this thesis.
In �gure 1.3 it is shown that there are still two windows open for PBH to make up most
(or all, if we for example consider broad peaks) of the universe's dark matter: between
10−13MPBH/M� and 10−8MPBH/M�, where it was thought to have been constrained by
neutron star capture and around 102MPBH/M�.

This divides the search for PBH as dark matter in roughly two cases: massive primordial
black holes and low mass primordial black holes. The massive PBHs are used to explain
the super-massive black holes in the centre of galaxies, and other black holes that are more
massive than the general big bang model predicts, as measured by LIGO. These massive
PBH are created by high or broad peaks in the primordial power spectrum. These high
peaks collapse into massive black holes when re-entering the horizon. The broad peaks,
however, can �rst collapse and form clusters of black holes, which later merge and accrete
more mass. These massive black holes then also function as seeds for LSS. [17]

As we have now seen, the existence of PBHs can answer some big questions. But for these
PBHs to be created, there have to be large and/or broad peaks in the primordial power
spectrum. In this thesis, we explore one way in which the peaks of the primordial power
spectrum rapidly grow and therefore create the PBHs.

9



1.1. DARK MATTER CHAPTER 1. INTRODUCTION

Figure 1.3: Constraints on the abundances of primordial black holes in the current universe.
Shown are constraints obtained by: extra galactic background photons (EGB, orange),
femto-lensing observations (Femto-lensing, red), micro-lensing observations (MACHO and
EROS, green and blue), �uctuations in the CMB (FIRAS and WMAP3, cyan an purple)
and observations on wide binaries (WB, brown). The brown, dotted line with NS was
thought to be constrained by star formation and capture by neutron stars, but this is
currently being debated. The black dotted line corresponds to a particular scenario of
PBH formation as proposed by [17].
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Chapter 2

In�ation

To understand and describe the way primordial black holes are generated, we need to un-
derstand the mechanism of in�ation. In this chapter we will explain why we need in�ation,
and introduce the language with which we can describe it. (We largely follow the Baumann
lectures on in�ation[18] and Weinberg's book `Cosmology' [19].)

2.1 Classical In�ation

Cosmic in�ation is a period of exponential expansion around 10−34 seconds after the Big
Bang. It is created as the solution to the horizon and the �atness problem. When we
look at a picture (�gure 2.1) of the Cosmic Microwave Background (CMB) we can see two
things: for one, the universe looks the same in all directions, but secondly, there are small
�uctuations from the average temperature. It is thought that cosmic in�ation is respon-
sible for both the homogeneity and the small perturbations that will later form the large
scale structure of the universe.
During in�ation, the comoving Hubble horizon shrinks. This way, small perturbations

that were once inside the horizon, get stretched to larger scales to become frozen outside
the horizon. Later, when the universe is again expanding normally, these perturbation
enter the horizon again, and cause collapses into galaxies and galaxy clusters.

From observations, it is not unreasonable to assume we live in both an homogeneous and
isotropic universe. This assumption that the universe should look the same for all observers
is called the cosmological principle. The metric for the space time of such an universe is
given by the Friedmann�Lemaître�Robertson�Walker (FLRW) metric:

ds2 = −dt2 + a2(t)

(
dr2

1− κr2
+ r2

(
dθ2 + sin2(θ)dφ2

))
, (2.1)

where a(t) is the scale factor, κ the curvature parameter (+1, 0,−1 for a positively curved,
�at, negatively curved universe respectively) and we use comoving coordinates. Comoving
coordinates mean that while the universe expands with an increasing scale factor a, a
particle with no acting forces upon it, will keep the same coordinates. An important
parameter that characterizes such an universe is the Hubble parameter

H =
ȧ

a
(2.2)

which parametrizes the expansion rate of the universe. It is positive for an expanding
universe and negative for a collapsing one. It also sets the fundamental scales: the Hubble
time t = H−1 and the Hubble length d = H−1. In di�erent stages of the evolution of the
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2.1. CLASSICAL INFLATION CHAPTER 2. INFLATION

Figure 2.1: Nine years of WMAP data give this picture of the Cosmic Microwave Back-
ground (CMB). The CMB is made up of relic photons from the time when radiation
decoupled from matter. The colour di�erences show the temperature �uctuations (±200
microKelvin) which correspond to the seeds of LSS. Credit: NASA/WMAP Science Team

Figure 2.2: A summary of the history of the universe. In�ation happens here at 10−32s,
after which the radiation era begins. During in�ation the quantum �uctuations are created
which will seed the Large Scale Structure (for example galaxy clusters) we can see in later
times. Image source: NASA Planck project
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CHAPTER 2. INFLATION 2.2. DYNAMICS

universe, the scale factor and the Hubble parameter had di�erent shapes, depending on
the dominant energy (radiation, matter, dark matter, etc.).

It is convenient to describe in�ation in conformal time

τ ≡
∫

dt

a(t)
, (2.3)

which changes the FLRW metric 2.1 to

ds2 = a2(τ)

(
−dτ2 +

dr2

1− κr2
+ r2

(
dθ2 + sin2(θ)dφ2

))
. (2.4)

The use of conformal time will let us describe the light cone at the time as straight lines
at a 45◦ angle. We then also introduce the conformal Hubble parameter

H =
a′

a
=
∂τa

a
=
a∂ta

a
= aH. (2.5)

The comoving particle horizon is de�ned as the maximum comoving distance a photon
can travel between some initial time, ti, (often the origin of the universe, de�ned by
a(ti = 0) = 0) and some end time, te,

χp(τ) ≡
∫ te

ti

dt

a(t)
= τe − τi. (2.6)

This comoving particle horizon also gives the distance over which causal contact can have
been realized, and is therefore important in one of the biggest puzzles in cosmology, the
horizon problem, which we will explain later on. We can also convert this to the physical
distance by multiplying by the scale factor: dp(t) = a(t)χp.
Another horizon that is physically important is the event horizon, this gives the distance
so that there cannot be any causal contact in the future and is de�ned as

χe =

∫ τmax

τ
dτ = τmax − τ, (2.7)

where τmax is the `end of time'.

2.2 Dynamics

Now we have the means to describe some of the dynamics of in�ation. The universe as
described by the FLRW metric 2.1 should obey the Einstein equation,

Gµν = 8πGTµν (2.8)

where Gµν is the Einstein tensor

Gµν ≡ Rµν −
1

2
gµνR, (2.9)

(2.10)

with the Ricci tensor en scalar given by,

Rµν = ∂ρΓ
ρ
µν − ∂νΓρρµ+ΓρρλΓλµν − ΓρνλΓλρµ, R = gµνRµν , (2.11)
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2.2. DYNAMICS CHAPTER 2. INFLATION

and Tµν is the stress-energy tensor. Now we have to de�ne such a tensor. Let us start with
de�ning the timelike four-velocity vector uµ ≡ dxµ

dτ such that gµνu
µuν = −1. We also de�ne

a tensor γµν = gµν + uµuν , the matter energy density ρ = Tµνu
µ, the isotropic pressure

p = 1
3Tµνγ

µν , the energy��ux vector qµ = −γαµTαβuβ and the symmetric and trace-free

anisotropic stress tensor Σµν = γα〈µγ
β
ν〉Tαβ . Now we write the energy-momentum tensor of

a general �uid as

Tµν = ρuµuν + pγµν + 2q(µuν) + Σµν . (2.12)

In the special case of the perfect �uid (where there is no viscosity, shear stress or heat
conduction) there exists a unique 4-velocity such that Σµν = qµ = 0,

Tµν = gµαTαν = (ρ+ p)uµuν − pδµν (2.13)

where ρ and p are the proper energy density and pressure in the �uid rest frame and uµ is
the 4-velocity of the �uid. If we move to a frame that is comoving with the �uid, we can
choose uµ = (1, 0, 0, 0), such that

Tµν =


ρ 0 0 0
0 −p 0 0
0 0 −p 0
0 0 0 −p

 . (2.14)

We can then put the Einstein equations in the following form, called the Friedmann equa-
tions

H2 =
1

3
ρ− κ

a2
(2.15)

Ḣ +H2 =
ä

a
= −1

6
(ρ+ 3p). (2.16)

When combined, these equations can be written as follows:

dρ

dt
+ 3H(ρ+ p) = 0 (2.17)

or (2.18)

d ln ρ

d ln a
= −3(1 + w), with w ≡ p

ρ
, (2.19)

which is called the continuity equation. Here w is the equation of state parameter, which
takes di�erent values for di�erent kinds of matter. For the equation of state of non-
relativistic matter w = 0, for ultra-relativistic matter w = 1

3 , and for in�ation w ≈ −1.
When integrated, this last equation gives us

ρ ∝ a−3(1+w). (2.20)

Now we can read o� the time evolution of the scale factor for di�erent kind of universes.

a(t) ∝ { t2/3(1+w) w 6= −1
eHt w ≈ −1

(2.21)

For a universe that is �at (κ = 0) and dominated by

• non-relativistic matter (w = 0) the scale factor goes as a ∝ t2/3

• radiation or relativistic matter (w = 1
3) the scale factor goes as a ∝ t

1/3

14



CHAPTER 2. INFLATION 2.2. DYNAMICS

• a cosmological constant (w = −1) the scale factor goes as a ∝ eHt

While it is not completely necessary for a physical model, most physicists would like the
universe not to be a product of special, �ne-tuned initial conditions. The conventional
Big Bang model needed these special, �ne-tuned initial conditions to predict the universe
that we know and love today. There are two `problems' of initial conditions that in�ation
solves: the horizon problem/initial homogeneity problem and the �atness problem/initial
velocities problem. These are not inconsistencies in the standard cosmological model, but
rather shortcomings in its predictive power.

The �rst problem arises for example when we look at the CMB. We see that at the mo-
ment the photons decoupled from matter, the inhomogeneities were much smaller than
they are now. This makes sense, because these inhomogeneities are unstable because of
the gravitational force and will therefore grow. But it follows, that at the time before the
CMB, the universe should contain even smaller inhomogeneities. How can our universe be
so smooth? Even when in the original Big Bang model, di�erent patches of the CMB are
causally disconnected? This is called the horizon problem.

