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A holographic investigation of magnetically induced quantum critical points in 2+1-dimensions

by Claire Moran

We study a 2+1-dimensional quantum critical system under the influence of an external magnetic field
and at finite chemical potential using holography. The gauge theory is related to the ABJM model de-
formed by a bosonic gauge invariant triple trace operator, and is non-conformal. The gravity dual is
based on a 4-dimensional N = 2 Fayet-Iliopoulos gauged supergravity, and black brane and thermal
gas solutions are considered. The system undergoes a phase transition at some Bc, resulting in a line of
quantum critical points. We investigate these points and the surrounding region using the quasinormal
modes of the black brane solution. We find evidence of the quantum phase transition within the be-
haviour of the fundamental mode, and we extract the T− B phase diagram in one case of the parameter
conditions.
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Chapter 1

Introduction: Strongly coupled systems

Strongly interacting many body systems are a very important but poorly understood area in physics.
The usual techniques which have gotten us so far in physics, such as perturbation theory and weak
coupling approximations, cannot be used in these systems. Strongly interacting systems are prevalent
throughout nature, which can be modelled by these systems from the high energy regime (low energy
quantum chromodynamics), to the low energy regime (high temperature superconductors, quantum
critical systems, etc.). Therefore, given the abundance and fundamental nature of these systems, it is
paramount that we develop methods to explore and understand them.

The strongly coupled system this thesis will be concerned with, is a quantum critical system. Quan-
tum criticality is currently an important topic in physics, as it is thought that it is crucial in the un-
derstanding of several open problems, such as high Tc superconductivity. In particular, we will study a
magnetically induced quantum critical point (QCP) using holography. Holography, or the gauge/gravity
duality was first realised through Maldacena’s AdS/CFT conjecture. In one limit, it reveals a correspon-
dence between strongly coupled gauge theories and weakly coupled gravity theories, and thus provides
us with a powerful means to study these strongly coupled theories.

1.1 Why condensed matter?

In condensed matter physics, there are many strongly coupled systems that cannot be properly under-
stood through the traditional approaches to problems in condensed matter physics (using weak ap-
proximations etc.). The AdS/CFT correspondence presents a unique way to tackle these problems and
obtain results that would otherwise be very difficult to determine. Furthermore, since these strongly
coupled systems can be constructed and experimented on in a laboratory, they may provide us with the
means to experimentally realise concepts from high energy physics.

Many condensed matter systems provide a so-called top-down approach to the AdS/CFT corre-
spondence; where we know the precise form of the duality, namely we can write down a Lagrangian on
the field theory side and the gravity dual is well understood in the supergravity limit. This is opposed
to bottom-up approach in which the exact duality is not known, instead the duality used is based on
things such as symmetry arguments, so it is similar in the necessary ways to the actual systems in ques-
tion. With the top-down approach, precise questions can be asked and answered, so this application of
the AdS/CFT correspondence is very promising and powerful.

Finally, results we obtain from the correspondence about the strongly coupled system do not only
have implications for said system, they can also have consequences for the gravity dual. For instance,
seeking a dual description of superconductivity one realises that there might be loopholes in black hole
‘no-hair’ theorems and one is led to new types of black hole solutions [1]. Evidently, this dual perspec-
tive can lead to finding new results and possibilities on both sides, a "buy one get one free" deal offered
by nature to those clever enough!
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1.1.1 Quantum criticality

An example of strongly coupled condensed matter systems that can be studied using holographic tech-
niques are quantum critical systems, the type of condensed matter system that will be investigated in
this thesis. Quantum phase transitions are continuous phase transitions occurring at zero temperature,
through variation of another non-termal parameter of the theory, such as the chemical potential or mag-
netic field. The phase transition in these cases are driven by quantum fluctuations due to the Heisenberg
uncertainty principle, since at T = 0 there can be no thermal fluctuations.

The quantum phase transition occurs at some critical value in the varying parameter, known as the
quantum critical point (QCP). There are two types of QCPs, shown below in figure . The first on the left
is known as a level crossing, this occurs when the parameter controlling the phase transition couples to
a conserved quantitiy. In this case an excited energy level becomes the ground state at the QCP, leading
to a non-analyticiy in the ground state energy. The second type shown on the right, is known as an
avoided level crossing, which occurs in the infinite lattice limit. As the lattice size increases the curves
become sharper, with ∆E → 0, and the non-analyticity occurs at the QCP. This type of QCP is much
more common than the first, and as we will see this is the kind exhibited in our system.

FIGURE 1.1: The two types of QCPs. On the left we have a level crossing, and on the right
an avoided level crossing. The latter is more common and is the type that occurs in our

system.

A particular class of quantum phase transitions are those which are of second order, where the non-
analyticity manifests itself in the second derivative of the free energy. In general for a second order
quantum phase transition, as the QCP is approached the characteristic energy scale of the system van-
ishes and the characteristic lengthscale diverges, and so the system becomes scale invariant. At this
point the system is also invariant under rotations, translations, time translations and dilatations. So at
the QCP the effective field theory is scale invariant, i.e. a conformal field theory, we will discuss conformal
field theories in sufficient detail in chapter two. We will also see later, that a metric that obeys all of these
symmetries is precisely the Anti-de Sitter(AdS) spacetime metric, and so it is already apparent why the
correspondence will be useful to study such systems.
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FIGURE 1.2: A typical phase diagram near a quantum critical point. T is the temperature,
g is another parameter of the system such as pressure or magnetic field, and ∆ is the char-
acteristic energy scale. A clear division of the phase diagram into different regimes can
be observed. gc defines the QCP, separating quantum ordered and quantum disordered
states. As this point is approached the energy scale vanishes. The quantum critical region

in which the quantum fluctuations dominate can be seen. This image is taken from [2]

The typical phase diagram for a quantum phase transition is divided into two main regions defined
by the relationship between the characteristic energy scale of the system and thermal energy, as shown
in figure 1.2. The first regime is defined when kBT < ∆, where the characteristic energy is dominating
the thermal energy. In this region, the thermal energy is not enough to excite the quantum states into
a superposition of states, where quantum effects are important. As a result, the system is effectively
classical in this region, and we can deal with the dynamics as so. Another property of this region is that
the equilibration timescale, the time it takes for the perturbed system to return to equilibrium, is given
by τeq � h̄

kBT .
The second regime is known as the quantum critical region, in which kBT > ∆. Here, the thermal

energy is dominating the characteristic energy. Consequently, thermal fluctuations have enough energy
to excite the quantum states into a superposition and so quantum effects become non-negligible, and
the effective field theory is no longer semi-classical. We need an effective field theory that takes these
quantum effects into account. For strongly interacting quantum critical systems, the timescale is given
by τeq ∼ h̄

kBT , so quite different to the other region. This will be useful for us later, but it should be
stressed that the exact proportionality in not known. The equation for τ is given by,

τeq = Ceq
h̄

kBT
, (1.1)

where Ceq is a number that doesn’t depend on the microscopic details of the system. We do not know
what Ceq is for our system, and this lead to some limitations that we will see later.

QCP’s are highly interesting in that they can dominate regions of the phase diagram beyond the
point at which the energy fluctuations vanish, namely they influence the quantum critical region. As a
result, we can consider the dynamics inside the quantum critical as also being governed by a conformal
field theory. The quantum fluctuations at the QCP that drive the phase transition are presently not
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well understood, and in order to develop a satisfactory theory of quantum phase transitions, these
fluctuations must be comprehended.

Outside of AdS/CFT, there are presently no models of strongly coupled quantum criticality in 2+1
dimensions in which analytic results can be obtained. Therefore this is a very promising and important
application of the AdS/CFT correspondence, which we will explore in this thesis.

For more information on quantum critical systems and quantum phase transitions, a comprehensive
overview of the subject can be found at [2].

1.1.2 Why this condensed matter system

Now we will introduce the condensed matter system that we are considering, and explain why this one
is interesting to study holographically.

The system we consider is a (2+1)-dimensional gauge theory, at finite potential and magentic field.
In particular, it is a strongly-coupled, non-conformal theory, related to the ABJM model deformed by
a bosonic gauge invariant triple trace operator. This operator introduces the instability in the system
initiating the RG flow, and hence breaking the conformality. This system undergoes a phase transition
at some critical value of the magnetic field, and we are interested in studying these critical points and
the surrounding regions.

This model is interesting to study, as it is one in which the top-down approach can be utilized.
In particular, it is one of the few involving an external magnetic field for which the precise duality is
known, and where the dual gravity solutions are analytic. As a result of this, we can can ask more
detailed questions and obtain the answers, for example one could compute the thermal and electrical
conductivities of the system, among other things.

As mentioned earlier, (2+1)-dimensional quantum critical systems do not have any effective models
outside of AdS/CFT, and it is believed that high Tc superconductors may have their properties rooted in
the presence of a quantum critical point. The multi trace type operator introduced in this system, is also
important in the study of holographic superconductors, so studying these kinds of systems is promising
for the development of a description of high TC superconductors.

1.2 Layout of the thesis

Hopefully this chapter has provided enough motivation for why we want to study condensed matter
using holography, and in particular the condensed matter system we are investigating. So the next
step is to overview the necessary background information that was needed for this thesis. In chapter
two, the ingredients of the AdS/CFT correspondence will be introduced and explained, and then the
correspondence itself will be detailed. Chapter three will briefly discuss some important features of the
correspondence that are necessary for our purposes, and then chapter four will outline the problem, the
systems we are considering, what we did, and the results we obtained. Finally then in chapter five we
will summarize these results again, detail the conclusions, and discuss what should be done next.
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Chapter 2

The AdS/CFT correspondence

The purpose of this chapter will be to present the correspondence as proposed by Maldacena [3], where
an exact equivalence is made between type IIB superstring theory compactified on AdS5 × S5, and
N = 4 Super Yang-Mills theory in 3 + 1 dimensions. The corresponence is a realisation of the holo-
graphic principle, first proposed by t’Hooft, which states that there is an equivalence between a non-
Abelien gauge theory at large N and a string theory, which will be discussed below. In order to get to the
correspondence we must first review the basic ingredients of the duality: Anti-de Sitter spacetime and
conformal field theories. We will begin by introducing these two topics in their relevant capacity, and
then move onto the topics that will eventually lead us to the correspondence between them, namely su-
perstring theory and supergravity. From there we will be able to detail the correspondence and discuss
its consequences.

2.1 Large N expansion and holography

First proposed by ’t Hooft in [4], is the idea that gauge theories at large N, where N is the rank of the
gauge group, is equivalent to a string theory. The AdS/CFT correspondence is this first direct realisation
of this duality, giving the precise mapping.

The perturbative expansion of a large N guage theory in 1
N and g2

YM has the form

Z = ∑
g≥0

N2−2g fg(λ), (2.1)

where fg is a polynomial in the ’t Hooft coupling λ = g2
YM, and the N → ∞ limit has been taken while

keeping λ fixed. Looking closely at this we see that the power of N is precisely the Euler character-
istic, where g is the genus of the surface, and so we see that this looks exactly like the string theory
perturbative expansion,

Z = ∑
g≥0

g2g−2
s Zg, (2.2)

where gs =
1
N is the string coupling.

The holographic principle has its origins in the study of black hole thermodynamics, where [5] and
[6] showed that black holes can be have as thermodynamic systems. It was found that the entropy of the
black hole is directly proportional to the area of horizon, and this only really makes sense if we can form
an equivalence between a gravity theory in d dimensions and a local field theory in d− 1 dimensions.
Consider that an area in d dimensions is the same as the volume in d − 1 dimensions, and we know
from statistical mechanics that a field theory in d− 1 dimensions will have an entropy proportional to
its area. From this, we can conjecture that since a black hole in d dimensions has entropy proportional
to its area, it must be equivalent to a d− 1 dimensional field theory.
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This is where the term "holographic principle" comes from; a hologram is a 2-dimensional object
that contains all the information to form a 3-dimensional object, and like this all the information of a
d-dimensional black hole is contained within a d− 1-dimensional field theory.

