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Abstract

In parallel machine scheduling with precedence relations between jobs, the delay of a single task
could hinder several other machines. The traditional method for avoiding this situation involves
adding idle time between jobs that are dependent on each other, to avoid having to postpone the
scheduled execution of successor jobs when the predecessor is delayed. In this thesis we look at
a previously introduced alternative definition of robustness, which measures the chances of the
propagation of these delays. By minimising this metric, we minimise the possibilities of machines
having to wait for others because of a breakdown. Note that a machine that has to wait for itself
to complete a task after a breakdown is inevitable.

To explore the effectiveness of this approach, we introduce the concept of fixations, defined
such that the jobs involved in a fixated relation are to be scheduled on the same machine. This
ensures that these fixated relation can not attribute to the propagation of delays, as their jobs are
not on different machines. By maximising the number of fixated relations then, we are minimising
the chances of delay propagations, and thereby maximising the robustness of our schedules.

To simplify the implementation of our approach, we start by relaxing the precedence relations
to mere correlations, dropping the partial ordering of the jobs. These correlations still signify a
connection between two jobs, which we would like to have executed by the same machine, although
the order in which this is done is irrelevant. Later we also add proper precedence relations, and
include additional correlations to improve the robustness measure.

For finding solutions using our objective of maximising the number of fixated relations, we
introduce two local search algorithms: one based on a genetic algorithm and one using simulated
annealing. As the additional constraints that demand pairs of jobs are scheduled on the same ma-
chine might make it impossible to actually construct a schedule, we have to check every solution
that is generated. For quickly evaluating this feasibility of a solution, we define a linear program-
ming formulation that is incrementally solved using column generation. Furthermore we present
several extensions to the problem category, to deal with release dates, deadlines and weighted
relations. Finally we present another search method that combines the columns generated for the
evaluation linear program into new solutions.

After finalising the approach and discussing the experiments used to test its effectiveness, we
conclude that the presented heuristic is a very good method for solving larger problems with many
machines. It is therefore an excellent complement to the integer linear programming formulation
that solves instances to optimality, which is more efficient in solving problems with only a few
machines, but has difficulties finding solutions for those with more machines, because of the
symmetry in its definition.
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Chapter 1

Introduction

Scheduling problems have a wide range of applications, from designing personnel rosters to gener-
ating efficient routes for deliveries. However, a lot of the practical and useful scheduling problems
are very hard to solve in a short amount of time, as the number of possible solutions is often
enormeous. This is where the field of linear optimisation, or linear programming, comes in. By
formulating the problem as an objective function and a set of linear constraints, given some vari-
ables, we can solve problems for which listing all permutations of values is clearly intractable.

When we have generated a schedule or roster for such a problem, i.e. an allocation of tasks to
machines at specific times, its robustness refers to the ability of handling failures or disturbances
within the execution of that schedule, for example when a task is delayed. Further delays caused
by this are traditionally prevented by adding idle time between tasks that are dependent on each
other, which has the downside of increasing the total length of the resulting schedule, even if
nothing goes wrong. The trade-off is therefore obvious — we would need to find the right balance
between the risks of delays and the maximum duration of the schedule.

In this work we use a different method to avoid delays, by minimising the chance of their
propagation. This introductory chapter starts by describing the problems we are looking at,
followed by a guide through the previous work this thesis builds on. The last section sketches the
outline of the rest of this report.

1.1 Problem definition

We work with problems that have multiple identical machines and a predefined set of jobs. These
jobs are characterised by their processing times, release dates and deadlines, and there are prece-
dence relations between them. The objective is to maximise the robustness after minimising the
total makespan of the schedules. Using the three-field notation introduced by Graham et al.
(1979), this problem category is denoted as:

P|rj , d̄j ,prec|ε(Cmax,
∑
−fr).

Starting from the beginning, this means that a problem instance has m machines, which are:

• working in parallel, completely independent of each other;

• continuously available from time zero onwards — although we are maximising the robustness
of the resulting schedules, we do not take the failure of specific machines into account while
scheduling;

• equally able to carry out all of the available jobs with the same speed, i.e. jobs of equal
length will take the same amount of time regardless of which machine executes them.
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The collection of jobs is denoted as J1, . . . , Jn, with each job j having its own processing time
pj , signifying the amount of time it has to be executed uninterruptedly by one arbitrary machine.
For the sake of simplicity, we assume all the given processing times are integral, although extending
the formulations that are presented to allow for any positive real number is straightforward. In
later chapters we also include the availability of jobs — stating that a job is not to be started
before its release date rj , and barring any disruptions due to breakdowns should be completed by
its deadline d̄j — although initially these are not taken into account.

The jobs are accompanied by a collection of precedence relations, each stating that there should
be a given amount of time between the starting times of a pair of jobs, thus imposing a partial
ordering on them. The included relations are of the form Sj − Si ≥ qij , with qij ≥ 0, forcing job
j to start at least qij time units after job i is started. Within the context of such a relation, job i
is called the predecessor of j, as it has to be executed before j, just like j is the successor of i.

The composition of the objective function and the measurement of the robustness is explained
in the following sections. Note that even when this problem is simplified to P|pj = 1,prec|Cmax,
i.e. ignoring the robustness, using unit processing times and leaving out the release dates and
deadlines, deciding whether a schedule with Cmax ≤ 3 exists is NP -complete, as proven by Lenstra
et al. (1978). This furthermore means that no polynomial approximation algorithms with a worst
case bound ρ smaller than 4

3 can exist, unless P = NP . If there would be one, we could apply that
heuristic to our instance; if a solution with Cmax = 3 would exist, the algorithm should return
a value lower than four, as 3ρ < 4. That would allow us to solve the decision variant of this
NP -complete problem in polynomial time, meaning we could prove P = NP , which is generally
believed not to hold.

1.2 Measuring robustness

Hoppenbrouwer (2011) introduced a notion of a-priori robustness of schedules, that is defined in
terms of the chances of the propagation of delays. Delay propagation occurs whenever two jobs
involved in a precedence relation are scheduled on different machines, and there is not enough
idle time to avoid delaying the successor when the execution of the predecessor is impeded. To
make matters worse, those delayed successors might be predecessors on their own, leading to a
cascade of delayed jobs. With more relations spanning machines like this, the chances of having
to postpone jobs in order to keep fulfilling the constraints increases. It is therefore worthwhile to
minimise the number of precedence relations of which the jobs are on different machines.

However, simply counting the number of machine spanning relations, i.e. relations of which
the jobs are scheduled on different machines, will not do. As he argues in his thesis, such an
objective — resembling a graph partitioning problem — does not fully capture the essence of
delay propagation. Consider the small example consisting of three jobs and two relations —
(J1 → J2) and (J1 → J3) — for which figure 1.1 shows two possible schedules.

machine

1

2

3

time

t0 t1 t2

J1

J2 J3

(a)

machine

1

2

3

time

t0 t1 t2

J1

J2

J3

(b)

Figure 1.1: Two example schedules with three jobs and two relations.