The second problem is called the �atness problem. Observations show that the universe
today is near-�at. To better show the problem, we then write the Friedmann equation as

1− Ω(a) =
−κ

(aH)2
(2.22)

(2.23)

where

Ω(a) ≡ ρ(a)

ρcrit(a)
, and ρcrit ≡

3H2

8πG
. (2.24)

As the comoving Hubble radius (aH)−1 grows with time, |Ω− 1| must diverge with time.
As we know, the universe is near-�at now so Ω ∼ 1, but Ω = 1 is a unstable �xed point. So
for Ω to be so close to 1 today, it should have been even closer to 1 in the early universe.
Why would this be the case?

The answer to both of these question is (obvious by the title of this chapter): in�ation.
Both of the problems arise because the comoving Hubble radius is strictly increasing, so the
idea is that they can be solved by assuming a model in which the Hubble radius decreases
for some time. During in�ation the Hubble parameter H is approximately constant and
the scale factor a grows exponentially. The comoving Hubble radius (aH)−1 does indeed
decrease for these a and H, but the particle horizon (or conformal time) still grows. Now
Ω = 1 is an attractor instead of a unstable �xed point. And patches of the CMB that are
not in causal contact now, have been in causal contact before in�ation, and can therefore
have had the time to form a homogeneous universe (see �gure 2.3).

This period of shrinking of the Hubble radius also explains how quantum �uctuations can
exit the horizon during in�ation and re-enter the horizon after in�ation to then gravita-
tionally collapse to form large-scale structure or primordial black holes.

The Friedmann equations relate the following equivalent conditions for in�ation:
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2.2. DYNAMICS CHAPTER 2. INFLATION

Figure 2.3: In conformal time, the light cone consists of straight lines in a 45◦ angle with
the time direction. In conventional big bang models, a ∝ τ or a ∝ τ2 everywhere. Then
the Big Bang happened at a = 0 =⇒ τ = 0. This means that two patches far enough
apart at recombination have never been in causal contact. If we add a period of in�ation,
we extend the conformal time from 0 to −∞. This way, the point where τ = 0 is actually
the end of in�ation, and patches far apart at the time of recombination have been in causal
contact somewhere during in�ation.
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CHAPTER 2. INFLATION 2.2. DYNAMICS

Figure 2.4: In�ation can make perturbation that have been created quantum-mechanically,
exit the horizon, and later re-enter it. These perturbations will keep the same comoving
length, but their physical length will grow with lphysical = alcomoving

d

dt
(

1

aH
) < 0 (2.25)

d2a

dt2
> 0 (2.26)

p < −1

3
ρ. (2.27)

In this thesis, the second condition is the most important. We can express the second time
derivative of the scale factor in terms of the Hubble parameter and it's time derivative

ä

a
= H2(1− ε1), where ε1 ≡ −

Ḣ

H2
. (2.28)

We call ε1 the �rst Slow-Roll parameter and it plays an important role in this thesis, this
will be explained further in the section about Slow-Roll. With these expressions we can
also express the second condition as follows

ε1 = −d lnH

dN
< 1, (2.29)

where N is the number of e-folds N = ln a.

There is an in�nite number of possible models of in�ation, but we will only use and therefore
focus on the simplest models: the models with a single scalar �eld φ called the `in�aton'.
The action of the system with such a �eld minimally coupled to gravity is as follows

S =
1

8πG

∫
d4x
√
−g(

1

2
R+

1

2
gµν∂µφ∂νφ− V (φ)), (2.30)
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Figure 2.5: Example of a in�aton potential.

where the potential, V (φ), describes the self-interaction of the in�aton-�eld. In subsequent
equations we will put 8πG = 1. From this we determine the energy-momentum tensor for
the in�aton

T (φ)
µν ≡ −

2√
−g

δSφ
δgµν

− ∂µφ∂νφ− gµν(
1

2
∂σφ∂σφ+ V (φ)), (2.31)

and the equation of motion

δSφ
δφ

=
1√
−g

∂µ(
√
−g∂µφ) +

dV

dφ
= 0. (2.32)

If we assume the FLRW metric 2.1 and a homogeneous �eld φ(t, ~x) = φ(t), the energy-
momentum tensor again reduces to the one for a perfect �uid, with

ρφ =
1

2
φ̇2 + V (φ) (2.33)

pφ =
1

2
φ̇2 − V (φ). (2.34)

Which results in the equation of state

wφ =
1
2 φ̇

2 − V (φ)
1
2 φ̇

2 + V (φ)
. (2.35)

This shows that when V > 1
2 φ̇

2 the scalar �eld can induce a negative pressure (wφ < 0) and
accelerated expansion (wφ < −1

3). If we use the FLRW metric 2.1, we �nd that equation
2.32 becomes

φ̈+ 3Hφ̇+
dV

dφ
= 0 (2.36)

H2 =
1

3
(
1

2
φ̇2 + V (φ)). (2.37)

These equations do not always give rise to in�ation, but when the �rst slow-roll parameter
is smaller that 1, we enter the Slow-Roll regime, which does give in�ation.
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2.3 Slow-Roll In�ation

In the last section we introduced the Slow-Roll parameter ε1, we will now explain what
Slow-Roll is and why it is important.
In�ation or accelerated expansion occurs when the �rst Slow-Roll parameter is small (ε1 <
1) and ends when this condition is violated (ε1 = 1). During Slow-Roll in�ation, the �rst
and second Slow-Roll parameter are small ε1, |ε2| � 1. We can therefore neglect all order
ε21 and ε22 corrections to our equations. This happens when the potential V (φ) is almost
�at, and the potential energy is much larger than the kinetic energy V (φ) < 1

2 φ̇
2. This

reduces the equation of motion to

3Hφ̇+
dV

dφ
≈ 0. (2.38)

Remember how the �rst Slow-Roll parameter is de�ned:

ε1 ≡ −
Ḣ

H2
= −∂N ln(H). (2.39)

The second Slow-Roll parameter is measure of rate of change of the �rst Slow-Roll param-
eter and de�ned as

ε2 ≡ ε̇1/(Hε1) = 2φ̈/(φ̇H) + 2ε1 =
ε′1
ε1H

= ∂N ln(ε1) (2.40)

Smallness of this second SR parameter will ensure that the period of accelerated expansion
can last long enough to solve the horizon and �atness problems. The Slow-Roll conditions
are therefore |ε2|, ε1 � 1.

Slow-roll in�ation is an attractor, this means that when the potential supports SR in�a-
tion, all potential solutions rapidly approach each other. Therefore the universe, as it exits
SR in�ation, is independent on the initial conditions of SR in�ation. [20] This, therefore,
also solves problems of �ne-tuning.

We can calculate the number of e-foldings between two time points during in�ation by
integrating the Hubble Parameter over time

N ≡ ln a2 − ln a1 (2.41)

=

∫ t2

t1

Hdt =

∫ τ2

τ1

Hdτ. (2.42)

To solve our problems we need the number of e-foldings to be around 60. This gives for
the total of e-foldings during in�ation

Ntotal = ln aend − ln astart =

∫ tend

tstart

Hdt =

∫ τend

τstart

Hdτ ' 60. (2.43)

As we have seen, slow-roll in�ation ends when ε1 = 1, in other words when the potential
becomes too steep, but there is another ending possible: the potential can become too �at
for the SR approximation to apply. When this happens, we enter a new regime: Ultra-
slow-roll in�ation.
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2.4 Ultra-Slow-Roll In�ation

When the potential becomes �at, we can no longer neglect the contribution of the potential
to the equation of motion. What happens instead, is that the second derivative of the
in�ation �eld becomes increasingly small. This way, the equation of motion reduces to

φ̈+ 3Hφ̇ ≈ 0. (2.44)

If we stay in the SR approximation when the potential becomes increasingly �at, the ki-
netic density of the in�aton �eld would reduce faster that it would in free fall. This is not
possible, and therefore we need a new regime. In USR the kinetic density decreases as if
in free fall. USR ends when φ̈ is again in the same order of magnitude as the slope of the
potential, or when in�ation ends for another reason.[21]

During USR, the �rst SR parameter is still smaller than 1, so we are still in the in�ation
era, but this does no longer apply for the second SR parameter. When the potential is �at
enough, quantum kicks against the in�aton will be signi�cant. For the slow-roll parame-
ters, this means that while ε1 is much smaller than 1, ε2 is not smaller than 1. This will
change our approximations signi�cantly.

The second SR parameter is, during USR, given by [22]

ε2 ≡
∂

∂N
ln(ε1) = −6 + 2ε1, (2.45)

this means that ε2 ≈ −6 as ε1 � 1 during USR. We can also de�ne 3rd, 4th, etc. SR
parameters as follows:

εn ≡
∂

∂N
ln(εn−1) =

1

εn−1

∂εn−1
∂N

when we calculate this, we see

εn = 2ε1 for n = odd (2.46)

εn = −6 + 2ε1 for n = even. (2.47)
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Chapter 3

Perturbations during In�ation

Until now we focused on classical models of in�ation, but to account for the density �uc-
tuations we should take quantum mechanics into consideration. As our in�aton �eld is
rolling down the potential, it will experience `quantum kicks' in both directions. While we
de�ne the �eld as position independent φ(t), these �uctuations do depend on the position
δφ(t, ~x). These �uctuations in the �eld causes in�ation to end earlier in the parts of the
universe that received a quantum kick down the potential, and later in the parts of the
universe that received a kick up the potential. The slightly di�erent time-evolution in
the di�erent parts causes relative density �uctuations. To describe such �uctuations, we
can use Linear Perturbation theory. During this section, we makes use of `Cosmological
In�ation and Large-Scale Structure' by Liddle and Lyth [23].