As we will see, the AdS/CFT correspondence fulfils the definition of the holographic principle, as it
conjectures that 5-dimensional quantum gravity is equivalent to a 4-dimensional local field theory.

2.2 Anti-de Sitter spacetime

Anti-de Sitter, which from here on will be referred to as AdS spacetime, is a maximally symmetric
spacetime with negative cosmological constant. In (d+ 1)-dimensions, the AdSd+1 hypersurface is given
by

η̄NMXNXM = −(X0)2 +
d

∑
i=1

(Xi)2 − (Xd+1)2 = −L2, (2.3)

where η̄ =diag(−1,+1, ...,+1,−1) and M, N ∈ {0, ..., d+ 1} This can be embedded into (d+ 2)-dimensional
Minkowski spacetime with metric,

ds2 = −(dX0)2 + (dX1)2 + ... + (dXd)2 − (dXd+1)2 = η̄NMdXMdXN (2.4)

A useful and convenient coordinate system for us to use will be the Poincaré patch coordinates,
where we parameterise as follows,

X0 =
L2

2r
(1 +

r2

L4 (x̄2 − t+L2)), (2.5)

Xi =
rxi

L
, i ∈ {1, ..., d− 1}, (2.6)

Xd =
L2

2r
(1 +

r2

L4 (x̄2 − t+L2)), (2.7)

Xd+1 =
rt
L

. (2.8)

Due to the choice of coordinates r > 0, only one half of the AdSd+1 is covered. The metric in Poincaré
coordinates is

ds2 =
L2

r2 dr2 +
r2

L2 (ηµνdxµdxν), (2.9)

where µ = 0, ..., d, x0 = t, and ηµν = diag(−1,+1,+1, ...,+1). In these coordinates AdS-spacetime can
be seen as flat spacetime with (x̄, t) coordinates, combined with an extra warped direction r. As the
boundary is approached, i.e. r → ∞, there is a second order pole in the metric in the gii components
of the metric. This is a general feature: any asymptotically AdS spacetime metrics will always have
quadratic divergences in a certain direction, for a particular value of the radial direction, say r = r∗,
and this r∗ is the conformal boundary of the spacetime. The conformal boundary is important as this is
where the dual field theory lives.

A slightly more convenient way for us to express the Poincaré coordinates is by inverting the r-
coordinate, such that z = − L2

r . Now the metric reads,

ds2 =
L2

z2 (dz2 + ηµνdxµdxν), (2.10)

and the horizon is located at z→ ∞, and the conformal boundary at z = 0.
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2.3 Conformal field theory

In quantum field theories, symmetries play an important role, in particular we have seen how Lorentz
and Poincaré symmetries affect our understanding of the theory. Another symmetry which one could
try to add to the boots, rotations, and translations of the Poincaré group is that of scale invariance. The
group containing both scale invariance as well as Poincaré invariance is known as the full conformal
group. The conformal group is the group of transformations that preserve angles, or it can also be sen
as those coordinate transformations which leave the metric invariant up to a scale factor, and these
transformations are known as conformal transformations. A field theory that is invariant under these
conformal transformations is known as a conformal field theory(CFT). As we will see, d = 4,N = 4
supersymmetric Yang-Mills theory is such a field theory.

2.3.1 The conformal algebra and group

As stated above a conformal transformation is a coordinate transformation, σα 7→ σ̃α(σ), which leaves
the metric invariant up to a scale factor,

gαβ 7→ Ω(σ)2gαβ(σ), (2.11)

where α, β = {0, 1, ..., d − 1}. We will now investigate what these transformations are in the case of
flat spacetime, gαβ = ηαβ. Taking an infinitesimal transformation x 7→ x̃ = xα + εα(x), the metric then
transorms as

ηαβ 7→ ηαβ + ∂αεβ + ∂βεα. (2.12)

Now, equation 2.12 implies that the conformal transformation has to satisfy

∂αεβ + ∂βεα = f (x)ηαβ, (2.13)

where f(x) is some function. We can then solve for f (x) by contracting both sides with the metric, then
we eventually find, that for d dimensions, an infinitesimal transformation is conformal if ε(x) satisfies

(ηαβ∂γ∂γ + (d− 2)∂α∂β)∂ · ε = 0. (2.14)

We will be concerned with spacetimes with d > 2, in which case the conformal equation 2.14 is solved if
ε is of at most second order. From this one can determine the generators of the group, which are found
to be

• Pα → translations

• Jαβ → Lorentz transformations (boosts and rotations)

• D → dilatation

• Kα → special conformal transformations

These generators obey the commutation relations of the Poincaré algebra as well as new ones

[Jαβ, Jγσ] = i(ηαγ Jβσ + (α⇔ β, γ⇔ σ)− (α⇔ β)− (γ⇔ σ)),

[Jαβ, Kγ] = i(ηαγKβ − ηβγKα),

[D, Pα] = iPα, [D, Kα] = −iKα, [D, Jαβ] = 0,

[Kα, Kγ] = 0, [Kα, Pβ] = 2i(ηαβD− Jαβ).

(2.15)
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These generators give us the usual finite transformations from the Poincaré group; translations (Pα),
Lorentz transformations (Jαβ), as well as new ones; dilatations/scalings (D)

xα 7→ λxα, (2.16)

and special conformal transformations (Kα),

xα 7→ xα + bαx2

1 + 2b · x + b2x2 . (2.17)

The confromal algebra is isomorphic to the algebra so(d, 2), provided we make the following iden-
tifications, where the barred terms are the generators of so(d, 2):

J̄d(d+1) = −D,

J̄αd =
1
2
(Kα − Pα),

J̄α(d+1) =
1
2
(Pα + Kα),

(2.18)

where α ∈ {0, ..., d − 1}. The fact that the conformal algebra is isomorphic to the algebra so(d, 2) is
important as this is the isometry group of AdS space.

2.3.2 Field content, correlators, and OPEs

The next thing to look at are the representations of the conformal group, so we can determine the field
content of our theory.

Under a scaling transformation, a field φ(x) will transform as,

φ(λx) = λ−∆φ(x), (2.19)

where ∆ is the scaling dimension.
Commutation relations 2.13 imply that Pµ and Kµ increase and decrease the scaling dimension re-

spectively. It can be shown that for a CFT to be unitary, there must be a lower bound on the scaling
dimension of its fields, therefore it follows that there exist fields of the lowest possible scaling dimen-
sion in each representation. These fields will be annihilated at x = 0 by Kµ, these fields are called the
conformal primary fields, and they satisfy the commutation relation,

[Kµ, Φ(0)] = 0. (2.20)

All other fields can then be obtained from the primary fields, by acting on them with Pµ, and the com-
mutation relations for these primary fields are as follows,

[Pµ, Φ(x)] = −i∂µΦ(x)
[D, Φ(x)] = −i∆Φ(x)

[Jµν, Φ(x)] = −JµνΦ(x) + i(xµ∂ν − xν∂µ)

[Kµ, Φ(x)] = (i(−x2∂µ + 2xµxρ∂ρ + 2xµ∆)− 2xνJµν)Φ(x),

(2.21)

where Jµν are the finite-dimensional representation of the Lorentz group.

Now we can look to the observables of the theory; the correlation functions. The conformal in-
variance of the theory will invoke restrictions on these observables, where the classical invariance of
the action under conformal transformations leads to Ward identities on the quantum level i.e. in the
correlation functions.
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Using the invariance under dilatations and specialconformal transformations, it can be shown that
the two-point function of two scalar primary operators is,

〈Φ(x1)Φ(x2)〉 =
A12

|x1 − x2|∆
, (2.22)

where A12 is just a normalisation constant. Similarily, the three-point function can be found to be,

〈Φ(x1)Φ(x2)Φ(x3)Φ(x4)〉 =
λ123

x∆−2∆3
12 x∆−2∆1

23 x∆−2∆2
13

, (2.23)

where ∆ = ∑i ∆i and xij =| xi − xj |, and λ123 is again a normalisation constant. Now that we have the
correlation functions we can introduce a useful concept in CFTs: operator product expansions (OPEs),
which are defined by,

Oi(x1)Oj(x2) = ∑
k

Ck
ij(x1 − x2)Ok(x2). (2.24)

OPEs turn out to contain the same information as the correlation functions, as well as showing us how
the operators transform under the symmetries.

Finally, another very useful tool from CFTs is the state-operator correspondence, which provides us
with an invertible map between states |O〉, and local operators O,

|O〉 = limx→0O(x)|0〉. (2.25)

2.3.3 Superconformal field theory

We can further generalise the Poincaré algebra by introducing supersymmetry algebra, which adds
fermionic operators Qa

α to the story, and therefore introducing anti-commutation relations. The super-
conformal algebra will contain the usual generators of the conformal group, Jµν,Pµ,D, and Kµ, as well as
the supersymmetry supercharges Qa

α and Q̄a
α̇, where a = 1, ...,N is the number of independent super-

symmetries and α,α̇ are the SL(2, C) indices, taking values 1,2.
However, it is necessary to indroduce further generators to the superconformal group; further fermionic

supercharges denoted by Sa
α and S̄a

α̇. These superconformal algebras exist only in d ≤ 6, and their com-
mutation relations, including (2.13) are,

[D, Q] = − i
2

Q, [D, S] =
i
2

S, [K, Q] ' S, [P, S] ' Q,

{Q, Q} ' P, {S, S} ' K, [Q, S] ' J + D + R,
(2.26)

where R is the R-symmetry, curly brackets indicate anti-commutation relations, and all indices have
been suppressed.

As in the previous section, when finding the representations of the algebra, in this case the su-
perconformal algebra, we find there are operators which have the lowest dimension ∆, reffered to as
superconformal primary operators. The unitarity implies that these operators must satisfy,

[Sa
α, O} = 0, [S̄aα̇, O], (2.27)

where the final brackets will depend on whether the operator is bosonic or fermionic. From this operator
we can construct its decendants by applying any generator of the superconformal algebra.

An important subset of these primary operators are the chiral primary operators, and these are annihi-
lated as in (2.25), and also by at least one Qa

α,

[Qa
α, O} = 0. (2.28)
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Operators of this kind are also known as BPS operators. We will next see how these BPS states appear
as soliton solutions of Yang-Mills systems.

2.3.4 N = 4 Super Yang-Mills

The field content of N = 4 Super Yang-Mills(SYM) consists of a guage field Aµ(x), four Weyl fermions
λa

α(x), and six real scalars φi(x), where a ∈ {1, 2, 3, 4}, i ∈ {1, 2, ..., 6}. The SYM action is,

L = Tr(− 1
2g2

YM
FµνFµν +

ϑ

16π2 Fµν F̃µν − iλ̄aσ̄µDµλa

−∑
i

DµφiDµφi + gYM ∑
a,b,i

Cab
i λa[φ

i, λb]

+gYM ∑
a,b,i

C̄iabλ̄a[φi, λ̄b] +
g2

YM
2 ∑

i,j
[φi, φj]2),

(2.29)

where Fµν is the field strength tensor, Dµ is the covariant derivative, and the Cab
i are the Clebsch-Gordon

coefficients.

SYM is scale invariant on the classically, and it also has the rare property that this scale invariance is
preserved after quantization, and hence the theory is superconformal. The scale invariance remains at
the quantum level as SYM is believed to be UV finite theory, containing no UV divergenes in the loop
corrections, or in the corrections to instanton solutions. Also, the β functions vanish at all orders of the
perturbation theory.

Another property of the theory that will be useful later, is that it is invariant under the so-called
S-duality group SL(2, Z). This duality implies a strong-weak duality, for upon acting with the transfor-
mation, the coupling constant gYM becomes 4π

gYM
.