5



In both examples, whenever the first machine breaks down and J1 is delayed, both J2 and J3

will have to be postponed — the number of relations with jobs on different machines is 2 in either
case. However, the assignment of schedule 1.1a implies a relation from J2 to J3. And since these
precedence relations are transitive, we can replace (J1 → J3) with (J2 → J3), setting the value
of q23 to q13 − q12, without losing any information. This transformation reduces the number of
machine spanning relations to only 1 in the first example, as the implied relation is entirely on the
second machine. This makes sense from the viewpoint of delay propagation too, as the delay of J1

can only hinder the jobs on one other machine in that example, as opposed to the two machines
that are affected in the second example schedule.

1.2.1 Defining the metric

Hoppenbrouwer therefore proposed a measure that counts, for each job, the number of machines
that its successors are scheduled on. For any machine k ∈ {1, . . . ,m} and any job j ∈ {1, . . . , n},
γjk measures the possibility of a delay propagation towards machine k, in case job j is delayed.
Note that for every job j that is not a predecessor in any relation, γjk will be 0 for all values of k:

γjk =

{
1 if job j itself is not scheduled on machine k, but has at least one successor that is;

0 otherwise.

k
j

1 2 3

1 0 0 0
2 1 0 0
3 0 0 0

(a) Values of γjk for schedule 1.1a.

k
j

1 2 3

1 0 0 0
2 1 0 0
3 1 0 0

(b) Values of γjk for schedule 1.1b.

Table 1.1: Robustness measure of the example schedules of figure 1.1.

Table 1.1 demonstrates the values of γ for the example schedules of figure 1.1, which show
that example 1.1a has only one possibility of delay propagation, whereas the other has two —
precisely what we concluded earlier. The objective of maximising robustness in this way can thus
be formulated as to minimise the sum of all these values, written as

∑
γ for short:

min

n∑
j=1

m∑
k=1

γjk.

1.2.2 Summary of approaches

The problem that Hoppenbrouwer tackled is denoted as P|prec|Lex(Cmax,
∑
γ), where the objec-

tive is to first minimise the total makespan and then to minimise
∑
γ — see the work of Hoogeveen

(2005) for more information on this lexicographical order and other compound objectives functions.
Note that release dates and deadlines of jobs were not included.

He implemented three methods for solving this problem — an integer linear programming
formulation, a constraint programming approach, and a linear programming problem combined
with column generation. The first approach was an adaptation of the time indexed ILP presented
by Van den Akker et al. (2012), with an added machine index. This formulation suffered from
a lot of symmetry, as the solver could swap the machine indices of all tasks assigned to any
two machines, attaining a seemingly different solution that essentially represented the exact same
schedule. Solving this to optimality was therefore infeasible for larger problem instances.

The second technique made use of the constraint programming possibilities of the CPLEX
suite by IBM (2009). This formulation ran much faster than the ILP, although it proved difficult
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to come close to optimal solutions. The results were good enough to be used as a starting point
for the other two approaches, speeding up their search, using this method as a heuristic.

To counter the symmetry of the ILP formulation, his third approach was to solve the LP
relaxation using column generation. The problem was rewritten to make use of machine schedules,
which represent collections of jobs that are executed by one machine. The challenge was then to
find a suitable combination of these machine schedules, such that every job was executed exactly
once. Unfortunately, it proved hard to find good solutions, requiring a lot of columns to be
generated, making this approach still very time-consuming. His conclusions were therefore that
while

∑
γ provided a useful measure for the robustness of schedules, directly minimising it with

the presented methods was too inefficient — a different approach had to be found.

1.3 Alternative approach: fixations

Because the approaches for directly minimising
∑
γ did not achieve the results hoped for, we

conceived another technique for maximising the robustness of schedules. By forcing the jobs of a
relation to be executed on the same machine, we prevent that relation from impairing the objective.

In the previous section we introduced
∑
γ as a shorthand for

∑n
j=1

∑m
k=1 γjk, which is by

definition no larger than the number of machine spanning relations. Forcing the jobs of some
relation to be scheduled on the same machine ensures that this relation is not spanning multiple
machines. Thus such a fixation of relations provides an upper bound on the number of relations
with jobs on different machines, i.e. the total number of relations minus the number of fixated ones.
With an upper bound on the number of machine spanning relations we also have an upper bound
on the number of possible delay propagations —

∑
γ is no larger than the number of relations

that were not fixated. To minimise
∑
γ, we maximise the number of fixated relations, under the

condition that we can still create a schedule with the added constraints.
This approach of fixating relations was investigated by Van Roermund (2013), albeit on the

simplified problem category in which the precedence relations were reduced to correlations between
jobs, i.e. in which the constraints on partial ordering were dropped. These correlations indicate
that it can be advantageous to schedule the involved jobs on the same machine, but the ordering of
the jobs involved in these relations is not important. An example of such a problem would be the
scheduling of calculations over several computers, which could benefit from cached sub-results of
other tasks. It would be best to assign tasks that share parts of their input to the same machine,
as that would improve the quality of the schedule, although it is in no way required.

The simplification greatly reduced the complexity of the implementation, as the ordering of
tasks was no longer important — i.e. a schedule for a single machine could simply be represented
by a set of tasks, without keeping track of their starting times — and allowed us to confirm the
effectiveness of this approach. A precise definition of these fixations and the objective term

∑
−fr

follows in the next chapter.

1.4 Outline of this work

In this thesis we expand on the approach of maximising the robustness by fixating relations in
four parts. The first part describes the method in full detail — still using the simplification of
the correlations that impose no partial ordering on the jobs — starting with an overview and all
necessary definitions in chapter 2. The methods used to evaluate the feasibility of these fixations
are explained in chapter 3, and the top-level search for fixations in chapter 4. In the second part we
introduce several extensions to the approach. Additions to the job characteristics of the problems
are presented in chapter 5, the objective function is augmented in chapter 6, and chapter 7 shows
an additional method to search for solutions. In the third part we present the results of this thesis.
The values of the various parameters are set in chapter 8, the outcome of the experiments are
found in chapter 9, and the conclusion, including pointers for further research, is in chapter 10.
Lastly, the appendices in the fourth part contain the tables with the data from the experiments.
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Basic approach
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Chapter 2

Overview of the approach

This chapter explains how we employ fixations to tackle the simplified problem category, in which
the precedence relations are relaxed to correlations, dropping the constraints on partial ordering.
In the first section we describe how to tackle the composed objective function, followed by the
formal definition of the fixations. The third section details how we can solve the problem to
optimality, and lastly we give an overview of the heuristic approach that we present in this work.