3.1 Linear Perturbation Theory

The leading theory for the formation of large scale structure is that of gravitational collapse.
In this scenario, the universe starts out smooth. The Cosmic Microwave Background
(CMB) shows us that, at the time of decoupling, the density of the universe is almost
homogeneous, with small perturbations of order 10−5. These density inhomogeneities cause
inhomogeneities in the local space-time. The easiest way to write these inhomogeneities,
is by decoupling the background value from the perturbations

δX(t, ~x) ≡ X(t, ~x)− X̄(t), (3.1)

were δX is the perturbation, X is the quantity that we want to split (f.e. the metric gµν or
the density �eld ρ) and X̄ the background value that does not depend on location, but only
on time. We assume that these perturbations are small (δX � X) so that we can treat
them linearly. This means, that if we expand the Einstein equation up to linear order, it
gives a fairly accurate description,

δGµν = 8πGδTµν . (3.2)

What we should keep in mind, is that these perturbations are Gauge dependent, and there-
fore cannot be seen as physical perturbations. We shall de�ne gauge invariant (physical)
perturbations later on in this chapter.

Due to the symmetries of the background spacetime, we can perform SVT (scalar, vector,
tensor) decomposition. When we have done this, we can independently treat the scalar,
vector and tensor components of the metric and stress-energy perturbations. This is easiest
seen in their Fourier form
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3.1. LINEAR PERTURBATION THEORY CHAPTER 3. PERTURBATIONS

δX~k(t) =

∫
d3~xei

~k·~xδX(t, ~x), (3.3)

where the di�erent Fourier modes do not interact, and can therefore be studied indepen-
dently. This often makes the di�erential equations much easier to solve. A perturbation
also has some helicity, which di�ers between scalars, vectors and tensors, de�ned by

X~k → eimθX~k (3.4)

where m is the helicity (0, ±1 and ±2 for scalars, vectors and tensors respectively) and θ
the angle under which the coordinate system is rotated around ~k.

So let us de�ne the perturbations for the in�aton and the metric,

δφ(t, ~x) = φ(t, ~x)− φ̄(x), (3.5)

δgµν(t, ~x) = gµν(t, ~x)− ḡµν(x). (3.6)

Now look at this for a moment: we know that the symmetric 4x4 tensor gµν has 10 degrees
of freedom. With SVT decomposition we classify these into three categories: scalars,
vectors and tensors. This, we can do by looking at their helicity. So lets decompose the
spacetime interval into its scalar, vector and tensor parts,

ds2 = gµνdx
µdxν (3.7)

= −(1 + 2Φ)dt2 + 2aBidx
idt+ a2((1− 2Ψ)δij + Eij)dx

idxj , (3.8)

where

Bi ≡ ∂iB + Si, with ∂iSi = 0, (3.9)

and (3.10)

Eij ≡ 2∂ijE + 2∂(iFj) + hij , with ∂iFi = 0, and hii = ∂ihij = 0. (3.11)

Our decomposition now leaves us with

• four scalars: Φ,Ψ, E and B, describing the generalisation of Newtonian gravity,

• two vectors: Si and Fi, describing gravito-magnetism,

• and one tensor: hij , describing gravitational waves,

which account for 4+2×2+2 = 10 degrees of freedom. The vector perturbations all decay,
and are therefore not that useful to study. We are thus left with the scalar and tensor
perturbations. While these are both interesting, in this thesis we will focus on the scalar
ones, because the scalar metric perturbations couple to the scalar �eld perturbations δφ,
while the tensor perturbation decouple from it.

The in�aton �eld is the dominant energy in the universe during in�ation. This also means
that the perturbations in the in�aton �eld have a backreaction on the spacetime geometry.
We can study this by looking at the perturbed Einstein equation, which describes this
coupling,

δGµν = 8πGδTµν . (3.12)
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Figure 3.1: Slicing and threading of the space-time with two spacial dimensions and one
time dimension. The equal time surfaces are `pierced' by the purple threads that show
equal space lines.

From this, we calculate the way the perturbed energy momentum tensor looks like after
in�ation

T 0
0 = −(ρ̄+ δρ) (3.13)

T 0
i = (ρ̄+ p̄)avi (3.14)

T i0 = −(ρ̄+ p̄)
vi −Bi

a
(3.15)

T ij = δij(ρ̄+ δp) + Σi
j . (3.16)

3.2 Gauge choices and transformations

We can look at di�erent gauge choices the following way. Think of the choice of coordi-
nates as the slicing and threading of space-time: Slicing the space time is the choosing of
hypersurfaces on which all the observers have synchronised their clocks (equal time hyper-
surfaces), this �xes the time coordinate. Threading the space-time then corresponds to
the choosing of space coordinates, on each hypersurface there is one point with a certain
coordinate (see �gure 3.1). Di�erent ways of slicing the space-time corresponds to di�erent
gauge choices. With this, we can perform the ADM decomposition of the metric

ds2 = −N2dt2 + gij
(
dxi +N idt

) (
dxj +N jdt

)
(3.17)

where N is called the lapse function and N i is called the shift vector. We can now go
from one equal time hypersurface to the next by use of these functions. This is pictured
in �gure 3.2.

When we have a theory without perturbations, it is easy to come up with the best way to
de�ne the slicing and threading of space-time. The threading will be de�ned by comoving
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Figure 3.2: Going from one equal time hypersurface to the next while keeping the same
space-coordinates by the lapse function and shift vector.

observers who see zero momentum density at their position. These free-falling observers
will then observe the universe as expanding isotropically. We can then de�ne the slicing
as perpendicular to the threading, and thus make sure that the observers see the universe
as homogeneous. When we have this description, we will never need a di�erent one for
a universe without perturbations. With perturbations, it is another story, but the slicing
and threading will still need to reduce to the one de�ned before in the limit that the per-
turbations go to zero.

If there are perturbations present, we can always choose a slicing such that the perturba-
tions of a certain �eld vanish everywhere. How can we then make sure we are looking at
something physical?

We can make up a way to go from one gauge to the other. If we de�ne a certain slicing,
we can de�ne some perturbations on that slicing, let us de�ne these

δφ(t, ~x) = φ(t, ~x)− φ̄(x). (3.18)

Now consider a di�erent slicing, on which the time parameter is given by t̃(t, ~x) = δt(t, ~x)+t
(see �gure 3.3), and de�ne the perturbations on this slicing as

δφ̃(t̃, ~x) = φ̃(t̃, ~x)− ˜̄φ(t̃). (3.19)

We can now express (to �rst order) the time parameter of one slicing in terms of the other
as follows

t̃(t− δt(t, ~x), ~x) = t̃(t, ~x)− dt̃

dt
δt(t, ~x). (3.20)

If we take the numerical value to be the same on both slices (which we can do without loss
of generality) and put these two equations together we can conclude

δ̃φ(t, ~x) = δφ(t, ~x)− φ̇(t)δt(t, ~x). (3.21)

This means that the perturbation in a scalar �eld does not depend on the threading.

There are some methods of slicing that are often used, so let us introduce two of them.
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Figure 3.3: Two di�erent ways of slicing (or de�ning coordinates). We take the time
displacement of �rst order in the perturbations, and thus the time displacement is the
same in both coordinates: δt.

The comoving gauge is de�ned by slicing orthogonal to comoving observers. In this gauge
the perturbations in the in�aton �eld vanish, so δφ = 0.

To not let the in�aton perturbations vanish, we can use the spatially �at gauge. In this
gauge the perturbations in the metric vanish, so Tr[gij ] = 0.

Now lets investigate how scalar and tensor perturbations act under a gauge transformation.
Lets look at a gravitational gauge transformation,

xµ → x̃µ = xµ + ξµ(x), (3.22)

where ξµ(x) is an arbitrary in�nitesimal vector function. We know how a �eld and a tensor
change under such a transformation

φ(x)→ φ̃(x̃) = φ(x) (3.23)

gµν(x)→ g̃µν(x̃) =
∂xρ

∂x̃µ
∂xσ

∂x̃ν
gρσ(x) (3.24)

Neglecting terms of higher order in ξ, we can rewrite this

φ̃(τ, ~x) = φ(τ, ~x)− ξµ∂µφ(τ, ~x) (3.25)

g̃µν(τ̃ , ~̃x) = gµν(τ, ~x)−∇µξν(τ, ~x)−∇νξµ(τ, ~x), (3.26)

where ∇µ is the conformal derivative. So for our scalar perturbation we have

δφ(τ, ~x)→ δ̃φ(τ, ~x) = δφ(τ, ~x)− ξ0∂0φ̄(τ), (3.27)

and for the tensor perturbations on the metric

δgµν(x)→ δg̃µν(τ̃ , ~̃x) = δgµν(τ, ~x)−∇µξν(τ, ~x)−∇νξµ(τ, ~x). (3.28)

We can now see that what we mean with a gauge transformation in cosmology, is actually a
change of coordinate system, unlike a gauge symmetry in the Standard Model. The gauge
parameter ξµ(x) characterizes this gauge transformation. In this case, this vector gives rise
to 4 degrees of freedom, on which the perturbations are dependent. To circumvent this
problem, we can either �x a gauge or only look at gauge independent quantities.

Now let us de�ne some gauge independent quantities, which are combinations of the met-
ric and matter perturbations. One of the most used scalar gauge invariant quantities is
the curvature perturbation on uniform-density hypersurfaces, which measures the spatial
curvature of constant-density hypersurfaces.

− ζ ≡ Ψ +
H
˙̄ρ
δρ. (3.29)
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What makes this quantity useful is that, for adiabatic matter perturbations, it remains
constant outside the horizon. We can classify a matter perturbation as adiabatic when it
obeys

δp+
˙̄p
˙̄ρ
δρ = 0, (3.30)

notice that this is a gauge invariant quantity. For single �eld models, the following equation
is always obeyed,

δρm
ρm

=
3

4

δρr
ρr
, (3.31)

which means ζ is adiabatic and does not evolve after it exits the horizon, k � aH. During
SR, we can also write

− ζ ≈ Ψ +
H

φ̇
δφ. (3.32)

Another popular gauge invariant quantity is the comoving curvature perturbation, which
measures the spatial curvature of the comoving hypersurfaces (where φ = constant),

R ≡ Ψ− H

ρ̄+ p̄
δq (3.33)

where δq is the scalar part of the 3-momentum density T 0
i = ∂iδq. During in�ation, we

can express this in terms of the in�aton �eld T 0
i = − ˙̄φ∂iδφ, which then gives

R = Ψ +
H

φ̇
δφ. (3.34)

On super-horizon scales, k � aH, and during SR in�ation, we have: ζ = R.

