## Universiteit Utrecht

## Robustness in parallel machine scheduling

Author:
D.J. van Roermund

Supervisors:
dr. J.A. Hoogeveen
dr. ir. J.M. van den Akker


#### Abstract

In parallel machine scheduling with precedence relations between jobs, the delay of a single task could hinder several other machines. The traditional method for avoiding this situation involves adding idle time between jobs that are dependent on each other, to avoid having to postpone the scheduled execution of successor jobs when the predecessor is delayed. In this thesis we look at a previously introduced alternative definition of robustness, which measures the chances of the propagation of these delays. By minimising this metric, we minimise the possibilities of machines having to wait for others because of a breakdown. Note that a machine that has to wait for itself to complete a task after a breakdown is inevitable.

To explore the effectiveness of this approach, we introduce the concept of fixations, defined such that the jobs involved in a fixated relation are to be scheduled on the same machine. This ensures that these fixated relation can not attribute to the propagation of delays, as their jobs are not on different machines. By maximising the number of fixated relations then, we are minimising the chances of delay propagations, and thereby maximising the robustness of our schedules.

To simplify the implementation of our approach, we start by relaxing the precedence relations to mere correlations, dropping the partial ordering of the jobs. These correlations still signify a connection between two jobs, which we would like to have executed by the same machine, although the order in which this is done is irrelevant. Later we also add proper precedence relations, and include additional correlations to improve the robustness measure.

For finding solutions using our objective of maximising the number of fixated relations, we introduce two local search algorithms: one based on a genetic algorithm and one using simulated annealing. As the additional constraints that demand pairs of jobs are scheduled on the same machine might make it impossible to actually construct a schedule, we have to check every solution that is generated. For quickly evaluating this feasibility of a solution, we define a linear programming formulation that is incrementally solved using column generation. Furthermore we present several extensions to the problem category, to deal with release dates, deadlines and weighted relations. Finally we present another search method that combines the columns generated for the evaluation linear program into new solutions.

After finalising the approach and discussing the experiments used to test its effectiveness, we conclude that the presented heuristic is a very good method for solving larger problems with many machines. It is therefore an excellent complement to the integer linear programming formulation that solves instances to optimality, which is more efficient in solving problems with only a few machines, but has difficulties finding solutions for those with more machines, because of the symmetry in its definition.


## Contents

1 Introduction ..... 4
1.1 Problem definition ..... 4
1.2 Measuring robustness ..... 5
1.2.1 Defining the metric ..... 6
1.2.2 Summary of approaches ..... 6
1.3 Alternative approach: fixations ..... 7
1.4 Outline of this work ..... 7
I Basic approach ..... 8
2 Overview of the approach ..... 9
2.1 Minimal maximum makespan ..... 9
2.2 Defining fixations ..... 9
2.3 Finding optimal solutions ..... 10
2.4 Decomposition approach ..... 10
3 Evaluating feasibility ..... 12
3.1 The verifier ILP ..... 12
3.2 The indicator LP ..... 13
3.2.1 Linear programming formulation ..... 13
3.2.2 Generating new columns ..... 14
3.2.3 Heuristic for the pricing problem ..... 14
3.2.4 An intermediate lower bound ..... 15
3.2.5 Notes on the implementation ..... 16
4 Searching for fixations ..... 17
4.1 Genetic local search ..... 17
4.1.1 Population of solutions ..... 17
4.1.2 Combining solutions ..... 18
4.1.3 Improved recombination of fixations ..... 18
4.1.4 Alternative combining strategy ..... 20
4.2 Simulated annealing ..... 20
4.2.1 Changing the solution ..... 21
4.2.2 Cooling schedule ..... 21
4.3 Chaining the search algorithms ..... 21
II Extensions ..... 23
5 Job characteristics ..... 24
5.1 Including precedence relations ..... 24
5.2 Adding job availabilities ..... 24
5.3 Adapting the verifier ILP ..... 25
5.4 Updating the indicator LP ..... 25
5.4.1 Renewed formulation ..... 25
5.4.2 Enhancing the pricing problem ..... 26
5.4.3 A new pricing heuristic ..... 27
6 Objective terms ..... 29
6.1 Introducing weighted relations ..... 29
6.2 Better approximating $\sum \gamma$ ..... 29
6.2.1 Additional correlations ..... 30
6.3 Solving the extended problem to optimality ..... 31
6.4 Extending the search algorithms ..... 32
6.4.1 Merging job-sets ..... 32
7 Additional search ..... 33
7.1 Combining columns ..... 33
7.2 Implementation ..... 33
III Results ..... 35
8 Parameters ..... 36
8.1 Problem instances ..... 36
8.2 Stop count ..... 36
8.3 Genetic local search ..... 37
8.3.1 Elitist selection ..... 37
8.3.2 Combiner inclusion chance ..... 38
8.4 Simulated annealing ..... 38
8.4.1 Cooling schedule ..... 38
8.4.2 Changer ratio ..... 39
8.5 Pricing heuristic retries ..... 39
9 Experiments ..... 41
9.1 Simplified problem instances ..... 41
9.2 Statistics ..... 41
9.3 Results ..... 42
9.3.1 Effectiveness of the approach ..... 42
9.3.2 Evaluations with zero iterations ..... 43
9.3.3 Comparison of results ..... 43
9.3.4 Comparison of running times ..... 43
9.3.5 The improved genetic algorithm ..... 44
10 Conclusion ..... 45
10.1 Summary of the approach ..... 45
10.2 Conclusion ..... 46
10.3 Future work ..... 46
10.3.1 Other types of precedence relations ..... 46
10.3.2 Specific problem instances ..... 46
10.3.3 Extending the verifier ILP ..... 47
Bibliography ..... 48
IV Experimental data ..... 49
A Statistics ..... 50
B Interpreted results ..... 53
C Improved genetic algorithm ..... 55

## Chapter 1

## Introduction

Scheduling problems have a wide range of applications, from designing personnel rosters to generating efficient routes for deliveries. However, a lot of the practical and useful scheduling problems are very hard to solve in a short amount of time, as the number of possible solutions is often enormeous. This is where the field of linear optimisation, or linear programming, comes in. By formulating the problem as an objective function and a set of linear constraints, given some variables, we can solve problems for which listing all permutations of values is clearly intractable.

When we have generated a schedule or roster for such a problem, i.e. an allocation of tasks to machines at specific times, its robustness refers to the ability of handling failures or disturbances within the execution of that schedule, for example when a task is delayed. Further delays caused by this are traditionally prevented by adding idle time between tasks that are dependent on each other, which has the downside of increasing the total length of the resulting schedule, even if nothing goes wrong. The trade-off is therefore obvious - we would need to find the right balance between the risks of delays and the maximum duration of the schedule.

In this work we use a different method to avoid delays, by minimising the chance of their propagation. This introductory chapter starts by describing the problems we are looking at, followed by a guide through the previous work this thesis builds on. The last section sketches the outline of the rest of this report.

### 1.1 Problem definition

We work with problems that have multiple identical machines and a predefined set of jobs. These jobs are characterised by their processing times, release dates and deadlines, and there are precedence relations between them. The objective is to maximise the robustness after minimising the total makespan of the schedules. Using the three-field notation introduced by Graham et al. (1979), this problem category is denoted as:

$$
\mathrm{P}\left|r_{j}, \bar{d}_{j}, \operatorname{prec}\right| \epsilon\left(C_{\max }, \sum-f_{r}\right)
$$

Starting from the beginning, this means that a problem instance has $m$ machines, which are:

- working in parallel, completely independent of each other;
- continuously available from time zero onwards - although we are maximising the robustness of the resulting schedules, we do not take the failure of specific machines into account while scheduling;
- equally able to carry out all of the available jobs with the same speed, i.e. jobs of equal length will take the same amount of time regardless of which machine executes them.

The collection of jobs is denoted as $J_{1}, \ldots, J_{n}$, with each job $j$ having its own processing time $p_{j}$, signifying the amount of time it has to be executed uninterruptedly by one arbitrary machine. For the sake of simplicity, we assume all the given processing times are integral, although extending the formulations that are presented to allow for any positive real number is straightforward. In later chapters we also include the availability of jobs - stating that a job is not to be started before its release date $r_{j}$, and barring any disruptions due to breakdowns should be completed by its deadline $\bar{d}_{j}$ - although initially these are not taken into account.

The jobs are accompanied by a collection of precedence relations, each stating that there should be a given amount of time between the starting times of a pair of jobs, thus imposing a partial ordering on them. The included relations are of the form $S_{j}-S_{i} \geq q_{i j}$, with $q_{i j} \geq 0$, forcing job $j$ to start at least $q_{i j}$ time units after job $i$ is started. Within the context of such a relation, job $i$ is called the predecessor of $j$, as it has to be executed before $j$, just like $j$ is the successor of $i$.

The composition of the objective function and the measurement of the robustness is explained in the following sections. Note that even when this problem is simplified to $\mathrm{P}\left|p_{j}=1, \operatorname{prec}\right| C_{\max }$, i.e. ignoring the robustness, using unit processing times and leaving out the release dates and deadlines, deciding whether a schedule with $C_{\max } \leq 3$ exists is $N P$-complete, as proven by Lenstra et al. (1978). This furthermore means that no polynomial approximation algorithms with a worst case bound $\rho$ smaller than $\frac{4}{3}$ can exist, unless $P=N P$. If there would be one, we could apply that heuristic to our instance; if a solution with $C_{\max }=3$ would exist, the algorithm should return a value lower than four, as $3 \rho<4$. That would allow us to solve the decision variant of this $N P$-complete problem in polynomial time, meaning we could prove $P=N P$, which is generally believed not to hold.

### 1.2 Measuring robustness

Hoppenbrouwer (2011) introduced a notion of a-priori robustness of schedules, that is defined in terms of the chances of the propagation of delays. Delay propagation occurs whenever two jobs involved in a precedence relation are scheduled on different machines, and there is not enough idle time to avoid delaying the successor when the execution of the predecessor is impeded. To make matters worse, those delayed successors might be predecessors on their own, leading to a cascade of delayed jobs. With more relations spanning machines like this, the chances of having to postpone jobs in order to keep fulfilling the constraints increases. It is therefore worthwhile to minimise the number of precedence relations of which the jobs are on different machines.

However, simply counting the number of machine spanning relations, i.e. relations of which the jobs are scheduled on different machines, will not do. As he argues in his thesis, such an objective - resembling a graph partitioning problem - does not fully capture the essence of delay propagation. Consider the small example consisting of three jobs and two relations $\left(J_{1} \rightarrow J_{2}\right)$ and $\left(J_{1} \rightarrow J_{3}\right)$ - for which figure 1.1 shows two possible schedules.


Figure 1.1: Two example schedules with three jobs and two relations.

In both examples, whenever the first machine breaks down and $J_{1}$ is delayed, both $J_{2}$ and $J_{3}$ will have to be postponed - the number of relations with jobs on different machines is 2 in either case. However, the assignment of schedule 1.1a implies a relation from $J_{2}$ to $J_{3}$. And since these precedence relations are transitive, we can replace $\left(J_{1} \rightarrow J_{3}\right)$ with $\left(J_{2} \rightarrow J_{3}\right)$, setting the value of $q_{23}$ to $q_{13}-q_{12}$, without losing any information. This transformation reduces the number of machine spanning relations to only 1 in the first example, as the implied relation is entirely on the second machine. This makes sense from the viewpoint of delay propagation too, as the delay of $J_{1}$ can only hinder the jobs on one other machine in that example, as opposed to the two machines that are affected in the second example schedule.

### 1.2.1 Defining the metric

Hoppenbrouwer therefore proposed a measure that counts, for each job, the number of machines that its successors are scheduled on. For any machine $k \in\{1, \ldots, m\}$ and any job $j \in\{1, \ldots, n\}$, $\gamma_{j k}$ measures the possibility of a delay propagation towards machine $k$, in case job $j$ is delayed. Note that for every job $j$ that is not a predecessor in any relation, $\gamma_{j k}$ will be 0 for all values of $k$ :
$\gamma_{j k}= \begin{cases}1 & \text { if job } j \text { itself is not scheduled on machine } k, \text { but has at least one successor that is; } \\ 0 & \text { otherwise } .\end{cases}$

|  | $j$ | 1 | 2 |
| :---: | :---: | :---: | :---: |
| $k$ | 3 |  |  |
| 1 |  | 0 | 0 |
| 2 |  | 0 |  |
| 3 |  | 0 | 0 |
|  | 0 | 0 |  |

(a) Values of $\gamma_{j k}$ for schedule 1.1a.

|  | $j$ | 1 | 2 |
| :--- | :--- | :--- | :--- |
| $k$ | 3 |  |  |
| 1 |  | 0 | 0 |
| 2 |  | 0 |  |
| 3 |  | 1 | 0 |
|  | 0 | 0 |  |

(b) Values of $\gamma_{j k}$ for schedule 1.1b.

Table 1.1: Robustness measure of the example schedules of figure 1.1.
Table 1.1 demonstrates the values of $\gamma$ for the example schedules of figure 1.1, which show that example 1.1a has only one possibility of delay propagation, whereas the other has two precisely what we concluded earlier. The objective of maximising robustness in this way can thus be formulated as to minimise the sum of all these values, written as $\sum \gamma$ for short:

$$
\min \sum_{j=1}^{n} \sum_{k=1}^{m} \gamma_{j k}
$$

### 1.2.2 Summary of approaches

The problem that Hoppenbrouwer tackled is denoted as $\mathrm{P}|\operatorname{prec}| \operatorname{Lex}\left(C_{\max }, \sum \gamma\right)$, where the objective is to first minimise the total makespan and then to minimise $\sum \gamma$ - see the work of Hoogeveen (2005) for more information on this lexicographical order and other compound objectives functions. Note that release dates and deadlines of jobs were not included.

He implemented three methods for solving this problem - an integer linear programming formulation, a constraint programming approach, and a linear programming problem combined with column generation. The first approach was an adaptation of the time indexed ILP presented by Van den Akker et al. (2012), with an added machine index. This formulation suffered from a lot of symmetry, as the solver could swap the machine indices of all tasks assigned to any two machines, attaining a seemingly different solution that essentially represented the exact same schedule. Solving this to optimality was therefore infeasible for larger problem instances.

The second technique made use of the constraint programming possibilities of the CPLEX suite by IBM (2009). This formulation ran much faster than the ILP, although it proved difficult
to come close to optimal solutions. The results were good enough to be used as a starting point for the other two approaches, speeding up their search, using this method as a heuristic.

To counter the symmetry of the ILP formulation, his third approach was to solve the LP relaxation using column generation. The problem was rewritten to make use of machine schedules, which represent collections of jobs that are executed by one machine. The challenge was then to find a suitable combination of these machine schedules, such that every job was executed exactly once. Unfortunately, it proved hard to find good solutions, requiring a lot of columns to be generated, making this approach still very time-consuming. His conclusions were therefore that while $\sum \gamma$ provided a useful measure for the robustness of schedules, directly minimising it with the presented methods was too inefficient - a different approach had to be found.

### 1.3 Alternative approach: fixations

Because the approaches for directly minimising $\sum \gamma$ did not achieve the results hoped for, we conceived another technique for maximising the robustness of schedules. By forcing the jobs of a relation to be executed on the same machine, we prevent that relation from impairing the objective.

In the previous section we introduced $\sum \gamma$ as a shorthand for $\sum_{j=1}^{n} \sum_{k=1}^{m} \gamma_{j k}$, which is by definition no larger than the number of machine spanning relations. Forcing the jobs of some relation to be scheduled on the same machine ensures that this relation is not spanning multiple machines. Thus such a fixation of relations provides an upper bound on the number of relations with jobs on different machines, i.e. the total number of relations minus the number of fixated ones. With an upper bound on the number of machine spanning relations we also have an upper bound on the number of possible delay propagations $-\sum \gamma$ is no larger than the number of relations that were not fixated. To minimise $\sum \gamma$, we maximise the number of fixated relations, under the condition that we can still create a schedule with the added constraints.

This approach of fixating relations was investigated by Van Roermund (2013), albeit on the simplified problem category in which the precedence relations were reduced to correlations between jobs, i.e. in which the constraints on partial ordering were dropped. These correlations indicate that it can be advantageous to schedule the involved jobs on the same machine, but the ordering of the jobs involved in these relations is not important. An example of such a problem would be the scheduling of calculations over several computers, which could benefit from cached sub-results of other tasks. It would be best to assign tasks that share parts of their input to the same machine, as that would improve the quality of the schedule, although it is in no way required.

The simplification greatly reduced the complexity of the implementation, as the ordering of tasks was no longer important - i.e. a schedule for a single machine could simply be represented by a set of tasks, without keeping track of their starting times - and allowed us to confirm the effectiveness of this approach. A precise definition of these fixations and the objective term $\sum-f_{r}$ follows in the next chapter.

### 1.4 Outline of this work

In this thesis we expand on the approach of maximising the robustness by fixating relations in four parts. The first part describes the method in full detail - still using the simplification of the correlations that impose no partial ordering on the jobs - starting with an overview and all necessary definitions in chapter 2 . The methods used to evaluate the feasibility of these fixations are explained in chapter 3, and the top-level search for fixations in chapter 4 . In the second part we introduce several extensions to the approach. Additions to the job characteristics of the problems are presented in chapter 5 , the objective function is augmented in chapter 6 , and chapter 7 shows an additional method to search for solutions. In the third part we present the results of this thesis. The values of the various parameters are set in chapter 8 , the outcome of the experiments are found in chapter 9 , and the conclusion, including pointers for further research, is in chapter 10. Lastly, the appendices in the fourth part contain the tables with the data from the experiments.

## Part I

## Basic approach

## Chapter 2

## Overview of the approach

This chapter explains how we employ fixations to tackle the simplified problem category, in which the precedence relations are relaxed to correlations, dropping the constraints on partial ordering. In the first section we describe how to tackle the composed objective function, followed by the formal definition of the fixations. The third section details how we can solve the problem to optimality, and lastly we give an overview of the heuristic approach that we present in this work.

### 2.1 Minimal maximum makespan

The objective function of the problem category we are solving - $\epsilon\left(C_{\max }, \sum-f_{r}\right)-$ defines a Pareto frontier. To find a Pareto optimal solution, we first apply the first criterion while completely ignoring the second, and then use the found objective value to limit solutions while using solely the second criterion. We thus first solve $\mathrm{P} \| C_{\max }$ to find a schedule with minimal total makespan while completely ignoring its robustness. We do this using an adaptation of the constraint programming implementation written by Hoppenbrouwer (2011). This makespan is then used to limit the length of schedules in all other formulations, i.e. while subsequently looking for fixations with greatest robustness, we only allow rosters that are no longer than the found makespan.

To investigate how the robustness increases when allowing the makespan to grow, we will repeat the searches for fixations with several increased values of this upper bound on the makespan, thereby exploring the Pareto frontier. Throughout the rest of this work, we refer to the value of the current upper bound as $C$, and use it as a given parameter along with the problem instance. In this first part of the thesis we are thus solving $\mathrm{P}\left|C_{\max } \leq C\right| \sum-f_{r}$.