2.1 Minimal maximum makespan

The objective function of the problem category we are solving — ε(Cmax,
∑
−fr) — defines a

Pareto frontier. To find a Pareto optimal solution, we first apply the first criterion while completely
ignoring the second, and then use the found objective value to limit solutions while using solely the
second criterion. We thus first solve P||Cmax to find a schedule with minimal total makespan while
completely ignoring its robustness. We do this using an adaptation of the constraint programming
implementation written by Hoppenbrouwer (2011). This makespan is then used to limit the length
of schedules in all other formulations, i.e. while subsequently looking for fixations with greatest
robustness, we only allow rosters that are no longer than the found makespan.

To investigate how the robustness increases when allowing the makespan to grow, we will repeat
the searches for fixations with several increased values of this upper bound on the makespan,
thereby exploring the Pareto frontier. Throughout the rest of this work, we refer to the value of
the current upper bound as C, and use it as a given parameter along with the problem instance.
In this first part of the thesis we are thus solving P|Cmax ≤ C|

∑
−fr.

2.2 Defining fixations

To ensure that a specific relation does not contribute to the number of machine spanning relations,
we fixate it, i.e. we demand that both jobs involved in that relation are scheduled on the same
machine. This way, as far as that relation is concerned, the predecessor job can not propagate a
delay to another machine. For every relation r ∈ R — we use R to represent the set of relations
defined by the problem instance — we introduce the binary parameter fr, indicating whether the
two jobs involved in that relation must be scheduled on the same machine:

fr =

{
1 the jobs involved in relation r are to be scheduled on the same machine;

0 otherwise.

Note that fr = 0 does not mean that the jobs in that relation should be on separate machines,
it simply means we allow them to be rostered freely. This parameter is then used as a variable
during the search for the best fixation — from here on we use fixation to denote an assignment of
fr for all r ∈ R. A fixation is considered to be better than another if it has more relations fixated,
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as that gives a tighter bound on
∑
γ. During our search for the best fixation, the objective is thus

to maximise the number of fixated relations, i.e. max
∑

r∈R fr. Since the three-field notation by
Graham et al. (1979) assumes a minimisation objective, we multiply it by −1 and write

∑
−fr

for short. Although our objective approximates
∑
γ, there are situations in which these metrics

assess schedules differently — more on this in section 6.2.

2.3 Finding optimal solutions

Given the variables and objective from the previous section, we can define a straightforward integer
linear programming formulation that finds an optimal fixation, i.e. that searches for a schedule
which has the most relations fixated as possible, while remaining feasible. Its formulation has the
binary variables xjk to indicate whether job j is to be executed by machine k, and the variables
yij — mimicking the parameter fr — indicating whether the jobs i and j are to be executed on
the same machine. Since relations consist of two jobs, we denote them as r : (i, j), indicating
relation r between predecessor i and successor j. We thus define:

xjk =

{
1 job j is scheduled on machine k;

0 otherwise;

yij =

{
1 jobs i and j must be scheduled on the same machine;

0 otherwise.

The objective, as explained before, is to maximise the number of fixated relations, and the
constraints ensure that the resulting schedule is feasible, i.e. can actually be executed. In order,
they state that every job has to be scheduled exactly once (2.1), that the combined processing
times of the jobs scheduled on one machine can not exceed the given maximum makespan (2.2),
and that the jobs of fixated relations have to be scheduled on the same machine (2.3 & 2.4).

max
∑

r:(i,j)∈R

yij s.t.

m∑
k=1

xjk = 1 ∀j ∈ {1, . . . , n} (2.1)

n∑
j=1

xjkpj ≤ C ∀k ∈ {1, . . . ,m} (2.2)

xik − xjk ≤ 1− yij ∀k ∈ {1, . . . ,m} ∀r : (i, j) ∈ R (2.3)

xjk − xik ≤ 1− yij ∀k ∈ {1, . . . ,m} ∀r : (i, j) ∈ R (2.4)

xjk ∈ {0, 1} ∀j ∈ {1, . . . , n} ∀k ∈ {1, . . . ,m}
yij ∈ {0, 1} ∀r : (i, j) ∈ R

2.4 Decomposition approach

Because of the machine indices, the ILP formulation presented above suffers from a lot of symmetry,
especially with problem instances containing many machines. Using it to solve a problem to
optimality can therefore take a lot of time, making this formulation not efficient enough. To come
to a better approach, we decompose it into two levels. On the top level, we use local search
algorithms to find the best fixations, and on a supporting level we define a linear programming
formulation to determine the feasibility of fixations found by the search algorithms.

The complete approach for tackling a problem thus looks as follows. First, we determine the
upper bound on the makespan, as described above. We then invoke the search algorithms that
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are detailed in chapter 4. Every time a new fixation is generated, we evaluate its feasibility using
the LP explained in the next chapter. After the search for the best fixation is done, we verify its
feasibility with an ILP — more on that also in chapter 3. Lastly, we increase the value of C and
rerun the search a couple of times, to get a view of the interplay between the upper bound on the
makespan and the robustness of the resulting schedules.
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Chapter 3

Evaluating feasibility

When we have generated a fixation — by means of the search algorithms explained in the next
chapter — we need to know whether it is feasible, i.e. whether a schedule can be made while having
the jobs of each fixated relation scheduled on the same machine. If we are able to construct such
a schedule, we have proof that the fixation is feasible — otherwise we know that no schedules can
be created for the fixation that is being evaluated, and thus that it is infeasible.

The integer linear programming formulation we describe in section 3.1 checks just that —
it tries to construct a schedule with all fixated relations enforced. However, since we will be
evaluating many fixations, solving this ILP for every one of them will take a lot of time. Therefore
we devised an approach that gives a quick and good indication of the feasibility of the evaluated
fixation, detailed in the second part of this chapter. Whenever we talk of the fixation in this
chapter, we mean the fixation that is currently being evaluated for its feasibility.

3.1 The verifier ILP

To determine the feasibility of a fixation, we solve the following machine-indexed integer linear
program. The variables in this ILP are xjk, indicating whether job j is to be executed by machine k,
similar to those in section 2.3. Because the ordering of jobs in a schedule is of no importance,
we can aggregate the jobs of fixated relations into blocks that are scheduled at once — this way
the search space is reduced. The set of jobs used in this step is thus a modified version of the set
defined by the problem instance, here ranging from 1 to n′.

