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Chapter 1

Introduction

1.1 Motivation

During recent years the study of topological insulators has grown to an active field in condensed matter
physics. Topological insulators are materials where the bulk of the system is insulating, but where there are
conducting states at the edge of the material, we illustrate this situation in figure 1.1.

Figure 1.1: Sketch of a topological insulator. Taken from [1].

Through the classifying system known as the ’ten-fold way’ one may know in advance what types of topo-
logical invariants are allowed in a system. The ’ten-fold way’ classifies models based on their symmetries.
One obtains ten categories by classifying a system by three symmetries: time-reversal, particle-hole and chi-
ral symmetry. For each of these categories the dimension then influences the topological invariants allowed [2].

However, there are systems in nature that do not fall in any of these categories. For example fractals,
which have a non-integer dimension. So what happens to the topological invariants in a fractal object? To
investigate this we study the chiral modes in a Hofstadter model, where we create a lattice shaped as a
Sierpinski carpet. We study the chiral modes, because in a Hofstadter model they relate directly to the
topological invariant, the first Chern number [3].

Additionally, to investigating chiral edge modes, the study of conductance on a fractal is interesting in its
own right, as it is known that the density of states in fractals have a fractal distribution. Literature on
the similar systems shows that fractal properties may also be observed in the wave-functions and the bulk
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conductance [4, 5, 6].

Furthermore, fractal structures have unique properties that put them outside of typical descriptions. The
Sierpinski carpet, for example, has no translational invariance or a clear separation into edge and bulk re-
gions. Such properties mean that typical descriptions for describing transport do not apply. Yet a domain
that falls outside of the scope of standard description, also allows for the discovery of new phenomena.

Fractals are not only of theoretical interest, but can actually be created in the laboratory [4]. In this thesis
we implement the Sierpinski carpet by starting with a tight-binding model on a square lattice and removing
atoms corresponding to the holes of the Sierpinski carpet. This we display in figure 1.2.

Figure 1.2: The implementation of the Sierpinski carpet into the tight-binding model.

One might be mistaken that constructing such a structure on the atomic scale is impossible, but such ma-
nipulations can be performed through the use of scanning tunnelling microscopy [7]. Scanning tunnelling
microscopes can image surfaces on the atomic level. They do this by putting a needle close to the surface
and measuring the quantum tunnelling to the surface. Yet the same instrument may be used to pick up
atoms and place them at a desired spot. A well known example of this is that IBM made their logo on the
atomic scale by placing 35 xenon atoms on a crystal of nickel. Through the use of such techniques one may
also create a Sierpinski carpet. In fact, the same techniques have already been used to create a Sierpinski
triangle [4].

1.2 Outline

Chapter 2 begins a brief introduction to fractals and fractal dimension. Then we introduce the tight-binding
model and how it derives from continuum models. This derivation is done for two different continuum mod-
els. The first continuum model is the free-electron model. It has limited applicability to our system, yet it
is useful for making a connection between the integer quantum Hall effect and the Hofstadter model, which
we will use later. The second continuum model assumes that the lattice potential causes the wave functions
to be localized at the lattice sites. The last part of chapter 2 focuses on the integer quantum Hall effect.
The integer quantum Hall effect provides a good introduction to the Landau levels and chiral edge modes,
that are the focus of this thesis.

Chapter 3 focusses on the method used to calculate the conductance in a tight-binding model. We begin
this chapter with the Landauer-Büttiker formalism, which allows us to relate the conductance to the trans-
mission. The transmission in turn depends on Green’s functions. As such we explain both concepts and
how they relate to each other. The calculation of the Green’s functions is made using the recursive Green’s
function equations. We derive these equations and show how they are used to calculate the conductance.

In chapter 4 we consider simple wires and the Hofstadter model. This allows us to become familiar with
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numerical results, as we know from literature how the system should behave. We begin with investigating
a perfect wire and the effects of impurities on this wire. We then introduce a magnetic field into the model
giving us the Hofstadter model with an edge [8]. Due to this edge in our system we observe chiral edge modes.

Chapter 5 is devoted to the numerical results of the Sierpinski carpet. To gain additional understand-
ing of the system we also look at the resistance to impurities, scaling and the wave-function localization. We
find that there are 4 categories of states. In figure 1.3 we show examples of these states. The first category
contains states that are localized inside the fractal. The transmission in these regions shows fluctuation
that most likely have a fractal distribution. The second category has states that are localized on the edge
and is resistant to impurities, these are chiral edge modes. We also find a category of states that is not
stable to impurities, but remains identical under scaling and these are also localized on the edge. Thus these
modes have no chirality. The last type of state are states that form a large square structure and where the
transmission is not stable to noise, but does remain identical under scaling.

(a) ”Bulk” state (b) Chiral edge state (c) Non-chiral edge state (d) T = 4 plateau state

Figure 1.3: Examples of the localization of different states in the Sierpinski carpet.

Readers who are mainly interested in the results are recommended to take a quick look at the Hoffstadter
results of chapter 4 and then continue to chapter 5.
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Chapter 2

Theoretical Background

2.1 Introduction to Fractals

Fractals are objects with a non-integer dimension. A wide range of physical phenomena show fractal be-
haviour, as they show up in a wide range of physical phenomena ,such as electric discharges or in the
description of polymers, to subjects in biology and geographical features. We will explain in this section
what it means for an object to be a fractal, by explaining how they relate to two concepts: self-similarity
and a generalised dimension based on scaling.

We begin with introducing the concept of self-similarity in fractals. Many fractals are specified through
a recursive procedure that performs a manipulation and then divides the system into smaller components
that undergo the same recursive procedure. This procedure is then repeated to infinity. Such an object has
self-similarity by virtue of the recursive procedure. An example of this is the Koch curve is shown in figure
2.1. To generate a Koch curve one starts with a line, cuts this line in three pieces, replaces the middle piece
with two lines that extent outward and this procedure is repeated for all four new lines. This procedure is
then repeated infinitely often to obtain the Koch curve.

Figure 2.1: The recursive procedure that generates the Koch curve, where n is the number of times the
recursive procedure was applied. The Koch curve has fractal dimension dH = log(4)/ log(3) ≈ 1.26. This
image was taken from [9].

The self-similarity of deterministic fractals such as the Koch curve is easy to quantify. However, even though
many objects are not made in a deterministic fashion, they appear self-similar to the human eye. We show
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one such example in figure 2.2.

Figure 2.2: Electrodeposition of copper. The right panel is a magnification of the red box in the right panel.
This image was taken from [10].

To describe non-deterministic fractals we introduce a generalised dimension. We base this generalised di-
mension on the scaling of an object. For example the line, square and cube are examples of objects that are
one, two and three-dimensional. If we scale these objects by doubling the length in each direction of these
objects, we find that what we could call a volume for these objects, increases by 21, 22 and 23. Thus we find
that the dimension of an object relates to the power of the scaling.

One way of defining a generalised dimension is through the box-counting dimension. In the box-counting
dimension we change the resolution we use to look at an object, instead of scaling the object. These two
concepts are related as by changing the resolution we use to look at the object, we scale the space where the
object lives in. For the box-counting dimension one constructs a mesh with spacings of length l. One then
counts the amount of boxes, N(l), of this mesh which contain a part of the object. The dimension of the
object is then found by the limit of l to zero,

dbox = lim
l→0

log(N(l))

− log(l)
. (2.1)

This definition ensures that objects that are clearly of a specific integer dimension have this dimension. For
example the line, where N(l) ≈ 1/l, is then one-dimensional. Other objects such as the Koch curve have a
scaling where N(l) ≈ (1/l)4/3, thus its dimension is fractal.

When describing physical systems fractal structures do not continue forever, because at the very least
we have a natural cut-off once we reach atomic scale. In the mathematical definition of a fractal this im-
plies the object is not strictly a fractal. However, self-similar behaviour may still be observed across multiple
length scales, thus the object has fractal character. We quantify this character by calculating the box dimen-
sion for a fixed l and if this is constant across multiple orders of the length, then we call this system a fractal.

To illustrate this concept we consider the coastline of Great Britain. Applying the box counting algo-
rithm yields a dimension of dbox ≈ 1.25 [11], as is shown in figure 2.3.

In this section we introduced fractals by the box-counting dimension. We chose this option as it is the most
intuitive to explain, but generally the Hausdorf dimension is used to classify objects. However, except for
specific counter examples, that are not considered in this thesis, the box dimension and Hausdorff dimension
coincide [13].
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Figure 2.3: The box counting method to find N(l) applied to the coastline of Great Britain. This image was
taken from [12].

2.2 Tight-Binding Model

All research done in this thesis can on a microscopical level be written as a tight-binding model. A notable
exception to this is the derivation of the Hall effect.

The tight-binding models is defined in terms of second quantization, where we consider two types of op-
erators: the creation operator, ĉ†i , and the annihilation operator, ĉi. In this thesis the operators are labelled
by the index i. In general may contain a multitude of quantum numbers, i.e. spins momenta or orbitals, but
in this thesis we restrict ourselves to lattice sites.
Further, here ĉ†i and ĉi are always fermionic operators and thus have the anti-commutation relations

{ĉ†i , ĉj} = δi,j and {ĉ†i , ĉ
†
j} = {ĉi, ĉj} = 0.

The interpretation of ĉ†i is that it creates an electron at site i and that ĉi removes an electron. We will more
formally derive this connection in section 2.3.2.
In the scope of this thesis the the tight-binding model describes electrons localized on a lattice of atoms. This
lattice generates a strong potential, V (x), where the minima are located on the atoms. This potential causes
the wave-functions, ψ(x), to be strongly localised near the minima of the potential, as illustrated in figure 2.4.

Lattice

Figure 2.4: Top: the localized wave-functions. Middle: The potential induced by the lattice. Bottom: The
lattice of atoms.

8



2.2.1 One-Dimensional Wire

One of the most simple models we may write down for the tight-binding model is that of a perfect one-
dimensional wire with only nearest neighbour hopping,

Ĥ =
∑
i

µ ĉ†i ĉi + t ĉ†i ĉi+1 + t ĉ†i+1ĉi. (2.2)

This simplistic model already contains most important ingredients used in this thesis. The µ ĉ†i ĉi term repre-
sents the energy of an electron bound to a single site, commonly referred to as global chemical potential.
In some models we make the chemical potential dependant on the site, µi. In these models we refer to µi as
the local chemical potential.

The t ĉ†i ĉi+1 term represent an electron disappearing from site i and appearing at site i + 1. t ĉ†i+1ĉi de-
scribes the opposite process. The terms proportional to t are referred to as the hopping terms.
The solutions to the Schrödinger equation with the Hamiltonian of equation (2.2) are superpositions of

creation operators in the form of Ψ =
∑
j bj ĉ

†
j |0〉. Solving the Schrödinger equation for E yields

Ebj = tbj+1 + µbj + tbj−1. (2.3)

Due to translational invariance, the solutions of this equation are plane waves, bj = exp(ikj), where k is a
dimensionless momentum,

Eeikj = teik(j+1) + µeikj + teik(j−1). (2.4)

We divide by eikj and solve for E to obtain the spectrum of the one-dimensional wire

E = µ+ t
(
eik + e−ik

)
(2.5)

= µ+ 2t cos(k). (2.6)

The two dimensional generalisation of this model, where the lattice has a square structure, is solved by plane
wave in both directions. The energies of this model are E = µ+ 2t cos(kx) + 2t cos(ky).

2.2.2 General Models

In this thesis we describe many different tight-binding models, but all these models may be expressed as

Ĥ =
∑
i,j

ĉ†iHi,j ĉj . (2.7)

H is a hermitian matrix that containing all information of the system. The diagonal entries refer to the
local chemical potentials, Hi,i = µi. The non-zero off-diagonal entries, Hi,j = ti,j , correspond to the hop-
ping elements. We construct the matrix based on the lattice we wish to describe, such that if two sites are
neighbours then they have a non-zero hopping between them and zero otherwise.