### 2.2 Defining fixations

To ensure that a specific relation does not contribute to the number of machine spanning relations, we fixate it, i.e. we demand that both jobs involved in that relation are scheduled on the same machine. This way, as far as that relation is concerned, the predecessor job can not propagate a delay to another machine. For every relation $r \in R$ - we use $R$ to represent the set of relations defined by the problem instance - we introduce the binary parameter $f_{r}$, indicating whether the two jobs involved in that relation must be scheduled on the same machine:

$$
f_{r}= \begin{cases}1 & \text { the jobs involved in relation } r \text { are to be scheduled on the same machine; } \\ 0 & \text { otherwise. }\end{cases}
$$

Note that $f_{r}=0$ does not mean that the jobs in that relation should be on separate machines, it simply means we allow them to be rostered freely. This parameter is then used as a variable during the search for the best fixation - from here on we use fixation to denote an assignment of $f_{r}$ for all $r \in R$. A fixation is considered to be better than another if it has more relations fixated,
as that gives a tighter bound on $\sum \gamma$. During our search for the best fixation, the objective is thus to maximise the number of fixated relations, i.e. $\max \sum_{r \in R} f_{r}$. Since the three-field notation by Graham et al. (1979) assumes a minimisation objective, we multiply it by -1 and write $\sum-f_{r}$ for short. Although our objective approximates $\sum \gamma$, there are situations in which these metrics assess schedules differently - more on this in section 6.2.

### 2.3 Finding optimal solutions

Given the variables and objective from the previous section, we can define a straightforward integer linear programming formulation that finds an optimal fixation, i.e. that searches for a schedule which has the most relations fixated as possible, while remaining feasible. Its formulation has the binary variables $x_{j k}$ to indicate whether job $j$ is to be executed by machine $k$, and the variables $y_{i j}$ - mimicking the parameter $f_{r}$ — indicating whether the jobs $i$ and $j$ are to be executed on the same machine. Since relations consist of two jobs, we denote them as $r:(i, j)$, indicating relation $r$ between predecessor $i$ and successor $j$. We thus define:

$$
\begin{gathered}
x_{j k}= \begin{cases}1 & \text { job } j \text { is scheduled on machine } k \\
0 & \text { otherwise } ;\end{cases} \\
y_{i j}= \begin{cases}1 & \text { jobs } i \text { and } j \text { must be scheduled on the same machine; } \\
0 & \text { otherwise. }\end{cases}
\end{gathered}
$$

The objective, as explained before, is to maximise the number of fixated relations, and the constraints ensure that the resulting schedule is feasible, i.e. can actually be executed. In order, they state that every job has to be scheduled exactly once (2.1), that the combined processing times of the jobs scheduled on one machine can not exceed the given maximum makespan (2.2), and that the jobs of fixated relations have to be scheduled on the same machine ( $2.3 \& 2.4$ ).

$$
\begin{array}{rlrl}
\max & & \\
\sum_{r:(i, j) \in R} y_{i j} \text { s.t. } & \\
\sum_{k=1}^{m} x_{j k}=1 & & \forall j \in\{1, \ldots, n\} \\
\sum_{j=1}^{n} x_{j k} p_{j} \leq C & & \forall k \in\{1, \ldots, m\} \\
x_{i k}-x_{j k} \leq 1-y_{i j} & & \forall k \in\{1, \ldots, m\} \forall r:(i, j) \in R \\
x_{j k}-x_{i k} \leq 1-y_{i j} & & \forall k \in\{1, \ldots, m\} \forall r:(i, j) \in R \\
x_{j k} & \in\{0,1\} & & \forall j \in\{1, \ldots, n\} \forall k \in\{1, \ldots, m\} \\
y_{i j} & \in\{0,1\} & & \forall r:(i, j) \in R
\end{array}
$$

### 2.4 Decomposition approach

Because of the machine indices, the ILP formulation presented above suffers from a lot of symmetry, especially with problem instances containing many machines. Using it to solve a problem to optimality can therefore take a lot of time, making this formulation not efficient enough. To come to a better approach, we decompose it into two levels. On the top level, we use local search algorithms to find the best fixations, and on a supporting level we define a linear programming formulation to determine the feasibility of fixations found by the search algorithms.

The complete approach for tackling a problem thus looks as follows. First, we determine the upper bound on the makespan, as described above. We then invoke the search algorithms that
are detailed in chapter 4. Every time a new fixation is generated, we evaluate its feasibility using the LP explained in the next chapter. After the search for the best fixation is done, we verify its feasibility with an ILP - more on that also in chapter 3. Lastly, we increase the value of $C$ and rerun the search a couple of times, to get a view of the interplay between the upper bound on the makespan and the robustness of the resulting schedules.

## Chapter 3

## Evaluating feasibility

When we have generated a fixation - by means of the search algorithms explained in the next chapter - we need to know whether it is feasible, i.e. whether a schedule can be made while having the jobs of each fixated relation scheduled on the same machine. If we are able to construct such a schedule, we have proof that the fixation is feasible - otherwise we know that no schedules can be created for the fixation that is being evaluated, and thus that it is infeasible.

The integer linear programming formulation we describe in section 3.1 checks just that it tries to construct a schedule with all fixated relations enforced. However, since we will be evaluating many fixations, solving this ILP for every one of them will take a lot of time. Therefore we devised an approach that gives a quick and good indication of the feasibility of the evaluated fixation, detailed in the second part of this chapter. Whenever we talk of the fixation in this chapter, we mean the fixation that is currently being evaluated for its feasibility.

### 3.1 The verifier ILP

To determine the feasibility of a fixation, we solve the following machine-indexed integer linear program. The variables in this ILP are $x_{j k}$, indicating whether job $j$ is to be executed by machine $k$, similar to those in section 2.3. Because the ordering of jobs in a schedule is of no importance, we can aggregate the jobs of fixated relations into blocks that are scheduled at once - this way the search space is reduced. The set of jobs used in this step is thus a modified version of the set defined by the problem instance, here ranging from 1 to $n^{\prime}$.

Since we only have to check whether a feasible solution exists, the objective is trivial. The constraints state that every job is to be executed exactly once (3.1) and that the combined processing times of the jobs scheduled on one machine can not exceed the maximum makespan (3.2).

$$
\begin{array}{rlrl}
\min 1 & \text { s.t. } & \\
\sum_{k=1}^{m} x_{j k} & =1 & & \forall j \in\left\{1, \ldots, n^{\prime}\right\} \\
\sum_{j=1}^{n^{\prime}} x_{j k} p_{j} & \leq C & & \forall k \in\{1, \ldots, m\} \\
x_{j k} & \in\{0,1\} & & \forall j \in\left\{1, \ldots, n^{\prime}\right\} \forall k \in\{1, \ldots, m\} \tag{3.2}
\end{array}
$$

Since solving this formulation for many fixations will take a lot of time, we only use it to verify the best fixations returned by the search algorithms, and use the indicator LP described next to evaluate all intermediate solutions. Once the search algorithms have found a set of maximum fixations for the current makespan, we first check the best known fixation - should this check fail, the next best solution is checked, etcetera, until a feasible fixation of relations is found.

### 3.2 The indicator LP

To quickly determine the feasibility of a given fixation, i.e. finding out whether a schedule can be constructed for it, we use the technique introduced by Van den Akker et al. (2012) - we determine the number of machines needed to schedule all tasks within the given maximum makespan. This is done with a linear programming problem that contains all jobs and relations of the problem instance, as well as the additional constraints introduced by the fixated relations. By looking for the minimum number of machines needed to schedule all tasks, and comparing this to the number of available machines as defined by the problem instance, we can determine the feasibility of the fixation. The objective of this LP is thus to minimise the number of machines that are used to execute all of the jobs within the maximum makespan.

If we find a solution to this formulation that uses at most the number of available machines, we assume the fixation is feasible - of course, this does not give a guarantee on the feasibility of that fixation, as we would have to fully run the ILP outlined in the previous section to verify we can actually compose a schedule in that case. However, previous research like that by Van den Akker et al. (2012) has consistently found this to be a very good indicator, i.e. that whenever this LP indicates that we need at most the number of available machines, we can assume it is possible to construct a feasible schedule. In practice, the verifier ILP always succeeds with the first fixation that is checked, proving the effectiveness of this indicator LP. We therefore only verify the feasibility of the best solutions found, after the search algorithms are done.

The goal of minimising the number of occupied machines lends itself excellently for column generation. This well known technique, described by for example Bazaraa et al. (2005), works by dividing a problem into a master problem and a subproblem - the master problem is to find the smallest subset of columns for which all constraints are met, and the subproblem is tasked with generating new columns such that the solution to the master problem can be improved.

### 3.2.1 Linear programming formulation

The columns we are working with are machine schedules, each consisting of a complete schedule for a single machine, that can be chosen to be executed at the expense of occupying one machine for the full length of the resulting schedule. These machine schedules are represented by the binary parameters $a_{j s}$, where $j$ is the index of the task and $s$ of the column, indicating whether that task is included in that machine schedule:

$$
a_{j s}= \begin{cases}1 & \text { job } j \text { is included in machine schedule } s \\ 0 & \text { otherwise }\end{cases}
$$

Each of the machine schedules has a binary variable $x_{s}$ to indicate whether it is included:

$$
x_{s}= \begin{cases}1 & \text { machine schedule } s \text { is used } \\ 0 & \text { otherwise }\end{cases}
$$

Let us assume for the moment that $S$ is the set of all feasible machine schedules, i.e. those that honour the fixation of relations and adhere to the maximum makespan, with which we can solve the following ILP. The objective is to minimise the number of used columns, and the constraints enforce that all jobs are executed exactly once (3.3).

$$
\begin{array}{rlrl}
\min \sum_{s \in S} x_{s} & \text { s.t. } & \\
\sum_{s \in S} a_{j s} x_{s} & =1 & \forall j \in\{1, \ldots, n\} \\
x_{s} & \in\{0,1\} & & \forall s \in S \tag{3.4}
\end{array}
$$

Of course, iterating over the entire set of feasible machine schedules is intractable, as there are far too many to even list them all, let alone use them in our formulation. Therefore, we relax the formulation by substituting constraint 3.4 with the condition $x_{s} \geq 0 \quad \forall s \in S$ - we can leave out $x_{s} \leq 1$, as this is already implied by 3.3 - and solve this LP relaxation using column generation. We start out with $S$ as a small set of columns - based on the schedule that was found when determining the minimal maximum makespan, as described in section 2.1 - and we keep expanding this set until we have solved the master problem. To help us find an allowed initial solution, we allow for partially invalid columns, i.e. those that do not honour the fixation, by giving them a penalty. By setting their cost to a large number, we make it impossible to conclude a fixation is feasible based on a solution that uses such a column, and we give the solver a high incentive to move away from using any of these invalid columns. To ensure only feasible columns are added to the LP later on, we enforce the validity of single machine schedules during their generation.

### 3.2.2 Generating new columns

To introduce new machine schedules, we have to solve the subproblem - also known as the pricing problem - that makes a selection of the jobs that will be included in the new schedule. As a column takes up one machine when used, its direct gain $c_{s}=1$, whereas its direct cost depends on the included jobs. Its reduced cost $c_{s}^{\prime}$ is therefore equal to the following, where $\lambda_{j}$ represents the shadow prices of constraint 3.3 , indicating how much we would like to include job $j$ :

$$
c_{s}^{\prime}=c_{s}-\sum_{j=1}^{n} \lambda_{j} a_{j s}=1-\sum_{j=1}^{n} \lambda_{j} a_{j s}
$$

To find the column with minimal reduced cost, we turn this into an optimisation problem using the following objective function, with the added constraint that the sum over the processing times of the included jobs is at most equal to the maximum makespan (3.5). We denote the outcome of this problem with $\hat{c}$, and define the minimum reduced cost as $c^{*}=1-\hat{c}$.

$$
\begin{align*}
& \max \sum_{j=1}^{n} \lambda_{j} a_{j s} \quad \text { s.t. } \\
& \sum_{j=1}^{n} p_{j} a_{j s} \leq C  \tag{3.5}\\
& a_{j s} \in\{0,1\}
\end{align*}
$$

$$
\forall j \in\{1, \ldots, n\}
$$

Using the processing times of the jobs as weights and the shadow prices $\lambda_{j}$ as values, we can solve this problem as a knapsack instance using a dynamic programming routine, with $C$ as the capacity. To ensure compliance with the fixations of relations, we aggregate the jobs of fixated relations into blocks, which have to be included or excluded entirely.

If a new machine schedule with negative reduced cost is found, it is returned to the LP, which we can then solve again, leading to a new set of shadow prices, for which we solve the pricing problem again, etcetera. When $c^{*} \geq 0$, no more improving columns can be generated for the LP, and it has been solved to optimality. We can then pass the verdict on the feasibility of the fixation back to the search algorithms. Of course, if the objective value of the LP gets below $m$ before we have solved it to optimality, we can stop then and there - adding more columns can only lower the number of needed machines, and we already have our answer.

### 3.2.3 Heuristic for the pricing problem

The dynamic programming procedure mentioned above can be slow to complete, as it solves the pricing problem to optimality and has a runtime of $O(n C)$. Therefore a faster heuristic
was conceived, based on the greedy approach to continuous knapsack problems, giving a good approximation of the optimal solution. We implemented it as follows.

First, we aggregate all jobs into blocks, such that all jobs that have a fixated relation between them are grouped together. The aggregated processing time of each block is calculated, and the cost of each block is set by summing up the $\lambda_{j}$ values of all included jobs, divided by the aggregated processing time of the block, resulting in a ratio that is used to sort the blocks. The sorted list of blocks is then iterated over, starting from the best ratio. If all the jobs of the current block can be added to the machine schedule we are generating, without making it exceed the maximum makespan, they are included - otherwise this block is ignored. All blocks are checked in this way, until one with negative profit is encountered, after which the process is stopped. Since the ordering of jobs in the machine schedule is of no importance, the resulting column can be returned immediately after completing this process.

Because this method does not always give the optimal answer, the slower implementation based on dynamic programming is also required. That is called only when the greedy heuristic fails to find a new column, to minimise the impact on the running time. If the dynamic programming routine is also unable to find a new set of jobs with a combined negative reduced cost, we have solved the LP to optimality.

### 3.2.4 An intermediate lower bound

An intermediate check on the objective value was introduced by Van den Akker et al. (2012), that can help us determine the infeasibility of a fixation without completely solving the LP. As presented, the linear programming formulation is used to find the minimal number of machine schedules that are needed to schedule all jobs. But for judging the feasibility of a fixation, we have no interest in the resulting objective value - all we need to know is whether this value is at most equal to the number of available machines. If we can prove it is impossible to achieve an objective value this low, i.e. we know for sure that the solution needs more machines, we would be better off aborting the search.

When we have solved the pricing problem to optimality using the dynamic programming routine, and generated a new machine schedule with reduced cost $c^{*}$, we know that the following holds for all $s \in S$ :

$$
1=c_{s}=c_{s}^{\prime}+\sum_{j=1}^{n} \lambda_{j} a_{j s} \geq c^{*}+\sum_{j=1}^{n} \lambda_{j} a_{j s} .
$$

This expression can be used to find a lower bound of the LP objective as follows.

$$
\begin{aligned}
& \sum_{s \in S} x_{s} \geq \sum_{s \in S} x_{s}\left(c^{*}+\sum_{j=1}^{n} \lambda_{j} a_{j s}\right) \\
& \sum_{s \in S} x_{s} \geq c^{*} \sum_{s \in S} x_{s}+\sum_{s \in S} x_{s}\left(\sum_{j=1}^{n} \lambda_{j} a_{j s}\right) \\
& \sum_{s \in S} x_{s} \geq c^{*} \sum_{s \in S} x_{s}+\sum_{j=1}^{n} \lambda_{j}\left(\sum_{s \in S} x_{s} a_{j s}\right)
\end{aligned}
$$

Recall that constraint 3.3 ensured that $\sum_{s \in S} x_{s} a_{j s}=1 \quad \forall j \in\{1, \ldots, n\}$.

$$
\begin{aligned}
\sum_{s \in S} x_{s} & \geq c^{*} \sum_{s \in S} x_{s}+\sum_{j=1}^{n} \lambda_{j} \\
\left(1-c^{*}\right) \sum_{s \in S} x_{s} & \geq \sum_{j=1}^{n} \lambda_{j}
\end{aligned}
$$

Note that we defined $\hat{c}$ as $1-c^{*}$, and since $c^{*}<0$, we know that $\hat{c}$ is always greater than 1 .

$$
\sum_{s \in S} x_{s} \geq \sum_{j=1}^{n} \lambda_{j} / \hat{c}
$$

That gives us our lower bound - should the value of $\sum_{j=1}^{n} \lambda_{j} / \hat{c}$ be larger than $m$, we know that we need more than the available number of machines to schedule all jobs, and can thus conclude that the fixation we are evaluating is infeasible.

### 3.2.5 Notes on the implementation

The indicator LP has been implemented with the Java API of Gurobi (2009) - as opposed to the other linear programming formulations in this work, which make use of the CPLEX framework by IBM (2009). Instead of constructing the problem every time we are evaluating a fixation, we continuously re-use one instance of the solver. This means we create the model containing the problem data only once, allowing for a significant improvement of the running time of this approach. It does however also mean that when tasked to evaluate another fixation, all columns that are in use by the solver have to be checked, making sure they are valid for the fixation we are evaluating next. Any invalid columns present are given a penalty, to make the solver look for alternatives as it tries to minimise the number of needed machines.

After we have come to a verdict on the feasibility of the fixation, all columns that are not part of the solution base are removed from the solver, keeping the number of variables in use by the solver to a minimum. Additionally, all columns that are generated are stored separately. On the next run, this collection is checked for any columns that are useful for the current fixation, thereby avoiding the need to generate columns that have been constructed before.

## Chapter 4

## Searching for fixations

In the previous chapter we have seen how we can determine the feasibility of a fixation. This chapter details the devised approaches for finding the best of these fixations. First we describe an approach using genetic local search, followed by one based on simulated annealing.

### 4.1 Genetic local search

The main method we use to search for fixations is genetic local search - a well known technique, described amongst others by Goldberg (1989), that keeps track of a population of solutions and creates new entries by combining known good ones. A solution, i.e. a fixation, consists of an assignment of the previously mentioned parameter $f_{r}$ for every $r \in R$, each indicating whether it is to be fixated, i.e. whether the associated jobs are forced to be scheduled on the same machine. In the context of these search algorithms, $f_{r}$ thus is the variable over which we optimise.

Every iteration of the genetic algorithm, a set of parent solutions is selected from the population and combined into new fixations, as explained in the remainder of this section. These child solutions are then evaluated, i.e. checked for feasibility, using the LP previously described in chapter 3, and added to the population. This process of generating new solutions, evaluating them and updating the population, is repeated until no more improvements can be found, i.e. until no solution that was better than the best known solution has been added to the population for a specific number of iterations, after which the search is stopped and the resulting population is returned. The choice for the value of this parameter, as well as those of others, will be detailed in chapter 8.

To avoid getting stuck in local optima we use a multi-start approach - the algorithm is run three times, after which the resulting populations are merged and the search is run once more based on that population. The best encountered solution is then used as a starting point for the simulated annealing algorithm.