For our purposes, we consider small �uctuations to the in�ationary trajectory in the spa-
tially �at gauge (δg = 0). We have a scalar �eld, the in�aton φ, and split it in a background
value φ̄ and a perturbation δφ. Since we focus on the time of in�ation, the in�aton is the
dominant energy density. This system has the following action

S =
1

16πG

∫
d4x
√
−gR+

∫
d4x(−1

2
gµν∂µφ∂νφ− V (φ)) (3.35)

Now we consider a spatially �at gauge, where our in�aton can be split in a background
value, φ0, and �uctuations, δφ. We now have (this was derived by Mukhanov, and appears
in the review article [24]):

S =

∫
Ldτd3x (3.36)

=
1

2

∫
(v′2 + v∆v +

z′′

z
v2)dτd3x (3.37)

where v′ = ∂τv, dτ = dt
a , v = aδφ, z =

aφ′0
H and ∆ =

∑
i ∂

2
i , this is called the Mukhanov-

Sasaki equation. When we vary this action with respect to v we get the following equation
of motion

(∂2τ −∆− z′′

z
)v(τ, ~x) = 0. (3.38)

Now we quantize this equation by promoting the �eld v and its conjugate momentum v′

to quantum operators,

[v̂(τ, ~x), ∂τ v̂(τ, ~x′)] = i~δ3(~x− ~x′) (3.39)
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and move to k-space by performing a Fourier transformation,

v̂(τ, ~x) =

∫
d3k

(2π)3
ei
~k·~x(v(τ, k)â(~k) + v∗(τ, k)â†(−~k)) (3.40)

(∂2τ + k2 − z′′

z
)v(τ, k) = 0 (3.41)

where k = |~k|. Our operators â and â† obey

[â(~k), â†(~k′)] = (2π)3δ3(~k − ~k′), (3.42)

and therefore our �elds v(τ, k) and v∗(τ, k) satisfy the Wronskian,

v(τ, k)v∗′(τ, k)− v∗(τ, k)v′(τ, k) = i. (3.43)

The solution to the di�erential equation called the Bessel equation

x2y′′ + xy′ + (b2x2 − n2)y = 0 (3.44)

where b is some constant, can be written in terms of the Hankel Functions

y = c1H
(1)
n (ax) + c2H

(2)
n (ax), (3.45)

with c1 and c2 some constants. So if we can bring our equation in this form, we know the
solution. Now by substituting v = τ1/2s into our equation of motion and multiplying by
τ3/2, we get

(τ2∂2τ + τ∂τ + (k2τ2 − ν2))s = 0 (3.46)

with
z′′

z
=
ν2 − 1

4

τ2
. (3.47)

We then see that the solution is given by

v(τ) = τ1/2[c1(k)H(1)
ν (kτ) + c2(k)H(2)

ν (kτ)], (3.48)

with c1 and c2 some complex functions of k. v is a gauge invariant variable, de�ned as

v(k, τ) = a(δφ+
√

2εMpΨ). (3.49)

In the comoving gauge δφ = 0 this reduces to

v(k, τ) = a
√

2εΨ, (3.50)

and in the spatially �at gauge δΨ = 0,

v(k, τ) = aδφ. (3.51)

We need the modes to change adiabatically during the matching for this method to work.
In the UV the Hankel functions go as ∝ e−ikτ−

πν
4 . The rate of change of the phase of the

mode functions is then dΦ = ikdτ− π
4dν, this means that for them to change adiabatically,

kdτ � π
4dν needs to be true. This can be put as follows

|k| � |dν
dτ
| = H∂Nν. (3.52)

In the IR regime the Hankel functions go with ∝ (−kτ)−ν = e−ν ln(−kτ). The rate of change
in the mode functions is then given by dΦ = dν+ νd ln(−kτ) = dν+ ν dττ . This boils down
to the condition for adiabatic matching for IR modes:

dν

ν
�

dτ
τ

ln(−kτ)
, (3.53)

or
dν

dτ
� ν/τ

ln(−kτ)
. (3.54)
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3.3 Statistics

The quantities that are mostly studied are the power spectra of the gauge invariant quan-
tities. These are the ones that can be observed and therefore give falsi�able predictions.
The power spectrum of R is given by

〈RkRk′〉 = (2π)3δ
(
k + k′

)
PR(k) (3.55)

where 〈. . . 〉 de�nes the ensemble average of the �uctuations. The dimensionless power
spectrum is then given by

∆2
R =

k3

2π2
PR(k) (3.56)

The scale dependence is also called the scalar spectral index, and de�ned as

ns − 1 =
ln(∆2

R)

ln(k)
(3.57)

In the spatially �at gauge, R = δφ√
2ε

so we can write

∆2
R =

1

2εMP
∆2
φ (3.58)

where

M2
P ≡

1

8πG
. (3.59)

From these equations it is clear that the curvature power spectrum grows as ε decays.
During SR, ε stays almost constant. If there would be a scenario possible where ε expo-
nentially decays, this would result in a rapid growth of the peaks in the primordial power
spectrum. This is exactly what happens during a period of ultra-slow-roll, which is why
we are interested in exploring what exactly will happen during such a regime.
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Chapter 4

Matching

The main goal of this thesis is to continuously match the Slow-Roll perturbations to their
Ultra-Slow-Roll counterpart. This is done in a couple of steps: First, we de�ne what we
mean by our switch from SR to USR. This we will do by matching the SR parameters,
and showing the conditions on the modes for adiabatic matching. Then, we must make
sure that there are no discontinuities in the background, as the universe cannot suddenly
change. This we will do by matching the scale factor smoothly between SR and USR.
Next, with this knowledge, we can match the mode functions, by calculating the Bogoli-
ubov coe�cients. Finally, we will look at the power spectra of the curvature perturbations
to see how they grow during USR.

4.1 Manner of matching

As we have established, during USR the �rst slow-roll parameter can quickly decay. In our
approximation, we take this �rst slow-roll parameter to be constant during slow-roll, ε0,

(a) The �rst slow-roll parameter as a function
of the conformal time τ .

(b) The �rst slow-roll parameter as a function
of the number of e-foldings N .

Figure 4.1: The �rst slow-roll parameter as a function of di�erent time variables. The
green line shows the time of matching, with the slow-roll regime on the left side, and the
ultra-slow-roll on the right.
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and to be given by,

εUSR = −∂N ln(HUSR) = −∂NHUSR

HUSR

= − −H0ε0e
−6N√

ε0
3 e
−6N + (1− ε0

3 )

1

H0

√
ε0
3 e
−6N + (1− ε0

3 )

=
ε0

ε0
3 + (1− ε0

3 )e6N
, (4.1)

during ultra-slow-roll. Here we took the geometric de�nition of the parameter in terms of
the Hubble parameter. We see, that for large N , ε shrinks rapidly, with ∝ e−6N . In all
our plots, we took ε0 = 1

200 . In �gure 4.1, the time dependence of ε is shown. We observe
that the matching is continuous, but not smooth.
The second slow-roll parameter is indeed given by

ε2 =∂N ln(ε1)

=− 6 + 2
ε0

ε0
3 − ( ε02 − 1)e6N

=− 6 + 2ε1 (4.2)

4.2 Background

We will match the scale factor in SR to the scale factor in USR, and do the same with the
Hubble parameter. We have some freedom in choosing the time shift, so we can choose to
do the matching of a and H at N̂ = 0. From now on, a hat will show the value is taken at
the time of matching. With this choice, in Ultra Slow-Roll we have,

âUSR(N) = a0e
N̂ = a0. (4.3)

Now we want to match this smoothly to its Slow-Roll counterpart. To make sure the scale
factor is neatly matched, we put

âUSR = âSR

a0e
N̂ = a0(1− (1− ε0)a0H0(τ̂ − τ0))

− 1
1−ε0

a0 = a0(1− (1− ε0)a0H0(τ̂ − τ0))
− 1

1−ε0

⇒ τ0 = τ̂ . (4.4)

Now the scale factor is matched, but we should still make sure this is smoothly done. We
can match a′ for this purpose, but as H = a′

a and we know a is already matched, we can
also choose to match HSR and HUSR at τ = τ̂ . The expression for the Hubble parameter
in Ultra Slow-Roll is

HUSR(N) = H0

√
ε0
3
e−6N + 1− ε0

3
(4.5)

ĤUSR = H0. (4.6)

Now we have for the Hubble parameter (in conformal time) in USR,

HUSR(N) = a0e
NH0

√
ε0
3
e−6N + 1− ε0

3
(4.7)

ĤUSR = a0H0 = H0. (4.8)
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For the Hubble parameter in SR we have

HSR = a0H0(1− (1− ε0)a0H0(τ − τ0))−1. (4.9)

Now matching these gives

ĤUSR = ĤSR

a0H0 = a0H0(1− (1− ε0)a0H0(τ̂ − τ0))−1

⇒ τ0 = τ̂ . (4.10)

So we �nally have

aSR(τ) = a0(1− (1− ε0)a0H0(τ − τ̂))
− 1

1−ε0 (4.11)

aUSR(N) = a0e
N (4.12)

HSR(τ) = a0H0(1− (1− ε0)a0H0(τ − τ̂))−1 (4.13)

HUSR(N) = a0e
NH0

√
ε0
3
e−6N + 1− ε0

3
. (4.14)

To compare these, we need to express the Ultra-Slow-Roll quantities in τ just like the
Slow-Roll ones. So we need to �nd an expression for N or a = eN in terms of τ .
We know that the conformal time since the matching point is given by

τ(N∗) =

∫ N∗

0

dN

aH

=

∫ N∗

0

e−NdN

a0H0

√
(ε0/3)e−6N + (1− ε0/3)

. (4.15)

Here τ is the conformal time since the time of matching. To get just the conformal time,
we need to add the conformal time at the time of matching (τ̂) to the right hand side of
the equation. We can substitute the following

x = (3/ε0 − 1)1/3e2N

dN =
dx

2x
, e6N =

x3

( 3
ε0
− 1)1

,

so the integral becomes:

τ(N∗) =
( 3
ε0
− 1)1/6

2a0H0

√
1− ε0

3

∫ (3/ε0−1)1/3e2N
∗

(3/ε0−1)1/3

dx√
1 + x3

(4.16)

which we need to invert. To do this, we �rst split it

τ(N∗) =
( 3
ε0
− 1)1/6

2a0H0

√
1− ε0

3

∫ (3/ε0−1)1/3e2N
∗

(3/ε0−1)1/3

dx√
1 + x3

=
( 3
ε0
− 1)1/6

2a0H0

√
1− ε0

3

(∫ (3/ε0−1)1/3e2N
∗

0

dx√
1 + x3

−
∫ (3/ε0−1)1/3

0

dx√
1 + x3

)
, (4.17)

then call

I(y) =

∫ y

0

dx√
1 + x3

, (4.18)
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such that

τ(N∗) =
( 3
ε0
− 1)1/6

2a0H0

√
1− ε0

3

(I((3/ε0 − 1)1/3e2N
∗
)− I((3/ε0 − 1)1/3)) (4.19)

and start with calculating I(y).