For example, we can write the Hamiltonian of equation (2.2) as a countably infinite matrix

H =



. . . ∅
µ t
t µ t

t µ

∅
. . .

 . (2.8)
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2.3 Origin of the Tight-binding Model

In the previous section we introduced the tight-binding model, but in order to present a connection to
physical systems, we show under what conditions we may derive a tight-binding model from continuum
models.
We present two ways to make this derivation, but both have a similar starting point: The wave-function,
Ψ(~r), that is a solution of a single particle Schrödinger equation,[

(i~~∇+ e ~A)2

2m
+ U(~r)

]
Ψ(~r) = EΨ(~r). (2.9)

In this equation the effects of the lattice and disorder are described by the potential U(r). A magnetic field

is introduced trough the magnetic vector potential, ~A.

To present a more clear derivation, we simplify equation (2.9) by considering a model without magnetic

field, ~A = 0. We reintroduce the magnetic field at the end of this section with Peierls substitution.
The second simplification is to reduce the dimensions to one. The derivation presented in the following
sections lends itself to generalisation to multiple dimensions. Thus after these simplifications the starting
point are the wave-functions, Ψ(x), that are solutions of the one-dimensional Schrödinger equation,[

−~2∂2
x

2m
+ U(x)

]
Ψ(x) = EΨ(x). (2.10)

2.3.1 Direct Discretization

The most direct way to discretize a wave-function is by choosing a mesh of spacing a and sampling the
wave-function at these values

Ψ(x)→ Ψ(an) = Ψn, (2.11)

where n is a integer. Now we also discretize the Schrödinger equation with the same mesh. The discretization
of the kinetic term may be done with finite differences

−~2

2m
∂2
xΨ(x)→ −~2

2ma2
(2Ψn −Ψn−1 −Ψn+1) . (2.12)

The potential energy term becomes U(x)→ Un = U(na). Thus the discretized of equation (2.10) is:(
Un +

~2

ma2

)
Ψn −

~2

2ma2
Ψn−1 −

~2

2ma2
Ψn+1 = EΨn. (2.13)

The underlying assumption in finite differences is that Ψ(x) is smooth on the length scale a. This equation
is similar in form to equation (2.3), where we described the solutions of an infinite wire in a tight-binding
model.
This equation allows us to relate t and µ to ~, a and m by the following relations

t = − ~2

2ma2
(2.14)

µn = Un +
~2

ma2
(2.15)

In this procedure we introduce discretization error with respect to the original model. One would hope
that if a is chosen small enough these errors are negligible, but this is never fully the case as a real space
discretization of a is equivalent to introducing a cut-of of 1/a in momentum space. The solutions of the
single-particle Schrödinger equation, without potential, are plane waves Ψ(x) ∼ eikx, with arbitrarily high
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momentum. Thus the discrete model is only identifiable with the continuum model in the low momentum
range.

We want to express the range where this connection holds in terms of energy. This will be latter used
in establishing a connection for small energies in numerical results. By using equations (2.14) and (2.15) we
write the energies of the solutions in the tight-binding and free electron models in terms of µ and t:

ETight binding = µ+ 2t(1− cos(ka))

≈ µ+ t(ka)2 +O((ak)4),
(2.16)

EFree electron = µ+ t(ak)2, (2.17)

where we assumed that µn = µ. Concludingly, we may interpret the results of the tight-binding model with
the free electron model, if E − µ is small in units of t.

2.3.2 Localized Wave-Functions

In the previous section we derived a method for discretizing a nearly free-electron theory, but this procedure
relies on the lattice pacing a being negligibly small. This is problematic for the description of the Sierpinski
carpet. As when we implement a Sierpinski carpet in the tight-binding model, we remove individual lattice
points. When implementing such a lattice, we can not expect the wave-functions to be smooth on the length
scale a. Thus for the Sierpinski carpet, the free electron discretization can not give physical interpretation,
in any regime, to the tight-binding model.

A model that does give physical interpretation for any lattice we use, is based on the wave-functions being
heavily localized near the lattice points due to the lattice potential. This is the situation that was drawn in
figure 2.4. We connect this model to the tight-binding model by identifying a state ĉ†i |0〉 with a localized
wave function φi(~r).

In order to more formally derive this identification we need Wannier functions, as those provide the ba-
sis of localized wave functions. The Wannier functions are defined in terms of Bloch functions, so we start
by a quick recap of the Bloch theorem. The Bloch theorem was first proven by Bloch in 1929 [14]. The
theorem states that: If the system we describe has translational symmetry, Ĥ(x) = Ĥ(x + a), then we
may decompose the solutions of the Schrödinger equation, Ĥ(x)Ψ(x) = EΨ(x), into a plane wave and a
translationally invariant function,

Ψk(x) = eikxuk(x), (2.18)

where uk(x) has translational symmetry, uk(x) = uk(x+ a).

Wannier-Functions

The Bloch wave-functions are de-localized solutions with well-defined momentum, but for deriving the equiv-
alence with tight-binding we wish to obtain a description in terms of localized functions. This is done by
Fourier-transform the Bloch wave-function to obtain the Wannier-functions,

φj(x) =
1√
N

∑
k

e−ikjaΨk(x). (2.19)

The Wannier functions are orthonormal, which may be proven by an argument following [15]:
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∫
φ∗j (x)φj′(x)dx =

1

N

∑
k,k′

∫
eikjaψ∗k(x)e−ik

′j′aψk′(x)dx

=
1

N

∑
k,k′

eia(kj−k
′j′)δk,k′

=
1

N

∑
k

eika(j
′−j)

= δj,j′

Another useful property of the Wannier functions is that:

φj(x) = φj+1(x+ a) (2.20)

This may be proven by combining equations (2.18) and (2.19). The most crucial property we want the
Wannier-functions to have is localization, but this is not inherent to the Wannier function definition. This
is because Bloch waves are defined up to a phase factor, while the phase factor is not significant in the
Bloch-waves, it does influence the localization of the Wannier function. One could for example de-localize
a localized Wannier function, by rotating the phase factor of only a single Bloch-function. Nonetheless, we
will assume that we have localized Wannier-functions, as these exists and there are methods to maximize
the localization of the Wannier functions [16].

Tight-binding Equivalence

By inverting equation (2.19) we know that Bloch-wave solution may be written as a superposition of Wannier-
functions,

Ψk(x) =
∑
j

bjφj(x). (2.21)

Using the starting point that the Bloch-wave solutions are eigenfunctions of the Hamiltonian,

EΨk(x) = H(x)ψk(x), (2.22)

we multiply this equation with a Wannier function, φ†j(x), and integrate over all space,∫
Eφ†j(x)Ψ(x)dx =

∫
φ†j(x)H(x)Ψ(x)dx. (2.23)

We then insert equation (2.21) and use the orthonormality of Wannier functions to obtain

Ebj =
∑
j′

∫
φ†j(x)H(x)φj′(x)bj′

=
∑
j′

Hj,j′bj′ ,

where Hj,j′ =
∫
φ†j(x)H(x)φj′(x). As this is true for arbitrary j, we may view this as a matrix equation:

E~a = H~b, (2.24)

where ~b = (. . . , bj−1, bj , bj+1, . . . )
T .
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We can now identify the matrix H we derived from the Wannier-functions as in equation (2.24) with the
matrix we used to define the general tight-binding models in equation (2.7). In terms of the individual
elements this identification means:

µi = Hj,j =

∫
|φj(x)|2H(x)dx (2.25)

ti,j = Hi,j =

∫
φ†i (x)H(x)φj(x)dx (2.26)

The tight-binding model we use only contains nearest neighbour interaction. The nearest neighbours are
defined by Hi,j 6= 0. So if two sites i and j are not neighbours

∫
φ†i (x)H(x)φj(x)dx should be zero. This is

actually not true, but if the Wannier functions are sufficiently localized
∫
φ†i (x)H(x)φj(x)dx is small enough

to justify neglection when the sites are not nearest neighbours.

In order to make the previous argument more tangible, we show how this plays out for the simple wire
model as defined in equation (2.2). The hopping from a lattice point j to the lattice point j + n is:

Hj,j+n =

∫
φ†j(x)H(x)φj+n(x)dx

=

∫
φ†j(x)H(x)φj(x− na)dx

We assume the Wannier-functions are exponentially localized, meaning: φj(x) < Ce−|x−ja|/ξ, where ξ is
some decay length and C some constant. Then Hj,j+n ∼ e−|n|a/ξ. The largest of these hopping terms are
to the neighbours, which we identify with the generic hopping parameter Hj,j+1 = t. If we compare t to the
other hopping terms, we find that these are at least smaller by a factor e−a/ξ, so if ξ is small enough, then
there are good grounds for neglecting the terms with |n| ≥ 2.

Peierls Substitution

The magnetic field was neglected up till now, but we may reintroduce it through Peierls substitution. The
following arguments are inspired by the following reference [17].

We assume that we have a set of Wannier-functions, φj(x), that derive from Bloch-functions, Ψk(x), that
are solutions of the Schrödinger equation,

Ĥ(x)Ψk(x) =

[
−~2∂2

x

2m
+ U(x)

]
Ψk(x) = EkΨk(x). (2.27)

Adding a magnetic field changes the Hamiltonian to a new Hamiltonian, ĤA(x),

ĤA(x) =
(i~∂x + eAx)2

2m
+ U(x). (2.28)

We introduce a new set of Wannier-functions, φAj (x), that are related to the old Wannier-functions by a
phase,

φAj (x) = e
i e~

x∫
ja

Axdx

φj(x). (2.29)

These phases are chosen such that the momentum operator, i~∂x, acting on the phase gives −eAx. This
allows us to write the Hamiltonian with magnetic field, ĤA, acting on the new Wannier-function, φAj , as the
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old Hamiltonian acting on the old-Wannier function

ĤA(x)φAj (x) =

[
(i~∂x + eAx)2

2m
+ U(x)

]
ei

e
~
∫ x
ja
Axdxφj(x)

= ei
e
~
∫ x
ja
Axdx

[
(i~∂x + eAx − eAx)2

2m
+ U(x)

]
φj(x)

= ei
e
~
∫ x
ja
AxdxĤ(x)φj(x).

(2.30)

The effect of changing the Wannier-function on the hopping is:

tA = HA
j,j+1 =

∫
φA†j (x)ĤA(x)φAj+1(x)dx

=

∫
e
i e~

(∫ x
(j+1)a

Axdx−
∫ x
ja
Axdx

)
φ†j(x)H(x)φj+1(x)dx

= e
i e~
∫ ja
(j+1)a

Axdxt.

(2.31)

So the effect of the magnetic field in a tight-binding model is that it changes the hopping by a phase factor
that depends on the gauge field.

2.4 Integer Quantum Hall Effect

Figure 2.5: Sketch of the classical Hall effect.

In this section we derive and discuss the integer quantum Hall effect, but first we give a brief introduction
to the classical Hall effect. The classical Hall effect happens when a sheet of metal is put in a magnetic
field and one drives a current through this sheet of metal. The electrons travelling in the sheet of metal
are deflected to the edges due to Lorentz force. As electrons build up at an edge, they generate a electric
field that counteracts the Lorentz force. When the system is in equilibrium the current can travel trough
the sheet, but if one where to measure the voltage between the edges of the sheet, one finds that there is a
voltage drop, this voltage is called the Hall voltage, VH . We illustrate the situation in figure 2.5.