### 4.1.1 Population of solutions

During the execution of the genetic algorithm, we keep track of a population of 10 solutions. Initially, it only contains one solution, in which no relations are fixated - for this fixation we can certainly generate a schedule, namely the one found when the value of $C$ was determined. Because random solutions have a high chance of not even being feasible, adding any additional fixations to the initial population gives no advantage to the search. Incrementing the size of the population can increase the diversity of the solutions in it, but also increases the running time of the algorithm, as it will then take longer to generate the solutions of the next generation.

The population is stored in a weighted binary tree, to which every saved solution is added with the number of fixated relations as its weight. This weight denotes the importance of a solution, and is used to make the probability of selecting some solution for reproduction directly proportionate
to its fitness score. This biased random selection is then used when determining which solutions are used as the parents for the next generation - a technique known as roulette wheel or fitness proportionate selection, originally introduced by De Jong (1975). For example, if the population would contain three solutions, with weights 10,15 and 25 respectively, they would have a $20 \%$, $30 \%$ and $50 \%$ chance of getting selected as a parent.

To ensure the best solutions encountered are not forgotten, we use an elitist selection scheme - meaning we simply copy the best solutions over into the next generation. For each of the remaining places in the new generation, we select two parents from the original population, so there might be solutions that are employed as parents more than once.

### 4.1.2 Combining solutions

The conclusions of the experiments conducted by Van Roermund (2013) were that the approach has great potential for finding good fixations, provided that the method used for combining fixations into new ones was improved. The initial method for generating a new fixation did not take any information about the structure of the relations into account - it simply copied the common parts of the parent solutions, and for every relation the parents did not agree on it chose randomly whether to fixate it or not. Take for example the fixations in figure 4.1, in which the nodes represent jobs, bold edges indicate relations that are fixated, and dashed edges those that are not.

(a) Example fixation A.

(b) Example fixation B.

(c) An example result of the naive combination of fixations A and B.

Figure 4.1: Example fixations for a problem instance with seven jobs and twelve relations.
In this example, the relations not involving $J_{4}$ are fixated in the exact same way in both fixations A and B, therefore their resulting combination shares these fixations as well. The relations that do involve $J_{4}$ are fixated in a completely opposite way in the parent fixations, and therefore the child solution has these relations fixated at random. Unfortunately, this can lead to a fixation like the one in figure 4.1 c , in which all jobs are connected by fixated relations, i.e. all jobs are forced to be scheduled on the same machine.

This is unlikely to be desirable, as chances are the combined processing time of these jobs exceeds the value of $C$ - which would make it impossible to create a schedule for it. We therefore needed to improve this method of combining fixations by taking more advantage of the problem structure, which takes us back to the previously mentioned graph partitioning problem.

### 4.1.3 Improved recombination of fixations

To provide a better way of combining parent solutions into new ones, we devised the following method, consisting of two phases. During this procedure, all jobs are kept in a disjoint-set forest - also known as a union-find data structure, originally introduced by Galler et al. (1964) - to which each task is initially added as a singleton set. The sets in this data structure represent groups of jobs that are forced to be scheduled on a single machine, meaning that all relations that are solely between jobs within one such set have been fixated. By continuously merging these sets, we thus fixate more and more relations, leading to better fixations.

The first phase identifies the common elements of the parent solutions. Every relation that is fixated in both of the parents, is copied over into the new fixation with a certain chance, by merging the sets containing the jobs involved in that relation. The reason for not copying the
fixated relations unconditionally is to allow for some mutations in the recombination - otherwise we would have no way of not fixating some relation once all chosen parent solutions have it fixated. The exact setting of this chance is left to chapter 8 .

During the second phase we iterate over the remaining, non-fixated relations in random order, and try to fixate each one by merging the involved sets. Should we be able to construct a feasible single machine schedule that includes all jobs from both sets, we continue with this relation fixated - otherwise we leave those sets as they were and continue on, ignoring that relation. The reason for the random order is to avoid making sub-optimal decisions, even when they are locally optimal - always merging the sets that lead to the best improvement of $\sum-f_{r}$ does not necessarily return the best possible fixation, and even worse, if the returned fixation turned out to be infeasible, such a greedy approach would regenerate it over and over, never finding a valid solution.

Every time a relation is fixated and sets are merged, we add the fixation as represented at that time by the disjoint-set forest to a list. When we have iterated over all relations, this list is returned to the genetic algorithm. A nice property of this list is that each fixation is a slightly less restricted version of the one after it, i.e. when we are able to prove the feasibility of a fixation in the list, we immediately know that all fixations before it are also feasible. Knowing this, we can use binary search to find the best fixation in the returned list: the fixation in the middle of the list is evaluated using the indicator LP, and should it be feasible we continue searching through the second half of the list; otherwise we only consider the first half of the list as candidate solutions, etcetera. The best fixation found is then added to the population.

Let us illustrate the working of this method using the previous example, with seven jobs and twelve relations, assuming the given maximum makespan ensures that no more than four jobs can be scheduled on a single machine. Taking fixations 4.1a and 4.1 b as parents, the first phase copies the relations they both have fixated with a $\frac{3}{4}$ chance, unifying the sets of those jobs - possibly leading to the partitioning depicted in figure 4.2a, in which the sets of the jobs involved in three of the relations are merged, out of the four that the parents have fixated in common.


Figure 4.2: Example combination of fixations 4.1a and 4.1b.
The second phase then iterates over the non-fixated relations, i.e. the dashed lines in the example, and selects one that will be fixated. Note that the relation between $J_{1}$ and $J_{2}$ is the only one not viable for fixation, as merging those sets would result in a processing time greater than the given maximum makespan. Let us first select the relation $\left(J_{4} \leftrightarrow J_{5}\right)$ and unify the involved sets, leading to the situation of figure 4.2 b ; then we fixate ( $J_{6} \leftrightarrow J_{7}$ ), resulting in the partitioning shown in figure 4.2c. The list of fixations that would be returned to the genetic algorithm for evaluation would thus be the following.

$$
\begin{aligned}
& {\left[\left\{J_{1}, J_{3}, J_{6}\right\},\left\{J_{2}, J_{5}\right\},\left\{J_{4}\right\},\left\{J_{7}\right\}\right]} \\
& {\left[\left\{J_{1}, J_{3}, J_{6}\right\},\left\{J_{2}, J_{4}, J_{5}\right\},\left\{J_{7}\right\}\right]} \\
& {\left[\left\{J_{1}, J_{3}, J_{6}, J_{7}\right\},\left\{J_{2}, J_{4}, J_{5}\right\}\right]}
\end{aligned}
$$

This example highlights what is both a strength and a weakness of this heuristic, namely its random determination of which sets to merge. The advantage is that more fixations that differ from the parents are tried, while a big part of the genetic information is still honoured. On the
other hand, the disadvantage is that sub-optimal choices can be made - like in the figures above, in which the last partitioning has six relations fixated, whereas both parents had seven. As argued before however, merging the sets such that the most relations are fixated at each step can get stuck, generating infeasible solutions. Another upside is that random selection is much quicker than optimal selection, allowing the heuristic to produce more candidate fixations in less time.

### 4.1.4 Alternative combining strategy

A characteristic of the technique described above is that cliques - or other tightly connected subsets of jobs - have a higher chance to end up in the same set than jobs with only a single relation between them. This is because there can be multiple edges between jobs inside and outside a set, as illustrated by the following example.

Consider the small problem instance with four jobs and the relations ( $\left.J_{1} \leftrightarrow J_{2}\right),\left(J_{1} \leftrightarrow J_{3}\right)$, $\left(J_{1} \leftrightarrow J_{4}\right)$ and $\left(J_{2} \leftrightarrow J_{4}\right)$, as shown in figure 4.3a. Let us assume that the value of $C$ is chosen such that at most three jobs can be scheduled on a single machine. Let us also assume that the first relation, between jobs $J_{1}$ and $J_{2}$, has already been fixated, and we are now deciding which relation to fixate next. By iterating over the non-fixated relations in random order, the fourth job now has a $\frac{2}{3}$ chance of getting merged with $J_{1}$ and $J_{2}$, since two of the three remaining edges involve $J_{4}$, as in figure 4.3b.

If we were to use a graph instead of a disjoint-set forest during this process, we could also unite the edges of sets when merging them. This would then lead to the situation as depicted in figure 4.3c, where the original edges $\left(J_{1} \leftrightarrow J_{4}\right)$ and $\left(J_{2} \leftrightarrow J_{4}\right)$ are replaced by one edge. Now both $J_{3}$ and $J_{4}$ have an equal chance of getting selected for inclusion.


Figure 4.3: Example job partitioning for a problem with four jobs and four relations.
Although this strategy would seem to select the next relation to fixate in way that is fairer, giving more chance to relations that would otherwise be outnumbered, its implementation actually performs worse than the one based on the disjoint sets. This can be explained by the fact that it is better to merge cliques together rather than loosely connected jobs, as the former make a larger contribution to the number of fixated relations - as is evident from the previous example, where the set $\left\{J_{1}, J_{2}, J_{4}\right\}$ has three relations fixated, whereas $\left\{J_{1}, J_{2}, J_{3}\right\}$ would have only two. It is therefore a good thing not to unify the edges between sets, to give the sets which contribute to a greater increase in the number of fixated relations a larger chance of getting merged. We therefore stick with the previously described implementation using disjoint sets.

### 4.2 Simulated annealing

In addition to the genetic algorithm, we implemented another well known local search heuristic to look for the best fixations - simulated annealing, as introduced by Kirkpatrick et al. (1983). It works by maintaining a single solution and repeatedly looking at its neighbourhood, accepting any change that leads to an improvement, and permitting a worsening with a certain chance. This chance depends on both the magnitude of the negative impact on the objective value and the current temperature. During the execution of the algorithm, this temperature is gradually lowered according to a cooling schedule, to ensure that the chance of accepting declines diminishes.

### 4.2.1 Changing the solution

For this search algorithm we also use the job-sets representation of solutions. During every iteration, a small modification is applied to the current fixation. This can either be to merge two randomly selected sets of jobs, or to split up some set, i.e. re-adding each of its jobs as singleton sets. Since the unification of two sets can never lead to less fixated relations, a merge always results in a solution that is at least as good as the previous one, provided that it stays feasible. The scattering of a set on the other hand can never lead to more fixated relations, and can therefore never result in an improvement. However, splitting up sets is still needed in order to get away from local optima, in which no more merges can be done. The choice for either change is made randomly, at a ratio that will be determined in chapter 8 . If we choose to merge sets, but are unable to find appropriate candidates, we fall back to the scattering. The choice of which sets to operate on is also made randomly, although a check is enforced to see whether the merging of a set does not make it exceed the maximum makespan.

During the run of the algorithm, a disjoint-set forest is maintained for the current solution, with the jobs divided into sets as dictated by the fixation. Every time a change is made, the sets are updated - either by merging two or by scattering one - and the resulting fixation is offered to the indicator LP for evaluation. Should the new solution be deemed feasible, the change in the number of fixated relations is computed. Based on this number and - in case of a lessening the temperature, a decision is made whether to keep this solution. Even though determining the increase in the number of fixated relations is easier to compute than evaluating a solution, the used order is not an issue given our two possible changes: if a merge has taken place, the number of fixated relations will have increased, so we will want to evaluate the new solution; if a set was scattered, proving its feasibility is trivial given the evaluation of the old solution.

The chance of accepting a worsening is calculated using the formula $e^{\frac{\delta}{t}}$, where $\delta$ is the difference in the number of fixated relations, and $t$ represents the current temperature. Should the change be accepted, the algorithm continues with the new fixation; otherwise, the original solution is restored. After a predefined number of iterations in which no improvement has been made, the search is suspended and the changes done since we encountered the best fixation are reverted. We then continue the search, keeping the temperature as it was. This reverting to the best found solution and resuming the search is done up to three times, to avoid getting stuck in local optima.

### 4.2.2 Cooling schedule

The cooling schedule of the simulated annealing algorithm dictates the course of the temperature during the run. It is controlled by a starting value, to which the temperature is initialised, and a value between 0 and 1 that it is multiplied by every so many iterations.

For example, if the starting temperature is set to 9.5 , a decrease of one fixated relation has a $e^{\frac{\delta}{t}}=e^{\frac{-1}{9.5}}=0.90$ chance of getting accepted, whereas a change leading to ten less fixations has a $e^{\frac{-10}{9.5}}=0.35$ chance of not being reverted. Then, every so many iterations, the current temperature is multiplied by for example 0.9, thus lowering the chance of moving to a worse solution. See chapter 8 for the determination of the actual values of these parameters.

### 4.3 Chaining the search algorithms

Initial experimental results showed that the genetic search algorithm finds good solutions faster than the simulated annealing approach, especially when starting from a bare solution with no relations fixated. Therefore, we execute a simulated annealing search starting from the best solution in the returned population of every run of the genetic algorithm during the multi-start approach. Once all three runs of the search algorithms have been completed, we check the best fixations with the feasibility ILP described in section 3.1, to see whether a schedule can actually be formed for this fixation. We then continue by increasing the value of the maximum makespan and redo the searches.

This concludes the description of our basic decomposition approach - using the search algorithms to generate fixations and employing the indicator LP to quickly evaluate their feasibility. In the next part of this thesis we present several extensions to its formulation, to enhance the problem category it is applicable for.

## Part II

## Extensions

## Chapter 5

## Job characteristics

In this chapter we present two extensions to the job characteristics of the problem category we are solving - we redefine the correlations as proper precedence relations and include the availability of jobs. The first two sections describe the rationale for their inclusion; the other sections update the formulations of the evaluation methods. The adaptation of the ILP that solves a problem to optimality as presented in section 2.3 is left for the next chapter.

### 5.1 Including precedence relations

Section 1.3 described the simplification of precedence relations to mere correlations, thereby excluding the partial ordering of jobs. Since these precedence relations are present in a lot of real world problems, we would like to include them in our approach. The precedence relations mentioned in section 1.1 were of the form $S_{j}-S_{i} \geq q_{i j}$ for all $r:(i, j) \in R_{p}$, forcing job $j$ to start at least $q_{i j}$ time units later than job $i$ is started. Note that we use $R_{p}$ instead of $R$ to indicate the set of precedence relations, as correlations make a comeback in section 6.2. Other types of precedence relations, obtained by changing the $\geq$ to $\mathrm{a} \leq$ or $=$, are not included in this work see section 10.3.1 for thoughts on how those could be incorporated.

We define $\operatorname{pred}(j)$ to be the set of predecessors of $j$, i.e. containing each job $i$ for which there exists a relation $r:(i, j) \in R_{p}$, and similarly, $\operatorname{succ}(j)$ as the set of successors of $j$, i.e. containing each job $i$ for which there exists a relation $r:(j, i) \in R_{p}$. We use these definitions in reformulating the LP:

$$
\begin{aligned}
\operatorname{pred}(j) & =\left\{i \mid(i, j) \in R_{p}\right\} ; \\
\operatorname{succ}(j) & =\left\{i \mid(j, i) \in R_{p}\right\} .
\end{aligned}
$$

### 5.2 Adding job availabilities

We also include release dates and deadlines of jobs, which indicate the time window in which a job should be executed - job $j$ can not be started before its release date $r_{j}$, and it must be finished by its deadline $\bar{d}_{j}$. Both values should be non-negative, and to allow for the execution of the job, there should be at least $p_{j}$ time units between them, i.e. $\bar{d}_{j}-r_{j} \geq p_{j}$ must always hold.

Up to now, we have acted as if all release dates were set to time zero, and the deadlines were equal to the value of $C$, the maximum makespan - but from now on the availability is set for each job individually, and assumed to be given by the problem instance. Since the deadline of a job could be greater than the upper bound on the makespan, we have to take extra care to ensure neither is violated by a schedule.

To find the minimal maximum makespan with these precedence relations and availability restrictions taken into account, we update the contraint programming implementation used to find the shortest possible schedule, making it solve $\mathrm{P}\left|r_{j}, \bar{d}_{j}, \operatorname{prec}\right| C_{\max }$.

### 5.3 Adapting the verifier ILP

Incorporating starting times into the formulation of the verifier ILP means we can no longer aggregate the jobs of fixated relations, as that would enforce an absolute ordering on those jobs. Instead, we will have to use the full set of jobs and add a time index to the variables, making them indicate both by which machine a job is executed, and at what time that is to be done. This changes the variables used in this formulation to the following:

$$
x_{j k t}= \begin{cases}1 & \text { job } j \text { is started by machine } k \text { at time } t \\ 0 & \text { otherwise }\end{cases}
$$

The objective of the updated ILP remains trivial, as we only need to verify whether a schedule can be made, making the formulation as below. The first two constraints ensure that every job is scheduled exactly once (5.1) and at every single moment each machine is executing at most one job (5.2). The precedence relations are included with constraint 5.3, where the starting time of job $j$ is expressed as $\sum_{k} \sum_{t} x_{j k t} t$, and the last constraint makes sure the fixations are honoured (5.4). The availability of each job, together with the maximum makespan, is taken into account by the definition of the time index in each constraint, i.e. ranging from $r_{j}$ to $\min \left(C, \bar{d}_{j}\right)-p_{j}$.

$$
\begin{array}{cl}
\sum_{k=1}^{m} \sum_{t=r_{j}}^{\min } 1 \text { s.t. } \\
\sum_{j=1}^{m i n}\left(C, \bar{d}_{j}\right)-p_{j} \\
\min \left(t, \min \left(C, \bar{d}_{j}\right)-p_{j}\right) \\
\sum_{t^{\prime}=\max \left(r_{j}, t+1-p_{j}\right)} x_{j k t^{\prime}} \leq 1 & \forall j \in\{1, \ldots, n\}  \tag{5.3}\\
\sum_{k=1}^{m} \sum_{t=r_{j}}^{\min \left(C, \bar{d}_{j}\right)-p_{j}} x_{j k t} t-\sum_{k=1}^{m} \sum_{t=r_{i}}^{\min \left(C, \bar{d}_{i}\right)-p_{i}} x_{i k t} t \geq q_{i j} & \forall r:(i, j) \in R_{p} \\
\sum_{t=r_{i}}^{\min \left(C, \bar{d}_{i}\right)-p_{i}} x_{i k t}=\sum_{t=r_{j}}^{\min \left(C, \bar{d}_{j}\right)-p_{j}} x_{j k t} & \forall k \in\{1, \ldots, m\} \forall r:(i, j) \in\left\{r \mid r \in R_{p} \wedge f_{r}=1\right\}
\end{array}
$$

$$
x_{j k t} \in\{0,1\} \quad \forall j \in\{1, \ldots, n\} \forall k \in\{1, \ldots, m\} \forall t \in\left\{r_{j}, \ldots, \min \left(C, \bar{d}_{j}\right)-p_{j}\right\}
$$

### 5.4 Updating the indicator LP

To include these extensions in the indicator linear programming formulation, we need to augment the representation of columns with the starting times of the jobs they contain. To this end we introduce a new parameter of machine schedules, $S_{j s}$, indicating the starting time of job $j$ in column $s$. Of course, its value only makes sense for the jobs that are included in that machine schedule, i.e. for which $a_{j s}$ is set to 1 ; otherwise, we assume $S_{j s}$ is set to zero. We thus include:

$$
S_{j s} \in\left\{0, r_{j}, \ldots, \min \left(C, \bar{d}_{j}\right)-p_{j}\right\}
$$