Since we only have to check whether a feasible solution exists, the objective is trivial. The con-
straints state that every job is to be executed exactly once (3.1) and that the combined processing
times of the jobs scheduled on one machine can not exceed the maximum makespan (3.2).

min 1 s.t.
m∑

k=1

xjk = 1 ∀j ∈ {1, . . . , n′} (3.1)

n′∑
j=1

xjkpj ≤ C ∀k ∈ {1, . . . ,m} (3.2)

xjk ∈ {0, 1} ∀j ∈ {1, . . . , n′} ∀k ∈ {1, . . . ,m}

Since solving this formulation for many fixations will take a lot of time, we only use it to verify
the best fixations returned by the search algorithms, and use the indicator LP described next to
evaluate all intermediate solutions. Once the search algorithms have found a set of maximum
fixations for the current makespan, we first check the best known fixation — should this check
fail, the next best solution is checked, etcetera, until a feasible fixation of relations is found.
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3.2 The indicator LP

To quickly determine the feasibility of a given fixation, i.e. finding out whether a schedule can be
constructed for it, we use the technique introduced by Van den Akker et al. (2012) — we determine
the number of machines needed to schedule all tasks within the given maximum makespan. This
is done with a linear programming problem that contains all jobs and relations of the problem
instance, as well as the additional constraints introduced by the fixated relations. By looking for
the minimum number of machines needed to schedule all tasks, and comparing this to the number
of available machines as defined by the problem instance, we can determine the feasibility of the
fixation. The objective of this LP is thus to minimise the number of machines that are used to
execute all of the jobs within the maximum makespan.

If we find a solution to this formulation that uses at most the number of available machines,
we assume the fixation is feasible — of course, this does not give a guarantee on the feasibility
of that fixation, as we would have to fully run the ILP outlined in the previous section to verify
we can actually compose a schedule in that case. However, previous research like that by Van
den Akker et al. (2012) has consistently found this to be a very good indicator, i.e. that whenever
this LP indicates that we need at most the number of available machines, we can assume it is
possible to construct a feasible schedule. In practice, the verifier ILP always succeeds with the
first fixation that is checked, proving the effectiveness of this indicator LP. We therefore only
verify the feasibility of the best solutions found, after the search algorithms are done.

The goal of minimising the number of occupied machines lends itself excellently for column
generation. This well known technique, described by for example Bazaraa et al. (2005), works by
dividing a problem into a master problem and a subproblem — the master problem is to find the
smallest subset of columns for which all constraints are met, and the subproblem is tasked with
generating new columns such that the solution to the master problem can be improved.

3.2.1 Linear programming formulation

The columns we are working with are machine schedules, each consisting of a complete schedule
for a single machine, that can be chosen to be executed at the expense of occupying one machine
for the full length of the resulting schedule. These machine schedules are represented by the binary
parameters ajs, where j is the index of the task and s of the column, indicating whether that task
is included in that machine schedule:

ajs =

{
1 job j is included in machine schedule s;

0 otherwise.

Each of the machine schedules has a binary variable xs to indicate whether it is included:

xs =

{
1 machine schedule s is used;

0 otherwise.

Let us assume for the moment that S is the set of all feasible machine schedules, i.e. those that
honour the fixation of relations and adhere to the maximum makespan, with which we can solve
the following ILP. The objective is to minimise the number of used columns, and the constraints
enforce that all jobs are executed exactly once (3.3).

min
∑
s∈S

xs s.t.∑
s∈S

ajsxs = 1 ∀j ∈ {1, . . . , n} (3.3)

xs ∈ {0, 1} ∀s ∈ S (3.4)
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Of course, iterating over the entire set of feasible machine schedules is intractable, as there
are far too many to even list them all, let alone use them in our formulation. Therefore, we
relax the formulation by substituting constraint 3.4 with the condition xs ≥ 0 ∀s ∈ S — we can
leave out xs ≤ 1, as this is already implied by 3.3 — and solve this LP relaxation using column
generation. We start out with S as a small set of columns — based on the schedule that was found
when determining the minimal maximum makespan, as described in section 2.1 — and we keep
expanding this set until we have solved the master problem. To help us find an allowed initial
solution, we allow for partially invalid columns, i.e. those that do not honour the fixation, by
giving them a penalty. By setting their cost to a large number, we make it impossible to conclude
a fixation is feasible based on a solution that uses such a column, and we give the solver a high
incentive to move away from using any of these invalid columns. To ensure only feasible columns
are added to the LP later on, we enforce the validity of single machine schedules during their
generation.

3.2.2 Generating new columns

To introduce new machine schedules, we have to solve the subproblem — also known as the pricing
problem — that makes a selection of the jobs that will be included in the new schedule. As a
column takes up one machine when used, its direct gain cs = 1, whereas its direct cost depends
on the included jobs. Its reduced cost c′s is therefore equal to the following, where λj represents
the shadow prices of constraint 3.3, indicating how much we would like to include job j:

c′s = cs −
n∑

j=1

λjajs = 1−
n∑

j=1

λjajs.

To find the column with minimal reduced cost, we turn this into an optimisation problem using
the following objective function, with the added constraint that the sum over the processing times
of the included jobs is at most equal to the maximum makespan (3.5). We denote the outcome of
this problem with ĉ, and define the minimum reduced cost as c∗ = 1− ĉ.

max

n∑
j=1

λjajs s.t.

n∑
j=1

pjajs ≤ C (3.5)

ajs ∈ {0, 1} ∀j ∈ {1, . . . , n}

Using the processing times of the jobs as weights and the shadow prices λj as values, we can
solve this problem as a knapsack instance using a dynamic programming routine, with C as the
capacity. To ensure compliance with the fixations of relations, we aggregate the jobs of fixated
relations into blocks, which have to be included or excluded entirely.

If a new machine schedule with negative reduced cost is found, it is returned to the LP, which
we can then solve again, leading to a new set of shadow prices, for which we solve the pricing
problem again, etcetera. When c∗ ≥ 0, no more improving columns can be generated for the LP,
and it has been solved to optimality. We can then pass the verdict on the feasibility of the fixation
back to the search algorithms. Of course, if the objective value of the LP gets below m before we
have solved it to optimality, we can stop then and there — adding more columns can only lower
the number of needed machines, and we already have our answer.

3.2.3 Heuristic for the pricing problem

The dynamic programming procedure mentioned above can be slow to complete, as it solves
the pricing problem to optimality and has a runtime of O(nC). Therefore a faster heuristic
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was conceived, based on the greedy approach to continuous knapsack problems, giving a good
approximation of the optimal solution. We implemented it as follows.

First, we aggregate all jobs into blocks, such that all jobs that have a fixated relation between
them are grouped together. The aggregated processing time of each block is calculated, and the
cost of each block is set by summing up the λj values of all included jobs, divided by the aggregated
processing time of the block, resulting in a ratio that is used to sort the blocks. The sorted list
of blocks is then iterated over, starting from the best ratio. If all the jobs of the current block
can be added to the machine schedule we are generating, without making it exceed the maximum
makespan, they are included — otherwise this block is ignored. All blocks are checked in this
way, until one with negative profit is encountered, after which the process is stopped. Since the
ordering of jobs in the machine schedule is of no importance, the resulting column can be returned
immediately after completing this process.