From the classical Hall effect we obtain the prediction that ρx,x is constant and ρx,y increases linearly with
the magnetic field [18]. Yet in experiments performed by von Klitzing in 1980 it was found that when
the magnetic field is sufficiently large, ρx,y is made up of plateaus and ρx,x is nearly zero except when the
plateaus change, this is called the integer Hall effect [19].

The integer Hall effect may be explained by using the non-interacting Schrödinger equation. We consider a
free particle Hamiltonian with a magnetic field

Ĥ =
1

2m

(
~p+ e ~A

)2

. (2.32)
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Figure 2.6: Left: Prediction of the classical Hall effect. Right: Example of the integer Hall effect [18]

We choose the Landau gauge to introduce the magnetic field

~A = (0, xB, 0). (2.33)

In Landau gauge, the Hamiltonian of equation 2.32 is

Ĥ =
1

2m

(
p̂2
x + (p̂y + eBx̂)2

)
. (2.34)

As this Hamiltonian is translationally invariant in the y direction, we have that the commutator for the

Hamiltonian and the translation operator in the y direction is zero,
[
Ĥ, T̂y(a)

]
= 0. This means there is a

basis of energy eigenstates that are also translationally invariant, up to a phase factor, in the y direction

ψk(x, y) = e−ikyfk(x). (2.35)

Using these wave-functions to find the energies gives

Ĥψk(x, y) =
1

2m

(
p̂2
x + (~k + eBx̂)2

)
ψk(x, y). (2.36)

This equation may be rewritten into a quantum harmonic oscillator with a shifted minimum,

Ĥψk(x, y) =

(
1

2m
p̂2
x +

mω2
B

2
(x̂− kl2B)2

)
ψk(x, y), (2.37)

where ωB = eB/m and l2B = ~/(eB)). This is an equation for a quantum harmonic oscillator with the
minimum of the potential shifted to kl2B , but this shift has no influence on the energy. The quantum
harmonic oscillator energies are

En = ~ωB(n+
1

2
). (2.38)

Because the energy has no dependence on k, there is a degeneracy at every energy level En that looks like
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where µ is the chemical potential. The empty dots represent the states being empty and the filled dots
represent filled states. The energy plateaus are called landau levels and they allow us to explain the behaviour
of ρx,x. In order a system to be conducting, there must be states close to the chemical potential, where the
definition of close is related to the temperature. This is only true if the chemical potential is approximately
equal to a Landau level

µ ≈ En = ~ωB(n+
1

2
). (2.39)

This is only true for specific values of the magnetic field, thus explaining the conductivity peaks and insu-
lating behaviour otherwise.

To explain the effect on the Hall resistivity, ρx,y, we need to introduce two edges. This allows us to de-
fine a voltage gap across the edges. We can create edges in our system by introducing a potential field V (x)
that is flat in the bulk of the material and rises at the edges

This potential smoothly terminates the system by increasing the potential until it is above the chemical
potential µ and no filled states exist in that region, thus introducing a boundary for the electrons.

To solve the system with a potential, we use that the solutions of the system without potential are strongly
localized. This follows from the solutions of the quantum harmonic oscillator. These allow us to solve the
profile in the x direction for Ψn,k(x)

Ψn,k(x) ∼ eikye
(x−kl2B)2

2l2
B Hn(l−2

B (x− kl2B)), (2.40)

where Hn(x) is the nth hermite polynomial. These solutions are exponentially localized in the x direction,
centred at kl2B . If the potential V (x) changes slowly in comparison to the length-scale of the solutions, lB ,
we may treat the effects of the potential as a constant energy shift for each solution. Thus, depending on
the k of the solution, the potential is V (x) ≈ V (kl2B). Such that the energy of the Landau levels becomes k
dependant

En,k = ~ωB(n+
1

2
) + V (kl2B). (2.41)

We may visualise the influence of the potential on the states of a single Landau level in the picture below

We can introduce a Hall voltage into our system by creating a potential difference between the two edges
such that eVH = µ1 − µ2. This changes the occupation of the states near the edges

Due to this difference in occupation there is now a current in the y direction. We derive this by using the
group velocity, where we take the derivative of equation (2.41) to k

vy =
1

~
∂En,k
∂k

=
l2B
~
∂V

∂x
. (2.42)
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For the second line we used the localization of the states to identify x to k by x = kl2B . We find the total
current by integrating over all states k that are filled

Iy = −e
∫

filled states

dk

2π
vy =

e

2πl2B

∫
filled states

dx
l2B
~
∂V

∂x
=

e

2π~
(µ1 − µ2). (2.43)

So we obtain an expression for the Hall conductivity for a single Landau level

σxy =
Iy

∆Vx
=

e2

2π~
. (2.44)

For multiple Landau levels the same picture holds, but with each Landau level shifted by ~ωB , as we display
below

For each filled Landau level one may repeat the same calculation and each level contributes the same value
to the conductivity. So for the full system the Hall conductivity is

σxy =
e2

2π~
nfilled, (2.45)

where nfilled is the amount of filled Landau levels. So now we can explain the behaviour of the Hall resistivity,
σxy, as seen in figure 2.6. The spikes in ρxx happen because the chemical potential is approximately at a
landau level, so there is conduction in the bulk of the material. The Hall resistivity is completely determined
by the amount of filled landau levels. As the spikes in ρxx correspond to a change in the amount of filled
Landau levels this is the only place where the Hall resistivity changes.

If the potential V (x) is shaped such that V (x) = V0 inside the bulk of the material and only becomes
x dependant near the edge, then the current Iy is fully generated by states on the edge. Even more impor-
tant: on the left edge the derivative of the potential is negative, ∂V∂x < 0, while on the right edge it is positive

,∂V∂x > 0. As the group velocity is proportional to this derivative of the potential, the velocity of the states
on the left edge is opposite of the states on the right edge. Thus we have chiral edge modes, where the modes
on the edge only travel in a single direction. If the system also has edges in the y directions, we also obtain
the same effect on these edges. This means that if the bulk of the system is isolating, all transport takes
place along the edges. These edges only support transport in one direction, that depends on the orientation
of the magnetic field:

Bulk Edge

An important property of the integer Hall effect is that it does not depend on the specifics of the edge and
is stable to impurities. This can be explained in multiple ways. Because at the edges the states move in a
single direction, when an electron encounters an impurity along the edge and scatters, it can only scatter
into other modes that also move in the same direction. Thus the chiral edge modes provide perfect channels
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for transport around the edge.

The second explanation lies in the way we calculated the Hall conductance. Nowhere in the calculation
did we have to specify the exact profile of the potential V (x). The only properties used are: V (x) rises at
the edges and V (x) is smooth on the length scale lB . Thus any impurities, which we would describe by a pro-
file in V (x), do not influence the conductance, as long as the description of Landau levels remains unaffected.

For the last explantation we note that this system is a topological insulator. Topological insulators are
systems where the bulk of the system is insulating. For this inner region one may calculate a topological
quantity over the filled bands, which is integer valued. For the integer quantum Hall effect this topological
quantity is the Chern number and each filled Landau level contributes exactly one to the Chern number. At
the edges of topological insulators, where the topological quantity changes value, this gives rise to special
edge modes. The presence and properties of these edge modes is determined by the topological quantity and
not by any specifics of the edge. As the topological quantity is determined by the bands in the bulk of the
system and it only changes when the system becomes conducting, the properties of the edge modes are very
stable [18, 20, 3].
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Chapter 3

Theoretical Framework

3.1 Introduction

The main goal of this thesis is to find the conductance through a device that is coupled to two semi-
infinite leads, as shown in figure 3.1. This chapter is devoted to explaining the method used to calculate
the conductance. We begin this chapter with the introduction of the Landauer-Büttiker formalism. The
Landauer-Büttiker formalism reduces the problem of calculating conductance to finding the transmission
function, T (E). This transmission function depends on two types of Green’s functions: The Green’s func-
tions from the edge of the left lead of the device to the right lead. The second type of Green’s function
are the surface Green’s function for the uncoupled semi-infinite leads. To solve both of these Green’s func-
tions we introduce the recursive Green’s function formalism, which is used to solve the Green’s functions of
the semi-infinite leads analytically and it provides a numerical scheme to compute the other Green’s function.

3.2 Landauer-Büttiker formalism

Left	lead Right	lead

Device

Figure 3.1: Schematic diagram of the set-up of the two-terminal wire we use the Landauer-Büttiker formalism
to compute linear response conductivity.

In order to calculate the current, we use the Landauer-Büttiker formalism [21, 22]. This provides an equation
for the current

I =
−e
h

∫
T (E) [fL(E)− fR(E)] dE, (3.1)
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where e is the electric charge, h is Planck’s constant, T (E) is the Transmission function from the left lead
to the right lead and fL/R(E) are the Fermi-Dirac distributions in the left and right leads,

fL/R(E) =
[
1 + eβL/R(E−µL/R)

]−1

. (3.2)

The transmission function, T (E), is related to scattering matrices from the left lead to the right lead of the
modes at an energy E. T (E) may be interpreted as a likelihood that a mode at energy E from the left lead
can enter a mode at the same energy in the right lead.

Combined with the Fermi-Dirac distributions, fL(E), which contain the information on how many modes are
occupied at this energy, we may interpret T (E)fL(E) as the amount of electrons at energy E hopping from
the left lead to the right lead. T (E)fR(E) is the amount of electrons hopping in the reverse direction, thus
T (E)(fL(E)−fR(E)) is the nett change of electrons between the leads at a specific energy. Thus integrating
it over energy gives the total current.

In the limit of temperature to zero, βL = βR →∞, the Fermi-Dirac functions become step-functions

lim
β→∞

fL/R(E) =

{
1, for E > µL/R

0, for E < µL/R.
(3.3)

This changes equation (3.1) to

I =
−e
h

µR∫
µL

T (E)dE. (3.4)

When the difference of the chemical potential, µL − µR, is sufficiently small, such that the transmission
function TLR(E) is approximately constant over the interval µL to µR, then we recover an equation for
linear response

I =
e2

h
T (EF ) (VL − VR) , (3.5)

where EF ≈ µL ≈ µR and VL/R = µL/R/e.

In this linear response regime the transmission function is directly related to the conductance across the
device

σxx =
I

∆V
=
e2

h
T (EF ). (3.6)

3.2.1 Green’s functions

To compute the transmission, T (E), we need Green’s functions. This section provides a brief introduction
to Green’s functions as far as necessary for the computation of the transmission.

For a general system, where we have a Hamiltonian, Ĥ, the Green’s function Ĝ(E) is defined as the in-
verse operator of the energy, E, minus the Hamiltonian(

E1̂− Ĥ
)
Ĝ(E) = 1̂. (3.7)

The physical interpretation of this operator may be shown by solving the equation(
E1̂− Ĥ

)
ψ′n(x) = f(x). (3.8)
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If we assume that we already had a solution ψn of Ĥ, such that Ĥψn = Enψn. Then we can define
ψ′n(x) = ψn(x) + Ĝ(E)f(x). Using this to solve equation (3.8), we obtain

f(x) =
(
E1̂− Ĥ

)
ψ(x)

= (E − En)ψn(x) + 1̂f(x).

This is true if E = En. So ψ(x) = ψn(x) + Ĝ(En)f(x) is a solution of equation (3.8).

The interpretation of f(x) in equation (3.8) is that it acts like a sink or source depending on the sign.
So Ĝ(E) describes the response of solutions of energy E to a sink or source.