### 5.4.1 Renewed formulation

Since the jobs involved in a relation can be scheduled on different machines, the precedence constraints have to be enforced outside the generation of new columns, i.e. in the formulation of the master problem, which is changed to the following. Note that this is an integer linear
programming formulation again, of which we take the relaxation by changing the variable $x_{s}$ into a non-negative real number. Honouring the availability of individual jobs does not depend on multiple machine schedules, and can thus be delegated to the subproblem. The demand that all jobs are executed exactly once is unchanged (5.5), and the constraint on partial order has been added (5.6).

$$
\begin{align*}
\min \sum_{s \in S} x_{s} \quad \text { s.t. } & \\
\sum_{s \in S} x_{s} a_{j s}=1 & \forall j \in\{1, \ldots, n\}  \tag{5.5}\\
\sum_{s \in S} x_{s} a_{j s} S_{j s}-\sum_{s \in S} x_{s} a_{i s} S_{i s} \geq q_{i j} & \forall r:(i, j) \in R_{p}  \tag{5.6}\\
x_{s} \in\{0,1\} & \forall s \in S
\end{align*}
$$

### 5.4.2 Enhancing the pricing problem

With the starting times of jobs added to the machine schedules, the pricing problem becomes harder to solve, as we now also need to decide in what order to put the jobs we are including. Since the formulation of the LP gained an additional constraint, we also have an extra set of shadow prices - let $\lambda_{j}$ represent the shadow prices of the first constraint like before, and $\delta_{i j}$ those of constraint 5.6. As given by Van den Akker et al. (2012), we can aggregate these $\delta_{i j}$ values into a dual for individual jobs, which is called $Q_{j}$ and indicates how much we would like to move job $j$ to the back of the schedule:

$$
Q_{j}=\sum_{i \in \operatorname{pred}(j)} \delta_{i j}-\sum_{i \in \operatorname{succ}(j)} \delta_{j i} .
$$

Using these, we can express the reduced cost of a new column $s$ as:

$$
c_{s}^{\prime}=1-\sum_{j=1}^{n} \lambda_{j} a_{j s}-\sum_{j=1}^{n} Q_{j} S_{j s} .
$$

We reformulate the pricing problem using the variable $b_{j t}$, indicating job $j$ is to be started in the new schedule at time $t$. We then have that the starting time of job $j$ is represented by the sum $\sum_{t} b_{j t} t$, provided that $\sum_{t} b_{j t}$ equals one - the index $t$ ranges from $r_{j}$ to $\min \left(C, \bar{d}_{j}\right)-p_{j}$, although we use this abbreviated form in the text. We thus define:

$$
b_{j t}= \begin{cases}1 & \text { job } j \text { is started at time } t \\ 0 & \text { otherwise }\end{cases}
$$

Even though the precedence relations are already enforced in the formulation of the LP, it would be unwise not to include them here as well - generating a new column that does not honour the constraints of the master problem will never provide an improvement to it. We therefore need to ensure that whenever both jobs $i$ and $j$ involved in some relation $r:(i, j)$ are included, the difference between their starting times is at least $q_{i j}$. However, if only one or neither of the jobs is included, this constraint should evaluate to something trivial, so it has no effects on the solution:

$$
\sum_{t} b_{j t} t-\sum_{t} b_{i t} t \geq q_{i j} \quad \text { if and only if } \quad \sum_{t} b_{i t}=\sum_{t} b_{j t}=1
$$

Let us examine the left hand side of this constraint. Since both sums evaluate to zero or larger, we can conclude that the minimal value of the left hand side is minus the maximum starting time of job $i$. We therefore modify the right hand side by subtracting a value $M_{i j}$, such that it becomes
no larger than $-\left(\bar{d}_{i}-p_{i}\right)$ whenever at most one of the jobs involved in the relation is included, but it is left as it was whenever both jobs are selected. To this end we define $M_{i j}$ as follows:

$$
M_{i j}=\left(2-\sum_{t=r_{i}}^{\min \left(C, \bar{d}_{i}\right)-p_{i}} b_{i t}-\sum_{t=r_{j}}^{\min \left(C, \bar{d}_{j}\right)-p_{j}} b_{j t}\right)\left(q_{i j}+\bar{d}_{i}-p_{i}\right)
$$

We extend the pricing problem using this constraint, leading to the following formulation. The objective maximises the rewards for choosing jobs at certain times, by means of the duals. The constraints enforce that each job is scheduled at most once (5.7), that at any given moment at most one job is scheduled (5.8), that the precedence relations are adhered (5.9), and that the fixation is honoured (5.10). Note that, just like with the verifier ILP, the maximum makespan and the availability of jobs are honoured by the definition of the time indices, and that they therefore do not need a separate constraint.

$$
\begin{align*}
& \max \sum_{j=1}^{n} \sum_{t=r_{j}}^{\min \left(C, \bar{d}_{j}\right)-p_{j}} b_{j t}\left(\lambda_{j}+t Q_{j}\right) \text { s.t. } \\
& \min \left(C, \bar{d}_{j}\right)-p_{j} \\
& \sum_{t=r_{j}} b_{j t} \leq 1 \quad \forall j \in\{1, \ldots, n\}  \tag{5.7}\\
& \sum_{j=1}^{n} \sum_{t^{\prime}=\max \left(r_{j}, t+1-p_{j}\right)}^{\min \left(t, \min \left(C, \bar{d}_{j}\right)-p_{j}\right)} b_{t^{\prime}} \leq 1 \quad \forall t \in\{0, \ldots, C\}  \tag{5.8}\\
& \min \left(C, \bar{d}_{j}\right)-p_{j} \quad \min \left(C, \bar{d}_{i}\right)-p_{i} \\
& \sum_{t=r_{j}} b_{j t} t-\sum_{t=r_{i}} b_{i t} t \geq q_{i j}-M_{i j} \quad \forall r:(i, j) \in R  \tag{5.9}\\
& \sum_{t=r_{i}}^{\min \left(C, \bar{d}_{i}\right)-p_{i}} b_{i t}=\sum_{t=r_{j}}^{\min \left(C, \bar{d}_{j}\right)-p_{j}} b_{j t} \quad \forall r:(i, j) \in\left\{r \mid r \in R \wedge f_{r}=1\right\}  \tag{5.10}\\
& b_{j t} \in\{0,1\}  \tag{5.11}\\
& \forall j \in\{1, \ldots, n\} \forall t \in\left\{r_{j}, \ldots, \min \left(C, \bar{d}_{j}\right)-p_{j}\right\}
\end{align*}
$$

### 5.4.3 A new pricing heuristic

The ILP formulation of the pricing problem outlined above can be solved to optimality using a CPLEX implementation, though this can take a lot of time, so a faster heuristic is employed as well - only when that is unable to find any new columns, the ILP is invoked. Because of the time indices for each job, we are unable to aggregate jobs that are fixated together, meaning we are not able to diminish the search space that way. Instead, we divide the pricing heuristic into two phases - during the first we determine which jobs are included in the new column, and during the second we set the starting time of each of the chosen jobs.

To determine which jobs get selected for the new column, we solve the LP relaxation of the formulation presented above. By relaxing constraint 5.11 to $b_{j t} \geq 0-$ an upper limit of 1 is already implied by 5.7 - the problem becomes easier to solve. We use the resulting set of values, consisting of a number between 0 and 1 for each task, as the chances to include the corresponding jobs. When the solver has successfully solved the relaxation, we iterate over the sets of jobs that are grouped together based on the current fixation, and sum up their values of $b_{j t}$. That sum, divided by the number of jobs in the set, represents its chance of inclusion. We then randomly select some of those sets, and try to create a feasible assignment of starting times for them using the second phase. To increase our chances of finding an improving column and possibly generating more than one, we repeat the random selection of sets of jobs a number of times.

The second phase of this heuristic is tasked to return the starting times for a given set of jobs, such that the reduced cost of the resulting column is as low as possible. For this phase we make use of a constraint programming problem, that tries to construct a valid machine roster that includes all the jobs that were selected during the first phase. The constraints given to the CP solver ensure that each of the given tasks is scheduled within its availability and the current maximum makespan, and that at all times at most one job is included, as we are generating a single machine schedule. The value of each task starting at a specific time is calculated from the shadow prices, just like in the objective of the ILP above. If we are able to find a feasible assignment for the starting times of the indicated jobs, i.e. one that honours these constraints and makes the reduced costs come out negative, we return the generated roster - otherwise we return nothing.

After having called the second phase for each of the generated lists of jobs during the first phase, we possibly have multiple new columns that can be returned to the indicator LP, which can then be solved again. If we found no feasible columns, the integer linear programming implementation of the pricing problem as described in the previous section is invoked.

## Chapter 6

## Objective terms

This chapter presents two extensions to the terms used in the objective function of the problem category - we detail the addition of weights to relations, and discuss how to better approximate the original robustness measure $\sum \gamma$. As before, the first two sections describe the rationale for their inclusion, the others give the updated formulations of the search methods.

### 6.1 Introducing weighted relations

Along with the simplification of precedence relations to correlations in section 1.3, an example use case was given in the form of scheduling related computations over several computers. In that scenario, tasks might benefit from the efforts of other tasks - and it could very well be possible that some tasks benefit more from this effect than others. It could therefore be beneficial to the robustness of the resulting schedule to fixate some relations in favour of others. The inclusion of precedence relations in the previous chapter does not change this, as we can still prefer the jobs of a relation scheduled on the same machine over the jobs of some other relation - although the partial ordering imposed by the precedence relations must be honoured at all times.

To model this preference for the fixation of a specific relation, we introduce a weight for each relation $r$, represented by the property $w_{r}$. Technically, this property could have any real number as its value, although we assume positive values, as those are the most common, indicating how much we would like to the relation fixated. A negative number would indicate the opposite, i.e. making us prefer not having the jobs of this relation on the same machine. Using zero for the weight of a some relation means we do not reward its fixation in any way; in this case we do not even need to try to fixate it, as this would never be beneficial. Note that up to now, we acted as if all weights were set to 1 .

### 6.2 Better approximating $\sum \gamma$

With the introduction of fixations in section 2.2 , the objective of the search became to find a schedule with the most fixated relations. While this does give an upper bound on $\sum \gamma$ - recall that $\gamma_{j k}$ was defined to take a value of 1 if job $j$ itself is not scheduled on machine $k$, but has at least one successor that is, and 0 otherwise - it does not necessarily minimise that term, which Hoppenbrouwer (2011) introduced to maximise robustness.

It is even possible for a schedule to have more relations fixated but a lower $\sum \gamma$, as figure 6.1 demonstrates. The first schedule in this figure has one fixated relation, between $J_{1}$ and $J_{2}$, but a non-fixated relation to both jobs scheduled on machines two and three, i.e. $\gamma_{12}=\gamma_{13}=1$, leading to a $\sum \gamma$ score of 2 . Schedule 6.1 b on the other hand, has none of its three relations fixated, making it inferior when using the original objective - however, since it only has non-fixated relations to jobs on machine two, its $\sum \gamma$ is equal to 1 , meaning this schedule could just as well be considered superior to the first. This makes sense from the viewpoint of delay propagation, since


Figure 6.1: Two example schedules with four jobs and three relations, with $w_{r}=1$.
in schedule 6.1a two other machines would have to wait when the first gets delayed, whereas this would only affect one other machine in the second schedule.

### 6.2.1 Additional correlations

To address this issue, we add some extra relations to the problem instance. For every job $j$, we add a correlation between each possible pair of elements in the set $\operatorname{succ}(j)$, without adding any additional partial ordering constraints. In the example given above, we would thus add the correlations $\left(J_{2} \leftrightarrow J_{3}\right),\left(J_{2} \leftrightarrow J_{4}\right)$ and $\left(J_{3} \leftrightarrow J_{4}\right)$, all between successors of $J_{1}$. If there already is a precedence relation between some combination of jobs, we leave out the additional correlation for that pair, e.g. if the previous example contained the relation $\left(J_{2} \rightarrow J_{4}\right)$, we would only add the correlations $\left(J_{2} \leftrightarrow J_{3}\right)$ and $\left(J_{3} \leftrightarrow J_{4}\right)$. Augmenting the problem in this way effectively turns the set of successors of each job into a clique, giving the solver a higher incentive to schedule the involved jobs on the same machine.

Because we do not want these additional correlations to overshadow the original precedence relations in the objective function, we include the former with smaller weights. For our example to work, the three correlations have to outweigh the one precedence relation, otherwise the first schedule would still be superior. We therefore set the weights to half the average weight of the precedence relations, i.e. to $\frac{1}{2}$ when those weights are still set to 1 - using a different weight ratio would obviously lead to different results; the higher the weights of the additional correlations, the more the search algorithms focuses on cliques, specifically large cliques. Figure 6.2 shows the result of this extension, and demonstrates how the second schedule now is better according to both metrics.


Figure 6.2: The example schedules of figure 6.1 augmented with additional correlations.

Note that this augmentation of the objective function is still an approximation of $\sum \gamma$, and the values of these metrics can still differ. Figure 6.3 shows two example schedules with six tasks, of which jobs two through six are successors of $J_{1}$. In schedule 6.3 a, there are possibilities for propagations of delays to two machines, whereas this number is three in the second example. On the other hand, when considering the summed weight of the fixated relations, the search algorithms will prefer example 6.3 b over the first, which is not what we wanted. The difference between these two schedules is fairly small however, and considering the amount of added relations it is quite likely that a fixation is generated that has even more jobs bound to a single machine.

To completely avoid these situations in which a better fixation actually has a worse $\sum \gamma$, we would have to set the weights of the additional correlations equal to the weight of the precedence relations. However, it is questionable whether that is desirable, as that might focus on these additional correlations too much to be beneficial for the robustness. Also, with the introduction of weighted relations in the previous section, precedence relations can be set to have non-uniform arbitrary weights, so that is not an option. We therefore leave the weights of the additional correlations at half the average weight of the precedence relations, which still gives us the improvement over the original situation of figure 6.1.

(a) $\sum-f_{r} w_{r}=-\frac{4}{2}, \sum \gamma=2$

(b) $\sum-f_{r} w_{r}=-2 \frac{1}{2}, \sum \gamma=3$

Figure 6.3: Two example schedules with five jobs, four precedence relations and six correlations.
In the remainder of this chapter we present the updated search algorithms for finding the best fixations, where we continue to use $R_{p}$ to indicate the set of original precedence relations and introduce $R_{c}$ to represent the set of additional correlations. We also redefine $R$ as the union of these two sets, i.e. $R=R_{p} \cup R_{c}$.

### 6.3 Solving the extended problem to optimality

To solve the problem with the mentioned extensions to optimality, we update the ILP presented in section 2.3 by adding a time index to its variables. This makes it very similar to the updated verifier ILP, as it then also has $x_{j k t}$ indicating whether job $j$ is scheduled to start on machine $k$ at time $t$. The other variable, $y_{i j}$, is still used to fixate jobs $i$ and $j$ on the same machine, with the only difference that $r:(i, j)$ now comes from the union of $R_{p}$ and $R_{c}$. We include the weights of the relations in the objective function, leading to the following formulation. The first three constraints are the same as those in section 5.3, stating that every job is to be included once (6.1), each machine is executing at most one job at a single point in time (6.2), and the precedence relations are to be honoured (6.3). The last two ensure that fixated relations are to be executed by the same machine ( $6.4 \& 6.5$ ). Also here, the availability of jobs is taken into account by the definition of the time index in each constraint.

$$
\begin{align*}
& \max \sum_{r:(i, j) \in R} y_{i j} w_{r} \quad \text { s.t. } \\
& \sum_{k=1}^{m} \sum_{t=r_{j}}^{\min \left(C, \bar{d}_{j}\right)-p_{j}} x_{j k t}=1 \quad \forall j \in\{1, \ldots, n\}  \tag{6.1}\\
& \sum_{j=1}^{n} \sum_{t^{\prime}=\max \left(r_{j}, t+1-p_{j}\right)}^{\min \left(t, \min \left(C, \bar{d}_{j}\right)-p_{j}\right)} x_{j k t^{\prime}} \leq 1 \quad \forall k \in\{1, \ldots, m\} \quad \forall t \in\{0, \ldots, C\}  \tag{6.2}\\
& \sum_{k=1}^{m} \sum_{t=r_{j}}^{\min \left(C, \bar{d}_{j}\right)-p_{j}} x_{j k t} t-\sum_{k=1}^{m} \sum_{t=r_{i}}^{\min \left(C, \bar{d}_{i}\right)-p_{i}} x_{i k t} t \geq q_{i j} \quad \forall r:(i, j) \in R_{p}  \tag{6.3}\\
& \min \left(C, \bar{d}_{i}\right)-p_{i} \quad \min \left(C, \bar{d}_{j}\right)-p_{j} \\
& \sum_{t=r_{i}} x_{i k t}-\sum_{t=r_{j}} x_{j k t} \leq 1-y_{i j} \quad \forall k \in\{1, \ldots, m\} \quad \forall r:(i, j) \in R  \tag{6.4}\\
& \min \left(C, \bar{d}_{j}\right)-p_{j} \quad \min \left(C, \bar{d}_{i}\right)-p_{i} \\
& \sum_{t=r_{j}} x_{j k t}-\sum_{t=r_{i}} x_{i k t} \leq 1-y_{i j} \quad \forall k \in\{1, \ldots, m\} \forall r:(i, j) \in R  \tag{6.5}\\
& \begin{array}{ll}
x_{j k t} \in\{0,1\} & \forall j \in\{1, \ldots, n\} \forall k \in\{1, \ldots, m\} \forall t \in\left\{r_{j}, \ldots, \min \left(C, \bar{d}_{j}\right)-p_{j}\right\} \\
y_{i j} \in\{0,1\} & \forall r \cdot(i, j) \in R
\end{array} \\
& y_{i j} \in\{0,1\} \quad \forall r:(i, j) \in R
\end{align*}
$$

As searching for the optimal fixation using this ILP continues to be far too inefficient, the rationale for using the decomposition approach still stands. The next section describes how we adapt the local search approaches for the extended problems.

### 6.4 Extending the search algorithms

To incorporate the weighted relations into the genetic algorithm and simulated annealing approach, we only need to change their objective function into the following, and no other modifications have to take place:

$$
\min \sum_{r \in R}-f_{r} w_{r}
$$

The better approximation of $\sum \gamma$ comes for free with the newly introduced additional correlations, as these immediately become part of the solution and are eligible for fixation.

### 6.4.1 Merging job-sets

The strategy for determining which sets of jobs to unify while combining fixations during the genetic algorithm, or while changing the current solution of the simulated annealing algorithm by merging sets used to be similar. The program would check whether merging two sets was possible by ensuring the sum of their processing times stayed within the maximum makespan. While this is still a valid criterion, we can extend that check by seeing whether we can construct a roster for the combined set of jobs, in which the starting times of all included jobs have a valid value and all precedence relations are honoured.