Because this method does not always give the optimal answer, the slower implementation based
on dynamic programming is also required. That is called only when the greedy heuristic fails to
find a new column, to minimise the impact on the running time. If the dynamic programming
routine is also unable to find a new set of jobs with a combined negative reduced cost, we have
solved the LP to optimality.

3.2.4 An intermediate lower bound

An intermediate check on the objective value was introduced by Van den Akker et al. (2012),
that can help us determine the infeasibility of a fixation without completely solving the LP. As
presented, the linear programming formulation is used to find the minimal number of machine
schedules that are needed to schedule all jobs. But for judging the feasibility of a fixation, we have
no interest in the resulting objective value — all we need to know is whether this value is at most
equal to the number of available machines. If we can prove it is impossible to achieve an objective
value this low, i.e. we know for sure that the solution needs more machines, we would be better
off aborting the search.

When we have solved the pricing problem to optimality using the dynamic programming rou-
tine, and generated a new machine schedule with reduced cost c∗, we know that the following
holds for all s ∈ S:

1 = cs = c′s +

n∑
j=1

λjajs ≥ c∗ +

n∑
j=1

λjajs.

This expression can be used to find a lower bound of the LP objective as follows.

∑
s∈S

xs ≥
∑
s∈S

xs

c∗ +

n∑
j=1

λjajs


∑
s∈S

xs ≥ c∗
∑
s∈S

xs +
∑
s∈S

xs

 n∑
j=1

λjajs


∑
s∈S

xs ≥ c∗
∑
s∈S

xs +

n∑
j=1

λj

(∑
s∈S

xsajs

)

Recall that constraint 3.3 ensured that
∑

s∈S xsajs = 1 ∀j ∈ {1, . . . , n}.

∑
s∈S

xs ≥ c∗
∑
s∈S

xs +

n∑
j=1

λj

(1− c∗)
∑
s∈S

xs ≥
n∑

j=1

λj
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Note that we defined ĉ as 1− c∗, and since c∗ < 0, we know that ĉ is always greater than 1.

∑
s∈S

xs ≥
n∑

j=1

λj/ĉ

That gives us our lower bound — should the value of
∑n

j=1 λj/ĉ be larger than m, we know that
we need more than the available number of machines to schedule all jobs, and can thus conclude
that the fixation we are evaluating is infeasible.

3.2.5 Notes on the implementation

The indicator LP has been implemented with the Java API of Gurobi (2009) — as opposed to the
other linear programming formulations in this work, which make use of the CPLEX framework
by IBM (2009). Instead of constructing the problem every time we are evaluating a fixation,
we continuously re-use one instance of the solver. This means we create the model containing
the problem data only once, allowing for a significant improvement of the running time of this
approach. It does however also mean that when tasked to evaluate another fixation, all columns
that are in use by the solver have to be checked, making sure they are valid for the fixation we
are evaluating next. Any invalid columns present are given a penalty, to make the solver look for
alternatives as it tries to minimise the number of needed machines.

After we have come to a verdict on the feasibility of the fixation, all columns that are not part
of the solution base are removed from the solver, keeping the number of variables in use by the
solver to a minimum. Additionally, all columns that are generated are stored separately. On the
next run, this collection is checked for any columns that are useful for the current fixation, thereby
avoiding the need to generate columns that have been constructed before.
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Chapter 4

Searching for fixations

In the previous chapter we have seen how we can determine the feasibility of a fixation. This
chapter details the devised approaches for finding the best of these fixations. First we describe an
approach using genetic local search, followed by one based on simulated annealing.

4.1 Genetic local search

The main method we use to search for fixations is genetic local search — a well known technique,
described amongst others by Goldberg (1989), that keeps track of a population of solutions and
creates new entries by combining known good ones. A solution, i.e. a fixation, consists of an
assignment of the previously mentioned parameter fr for every r ∈ R, each indicating whether it
is to be fixated, i.e. whether the associated jobs are forced to be scheduled on the same machine.
In the context of these search algorithms, fr thus is the variable over which we optimise.

Every iteration of the genetic algorithm, a set of parent solutions is selected from the population
and combined into new fixations, as explained in the remainder of this section. These child
solutions are then evaluated, i.e. checked for feasibility, using the LP previously described in
chapter 3, and added to the population. This process of generating new solutions, evaluating
them and updating the population, is repeated until no more improvements can be found, i.e.
until no solution that was better than the best known solution has been added to the population
for a specific number of iterations, after which the search is stopped and the resulting population
is returned. The choice for the value of this parameter, as well as those of others, will be detailed
in chapter 8.

To avoid getting stuck in local optima we use a multi-start approach — the algorithm is run
three times, after which the resulting populations are merged and the search is run once more
based on that population. The best encountered solution is then used as a starting point for the
simulated annealing algorithm.

4.1.1 Population of solutions

During the execution of the genetic algorithm, we keep track of a population of 10 solutions.
Initially, it only contains one solution, in which no relations are fixated — for this fixation we
can certainly generate a schedule, namely the one found when the value of C was determined.
Because random solutions have a high chance of not even being feasible, adding any additional
fixations to the initial population gives no advantage to the search. Incrementing the size of the
population can increase the diversity of the solutions in it, but also increases the running time of
the algorithm, as it will then take longer to generate the solutions of the next generation.

The population is stored in a weighted binary tree, to which every saved solution is added with
the number of fixated relations as its weight. This weight denotes the importance of a solution, and
is used to make the probability of selecting some solution for reproduction directly proportionate
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to its fitness score. This biased random selection is then used when determining which solutions
are used as the parents for the next generation — a technique known as roulette wheel or fitness
proportionate selection, originally introduced by De Jong (1975). For example, if the population
would contain three solutions, with weights 10, 15 and 25 respectively, they would have a 20%,
30% and 50% chance of getting selected as a parent.

To ensure the best solutions encountered are not forgotten, we use an elitist selection scheme
— meaning we simply copy the best solutions over into the next generation. For each of the
remaining places in the new generation, we select two parents from the original population, so
there might be solutions that are employed as parents more than once.

4.1.2 Combining solutions

The conclusions of the experiments conducted by Van Roermund (2013) were that the approach has
great potential for finding good fixations, provided that the method used for combining fixations
into new ones was improved. The initial method for generating a new fixation did not take any
information about the structure of the relations into account — it simply copied the common
parts of the parent solutions, and for every relation the parents did not agree on it chose randomly
whether to fixate it or not. Take for example the fixations in figure 4.1, in which the nodes
represent jobs, bold edges indicate relations that are fixated, and dashed edges those that are not.