This way of looking at Green’s functions works for many classical system, such as electrostatics [23], but
it fails if we wish to describe a countable quantum-mechanical system. When we have a set of solutions
Ĥ |ψn〉 = En |ψn〉, then the Green’s function is

Ĝ(E) =
∑
n

|ψn〉 〈ψn|
E − En

. (3.9)

This undefined for E = En. The solution to the undefined Green’s function, is to introduce the retarded,
Ĝ+(E), and advanced, Ĝ−(E), Green’s functions [22]:

Ĝ±(E) = lim
η→0+

1

(E ± iη)1̂− Ĥ
. (3.10)

The retarded and advanced Green’s functions are linked to causal and anti-causal two point functions by
Fourier-transformation in the energy-time domain [24].

In this thesis we work in a position basis for the Green’s function, as such we can group the elements
into a matrix, G(E), where the individual elements of the matrix are

G(E)ij = 〈i| Ĝ(E) |j〉 . (3.11)

Because the Hamiltonian in our models can always be expressed as a matrix, see equation (2.7), the Green’s
function is the matrix inverse of E1−H and likewise for the retarded and advanced Green’s functions

G±(E) = lim
η→0+

((E ± iη)1)−H)
−1
. (3.12)

A property of the retarded and advanced Green’s functions we will use in te next section is that Ĝ+ = (Ĝ−)†

as Ĥ = Ĥ†, so only the sign of iη flips. So the Green’s function matrices are also related to each other by
hermitian conjugation

G−i,j =
(
G+
j,i

)†
. (3.13)

3.2.2 Transmission function

In the previous section we described how the conductance may be related to the transmission function, T (E).
In this section we give an overview of the method used to calculate the transmission function and reduce the
problem into that of finding the green’s functions.

The formula for the transmission function in a tight binding model is given by [25]:

T (E) = Tr
[
ΓL(E) G+

LR(E) ΓR(E) G−RL(E)
]
. (3.14)
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Left	lead Right	leadDevice

Figure 3.2: Schematic diagram showing the elements in equation (3.14). Both of the arrows in the left lead
belong to ΓL(E). Likewise for the right lead. The solid black lines represents the edges of the device.

All objects in this equation are matrices, where the indices refer to sites on either the left or the right edge
of the device. G+

LR(E) is a matrix containing the retarded green’s functions from the left edge to the right
edge. G−RL(E) contains the advanced greens function from the right edge to the left edge.

The green’s functions may be thought of as propagators from one edge of the device to the other edge.
This identification is represented in figure 3.2 as the arrows between the edges.

By using equation (3.13), we may relate G−RL(E) to G+
LR(E) by hermitian conjugation:

G−RL(E) =
(
G+
LR(E)

)†
. (3.15)

Thus it is sufficient to find G+
LR(E).

The functions ΓL(E) and ΓR(E) are called the broadening functions and they are matrices where both
indices refer to sites on the same edge of the device. The broadening functions contain information about
the modes in the semi-infinite leads, such as the transverse profile that is presented to the edge of the device
and the density of a mode. We represent them in figure 3.2 by incoming and outgoing arrows inside the
leads, as the broadening functions describe the transport in the leads.

We may also express the broadening functions in terms of green’s functions by first writing it in terms
of the self-energy, ΣL/R:

ΓL/R(E) = i
(
ΣL/R −Σ†L/R

)
. (3.16)

The self-energies, ΣL/R, in turn depends on the surface green’s functions, g+
L/R(E),

ΣL/R = VL/R g+
L/R(E) V†L/R. (3.17)

Here VL/R is a matrix containing the hopping terms between the edge of the device and the edge of the lead.

g+
L/R(E) contains the retarded green’s functions from the edge of the lead to the same edge of the lead, but

without the device connected to the lead.

3.3 Recursive Green’s Function Method

The recursive Green’s function method is a method for ”glueing” lattices in a tight binding formalism. In
this section we derive the recursive equations, which we will use to perform the calculation of the Green’s
function to find the transmission. The derivation of these equations starts with the introduction of the
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Dyson’s equation, that describes the response of the Green’s function when the Hamiltonian is changed.

3.3.1 Dyson’s Equation

We begin the explanation of Dyson’s equation, by first introducing two tight binding models that may be
described by matrices Hold and Hnew. These two models are related to each other by:

Hnew = Hold + V (3.18)

This formalism may be used for any system that can be represented by the matrices Hold and Hnew, but
our focus is on systems where the old Hamiltonian, Hold, contains two unconnected subsystems

Hold =

(
H1 0
0 H2

)
(3.19)

and the elements that are introduced, V, containing only terms connecting the two systems

V =

(
0 V12

V21 0

)
. (3.20)

An example of such a system is shown in figure 3.3.

Hold Hnew

V

Figure 3.3: Schematic diagram of both the Dyson equation as we explain in this thesis and the main idea of
the recursive Green’s function method.

We define the Green’s functions g and G for the systems Hold and Hnew by:

g = (E1−Hold)
−1

(3.21)

G = (E1−Hnew)
−1

(3.22)

By using these equations and equation (3.18), we may derive Dyson’s equation [24]

G = g + gVG. (3.23)

Dyson’s equation is not closed, but it can be used to generate a set of equations that are closed. To write
these equations we must first introduce a new way of grouping the Green’s functions.

This grouping is done by dividing the system into slices labelled by an integer, i ∈ {1, 2, . . . , N −1, N}. Here
the slice 1 is the slice connected to the left lead and slice N the slice connected to the right lead, which is
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Left	lead Right	lead

1 2 3 N-2 N-1 N

Figure 3.4: Schematic diagram of how the slices are defined.

shown in figure 3.4. Then we extend this to the Green’s functions so that (Gnm(E))ij refers to the Green’s
function from site i in slice n going to site j in slice m. In this way of writing Green’s functions we identify
the Green’s function connecting the left lead tot the right lead, as the Green’s function from slice 1 to slice
N , GLR(E) = G1N (E).

We also introduce projection operators Pn. Pn projects only the site belonging to slice n. So we identify
Gnm(E) = PnG(E)P†m. Also note that 1 =

∑
n PnP†n.

3.3.2 Recursive Green’s Function Equations

The recursive Green’s function method is about glueing lattices together as we have shown with Dyson’s
equation in figure 3.4, while Dyson’s equations are not closed, the recursive equations are. Furthermore in
the recursive equations we always connect slices.

Each recursive step starts with a system composed of n slices that are connected and a slice n + 1 that
is unconnected from the rest. For this system the matrices gn,n, g1,n and g−1

n+1,n+1 are known. We have
matrices containing the hopping to be introduced between slice n and slice n+ 1, in the form of the matrices
Vn+1,n and Vn,n+1 = V†n+1,n.

The recursive equations (3.25) and (3.24) allow for the computation of G1,n+1 and Gn+1,n+1. G1,n+1

and Gn+1,n+1 are then used as the initial matrices g for the next step in the calculation. The procedure is
graphically summarized in figure 3.5.
The recursive Green’s function equations are:

G1,n+1 = g1,nVn,n+1Gn+1,n+1, (3.24)

Gn+1,n+1 =
(
g−1
n+1,n+1 −Vn+1,ngn,nVn,n+1

)−1
. (3.25)
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1 n n+1

g1,n gn,n gn+1,n+1 G1,n+1 Gn+1,n+1

n+11

Begining recurcive step End recurcive step

Figure 3.5: Overview of a recursive step.

Deriving the Recursive Green’s Function Equations

The goal in of the recursive equations is to find an equation for G1,N (E) of the fully connected system, it is
sufficient to obtain a recursive equation for G1,n+1(E) in terms of g1,n(E). It turns out that this equation
also requires gnn(E), thus we also require a recursive equation for Gn+1,n+1(E).

We obtain an equation for G1,n+1(E) by multiplying Dyson’s equation with P1 from the left and Pn+1

from the right

G1,n+1 = P1GP†n+1

= P1gP†n+1 +
∑
j,k

P1gP†jPjVP
†
kPkGP

†
n+1

= g1,n+1 +
∑
j,k

g1,jVj,kGk,n+1

= g1,nVn,n+1Gn+1,n+1.

Here g1,n+1 is zero because g has no connection from slice 1 to slice n + 1. The sums over j and k could
be reduced because only Vn,n+1 and Vn+1,n are not zero, but as g1,n+1 is zero, only the term with Vn,n+1

remains.

We repeat the previous calculation for Gn+1,n+1 and Gn,n+1 to obtain the equations:

Gn+1,n+1 = gn+1,n+1 + gn+1,n+1Vn,n+1Gn,n+1, (3.26)

Gn,n+1 = gn,nVn,n+1Gn+1,n+1. (3.27)

By combining and rewriting the previous two equations, a closed equation for Gn+1,n+1 is obtained:

Gn+1,n+1 =
(
g−1
n+1,n+1 −Vn+1,ngn,nVn,n+1

)−1
. (3.28)

This allows us to solve the equation for G1,n+1(E).

3.4 Surface Green’s Functions

3.4.1 Symmetry of the Semi-Infinite Wire

With the recursive Green’s function equations we can analytically solve the surface Green’s functions, but
first a small note about translational symmetry in a semi-infinite system must be made. Translational
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symmetry as we know it in the infinite system is absent, as any site has a finite distance to the edge and a
translation changes this distance. But a translation in a semi-infinite wire is a symmetry if we combine it
with the addition or removal of the appropriate number of sites. An example of this is shown in the figure
below

1234

1234

We use this symmetry for solving the semi-infinite wire analytically as we show in the next section.

3.4.2 Solving the Semi-Infinite Wire

To describe the influence of the semi-infinite wire we only need the surface Green’s functions, Gsurface. In the
slices formalism a semi-infinite wire is a set of connected slices starting at an arbitrary slice number, which
we define as n, with an infinite number of identical slices into the −∞ direction. So the surface Green’s
function in the slices formalism is Gsurface = Gn,n.

To obtain an equation for Gsurface we use the symmetry of the semi-infinite wire as explained above. This
symmetry implies that gn,n is equal to Gn+1,n+1, if we add a slice using the recursive equations.

We obtain an equation for Gsurface by using Gsurface = Gn+1,n+1 = gn,n to write the recursive surface
equation (3.25) as

Gsurface =
(
g−1
n+1,n+1 −Vn+1,nGsurfaceVn,n+1

)−1
. (3.29)

This equation is further simplified by using the square lattice structure in the leads. In a square lattice
hopping from slice n to slice n + 1 only takes place between sites of the same index. Furthermore the
hopping, t, is identical for all slices and sites. So Vn+1,n = Vn,n+1 = t1. g−1

n+1,n+1 is the unconnected slice

inverse Green’s function g−1
n+1,n+1 = E1−Hlead, where Hlead is the Hamiltonian for an unconnected slice in

the lead. Using these statements, equation (3.29) is

Gsurface (E1−Hlead)− t2GsurfaceGsurface = 1. (3.30)

The solution for a general wire of width W may be obtained by going to a basis in which Hlead is diagonal:

S†HleadS = diag(E1, E2, . . . , EW ). (3.31)

With S the matrix with rows corresponding to the eigenvectors of Hlead.

We may assume that in this basis the solution, Gsurface, is also diagonal:

S†GsurfaceS = diag(G1, G2, . . . , GW ). (3.32)

Then by multiplying equation (3.30) with S† from the left, S from the right and using S†S = 1, we obtain
W decoupled equations:

(E − Ew)Gw ± t2G2
w = 1, (3.33)
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where w ∈ {1, . . . ,W}. Thus the solution for Gw are

tGw = (E − Ew)/2t± i
√

1− ((E − Ew)/2t)2. (3.34)

We always choose the negative solution, as the density of states in the leads is minus the imaginary part of
the Green’s function.
So the solution for the surface Green’s function is

Gsurface = S diag(G1, G2, . . . , GW )S†. (3.35)

3.5 Computing Transmission

In the previous chapter we have established the theoretical framework necessary to compute the transmission
or conductance in a tight binding model. This was done in a top down manner, to provide a narrative to
follow. In this section we bring all component together to compute the transmission.