To this end we use the constraint programming implementation used by the new pricing heuristic introduced in section 5.4.3. Whenever two sets of jobs are selected for a merge, we invoke the CP solver to create a roster that includes all those jobs. If we manage to find a roster, we unify the two sets; otherwise we abort the merge - then we continue like before. Also, if a roster is returned, we immediately add it to the indicator LP, making solving it easier once we get to the evaluation of the fixation that is being generated.

## Chapter 7

## Additional search

During the evaluation of the solutions generated by the search algorithms, many single machine rosters are generated as columns for the indicator LP. In this chapter we show how we can use these columns to look for fixations in a different manner.

### 7.1 Combining columns

By combining all the single machine rosters we have generated while evaluating fixations, and selecting an appropriate subset of these, we might be able to find fixations the search algorithms have missed. With the goal of finding the best fixation, we thus have to set the objective to maximising the sum over the weights of relations that are fixated in each column. To achieve this, we add a parameter $w_{s}$ to every known column $s$, that is calculated by summing up the weights of the relations of which both jobs are included, i.e. $w_{s}=\sum_{r \in\left\{r \mid r:(i, j) \in R \wedge a_{i s} \wedge a_{j s}\right\}} w_{r}$.

Using $S^{\prime}$ to indicate the set of known columns, we formulate the following integer linear programming problem. Although the objective is different, the first two constraints of this formulation are the same as the ones for the master problem of the indicator LP, described in section 5.4.1 - stating that all jobs should be included exactly once (7.1), and that the precedence relations are to be honoured (7.2). Additionally, we have to enforce that no more columns are chosen than there are machines available (7.3).

$$
\begin{align*}
\max \sum_{s \in S^{\prime}} x_{s} w_{s} \quad \text { s.t. } & \\
\sum_{s \in S^{\prime}} x_{s} a_{j s}=1 & \forall j \in\{1, \ldots, n\}  \tag{7.1}\\
\sum_{s \in S^{\prime}} x_{s} a_{j s} S_{j s}-\sum_{s \in S^{\prime}} x_{s} a_{i s} S_{i s} \geq q_{i j} & \forall r:(i, j) \in R_{p}  \tag{7.2}\\
\sum_{s \in S^{\prime}} x_{s} \leq m &  \tag{7.3}\\
x_{s} \in\{0,1\} & \forall s \in S^{\prime}
\end{align*}
$$

### 7.2 Implementation

Because this ILP needs the columns that were generated during the execution of the other search algorithms, it is not possible to run it separately. It could however come up with solutions that were missed by the local search heuristics, so running it afterwards might lead to improvements. When the genetic search and simulated annealing algorithms are done, all columns that were generated are passed to this approach. Should an improved solution be found, it is added to the genetic populations, to give them a better starting point for their next run.

To determine the effectiveness of this approach, we also backported its implementation to the original code by Van Roermund (2013) that worked on the simplified problems, to see how this extension improves the quality of found solutions. The results of these experiments can be found in section 9.3.5.

## Part III

Results

## Chapter 8

## Parameters

Before putting the presented approach to the test, we first need to set appropriate values for its parameters. To do this, we run the program multiple times on a set of problems, each time with a different setting, and choose the best performing value as the default. The first section describes the problem instances that were used for these and further experiments. The remaining sections describe the various parameters that were tested, belonging to the different search algorithms.

### 8.1 Problem instances

The problem instances we used to test the approach on have all been randomly generated. Each instance is titled $n \mathrm{~J}-r \mathrm{R}-m \mathrm{M}$, where $n$ indicates the number of jobs, $r$ the number of relations and $m$ the number of machines - e.g. 30J-40R-8m is a problem with 30 jobs, 40 relations and 8 machines. The processing times were picked between 1 and 20 , the release dates of jobs were randomly chosen from the interval $\left[0, \frac{n}{2}\right]$, and the deadlines were randomly set ranging from the release date plus the processing time to some big number. The precedence relations were added between randomly selected pairs of jobs, with weights of 1 and the value of $q_{i j}$ randomly chosen between 0 and the processing time of the predecessor job, i.e. within $\left[0, p_{j}\right]$.

### 8.2 Stop count

The stop count parameter determines the number of iterations, in which no improvements to a solution are found, after which a search algorithm is stopped. This setting is therefore applicable to both the genetic and simulated annealing local search. Choosing a value that makes it come out too low would make the algorithm give up the search while there are still possibilities for improvements. If set too high however, it would keep searching for better fixations long after the best solution was found, only wasting time. We therefore expect there to be a certain threshold, above which the quality of solutions is no longer improved. To find the height of this threshold, we set the stop count to a very high value, and keep track of the number of iterations between improvements.

When looking at the found numbers, shown in figure 8.1, we can see that for the genetic algorithm, the threshold lies higher for instances with more machines - for the tested instances with only 2 machines, at most one iteration passed in which no improvement was made, whereas this was up to 70 iterations with 8 machines. For the simulated annealing algorithm we see a similar pattern, although the difference is larger - up to 330 iterations without improvements passed, after which a better solution was found. We therefore choose the value of this parameter to be $15 \mathrm{~m}-20$ for the genetic search and 60 m for the simulated annealing algorithm. These values allow for a large enough stop count to not affect the quality of the solutions, while still keeping the total runtime of the algorithm in check.


Figure 8.1: Experiments for the stop count parameter.

### 8.3 Genetic local search

In this section, we explore the performance of the genetic algorithm, by tweaking its parameters. During these experiments the simulated annealing algorithm was not used to improve the fixations found by the genetic algorithm, to get a clear view of the effect of these settings on the quality of the solutions. For each parameter we show two charts, demonstrating the effect of a setting on both the quality of the solutions and the runtime of the algorithm. The multi start approach was kept, each result represents the best of three separate runs; the time is the total time taken by those three runs.

### 8.3.1 Elitist selection

This parameter determines the number of best solutions in the population that are unconditionally copied to the new generation, as defined in section 4.1.1. Setting it to zero means that every iteration the entire population is thrown away after selecting the parents, and therefore provides no guarantee that the best solution of the next generation is as good as the current best. On the other hand, setting it to the size of the population minus one means that only the worst solution in the population is replaced during an iteration, and might smother the diversity of the solutions in the population. With a population-size of 10 , the tested values for the elitist selection count are $0,1,3,5,7$ and 9 .


Figure 8.2: Experiments for the elitist selection count parameter.
As can be seen from the chart depicting the runtime in figure 8.2, the higher the value of this parameter, the faster the populations converge. However, the average distance to the best known solution also increases slightly with a higher setting. We therefore choose the middle ground, 5 half the size of the population - as the default value for this parameter.

### 8.3.2 Combiner inclusion chance

When combining parent solutions to create new fixations, the common parts of the parents are copied with a certain chance, which is governed by this parameter. With a low value, only little information is transfered between generations, leading to a longer time before a population converges. However, a high setting might ensure that once some relation is fixated by all solutions in the population, no new solutions can be generated in which that relation is not fixated, thereby leading to premature convergence. The tested settings are $0.7,0.8,0.85,0.9$ and 1 .


Figure 8.3: Experiments for the combiner inclusion chance parameter.
Figure 8.3 shows how setting the combiner inclusion chance to a higher value indeed leads to a faster converging population. The distance to the best known solutions also increases when the value approaches 1 , confirming our assumption. We therefore choose 0.8 as the default value for this parameter, as it has one of the lowest runtimes and still few errors - off-by-one errors can be explained due to the random nature of the search algorithms, making this the best setting.

### 8.4 Simulated annealing

We also investigate the performance of the simulated annealing search algorithm, by changing its parameters. Since the simulated annealing algorithm is normally intended to be run after the genetic search, we do these experiments by running simulated annealing on a fixed solution that is somewhat close to the best known fixation for each instance.

### 8.4.1 Cooling schedule

As described in section 4.2.2, the cooling schedule governs the temperature during the run of the simulated annealing algorithm, and consists of a starting temperature, a modifier and the cool count, i.e. the number of iterations after which the current temperature is decreased by multiplying it with the modifier. Setting the temperature too high, or not lowering it enough, might make the search slow to converge, whereas starting off with a very low temperature, or decreasing it too fast, will allow the algorithm to explore only a small part of the search space.

In section 4.2.1 we introduced two different changes for modifying fixations, i.e. merge two sets of jobs or scattering one set. Since only the latter can - and always will - lead to a decrease in the fitness value of the current solution, this is the only occasion the temperature will be needed. As the sizes of the sets that are scattered are proportionate to the number of relations in the problem instance, we make the starting temperature dependent on that number. The tried settings are $0.5-$ $0.9-25,0.5-0.95-10,1-0.9-25$ and 1-0.95-10, where $a-b-c$ indicates $a \cdot|R|$ as the starting temperature and $b$ as the modifier that is applied to the current temperature every $c$ iterations.

The charts in figure 8.4 show how a higher starting temperature leads to a longer runtime, but also to slightly worse results. Lowering the temperature more often but more gradually seems to slightly decrease the effectiveness, although the effect is not very large. We therefore pick $0.5-0.9-25$ as the default cooling schedule, as it is the fastest and has the best results.


Figure 8.4: Experiments for the cooling schedule parameter.

### 8.4.2 Changer ratio

As described above, we defined two changes to fixations during the simulated annealing search algorithm. Since the scattering of a set turns every job in that set into a singleton, it would take the size of that set minus one merges to return to the original solution. And as the size of the sets of jobs is expected to grow with the size of the problem, we make the ratio for choosing between the two changes dynamic and dependent on the number of relations in the problem instance. This parameter only influences the initial choice of which change to apply; if there are no sets to merge or the scattering of a set is rejected based on the current temperature, the other change is tried anyway. The tried values are $0.2,0.5$ and 1 , where a value $r$ results in a $r \cdot|R|: 1$ ratio for choosing the merging change.


Figure 8.5: Experiments for the changer ratio parameter.
Figure 8.5 shows how different values for this parameter make little difference to the effectiveness of the search algorithm. We thus pick the value 1 as the default setting, as that has the smallest average runtime, although other values might work as well.

### 8.5 Pricing heuristic retries

The last parameter we investigate controls the application of the pricing heuristic. When solving the indicator LP to evaluate the feasibility of a fixation, we use the shadow prices of the current solution to generate a new column. This can either be done by the optimal approach, which is another ILP by itself, or the pricing heuristic, which solves the LP relaxation of that ILP. After finding a solution to the latter, the heuristic tries to construct a column by rounding the relaxed variables either up or down, and, to maximise the chance of finding a column that improves the solution of the indicator LP, it does so multiple times. This parameter controls the number of times the pricing heuristic will try to build a column from the result of its LP relaxation.

We test this parameter by measuring the time needed to evaluate a single fixation that is close to the best know solution. The tested values are $0,1,3,5$ and 9 , where 0 means that the pricing heuristic is completely skipped and only the optimal solution to the pricing problem is determined. Each experiment has been repeated five times; the results are displayed in figure 8.6, where the colored bars represent the averages and the black error bars show the minimal and maximum results.


Figure 8.6: Experiments for the pricing heuristic retry parameter.
We can see that not using the pricing heuristic at all, i.e. setting this parameter to 0 , still gives us a decent running time for evaluating solutions. However, setting it to 3 gives the overall quickest results, so we will choose this as the default value. Another noticeable thing from this chart is the fact that evaluating a fixation for a problem instance with many machines takes much less time than doing so for an instance with only few machines. We will return to this observation when discussing the results in the next chapter.

## Chapter 9

## Experiments

This chapter describes the experiments that we carried out to prove the effectiveness of the presented approach. We start with a description of the simplification of the problem instances we needed to compare with optimal solutions, followed by the detailing of the various statistics that were gathered during the execution of the program. The results are presented in the last section, combined with an interpretation and explanation of the tables that can be found in the appendices.

### 9.1 Simplified problem instances

In order to determine the effectiveness of our approach, we need to compare the solutions it finds to the optimal ones. Unfortunately, running the ILP defined in section 6.3 on the generated problem instances proved intractable - trying to solve $20 \mathrm{~J}-30 \mathrm{R}-2 \mathrm{M}$ to optimality crashed after more than 1000 minutes, because it had exhausted all the 8 GB of available memory in the system running the experiments. We therefore decided to generate a second set of instances, which were simplified in order to determine the optimal solutions. For these problem instances, the processing times of all tasks were set to 1 , the release dates to 0 and the deadlines equal to the number of jobs. The $q_{i j}$ values of precedence relations were still randomly chosen from the range $\left[0, p_{j}\right]$, but because of the unit processing times this becomes $[0,1]$. We refer to these simplified instances as $n \mathrm{~J}-r \mathrm{R}-m \mathrm{M}$-SIMPLE.

### 9.2 Statistics

Various statistics have been gathered from the experiments, which are presented in the tables found in the appendices. In the first set of tables, each instance is presented using up to four rows, each one with a different value for the maximum makespan. The tables start with the following three columns:

Problem The name of the instance;
$C \quad$ The maximum makespan used when solving the problem;
Best Indicates the value of the best solution found for this $C$;

## Timing statistics

The next 9 columns contain information on the amount of time spent on operations:

| Total | This indicates the total time spent on the indicator LP, including the next |
| :--- | :--- |
|  | 6 columns; |
| Solving | This is the time taken by the Gurobi solver on the indicator LP; |
| Pricing: Heuristic | The time spent on solving the pricing problem heuristic; |

Pricing: Optimal
Columns: -
Columns: $\pm$
Columns: $\circlearrowleft$
CS
ILP

The time spent on solving the ILP implementation of the pricing problem; The time spent removing columns at the end of evaluating a fixation; The time spent re-adding columns that were previously removed; The time spent updating columns at the start of evaluating a fixation; The time taken by the column-based search of chapter 7 ; Indicates the total time taken by solving the verifier ILP.

## Counting statistics

The last 9 columns contain statistics on how many times operations were executed:
\(\left.$$
\begin{array}{ll}\text { Evals } & \begin{array}{l}\text { The number of fixations that were evaluated by the indicator LP; } \\
\text { Iters }\end{array} \\
\text { Pricing: Heuristic } & \begin{array}{l}\text { The total number of iterations made by the indicator LP; } \\
\text { The number of times the heuristic for the pricing problem returned a new } \\
\text { column, over the total number of times the pricing problem was called; }\end{array}
$$ <br>
Pricing: Optimal <br>
The number of times the integer linear programming implementation of <br>

the pricing problem was successfully solved, over the total number of times\end{array}\right]\)| it was called; |
| :--- | :--- |

### 9.3 Results

When looking at the tables in the appendices, the following things can be noticed.

### 9.3.1 Effectiveness of the approach

Appendix A, starting at page 50, contains the tables with the statistics of the experiments as described above. One thing that attracts the attention is the last column of each of those tables, showing the number of times the verifier ILP was called, which mostly contains ones - even more so for the simplified instances. This means that the verifier ILP is able to prove the feasibility of the best fixation found by the search algorithms most of the time, and thus that the indicator LP does not return many false positives when evaluating a fixation. Because of its formulation as a LP-relaxation, we are ensured that it can never return false negatives, i.e. it will never claim a fixation is not feasible while in fact it is. We can thus conclude that the assumption made in section 3.2 - that finding a solution to the LP, which minimises the number of used machines, is a good indicator of feasibility - is valid for these problems. The fact that the verification step succeeds does not mean that the verifier ILP can be skipped however, for it is this step that actually generates a schedule, whereas the evaluation LP uses fractions of columns to determine the alleged feasibility of a fixation and does not build a complete roster.

The few instances where the ILP had to be invoked many times before finding a feasible fixation though, the time taken by those checks is immense compared to when run only once - when a solution is being verified, all possible schedules need to be checked before we can conclude its infeasibility, which can take a lot of time. It would therefore be good to ensure the number of possibly infeasible solutions that are checked is minimised when implementing this approach for real problems - see section 10.3.3 for more thoughts on this.

Also evident from these tables, is the application of the intermediate lower bound on the indicator LP - topping at 4628 times for the first run of $40 \mathrm{~J}-50 \mathrm{R}-8 \mathrm{M}$ - and the effectiveness
of the pricing heuristic. When looking at for example the eighth entry of table A.1, i.e. 20J$30 \mathrm{R}-2 \mathrm{M}$ with $C=120$, we see it takes 297072 ms for 3030 runs, against 8569449 ms for 1502 runs of the optimal pricing problem - meaning the heuristic is almost 60 times faster to run, which corresponds to the other entries in the table. Note that this does not mean that the columns found by the heuristic implementation of the pricing problem actually improve the solution of the LP - we looked at this earlier in section 8.5, and came to the conclusion that including the heuristic definitely improves the runtime of the approach.

### 9.3.2 Evaluations with zero iterations

In the statistics tables, rows can be found where the number of iterations of the indicator LP is very low. This is possible because the program first tries to solve the LP using the columns that have already been generated during previous evaluations. If this succeeds and the number of machines needed is small enough, no iterating needs to be done, as we already deem the given fixation feasible. The number of evaluations is usually quite low in those cases as well, which can be explained by the fact that the program also caches the evaluation results, meaning fixations that have previously been checked and deemed feasible do not have to be evaluated again - solutions that were deemed infeasible are also cached, but cleared when the value of $C$ is increased, as those fixations then could be feasible. The low values of both the number of iterations and evaluations indicate that the search algorithms were unable to find any fixations that were an improvement over the best known solution at that stage, most likely because they were at a (local) optimum.

### 9.3.3 Comparison of results

The next set of tables, found in appendix B at page 53, displays the comparison of solutions found by our approach and the optimal ones. The cells showing the value of the found solutions have been colour-coded to allow for a quick overview of the divergence from the optimal value. A green cell indicates that the optimal solution was found, a lime one means there was a difference of 0.5 or 1 ; yellow means that the search algorithm could find a value of up to 2 less than the optimal value; orange and red cells indicate differences of up to 3 and more than 3 respectively. Note that these tables only contain the simplified problem instances $\left(p_{j}=1, r_{j}=1, \bar{d}_{j}=n\right)$.

Without exceptions, the heuristic approach is able to come to, or very close to, the optimal value for all instances. The minor offsets can be explained by the random nature of the local search algorithms, and re-running the search might lead to the optimum being found that time. This means that our approach is a very good alternative to the ILP that solves problems to optimality.

### 9.3.4 Comparison of running times

In those same tables, the total time it took to find the solutions is provided for comparison between runs of the same algorithm, to show which instances are harder than others. Comparing the times of the optimal search and the heuristic can be misleading, as the stopping criteria for the local search algorithms have been set in a very general way. For tackling a specific problem, the parameters of the genetic and simulated annealing algorithms could be tailored to minimise the running time; or we could give it a target value that is no higher than the optimal value, so it can stop searching after finding a good enough solution.

Note that for smaller instances, solving it to optimality still is more efficient - for larger instances however, especially those with many machines and more precedence relations than jobs, the tables show that the running time of the ILP drastically increases, quickly making it intractable. For example, have a look at the running time of the optimality ILP for the instances 30J-40R* $_{\text {M-SIMPLE; }}$ it perfectly shows how incrementing the number of available machines increases the time needed to find an optimal solution.