J1 J2

J3 J4 J5

J6 J7

(a) Example fixation A.

J1 J2

J3 J4 J5

J6 J7

(b) Example fixation B.

J1 J2

J3 J4 J5

J6 J7

(c) An example result of the naive
combination of fixations A and B.

Figure 4.1: Example fixations for a problem instance with seven jobs and twelve relations.

In this example, the relations not involving J4 are fixated in the exact same way in both
fixations A and B, therefore their resulting combination shares these fixations as well. The relations
that do involve J4 are fixated in a completely opposite way in the parent fixations, and therefore
the child solution has these relations fixated at random. Unfortunately, this can lead to a fixation
like the one in figure 4.1c, in which all jobs are connected by fixated relations, i.e. all jobs are
forced to be scheduled on the same machine.

This is unlikely to be desirable, as chances are the combined processing time of these jobs
exceeds the value of C — which would make it impossible to create a schedule for it. We therefore
needed to improve this method of combining fixations by taking more advantage of the problem
structure, which takes us back to the previously mentioned graph partitioning problem.

4.1.3 Improved recombination of fixations

To provide a better way of combining parent solutions into new ones, we devised the following
method, consisting of two phases. During this procedure, all jobs are kept in a disjoint-set forest
— also known as a union-find data structure, originally introduced by Galler et al. (1964) — to
which each task is initially added as a singleton set. The sets in this data structure represent
groups of jobs that are forced to be scheduled on a single machine, meaning that all relations that
are solely between jobs within one such set have been fixated. By continuously merging these sets,
we thus fixate more and more relations, leading to better fixations.

The first phase identifies the common elements of the parent solutions. Every relation that
is fixated in both of the parents, is copied over into the new fixation with a certain chance, by
merging the sets containing the jobs involved in that relation. The reason for not copying the
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fixated relations unconditionally is to allow for some mutations in the recombination — otherwise
we would have no way of not fixating some relation once all chosen parent solutions have it fixated.
The exact setting of this chance is left to chapter 8.

During the second phase we iterate over the remaining, non-fixated relations in random order,
and try to fixate each one by merging the involved sets. Should we be able to construct a feasible
single machine schedule that includes all jobs from both sets, we continue with this relation fixated
— otherwise we leave those sets as they were and continue on, ignoring that relation. The reason
for the random order is to avoid making sub-optimal decisions, even when they are locally optimal
— always merging the sets that lead to the best improvement of

∑
−fr does not necessarily return

the best possible fixation, and even worse, if the returned fixation turned out to be infeasible, such
a greedy approach would regenerate it over and over, never finding a valid solution.

Every time a relation is fixated and sets are merged, we add the fixation as represented at
that time by the disjoint-set forest to a list. When we have iterated over all relations, this list is
returned to the genetic algorithm. A nice property of this list is that each fixation is a slightly less
restricted version of the one after it, i.e. when we are able to prove the feasibility of a fixation in
the list, we immediately know that all fixations before it are also feasible. Knowing this, we can
use binary search to find the best fixation in the returned list: the fixation in the middle of the list
is evaluated using the indicator LP, and should it be feasible we continue searching through the
second half of the list; otherwise we only consider the first half of the list as candidate solutions,
etcetera. The best fixation found is then added to the population.

Let us illustrate the working of this method using the previous example, with seven jobs and
twelve relations, assuming the given maximum makespan ensures that no more than four jobs can
be scheduled on a single machine. Taking fixations 4.1a and 4.1b as parents, the first phase copies
the relations they both have fixated with a 3

4 chance, unifying the sets of those jobs — possibly
leading to the partitioning depicted in figure 4.2a, in which the sets of the jobs involved in three
of the relations are merged, out of the four that the parents have fixated in common.

J1 J2

J3 J4 J5

J6 J7

(a) An example partitioning after
phase one.

J1 J2

J3 J4 J5

J6 J7

(b) An example partitioning dur-
ing the first iteration of phase two.

J1 J2

J3 J4 J5

J6 J7

(c) An example partitioning after
phase two.

Figure 4.2: Example combination of fixations 4.1a and 4.1b.

The second phase then iterates over the non-fixated relations, i.e. the dashed lines in the
example, and selects one that will be fixated. Note that the relation between J1 and J2 is the only
one not viable for fixation, as merging those sets would result in a processing time greater than
the given maximum makespan. Let us first select the relation (J4 ↔ J5) and unify the involved
sets, leading to the situation of figure 4.2b; then we fixate (J6 ↔ J7), resulting in the partitioning
shown in figure 4.2c. The list of fixations that would be returned to the genetic algorithm for
evaluation would thus be the following.

[{J1, J3, J6}, {J2, J5}, {J4}, {J7}]
[{J1, J3, J6}, {J2, J4, J5}, {J7}]
[{J1, J3, J6, J7}, {J2, J4, J5}]

This example highlights what is both a strength and a weakness of this heuristic, namely its
random determination of which sets to merge. The advantage is that more fixations that differ
from the parents are tried, while a big part of the genetic information is still honoured. On the
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other hand, the disadvantage is that sub-optimal choices can be made — like in the figures above,
in which the last partitioning has six relations fixated, whereas both parents had seven. As argued
before however, merging the sets such that the most relations are fixated at each step can get
stuck, generating infeasible solutions. Another upside is that random selection is much quicker
than optimal selection, allowing the heuristic to produce more candidate fixations in less time.

4.1.4 Alternative combining strategy

A characteristic of the technique described above is that cliques — or other tightly connected
subsets of jobs — have a higher chance to end up in the same set than jobs with only a single
relation between them. This is because there can be multiple edges between jobs inside and outside
a set, as illustrated by the following example.

Consider the small problem instance with four jobs and the relations (J1 ↔ J2), (J1 ↔ J3),
(J1 ↔ J4) and (J2 ↔ J4), as shown in figure 4.3a. Let us assume that the value of C is chosen
such that at most three jobs can be scheduled on a single machine. Let us also assume that the
first relation, between jobs J1 and J2, has already been fixated, and we are now deciding which
relation to fixate next. By iterating over the non-fixated relations in random order, the fourth
job now has a 2

3 chance of getting merged with J1 and J2, since two of the three remaining edges
involve J4, as in figure 4.3b.

If we were to use a graph instead of a disjoint-set forest during this process, we could also
unite the edges of sets when merging them. This would then lead to the situation as depicted in
figure 4.3c, where the original edges (J1 ↔ J4) and (J2 ↔ J4) are replaced by one edge. Now both
J3 and J4 have an equal chance of getting selected for inclusion.