We write this integral as an integral over a series

I(y) =

∫ y

0

∞∑
n=0

(−1)nx3n(12)n

n!
dx

=

∞∑
n=0

(−1)n(12)n

n!

∫ y

0
x3ndx

=
∞∑
n=0

(−1)n(12)n

n!

y3n+1

3n+ 1
, (4.20)

where

(a)n = a(a+ 1)(a+ 2) . . . (a+ n− 1) =
(a+ n− 1)!

(a− 1)!

=
Γ(a+ n)

Γ(a)
. (4.21)

Now we write

1

3n+ 1
=

1

3

1

n+ 1/3

=
1

3

Γ(1/3 + n)

Γ(4/3 + n)

=
1

3

Γ(1/3 + n)

Γ(1/3)

Γ(4/3)

Γ(4/3 + n)

Γ(1/3)

Γ(4/3)

=
1

3

(13)n

(43)n
3

=
(13)n

(43)n
. (4.22)

And �nally we have

I(y) = y

∞∑
n=0

(12)n(13)n

(43)n

(−y3)n

n!
(4.23)

= y 2F 1

(
1

2
,
1

3
;
4

3
;−y3

)
, (4.24)

where 2F 1(α, β; γ; z) is the hypergeometric function

2F 1(α, β; γ; z) =
∞∑
n=0

(α)n(β)n
(γ)n

zn

n!
(4.25)
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Now back to the original equation, we have the following (exact) expression for τ in terms
of N :

τ(N∗) =
( 3
ε0
− 1)1/6

2a0H0

√
1− ε0

3

[
(3/ε0 − 1)1/3e2N

∗
2F 1

(
1

2
,
1

3
;
4

3
;−((3/ε0 − 1)1/3e2N

∗
)3
)

−(3/ε0 − 1)1/3 2F 1

(
1

2
,
1

3
;
4

3
;−((3/ε0 − 1)1/3)3

)]

=

√
3
ε0

2a0H0

[
e2N

∗
2F 1

(
1

2
,
1

3
;
4

3
;−(3/ε0 − 1)e6N

∗
)

− 2F 1

(
1

2
,
1

3
;
4

3
;−(3/ε0 − 1)

)]
.

(4.26)

We have set the time of matching at N = 0, so what is calculated is the conformal time
since the matching. This means that from this equation, the time of matching in conformal
time τ can be read o�. Now there are two options: τ(N̂) can be put to zero, then the
value of ∆τ can be read o� from this equation,

∆τ =
1

2a0H0

√
ε0/3

2F 1

(
1

2
,
1

3
;
4

3
;−(3/ε0 − 1)

)
. (4.27)

Alternatively, we can perform some shift in time, such that ∆τ vanishes. This way

τ̂ = τ(N̂) = τ(0) =
1

2a0H0

√
ε0/3

2F 1

(
1

2
,
1

3
;
4

3
;−(3/ε0 − 1)

)
. (4.28)

Both of these equations can, however, be written in the following way

τ + ∆τ =
1

2a0H0

√
ε0
3

e2N
∗
2F 1

(
1

2
,
1

3
;
4

3
;−(3/ε0 − 1)e6N

∗
)
. (4.29)

This equation cannot be analytically inverted, so we have to look at di�erent limits. Let's
start with the limit for large N. From Table of Integrals, Series, and Products [25] we know
the following relation to be true (when |arg(z)| < π and α−β 6= m where m = 0, 1, 2, . . . ):

F (α, β; γ; z) =
Γ(γ)Γ(β − α)

Γ(β)Γ(γ − α)
(−z)−αF

(
α, α+ 1− γ;α+ 1− β;

1

z

)
+

Γ(γ)Γ(α− β)

Γ(α)Γ(γ − β)
(−z)−βF

(
β, β + 1− γ;β + 1− α;

1

z

)
. (4.30)
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This means we can rewrite our equation 4.29

2a0H0

√
ε0
3

(τ + ∆τ) = e2N
∗
[

Γ(43)Γ(−16 )

Γ(13)Γ(56)
(3/ε0 − 1)−1/2e−3N

∗
2F 1

(
1

2
,
1

6
;
7

6
;

−1

(3/ε0 − 1)e6N∗

)
+

Γ(43)Γ(16)

Γ(12)Γ(1)
(3/ε0 − 1)−1/3e−2N

∗
2F 1

(
1

3
, 0;

5

6
;

−1

(3/ε0 − 1)e6N∗

)]

= e2N
∗
[

− 2(3/ε0 − 1)−1/2e−3N
∗
2F 1

(
1

2
,
1

6
;
7

6
;

−1

(3/ε0 − 1)e6N∗

)
+

Γ(43)Γ(16)
√
π

(3/ε0 − 1)−1/3e−2N
∗

]
.

(4.31)

We can perform a Taylor expansion for large N , that is around e−N = 0, of the hypergeo-
metric function in this expression. Doing this, we �nd op to order O(e−18N

∗
)

2a0H0

√
ε0
3

(τ + ∆τ) = e2N
∗

(4.32)[
−2(

3

ε0
− 1)−1/2e−3N

∗
(1 +

1

14
(
−1

3
ε0
− 1

)e−6N
∗

+
3

104
(

1
3
ε0
− 1

)2e−12N +O(e−18N
∗
)) Table

+
Γ(43)Γ(16)
√
π

(
3

ε0
− 1)−1/3e−2N

∗
Table

= −2(
3

ε0
− 1)−1/2e−N

∗
(1 +

1

14
(
−1

3
ε0
− 1

)e−6N
∗

+
3

104
(

1
3
ε0
− 1

)2e−12N +O(e−18N
∗
))

+
Γ(43)Γ(16)
√
π

(
3

ε0
− 1)−1/3 (4.33)

This means, that for large enough N , e−N can be approximated by

e−N = −
[
a0H0

√
ε0
3

(τ + ∆τ)−
Γ(43)Γ(16)

2
√
π

(
3

ε0
− 1)−1/3

]
(

3

ε0
− 1)1/2

= −a0H0

√
1− ε0

3
(τ + ∆τ) +

Γ(43)Γ(16)

2
√
π

(
3

ε0
− 1)1/6, (4.34)

or

a = a0e
N =

1

−H0

√
1− ε0

3 (τ + ∆τ)
(1 +

1

14
(
−1

3/ε0 − 1
)e−6N +

3

104
(

1
3
ε0
− 1

)2e−12N +O(e−18N
∗
)),

(4.35)

where we absorb the constant factor in ∆τ which now reads

∆τ = −
Γ(43)Γ(16)

2a0H0

√
1− ε0

3

√
π

(
3

ε0
− 1)1/6 (4.36)

As we know, this should be equal to a0 when N = 0. With this approximation, we can
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Figure 4.2: The matched scale factor with ε0 = 1
200 , k = 0.1, a0 = 1 and H0 = 1. The blue

line correspond to the scale factor in the slow-roll regime and the red to the scale factor in
the ultra-slow-roll regime. The blue dotted line is the evolution that the scale factor would
undergo if the SR approximation did not fail.

also �nd an approximated version of HUSR(τ),

H = aH =a0e
NH0

√
ε0
3
e−6N + 1− ε0

3

=
1

−
√

1− ε0
3 (τ + ∆τ)

(1 +
1

14
(
−1

3
ε0
− 1

)e−6N +
3

104
(

1
3
ε0
− 1

)2e−12N +O(e−18N
∗
))

×
√
ε0
3
e−6N + 1− ε0

3

=
1

−(τ + ∆τ)
(1 +

1

14
(
−1

3
ε0
− 1

)e−6N +
3

104
(

1
3
ε0
− 1

)2e−12N +O(e−18N
∗
))

×
√

1 +
1

3
ε0
− 1

e−6N . (4.37)

In �gure 4.2, were we plotted the exact expression for the scale factor (from the inverse
function of τ), it is shown that the continued SR scale factor does not di�er much from
the USR scale factor. This is to be expected, as they are depended on τ , H0 and ε, and
only ε changes after the matching. Since ε is continuous at the matching, we see only a
slight di�erence in the evolution of the scale factor. The same can be seen in �gure 4.3,
where we plotted the Hubble parameter before and after the matching.