The starting point of any calculation is to specify a width W of the model we describe, a length N of
the device and the energy E for which we perform the calculation and is implicit in all Green’s functions
mentioned. We choose the energy E with a small imaginary part η. This changes the Green’s functions to
retarded Green’s functions.

The next step is to obtain or specify the Hamiltonian in matrix form of the individual unconnected slices.
In other words we need Hleads and Hn for n ∈ {2, 3, . . . , N − 1}, the Hamiltonian of the slices in the device.
All these matrices are of size W ×W in calculations done in this thesis.

In all the calculations in this thesis, Hleads is a matrix with (Hleads)i,i+1 = (Hleads)i+1,i = t and all other
elements zero. Hn is specific for each model, but if no impurities or additional structure is imposed it is
equal to the leads Hamiltonian matrix.

Next, we specify the hopping matrices between slices: Vn,n+1 for n ∈ {1, 2, . . . , N − 1}. This is suffi-

cient as Vn+1,n = V†n,n+1, following from the requirement that the Hamiltonian is Hermitian. The hopping
in the leads and from the leads is chosen as t1.

The next step is to compute the surface Green’s function,Gsurface, from Hleads as was derived in section
3.4.2. For this routines exist to solve the eigenvalues and vectors of Hleads. After completing this step the
model may be thought of as N + 2 slices where the first and last slice contain all the effects of the leads.

Because g−1
n,n = E1 − Hn, we now have all the isolated Green’s functions in our model. We also know

all the connections we wish to add, Vn,n+1. So now we may use the recursive Green’s function equations
(3.25) and (3.24) to connect all the slices

G+
1,n+1 = g+

1,nVn,n+1G
+
n+1,n+1,

G+
n+1,n+1 =

[
(g+
n+1,n+1)−1 −Vn+1,ng+

n,nVn,n+1

]−1
.

This procedure starts with the surface Green’s function, g+
1,1 = Gsurface, and also ends with the surface

Green’s function, g+
N,N = Gsurface.

At the end of this procedure we have G+
1,N . We obtain G−N,1 by taking the the hermitian conjugate of

G+
1,N . We need the broadening function as specified in equation (3.16). We compute this by using the equa-

tion (3.17) for the self energy and inserting VL/R = 1t and g+
L/R = Gsurface. So the broadening function

is:
ΓL/R = it2

(
Gsurface −G†surface

)
. (3.36)
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With this, we finally have all the components required for the transmission function as specified in equation
(3.14)

T (E) = Tr
[
ΓL G+

1N ΓR (G+
1N )†

]
.

Now we can compute the transmission. This we will do in the following chapters.
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Chapter 4

Numerical Results Hofstadter Lattice

4.1 Perfect One-Dimensional Wire

The first model we describe is a perfect one-dimensional wire as introduced in equation (2.2), but with the
chemical potential set to zero, µ = 0,

Ĥ =
∑
i

t ĉ†i ĉi+1 + t ĉ†i+1ĉi. (4.1)

We wish to find the transmission in this wire. For this we need to compute the retarded Green’s function,
G+

1,N (E), in the wire. We illustrate the lattice combined with the retarded Green’s function we wish to find
below:

1 N

G+ (E)1,N

Left	lead Right	lead

For the purpose of calculating G+
1,N (E), we are not interested in the semi-infinite wires, only how they

influence the Green’s function on the sites 1 and N . So for calculations it is more useful to think of the
semi-infinite leads as sites that have a different Green’s function. So in the lattice representations we change
the edges of semi-infinite leads to a single special site:

.

Thus we may think of the lattice as

1 N

G+ (E)1,N .

The Green’s functions of the edges of the semi-infinite wire was found in equation (3.34),

=⇒ g1,1(E) = gN,N (E) =
E − i

√
4− (Et )2

2t
. (4.2)
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4.1.1 Analytic Calculation

The perfect wire is simple enough to allow for an easy analytic calculation. This calculation is done to
illuminate how a recursive algorithm works and check numerical results. We use the recursive Green’s
function formalism as derived in section 3.3 to obtain G+

1,N (E). We directly insert Vn,n+1 = Vn+1,n = t to
obtain the a simplified set of recursive equations

Gn+1,n+1 =
(
g−1
n+1,n+1 − t2gn,n

)−1
(4.3)

G1,n+1 = tg1,nGn+1,n+1. (4.4)

We start the recursive equations with the surface Green’s function, as derived in equation (3.34)

t g1,1 = t gsurface = ω − i
√

1− ω2, (4.5)

where ω = E/(2t). For the first N − 2 iterations of the recursive Green’s function method, g−1
n+1,n+1 = E

and the surface Green’s function remains identical, Gn,n = gsurface. This is expected, as gsurface was defined
as the Green’s function that remains identical under extension with a slice. Thus equation (4.4) may be
rewritten to

G1,n+1 = tg1,ngsurface. (4.6)

Using this we write the Green’s function for the chain, connected up until site N − 1, as

t g1,N−1 =
(
ω − i

√
1− ω2

)N−1

. (4.7)

The absolute value of g1,N−1 is identical to that of the Green’s function we started with g1,1, because
ω − i

√
1− ω2 only contains a phase if ω ≤ 1.

For the last step of the recursive algorithm, connecting site N we have g−1
n+1,n+1 = t

(
ω + i

√
1− ω2

)
. Thus

GN,N is:

tGN,N =
1

2i
√

1− ω2
. (4.8)

So G1,N is

tG1,N =

(
ω − i

√
1− ω2

)N−1

2i
√

1− ω2
. (4.9)

To calculate the transmission we also need the broadening functions. The expression for the broadening
function follows from the surface Green’s function of equation (4.5) and the definition of the broadening
function equation (3.16)

ΓL = ΓR =

{
2t
√

1− ω2, |ω| < 1

0, else
(4.10)

Consequently ΓLG1,N is a phase if |ω| < 1 and zero otherwise. The phase cancels against its complex

conjugate, ΓRG
†
1,N . Therefore the transmission of a perfect one dimensional wire is

T (E) = ΓLG1,NΓRG
†
1,N =

{
1, |E/2t| < 1

0, else.
(4.11)

4.1.2 Green’s Functions Cut-off Dependence

In the numerical calculations the retarded Green’s function G+
1,N is calculated. The retarded Green’s

function is related to the Green’s function by a shift in energy with an infinitesimal imaginary number,
G+

1,N (E) = lim
η→0

G1,N (E + iη). The limit of η going to zero, is implemented in numerical calculations by
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choosing η to be small but finite.

To develop an understanding of the effects of η on numerical results, it’s effects on the Green’s function
in the perfect one-dimensional wire are studied. This has as advantages that all objects are scalars and we
have analytical results.
The Green’s functions are computed numerically using the recursive Green’s function method. The results

-3 -2 -1 0 1 2 3
E/t

-3

-2

-1

0

1

2

3
t G

Figure 4.1: The Green’s function, tG1,10, with η = 0.001. The real component is shown in blue, The
imaginary component is shown in red and the absolute value is shown in Green.

of the calculation are shown in figure 4.1 for a system of 10 sites. The real and imaginary components of the
Green’s function fluctuate, but the absolute value behaves as 1/(

√
1− (E/t)2). The fluctuations increase

proportionately for larger systems. The divergences at E/t = ±2 show why it is necessary to include a
imaginary part η in the numerical calculations.

A more detailed study of the behaviour of the Green’s function at fixed energy as a function of η is shown
in figure 4.2. At the energy, E/t = 1, the Green’s function, G+

1,N , increases as we decrease η. This makes
the inclusion of η necessary as the Green’s function is undefined at this energy otherwise. For energy’s not
subject to divergences such as: E/t = 0 and E/t = 1.8, the Green’s function is independent of η when η is
smaller than 10−2. Consequently numerical results are independent of η when η is sufficiently small.

31



10 810 610 410 2100

10 3

10 2

10 1

100

101

102

103

t G
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Figure 4.2: Behaviour of the absolute value of tG1,10 depending on the imaginary shift of the energy, η. We
show show this behaviour for three values of energy: The blue line is for E/t = 2, the red line is for E/t = 1.9
and the green line is for E/t = 0.

4.1.3 Impurity Effects

By choosing a non-trivial profile the local chemical potential, µi, the effects of impurities are investigated.
For this three different models are studied, for which we show the transmission results in figure 4.4.

The first model is that of the perfect one-dimensional wire, where there is no local chemical potential,
µi = 0. The results for this model match the prediction of equation (4.11), where we have perfect trans-
mission when inside the region where modes exist and zero outside. A further note is that this result is
independent of the amount of sites, as we would expect from physical grounds.

Figure 4.3: A sketch of a one-dimensional wire with an impurity on the 5th site.

The second model is that of a single impurity. A sketch of this model is shown in figure 4.3. For this model
the chemical potential is zero, µi = 0, except for a single site, µ5 = t. For this model we obtain a reduced
conductivity, where the amount of the reduction depends on the strength of the impurity. This result is
in agreement with earlier work [26]. The transmission results of a single impurity does not depend on the
location of the impurity or the chain length.

The last model is that of random impurities at all of the 8 sites. In this model we assign a random number
to the chemical potential at each site, µi ∈ [−t, t]. This model is used to describe disorder on the lattice.
For longer chains the transmission decreases further and becomes courser.
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Figure 4.4: Transmission for three different chains of 10 sites, with η = 10−8. The Blue line is for a chain
without impurity’s. The red line has a single impurity at the 5th site. The green line has random impurity’s
located in the 8 sites in-between the edge sites.

4.2 Finite Width Wire

In the previous section the results for a wire with width W = 1 where discussed. This section establishes
the behaviour of wires with widths larger than one, W > 1 .

First we show the results for a wire with a width, W = 3, in figure 4.5. The transmission looks as a pyramid
centred around E = 0. This feature repeats in larger width wires as may be seen in figure 4.6.

The pyramid like structure originates from having multiple bands of perfect transmission stacked on

-4 -2 0 2 4
E/t

0

1

2

3

T(
E)

Figure 4.5: The transmission trough a wire with width, W = 3.
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each other. This is because all individual slices in the model have an identical Hamiltonian

Hslice =

0 t 0
t 0 t
0 t 0

 . (4.12)

We can diagonalize this matrix,

S†HsliceS = diag(E1, E2, E3) = diag(−
√

2t, 0,
√

2t). (4.13)

As the surface Green’s functions, gsurface, and hopping matrices, Vn,n+1, are diagonal in the same basis, all
matrices in the recursive Green’s function formalism are diagonal. This leads to the model being effectively
a superposition of wires of width one, but with energy’s shifted by Ew.

Thus in the transmission we have a superposition of perfect transmission intervals, centred around Ew,
with perfect transmission between Ew − 2t to Ew + 2t. This allows us to explain the pyramid structure of
figure 4.5, where we have Ew = {−

√
2t, 0,

√
2t}.
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E/t
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/W

W = 9
W = 18
W = 27

Figure 4.6: The transmission divided by the width W of the wire. We plot multiple wires with widths:
W = 9, W = 27, W = 81.

For wider chains the energy’s, Ew, are be found by identifying a slice of width W with a one-dimensional
wire with a length of L = W . The solutions of open one-dimensional chains are given by sinusoids, Ψw(x) ∼
sin(κwx), where κw = πw/(W + 1). This choice ensures that the wave-function is zero on points outside of
the chain, Ψw(0) = Ψw(W + 1) = 0. The energies of these solutions are [26]

Ew = 2t cos(κw). (4.14)

The smallest energy Ew is −2t cos
(

π
W+1

)
and the largest Ew is −2t cos

(
π

W+1

)
. As the width is taken to

infinity, W →∞, the maximum energy and minimum energy converge to 2t and −2t respectively. Combining
this with the width of a single transmission interval, it follows that, in the limit of W →∞, all transmission
lies between −4t and 4t.