2.3.5 Superstring theory and supergravity

Starting from bosonic string theory, one obtain superstring theory by adding fermionic degrees of free-
dom, which is naturally done by introducing supersymmetry. As in bosonic string theory, we find
the equations of motion from the supersymmetrized Polyakov actions and we obtain a boundary term
which imposes boundary conditions. From these conditions the two type of possible string solutions
fall out: open and closed superstrings.
Inside the open superstring sector, one finds there are two possible boundary conditions, corresponed-
ing to the Neveu-Schwarz(NS) and Ramond(R) sectors, which further imply that superstring theories
require that D = 10, and they also imply that the ground state of the NS sector is tachyonic. In order to
remove this tachyon, a truncation prescription known as the GSO projection, projects out the tachyons
while also leaving an equal number of fermions and bosons, thus realising the supersymmetry of the
target spacetime. Within the closed superstring sector, as aresult of the GSO projection, there can exist
four different superstring theories in ten dimensions, however the one we are concerned with is known
as type IIB superstring theory.

Type IIB supergravity

Taking what is known as the low-energy limit of type II superstring thories, involves taking the string
coupling constant to zero, and hence only taking the massless closed superstring states. From these
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states one arrives at the low-energy effective action for the superstring theory, known as type IIB super-
gravity. The bosonic part of the action is as follows,

SI IB =
1

2κ̄2
10
[
∫

d10X
√
−g
(

e−2φ(R + 4∂Mφ∂Mφ− 1
2
|H(3)|2])

−1
2
|F(1)|2 −

1
2
|F̃(3)|2 −

1
4
|F̃(5)|2

−1
2

∫
C(4) ∧ H(3) ∧ F(3)],

(2.30)

whereκ2
10 is the ten dimensional gravitational constant, and the field strength tensors are given by the

following,

F(p) = dC(p−1), H(3) = dB(2), F̃(3) = F(3) − C(0)H(3),

F̃(5) = F(5) −
1
2

C(2)(3) +
1
2

B(2)(3),
(2.31)

where d is the exterior derivative and F is self-dual.
This theory is chiral and violates parity, which can be seen in its field content:

• gMN → metric/graviton,

• C(0) + ie−φ → axion-dilaton,

• B(2), C(2) → two-forms,

• C(4) → self-dual four-form,

• ΨM
Iα, I = 1, 2→ Majorana-Weyl gravitinos,

• λIα, I = 1, 2→ Majorana-Weyl dilatinos.

(2.32)

Type IIB supergravity possesses a duality useful to us: S-duality. This is the same duality as intro-
duced in the previous section, a mapping between a weakly coupled superstring theory and a strongly
coupled superstring theory. In this case it is a mapping from type IIB supergravity to itself.

2.3.6 D-branes

Now we will look at the non-perturbative objects in the theory, known as D-branes. These objects arise
from the boundary conditions of open strings, where in particular they are the hypersurfaces on which
open strings can end. The open string lead then to masless excitations on the D-branes; scalars and a
U(1) gauge field Aµ, which show us that the brane is in fact a dynamical object.

D-branes can also be viewed in an alternative way however; they can be seen as massive, gravitat-
ing objects, due to their coupling to the closed strings in the NS-NS sector. This come from the fact that
extremal p-branes, which are solition solutions in supergravity, are equivalent to D-branes. Due to their
boundary conditions, D-branes break one half of the supercharges of the background, and hence carry
the same charge as the p-branes. Therefore, we can view these as two descriptions of the same object,
and we can consider Dp-branes to be BPS solutions to the supergravity equations of motion.
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It will be useful to look at what this means for 10-dimensional type IIB supergravity. The following
ansatz solves the equations of motion,

ds2 = Hp(r)
1
2 ηµνdaµdxν + Hp(r)

1
2 dyidyi,

eφ = gsHp(r)
(3−p)

4 ,

C(p+1) =
(

Hp(r)−1 − 1
)

dx0 ∧ dx1 ∧ ...∧ dxp,

BMN = 0,

(2.33)

where xµ, µ = 0, 1, ..., p are the coordinates on the brane worldvolume, and yi, i = p + 1, ..., 9 are the
coordinates perpendicular to the Dp-brane. Also, r is defined as r2 = ∑9

p+1 y2
i . Plugging this ansatz into

the equations of motion imposes a restriction on the function Hp(r), namely that

�Hp(r) = 0, (2.34)

so now we know that Hp(r) is a harmonic function, and can hence be written as,

Hp(r) = 1 +
(

Lp

r

)(7−p)

. (2.35)

To determine Lp, we need to find the charge of the Dp-brane, which can be can be found as follows,

Q =
1

2k2
10

∫
S8−p
∗Fp+2, (2.36)

where ∗ is the ten dimensional Hodge operator. For this setup, Q is found to be Q = N · µp. Now if one
sets Q = N and evaluates the integral in 2.36 Lp is found to be,

L7−p
p = (4π)

(5−p)
2 Γ

(
7− p

2

)
gsNα′

(7−p)
2 . (2.37)

In the case of D3-branes, which will be useful later, Lp is found to be,

L4
3 = 4πgsNα′2 (2.38)

The two visualizations of D-branes will play in important role in the correspondence so it is worth
detailing them and their consequences once more. The alternative views can be seen as the different
perspectives open and closed strings have for the D-branes. For the open strings, D-branes are hyper-
surfaces on which they terminate.

The open strings in this picture are small perturbations to the D-brane, and hence we can only treat
this view as reliable if the string coupling constant is very small, i.e. gs � 1. If we then take the low
energy limit, only massless states remain and the dynamics of the open strings are that of a supersym-
metric gauge theory on the worldvolume of the D-brane. If we now consider N coincident D3-branes,
we know that the gauge group of such a system is U(N), and hence the effective coupling constant is
gsN. This then tells us that this perspective is only valid for gsN � 1.

The closed string on the other hand, sees the D-brane as a massive object, being a solition solution
of supergravity. In order for the supergravity solution to be valid, the curvature must be small and so
the charach=teristic lengthscale L should be large. If we have N coincident D-branes, from 2.37 we see
that L4

α′2
∝ gsN, and so for this perspective of the D-brane to be valid, gsN � 1.

We will see in the next section that when we look at N coincident D3-branes through these perspec-
tives we can motivate the correspondence.
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2.4 AdS/CFT correspondence

We are now ready to motivate the argument for the AdS/CFT correspondence, as done by Maldacena.
As stated, in its simplest form it relates type IIB superstring theory compactified on AdS5 × S5, and
N = 4 Super Yang-Mills theory in 3 + 1 dimensions. It is now clear that there exists a dual perspective
on D-branes, depending on if you are an open or closed string, and it is this identification that allows
one to motivate the correspondence.

To begin, we will start with the open string perspective, valid in the gsN � 1, weakly coupled
regime. Consider type IIB superstring theory in flat (9 + 1)-dimensional Minkowski spacetime, where
N coincident D3-branes are embedded. It should be noted that this setup breaks one half of the super-
charges of the background. The string theory on this background contains two kinds of perturbative
excitations; open strings and closed strings. The open strings correspond to excitations of the D-branes
and closed strings correspond to excitations of the empty space.

If one considers the system at low energies (i.e. those less than the string scale 1
ls ), only the massless

states of the spectrum remain and they form a supermultiplet. The closed string states form a ten dimen-
sionalN = 1 supermultiplet, and the open string states form a four dimensionalN = 4 supermultiplet,
which consists of a gauge field and six real scalar fields. The effect action for the massless states can be
written as,

S = Sopen + Sclosed + Sint, (2.39)

where Sint is the action for the interactions between open and closed string states. The actions are as
follows,

Sclosed =
1

2κ2

∫
d10x

√
−ge−2φ

(
R + 4∂Mφ∂Mφ)

)
+ ...

Sopen = − 1
2πgs

∫
d4x

(
1
4

FµνFµν +
1
2

ηµν∂µφi∂νφi + O(α′)

)
,

Sint = −
1

8πgs

∫
d4xφFµνFµν,

+ ..., (2.40)

where κ is given by 2κ2 = (2π)7α′4g2
s , and gMN and φ are the metric and dilaton respectivly.

If we generalise Sopen and Sint to N D3-branes, the gauge group of the gauge fields and scalar field is
U(N), and the trace needs to be taken over the kinetic terms. Partial derivatives will become covariant
derivatives and a scalar potential will be added to the action. If one now takes the low energy limit,
α′ → 0, then Sopen reduces to the bosonic part ofN = 4 Super Yang-Mills theory, provided one identifies,

2πgs = g2
YM. (2.41)

Furthemore, in this limit Sclosed reduces to that of supergravity in (9+ 1)-dimensional Minkowski space-
time, and Sint vanishes, implying that the open and closed string states decouple.

Next we consider the closed string perspective, where we are in the gsN � 1, strongly coupled
regime. In this view the N D3-branes are solutions to the supergravity equations of motion preserving
the SO(3, 1) × SO(6) isometries of R9,1, and 16 of the 32 supercharges of type IIB supergravity. This
solution is given by,

ds2 = H(r)−
1
2 ηµνdxµdxν + H(r)

1
2 δijdxidxj,

e2φ(r) = g2
s ,

C(4) = (1− H(r)−1)dx0 ∧ dx1 ∧ dx2 ∧ ...,

(2.42)
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where µ, ν = 0, 1, 2, 3 and i, j = 4, 5, ..., 9, and the radial coordinate is defined by r2 = ∑9
i=4 x2

i . The ... in
the expression for C(4) represents terms which do not contribute to what follows.

Inserting the ansatz into the type IIB equations of motion one finds that H(r) is a harmonic function
obeying �H(r) = 0, which implies that,

H(r) = 1 +
(

L
r

)4

. (2.43)

Using the same argument that lead to 2.37, we can deduce that

L4 = 4πgsNα′2. (2.44)

Clearly the value of H(r) will change consideribly depending on what region we consider, i.e. r � L
where H(r) ∼ 1, or r � L where H(r) ∼ L4

r4 . In the first case, taking that ansatz for L results in the
metric 2.42 reducing to ten dimensional flat spacetime. In the second case, known as the near-horizon
region, the metric becomes,

ds2 =
r2

L2 ηµνdxµdxν +
L2

r2 δijdxidxj

=
L2

z2

(
ηµνdxµdxν + dz2)+ L2ds2

S5 ,
(2.45)

where the new coordinate z = L2

r , as well as spherical coordinates δijdxidxj = dr2 + ds2
S5 , were intro-

duced. In the second line, we see that the geometry of the near horizon region is AdS5 × S5

Taking the low energy limit, it is found that again the closed and open string states decouple. As a
result we are left with two distinct perspectives of closed strings at low energy: supergravity modes in
ten dimensional flat spacetime, and string excitations in near-horizon region which has the geometry of
AdS5 × S5 spacetime. So in one case we have type IIB supergravity in ten dimensional spacetime, and
in the other we have fluctuations about AdS5 × S5 spacetime solution of type IIB supergravity.

Now we are ready to present the correspondence, and all that needs to be done is to combine these
perspectives of open and closed strings, which we said should be equivalent. After taking the low
energy limit we were left with the following perspectives,

Closed string perspective Open string perspective
type IIB supergravity on AdS5 × S5 N = 4 Super Yang-Mills on flat 4D spacetime

type IIB supergravity on R9,1 type IIB supergravity on R9,1

Since these two points of view are equivalent, and type IIB supergravity on R9,1 is appearing on both
sides, we are led to identify type IIB supergravity on AdS5 × S5 and N = 4 Super Yang-Mills on flat 4D
spacetime in order to maintain the equivalence. Here is where Maldacena made his conjecture, that this
all implies that type IIB supergravity on AdS5 × S5 and N = 4 Super Yang-Mills on flat 4D spacetime
are dynamically equivalent.