The running time of the heuristic approach also grows with the size of the instances, but is less dependent on the number of machines. The exception to that is when there are only two
machines, in which case the search algorithms need way more time to come up with a solution. When looking at the $30 \mathrm{~J}-40 \mathrm{R}-*_{\mathrm{M}}$ SIMPLE instances, we see that the time needed to run the search algorithms actually decreases when the number of available machines grows. Although this does not show for the other simplified instances, it is a pattern that is better visible in table A. 1 showing the statistics for the non-simplified problem instances, where the larger instances with only few machines could not be solved within 24 hours, whereas those same instance with more machines could. This is most probably caused by the indicator LP being able to more easily combine columns when the number of allowed machines is higher, leading to a quicker conclusion on the feasibility of a fixation.

Another advantage of our approach is the fact that it needs less system resources to run than the ILP implementation - whereas the latter often ran out of memory on larger instances, our approach never needed more than 1GB of memory, even for the largest instances that were executed - meaning much larger problems can be tackled before running into hardware limitations. These observations, along with the conclusion that our approach comes very close to the optimum solution, makes it a most adequate alternative to the ILP, especially for larger instances with many machines.

### 9.3.5 The improved genetic algorithm

The tables in appendix C, at page 55 and onwards, show the results of the improved genetic algorithm as presented in chapter 4, compared to the naive method introduced by Van Roermund (2013) - with and without the column search ILP of chapter 7 - and the optimal solution for each problem instance. These experiments were run on the original problem instances, with the relations still as mere correlations, and are therefore not comparable to the instances discussed earlier. The format used to indicate them, i.e. $n \mathrm{~J}-r \mathrm{R}-m \mathrm{M}$ and $n \mathrm{~J}-r \mathrm{R}-m \mathrm{M}-$ SIMPLE, is identical; also here the simplified versions have all processing times set to 1 .

The goal of these experiments is to show the effectiveness of the improvements presented in this paper. Each table displays the time it took to find the solutions and the number of relations that were fixated in those solutions. Table C. 1 holds the results for problems with 10 jobs, table C. 2 does the same for instances with 25 jobs, and table C. 3 has those with 60 jobs. The columns showing the number of found fixated relations are colour-coded in the same way as the previously discussed tables.

The first thing that draws the attention here is the fact that the improved genetic algorithm always finds an optimal solution, and does so quicker than the old naive method came up with an answer. Only for small instances the ILP that solves the problem to optimality is quicker, but its running time explodes when tasked to solve larger problems, proving the improved GLS much more stable in its running time.

The results of the naive algorithm were taken directly from Van Roermund (2013), to give a basis for comparison. Extending that heuristic with the column based ILP of chapter 7 shows some merit, but it never comes close to the improved version. The only major differences it shows are when the naive approach fell short of the optimal solution by a long way - i.e. instances $25 \mathrm{~J}-$ $60 \mathrm{R}-2 \mathrm{M}$ and $60 \mathrm{~J}-150 \mathrm{R}-{ }^{*} \mathrm{M}$ - where the extension is able to make a relatively big improvement, but is still far from the optimum.

The performance of the column-based search in the experiments displayed in appendices A and $B$ was comparable to this, i.e. only when the search algorithms failed to come up with a reasonably good solution, this column-based ILP could present an improving solution; otherwise it just came to the same fixation as the searches had returned. Looking at the difference in the running times for similar sized problems, e.g. $60 \mathrm{~J}-60 \mathrm{R}-8 \mathrm{M}$ of both appendix B and C , we can see how adding precedence relations and job availabilities makes the problems so much harder to solve - both optimally and heuristically.

## Chapter 10

## Conclusion

In this final chapter we give a summary of the entire approach as presented in this work, and we draw the conclusions from the results of the experiments. The last section gives pointers for future research into this field.

### 10.1 Summary of the approach

In this thesis we set out to construct an approach for maximising the robustness of schedules. We have done this by fixating relations and thereby forcing the involved jobs to be executed by the same machine. To traverse the search-space and find the best fixations, we defined a genetic local search algorithm and a simulated annealing approach. Any found solution was then evaluated by a linear programming formulation based on column generation, which tries to minimise the number of machines needed to schedule all jobs while enforcing the fixation. By re-using the solver for that LP, we were able to quickly evaluate thousands of solutions, and identify those that give the highest robustness.

In summary, the complete approach for finding a schedule that maximises robustness using the presented method works as follows:

1. We determine the value of $C$ by solving $\mathrm{P} \mid r_{j}, \bar{d}_{j}$, prec $\mid C_{\max }$;
2. We run the search algorithms, thereby tackling $\mathrm{P} \mid r_{j}, \bar{d}_{j}$, prec, $C_{\max } \leq C \mid \sum-f_{r}$;

- Every iteration of the search algorithms generates one or more fixations, which are evaluated using the indicator LP;
- Every iteration of the indicator LP, we solve the pricing problem to generate new columns;
- When the indicator LP has been solved, we draw a verdict on the feasibility of the evaluated fixation;
- After a set amount of iterations in which no improvement was made, the search algorithms return the best solution encountered;

3. We solve the verifier ILP to check whether the returned solution is feasible - if it is not, we try the next best solution, until we have found a fixation that is;
4. Optionally, we increase the value of $C$ and repeat from step 2 , until we have a good idea of the interplay between the maximum makespan and the achieved robustness.

### 10.2 Conclusion

Following the interpretations of the results of the experiments in the previous chapter, we can conclude that the presented approach performs very well. Although it is not very quick on smaller problems, because of the overhead of the local search algorithms, and it can take a lot of time to solve larger instances with only a few machines, it excels at solving problems with many machines. Seeing that those instances are also the weak spot of the ILP that solves them to optimality, because of the symmetry in its formulation, this makes our approach an excellent heuristic for solving those problems.

### 10.3 Future work

In order to enhance the usefulness of the approach presented in this thesis, there are several extensions that are worthwhile to investigate in future works.

### 10.3.1 Other types of precedence relations

As mentioned in section 5.1, we only looked at precedence relations of the form $S_{j}-S_{i} \geq q_{i j}$, with $q_{i j} \geq 0$, and did not consider other types of relations. Ignoring the constraint that $q_{i j}$ is positive for a moment, we could rewrite the other types quite easily, making them all alike:

$$
\begin{array}{ccc} 
& & S_{j}-S_{i} \geq q_{i j} \\
S_{j}-S_{i} \leq q_{i j} \quad \Rightarrow \quad & -S_{j}+S_{i} \geq-q_{i j} \\
S_{j}-S_{i}=q_{i j} \quad \Rightarrow \quad & -S_{j}+S_{i} \geq-q_{i j} \wedge S_{j}-S_{i} \geq q_{i j}
\end{array}
$$

However, instead of simply including these rewritten forms into the constraints, we could come to a better approach by taking a closer look at what these relations actually indicate. The included precedence relations, with positive values for $q_{i j}$, signify a minimal time between the starting times of jobs $i$ and $j$. The second type indicates the opposite, i.e. a maximum time between the starting of jobs $i$ and $j$. And the last of these relations, with their equality condition, demand a precise difference in the starting times of involved jobs. This makes the last type much harder to satisfy from the viewpoint of robustness, as the possibility of delay propagations now work both ways a delay of the execution of job $i$ can have as much impact on a schedule as the postponing of job $j$. As expected, the second type has the delay propagations working only one way, but opposite from the type that was implemented - whenever job $j$ is delayed and there is no more slack time, we also need to postpone job $i$, even though it is scheduled before $j$, which might not even be possible, as it could have already started, making it impossible to fulfill that constraint.

It would therefore make sense to treat these relations differently when fixating them, to take full advantage of their meaning. Seeing that the third type poses the most restrictions on the schedules, it would be best to first fixate as many of these relations as possible. Since the second type can be harder to overcome when delays actually take place, we would want to fixate these next, before moving on to the first type. A weighted sum over the value of these fixations might be useful as an objective function, although the exact interplay between the terms should be looked into.

### 10.3.2 Specific problem instances

As mentioned in section 9.3.4, we could significantly improve the running time of the program when targeting a specific problem. The problem instances in this work were chosen randomly, with a wide range of parameters, to investigate the effectiveness of the approach on various types of problems. Knowing that our heuristic is most effective on larger instances with many machines, this problem-type can be further explored, to get the most out of the strengths of this method. Trying our approach on some real-world instances might have some value as well, and give more insight in its applications.

Also, the precedence relations of the instances that were experimented on have all been added between random jobs, leading to no specific structure. As an alternative, we could generate these relations in such a way that it forms a tree - possibly an in-tree or an out-tree - or even other types of graphs. The performance of the presented approach might be affected differently by various types of dependency graphs, which makes for another interesting piece of research.

### 10.3.3 Extending the verifier ILP

The verifier ILP, as described in sections 3.1 and 5.3 , is invoked after the search algorithms return a list of the solutions found, to determine whether they are actually feasible. As noted in the previous chapter, when many fixations turn out to be infeasible, the process of finding one that is can take a lot of time. This part of the approach could be accelerated by preprocessing the ILP model and thereby reducing the search space.

Instead of adding a variable for scheduling each job on each machine, we could for make a graph. In this graph, we merge jobs that are fixated together into a single node, and add edges for every relation that is not fixated. Since we are verifying the feasibility of the best fixation found, we assume no trivial improvements are possible, i.e. we are not able to improve the solution by simply fixating any single relation that was not already fixated. Using this assumption, we know that the edges in the graph we just created indicate that the connected sets of jobs must be scheduled on different machines. And since the machines are identical, it does not matter which machine execute which jobs. We can therefore simply restrict the jobs in a node to a specific machine, and the jobs of a connected node to another machine, etcetera. Each job still needs its own set of variables, as the precedence relations still have to be enforced within the ILP, but restricting some jobs to only one machine significantly diminishes the search space, leading to a faster conclusion on the feasibility of the evaluated fixation.

Let us look at the example in figure 10.1 with 6 jobs and 5 precedence relations - $\left(J_{1} \rightarrow J_{2}\right)$, $\left(J_{1} \rightarrow J_{3}\right),\left(J_{4} \rightarrow J_{2}\right),\left(J_{4} \rightarrow J_{3}\right)$ and $\left(J_{5} \rightarrow J_{6}\right)$. For the fixation $[1,0,0,0,1]$, the graph described above is shown in figure 10.1b. When constructing the ILP, we would restrict jobs 1 and 2 to the first machine, job 3 to the second and job 4 to the third machine. Jobs 5 and 6 can be scheduled on any machine, although we still demand that they end up on the same one. Doing so decreases the possible schedules the ILP solver can consider while solving this instance, lowering its runtime, but does not create a chance of a false negative - if a feasible schedule is possible for the given fixation, it can still be found after this preprocessing step.


Figure 10.1: Example problem with 6 jobs and 5 precedence relations.
Note that when the preprocessed graph is a forest, like in figure 10.1c, we can only restrict the jobs of one of its trees to specific machines. To decrease the search space as much as possible, we should select the largest tree for this, and add some additional constraints that demand that jobs involved in non-fixated relations are not scheduled on the same machine.

## Bibliography

Van den Akker, J.M., J.A. Hoogeveen, and J.W. van Kempen (2012). "Using column generation to solve parallel machine scheduling problems with minmax objective functions". In: Journal of Scheduling 15.6, pages 801-810.
Bazaraa, M.S., J.J. Jarvis, and H.D. Sherali (2005). Linear programming and network flows. 3rd. Wiley.
Galler, B.A. and M.J. Fisher (1964). "An improved equivalence algorithm". In: Communications of the $A C M$ 7.5, pages 301-303.
Goldberg, D.E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning. 1st. Addison-Wesley Professional.
Graham, R.L., E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan (1979). "Optimization and approximation in deterministic sequencing and scheduling: a survey". In: Annals of Discrete Mathematics 5.2, pages 287-326.
Gurobi (2009). Gurobi Optimizer. http://www.gurobi.com/products/gurobi-optimizer/.
Hoogeveen, J.A. (2005). "Multicriteria scheduling". In: European Journal of Operational Research 167.3, pages 592-623.

Hoppenbrouwer, D.J. (2011). "Robust parallel machine scheduling with relations between jobs". Master's thesis. Universiteit Utrecht.
IBM (2009). ILOG CPLEX Optimization Studio. http://www.ibm.com/software/integration/ optimization/cplex-optimization-studio/.
De Jong, K.A. (1975). "Analysis of the behavior of a class of genetic adaptive systems". PhD thesis.
Kirkpatrick, S., C.D. Gelatt Jr., and M.P. Vecchi (1983). "Optimization by simulated annealing". In: Science 220.4598, pages 671-680.
Lenstra, J.K. and A.H.G. Rinnooy Kan (1978). "Complexity of scheduling under precedence constraints". In: Operations Research 26.1, pages 22-35.
Van Roermund, D.J. (2013). Robust scheduling of correlated jobs. Experimentation project, Universiteit Utrecht.

## Part IV

## Experimental data

## Appendix A

## Statistics

See section 9.2 for the description of these tables. If less than three rows are shown for an instance, it means that the heuristic approach was able to find a solution with all relations fixated, so increasing the maximum makespan will not allow for any improvements. The empty rows, containing only $n / a$, belong to instances that could not be run within 24 hours - tuning the parameters of the search algorithms to each specific instance would lead to better results, but for these experiments we only used the settings as presented in chapter 8 .

| Problem | C | Best | Timing statistics (in ms) LP |  |  |  |  |  |  |  |  | Counting statistics |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Total ${ }^{\text {a }}$ Solving $\quad$ Pricing |  |  |  | Columns |  |  | CS | ILP |  | Iters | Pricing LP |  | Columns |  |  | LB | ILP |
|  |  |  | Total | Solving | Heuristic | Optimal | - |  | 0 |  |  |  |  | Heuristic | Optimal | + |  | $\pm$ |  |  |
| 203-10R-2M | 107 | 11.5 | 194555 | 41 | 7992 | 186466 | 4 | ${ }^{2}$ | 4 | 18 | 1713 | 8 | 110 | 64/112 | 48/48 | 187 | 208 | 23 | 0 | 1 |
| 20J-10R-5m | 45 | 2.0 | 100915 | 1143 | ${ }^{22986}$ | 75845 | 131 | 560 | 26 | 135 | 148346 | 563 | 798 | 215/1241 | 590/1026 | 3289 | 99882 | 96635 | 14 | 92 |
|  | 46 | 5.0 | 98594 | 911 | 20924 | 76087 | 98 | 383 | 14 | 92 | 33004 | 427 | 790 | 181/1161 | 619/980 | 2799 | 68116 | 65305 | 40 | 7 |
|  | 47 | 6.5 | 84931 | 648 | 15447 | 68423 | 56 | 218 | 18 | 52 | 304 | 365 | 557 | 118/848 | 446/730 | $\stackrel{2160}{ }$ | 43211 | 41048 | 85 |  |
| 20J-10R-8M | 43 | 5.5 | 81508 | 968 | 22497 | 57228 | 115 | 453 | 37 | 109 | 213 | 477 | 795 | 218/1214 | 578/996 | 3099 | 79846 | 76789 | 20 | 1 |
|  | 44 | 5.5 | 83280 | 948 | ${ }^{23256}$ | 58403 | 85 | 386 | 16 | 87 | 276 | 410 | 860 | 287/1270 | 573/983 | 3177 | 74232 | 71057 | 33 | 1 |
|  | 45 | 6.5 | 79727 | 860 | 18132 | 60176 | 61 | 327 | 25 | 61 | 275 | 463 | 668 | 191/995 | 483/804 | 3159 | 67539 | 64381 | 24 |  |
| 20J-308-2M | 120 | 38.0 | 8870069 | 1394 | 297072 | 8569449 | 127 | 1364 | 32 | 1524 | 1029 | 1256 | 2707 | 1528/3030 | 1251/1502 | 4167 | 51060 | 46926 | 32 |  |
|  | 122 | 38.0 | 775206 | 197 | 37712 | 737159 | 8 | 50 | 10 | 59 | 1212 | 509 | 331 | 226/382 | 127/156 | 717 | 1827 | 1080 | 2 | 1 |
|  | 124 | 38.0 | 475735 | 140 | 33672 | 441819 | 10 | 18 | 14 | 54 | 1284 | 546 | 279 | 208/319 | 92/111 | 642 | 1607 | 990 | 3 | 1 |
| 20J-30R-5m | 51 | 15.0 | 1278450 | 10052 | 225085 | 1017431 | 1223 | 22655 | 280 | 790 | 83516 | 4771 | 5570 | 1459/9084 | $4211 / 7625$ | 14548 | 1029171 | 1014639 | 287 | 222 |
|  | 52 | 18.5 | 609198 | 3080 | 124902 | ${ }^{475296}$ | 278 | ${ }^{4670}$ | 142 | 266 | 7256 | 2515 | 2919 | 860/4917 | 2143/4057 | 6088 | 165399 | 159308 | 286 | 20 |
|  | 53 | 22.0 | 751995 | 4722 | 145527 | 590907 | 516 | 9062 | 186 | 526 | 308 | 3658 | 3324 | 1131/5558 | 2337/4427 | 8539 | 382075 | 373536 | 220 | 1 |
| 20-30R-8m | 46 | 16.5 | 895939 | 11632 | 189468 | 668026 | 1196 | 23656 | 350 | 391 | 368 | 6683 | 4353 | 872/8754 | $3538 / 7882$ | 14295 | 1034199 | 1019925 | 460 | 1 |
|  | 47 | 17.0 | 570503 | 5002 | 124799 | 431608 | 493 | 7455 | 231 | 222 | 1169 | 3992 | 2735 | 596/5421 | 2193/4825 | 8975 | 315595 | 306614 | 238 |  |
|  | 48 | 17.0 | 743062 | 5546 | 149159 | 576514 | 592 | 9924 | 229 | 176 | 793 | 4360 | 3153 | 537/6285 | 2672/5748 | 9652 | 384311 | 374663 | 288 | 2 |
| ${ }^{30 \mathrm{~J}-20 \mathrm{R}-2 \mathrm{M}}$ | 158 | 22.5 | 19460433 | 3344 | 965166 | 18487647 | 210 | 2720 | 26 | 2864 | 19048 | 866 | 5223 | 3102/5451 | 2199/2349 | 6587 | 140251 | 133666 | 58 | 1 |
|  | 161 | ${ }^{22.5}$ | 9633308 | 2353 | 571909 | ${ }^{9056489}$ | 135 | 1615 | 33 | 1170 | ${ }^{3755}$ | ${ }_{568}^{668}$ | ${ }_{2}^{2884}$ | 1888/3078 | 1106/1190 | ${ }^{3694}$ | 108543 | 104859 | 19 | 1 |
|  | 164 | 22.5 | 7091189 | 1926 | 420450 | 6666600 | 113 | 1516 | 27 | 647 | 3407 | 566 | 2030 | 1298/2250 | 859/952 | 2833 | 85471 | 82641 | 15 | 1 |
| 30--20R-5M | 64 | 17.5 | ${ }^{4303843}$ | 8241 | 208329 | 4072534 | 1095 | 12387 | 142 | 922 | 8433 | 2952 | 3826 | 1900/5216 | 2148/3316 | 10310 | 1178101 | 1167811 | 394 | 1 |
|  | $65$ | 18.5 | 1784103 | 3802 | 92801 | 1682607 | 404 | 3894 | 89 | 319 | 9241 | 1849 |  | 848/2334 | $1007 / 1486$ | ${ }_{6}^{6456}$ | ${ }^{403288}$ | 396825 | 146 | 1 |
| 30--20R-8m | 41 | $\frac{19.5}{8.5}$ | 1140813 | $\stackrel{2170}{ }$ | 217806 | 1788262 | 4537 | 17816 | 502 | 113 | 196054 | 1431 | 2618 | 1199/10148 | 1502/8949 | 26154 | 4783790 | 1757660 | $\frac{1140}{}$ | 1 |
|  | 42 | 11.5 | 511945 | 10320 | 115507 | 373531 | 1461 | 10106 | 271 | 186 | 1297 | 5023 | 1475 | 714/5207 | 823/4493 | 13327 | 1382750 | 1369423 | 568 | 1 |
|  | 43 | 12.5 | 299602 | 5651 | 71010 | 216381 | 680 | 5159 | 178 | 134 | 2410 | 3449 | 1017 | 553/3202 | 534/2649 | 8425 | 674807 | 666381 | 453 | 1 |
| 303-40R-2M | $n / a$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 30-40R-5M | 64 | 38.0 | 39699022 | 27044 | 1728037 | 37867941 | 2172 | 68043 | 402 | 3418 | 2117 | 4805 | 17672 | 5585/21555 | 12143/15970 | 25572 | 1770719 | 1745165 | 557 | 1 |
|  | ${ }^{65}$ | 39.0 | 14809415 | 8017 | 811360 582188 | 13972403 | 794 | 14505 | ${ }^{228}$ | 1447 | 1501 | 2705 | 6819 | 1597/9172 | 5256/7575 | 9658 | 487075 | 477419 | 510 | 1 |
|  | 66 | 39.0 | 10579574 | 5026 | 582188 | 9982867 | 367 | 7426 | 176 | 801 | 2003 | 1865 | 4969 | 1098/6555 | 3906/5457 | 7544 | 235554 | 228015 | 359 |  |
| ${ }^{30 J-40 R-8 M ~}$ | 64 | 38.0 | 44328545 | 31198 | 1702216 | 42508280 | 2585 | 78326 | 453 | 3680 | 2030 | 5210 | 17772 | 5289/21756 | 12534/16467 | 29295 | 2199347 | 2170072 | 485 | 1 |
|  | 65 | 39.0 | 18419460 | 10729 | 961985 | 17422135 | 917 | 20784 | 264 | 2264 | 1714 | 3389 | 8851 | 1848/11749 | 7033/9901 | 13392 | 635855 | 622465 | 558 | 1 |
|  | 66 | 39.0 | 15496184 | 7777 | 813594 | 14659014 | 744 | 12988 | 229 | 1099 | 2077 | 2645 | 6321 | 1418/8436 | 4944/7018 | 11884 | 419705 | 407828 | 645 | 1 |
| ${ }^{401-30 R-2 M}$ | $n / a$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 40-30R-5M |  |  |  |  |  |  |  |  |  |  | $n / a$ |  |  |  |  |  |  |  |  |  |
| 40-30R-8M | 50 | 23.5 | 3783038 | 37004 | 367777 | 3291921 | 5260 | 77726 | 712 | 1515 | 10892 | 10874 | 5777 | 2332/11688 | 3869/9356 | 27158 | 5332939 | 5305806 | 1527 | 1 |
|  | 51 | 24.5 | 1216352 | 12569 | 142707 | 1040154 | 1522 | 17913 | 407 | 452 | 4831 | 5951 | 1984 | $934 / 4347$ | 1334/3413 | 14320 | 1508957 | 1494633 | 570 | 1 |
|  | 52 | 24.5 | 848504 | 8684 | 111860 | 715708 | 907 | 10228 | 339 | 252 | 10889 | 5274 | 1230 | 746/3515 | 721/2769 | 12117 | 865580 | 853464 | 1298 | 1 |
| $\frac{40-50 \mathrm{R}-2 \mathrm{M}}{4015 \mathrm{R}-5 \mathrm{M}}$ | $n / a$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 40-50R-8M |  |  | 16735995 | 133379 | 1449854 | 14733347 | 16163 | 392095 | 2391 | 6362 | $\frac{n / a}{3981555}$ | 17680 | 18264 | 7103/30934 | 11605/23831 | 57649 | 15080187 | 15022562 |  |  |
|  | 59 | 33.5 | 17613978 | ${ }_{36476}$ | ${ }_{6}^{14980506}$ | $\frac{14806478}{}$ | 5024 | ${ }_{90826}$ | 1525 | 2451 | 1484354 | 10530 | ${ }^{6470}$ | 2364/13700 | 4468/11336 | 24945 | 4029580 | 4004631 | 2888 | $\stackrel{84}{21}$ |
|  | 60 | 34.5 | 3474190 | 15967 | 357724 | 3063712 | 2085 | 32045 | 888 | 895 | 14521310 | 6650 | 2947 | 1364/7032 | 1842/5668 | 15281 | 1630183 | 1614899 | 1559 | 108 |