4.3 Mode Functions

4.3.1 Small detour to calculate ν

To see the behaviour of ν during USR we need to put the expressions for ε1 and H in
terms of τ with corrections of order e−6N in the equation of motion (eq.3.46). We can
start with calculating z′′

z in terms of τ with corrections of e−6N . To do this we have used
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SR USR

2.5 3.0 3.5 4.0
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τ
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(a) The matched Hubble parameter with ε0 =
1

200 , k = 0.1, a0 = 1 and H0 = 1
(b) The matched Hubble parameter with ε0 =
1

200 , k = 0.1, a0 = 1 and H0 = 1

Figure 4.3: The matched Hubble parameter with ε0 = 1
200 , k = 0.1, a0 = 1 and H0 = 1 The

green line shows the time of matching, with the slow-roll regime on the left side, and the
ultra-slow-roll on the right. The blue line correspond to the conformal Hubble parameter
in the slow-roll regime and the red to the conformal Hubble parameter in the ultra-slow-roll
regime. The blue dotted line is the evolution that the conformal Hubble parameter would
undergo if the SR approximation did not fail.

the expressions ε2 = −6 + 2ε1 and ε3 = 2ε1 and higher order slow-roll parameters 2.46.
Now we know the expression for z′′

z in terms of the SR parameter,

z′′

z
= H2(2− 7ε1 + 2ε21) (4.38)

= H2(2− 21e−6N

e−6N + 3
ε0
− 1

+
18e−12N

(e−6N + 3
ε0
− 1)2

), (4.39)

which is an exact expression. We use the expression for H2 that we found, with corrections
in e−N to get

z′′

z
=

1

(τ + ∆τ)2
(1 +

1

14
(
−1

3
ε0
− 1

)e−6N +
3

104
(

1
3
ε0
− 1

)2e−12N +O(e−18N
∗
))2

× (1 +
1

3
ε0
− 1

e−6N )

× (2− 21
3
ε0
− 1

e−6N +
39

( 3
ε0
− 1)2

e−12N +O(e−18N ))

=
1

(τ + ∆τ)2
(2− 135

7

e−6N

( 3
ε0
− 1)

+
13275

637

e−12N

( 3
ε0
− 1)2

+O(e−18N )). (4.40)

With the expression for z′′

z , we can �nally calculate ν2,

ν2USR = (τ + ∆τ)2
z′′

z
+

1

4
(4.41)

=
9

4
− 135

7

e−6N

( 3
ε0
− 1)

+
13275

637

e−12N

( 3
ε0
− 1)2

+O(e−18N ). (4.42)

(4.43)
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This gives for ν,

νUSR =

√
9

4
− 135

7

e−6N

( 3
ε0
− 1)

+
13275

637

e−12N

( 3
ε0
− 1)2

+O(e−18N

=

√
9

4
− 135

7

ε1
3− ε1

+
13275

637

ε21
(3− ε1)2

+O(e−18N

=
3

2
+ δνUSR (4.44)

where

δνUSR = −15

7
ε1 −

2815

1911
ε21. (4.45)

As can been seen in �gure 4.4, there is a discontinuity in ν at the matching. This can
be explained by remembering that while ε1 is continuous, ε2 experiences a jump, and ν is
dependent on both. We do not see the dependence of ν on ε2 here, because we expressed
ε2 in terms of ε1.

We can now check the constraints for adiabatic change. In the UV, we had kdτ � dν. We
can �nd an expression for dτ from equation 4.29,

dτ =
e2NdN

2a0H0

√
ε0
3

(
22F1(

1

2
,
1

3
;
4

3
;−(

3

ε0
− 1)e6N ) +

2√
1− (1− 3

ε0
)e6N

− 22F1(
1

2
,
1

3
;
4

3
;−(

3

ε0
− 1)e6N )

)
=

dN

a0H0

√
ε0
3

e2N√
1− (1− 3

ε0
)e6N

=
dN

a0H0

√
ε0
3

at the time of matching. (4.46)

For dν we can now �nd

dν u dε1 = −
6(1− ε0

3 )ε0e
6N

((1− ε0
3 )e6N + ε0

3 )2
dN

= −6(1− ε0
3

)ε0dN at the time of matching. (4.47)

This gives the condition for adiabaticity for the UV modes

|k| � |a0H0

√
ε0
3

(−6(1− ε0
3

))|. (4.48)

Similarly we can �nd for the IR modes the condition for adiabaticity at the matching:

ln(−kτ̂)� νUSR

τ̂(907 ε0(1−
ε0
3 ))

. (4.49)

4.3.2 Bogoliubov coe�cients

To see how �uctuations in the in�aton �eld change when we are in the Ultra Slow Roll
(USR) regime instead of Slow Roll (SR) regime, we match the two solutions at some time
τ = τmatching = τ̂ :

φUSR = φSR atτmatching

φ′USR = φ′SR atτmatching,

37



4.3. MODE FUNCTIONS CHAPTER 4. MATCHING

(a) ν as a function of the conformal time τ .
.

(b) ν as a function of the number of e-foldings
N .

Figure 4.4: ν as a function of two di�erent time variables. The green line shows the time
of matching, with the slow-roll regime on the left side, and the ultra-slow-roll on the right.

where the prime denotes a derivative to τ . We write the wave equations in terms of Hankel
functions in the following way:

φSR =
1

a

√
−π(τ + ∆τSR)

4
H(2)
νSR

(−k(τ + ∆τSR) (4.50)

φUSR =
1

a

√
−π(τ + ∆τUSR)

4
(α(k)H(2)

νUSR
(−k(τ + ∆τUSR)) + β(k)H(1)

νUSR
(−k(τ + ∆τUSR))),

(4.51)

here, we assume that we can write the wave equation during SR in the Bunch-Davies
vacuum, with only right moving modes. We can �x the α(k) and β(k) with the matching
procedure. We have now continuously matched aSR(τ) to aUSR(τ) and HSR(τ) to HUSR(τ).
So now we will match the mode functions by �nding expressions for α(k) and β(k).

To �nd the expressions for the coe�cients α and β we �rst write

φSR = φ∗ (4.52)

φUSR = αψ∗ + βψ (4.53)

then we impose the matching conditions

φ∗ = αψ∗ + βψ (4.54)

φ∗′ = αψ∗′ + βψ′. (4.55)

We furthermore know the Wronskian:

φφ∗′ − φ∗φ′ = i

a2
(4.56)

|α|2 − |β|2 = 1, (4.57)

By multiplying 4.54 with ψ∗′ and subtracting 4.55 times ψ∗ we get the following equation
for β (where we used the Wronskian 4.56)

φ∗ψ′ − φ∗′ψ = β(ψψ∗′ − ψ′ψ∗) = −iβ. (4.58)
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Repeating the same trick, but with ψ∗ instead of ψ, we �nd the following equations for α
and β

α = i(φ∗ψ′ − φ∗′ψ) (4.59)

β = −i(φ∗ψ∗′ − φ∗′ψ∗). (4.60)

Now with the use of hyper geometric functions we found an expression for νUSR, so we
know

νSR =
3

2
+ ε1 +O(ε21) (4.61)

νUSR =
3

2
+ δνUSR (4.62)

δνUSR = −15

7
ε1 −

2815

1911
ε21 +O(ε31), (4.63)

where we can ignore O(ε21) because this is su�ciently small at the time of matching. Notice
how the expressions for νUSR do not depend on the higher SR parameters. In USR these
higher SR parameters are no longer independent variables, and can be expressed in terms
of the �rst SR parameter, which is what we have done here.

Now expressions for α(k) and β(k) are needed. Let us start with calculating α

α =i(φ∗ψ′ − φ∗′ψ) (4.64)

=i

[√
−π

4
(τ + ∆τSR)

1

aSR
H(2)
νSR

(−k(τ + ∆τSR))

√
−π

4
(τ + ∆τUSR)∂τ

1

aUSR
H(1)
νUSR

(−k(τ + ∆τUSR))

+
π
4 (∆τUSR −∆τSR)√

(τ + ∆τSR)(τ + ∆τUSR)

1

aSR
H(2)
νSR

(−k(τ + ∆τSR))
1

aUSR
H(1)
νUSR

(−k(τ + ∆τUSR))

−
√
−π

4
τ∂τ

1

aSR
H(2)
νSR

(−k(τ + ∆τSR))

√
−π

4
(τ + ∆τUSR)

1

aUSR
H(1)
νUSR

(−k(τ + ∆τUSR))

]
(4.65)

where τ = τmatching.
The expression for beta looks as follows

β =− i(φ∗ψ∗′ − φ∗′ψ∗) (4.66)

=− i
[√
−π

4
(τ + ∆τSR)H(2)

νSR
(−k(τ + ∆τSR))

√
−π

4
(τ + ∆τUSR)∂τH

(2)
νUSR

(−k(τ + ∆τUSR))

(4.67)

+
π
4 (∆τUSR −∆τSR)√

(τ + ∆τSR)(τ + ∆τUSR)
H(2)
νSR

(−k(τ + ∆τSR))H(2)
νUSR

(−k(τ + ∆τUSR))

−
√
−π

4
(τ + ∆τSR)∂τ H

(2)
νSR

(−k(τ + ∆τSR))

√
−π

4
(τ + ∆τUSR)H(2)

νUSR
(−k(τ + ∆τUSR))

]
We can now check if α and β obey the condition

|α|2 − |β|2 = 1, (4.68)

and they do. To �rst approximation, which gets better as k
aH gets smaller, α and β look

as follows
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α =
−i

2πaSRaUSR
Γ(νSR)Γ(νUSR)(

k

2
)−νSR−νUSR(−(τ + ∆τSR))−νSR−

1
2 (−(τ + ∆τUSR))−νUSR−

1
2 Table

1

2
[−νSR(τ + ∆τUSR) + νUSR(τ + ∆τSR) +

1

2
(∆τSR −∆τUSR)] (4.69)

β =
i

2πaSRaUSR
Γ(νSR)Γ(νUSR)(

−k
2

)−νSR−νUSR(τ + ∆τSR)−νSR−
1
2 (τ + ∆τUSR)−νUSR−

1
2 Table

1

2
[νUSR(τ + ∆τSR)− νSR(τ + ∆τUSR) +

1

2
(∆τSR −∆τUSR)] (4.70)

Better results are obtained when including the second order term

α =
−i

2πaSRaUSR

[
Γ(νSR)Γ(νUSR)(

k

2
)−νSR−νUSR(−(τ + ∆τSR))−νSR−

1
2 (−(τ + ∆τUSR))−νUSR−

1
2

×
(

1

2
[−νSR(τ + ∆τUSR) + νUSR(τ + ∆τSR) +

1

2
(∆τSR −∆τUSR)] Table

× [1− (−kτ/2)2

−νSR + 1
− (−k(τ + ∆τUSR)/2)2

−νUSR + 1
+ . . . ]

+
−k(τ + ∆τSR)(τ + ∆τUSR)

2
[
k(τ + ∆τSR)/2

−νSR + 1
− k(τ + ∆τUSR)/2

−νUSR + 1
+ . . . ]

)]
(4.71)

β =
i

2πaSRaUSR

[
Γ(νSR)Γ(νUSR)(

−k
2

)−νSR−νUSR(τ + ∆τSR)−νSR−
1
2 (τ + ∆τUSR)−νUSR−

1
2

×
(

1

2
[νUSR(τ + ∆τSR)− νSR(τ + ∆τUSR) +

1

2
(∆τSR −∆τUSR)] Table

× [1− (−k(τ + ∆τSR)/2)2

−νSR + 1
− (−k(τ + ∆τUSR)/2)2

−νUSR + 1
+ . . . ]

+
−k(τ + ∆τSR)(τ + ∆τUSR)

2
[
k(τ + ∆τSR)/2

−νSR + 1
− k(τ + ∆τUSR)/2

−νUSR + 1
+ . . . ]

)]
,

(4.72)

and the full expressions can be found in the Appendix A.
In �gure 4.5, it appears that the modes do not match, but approach the same value as
time goes on when α and β are taken up to the sub-leading order term (equation 4.71) . If
we take only the leading order into account (equation 4.69), we mismatch completely. The
imaginary part of the modes is matched nicely at subleading (equation 4.71) order, but
the real part mismatches, which causes the slight mismatch in �gure 4.5. The expression
including the subsub-leading (eq. A) order makes sure the real part is nicely matched. As
the imaginary part is much larger than the real part, we �nd just a slight di�erence in the
absolute value of the modes between using eq A and 4.71.