So now we have the AdS/CFT correspondence as Maldacena laid out, and this one is what is known
as the weak form of the correspondence. There exists however a stronger form of the corespondence ,
adeptly called the strongest form as it works for any values of N and λ, where λ = g2

YMN. This means
that we can take any gs, and so the string theory involved is a quantum string theory. This is usually too
restrictive for performing calculations, so it is useful to lessen the conditions by taking certain limits.
Lessening the restrictions a bit more, we arrrive at the strong form of the correspondence, where we
take gs → 0 while keeping L√

α′
constant. One can understand why this limit is useful, as it amounts to

considering gs � 1, so weak coupling in the string theory, and this means we can perform perturbation
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theory, which is the regime in which string theory is presently best understood. In this limit gs → 0,
the theory is at leading order and so reduces to being a classical string theory. Looking at 2.44 and 2.41,
the correspondence then tells us that on the CFT side this limit means that gYM � 1, while λ must
stay fixed but arbitrary. As a result, we must take N → ∞ in order for this condition to hold, and so
we are considering a gauge theory in the ’t Hooft limit (large N at fixed λ). Therefore it is now clear
that AdS/CFT is a realisation of ’t Hooft’s idea that in this limit a gauge theory is equivalent to a string
theory. Finally then we have the weak form of the correspondence, which we use when we want to
study strongly coupled field theories. As we saw, this is done by taking the limit λ → 0, which on the
other side of the correspondence amounts to taking α′

L2 → 0 and gs → 0. Which turned out to be the
limit of classical supergravity, and so we see the correspondence as a mapping between stringly coupled
N = 4 Super Yang-Mills and weakly curved AdS5 × S5.

2.4.1 Field-Operator Map

The AdS/CFT correspondence naturally leads to a correspondence mapping between the fields and
operators associated with the AdS and CFT sides respectively. This happens because the symmetries,
namely the PSU(2, 2 | 4) symmetry, of both sides are the same, and so the fields and operators will live
in the same representations. Performing a Kaluza-Klein reduction on the supergravity fields, these fields
and the relavent operators on the field theory side will be in the same representation if one identifies
l = ∆, where l is the rank of the symmetric traceless tensor defining the spherical harmonics,

Y I = CI
i1...il

xi...xl , (2.46)

and ∆ is the conformal dimension of the primary operators.
These identifications lead to the following relations, in d−dimensions, between the mass m, of the

supergravity field and ∆,

• scalars and massive spin two fields→ m2L2 = ∆(∆− d),

• massless spin two fields→ m2L2 = 0, ∆ = d,

• p-form fields→ m2L2 = (∆− p)(∆ + p− d),

• spin 1
2 , 3

2→|m|L = ∆− d
2 ,

• rank s symmetric traceless tensor→ m2L2 = (∆ + s− 2)(∆− s + 2− d).

This relationship can be further exemplified if one considers the boundary behaviour of the super-
gravity fields. Co We know from string theory that the coupling constant is related to the expectation
value of the dilaton field, gs = eΦ(X), and this expectation value is set by the boundary behaviour of
the dilaton, therefore we see that changing the coupling constant of the string results in a change in the
boundary value of the dilaton.

Consider a scalar field φ, dual to some primary operator, and take the toy model action

S =
−C

2

∫
dzddx

√
−g(gmn∂mφ∂nφ + m2φ2). (2.47)

It is convienent to use AdS Poincaré patch coordinates where the metric is given by,

ds2 =
L2

z2

(
dz2 + ηµνdxµdxν

)
, (2.48)

and it will also be helpful to decompose the xµ directions into their Fourier modes and consider plane
wave solutions of the form φ(z, x) = eipµxµ φp(z). Solving the Klein-Gordon equation for the modes
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φp(z) results in two solutions, whose asymptotic behaviour (z→ 0) is as follows,

φ1
p(z) ∼ z∆+ , φ2

p(z) ∼ z∆− , (2.49)

where ∆± is given by

∆± =
d
2
±
√

d2

4
+ m2L2. (2.50)

φ1
p(z) is a normalisable solution, whereas φ1

p(z) is non-normalisable, where normalisable means that
the action is finite when evaluated on the solution. The scalar field can then be expanded around the
boundary (z→ 0) as,

φ(z, x) ∼ φ(0)(x)z∆− + φ(+)z
∆+ + ... (2.51)

Dimensional analysis then shows that φ+ is the vacuum expectation value of the dual operator of di-
mension ∆+, and φ(0) is the source for this operator.

This relationship between the boundary value of the supergravity field and the field theory operator
O, implies that there is a duality between the generating functionals of both theories. It was presented
by Gubser, Klebanov, and Polyakov in [7], and Witten in [8] that the generating functional of correlators
on the field theory side is related to the partition function of string theory by,

〈e
∫

ddxφ(0)(x)O(x)〉CFT = Zstring[φ(z, x)|z=0= φ(0)(x)] (2.52)

This form of the correspondence presents us with a method to calculate the correlation functions of
the operators on the field theory side; once we know the bulk field φ that is dual to the operator O
in question, we compute the supergravity action and solve the equations of motion subject the the
boundary condition φ(z, x) ∼ z∆−φ(0)(x) as z → 0. Then, this solution is put into the supergravity
action, and we take the functional derivatives with respect to the source φ(0) to retrieve the correlation
functions.
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Chapter 3

Applied AdS/CFT methodologies

Now we have all the basics of the correspondence, and we can suitably build upon them in order to get
what is needed in the context of this thesis. We are concerned with a strongly interacting condensed
matter system undergoing a phase transition, at finite chemical potential χ and magnetic field B. These
ensembles will deform the theory, so in this chapter these deformations will be outlined, and the conse-
quences will be discussed.

3.1 Finite temperature at equilibrium

It is expected that the above quantities should break the scale invariance of the spacetime. If we take
AdS spacetime in the following coordinates,

ds2 =
L2

r2

(
−dt2 + dr2 + dxidxi

)
, (3.1)

the scale invariance can be broken while preserving rotation and translation invariance if one adds non-
trivial radial functions to the metric,

ds2 =
L2

r2

(
− f (r)dt2 + g(r)dr2 + h(r)dxidxi

)
, (3.2)

and these functions can be determined from the equations of motion of the system in consideration. If
f (r) 6= h(r), Lorentz invariance is also broken, which is also to be expected. At high energies, the scale
invariance should be recovered, and so as we appraoch the boundary where the CFT lives, we should
impose that the radial functions behave as,

f (r), g(r), h(r)→ const. as r → 0, (3.3)

thus, recovering the AdS spacetime metric. It can be shown [9], [1] that horizons correspond to thermally
mixed states in the field theory. In essence, one finds that in order for the spacetime to remain regular
at the horizon, the Euclidian time must be periodically identified. This will then have implications for
the dual field theory; the temporal direction of the field theory is also periodically identified, and it is
known that such a constraint entails that we are considering the field theory at finite temperature and
equilibrium, the temperature given by the inverse of the periodicity.

For example, consider the analytically continued Schwarzschild-AdS metric,

ds2 =
L2

r2

(
f (r)dτ2 +

dr2

f (r)
+ dxidxi

)
, (3.4)

Since f (r) vanishes at the horizon (r+), we must impose the periodicity condition on the τ coordinate in
order for grr to remain finite,

τ ∼ τ +
4π

| f ′(r+|
. (3.5)
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To see what this means for the field theory, we need to determine the background metric, which can be
found from the boundary behaviour of metric,

gµν(r) =
L2

r2 g(0)µν + · · · as r → 0. (3.6)

g(0)µν can be interpreted as being the background metric, which we can see is given by ds2 = dτ2 +

dxidxi. τ is still periodically identified, and hence we know that the field theory in question is at finite
temperature,

T =
d

4πr+
. (3.7)

In essence, we see that a planar black hole is dual to a finite temperature. So in order to add thermody-
namics to the field theory, one just has to add a black hole to the gravity side, and it is then possible to
calculate the desired thermodynamic quantities such as the free energy and entropy.

3.2 Finite chemical potential and magnetic field at equilibrium

Our condensed matter system contains an electromagnetic U(1) symmetry, so we want to figure out
what the dual of this is. First of all, we should make it clear that this symmetry can be considered as a
global U(1) symmetry. This is because in these condensed matter systems, it is possible to write down
an effective field theory that contains no gauge bosons, but does involve charged fields, and so we take
this symmetry as no longer being gauged.

It turns out that the AdS/CFT correspondence also provides us with another duality; one between
global symmetries at the boundary (field theory) and gauge symmetries in the bulk (AdS) This can
be understood by considering the following; near the boundary (r → 0) the energy scale should be
vanishing since it will completely vanish in the CFT (r = 0), but deep in the bulk spacetime (r → ∞)
there will be an associated energy scale. So in a sense, the radial coordinate r, can be thought of as
a geometric representation of the energy scale. The field theory is globally invariant under conformal
transformations, in the bulk spacetime however, these symmetries are no longer global. Instead, we see
that the radial coordinate transforms under the scale transformation, and this combined with the other
coordinate scale transformations are the isometries of the bulk spacetime metric,

xµ → λ, xµ r → r
λ

,

ds2 =
L2

r2 dr2 +
r2

L2 (ηµνdxµdxν).
(3.8)

Finally, we know that these isometries of the metric are exactly the diffeomorphisms of general relativity,
which are of course gauge transformations. It is also worth noting what may have become obvious now,
that the energy scale in the bulk gives us a clear representation of the UV and IR behaviour of the field
theory, i.e. that near the boundary we have the UV regime and deep in the bulk we have the IR regime.

Global symmetry (field theory) ⇐⇒ Gauge symmetry (gravity)
d spacetime dimensions d + 1 spacetime dimensions

So from all this we gather that this U(1) global symmetry is dual to a gauge symmetry in the bulk,
and in that case to achieve this setup one must add a Maxwell field to the bulk spacetime. For example
one could arrive at the Einstein-Maxwell action,

SEM =
∫

dd+1x
√
−g
[

1
2κ2

(
R +

d(d− 1)
L2

)
− 1

4g2 F2
]

, (3.9)
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where F = dA is the electromagnetic field strength.
While preserving rotational symmetry, the chemical potential µ = A(0)t, and magnetic field B =

F(0)xy can be introduced. Note though that the magnetic field is rotationally invariant in 2 + 1 dimen-
sions only. These are found from the boundary value of the bulk Maxwell field,

Aµ = A(0)µ + · · · . (3.10)

Consequently, when considering now the effect of the the U(1) global symmetry we must consider the
metric 3.2 together with a non-vanishing Maxwell field in the bulk,

A = At(r)dt + B(r)xdy. (3.11)

From here, one can compute quantities such as the thermodynamic potential, charge density, and mag-
netisation density. It is also possible to compute the temperature as before. In our case, since we are
working in d = 3, the rotational symmetry is preserved, if we were in higher dimensions the magnetic
field would break this symmetry.

3.3 Quasinormal modes

We have seen in the previous chapters that there exists a duality between thermal quantum field theories
in equilibrium and planar black holes, so it is a natural expectation that if one perturbs the black hole
solution it amounts to fluctuations around thermal equilibrium in the field theory. In order to explore
this further we need to first understand the dynamics of these perturbations, which we will now see is
governed by the quasinormal modes of the system.

Quasinormal modes are the eigenmodes of dissiapative systems; the perturbations are damped, and
decay in a way similar to how the ringing of a bell subsides, namely the process is characterised by an
exponential decay of the form e−iωt, where ω is a complex frequency. Perturbations around black hole
solutions naturally lead to quasinormal modes, since the fluctuations produced can fall back into the
black hole and are therefore decaying. Similar to the bell, the quasinormal modes are the ’ringing’ of
a black hole returning to equilibrium. Theoretical discoveries such as black-hole radiation [5], and its
associated radiation and temperature [6], suggests that black holes behave as thermodynamic systems in
many ways. It was shown in [10] that there exists a universal bound on the relaxation time of perturbed
thermodynamic systems,

τmin =
h̄

πT
, (3.12)

where kB has been set to one.
The relaxation time for the perturbations to cease can be determined from the quasinormal modes,

namely from the imaginary part of the quasinormal mode frequencies. These are inversely proportional
to each other τ−1 ≡ Img(ω0) ≡ ωI, so there are an infinite number of quasinormal frequencies, with
decreasing relaxation time. Consequently, the mode with the smallest imaginary part, also known as
the fundamental mode, has the longest relaxation time, and determines the characteristic timescale for
generic perturbations to decay. Considering this, one can see that 3.12 becomes a bound on the funda-
mental mode,

ωI ≤
πT
h̄

, (3.13)

and in this way we see that the black hole must have at least one mode which satisfies this bound, and
this mode will be the longest living one, determining the characteristic timescale for the dynamics. The
bond is satisfied for any physical system that exhibits hydrodynamic behaviour, since there are always
modes that are sufficiently long lived [11], and we will make use of this feature later when determining
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the boundary of the quantum critical region.