Table A.1: Statistics for non-simplified problem instances.

| Problem | C | Best | $\frac{\text { Timing statistics (in ms) }}{\text { LP }}$ |  |  |  |  |  |  |  |  | Counting statistics |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Total ${ }^{\text {S }}$ Solving $\quad$ Pricing |  |  |  | Columns |  |  | CS | ILP | Evals | Iters | Pricing |  |  | Columns |  | LB | $\mathrm{ILP}^{\text {P }}$ |
|  |  |  |  |  | Heuristic | Optimal | - |  | 0 |  |  |  |  | Heuristic | Optimal | $+$ | - | $\pm$ |  |  |
| ${ }^{20 J}$-10R-2M-SIMPLE | ${ }^{10}$ | $\frac{10.0}{110}$ | ${ }_{6}^{6697}$ | 240 | 4545 | 1632 | 35 | 147 | 8 | 84 | ${ }^{27}$ | 304 | 307 | 243/324 | 81/81 | 822 | 18290 | 17475 | 0 | 1 |
|  | 11 | 11.0 | 104 |  |  |  | 0 | 0 |  |  | 30 | 1 | 8 |  | 0/0 | 23 | 16 | 0 | 0 |  |
| 20J-10R-5M-SIMPLE | 4 | 6.5 | 14811 | 791 | 9719 | 3650 | 120 | 351 | 25 | 57 | 20 | 599 | 487 | 154/855 | 361/701 | 2237 | 66310 | 64108 | 25 | 1 |
|  | 5 | 8.5 | 6155 | 351 240 | 3726 2190 | 1871 | 33 | 98 | 15 | 61 | 20 | 372 | ${ }^{282}$ | 75/358 | 227/283 | 1623 | 21374 | 19741 | ${ }^{2}$ | 1 |
|  | 6 | 9.5 | 3517 | 240 | 2190 | 971 | 19 | 54 | 9 | 20 | 22 | 229 | 155 | 73/193 | 105/120 | 1544 | 10183 | 8664 | 0 |  |
| 20J-10R-8M-SIMPLE |  | 6.5 | 14096 | 838 | 8614 | 3976 |  | 375 | 31 | 53 | 32 | 678 | 448 | $74 / 795$ | 379/721 | 2980 | 63591 | 60639 | 29 |  |
|  | 5 | 8.5 | 7561 | 484 | 4468 | 2338 | 26 | 146 | 19 | 70 | 33 | 440 | 331 | $77 / 437$ | 276/360 | 2561 | 27260 | 24697 | 1 | 1 |
|  | 6 | 9.5 | ${ }^{3496}$ | 242 | 2221 | 894 | 14 | 62 | 10 | 24 | ${ }^{36}$ | 237 | 145 | 62/182 | 105/120 | 2162 | 10243 | 8113 | 0 |  |
| 20J-30R-2M-SIMPLE | 10 | 32.0 | 160996 | 1834 | 84902 | 72090 | 81 | 1343 | 44 | 1482 | 41 | 1442 | 3129 | 2142/3446 | 1138/1304 | 4810 | 40520 | 35714 | 0 |  |
|  | 11 | 32.5 | 83576 | 999 | 47368 | 34418 | ${ }^{32}$ | 311 | 20 | 724 | 55 | 1098 | 2036 | 1526/2169 | 622/644 | 2805 | 13637 | 10836 | 3 | 1 |
|  | ${ }^{12}$ | 33.0 <br> 235 | 86583 | 1012 | ${ }_{159965}$ | 24765 | 25 | ${ }_{17712}$ | 37 206 | 488 | ${ }_{56}{ }^{3}$ | ${ }_{366}{ }^{3643}$ | 1773 8208 | 1464/1968 | 502/504 | 2490 14660 | 14253 | 11761 | 5 | 1 |
| 20J-30R-5M-SIMPLE | ${ }^{6}$ | 23.5 26.0 | 396471 168095 | $\frac{10081}{3351}$ | $\frac{150323}{66452}$ | 215208 9241 | ${ }^{755}$ | 17712 4745 | ${ }_{122}$ | 880 | $\stackrel{33}{291}$ | ${ }^{3643}$ | 8208 3630 | 1888/10400 | 6456/8512 | 14660 7700 | ${ }_{1301136}$ | ${ }_{1}^{586495}$ | ${ }_{2}^{5}$ |  |
|  | 8 | ${ }_{2}^{26.5}$ | 179006 | 3260 | 83775 | 85845 | 251 | 4775 | 150 | 848 | 58 | 2773 | 3299 | 1617/4316 | 2068/2699 | 7925 | 140290 | 132371 | 3 | 1 |
| 20]-30R-8M-SIMPLE | 6 | 23.5 | 507836 | 14262 | 191435 | 268326 | 1129 | 29561 | 277 | 1253 | 47 | 4734 | 10494 | 2185/13349 | 8459/11164 | 19802 | 951774 | 931988 | 13 | 1 |
|  | 7 | 26.0 | 206823 | 5490 | 78231 | 111776 | 432 | 9612 | 188 | 854 | 451 | 3800 | 3856 | 1381/5240 | 2698/3859 | 12372 | 341171 | ${ }^{328796}$ | 12 |  |
|  | 8 | 28.5 | 166283 | 3560 | 79364 | 76341 | 273 | 5524 | 179 | 960 | 99 | 2949 | 3238 | 1594/4355 | 2051/2761 | 9494 | 186381 | 176888 | 4 | 1 |
| 30J-20R-2M-SIMPLE | 15 | 21.5 | 4307 | 47 | 2870 | 1317 | 4 | 14 | 3 | 29 | 102 | 16 | 110 | 95/118 | 23/23 | 253 | 552 | 305 | 0 | 1 |
| 30-20R-5M-SIMPLE | 6 | 18.5 | 26090 | 2324 | 15144 | 6085 | 245 | 1928 | 86 | 192 | 101 | 2027 | 747 | $621 / 1168$ | 300/547 | 5943 | 208732 | 202809 | 25 |  |
|  | 7 | 19.5 | 5289 | 1142 | 2840 | 471 | 76 | 590 | 54 | 89 | 60 | 1463 | 157 | 196/232 | 36/36 | 4587 | 56912 | 52320 | 0 |  |
|  | 8 | 19.5 | 5173 | 1258 | 2556 | 515 | 79 | 610 | 68 | 78 | 115 | 1365 | 137 | 174/206 | 32/32 | 3998 | 54519 | 50521 | 0 | 1 |
| 30-20R-8M-SIMPLE | ${ }^{4}$ | 17.0 | ${ }^{40471}$ | 4087 | 20573 | 12362 | 419 | 2513 | 191 | 113 | 55 | ${ }^{4093}$ | 572 | 107/1698 | 488/1591 | 11600 | ${ }^{333243}$ | ${ }^{321661}$ | 65 | 1 |
|  | 5 | 18.0 | ${ }^{24251}$ | 2574 | 11815 | 7755 | 202 | 1512 | 142 | ${ }^{76}$ | 55 | 2941 | 505 | 101956 | 432/855 | ${ }^{9627}$ | 172720 | 163089 80749 | 66 |  |
|  | 6 | 18.5 | 10861 | 1678 | 4858 | 3140 | 117 | 852 | 83 | 51 | 84 | 2297 | 216 | 99/379 | 165/280 | 8260 | 89010 | 80749 | 20 | 1 |
| 30J-40R-2M-SIMPLE | 15 | 48.5 | 1763274 | 8007 | 844553 | 902748 | 179 | 5271 | 73 | 8436 | 1493 | 1688 | 10512 | 7098/10885 | 3690/3790 | 13259 | 100992 | 87739 | 56 | 6 |
|  | 16 | 49.5 50.0 | $\frac{940203}{692340}$ | ${ }_{3675}^{3444}$ | 614860 414995 | 315450 271149 | ${ }_{65}^{95}$ | ${ }^{2249}$ | 59 55 | 4409 3031 | 137 | 1297 | 7486 4617 | 5824/7803 | 1960/1983 | 9017 | 48884 | 39870 | ${ }^{6}$ |  |
|  | $\frac{17}{6}$ | 50.0 32.5 | 692340 1120624 | $\frac{3444}{44462}$ | $\frac{414995}{361868}$ | $\frac{271149}{612720}$ | $\frac{65}{3308}$ | ${ }_{92632}$ | $\begin{array}{r}55 \\ 637 \\ \hline\end{array}$ | $\frac{3031}{3285}$ | $\begin{array}{r}151 \\ \hline 78\end{array}$ | 1077 | ${ }^{4617}$ | 3643/4910 | 1255/1268 | 5734 30660 | 38234 3117501 | $\frac{32505}{3086846}$ | 1 1268 | 1 |
| 40R-5M-SIMPLE | 7 | ${ }^{34.5}$ | 310182 | 5886 | 105666 | 188767 | 454 | 7903 | 256 | 1632 | 466 | 3070 | 3945 | 1346/6126 | 2814/4780 | 9291 | 287518 | 278251 | 1422 | 3 |
|  | 8 | 38.0 | 495839 | 7091 | 219835 | 255836 | 493 | 10782 | 301 | 1813 | 472 | 3494 | 4380 | 1994/6488 | 2813/4494 | 11050 | 337203 | 326141 | 1430 |  |
| 30J-40R-8M-SIMPLE | 5 | 29.0 | 531386 | 30597 | 220506 | 203896 | 2583 | 69857 | 624 | 1441 | 70 | 9505 | 10105 | 1936/15601 | 8314/13665 | 26576 | 2449472 | 2422912 | 2483 |  |
|  | 6 | 32.5 | 422670 | 12028 | 156500 | 226822 | 1056 | 23691 | 440 | 1279 | 120 | 5619 | 6411 | 1183/9425 | 5388/8242 | 15894 | 844399 | 828494 | 1466 | 1 |
|  | 7 | 34.5 | 402219 | 7858 | 128842 | 249609 | 665 | 13469 | 372 | 1244 | 902 | 4587 | 3902 | 1119/6750 | 2980/5631 | 14102 | 452215 | 438131 | 2102 | 4 |
| 40-30R-2M-SIMPLE | 20 | 32.5 | 233108 | 2124 | 84069 | 144546 | 148 | 1571 | 34 | 1328 | 270 | 838 | 2480 | 1812/2567 | 747/756 | 3716 | 83849 | 80135 | 0 | 1 |
|  | $\stackrel{21}{22}$ | 32.5 <br> 33 | 105336 | 1383 | 37619 | 64884 | 87 | 1029 | 22 | 586 | 334 <br> 293 | 704 | $\begin{array}{r}1345 \\ \hline 64\end{array}$ | 1080/1440 | 356/360 | 2191 | 57822 | 55645 | 0 | 1 |
|  | 22 | 33.5 | 3793 | 36 | 2318 | 1425 | 0 | 0 | 0 | 5 | 293 | 7 | 64 | 52/66 | 14/14 | 91 | 107 | ${ }^{2}$ | 0 | , |
| 40-30R-5M-SIMPLE | 8 | 29.5 <br> 30.0 | 108347 | 6492 3240 | ${ }^{53402}$ | $\begin{array}{r}39601 \\ 15378 \\ \hline\end{array}$ | 496 | ${ }_{7345}^{7247}$ | 179 | 1043 274 | 138 | ${ }_{2}^{2826}$ | $\begin{array}{r}2383 \\ 784 \\ \hline\end{array}$ | ${ }^{1629 / 3216} 6$ | 1232/1588 | 8731 5523 |  |  | 48 |  |
|  | ${ }^{9} 10$ | 30.0 <br> 30.5 | ${ }^{39449}$ | ${ }_{2240}$ | ${ }_{17935} 14526$ | 15378 5324 | 190 | ${ }_{1549}^{2247}$ | 150 | ${ }_{2}^{274}$ | $\stackrel{242}{207}$ | 2246 1888 | 784 488 | $631 / 1016$ $504 / 665$ | 368/385 | 5523 5117 | 155992 99299 | 150475 94180 | ${ }_{0}^{4}$ | 1 |
| 40-30R-8M-SIMPLE | 5 | 24.0 | 513492 | 72362 | 202250 | 152927 | 6307 | 75450 | 917 | 1099 | 79 | 11476 | 7285 | 2047/14694 | 5733/12647 | 32338 | 6520303 | 6487992 | 1638 |  |
|  | ${ }_{6} 6$ | $\frac{27.0}{29.0}$ | 204955 | $\frac{15597}{}$ | ${ }^{86705}$ | 81610 | $\frac{1335}{562}$ | $\frac{17781}{6522}$ | $\begin{array}{r}515 \\ \hline 272\end{array}$ | ${ }^{1065}$ | 119 139 | 6567 | ${ }^{3264}$ | $\frac{664 / 5834}{435 / 2553}$ | 2686/5170 | ${ }^{16991}$ | 1219931 | 1202933 | $\frac{664}{108}$ |  |
|  |  | $\stackrel{29.0}{56.5}$ | $\begin{array}{r}99334 \\ \hline 393036\end{array}$ | 7454 | ${ }_{1477135}^{40974}$ | ${ }_{1894323}$ | 562 | ${ }_{6}^{6522}$ | 272 | 361 7587 | 139 340 | ${ }^{3897}$ | 1704 | 435/2553 | 1372/2118 | 11834 | 493941 69736 | 482108 53835 | 108 | 1 |
| 40J-50R-2M-SIMPLE | 21 | 56.5 | 1763896 | 8124 | 1037373 | 714374 | 76 | 1695 | 49 | 4827 | ${ }^{373}$ | 1226 | 8135 | 6487/8316 | 1823/1838 | 9850 | 35369 | 25519 | 1 | 1 |
|  | 22 | 56.5 | 2055868 | 7612 | 1180086 | 862873 | 98 | 2979 | 68 | 4726 | 458 | 1227 | 7958 | 6346/8305 | 1929/1969 | 9700 | 40796 | 31095 | 3 |  |
| ${ }^{40}$-50R-5M-SIMPLE | 8 | 41.0 | 6758597 | 387341 | 2039657 | 3740732 | 17308 | 551051 | 1604 | 16915 | 114 | 10903 | 59850 | 16072/67789 | 44952/51719 | 86893 | 15116574 | 15029697 | 129 | 1 |
|  | ${ }^{9}$ | 45.5 | 3109407 | ${ }^{39856}$ | 1002495 | 1958008 | 3009 | 97702 | 1057 | 9393 | 238 | 6097 | 21568 | 5063/24915 | 17062/19852 | 32138 | 2191044 | 2158913 | 77 | 1 |
|  | 10 | 47.5 | 1656397 | 15831 | 727677 | 875529 | 1354 | 32722 | 658 | 4152 | 715 | 4142 | 9439 | 3352/11149 | 6629/7797 | 16765 | 836800 | 820028 | 107 | 1 |
| 40-50R-8M-SIMPLE | 8 | $\frac{41.5}{45}$ | $\frac{9005981}{4071406}$ | 5557294 | $\underline{2161373}$ | ${ }^{5179701}$ | ${ }^{29379}$ | $\frac{1047598}{214900}$ | $\frac{2872}{2303}$ | $\frac{18312}{1334}$ | ${ }^{204}$ | $\frac{17151}{9816}$ | ${ }^{74790}$ | $\frac{15148 / 84927}{5520 / 30885}$ | 59963/69779 | $\frac{111905}{45423}$ | 24026108 583909 | 23914219 5794185 | 142 | 1 |
|  | ${ }_{10}$ | $\frac{45.5}{47.5}$ | 2390489 | ${ }_{2} 9703$ | 820562 | 1442491 | 4065 | ${ }_{86431}$ | 1717 | 5695 | 564 | 7487 | 12708 | $3583 / 15603$ | 9641/12020 | 26626 | 2282733 | ${ }_{2} 2256097$ | 49 | 1 |

Table A.2: Statistics for simplified $\left(p_{j}=1, r_{j}=0, \bar{d}_{j}=n\right)$ problem instances.