The results of figure 4.6 suggest that T (E = 0) ∼W and that the overall form converges for W →∞.
In figure 4.7 we compute the transmission for a devices similar to the finite width W wires we discussed
earlier, but now we give each site inside the device a random chemical potential, µi ∈ [−ζ, ζ].
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Figure 4.7: The transmission for a wire of width W = 27 and length L = 27. The results for four different
strengths of the random potential, ζ, are shown.

4.3 Magnetic Field Implementation

We want to study the effects of a magnetic field in both the square lattice model and the Sierpinski carpet.
In this section we show how a magnetic field is implemented in a square lattice. The common way of
introducing a magnetic field in a tight-binding model is by using Peierls substitution [22, 27]. We gave a
sketch of how this substitution works in section 2.3.2, but rigorous work to justify this substitution may be
found [28, 29, 30]. The Peierls substitution changes the hopping element between two lattice points i and j
with a phase. This phase depends on the gauge field between the lattice points,

ti,j → ti,j exp

(
−ie
~

∫ ~xj

~xi

~A · d~x

)
. (4.15)

Equation (4.15) summarizes how one implements the magnetic field on the lattice, but to provide more
physical understanding we derive the same result from the Aharonov–Bohm effect [31]. The Aharonov–Bohm
effect states that a charged particle obtains a phase shift, eiφ, when it loops around an area with non-zero
magnetic field inside, even if there is no magnetic field on the path. The phase, φ, the charged particle
acquires is

φ =
q

~

∫
C

~A · d~x, (4.16)

where q is the electric charge of the particle and C is closed path of the particle. If the magnetic field is
constant, then this expression may be simplified to

φ =
q

~
A(C)B, (4.17)

by using ~B = ∇× ~A and stokes theorem. Here A(C) is the area enclosed by the path C.

To show how the Aharonov–Bohm effect translates into the tight-binding model, we begin by studying
the effects of the magnetic field on a single plaquette. We illustrate a plaquette in figure 4.8. In this model
the electron is restricted to moving from one lattice site to a different site, thus by going around a loop in
the plaquette it encloses a flux, Φ = A(C)B = a2B. Here a is the distance between two lattice points.
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Figure 4.8: a plaquette in a magnetic field. The arrows represent an electron hopping a closed loop through
the chain.

An electron going around a loop in this plaquette must obtain a phase trough the hopping elements,

t1t2t
†
3t
†
4 = t4e−i2πΦ/Φ0 , (4.18)

where Φ0 = 2π he . For a single plaquette it is sufficient that one hopping element contains a phase t3 =

tei2πΦ/Φ0 and all other hopping are real. However, we wish to describe a lattice with multiple plaquettes
in a magnetic field. If the magnetic field is constant, then each plaquette in the lattice encloses the same
amount of flux, as visualised in figure 4.9. To implement this one must choose the hopping elements such

Left	lead Right	lead

Figure 4.9: An example of a two dimensional square lattice structure, with a constant magnetic field in-
between the leads.

that for any closed paths the obtained phase trough the hopping elements corresponds to the flux enclosed
in the path. This is true if one picks the Landau gauge ~A = −Byx̂. This gives the hopping elements in the
x direction a phase depending on the y position of the hopping,

tx = t exp(i2πΦ/Φ0Iy), (4.19)

where Iy is an index in the y direction. This index is chosen such that aIy is the position in the y direction
of the two lattice points that participate in the hopping. The hopping in the y direction is unaffected, ty = t.
This choice of hopping ensures that for any closed path the phase acquired matches the Aharonov–Bohm
effect.

4.4 The Hofstadter Model

By using the prescription given in the previous section, the effects of the magnetic field may be studied. In
the left panel of figure 4.10 the transmission as a function of energy, E/t, and magnetic field, Φ/Φ0, are
shown. In the results of figure 4.10 similarity with the Hofstadter butterfly may be seen [8]. This is because
the model in-between the leads is the Hofstadter model, but with a major difference. Namely our model has
edges and the Hofstadter model does not. In the following sections we further investigate the correspondence
between our results and the Hofstadter butterfly.
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Figure 4.10: Transmission results for a Hofstadter model with a width of W = 81 and length L = 81. The
arrows point to plateaus where the transmission is: one, two or three.

4.4.1 Bulk Modes

It is possible to compute the transmission as shown in figure 4.10 for different sizes of the lattice. This allows
us to compare how the results change for different system sizes W and L. For these comparisons we choose
to fix the size of the lattice between the leads to a square, so W = L. We make this choice such that, the
scaling we investigate here is the same as for the Sierpinski carpet. To investigate how transmission changes
we introduce a new function ∆T that is the difference in transmission between a large square and a smaller
square,

∆T = T (W = 81, L = 81)− T (W = 27, L = 27). (4.20)

∆T is computed for a mesh of energy and flux values, these results are shown in figure 4.11. By subtracting
the results of a smaller system, we subtracted any effects that are independent of the system size. We refer
to the states in areas that do not increase in transmission as edge modes for reasons that will become
apparent in section 4.4.4. The states in areas that increase in transmission as the system size increases are
referred to as bulk modes.
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Figure 4.11: Left: ∆T as defined in equation (4.20). Right: The spectrum of solutions for the Hofstadter
model as computed by [8].

In figure 4.11 we also show the Hofstadter butterfly. The Hofstadter butterfly is the spectrum of solutions
for an infinite 2d lattice with a magnetic field. To be more precise it shows if there exists a solution ψ(x, y)
for the equation

t
[
ψ(x+ a, y) + ψ(x− a, y) + (ei2π(Φ/Φ0))(x/a)ψ(x, y + a)

+(e−i2π(Φ/Φ0))(x/a)ψ(x, y − a)
]

= Eψ(x, y),

for a specific energy, E/t, and a specific flux, Φ/Φ0. Analytic solutions only exist when Φ/Φ0 is a rational
number. This confused scientist as no other physical effects depend on being able to express a physical
quantity as a rational number. Hofstadter showed in 1976 that the spectrum is in fact continuous in terms
of the magnetic field.

The model that Hofstadter solved is equal to the model that is used in this thesis, with the mayor exception
that the lattice in this thesis is finite and is coupled to semi-infinite leads. Reassuringly, we observe that the
results of Hofstadter and ∆T largely agree. This agreements is desired as Hofstadter’s results describe the
density of states in the limit of W →∞ and L→∞, with the exception of states that exist on the boundary.

A noticeable difference is that there are lines in Hofstadter’s results near (Φ/Φ0 = 0, E/t = −4) that
are absent in the results of ∆T . The reason for this is that as these lines approach (Φ/Φ0 = 0, E/t = −4)
they become very thin. This is the reason why they do not show up in numerical results. In the results of
figure 4.13 we further confirm that these modes become thinly spaced for small magnetic field.

4.4.2 Direct Diagonalization

To supplement our understanding of features we may directly diagonalize the Hamiltonian. To do this we
construct the Hamiltonian matrix, H, of the system without the leads connected for a fixed flux. This means
that H is a large, but finite, matrix.

Because H is finite, we may solve for the eigenvalues of H~ψn = En ~ψn. This provides us with as many
states, ~ψn, as there are lattice points. For example for the results of figure 4.10 has 812 = 6561 states.
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From the eigenvectors, ~ψn, we are interested in the localization of the state on the lattice. To show this we
display |ψn(x, y)|2. An example of this for a square lattice is shown in figure 4.12. Here a few examples
where chosen to illustrate how bulk states are localized. For a small energy range inside a bulk region many
different bulk states exist, although they are quite different from each other, they are generally localized
throughout the entire lattice.

Figure 4.12: Examples of states in bulk regions. The states were obtained by directly diagonalising a Hamil-
tonian with flux Φ/Φ0 = 0.27. The arrows refer to the energy of the state in the transmission graph that
is obtained by the recursive Green’s formalism. The black line shows where in the Hofstadter butterfly the
intersection at flux Φ/Φ0 = 0.27 lies.

By directly diagonalising a Hamiltonian for a specific flux value, we also obtain the list of energy eigenvalues
En for the system. This allows us to show the density of states. We do this by making a histogram with
a very small bin size. We show two such histograms for fluxes of Φ/Φ0 = 0.11 and Φ/Φ0 = 0.22 in figure
4.13. Almost all the bins contain at least one state, these are the edge modes and they exist for the entire
spectrum.

The peaks in the histograms correspond to the bulk modes. In both histograms the outermost peaks
correspond to the same line in the Hofstadter butterfly. So we may investigate the difference between them
in the two histograms. This outermost peak changes from multiple bins when the flux is Φ/Φ0 = 0.22 to a
single bin Φ/Φ0 = 0.11. Thus reinforcing the claim that these bulk modes become thin as one approaches
(Φ/Φ0 = 0, E/t = −4).
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Figure 4.13: Left: A histogram of the states per energy for a flux of Φ/Φ0 = 0.11. Right: A histogram of
the states per energy for a flux of Φ/Φ0 = 0.22. Both histograms are for a system of width, W = 81, and
size, L = 81, and therefore contain 6561 states. The bins in both histograms have a width of 1/100 in units
of E/t.

4.4.3 Landau Levels

In section 2.3.1 we found that we could identify the tight-binding model as a discretized version of the free
electron model. This connection is only valid if the discretization is sufficiently small that the effects of the
lattice are negligible. This condition is true if the energy of the modes is small, as then the wavelength of the
modes is appropriately large. We use this connection to show how the integer quantum Hall effect translates
to our transmission results.

The starting point for this correspondence is to find how the energies of the Landau levels translate to
tight-binding parameters. As derived in section 2.4, the energy of the n-th Landau level is

En = ~ωB(n+
1

2
), (4.21)

where ωB = eB/m. In section 2.3.1 we derived how t relates to a and m. Namely: t = −~2/(2ma2). This
allows us to write the energy of the Landau levels to

En = 4πt
Φ

Φ0
(n+

1

2
)− 4t. (4.22)

The factor of −4t arises from the global chemical potential, µ. As the global chemical potential obtains a
factor of −2t per dimension during the discretization. We combine the Landau levels with the transmission
in figure 4.14.

The Landau levels themselves do not show up in transmission spectrum, but the lack of these lines was
already noted in the result of figure 4.11. However, the Landau levels do correspond with a change of the
transmission with an integer value.

One of the predictions of the integer quantum Hall effect is that each filled Landau level contributes a
factor of e2/h to the Hall conductance, σxy. In terms of transmission functions this means that the trans-
mission is the amount of filled Landau levels. This is what we see in figure 4.14.

A small problem is: we are are not measuring the Hall conductance, σxy, but the cross-sample conduc-
tance, σxx. The reason this result shows up in the cross-ample conductance, is because the Hall conductance
is caused by chiral edge modes. The presence of the chiral edge modes creates perfect channels around the
edges, this gives rise to the Hall conductance, σxy. But these same channels allow electrons to move from
the left edge to the right edge, thus giving rise to the same conductance for σxx.
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T=1T=2T=3

Figure 4.14: Transmission results for width W = 81 and length L = 81 combined with the prediction of
Landau levels of equation 4.22, where we show the n-th Landau level, with n ∈ {0, 1, 2, 3, 4}.

4.4.4 Chiral Edge Modes

In the previous section the connection with the integer quantum Hall effect was established. This allows us
to identify that plateaus of integer transmission are generated by chiral edge modes, at least for the domain
where the connection with the free electron model holds. In this section we establish the connection between
chiral edge modes and the integer plateaus in the entire flux energy domain.