The quasinormal modes of a given field (scalar, gauge, etc.) can be found on the gravity side by solv-
ing the fluctuation equation for said field about the gravity background, subject to infalling boundary
conditions at the horizon. It should be noted that the other boundary condition, that at spatial infin-
ity, depends on the spacetime one is considering. For anti-de Sitter spacetimes, the condition at the
conformal boundary is not obvious; if scalar field fluctuations are being considered, choosing Dirichlet
boundary conditions at spatial infinity ensures that the quasinormal modes coincide with the singular-
ities of the retarded Green’s function in the dual theory.

Electromagnetic and gravitational fluctuations are often more interesting to consider as they couple
to conserved symmetry currents in the dual field theory, however the choice of boundary conditions at
spatial infinity is not so obvious. A convenient approach is to construct gauge invariant combinations
of the fluctuations, and impose the Dirichlet boundary conditions on these combinations. This ensures
that the resulting quasinormal modes correspond to the poles of the gauge theory correlation function,
this purpose being discussed in a moment.

Using the gauge/gravity duality recipe for constructing the field theory correlators, one finds a very
important and useful result: the quasinormal mode spectra of a black hole corresponds to the poles of
the retarded Green’s functions in the field theory. To see this consider a scalar perturbation, recall that
the solution on the boundary (r → ∞) can be written as,

δφ(r, ω, q) = A(ω, q)r−∆− + B(ω, q)r∆+ + · · · (3.14)

where ∆− and ∆+ are the non-normalisable and normalisable solutions respectively.
Using the duality perscription, the Minkowski space correlators can be found, and in particular the

retarded two-point function is found to be,

GR(ω, q) ∼ BA + contact terms, (3.15)

and so we see that the poles of the correlator are just given by the zeros of A(ω, q). However, from the
gravity point of view, the conditionA(ω, q) = 0 is just the Dirichlet boundary condition that defines the
quasinormal modes.

For example in [12] they compute the retarded correlators for a 2D CFT, dual to a BTZ black hole.
The retarded two-point function of the operator of conformal dimension ∆ = 2 is given by

GR ∼ ω2 − q2

4π2

[
ψ

(
1− i

ω− q
4πT

)
+ ψ

(
1− i

ω + q
4πT

)]
, (3.16)

where ψ = Γ′(z)
Γ(z) , and the constant prefactor is left out for simplicity. It can be observed that the correlator

has infinitely many poles in the complex frequency plane located at,

ωn = ±q− 4iπT(n + 1), n = 0, 1, 2, ... (3.17)

and these are precisely the quasinormal mode frequencies.
Hence, we see that all the information about the poles of the correlators is contained within in the

quasinormal modes spectrum. From this one can determine useful information about the gauge theory,
such as the particle spectrum and transport coefficients.

Another important and more relevant consequence of the duality arises as follows. The correspon-
dence tells us that that black holes are dual to thermal states in the field theory, therefore we can imagine
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if we were to perturb the black hole solution if would amount to perturbing the thermal state out of ther-
mal equilbrium. Quasinormal modes are simply the perturbations of the black hole, and we know that
we can find the characteristic timescale for the perturbations to decay from the fundamental mode. The
correspondence then says that this timescale is exactly the equilibration time for the thermal state, i.e.
the time it takes for the thermal state to return to thermal equilibrium.

characteristic decay timescale ⇐⇒ equilibration timscale
(black hole) (thermal state)

We will see later how this will be very imporant for us to be able to determine the boundary of the
quantum critical region.

3.3.1 Example: A massless scalar in AdS5

In this thesis, a Mathematica package created in [13] will be used to compute the quasinormal modes,
and here we reproduce a simple example of an application of the code to a massless scalar field.

The method of numerical computation requires that the equations be written in Eddington-Finklestein
coordinates. In these coordinates, the infalling boundary conditions become a requirement that the fluc-
tuation be regular at the horizon. The metric in these coordinates is given by ,

ds2 = − f (r)dt2 + 2drdt + r2dx2, (3.18)

where f (r) = r2(1− r−4), and so the horizon is at r = 1 and the boundary at r → ∞. Since we are
always interested in the boundary asymptotics, it will be more useful to change coordinates u = 1

r , so
that the boundary is now at u = 0. Now the metric reads,

ds2 = − f (u)dt2 − 2
u2 dudt +

1
u2 dx̄2, (3.19)

where f (u) = u−2(1− u4).
We are looking at scalar perturbations, so we take the massless scalar action below which gives the

following equation of motion,

S = −1
2

∫
d5x∂µφ∂µφ,

∂µ

(
gµν
√
−g∂νφ

)
= 0.

(3.20)

Choosing a plane wave ansatz for the scalar perturbations,

δφ(x, t, u) = δφ(u)e−i(ωt−kx), (3.21)

the following equation of motion for δφ is obtained,

(u− u5)δφ′′(u) + (4iλ− u4 − 3)δφ′(u)− (4q2u + 6iλ) = 0, (3.22)

where ω and k have been rescaled, creating the dimensionless quantities λ = ω
2πT and q = k

2πT , where T
is the temperature of the black hole. It should also be noted that the equation is linear in ω, and this is a
consequence of choosing the Eddington-Finklestein coordinates.

Next, the boundary behaviour of the field must be analysed, so that the appropriate boundary con-
ditions can be imposed. Taking the ansatz δφ(u) ∝ up, one finds that there are two solutions, δφ ∝ 1
and δφ ∝ u4. The first solution is non-normalisable, so it is discarded. Keeping the second solution, it
must be rescaled by δφ(u) = u3δφ̃(u), such that the solution approaches zero linearily at the boundary.
Finally, a further rescaling of the fluctuation equation must be done in order for the equation to tend to
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a non-trivial constant on the boundary. Doing this, the following equation is found,

(u2 − u6)δφ̃′′(u) + u(3− 7u4 + 4iuλ)δφ̃′(u)− (3 + 9u4 + 4q2u2 − 6iuλ)δφ̃(u) = 0. (3.23)

Once this fluctuation equation is obtained in this correct form, the code can easily be implemented,
(DISCUSS IN APPENDIX) and the modes can be found. Below is a plot of the modes calcuated using
the most basic function GetModes[eq,40,0], which calculates the modes using a discretization method
involving discretizing the fluctuation equation (eq) on a grid of 41 points, at machine precision.

FIGURE 3.1: Modes found using GetModes. Not all of these are modes though, some are
numerical artifacts, which need to be removed.

The modes displayed in figure 3.1 are not all actual quasinormal modes, as the modes should lie in
an approximate straight line. Some are just numerical artifacts, so in order to remove the artifacts, one
must perform the computation at different grid sizes and precisions, compare the results and look for
convergence of the modes. This is done by another function, GetAccurateModes[eq,40,0,80,40], which
performs the computation first with 41 grid points at machine precision, and then with 81 grid points
and precision 40, and it keeps the modes that appear in both computations. Below is a plot of the modes
found using this function,
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FIGURE 3.2: Modes found using GetAccurateModes. The expected dispersion of modes is
observed.

Clearly this method is far more accurate, and it will be principle one employed here. It is also possi-
ble to select particular modes and display their values, all of which will be very important to the goal of
this thesis.

With this computational method at hand we are now ready to tackle the main goals of this thesis,
which will be the topic of the next chapter. Before finishing this chapter however, one final thing should
be mentioned, namely one other use of the quasinormal modes to the goals of the thesis; the determina-
tion of the quantum critical region of the quantum phase transition.

As stated earlier, the imaginary component of the lowest quasinormal mode is inversely propor-
tional to the characteristic timescale of decay of the black hole/brane perturbations. Using this fact,
one can develop an equation that determines the boundary of the quantum critical region of the phase
diagram. Recall that the phase diagram is divided into two main regions defined by the relationship
between the ground state energy and thermal energy, as shown in figure 3.3.
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FIGURE 3.3: Typical phase diagram for a quantum phase transition. The different regimes
are separated by the quantum critical point which happens at T = 0.

Dividing these regions is the boundary of the quantum critical region, which is given by ∆ = kBT.
From our discussion about the quasinormal modes, we know that the fundamental mode is equal to
the characteristic timescale for the perturbations, and from the AdS/CFT correspondence we know that
this is directly equal to the equilibration time for the thermal field theory. Lastly, we know that in
the quantum critical region τeq ∼ 1

kBT , and so we can rewrite the boundary equation in terms of the
fundamental mode, The equation then becomes

|ωI| = ∆. (3.24)

It should be noted however that this equation is more of a rough estimation for where the boundary
is, as we are dealing with proportionalities. It should be sufficient enough to give us the approximate
location of the boundary however. In order to determine the quantum critical region all we must do is
find the equation and use it to plot the phase diagram, which in our case will be a T− B phase diagram,
where B the magnetic field is the parameter with which the phase transition is controlled by. As we will
see later, this will require us to use this equation to determine b(B) and put this into our equation for
the temperature.
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Chapter 4

The problem and investigation

The task of this thesis is to further the analysis of the following paper [14], which investigates a mag-
netically induced quantum critical point in holography. It is first necessary to describe the setup and
progress of the investigation, and then detail the extension that this thesis will provide. Therefore, we
will first describe the setup as done in the the paper, which has so far determined the thermodynamics
involved, and derived the scalar perturbations of the system. What we hope to do now is to find the
quasinormal modes associated with these perturbations and use them to determine the shape of the
quantum critical region

4.1 Introduction

The basic setup is as follows; on the field theory side is a 2 + 1 dimensional gauge theory related to
the ABJM model [15], at finite chemical potential χ and mangnetic field B, and deformed by a triple
trace operator Φ3. The dual gravity theory is based on 4-dimensional N = 2 Fayet-Iliopoulos gauged
supergravity, and the solutions considered are extremal, dyonic, asymptotically AdS4 black branes, as
well as a dyonic thermal gas solution.

The triple trace operator Φ3, is dual to a a scalar field φ(r) in the bulk, where r is the holographic
coordinate. r can be determined from an integration constant b, which is the vacuum expectation value
(VeV) of Φ. The three main parameters of the solutions will therefore be b, χ, and B, and so we will try
to define all equations in terms of these parameters.

4.2 Gravity setup

The gravity theory we will consider is the Einstein-Maxwell-scalar theory, consisting of two gauge fields
and one real scalar field,

S =
1
κ2

∫ √
−gd4x

(
R
2
− 1

2
∂µφ∂µφ− e

√
6φξ3F0

µνF0µν − 3
ξ

e−
√

2
3 φF1

µνF1µν −Vg(φ)

)
+ SGH, (4.1)

where κ2 = 8πGN, SGH is the Gibbons-Hawking term, g is the coupling constant, and ξ is determined

by two constants ξ =
√

3ξ0
ξ1

.
The scalar potential is,

Vg(φ) = −
3

l2
AdS

cosh

(√
2
3

φ(r)

)
, (4.2)

where lAdS is the AdS length scale given by l2
AdS = 3

√
3

2g2ξ0ξ3
1
.