J1 J2

J3 J4

(a) Problem instance.

J1 J2

J3 J4

(b) Using disjoint sets.

J1 J2

J3 J4

(c) Using a graph.

Figure 4.3: Example job partitioning for a problem with four jobs and four relations.

Although this strategy would seem to select the next relation to fixate in way that is fairer,
giving more chance to relations that would otherwise be outnumbered, its implementation actually
performs worse than the one based on the disjoint sets. This can be explained by the fact that
it is better to merge cliques together rather than loosely connected jobs, as the former make a
larger contribution to the number of fixated relations — as is evident from the previous example,
where the set {J1, J2, J4} has three relations fixated, whereas {J1, J2, J3} would have only two.
It is therefore a good thing not to unify the edges between sets, to give the sets which contribute
to a greater increase in the number of fixated relations a larger chance of getting merged. We
therefore stick with the previously described implementation using disjoint sets.

4.2 Simulated annealing

In addition to the genetic algorithm, we implemented another well known local search heuristic
to look for the best fixations — simulated annealing, as introduced by Kirkpatrick et al. (1983).
It works by maintaining a single solution and repeatedly looking at its neighbourhood, accepting
any change that leads to an improvement, and permitting a worsening with a certain chance.
This chance depends on both the magnitude of the negative impact on the objective value and the
current temperature. During the execution of the algorithm, this temperature is gradually lowered
according to a cooling schedule, to ensure that the chance of accepting declines diminishes.
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4.2.1 Changing the solution

For this search algorithm we also use the job-sets representation of solutions. During every iter-
ation, a small modification is applied to the current fixation. This can either be to merge two
randomly selected sets of jobs, or to split up some set, i.e. re-adding each of its jobs as singleton
sets. Since the unification of two sets can never lead to less fixated relations, a merge always re-
sults in a solution that is at least as good as the previous one, provided that it stays feasible. The
scattering of a set on the other hand can never lead to more fixated relations, and can therefore
never result in an improvement. However, splitting up sets is still needed in order to get away
from local optima, in which no more merges can be done. The choice for either change is made
randomly, at a ratio that will be determined in chapter 8. If we choose to merge sets, but are
unable to find appropriate candidates, we fall back to the scattering. The choice of which sets to
operate on is also made randomly, although a check is enforced to see whether the merging of a
set does not make it exceed the maximum makespan.

During the run of the algorithm, a disjoint-set forest is maintained for the current solution,
with the jobs divided into sets as dictated by the fixation. Every time a change is made, the sets
are updated — either by merging two or by scattering one — and the resulting fixation is offered
to the indicator LP for evaluation. Should the new solution be deemed feasible, the change in the
number of fixated relations is computed. Based on this number and — in case of a lessening —
the temperature, a decision is made whether to keep this solution. Even though determining the
increase in the number of fixated relations is easier to compute than evaluating a solution, the
used order is not an issue given our two possible changes: if a merge has taken place, the number
of fixated relations will have increased, so we will want to evaluate the new solution; if a set was
scattered, proving its feasibility is trivial given the evaluation of the old solution.

The chance of accepting a worsening is calculated using the formula e
δ
t , where δ is the difference

in the number of fixated relations, and t represents the current temperature. Should the change
be accepted, the algorithm continues with the new fixation; otherwise, the original solution is
restored. After a predefined number of iterations in which no improvement has been made, the
search is suspended and the changes done since we encountered the best fixation are reverted. We
then continue the search, keeping the temperature as it was. This reverting to the best found
solution and resuming the search is done up to three times, to avoid getting stuck in local optima.

4.2.2 Cooling schedule

The cooling schedule of the simulated annealing algorithm dictates the course of the temperature
during the run. It is controlled by a starting value, to which the temperature is initialised, and a
value between 0 and 1 that it is multiplied by every so many iterations.

For example, if the starting temperature is set to 9.5, a decrease of one fixated relation has

a e
δ
t = e

−1
9.5 = 0.90 chance of getting accepted, whereas a change leading to ten less fixations

has a e
−10
9.5 = 0.35 chance of not being reverted. Then, every so many iterations, the current

temperature is multiplied by for example 0.9, thus lowering the chance of moving to a worse
solution. See chapter 8 for the determination of the actual values of these parameters.

4.3 Chaining the search algorithms

Initial experimental results showed that the genetic search algorithm finds good solutions faster
than the simulated annealing approach, especially when starting from a bare solution with no
relations fixated. Therefore, we execute a simulated annealing search starting from the best
solution in the returned population of every run of the genetic algorithm during the multi-start
approach. Once all three runs of the search algorithms have been completed, we check the best
fixations with the feasibility ILP described in section 3.1, to see whether a schedule can actually
be formed for this fixation. We then continue by increasing the value of the maximum makespan
and redo the searches.
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This concludes the description of our basic decomposition approach — using the search algo-
rithms to generate fixations and employing the indicator LP to quickly evaluate their feasibility.
In the next part of this thesis we present several extensions to its formulation, to enhance the
problem category it is applicable for.
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Part II

Extensions
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Chapter 5

Job characteristics

In this chapter we present two extensions to the job characteristics of the problem category we are
solving — we redefine the correlations as proper precedence relations and include the availability
of jobs. The first two sections describe the rationale for their inclusion; the other sections update
the formulations of the evaluation methods. The adaptation of the ILP that solves a problem to
optimality as presented in section 2.3 is left for the next chapter.

5.1 Including precedence relations

Section 1.3 described the simplification of precedence relations to mere correlations, thereby ex-
cluding the partial ordering of jobs. Since these precedence relations are present in a lot of real
world problems, we would like to include them in our approach. The precedence relations men-
tioned in section 1.1 were of the form Sj − Si ≥ qij for all r : (i, j) ∈ Rp, forcing job j to start
at least qij time units later than job i is started. Note that we use Rp instead of R to indicate
the set of precedence relations, as correlations make a comeback in section 6.2. Other types of
precedence relations, obtained by changing the ≥ to a ≤ or =, are not included in this work —
see section 10.3.1 for thoughts on how those could be incorporated.

We define pred(j) to be the set of predecessors of j, i.e. containing each job i for which there
exists a relation r : (i, j) ∈ Rp, and similarly, succ(j) as the set of successors of j, i.e. containing
each job i for which there exists a relation r : (j, i) ∈ Rp. We use these definitions in reformulating
the LP:

pred(j) = {i | (i, j) ∈ Rp};
succ(j) = {i | (j, i) ∈ Rp}.

5.2 Adding job availabilities

We also include release dates and deadlines of jobs, which indicate the time window in which a job
should be executed — job j can not be started before its release date rj , and it must be finished
by its deadline d̄j . Both values should be non-negative, and to allow for the execution of the job,
there should be at least pj time units between them, i.e. d̄j − rj ≥ pj must always hold.