Similar to the integer quantum Hall effect, it is found that for the Hofstadter model the Hall conductance is
quantized

σxy =
e2

h
C, (4.23)

but instead of the amount of filled Landau levels, the quantization is determined by the first Chern num-
ber, C [18]. The first Chern number is an integer number that is based on a momentum integral over the
filled bands. In the integer quantum Hall effect one finds that each Landau level contributes exactly one to
the Chern number. However, in general the contribution of each band can be any integer. An important
property of the Chern number is that it only changes when the distinction between empty bands and filled
bands breaks down. In other words, if the gap between the bands closes and the bulk of the system becomes
conducting.

If the Chern number is only defined when the system is insulating, then how does the system obtain a
Hall response as equation (4.23) suggests? This is because the calculation for the Chern number relied on
an infinite system, without boundary. But a real system terminates at some point. This does not invalidate
the Chern number calculation, as for a sufficiently large system, the inner or bulk regions may be described
by an infinite model, but it does break down at the boundary. At this boundary there are states that
have properties that directly relate to the Chern number, this is called the Bulk-boundary correspondence
[20]. For the Hofstadter model one finds that the edge of the lattice there are chiral edge modes. Where the
the amount and the chirality of chiral edge modes is directly related to the Chern number in the bulk [32, 33].

The chiral modes allow us to explain the plateaus in the transmission. For if we compare our results to
literature that directly computes σxy [34], We observe that our results, σxx, are the approximately the ab-
solute value of the expected Hall conductance, σxx ≈ |σxy|. We show this comparison in figure 4.15. This
makes sense, as the transmission from the left lead to the right only relies on the presence of a perfect
channel, not it’s chirality.
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Figure 4.15: Left: Transmission results for recursive algorithm for a region of width W = 81 and length
L = 81, with a linear scale for the transmission. Right: Hall conductance as computed by [34]. The darker
colours refer to lower Hall conductance.

When we investigate the Sierpinski carpet, there is no literature that provides us with a connection to Chern
numbers, thus to be able to verify that there are chiral edge modes, we have to rely on numerical results.
There are multiple properties that chiral edge modes exhibit that we can check. These are: Resistance
to impurities, being localized on the edge, integer transmission values and that the transmission remains
constant across different system sizes. We investigate these properties in the Hofstadter model to build up
familiarity with these results.

We begin by investigating the localization of the states in the regions that contain chiral edge modes.
Examples of the states in the plateaus are shown in figure 4.16. We find that these regions only contain
modes that are heavily localized on the edges.

Figure 4.16: Up: Examples of the localization of edge states. Down left: A slice trough flux Φ/Φ0 = 0.11,
with examples of states at E/t = {−3,−2,−1}. Down right: transmission results for square lattice model
with W = 81 and length L = 81. The black line is the location of the slice trough flux Φ/Φ0 = 0.11.
The dots refer to the examples of localization: (Φ/Φ0 = 0.27, E/t = 0.3), (Φ/Φ0 = 0.27, E/t = 0.5) and
(Φ/Φ0 = 0.48, E/t = 0.3).

The other point of investigation is to verify that the transmission in the regions containing chiral edge modes
is stable to impurities. We may check this by adding random impurities trough the local chemical potential,
µi ∈ [−0.3t, 0.3t]. By repeating the calculation of the transmission 40 times for the same energy and flux,
we obtain an average transmission, TA, and the standard deviation, σ.
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This calculation is done for a mesh of energy and flux values and we show the result in figure 4.17. The
edge mode regions have a standard deviation that is significantly smaller than the bulk regions. Furthermore
the results of the standard deviation do show lines where we expect the Landau levels to be. This happens
because impurities cause a broadening of the spectrum.
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Figure 4.17: The results for calculations with random impurities, µi ∈ [−0.3t, 0.3t], generated by 40 samples
for a hofstadter model with width ,W = 27 and size, L = 27. Left: Average transmission, TA. Right:
Standard deviation, σ.

4.4.5 Symmetries

In the results of the Hofstadter butterfly there are two axis of reflection: a horizontal axis for E/t = 0 and a
vertical axis for Φ/Φ0 = 1/2. These symmetries originate from the Hofstadter model, which we prove in this
section. The presence of these symmetries implies that only a quarter of points in the transmission results
is unique.

To prove the symmetry trough the E/t = 0 axis, we will prove that the spectrum of solutions is sym-
metric around E/t. To this end, we introduce the flip operator, F̂ . The flip operator acts on a state ψ(j, k)
by multiplying with −1 in a checker-board manner

F̂ψ(j, k) = (−1)j+kψ(j, k). (4.24)

We want to find how the flip operator changes the energies of solutions to the original problem, Ĥψn = Enψn.
From the original wave-function a modified wave-function, ψ′n, is obtained by applying the flip operator to
the original wave-function, ψ′n = F̂ψn. Then we compute the energy of this modified wave-function

Ĥψ′n = ĤF̂ψn

= F̂ Ĥ ′ψn,

where we introduce a modified Hamiltonian, Ĥ ′ = F̂ ĤF̂ . Because of the square lattice structure, the mod-
ified Hamiltonian acts as if the hopping parameter sign was reversed, Ĥ ′ = Ĥ(t → −t). If the chemical
potential is zero, which is true for most models in this thesis, the modified Hamiltonian is the negative of the
original Hamiltonian, Ĥ ′ = −Ĥ. We apply this relation to find that the energy of the modified wave-function
is minus the energy of the original wave-function. Thus, every solution ψn with energy En has a ’sibling
solution’ F̂ψn with energy −En. This relation generates the axis of symmetry trough E = 0.
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The symmetry trough Φ/Φ0 = 1/2 is caused by a combination of two different symmetries. The first
symmetry is that the the model is invariant under the addition of an integer of flux, Φ/Φ0 → Φ/Φ0 + n. As
the flux only influences the phase-factors and these are invariant under additions of integers, e−i2πΦ/Φ0 =
e−i2π(Φ/Φ0+n). The second symmetry is the invariance of the energy spectrum under complex conjugation
of the Hamiltonian. Complex conjugation changes the the phase factors by e−i2πΦ/Φ0 → e+i2πΦ/Φ0 . This is
equivalent to reversing the magnetic field, B → −B.

To prove that the energy spectrum is invariant under a reversed magnetic field, we repeat the previous
calculation, but with the conjugation operator, Ĉ. The Hamiltonian, Ĥ, with magnetic field B is related to
Ĥ∗ with magnetic field −B by Ĥ∗ = ĈĤĈ. Assuming we have a solution Ĥψn = Enψn, then we introduce
ψ∗n = Ĉψn. This modified wave-function is a solution of the same problem, but with magnetic field reversed,
and with the same energy En

Ĥ∗ψ∗n = ĈĤψn

= Enψ
∗
n.

So we have two symmetries for the spectrum: Φ/Φ0 ≡ Φ/Φ0 + n and Φ/Φ0 ≡ −Φ/Φ0. By combining the
two symmetries we obtain a new symmetry

Φ/Φ0 ≡ 1− Φ/Φ0. (4.25)

This symmetry responsible for the axis of reflection trough Φ/Φ0 = 1/2.

4.4.6 Conclusion

We close the discussion on the Hofstadter model by reiterating the division into chiral edge and bulk mode
regions. We showed that the chiral edge modes are localized on the edges and the transmission they generate
is resistant to impurities. In contrast the bulk modes are localized through the entire lattice and the
transmission they generate is easily influenced by impurities. By investigating the scaling of the transmission
we can nicely show where both are located in the flux energy space. For this we define the scaling function, S,
as the transmission through a large Hofstadter model divided by the transmission through a small Hofstadter
model,

S =
T (W = 81, L = 81)

T (W = 27, L = 27)
. (4.26)
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Figure 4.18: The scale function, S, as defined in equation (4.26).
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We display the results of S in figure 4.18. The white areas are where the transmission is close to zero and
were manually put to zero. The purple areas correspond to non-zero transmission and that the transmission
remains identical when changing the system size, these are also the areas where we find chiral edge modes.
We expect that the scaling is unity for regions containing chiral edge modes, as the amount of transmission
channels is fixed by the Chern number, not the system size.

The remaining areas increase in transmission as the system size increases. These areas correspond to the
areas where we observed the bulk modes. The maximum scale factor observed, barring the region near
Φ/Φ0 = 1/2, is 3. This is desired as the width was increased by 3, so we would expect the amount of
channels participating in the transmission to increase with the same factor as the width.
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Chapter 5

Numerical Results Sierpinski Carpet

5.1 Sierpinski Lattice Model

We started chapter 1 with explaining what fractals are and why they are interesting to study. Fractals are
objects that have a non-integer dimension when dimension is defined through scaling properties. The fractal
we study is the Sierpinski carpet. The main reason for this choice is that it translates naturally into the
recursive green’s function equations.

A Sierpinski carpet is a fractal structure generated by taking a square, dividing the square into 9 pieces,
removing the square in the center and repeating the procedure for the 8 remaining squares. In figure 5.1 we
show the different iterations of this procedure.

Generation 1 Generation 2 Generation 3 Generation 4

Figure 5.1: The first four generations of the Sierpinski carpet. The generation corrosponds to how often the
recursive procedure for generating the fractal was applied.

The recipe for the creation of the Sierpinski carpet also provides us with the method for finding the fractal
dimension. As decreasing the length scale by a factor of three, l → l′ = l/3, increases the amount of filled
boxes by a factor of eight, N(l)→ N(l/3) = 8N(l). So we find that N(l) ∼ (1/l)8/3. Using the definition of
box dimension we find

dbox = lim
l→0

log(N(l))

− log(l)
=

log(8)

log(3)
≈ 1.8928. (5.1)

We implement the Sierpinski carpet into the Hofstadter model, by starting with a square lattice with the
width and length being a power of three: W = L = 3G, where G is the generation of the fractal we wish
to make. Then we divide the lattice into 9 blocks and remove any lattice points in the center block. This
is repeated until the final blocks contain only a single lattice point. An illustration of how the lattice of a
generation two carpet looks is shown in figure 5.2.
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Figure 5.2: The implementation of the Sierpinski carpet into the tight-binding model.

5.2 Sierpinski Lattice without Magnetic Field

Figure 5.3: Transmission results of a Sierpinski carpet of generation 4. Localization of a few example states
are shown, with arrows referring to their approximate energy.

By using the recursive Green’s function formalism we obtain the transmission spectrum for a Sierpinski
fractal. This spectrum is shown in figure 5.3. There are a few things to note about this spectrum. First, we
observe a lot of fluctuations over the depicted energy range. These fluctuations have been studied in the past
[6], where it was found by using box-counting that these fluctuations have a fractal behaviour. Specifically,
the fluctuations scale with the same dimension as the fractal, i.e. d ≈ 1.89.

Nonetheless there exists a small domain which is flat. This domain is located near E = 0, where the
transmission is approximately four. Another fascinating property of this region is that the states obtained
by direct diagonalization have the shape of a simple cross and a square as shown in figure 5.3. This feature
persists across different generations of the Sierpinski carpet.

A striking difference with the simple two-dimensional lattice is that the transmission value is small compared
to the system size. For the two-dimensional lattice with a width of W we obtained a transmission maximum
that was proportional to the width, whereas here, ignoring minor fluctuations the transmission maximum is
four. For the two-dimensional lattice one can think of this as the transmission maximum being proportional
to the amount of horizontal lines through which a particle can travel, i.e. the width. A major difference with
the Sierpinski carpet is that when holes are cut out, the amount of horizontal channels is reduced. However,
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even the slice with the fewest points still has 2G points, so for the result shown figure 5.3 we naively would
expect a maximum transmission of 24 = 16, but we only observe a maximum slightly above four instead.