From now on, we can set ξ0 = 1√
2
,ξ1 = 3√

2
, and g = 1.
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The black brane solution to 4.1 is,

ds2 = − f (r)√
H0(r)H1(r)3

dt2 +
√

H0(r)H1(r)3

(
dr2

f (r)
+ r2(dx2 + dy2

)
, (4.3)

where x and y are two spatial directions. The metric functions are defined as,

H0(r) = 1− 3b
r

, H1(r) = 1 +
b
r

, f (r) =
c1

r
+

c2

r2 + r2H0(r)H1(r)3, (4.4)

and their coefficents are given by,

c1 =
Q2 − B2

2b
, c2 =

Q2 + 3B2

2
. (4.5)

Analysing the asymptotics of this metric we see that the conformal boundary is located at r → ∞. The
scalar field profile is found by solving Einstein’s equations,

e
√

8
3 φ =

r + b
r− 3b

, (4.6)

and the boundary behaviour of the scalar field is found to be,

φ =
φ−
r

+
φ+

r2 + O
(

1
r3

)
as r → ∞. (4.7)

The dual field theory operator is the triple trace operator λΦ3, and from the correspondence we know
that φ− is the expectation value of this operator, and φ+ is related to the source of the operator. As
shown in [16], the deformation by the triple trace operator corresponds to mixed boundary conditions,

φ+ = λφ2
−. (4.8)

Finally, the expression used for the chemical potential is,

χ = −
∫ ∞

rh

F̃0
trdr = − Q

2(rh − 3b)
. (4.9)

As stated, one can also consider thermal gas type solutions to 4.1, which are found from the black
brane solution by sending the horizon location to the singularity, which is rs = 3b for b > 0, and rs = −b
for b < 0. Expanding around a black brane solution with rh = 3b + ε (b > 0) and rh = −b + ε (b > 0),
and enforcing the condition f (rh) = 0, the following quantities for the thermal gas solution can be
obtained as ε→ 0,

bTG = 2−
7
4

√
|B|, QTG = 0, for b > 0

bTG ∝
B

8χ
, QTG = 0, for b < 0

(4.10)

We have one issure with the b < 0 case that should be noted; when deriving the dependence of bTG on
B we had to make the identification between B and Q that is provided by the electromagnetic duality
transformation. We do not yet know however, what the exact proportionality between the two is, so we
cannot say for sure the precise relationship between bTG and B. This is something we will resolve in the
near future however.
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FIGURE 4.1: Black brane −gtt be-
haviour, with b = 1, Q = 5, B = 1.
Here it can be seen that there is a
divergence in the temporal com-

ponent of the metric at r = 3

FIGURE 4.2: Thermal gas −gtt be-
haviour, with b = 1. It can be no-
ticed how the horizon location is
at r = 3, corresponding with the

singularity location.

Finally the thermal gas solution itself is found to be,

ds2
TG = −e

√
6φ
(
r2 + 6br + 21b2) dt2 + e

√
6φdr2 (r2 + 6br + 21b2)−1

+ e
√

6φ(r− 3b)2(dx2 + dy2),

e
√

6φ =

(
r + b
r− 3b

) 3
2 (4.11)

Figures 4.1 and 4.2 demonstrate the −gtt behaviour of the two solutions. It can be seen that the thermal
gas solution is ’horizonless’ as its horizon corresponds with the location of the singularity, and the black
brane solution can be seen to diverge at this point, in these plots given by rh = 3

4.3 T → 0 thermodynamics

As shown in the paper, the free energy of the black brane can be found by noting that the free energy of
any black brane is given by

FBB = MBB − TSBB + QBBχ, (4.12)

where MBB, T, SBB and QBB are the mass, temperature, entropy and charged of the black respectively.
Using the horizon equation f (rh) = 0 and the extremality equation f ′(rh) = 0, the free energy can be
found in terms of our physical parameters (T, B, χ),

FBB =
27B2 + 32χ4

24
√

6|χ|
(4.13)

For the thermal gas, at vanishing temperature the entropy is also vanishing, and the free energy is
found to be,

FTG = MTG = 2−
1
4 |B| 32 . (4.14)

It is shown that these results respect the first law of thermodynamics.
In order to find the phase transition, we must look at where the free energies of the two solutions are

the same. The difference in free energy is given by,

∆F = FBB − FTG =
27B2 + 32χ4

24
√

6|χ|
− 2−

1
4 |B| 32 , (4.15)
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and it vanishes at,

|Bc| =
4
√

2χ2

3
. (4.16)

The non-analyticity arises in the second derivatives and hence the phase transition is of second
order. With this, we have proof of the existence of a second order quantum phase transition, as all of
this analysis was done with T = 0.

The next step of the thesis is now to analyse the phase transition using the quasinormal modes,
however it should be noted that this thermodynamic analyses was carried out for b > 0, so for b < 0 the
QCP could be located at a different Bc

4.4 Quasinormal modes

4.4.1 Fluctuations

Based on the analysis in chapter three, we know that the black brane is going to be dual to a field theory
at finite temperature, and the quasinormal modes of this black brane can be used to uncover interesting
information about the dual field theory. In order to calculate the quasinormal modes of the black brane,
we need to derive the fluctuation equations for the type of perturbations being considered. We will first
consider the simplest case of a massless scalar perturbation to the background 4.3. The scalar fluctuation
equation can be found from the massless scalar action as in 3.20,

∂µ

(
gµν
√
−g∂νδφ

)
= 0. (4.17)

As stated earlier, in order to use the mathematica code from [13], we must change coordinates to Ed-
dington Finklestein coordinates and redefine the radial coordinate such that the horizon is located at
rnew = 1 and the boundary is located at rnew = 0. So we begin by changing to Eddington Finklestein
coordinates, in which the background 4.3 becomes,

ds2 = − f (r)√
H0(r)H1(r)3

dt2 − 2drdt + r2(dx2 + dy2). (4.18)

Next we define the coordinate,

r =
1

uuh
, (4.19)

where uh is the location of the horizon in these coordinates. Expressed this way, we see that the horizon
and boundary conditions are now defined by u = 1 and u = 0 respectively. In these coordinates, the
metric now reads,

ds2 = − f (u)√
H0(u)H1(u)3

dt2 +
2

u2uh
dudt +

1
(uuh)2 (dx2 + dy2), (4.20)

with the metric functions now becoming,

H0(u) = 1− 3buuh, H1(u) = 1 + buuh, f (u) = c1uuh + c2(uuh)
2 +

1
(uuh)2 H0(u)H1(u)3, (4.21)

We choose these coordinates for two reasons, the first is that the Eddington-Finklestein coordinates
ensure that the horizon boundary conditions are satisfies, they only demand that the solutions be regular
at the horizon. The second reason is simply a numerical one, we change the radial coordinate as above
so that our boundary now lies at a finite interval, which makes the numerics simpler. With all of this
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taken into account, the equation of motion 4.17 is now,[
2 + 8b3u3

h − c1u3
h + 26b4u4

h − 2c2u4
h + 12b5u5

h − 3b2u2
h(4 + c1u3

h

+2buh(−2 + c1u3
h + 2c2u4

h))(q
2u
√

1− 3buuh(2 + 8b3u3
h − c1uh3

+26b4u4
h − 2c2u4

h + 12b5u5
h − 3b2u2

h(4 + c1u3
h) + 2buh(−2 + c1u3

h

+2c2u4
h))− 4i(1− 3buh)

3/2(1 + buh)
5/2
√

1 + buuh(−1 + 2buuh)λ)·

(
1

4u3u3
h(1 + buh)5(−1 + 3buh)3

√
1− 3buuh

)

]
δφ(u)

+

[
( − 3buuh(1 + buuh)

3 +
3bu4u4

h(c1 + c2uuh)

−1 + 3buuh
+

3buuh((1− 3buuh)(1 + buuh)
3 + u3u3

h(c1 + c2uuh) )

1 + buuh

+ ( 4 + 16b3u3u3
h − 2c1u3u3

h + 52b4u4u4
h − 4c2u4u4

h + 24b5u5u5
h − 6b2u2u2

h
(
4 + c1u3u3

h
)
+

+4buuh

(
−2 + c1u3u3

h + 2c2u4u4
h

)
) ·

(
1

(1 + buuh)(−1 + 3buuh)
)

+ ( 2iu
√

1− 3buuh(1 + buuh)
3/2(2 + 8b3u3

h − c1u3
h + 26b4u4

h − 2c2u4
h

+12b5u5
h − 3b2u2

h(4 + c1u3
h) + 2buh(−2 + c1u3

h + 2c2u4
h) ) λ )

1
(1− 3buh)3/2(1 + buh)5/22u3u3

h

]
δφ′(u)

+

(
−8b3u + c1u +

1
u2u3

h
− 6b2

uh
− 3b4u2uh + c2u2uh

)
δφ′′(u)

= 0
(4.22)

where we have again taken the plane wave solution for the fluctuation, δφ = e−i(kx−ωt)δφ(u), and there
has been a rescaling ω = 2πTλ and k = 2πTq. T is the temperature of the black brane, and it is found
from T = −uh

h′(1)
4π , where h(r) is the blackening factor of the black brane.

With the bare fluctuation equation at hand, the next step is to determine the boundary behaviour of
the scalar field, and rescale it appropriately such that it approaches zero linearly towards the boundary.
This can be achieved by taking the ansatz δφ(u) ∝ up, inserting it into equation 4.22, and solving for p
as u→ 0. There are two solutions, p→ 0 and p→ 3, which leads to two solutions for the scalar field at
the boundary,

δφ1(u) = 1, δφ2(u) = u3. (4.23)

δφ1 is clearly the non-normalizable solution that was discussed earlier, so we discard this one using the
Dirichler boundary conditions, and keep δφ2. In order for the scalar to approach zero linearly at the
boundary, it must be rescaled as,

δφ̃ = u2δφ, (4.24)
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and finally the equation itself should be rescaled by a factor of u2 so that it becomes a constant on the
boundary. With all of this taken into account, the final fluctuation equation is,[

2u2 (−8b3u + c1u +
1

u2u3
h
− 6b2

uh
− 3b4u2uh + c2u2uh )

+u ( 2 + 8b3u3
h − c1u3

h + 26b4u4
h − 2c2u4

h + 12b5u5
h − 3b2u2

h
(
4 + c1u3

h
)
+

2buh

(
−2 + c1u3

h + 2c2u4
h

) (
q2u
√

1− 3buuh

(
2 + 8b3u3

h − c1u3
h + 26b4u4

h −

2c2u4
h + 12b5u5

h − 3b2u2
h
(
4 + c1u3

h
)
+ 2buh

(
−2 + c1u3

h + 2c2u4
h

)
−

4i(1− 3buh)
3/2(1 + buh)

5/2
√

1 + buuh(−1 + 2buuh)λ ) ·
1

4u3
h(1 + buh)5(−1 + 3buh)3

√
1− 3buuh

+
1
u3 ( − 3buuh(1 + buuh)

3 +
3bu4u4

h(c1 + c2uuh)

−1 + 3buuh
+

3buuh
(
(1− 3buuh)(1 + buuh)

3 + u3u3
h(c1 + c2uuh)

)
1 + buuh

+ ( 4 + 16b3u3u3
h − 2c1u3u3

h + 52b4u4u4
h − 4c2u4u4

h + 24b5u5u5
h − 6b2u2uhu2

h
(
4 + c1u3u3

h
)

+4buuh

(
−2 + c1u3u3

h + 2c2u4u4
h

)
) · 1

(1 + buuh)(−1 + 3buuh)

+
2iu
√

1− 3buuh(1 + buuh)
3/2

(1− 3buh)3/2(1 + buh)5/2 ·(
2 + 8b3u3

h − c1u3
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(4.25)

To run the code that calculates the quasinormal modes, we must now specify the parameter values.
As stated earlier, we want the final equations to depend on the physical parameters (B, b, χ), so we want
to express the final equations as a function of these parameters, which can then be specified. To do all
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of this, we make use of the following equations,

χ = − Q
2(u−1

h − 3b)
, (4.26)

f (1) = 0 (horizon condition) (4.27)

Using equation 4.26, it is possible to rewrite the fluctuation equation as a function of B, b, χ and uh. Next,
uh needs to be determined by solving equation 4.27,

√
1− 3buh(1 + buh)

3/2

u2
h

+

(
−B2+4

(
−3b+ 1

uh

)2
)

uh

2b + 1
2

(
3B2 + 4

(
−3b + 1

uh

)2
)

u2
h

√
1− 3buh(1 + buh)3/2

= 0, (4.28)

but this equation has three roots, and the correct one must be selected, correct meaning it must be
positive and real. Furthermore, if there are multiple solutions meeting these criteria then the minimum
of these is the valid solution, as this corresponds to the maximum rh in the r coordinate. Finally, there
is one more condition that must be imposed, as the value of uh depends on the sign of b. In order to
avoid singularities in the metric, we require that the functions H0 and H1 be non-zero, and from 4.21
this implies that,

uh <
1
3b

if b > 0,

uh < −1
b

if b < 0.
(4.29)

This is implemented in the code, and the correct horizon location is obtained and then used in the fluc-
tuation equation, which is now a function of B, b and χ. Now we are ready to calculate the quasinormal
modes; as a first demonstration, the values b = .1, B = 3, k → 0 were taken, and the following modes
were found using the GetModes function described in section 3.3,

FIGURE 4.3: Massless scalar quasinormal mode spectrum with b = .1 and B = 3 using
GetModes.