The absolute value of these modes decays. This happens, because while the Hankel func-
tions grow with time, the scale factor grows faster, and the modes go with 1

a . We can

explain this as follows: The scale factor goes as 1
aSR
∝ τ

1
1−ε0 , and the leading order of the

Hankel function goes∝ τ−
3
2
−ε0 . This means that the full expression of the modes goes with

1
aSR

√
ττνSR ∝ τ ε20+O(ε30). From this it is clear that there are no zeroth or �rst order terms in

epsilon in this expression. Thus, the terms in which there is a zeroth or �rst order term in τ
play an important role in the behaviour of the modes. This term is the sub-leading order in
the Hankel function, which decays. The same is true during USR, but as ε1 decays, the de-
cay of the modes becomes slightly less than would be the case if we stayed in the SR regime.
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CHAPTER 4. MATCHING 4.3. MODE FUNCTIONS

Figure 4.5: The absolute value of the matched modes with ε0 = 1
200 , k = 0.1, a0 = 1 and

H0 = 1. The blue line correspond to the mode in the slow-roll regime, the red to the
modes in the ultra-slow-roll regime with the full expressions for α and β. The orange line
corresponds to the approximate form of α and β as seen in eq. 4.71. The blue dotted line
is the evolution that the modes would undergo if the SR approximation did not fail.
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4.4. SPECTRA CHAPTER 4. MATCHING

(a) The spectrum of the mode functions as a
function of the conformal time τ .

(b) The spectrum of the mode functions as a
function of the number of e-foldings N .

Figure 4.6: The spectrum of the mode functions as a function of two di�erent time variables.
The green line shows the time of matching, with the slow-roll regime on the left side, and
the ultra-slow-roll on the right. Here we have used ∆τSR for the SR side and ∆τUSR for
the USR side. The other constants that are used are H0 = 1, ε0 = 1

200 and k = 0.1.

Now we should give some extra attention to the choice of ∆τSR and ∆τUSR, as this is quite
subtle. We have determined these in such a way that the asymptotic behaviour of the scale
factor and the Hubble parameter coincides with the asymptotic behaviour of the Hankel
functions. We can view this as setting `the time of the end of the universe'. However, if
we do it this way, the values may slightly di�er, and cause a jump in time at the time of
matching. As we are interested in the late time behaviour, we could make the argument
that this does not matter much, and we can just cut at the jump and glue the parts to-
gether, but this is a point of concern.

Alternatively, we can put ∆τ the same on both sides. Now the question arises, which
∆τ should we choose? We can argue for ∆τUSR, because USR is the regime where the
asymptotic behaviour is going to play a role. On the other hand, we start in SR and match
USR to this regime, so the SR part is the `original'.

Note that results di�er wildly for slightly di�erent choice of ∆τSR and ∆τUSR. Our nu-
merical value for ∆τSR = −4.07878 and for ∆τUSR = −4.07447. As our solutions dif-
fer in O(ε1), this inequality of 0.1% is large enough to make a di�erence. In the �rst
pictures of the power spectrum of the �uctuations in the in�aton �eld, we have taken
∆τSR = −τ̂ − 1

a0H0(1−ε0) = −4.07878 and ∆τUSR = lim
a→∞

τ(a) = −4.07447.

When we take the same ∆τ for both the SR and USR part, we see that one of the two
goes to ±∞. When we take ∆τ = ∆τSR in both cases, the modes in USR go to −∞.
This is because before we made sure the asymptotic behaviour of both the scale factor
and the Hankel functions happened at the same τ , so they cancelled each other. Now the
asymptote of the Hankel functions is at τ = ∆τSR, while the asymptote of the scale factor
is still at ∆τUSR, which is later. The opposite happens with the hypothetical SR behaviour
when we choose ∆τ = ∆τUSR. Here we pull the asymptote of the Hankel function to later
times, which means that the asymptote in the scale factor makes the function blow up.

4.4 Spectra

To be able to compare the results with future observations, we should put it in a gauge-
invariant and statistically measurable form. The spectrum of the curvature perturbation

42



CHAPTER 4. MATCHING 4.4. SPECTRA

(a) The spectrum of the mode functions as a
function of the conformal time τ .

(b) The spectrum of the mode functions as a
function of the number of e-foldings N .

Figure 4.7: The spectrum of the mode functions as a function of two di�erent time variables.
The green line shows the time of matching, with the slow-roll regime on the left side, and
the ultra-slow-roll on the right. Here we have used ∆τSR for both sides. The other constants
that are used are H0 = 1, ε0 = 1

200 and k = 0.1.

(a) The spectrum of the mode functions as a
function of the conformal time τ .

(b) The spectrum of the mode functions as a
function of the number of e-foldings N .

Figure 4.8: The spectrum of the mode functions as a function of two di�erent time variables.
The green line shows the time of matching, with the slow-roll regime on the left side, and
the ultra-slow-roll on the right. Here we have used ∆τUSR for both sides. The other
constants that are used are H0 = 1, ε0 = 1

200 and k = 0.1.
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4.4. SPECTRA CHAPTER 4. MATCHING

(a) The spectrum of the mode functions as a
function of the conformal time τ .

(b) The spectrum of the mode functions as a
function of the number of e-foldings N .

Figure 4.9: The curvature spectrum of the mode functions as a function of two di�erent
time variables. The green line shows the time of matching, with the slow-roll regime on
the left side, and the ultra-slow-roll on the right. Here we have used ∆τSR for the SR side
and ∆τUSR for the USR side.

is, as explained in the previous chapter, given by

∆2
R =

1

2ε1

k3

2π2
|δφ(~k, τ)|2. (4.73)

We have plotted the curvature power spectrum for our matched modes, as a function of
di�erent time parameters. We have again plotted the spectrum for ∆τSR on the SR side
and ∆τUSR on the USR side (see �gure 4.9), ∆τSR on both sides (see �gure 4.10) and
∆τUSR on both sides (see �gure 4.11). Here the di�erence between �gure 4.9 and 4.10 can
not been seen anymore, because 1

ε1
also grows very fast. The di�erence between �gure 4.9

and 4.11 is clearly visible. This, however, does not give rise to di�erent conclusions, as the
di�erence is mostly in the part that is only hypothetical. In Appendix B, we also show
linear plots of the curvature power spectrum.

This spectrum is not the true spectrum, which would not be larger then one, because of
our choice H0 = 1. To recover the true spectrum, the Planck mass should be reintroduced
or it could be put to one, which together with the COBE normalization implies a certain
value for H0. Then the spectrum should obey the COBE constraint [26].
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(a) The spectrum of the mode functions as a
function of the conformal time τ .

(b) The spectrum of the mode functions as a
function of the number of e-foldings N .

Figure 4.10: The curvature spectrum of the mode functions as a function of two di�erent
time variables. The green line shows the time of matching, with the slow-roll regime on
the left side, and the ultra-slow-roll on the right. Here we have used ∆τSR for both sides.

(a) The spectrum of the mode functions as a
function of the conformal time τ .

(b) The spectrum of the mode functions as a
function of the number of e-foldings N .

Figure 4.11: The curvature spectrum of the mode functions as a function of two di�erent
time variables. The green line shows the time of matching, with the slow-roll regime on
the left side, and the ultra-slow-roll on the right. Here we have used ∆τUSR for both sides.
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4.5 The Bigger Picture and Discussion

4.5.1 Comparison with earlier research

In a recent paper, Cheng et al. studied super-horizon perturbation during a period of SR,
followed by USR, followed by SR [27]. They found that if they used ε2 < 0, which is what
we have used, the power spectrum was ampli�ed. This is in agreement with our results.
Although, they did not match the background or take corrections of O(ε1) into account.

In the appendix of a paper by Byrnes et al. [28], a matching is performed between SR and
USR and back to SR. Here they also do not take corrections of order ε1 into account in
their derivation of νUSR and therefore in their derivation of the modes. They do �nd an
exponentially growing spectrum during USR, as we did.

To really compare our results to theirs, we should �rst perform the matching from USR
back to SR. For the time being, it seems that we do not �nd wildly di�erent results from
others.