## Appendix B

## Interpreted results

See sections 9.3.3 and 9.3.4 for the description of these tables.

| Problem | Total time |  | C | Value of fixated relations |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Optimal | Heuristic |  | Optimal | Heuristic |
| 20J-10R-2M-SIMPLE | 0 m 3.332 s | 0m9.945s | 10 | 10.0 | 10.0 |
|  |  |  | 11 | 11.0 | 11.0 |
| 20J-10R-5M-SIMPLE | $0 \mathrm{m0.975s}$ | 1 m 1.329 s | 4 | 6.5 | 6.5 |
|  |  |  | 5 | 8.5 | 8.5 |
|  |  |  | 6 | 9.5 | 9.5 |
| 20J-10R-8M-SIMPLE | 0 m 1.411 s | 1 m 29.583 s | 4 | 6.5 | 6.5 |
|  |  |  | 5 | 8.5 | 8.5 |
|  |  |  | 6 | 9.5 | 9.5 |
| 20J-30R-2M-SIMPLE | 0m3.059s | 5m44.777s | 10 | 32.0 | 32.0 |
|  |  |  | 11 | 32.5 | 32.5 |
|  |  |  | 12 | 33.0 | 33.0 |
| 20J-30R-5M-SIMPLE | 0m44.994s | 13 m 30.345 s | 6 | 23.5 | 23.5 |
|  |  |  | 7 | 26.0 | 26.0 |
|  |  |  | 8 | 28.5 | 28.5 |
| 20J-30R-8m-SIMPLE | 0m36.648s | 16 m 31.281 s | 6 | 23.5 | 23.5 |
|  |  |  | 7 | 26.0 | 26.0 |
|  |  |  | 8 | 28.5 | 28.5 |

Table B.1: Interpreted results for simplified $\left(p_{j}=1, r_{j}=0, \bar{d}_{j}=n\right)$ instances with 20 jobs.

| Problem | Total time |  | C | Value of fixated relations |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Optimal | Heuristic |  | Optimal | Heuristic |
| 30J-20R-2M-SIMPLE | 0m0.746s | 0m5.400s | 15 | 21.5 | 21.5 |
| 30J-20R-5M-SIMPLE | 0m2.443s | 1 m 36.935 s | 6 | 18.5 | 18.5 |
|  |  |  | 7 | 19.5 | 19.5 |
|  |  |  | 8 | 19.5 | 19.5 |
| 30J-20R-8M-SIMPLE | 0m4.869s | 3 m 20.735 s | 4 | 17.0 | 17.0 |
|  |  |  | 5 | 18.0 | 18.0 |
|  |  |  | 6 | 18.5 | 18.5 |
| 30J-40R-2M-SIMPLE | 11m58.309s | 57 m 7.741 s | 15 | 48.5 | 48.5 |
|  |  |  | 16 | 49.5 | 49.5 |
|  |  |  | 17 | 50.0 | 50.0 |
| 30J-40R-5M-SIMPLE | 19m50.820s | 34 m 11.604 s | 6 | 32.5 | 32.5 |
|  |  |  | 7 | 35.0 | 34.5 |
|  |  |  | 8 | 38.0 | 38.0 |
| 30J-40R-8M-SIMPLE | 129 m 23.710 s | 25 m 29.471 s | 5 | 29.0 | 29.0 |
|  |  |  | 6 | 32.5 | 32.5 |
|  |  |  | 7 | 35.0 | 34.5 |

Table B.2: Interpreted results for simplified $\left(p_{j}=1, r_{j}=0, \bar{d}_{j}=n\right)$ instances with 30 jobs.

| Problem | Total time |  | C | Value of fixated relations |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Optimal | Heuristic |  | Optimal | Heuristic |
| 40J-30R-2M-SIMPLE | 0m3.409s | 5 m 55.130 s | 20 | 32.5 | 32.5 |
|  |  |  | 21 | 32.5 | 32.5 |
|  |  |  | 22 | 33.5 | 33.5 |
| 40J-30R-5M-SIMPLE | 1 m 16.801 s | 4m1.367s | 8 | 29.5 | 29.5 |
|  |  |  | 9 | 30.0 | 30.0 |
|  |  |  | 10 | 30.5 | 30.5 |
| 40J-30R-8M-SIMPLE | 0m45.258s | 17m16.292s | 5 | 24.0 | 24.0 |
|  |  |  | 6 | 27.0 | 27.0 |
|  |  |  | 7 | 29.0 | 29.0 |
| 40J-50R-2M-SIMPLE | 683 m 45.842 s | 120 m 48.166 s | 20 | 56.5 | 56.5 |
|  |  |  | 21 | 56.5 | 56.5 |
|  |  |  | 22 | 56.5 | 56.5 |
| 40J-50R-5M-SIMPLE | 30 m 44.282 s | 195 m 48.664 s | 8 | 41.5 | 41.0 |
|  |  |  | 9 | 45.5 | 45.5 |
|  |  |  | 10 | 47.5 | 47.5 |
| 40J-50R-8M-SIMPLE | 378 m 57.224 s | 263 m 51.832 s | 8 | 42.0 | 41.5 |
|  |  |  | 9 | 45.5 | 45.5 |
|  |  |  | 10 | 47.5 | 47.5 |

Table B.3: Interpreted results for simplified $\left(p_{j}=1, r_{j}=0, \bar{d}_{j}=n\right)$ instances with 40 jobs.

## Appendix C

## Improved genetic algorithm

See section 9.3.5 for the description of these tables.

| Problem | Total time |  |  |  | C | Number of fixated relations |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Optimal | Naive | Naive+CS | Improved |  | Optimal | Naive | Naive+CS | Improved |
| 10J-10R-2M | 0m0.465s | 0m3.909s | 0m1.942s | 0m8.556s | 53 | 6 | 6 | 6 | 6 |
|  |  |  |  |  | 54 | 7 | 7 | 7 | 7 |
|  |  |  |  |  | 55 | 7 | 7 | 7 | 7 |
|  |  |  |  |  | 56 | 7 | 7 | 7 | 7 |
| 10J-10R-2M-SIMPLE | 0m0.446s | 0m0.845s | 0m1.049s | 0m1.094s | 5 | 7 | 7 | 7 | 7 |
|  |  |  |  |  | 6 | 8 | 8 | 8 | 8 |
|  |  |  |  |  | 7 | 8 | 8 | 8 | 8 |
|  |  |  |  |  | 8 | 8 | 8 | 8 | 8 |
| 10J-10R-4m | 0m0.687s | 0m1.186s | 0m2.701s | 0m8.596s | 27 | 2 | 2 | 2 | 2 |
|  |  |  |  |  | 28 | 4 | 4 | 4 | 4 |
|  |  |  |  |  | 29 | 4 | 4 | 4 | 4 |
|  |  |  |  |  | 30 | 5 | 5 | 5 | 5 |
| 10J-10R-8m | 0m0.554s | 0m0.647s | 0m1.587s | 0m0.881s | 19 | 2 | 2 | 2 | 2 |
|  |  |  |  |  | 20 | 2 | 2 | 2 | 2 |
|  |  |  |  |  | 21 | 2 | 2 | 2 | 2 |
|  |  |  |  |  | 22 | 2 | 2 | 2 | 2 |
| 10J-25R-2M | 0m0.540s | 0m0.941s | 0m1.592s | 0m2.793s | 42 | 15 | 13 | 12 | 15 |
|  |  |  |  |  | 43 | 15 | 13 | 13 | 15 |
|  |  |  |  |  | 44 | 15 | 13 | 13 | 15 |
|  |  |  |  |  | 45 | 15 | 13 | 13 | 15 |
| 10J-25R-2M-SIMPLE | 0m0.548s | 0m1.073s | 0m1.567s | 0 m 1.638 s | 5 | 14 | 13 | 13 | 14 |
|  |  |  |  |  | 6 | 16 | 13 | 13 | 16 |
|  |  |  |  |  | 7 | 17 | 15 | 15 | 17 |
|  |  |  |  |  | 8 | 19 | 16 | 17 | 19 |
| 10J-25R-4m | 0m1.182s | 0m0.900s | 0m2.165s | 0m10.267s | 26 | 7 | 7 | 7 | 7 |
|  |  |  |  |  | 27 | 8 | 7 | 7 | 8 |
|  |  |  |  |  | 28 | 9 | 7 | 7 | 9 |
|  |  |  |  |  | 29 | 9 | 7 | 7 | 9 |
| 10J-25R-8m | 0m1.539s | 0m0.996s | 0m2.144s | 0m1.553s | 17 | 5 | 5 | 5 | 5 |
|  |  |  |  |  | 18 | 7 | 5 | 7 | 7 |
|  |  |  |  |  | 19 | 7 | 7 | 7 | 7 |
|  |  |  |  |  | 20 | 7 | 7 | 7 | 7 |

Table C.1: Results of the improved genetic algorithm on the original instances with 10 jobs.

| Problem | Total time |  |  |  | C | Number of fixated relations |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Optimal | Naive | Naive+CS | Improved |  | Optimal | Naive | Naive+CS | Improved |
| 25J-10R-2M | 0m0.466s | 0m0.660s | 0m0.786s | 0m0.540s | 141 | 10 | 10 | 10 | 10 |
| 25J-10R-2M-SIMPLE | $0 \mathrm{m0.463s}$ | $0 \mathrm{m0.734s}$ | 0m0.682s | $0 \mathrm{m0.483s}$ | 13 | 10 | 10 | 10 | 10 |
| 25J-10R-4M | 0m0.487s | 0m0.781s | 0m0.831s | 0 m 0.514 s | 71 | 10 | 10 | 10 | 10 |
| 25J-10R-8M | 0m0.954s | 0m1.894s | 0m2.012s | 0m15.810s | 36 | 8 | 8 | 8 | 8 |
|  |  |  |  |  | 37 | 9 | 9 | 9 | 9 |
|  |  |  |  |  | 38 | 9 | 9 | 9 | 9 |
|  |  |  |  |  | 39 | 9 | 9 | 9 | 9 |
| 25J-25R-2M | 0m0.560s | 0m5.794s | 0m8.956s | 0m9.817s | 153 | 21 | 21 | 21 | 21 |
|  |  |  |  |  | 156 | 22 | 22 | 22 | 22 |
|  |  |  |  |  | 159 | 22 | 22 | 22 | 22 |
|  |  |  |  |  | 162 | 22 | 22 | 22 | 22 |
| 25J-25R-2M-SIMPLE | 0m0.572s | 0m4.404s | 0m3.076s | 0m2.048s | 13 | 23 | 23 | 23 | 23 |
|  |  |  |  |  | 14 | 23 | 23 | 23 | 23 |
|  |  |  |  |  | 15 | 23 | 23 | 23 | 23 |
|  |  |  |  |  | 16 | 23 | 23 | 23 | 23 |
| 25J-25R-4m | 0m1.248s | 0m13.160s | 0m18.425s | 0m9.976s | 77 | 17 | 17 | 17 | 17 |
|  |  |  |  |  | 78 | 18 | 18 | 18 | 18 |
|  |  |  |  |  | 79 | 18 | 18 | 18 | 18 |
|  |  |  |  |  | 80 | 18 | 18 | 18 | 18 |
| 25J-25R-8M | 0m17.241s | 0m7.674s | 0m16.423 | 0m59.069s | 39 | 10 | 10 | 10 | 10 |
|  |  |  |  |  | 40 | 11 | 10 | 10 | 11 |
|  |  |  |  |  | 41 | 12 | 12 | 12 | 12 |
|  |  |  |  |  | 42 | 12 | 12 | 12 | 12 |
| 25J-60R-2M | 0m0.756s | 0m1.850s | 0m2.752s | 0m7.515s | 141 | 44 | 31 | 36 | 44 |
|  |  |  |  |  | 143 | 45 | 31 | 36 | 45 |
|  |  |  |  |  | 145 | 45 | 36 | 38 | 45 |
|  |  |  |  |  | 147 | 45 | 36 | 38 | 45 |
| 25J-60R-2M-SIMPLE | 0 m 0.721 s | 0m9.517s | 0m4.085s | 0m2.790s | 13 | 46 | 45 | 43 | 46 |
|  |  |  |  |  | 14 | 46 | 45 | 45 | 46 |
|  |  |  |  |  | 15 | 46 | 45 | 45 | 46 |
|  |  |  |  |  | 16 | 47 | 45 | 45 | 47 |
| 25J-60R-4M | 0m7.397s | 0m4.266s | 0m6.807s | 0m22.700s | 71 | 33 | 26 | 26 | 33 |
|  |  |  |  |  | 72 | 33 | 27 | 27 | 33 |
|  |  |  |  |  | 73 | 34 | 27 | 27 | 34 |
|  |  |  |  |  | 74 | 34 | 27 | 27 | 34 |
| 25J-60R-8m | 47m43.342s | 0m9.871 | 0m18.385s | 1m50.012s | 36 | 18 | 16 | 15 | 18 |
|  |  |  |  |  | 37 | 20 | 17 | 16 | 20 |
|  |  |  |  |  | 38 | 21 | 17 | 17 | 21 |
|  |  |  |  |  | 39 | 22 | 18 | 18 | 22 |

Table C.2: Results of the improved genetic algorithm on the original instances with 25 jobs.

| Problem | Total time |  |  |  | C | Number of fixated relations |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Optimal | Naive | Naive+CS | Improved |  | Optimal | Naive | Naive+CS | Improved |
| $60 \mathrm{~J}-25 \mathrm{R}-2 \mathrm{M}$ | $0 \mathrm{m0.565s}$ | 0m46.418s | 0 m 5.574 s | 0m0.842s | 333 | 25 | 25 | 25 | 25 |
| 60J-25R-2M-SIMPLE | $0 \mathrm{m0.556s}$ | 0 m 24.541 s | 0 m 6.829 s | $0 \mathrm{m0.685s}$ | 30 | 25 | 25 | 25 | 25 |
| 60J-25R-4M | 0m0.598s | 0m8.067s | 0 m 2.728 s | 0m0.890s | 167 | 25 | 25 | 25 | 25 |
| 60J-25R-8m | 0m1.482s | 0m22.465s | 1 m 31.075 s | 0m3.793s | 84 | 23 | 23 | 23 | 23 |
|  |  |  |  |  | 85 | 23 | 23 | 23 | 23 |
|  |  |  |  |  | 86 | 23 | 23 | 23 | 23 |
|  |  |  |  |  | 87 | 24 | 24 | 24 | 24 |
| 60J-60R-2m | 0m0.840s | 20m43.988s | 1 m 49.297 s | 0m18.278s | 317 | 56 | 55 | 55 | 56 |
|  |  |  |  |  | 323 | 56 | 55 | 55 | 56 |
|  |  |  |  |  | 329 | 56 | 55 | 55 | 56 |
|  |  |  |  |  | 335 | 56 | 55 | 55 | 56 |
| 60J-60R-2M-SIMPLE | 0m0.832s | 12m57.844s | 2m2.859s | 0m9.954s | 30 | 56 | 55 | 55 | 56 |
|  |  |  |  |  | 31 | 56 | 55 | 55 | 56 |
|  |  |  |  |  | 32 | 56 | 55 | 56 | 56 |
|  |  |  |  |  | 33 | 56 | 55 | 56 | 56 |
| 60J-60R-4m | 0m2.729s | 6m43.308s | 2 m 44.254 s | 0m13.206s | 159 | 51 | 49 | 51 | 51 |
|  |  |  |  |  | 162 | 52 | 49 | 52 | 52 |
|  |  |  |  |  | 165 | 52 | 50 | 52 | 52 |
|  |  |  |  |  | 168 | 52 | 50 | 52 | 52 |
| 60J-60R-8m | 22m35.319s | 2 m 40.046 s | 3 m 1.706 s | 0m17.393s | 80 | 44 | 40 | 40 | 44 |
|  |  |  |  |  | 81 | 44 | 42 | 42 | 44 |
|  |  |  |  |  | 82 | 44 | 42 | 43 | 44 |
|  |  |  |  |  | 83 | 44 | 42 | 43 | 44 |
| 60J-150R-2M | 0m9.646s | 0m10.323s | 0m9.542s | 0m13.051s | 313 | 116 | 89 | 103 | 116 |
|  |  |  |  |  | 319 | 117 | 89 | 103 | 117 |
|  |  |  |  |  | 325 | 117 | 89 | 103 | 117 |
|  |  |  |  |  | 331 | 117 | 89 | 105 | 117 |
| 60J-150R-2M-SIMPLE | 0m6.748s | 2m21.628s | 0m21.888s | 0m7.058s | 30 | 116 | 87 | 104 | 116 |
|  |  |  |  |  | 31 | 117 | 87 | 105 | 117 |
|  |  |  |  |  | 32 | 117 | 87 | 105 | 117 |
|  |  |  |  |  | 33 | 118 | 87 | 105 | 118 |
| 60J-150R-4m | $1000+$ m | 7 m 18.352 s | 4m11.121s | 0m50.246s | 157 | $n / a$ | 80 | 82 | 94 |
|  |  |  |  |  | 160 | 95 | 80 | 82 | 95 |
|  |  |  |  |  | 163 | $n / a$ | 80 | 87 | 95 |
|  |  |  |  |  | 166 |  | 80 | 87 | 96 |
| 60J-150R-8M | $200+$ m | 5m57.544s | 6 m 28.629 s | 3m57.197s | 79 | $n / a$ | 58 | 56 | 73 |
|  |  |  |  |  | 80 |  | 58 | 59 | 76 |
|  |  |  |  |  | 81 |  | 58 | 59 | 76 |
|  |  |  |  |  | 82 |  | 58 | 62 | 77 |

Table C.3: Results of the improved genetic algorithm on the original instances with 60 jobs.