As discussed before, this function does not produce the most accurate results for the modes, some
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of them being numerical artifacts, so we next find a more accurate solution using the function GetAccu-
rateModes, which results in the spectrum shown in figure 4.4.

FIGURE 4.4: Massless scalar quasinormal mode spectrum with b = .1 and B = 3, using
GetAccurateModes. This clearly gives a more accurate solution for the modes, and their

symmetric nature can be observed.

Finally, just to check that everything is correct, we can check that the eigenfunctions are in fact
smooth and obey the conditions we imposed. Figure 4.5 shows the behaviour of the eigenfunctions,
which we can see are smooth and go to 1 on the horizon and 0 on the boundary, as expected from the
rescalings carried out.

FIGURE 4.5: Eigenfunctions associated with the above quasinormal modes. They are well
behaved and have the correct boundary behaviour. Only the positive imaginary part of the

modes are shown for convenience.
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4.5 Quantum critical region

The next goal of the thesis is to use these quasinormal modes to determine the quantum critical region
associated with the quantum phase transition. This essentially requires us to find the temperature as a
function of the magnetic field, which we can do with the following equations,

χ = − Q
2(rh − 3b)

, (4.30)

f (rh) = 0 (horizon condition), (4.31)

T =
f ′(rh)

4π
(Hawking temperature), (4.32)

ωI = ∆b, where ∆b = bTG − bBB (4.33)

where bBB is b for the black brane, which is unknown, and bTG is b for the thermal gas as given in
equation 4.10. With these three equations at hand we can begin to get everything as a function of the
relevant parameters. First we will try to get a simple analytic expression of the temperature in terms
of rh, B, χ and b, where rh and b will be later eliminated by other equations. It is useful to make the
following rescalings to simplify the equations,

r̄h =
rh

b
, Q̄ =

Q
b2 B̄ =

B
b2 , T̄ =

T
b

, χ̄ =
χ

b
. (4.34)

Using equation 4.31 in our rescaled coordinates, we can find the following equation,

Q̄2(r̄h + 1)− B̄2(r̄h − 3) + 2(r̄h − 3)(1 + r̄h)
3 = 0. (4.35)

Next, with equation 4.32 an expression for the temperature can be found,

T̄ =
(r̄h − 3)

(
B̄2(r̄h − 5) + 4(r̄h − 2)(1 + r̄h)

3)− (r̄2
h − 1)Q̄2

8π(1 + r̄h)
5
2 (r̄h − 3)

3
2

, (4.36)

and rewriting the (r̄2
h − 1) term at the end, we can use the previous equation we found and substitute,

Q̄2(r̄h + 1) = −B̄2(r̄h − 3)− 2(r̄h − 3)(1 + r̄h)
3 (4.37)

into the temperature to get,

T̄ =
(r̄h − 3)

(
B̄2(r̄h − 5) + 4(r̄h − 2)(1 + r̄h)

3)+ (B̄2(3− r̄h) + 2(r̄h − 3)(1 + r̄h)
3) (r̄h − 1)

8π(1 + r̄h)
5
2 (r̄h − 3)

3
2

. (4.38)

This can be further simplified to give us the following expression for the temperature,

T̄ =
−2B̄2 + (1 + r̄h)

3(3r̄h − 5)

4π(1 + r̄h)
5
2 (r̄h − 3)

1
2

, (4.39)

and we will just reintroduce b later when we have found all the other relevant formulations of the
parameters.
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4.5.1 Horizons

We now must determine the horizon distance rh in terms of B, b and χ. Taking equation 4.37, reintro-
ducing b, and subbing in equation 4.30 we find,

B2 − 2b(b + rh)
3 + 4(3b− rh)(b + rh)χ

2 = 0. (4.40)

Solving this equation for rh, we find there are three roots, the largest of which being the desired solution.
There are two classes of solutions; those where b > 0 and those with b < 0, and we need to analyse the
root behaviour in both cases before we make use of them.

b < 0 case

We first consider b < 0, figure 4.6 shows a plot of the roots over a range of b and B values.

FIGURE 4.6: Here we see the three horizon solutions for negative values of b. The first root
is the red surface, the second the green surface, and the third the blue surface. It can be seen
that the first root is always the largest, except in a certain region as shown in the second
figure, where in fact there is no valid root as the next largest root is negative in this region.

We can clearly see that the first solution is always the largest one, and this continues for larger ranges
of values, however there is always a range of values of B and b for which there is no positive solution,
and so there is no horizon. This region grows as we increase the range of values, and so imposes a
restriction on what values of b and B we consider. In this particular range of values, we see that for
approximately 5.5 < B < 15 and −12 < b < −1, there is no horizon, and so we must take this into
account when performing later calculations.
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With this in mind we consider the first root, given by

rh = −3b2 + 2χ2

3b
+

+
−96b2χ2 − 16χ4

3 22/3b 3

√
−108b2B2 + 1152b2χ4 + 128χ6 +

√
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−
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√
4 (−96b2χ2 − 16χ4)

3 + (−108b2B2 + 1152b2χ4 + 128χ6)
2

6 3
√

2b
.

(4.41)

In order for this root to remain real, the terms under the square root need to amount to a positive
number. Looking at the square root inside this square root, we can find out the maximum value that B
can take by finding the roots of

4
(
−96b2χ2 − 16χ4

)3
+
(
−108b2B2 + 1152b2χ4 + 128χ6

)2
= 0, (4.42)

which are found to be
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(4.43)

of which we take the last root, as it is the only one to give a positive real solution. So we now have a
formula to determine the maximum value of B we can have for a given value of b and χ, which is useful
as it will help us avoid the horizonless region from before when we are performing later calculations.

Bmax =
4
3

√
2
3

√√√√
9χ4 +

χ6

b2 +

√
χ6 (6b2 + χ2)3

b2 (4.44)

Figure 4.7 below shows the behaviour of the B limit as b changes, this behaviour will be an important
consideration later when computing the quasinormal modes.
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FIGURE 4.7: The maximum value B can be for b < 0

As a quick demonstration, if we set b = −5 and χ = 1, we find that Bmax = 9.93375, and if we look
again at figure 4.6 we see that this is exactly the boundary of the horizonless region.

With this analysis at hand we are prepared to perform any calculations involving b < 0, we can now
plug this first solution for rh into our expression for T to get,
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(4.45)
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b > 0 case

Similarly, for b > 0 we we find three roots, except this time the second root is always the largest, as
shown in figure 4.8. In this figure the colour scheme is the same as in the b < 0 case, and the additional
sheer black surface that represents rh = 0.

FIGURE 4.8: Here we see the three horizon solutions for positive values of b. The first root
is the red surface, the second the green surface, and the third the blue surface. It can be seen
that the second root is always the largest, however there is a very large range of values for

which it is negative. The sheer black surface shows where rh = 0.

Clearly there is quite a large range of values for which the solution is negative, so similar to earlier
these combinations must be avoided. As done for the b < 0 case, we can derive a limit for the magnetic
field, by imposing the realness and positivity of the horizon. We find that in this case these conditions
impose a limit on how small B can be, namely

Bmin =

√
2b
√

b2 − 6χ2
(
6b2 + χ2)3/2√

216b6 + 108b4χ2 + 18b2χ4 + χ6
. (4.46)

To demonstrate, take χ = 1 and b = 3 and we find that Bmin = 7.34847. Inspecting figure 4.8 above we
see that this indeed defines the point at which we reach the boundary of the positive solution, where
any lower value of B gives a negative solution. With these considerations in place we can now use the
second solution to compute T, the equation for this horizon is given by,

rh = −3b2 + 2χ2
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(4.47)
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and the temperature using this root is given by
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(4.48)

4.5.2 Temperature profile

It will also be useful to note the behaviour of the temperature over the same range of b and B values for
the fixed χ = 1 slice. For b < 0, the temperature profile is as shown in figure 4.9. From this we can see a
clear region where the temperature appears to be tending towards zero, and this region becomes larger
as B and b are increased.
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FIGURE 4.9: Temperature behaviour for b < 0. It can be seen how T → 0 approximately
along the same line that we determined gave the maximum value for B. On the left we can
see how this line extends as B increases and b becomes more negative. The shape of the
region is similar to that of the allowed horizon values, which makes sense as these are used

in computing the temperature.

If we compare this to the limit found for the maximum value, we see that the curves seem to coin-
cide. We see that the B limit seems to define the T ∼ 0 line (numerically extracted), figure 4.10 below
further support this. Seeing as this limit ultimately comes from the allowed horizon values, and that the
temperature depends on this, the shape of the region makes sense.

FIGURE 4.10: On the left we have the limit found for the maximum value of B, while on
the right we have the T = 0 line which was extracted numerically.

For b > 0 the temperature behaves rather differently as shown in figure 4.11. In this case the tem-
perature is tending towards zero in a small range of b when compared with the range of B, as both
parameter ranges are increased the T ∼ 0 line continues to extend increasing in both B and b.
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FIGURE 4.11: Temperature profile for b > 0. In this case the line where T → 0 grows as B
increases and b decreases.

This behaviour is quite interesting as the trajectory of the region changes early on in the parameter
values, but then retains a steady trajectory afterwards.

In this case the limit found on B does not correspond to the T ∼ 0 line, but we could extract a
numeric expression.. Again the T ∼ 0 line is approximately the boundary of the the region, which we
plot below in figure 4.12. This was found by computing the temperature over a range of B, b values,
and locating the combinations that resulted in a temperature of approximately zero (T < 10−3). This
approximated the region quite nicely, as one would hope.

FIGURE 4.12: The approximately T = 0 line for b > 0.

4.5.3 Quasinormal modes

The findings of the previous section mean that the temperature is now a function of b, χ and B, and all
that is left to do is to use equation 4.33 to eliminate b. When calculating the modes, we can use equations
4.30 and 4.31 to get the fluctuation equation in terms of just B, b and χ, and χ can be set to one for our
purposes. Therefore, since this is all we need to compute the modes, the modes are a function of B and b.
Similarly, the gap equation, as given in 4.33 is a function of B and b, so from this equation we should be
able to find b(B) and substitute this into our equations so that the only parameter is the magnetic field.
The Mathematica package used to calculate the modes does not return an explicit formula for ωI(b, B),
we can numerically find the root of equation 4.33 and numerically solve for b.

We want to find ωI(b, B), so we need to compute the modes over a range of b and B values, this
function is a surface, and equation 4.33 is just the intersection of this surface with the one created by the
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gap equation. We can then find a numerical representation of the equation of this intersection which
will determine b(B). We will start with the b < 0 case and then move on to the b > 0 case.

b < 0 case

To begin, we first need to compute all the quasinormal modes over a suitable range of parameter values.
To do this, we modify the code to loop over all values of b and B, subject to the condition 4.29. The
smallest horizon solution per loop that satisfies this condition is then chosen as the horizon value, and
the code returns the lowest quasinormal mode for that horizon. From here we make a table of all the
modes and their corresponding b and B values, and use this table to plot the resulting surface. Due
to the fact that there is a limit on the value B can take, we had to be careful when choosing parameter
ranges, as computing the modes even near the ’bad’ values could result in numerical errors affecting
the results. To overcome this, we first found all the parameter combinations that resulted in a positive
real temperature, which also satisfied the horizon conditions. This ensured that only good combinations
were evaluated, and also massively reduced the computation time.

The code was ran over the ranges −15 < b < −1, and 1 < B < 15, and figure 4.13 shows the result.