4.5.2 Discussion of the choice of ∆τ

A di�erent choice of ∆τ can considerably change the results of the power spectrum of the
modes, and can slightly change the power spectrum of the curvature perturbations. Here
future research can probably make much clearer which choices must be made and why. A
possibility is to take z = k

aH(1−ε0) in stead of z = −k(τ + ∆τ) in the Hankel functions

H
(1),(2)
ν (z) in future research, as in this way the problem can be avoided. Let's analyse the

problem a bit closer: To prevent the jump in time, we need

− k(τ + ∆τSR) = −k(τ + ∆τUSR) (4.74)

to be true. And while we know that

k

aSRHSR(1− ε0)
=

k

aSRHUSR(1− ε1)
, at the time of matching, (4.75)

if

− k(τ + ∆τSR) =
k

aSRHSR(1− ε0)
(4.76)

and

− k(τ + ∆τUSR) =
k

aUSRHUSR(1− ε1)
, (4.77)

the following should also be true everywhere,

aSRHSR(1− ε0) = aUSRHUSR(1− ε1). (4.78)

This is not the case in this thesis, which may be the cause of our problem. If we do take
these de�nitions, we can in principle �nd an alternative ∆τUSR by taking

∆τUSR =
−1

aUSRHUSR(1− ε1)
− τ (4.79)

For τ → ∞ this goes to a constant, which is what we have used for ∆τUSR. This means
that we e�ectively created a jump in τ at the time of matching, but as we are only looking
at late times, this is probably �ne. We analytically extend the solution back to the time
of matching.
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Chapter 5

Conclusion and Outlook

Curvature perturbations rapidly grow during a period of USR, where the �rst SR param-
eter rapidly decreases. This increases the probability of primordial black holes to form, as
they are created by the collapsing of overdense regions. We matched the SR regime to the
USR regime, where we included a matching of the background. The background does not
show large changes, as the changes are of order ε. Most of the growth of the curvature
perturbation power spectrum can be attributed to the decline of ε1 in the de�nition of the
curvature perturbation power spectrum, and just a small part is contributed by the growth
of the spectrum of the in�aton perturbations.

To do this matching procedure, we found an exact expression for the conformal time τ ,
expressed in the number of e-foldings N since the matching, with the use of hypergeometric
functions

τ + ∆τ =
1

2a0H0

√
ε0
3

e2N 2F 1

(
1

2
,
1

3
;
4

3
;−(3/ε0 − 1)e6N

)
. (5.1)

This is a new result, and can be used to rewrite expressions in terms of the other time
variable during USR in�ation.

We also found expressions for the Bogoliubov coe�cients (equations A.1 and A.2). We
suspected that it would be enough to only take the leading order terms, but to ensure a
smooth matching and the correct behaviour at later times, we should also take the other
terms into account. This brings into question the practise of using only the leading order
contribution, which is common in related research.

As proposed in the last section, the dependence in the Hankel functions can be taken more
precisely to be z = k

aH(1−ε0) . This will ensure that there is no discontinuity in time. If this
is done, it needs to be considered that after a period of SR in�ation will probably follow
a USR period. So future research should match the USR period to another period of SR.
This can be done in much the same way, and will give the full evolution of the modes. This
will also mean that the primordial spectrum after in�ation can be calculated, from which
it is possible to compare our results with future observations.
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Appendix A

Full expressions for alpha and beta

Here are the expressions for the Bogoliubov coe�cients in their full glory,

α =
−i

4πaSRaUSR

[
eπi(νSR−νUSR)Γ(−νSR)Γ(−νUSR)(

k

2
)νSR+νUSR(−(τ + ∆τSR))νSR−

1
2

×(−(τ + ∆τUSR))νUSR−
1
2

(
Byrnes

[νSR(τ + ∆τUSR)− νUSR(τ + ∆τSR)− 1

2
(∆τSR −∆τUSR)]

× [1− (−k(τ + ∆τSR)/2)2

νSR + 1
− (−k(τ + ∆τUSR)/2)2

νUSR + 1
+ . . . ]

−k(τ + ∆τSR)(τ + ∆τUSR)[
k(τ + ∆τSR)/2

νSR + 1
− k(τ + ∆τUSR)/2

νUSR + 1
+ . . . ]

)
+ eπiνSRΓ(−νSR)Γ(νUSR)(

k

2
)νSR−νUSR(−(τ + ∆τSR))νSR−

1
2 (−(τ + ∆τUSR))−νUSR−

1
2

(
Byrnes

[νSR(τ + ∆τUSR) + νUSR(τ + ∆τSR)− 1

2
(∆τSR −∆τUSR)]

× [1− (−k(τ + ∆τSR)/2)2

νSR + 1
− (−k(τ + ∆τUSR)/2)2

−νUSR + 1
+ . . . ]

−k(τ + ∆τSR)(τ + ∆τUSR)[
k(τ + ∆τSR)/2

νSR + 1
− k(τ + ∆τUSR)/2

−νUSR + 1
+ . . . ]

)
+ e−πiνUSRΓ(νSR)Γ(−νUSR)(

k

2
)−νSR+νUSR(−(τ + ∆τSR))−νSR−

1
2 (τ + ∆τUSR)νUSR−

1
2

(
Byrnes

[−νSR(τ + ∆τUSR)− νUSR(τ + ∆τSR)− 1

2
(∆τSR −∆τUSR)]

× [1− (−k(τ + ∆τSR)/2)2

−νSR + 1
− (−k(τ + ∆τUSR)/2)2

νUSR + 1
+ . . . ]

−k(τ + ∆τSR)(τ + ∆τUSR)[
k(τ + ∆τSR)/2

−νSR + 1
− k(τ + ∆τUSR)/2

νUSR + 1
+ . . . ]

)
+ Γ(νSR)Γ(νUSR)(

k

2
)−νSR−νUSR(−(τ + ∆τSR))−νSR−

1
2 (−(τ + ∆τUSR))−νUSR−

1
2

(
Byrnes

[−νSR(τ + ∆τUSR) + νUSR(τ + ∆τSR)− 1

2
(∆τSR −∆τUSR)]

× [1− (−kτ/2)2

−νSR + 1
− (−k(τ + ∆τUSR)/2)2

−νUSR + 1
+ . . . ]

−k(τ + ∆τSR)(τ + ∆τUSR)[
k(τ + ∆τSR)/2

−νSR + 1
− k(τ + ∆τUSR)/2

−νUSR + 1
+ . . . ]

)]
,

(A.1)
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β =
i

4πaSRaUSR

[
eπi(νSR+νUSR)Γ(−νSR)Γ(−νUSR)(

−k
2

)νSR+νUSR(τ + ∆τSR)νSR−
1
2

×(τ + ∆τUSR)νUSR−
1
2

(
Byrnes

[−νUSR(τ + ∆τSR) + νSR(τ + ∆τUSR)− 1

2
(∆τSR −∆τUSR)]

× [1− (−k(τ + ∆τSR)/2)2

νSR + 1
− (−k(τ + ∆τUSR)/2)2

νUSR + 1
+ . . . ]

−k(τ + ∆τSR)(τ + ∆τUSR)[
k(τ + ∆τSR)/2

νSR + 1
− k(τ + ∆τUSR)/2

νUSR + 1
+ . . . ]

)
+ eπiνSRΓ(−νSR)Γ(νUSR)(

−k
2

)νSR−νUSR(τ + ∆τSR)νSR−
1
2 (τ + ∆τUSR)−νUSR−

1
2

(
Byrnes

[νUSR(τ + ∆τSR) + νSR(τ + ∆τUSR)− 1

2
(∆τSR −∆τUSR)]

× [1− (−k(τ + ∆τSR)/2)2

νSR + 1
− (−k(τ + ∆τUSR)/2)2

−νUSR + 1
+ . . . ]

−k(τ + ∆τSR)(τ + ∆τUSR)[
k(τ + ∆τSR)/2

νSR + 1
− k(τ + ∆τUSR)/2

−νUSR + 1
+ . . . ]

)
+ eπiνUSRΓ(νSR)Γ(−νUSR)(

−k
2

)−νSR+νUSR(τ + ∆τSR)−νSR−
1
2 (τ + ∆τUSR)νUSR−

1
2

(
Byrnes

[−νUSR(τ + ∆τSR)− νSR(τ + ∆τUSR)− 1

2
(∆τSR −∆τUSR)]

× [1− (−k(τ + ∆τSR)/2)2

−νSR + 1
− (−k(τ + ∆τUSR)/2)2

νUSR + 1
+ . . . ]

−k(τ + ∆τSR)(τ + ∆τUSR)[
k(τ + ∆τSR)/2

−νSR + 1
− k(τ + ∆τUSR)/2

νUSR + 1
+ . . . ]

)
+ Γ(νSR)Γ(νUSR)(

−k
2

)−νSR−νUSR(τ + ∆τSR)−νSR−
1
2 (τ + ∆τUSR)−νUSR−

1
2

(
Byrnes

[νUSR(τ + ∆τSR)− νSR(τ + ∆τUSR)− 1

2
(∆τSR −∆τUSR)]

× [1− (−k(τ + ∆τSR)/2)2

−νSR + 1
− (−k(τ + ∆τUSR)/2)2

−νUSR + 1
+ . . . ]

−k(τ + ∆τSR)(τ + ∆τUSR)[
k(τ + ∆τSR)/2

−νSR + 1
− k(τ + ∆τUSR)/2

−νUSR + 1
+ . . . ]

)]
.

(A.2)
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Appendix B

Linear plots of the curvature

spectrum

In the main text we have shown the logaritmic plots of the curvature power spectrum, here
we put the linear plots.
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APPENDIX B. LINEAR PLOTS OF THE CURVATURE SPECTRUM

(a) The spectrum of the mode functions as a
function of the conformal time τ .

(b) The spectrum of the mode functions as a
function of the number of e-foldings N .

Figure B.1: The curvature spectrum of the mode functions as a function of two di�erent
time variables. The green line shows the time of matching, with the slow-roll regime on
the left side, and the ultra-slow-roll on the right.

(a) The spectrum of the mode functions as a
function of the conformal time τ .

(b) The spectrum of the mode functions as a
function of the number of e-foldings N .

Figure B.2: The curvature spectrum of the mode functions as a function of two di�erent
time variables. The green line shows the time of matching, with the slow-roll regime on
the left side, and the ultra-slow-roll on the right.

(a) The spectrum of the mode functions as a
function of the conformal time τ .

(b) The spectrum of the mode functions as a
function of the number of e-foldings N .

Figure B.3: The curvature spectrum of the mode functions as a function of two di�erent
time variables. The green line shows the time of matching, with the slow-roll regime on
the left side, and the ultra-slow-roll on the right.
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