5.3 Magnetic Field Results

The introduction of the magnetic field does not require additional steps in comparison to the Hofstadter, as
the implementation of the magnetic field as done in section 4.3 ensures that for larger paths the appropriate
phase is obtained. The results of computing the transmission for the Sierpinski carpet of generation four are
shown in figure 5.4.

In sharp contrast to the results without magnetic filed, where almost the entire spectrum contains fluc-
tuations, there are large domains where the transmission is close to one. As we will prove in section 5.3.2,
these domains contain chiral edge modes. But there are more domains that have integer transmission.
Around (Φ/Φ0 = 1/2, E/t = 0) there is an area of transmission two. In this area we find non-chiral edge
modes. Section 5.3.3 is devoted to a further discussion of this feature.

In the transmission results without magnetic field of figure 5.3, a small plateau of transmission four was
visible near E = 0. We observe that this plateau extends to finite magnetic field in the results of figure
5.4. This plateau remains present in different generations. One may verify this by comparing the results of
different generations, as done in figure 5.9.

Figure 5.4: Transmission for the Sierpinski carpet of generation, G = 4, with a width of: W = 81 and
Length: L = 81.

Next we investigate the transmission results for different generations of the Sierpinski carpet. If features
persist across different generations, we can assume that this is true for all generations and not just the few
accessible. We show the results for generation 3 and generation 5 in figure 5.5. The same colour-scale was
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used for all generations. We are able to do this because the transmission rarely exceeds four, regardless of
generation. Comparing these results shows that large scale features for generations 3, 4 and 5 remain mostly
identical, with a major exception being the coarse graining for domains not part of a plateau.

The increase in coarseness for larger generations is likely caused by the self-similarity of the spectrum.
As for the Sierpinski triangle it is known that each successive generation adds more small scale structure to
the spectrum [35]. Section 4.4.1 is devoted to studying the areas that show this increase in coarseness.

Although we have transmission results for generation 5, we chose to rely mainly on generation 4 results.
This is due to the computational time necessary to compute the transmission for a generation 5 Sierpinski
carpet, but this is compounded by the presence of small scale structure. As to capture the small scale
structure more and more sampling is required, otherwise the transmission value chosen to represent the area
under the pixel contains a high degree of randomness. The increase of sampling required combined with the
increase of computational time for a single transmission result, motivates the choice predominately use the
generation 4 results for the analysis.

Figure 5.5: Left: Transmission for Sierpinski carpet of generation, G = 3, with a width of: W = 27 and
Length: L = 27. Right: Transmission for Sierpinski carpet of generation, G = 5, with a width of: W = 243
and Length: L = 243. The amount of points computed is 2 times as small in both directions, compared to
other results.

5.3.1 Bulk Modes

In the Hofstadter model we were able to identify the bulk modes via subtracting the transmission results of
a smaller square from the of a larger square. The most natural way repeat this for the Sierpinski carpet is
by subtracting the results of a smaller generation:

∆T = T (G = 4)− T (G = 3). (5.2)

The results of this are shown in figure 5.6. The result of this is substantially different from that of the Hof-
stadter model, as many regions contain increasing transmission close to regions of decreasing transmission.
This is a result of more small scale details showing up in the transmission results. When investigating the
localization of the states in the coloured regions of figure 5.6, we obtain states that are localized through
the entire lattice. As these states are also localized around the holes of the Sierpinski carpet, it makes sense
that they are affected by an increase in fractal generation.
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Figure 5.6: ∆T as defined in equation (5.2) combined with examples of state localization.

5.3.2 Chiral Edge Modes

In the square lattice model we were able to confirm the presence of edge modes by comparing observed
plateaus of transmission to the theoretical predictions of the hall voltage σxy. Furthermore, we showed that
these regions support states that indeed are localized on the edge. The transmission of these plateaus was
not easily affected by impurities, because chiral modes are stable to impurities.

We do not have any predictions for the hall voltage for the Sierpinski fractal, but we can show that there are
regions that have states localized on the edge and are stable to impurities. We investigate the resistance to
impurities by adding a random impurity at each lattice point, µi ∈ [−0.3t, 0.3t]. Then, in order to calculate
the average transmission, TA, and standard deviation, σ, we calculate the transmission 40 times with a dif-
ferent realization of the impurities. This is done for a mesh of flux and energy. The results of this calculation
is shown in figure 5.7.
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Figure 5.7: Up: Localization of edge states. The coloured dots show their locations in the energy flux plane
in the other results. Down: The results for calculations with random impurities, µi ∈ [−0.3t, 0.3t], generated
by 40 samples for a generation three Sierpinski carpet. Down-left: Average transmission, TA. Down-right:
Standard deviation, σ.

The results of figure 5.7 confirm that the regions with transmission one are stable to impurities and contain
states that are localized on the edge. Thus, these regions support chiral edged modes. However not all areas
that are resistant to noise have transmission one, there are many areas of transmission zero as well. So, in
order to visualize were the single chiral edge modes are, we create a combined function

R = (TA − 1)2 + σ. (5.3)

The results of R ≈ 0 correspond to were the single chiral edge modes are. We show the results in figure 5.8.

We have confirmed the existence of single chiral edge modes, but one may wonder if there are regions
containing multiple chiral edge modes. The regions of transmission two and four that we mentioned earlier
as plateaus are not stable to impurities, so these do not contain chiral modes. Although no other large
plateaus are observed, it is possible that a small region containing multiple chiral edge modes exists. To
check if this is the case we look for a pixel that is stable to impurities and has a transmission larger than
one. This was done by filtering out all pixels that have a high standard deviation, σ > 0.1, and looking at
the remaining pixels. A histogram of the pixels after filtering is shown in figure 5.8. No single pixel is found
that has a transmission larger than one and a half. Thus we conclude no multiple edge modes exist.

One reason why no multiple edge modes exist, is that in the Hofstadter model the multiple edge modes
have a localization that is multiple sites wide along the edge. The Sierpinski carpet creates holes such that
the edge region is only a single site wide. This could disrupt the multiple edge modes.
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Figure 5.8: Left: R as defined in equation (5.3) for Sierpinski carpet of generation three. Right: The
frequency of pixels ranked by their value for the transmission, T , after filtering out all pixels with σ > 0.1.

5.3.3 Non-Chiral Edge Modes

In figure 5.4 we observe a plateau region in the centre with a transmission of approximately 2. We also
mentioned there was a region of transmission 4. The presence of these regions and the fact that they remain
constant over multiple generations is best shown through the scaling function

S =
T (G = 4)

T (G = 3)
. (5.4)

Here, S is set to zero if the transmission of either G = 3 or G = 4 is smaller than 1/10. The results of
S(E/t,Φ/Φ0) are shown in figure 5.9. We are interested in the regions where S ≈ 1, which implies that the
transmission is the same in both generations. We see that the regions with chiral edge modes are contained
in figure 5.9, this means that the chiral modes are present across different generations. Yet there are two
regions that do not contain chiral edge modes. The first such region is near (E/t = 0,Φ/Φ0 = 0). This
region contains states that form a cross and diamond shape as was shown in figure 5.3.
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Figure 5.9: Up: Examples of the localization. Down-left: S(E/t,Φ/Φ0) as defined in equation (5.4). Down-
right: transmission for a slice at Φ/Φ0 = 0.48.

The second region constant under scaling is near (E/t = 0,Φ/Φ0 = 1/2). Slicing through the flux plane
at Φ/Φ0 = 0.48 reveals a sinusoidal pattern. The localisation of the states in the sinusoidal region consists
entirely of states that are localized on the edges. The cause of this behaviour might be related to the shape
of the edge states. We see that the edge states loop around the smallest holes that have been cut out to
create the Sierpinski fractal. This creates states that schematically look like figure 5.10.

Figure 5.10: Sketch of the localization of states in the T = 2 plateau.

This region is not stable to impurities and there are two channels for transport. This suggests that there are
two modes, but they have opposite chirality. These two modes can then scatter from a left moving mode to
a right moving mode at an impurity, thus explaining why these modes are not resistant to impurities. We
think that the localization of these states, as we illustrate in figure 5.10, has a relation to this behaviour.

5.3.4 Conclusion

By comparing the transmission results for different generations, we find that the transmission is mostly
identical across generations. A major exception to this is what might be called the ’bulk region’, were each
successive generation adds more small scale structure. The states in this region are found to be localized
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through the entire lattice, this combined with literature [6, 5] suggests that this increase in small scale struc-
ture is related to the fractal nature of the lattice.

The regions that persists across different generations may be divided into three categories: The first and most
important category is the chiral edge mode area. These regions are stable to impurities, have transmission
one and contain states localized on the edge. No regions are found that are stable against impurities and
with transmission more than one. So we rule out multiple chiral modes, unless their domains are smaller
than the mesh used.

The remaining two regions are not stable against impurities and have a transmission of two and four.
The plateau with transmission two also contains states localized on the edge and are non-chiral. A hypoth-
esis as to why this state has no chirality was put forward, in the discussion the steps to check this will be
disused. The plateau with transmission four contains modes resembling cross and diamond structures and
are non-chiral.
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Chapter 6

Discussion

In this thesis we verified the existence of chiral edge modes by observing that there are regions of transmis-
sion one, that are resistant to noise. But we can not distinguish between chiral edge modes with a positive
Hall conductivity, σxy, and negative Hall conductivity. We know that in the Hofstadter model there are
regions of positive Hall conductivity and negative Hall conductivity, so a similar behaviour is expected for
the Sierpinski carpet results.

To measure the hall conductivity, a set-up with leads at the edges is required, this set-up is shown in
figure 6.1. Such a set-up may be described by an extension of the procedure described in chapter 3. For
this extension the Landauer-Büttiker formalism has transmission functions between each lead: T1→2, T1→3,
T2→3, etc. These transmission function may each be calculated by the same recursive procedure, but some
modification is required to include the new leads. This implementation is beyond the scope of this thesis,
but this was done by associated research [36]. The results of this associated research are also shown in figure
6.1. These results align with the conclusions from this thesis, as only single edge modes and in the same
regions are found.

Lead 2

Lead 3

Lead 4

Vxx

Vxy

I

Lead 1

Figure 6.1: Left: Set-up of a system that can measure the Hall conductivity, σxy. Right: Results for the Hall
resistivity for the set-up shown on the right, for a generation 4 fractal. These results are from [36].

For the Non-chiral edge modes discussed in section 5.3.3 we gave a hypothesis of the mechanism that causes
them. To check this hypothesis, further investigation of the wave functions may provide answers. The wave
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functions where found by directly diagonalising the Hamiltonian, but we only used the absolute value squared
to show how these states are localized. By investigating the differences in phase between neighbouring lattice
sites, the local momentum may be found. This may be used to find the chirality of the mode. Furthermore if
one where to sum the difference in phase along a closed path, the total phase should add up to 2πn with n an
integer. Then we could calculate this number for the path along the boundary, but also for the holes of the
Sierpinski carpet. The expectation is that using this one would be able to independently confirm the chirality
of the modes. This might enable one to also decompose the non-chiral modes into the two different chiralities.

The last point of interest is to further classify the states found by direct diagonalization. Currently this
data was used to take a peek into how states in a certain energy region are localized. But by categorizing
the states using an algorithm more information might be obtained. First of it should be straightforward to
separate bulk states from edge states by filtering results based on their localization on the edge. This would
provide a easy way of confirming that the chiral edge mode regions only contain states localized on the edges.
It might also be possible to separate the bulk states into different family’s. One way of doing this could be
by comparing the localizations on different holes in the Sierpinski carpet. If one where to successfully classify
the states one could compare these family’s for different generations of the Sierpinski carpet and investigate
the scaling and self-similarity of the states across the generations.
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