FIGURE 4.13: ωI(b, B) for b < 0

Interesting behaviour of the fundamental mode can be observed; as B is increased, it is relatively
stable until at some point it begins to steeply increase towards zero. Recalling that the fundamental
mode in inversely proportional to the characteristic timescale for the perturbations, we see that there
is a sudden change in the timescale occurring. We know that in a quantum phase transition, the two
phases are distinguished by different equilibration times, and so this plot seems to be indication this
change and hence at the phase transition taking place.

Recalling the behaviour of the B limit 4.7, 4.10 and the T ∼ 0 line 4.11, we can see that the stability
change seems to coincide exactly with these curves. The modes were computed with the temperature
(ω = 2πλT), so it would be expected that they should approach zero as the temperature does.

Looking at the b = −6 slice in figure 4.14, we can identify two important regions; at around B = 8.7
the modes become very negative, while at approximately B = 9.5 the modes become very close to zero.
Since the modes are inversely proportional to the equilibration time, we see that these regions have
very different equilibration times. Namely the first has a very short equilibration time, and is seem-
ingly stable, whereas the second has a very long equilibration time which suggests that at this value of
B the system is unstable. Considering our discussion in the previous paragraph, this seems to imply
that along at least this section of the T = 0 line, the system is quite unstable, but as T is increased the
stability increases. We see though that for smaller values of b the stability increases faster than for larger
values, which could be a result of the smaller vacuum expectation value introducing less instability than
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a larger one would.

FIGURE 4.14: b = −6 slice of the fundamental mode behaviour. Here we can see the two
regions of interest, one having a very long equilibration time and the other a very short

equilbration time.

To estimate where the transition is taking place we will try to figure out where the boundary of
the regions is. We can do this with equation 4.33, using the appropriate expression for bTG. We run
into difficulties here however as we do not know the exact proportionality of the relationship. To see
the approximate region of the intersection, provided the proportionality factor is not too large, we plot
equation 4.33 as it is, shown in figure 4.15. There is an intersection, which is good news for the phase
transition, however in this situation we do not know for sure where exactly the QCP is, as the thermo-
dynamics analysis previously undertaken was only done for b > 0. We expect however that it should be
should intersect this line somewhere, so in this case it would probably be for a larger value of B than for
the b < 0 case. This of course all depends on where exactly the intersection is taking palce, but it woluld
be expected that it would meet the T = 0 line somewhere, which we think is defined by the edge of the
’fin’ part of the modes. This effect of the negativity/positivity of the VeV on the stability of the system
would be an interesting result, but for the moment we cannot say for certainty what happens. So until
we work out these details of the duality transformation and the thermodynamics, we cannot do or say
much more.
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FIGURE 4.15: Boundary of the quantum critical region in the b, B plane for χ = 1 slice.

b > 0 case

Now we carry out the same analysis for b > 0, the only difference in this case is that the horizon must
obey the second lower-bound as given in 4.29, and we have bTG = 2−

7
2
√
|B|. For the fundamental mode

we get the following behaviour shown in figure 4.17. For this case the range we executed the code over
was .01 < b < 15 and .01 < B < 15.

FIGURE 4.16: ωI(b, B) for b > 0

This case shares similarities with the previous, as we have a similar change in the mode behaviour,
where they are quite close to zero for many of the values, however as b decreases we see that the modes
become more and more negative, and as we increase the range of the parameters we find that for larger
values of B the modes do indeed become increasingly negative. This all in turn means that again we
have clear changes in the equilibration time taking place, the system being quite stable in on region to
being unstable in another. So this suggests again that we have a phase transition taking place.
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Taking a slice at b = .2, we can see how the modes get quite close to zero for small B values, showing
the instability of this region, while for large values we see that the system is quite stable. The image on
the left shows how the equilibration time is change along this slice.

FIGURE 4.17: On the left is a slice of the fundamental mode behaviour for b = .2, and on
the right is the equilibration time over this region. We see near T = 0, for small B values,
the system has a very long equilibration time and so seems to be unstable. As we increase

B the stability increases, this change suggests the presence of the QCP.

As with the previous case, we can see that the T ∼ 0 line is actually defined by the boundary of the
modes as they approach zero. Comparing the behaviour with that of the temperature in figure 4.11, this
relationship can clearly be observed, the shape of the mode boundary replicating that as shown in figure
4.12. Figure shows both the temperature and mode plots together, where the relationship can clearly be
seen. Again, this relationship is the be expected as the modes are proportional to the temperature.

To get a better idea of what is going on, we can try to determine where the quantum critical region
is, using equation 4.33. Figure 4.18 shows this this intersection, and hence where the quantum critical
region should approximately lie. We see that the intersection is only in a very small range of b values,
as mentioned before, equation 4.33 is not necessarily an exact equation, there is possibly a constant
of proportionality there that could shift the region one way or the other, so this location may not be
entirely accurate. A good sign though is that the QCR boundary does seem to end on the T = 0 line,
and approximately at Bc.

FIGURE 4.18: ωI(b, B) for b > 0. On the right, a close up of the intersection is shown,
indicating the location of the quantum critical region.
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Now, all that is left to do is to see if we can extract the dependence of b on B from this intersection
and use this equation in our temperature equation so we can see how the temperature changes with the
magnetic field.

Multiple attempts were made to numerically extract the b, B curve, most of which were unsuccessful.
The initial goal was to interpolate the table defining the intersection, numerically find the roots of this
and solve for b(B). Most issues with doing it this way were arising from the fact that the curve is
over such a short region for very small parameter values, such that interpolating the function was not
possible. Increasing the step size allowed us to attain an interpolating function of the intersection,
however the resulting b, B curve was not accurate when compared to what we could see, so this method
was not acceptable. Instead, we chose to take the intersection table, and extract all the instances where
the temperature was approximately zero (T < 10−3) and their corresponding B and b values. Plotting
these values, as shown in figure 4.19 shows a relationship more like what we can see from figure 4.18.

FIGURE 4.19: Relationship between b and B along the quantum critical region.

The downside of this intersection, is that it does not intersect a large section of the b− B−ωI phase
space. It ranges over a very small subset of B values and so we can only make use of the b(B) equation
over this range. As stated earlier, it could be that this intersection is actually not exactly in this position,
due to the proportionality factor in the τeq equation. So this intersection could possibly be valid over
a larger range of B values. What is strange however, is that the T ∼ 0 line seems not the extend past
the critical point, and neither therefore do the modes, and so our quantum critical region boundary also
cannot attain any values beyond this boundary. This seems strange, and requires somemore thought,
and is something which we will try to figure out in the near future.

Nonetheless, we will make use of this equation and see what it gives us. Plugging the numeric b(B)
expression into the temperature equation 4.48 and plotting, we find the phase diagram shown in figure
4.20.



46 Chapter 4. The problem and investigation

FIGURE 4.20: Section of the T − B phase diagram for b > 0

This phase diagram seems to be what we expect; we know that the quantum critical point is located
at Bc ≈ 1.9, and that is what we are seeing here, the temperature looks like it is going to be zero at
around that point. Now the obvious thing we are missing is the other side of the critical point, and this
is not visible to us due to the way we determined the b(B) equation, namely we used the intersection,
which only ranges over a very small section of B, and so the allowed range for this equation is quite
restricted. Another equation might give us the full b(B) range, but as mentioned earlier, it seems that
the boundary of the region is not extending past this critical point, but one would expect that it should
extend past this point. Consequently, more analysis needs to happen to fully understand the reasons
why this is happening.
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Chapter 5

Discussion and outlook

5.1 Discussion of results

Here we will recap on what did and what we found.
Our goal was to use the quasinormal modes to investigate the quantum critical point and the sur-

rounding region. Computing the modes from the fluctuation equation allowed us to find the quasinor-
mal modes as a function of B, b and χ. We were interested in the behaviour of the fundamental mode,
as this was the one from which we could determine the equilibration time for the dual field theory. To
understand the changes taking place in the field theory, we determined the behaviour of this fundamen-
tal mode over a range of the parameter values, and for two cases: b < 0 and b > 0. Figures 4.17 and
4.13 display this behaviour. In both cases it is clear that a distinct change is occurring in the behaviour,
and hence the equilibration time of the field theory. From our discussion in chapter one about quantum
phase transitions, we know that this is suggestive of the presence of the quantum phase transition tak-
ing place. The behaviour of fundamental mode showed clear regions where it was getting close to zero,
and so corresponded to increasing instability in the field theory, and other regions where it became quite
negative, revealing where the system was stable. Interestingly both cases had quite different shapes.

Performing an analysis of the temperature behaviour over the same range, revealed interesting
trends; first we were able to see where approximately the temperature was vanishing, and we saw
that this corresponded exactly to where the modes were tending to zero and hence where the system
was becoming increasingly unstable. This is expected however as the temperature is used to compute
the fundamental mode. The second thing that was interesting to note was that in the b < 0 case, we were
able to analytically determine an upper limit on B, which corresponded to this region where the temper-
ature was vanishing, and so we have an analytic expression for the boundary in the B, b, ωI plane. In the
b > 0 case, we were not able to find an analytic expression for the T = 0 line, but we could numerically
extract it and confirm that it corresponded with the boundary of the fundamental mode.

The final task we tackled was to try to use all this information to determine the boundary of the
quantum critical region. Using the boundary equation we found in chapter three (equation 4.33), and
our analytic expression for the temperature in both b cases, this should be possible. In the b < 0 senario,
we had the limitation that we didn’t have the exact equation relating bTG and B, namely we were missing
a proportionality term and so the exact intersection equation is not known. However, just to get a
rough idea of what was happening, we took the proportionality to be one to see where approximately
the boundary might be. Figure 4.15 showed this. We see that an intersection takes place in this case,
and as long as the proportionality difference is not very large the actual intersection should occur in a
reasonable place. This case definitely needs further analysis however, as in the current trajectory of the
boundary, it does no seem to reach the critical B value, and it is probably a result of the proportionality
problem.

The b > 0 case was a bit more promising and utilisable, the intersection being as shown in figure
4.18. The only problem here was that the intersection occurred over a very small parameter range in b,
affecting the numerical methods we were using to extract information, and also restricting the equation
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we found relating B and b. Here we could see that the boundary terminated where we approximately
knew was the T = 0 line. This intersection also ended at what seemed like the QCP. Using our ex-
pression for the temperature, we were then able to see the temperature behaviour as a function of the
magnetic field, but only over this small parameter range. This is shown in figure 4.20, and it displays
somewhat expected behaviour; we can see what looks like half of what is typically expected to be the
shape of the QCR, and it terminates at what we know should be the QCP, given by equation 4.16. We
are of course missing the other side of the boundary. As a result of using the intersection to determine
the B dependence of b, we were limited in the range of B values we could use this relationship over. It
seems to be that the boundary of the quantum critical region does not extend past the QCP, which seems
strange, but with our identification of what seems to be the T = 0 line, it doesn’t seem possible that that
could occur anyhow. Looking at our T = 0 line, the QCP does intersect it, as one might expect, but the
rest of the line does not extend past the QCP, instead it seems to go back in the same direction.

Another aspect that could be affecting this however is the proportionality that might be involved in
the boundary equation we found (equation 4.33), so this should also be considered. It is clear then, that
more analysis and thinking needs to be done about this situation, and that will be our next step.

5.2 Outlook

There is clearly much more analysis that needs to be done to better understand the dynamics that are
going on. We will continue to work on this problem after the actual thesis is officially over, where we
hope to think more about what we found, improve it, and take the analysis further.

For a start, the one of the first things that should be done is to determine the exact identification
between the charge and magentic field, so we can properly analyse the intersection for the b < 0 case.
The next thing we should do is determine a better equation for b(B) that includes both sides of the
critical point, so we can see the the full behaviour around the QCP.

Something else we attempted to do but did not have enough time to finish before the thesis deadline,
was the computation of the metric, gauge, and scalar quasinormal mode spectra. Therefore this is
someting which we will find next, and should illuminate the siutation further. Also, from this we will be
able to compute quantities such as the conductivites for the system. Analysis of the finite temperature
thermodynamics of the system should also be carried out, to search for any thermal phase transitions
that might be taking place. These are the future goals, which we hope to tackle in the coming months,
building upon and better understanding what we already have.
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