Up to now, we have acted as if all release dates were set to time zero, and the deadlines were
equal to the value of C, the maximum makespan — but from now on the availability is set for
each job individually, and assumed to be given by the problem instance. Since the deadline of a
job could be greater than the upper bound on the makespan, we have to take extra care to ensure
neither is violated by a schedule.

To find the minimal maximum makespan with these precedence relations and availability re-
strictions taken into account, we update the contraint programming implementation used to find
the shortest possible schedule, making it solve P|rj , d̄j , prec|Cmax.
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5.3 Adapting the verifier ILP

Incorporating starting times into the formulation of the verifier ILP means we can no longer
aggregate the jobs of fixated relations, as that would enforce an absolute ordering on those jobs.
Instead, we will have to use the full set of jobs and add a time index to the variables, making
them indicate both by which machine a job is executed, and at what time that is to be done. This
changes the variables used in this formulation to the following:

xjkt =

{
1 job j is started by machine k at time t;

0 otherwise.

The objective of the updated ILP remains trivial, as we only need to verify whether a schedule
can be made, making the formulation as below. The first two constraints ensure that every job is
scheduled exactly once (5.1) and at every single moment each machine is executing at most one
job (5.2). The precedence relations are included with constraint 5.3, where the starting time of
job j is expressed as

∑
k

∑
t xjktt, and the last constraint makes sure the fixations are honoured

(5.4). The availability of each job, together with the maximum makespan, is taken into account
by the definition of the time index in each constraint, i.e. ranging from rj to min

(
C, d̄j

)
− pj .

min 1 s.t.

m∑
k=1

min(C,d̄j)−pj∑
t=rj

xjkt = 1 ∀j ∈ {1, . . . , n} (5.1)

n∑
j=1

min(t,min(C,d̄j)−pj)∑
t′=max(rj ,t+1−pj)

xjkt′ ≤ 1 ∀k ∈ {0, . . . ,m} ∀t ∈ {0, . . . , C} (5.2)

m∑
k=1

min(C,d̄j)−pj∑
t=rj

xjktt−
m∑

k=1

min(C,d̄i)−pi∑
t=ri

xiktt ≥ qij ∀r : (i, j) ∈ Rp (5.3)

min(C,d̄i)−pi∑
t=ri

xikt =

min(C,d̄j)−pj∑
t=rj

xjkt ∀k ∈ {1, . . . ,m} ∀r : (i, j) ∈ {r | r ∈ Rp ∧ fr = 1}

(5.4)

xjkt ∈ {0, 1} ∀j ∈ {1, . . . , n} ∀k ∈ {1, . . . ,m} ∀t ∈ {rj , . . . ,min
(
C, d̄j

)
− pj}

5.4 Updating the indicator LP

To include these extensions in the indicator linear programming formulation, we need to augment
the representation of columns with the starting times of the jobs they contain. To this end we
introduce a new parameter of machine schedules, Sjs, indicating the starting time of job j in
column s. Of course, its value only makes sense for the jobs that are included in that machine
schedule, i.e. for which ajs is set to 1; otherwise, we assume Sjs is set to zero. We thus include:

Sjs ∈ {0, rj , . . . ,min(C, d̄j)− pj}.

5.4.1 Renewed formulation

Since the jobs involved in a relation can be scheduled on different machines, the precedence
constraints have to be enforced outside the generation of new columns, i.e. in the formulation
of the master problem, which is changed to the following. Note that this is an integer linear
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programming formulation again, of which we take the relaxation by changing the variable xs into
a non-negative real number. Honouring the availability of individual jobs does not depend on
multiple machine schedules, and can thus be delegated to the subproblem. The demand that all
jobs are executed exactly once is unchanged (5.5), and the constraint on partial order has been
added (5.6).

min
∑
s∈S

xs s.t.∑
s∈S

xsajs = 1 ∀j ∈ {1, . . . , n} (5.5)∑
s∈S

xsajsSjs −
∑
s∈S

xsaisSis ≥ qij ∀r : (i, j) ∈ Rp (5.6)

xs ∈ {0, 1} ∀s ∈ S

5.4.2 Enhancing the pricing problem

With the starting times of jobs added to the machine schedules, the pricing problem becomes
harder to solve, as we now also need to decide in what order to put the jobs we are including.
Since the formulation of the LP gained an additional constraint, we also have an extra set of
shadow prices — let λj represent the shadow prices of the first constraint like before, and δij those
of constraint 5.6. As given by Van den Akker et al. (2012), we can aggregate these δij values into
a dual for individual jobs, which is called Qj and indicates how much we would like to move job
j to the back of the schedule:

Qj =
∑

i∈pred(j)

δij −
∑

i∈succ(j)

δji.

Using these, we can express the reduced cost of a new column s as:

c′s = 1−
n∑

j=1

λjajs −
n∑

j=1

QjSjs.

We reformulate the pricing problem using the variable bjt, indicating job j is to be started in
the new schedule at time t. We then have that the starting time of job j is represented by the
sum

∑
t bjtt, provided that

∑
t bjt equals one — the index t ranges from rj to min

(
C, d̄j

)
− pj ,

although we use this abbreviated form in the text. We thus define:

bjt =

{
1 job j is started at time t;

0 otherwise.

Even though the precedence relations are already enforced in the formulation of the LP, it would
be unwise not to include them here as well — generating a new column that does not honour the
constraints of the master problem will never provide an improvement to it. We therefore need
to ensure that whenever both jobs i and j involved in some relation r : (i, j) are included, the
difference between their starting times is at least qij . However, if only one or neither of the jobs is
included, this constraint should evaluate to something trivial, so it has no effects on the solution:∑

t

bjtt−
∑
t

bitt ≥ qij if and only if
∑
t

bit =
∑
t

bjt = 1.

Let us examine the left hand side of this constraint. Since both sums evaluate to zero or larger,
we can conclude that the minimal value of the left hand side is minus the maximum starting time
of job i. We therefore modify the right hand side by subtracting a value Mij , such that it becomes
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no larger than −
(
d̄i − pi

)
whenever at most one of the jobs involved in the relation is included,

but it is left as it was whenever both jobs are selected. To this end we define Mij as follows:

Mij =

2−
min(C,d̄i)−pi∑

t=ri

bit −
min(C,d̄j)−pj∑

t=rj

bjt

(qij + d̄i − pi
)

.

We extend the pricing problem using this constraint, leading to the following formulation. The
objective maximises the rewards for choosing jobs at certain times, by means of the duals. The
constraints enforce that each job is scheduled at most once (5.7), that at any given moment at
most one job is scheduled (5.8), that the precedence relations are adhered (5.9), and that the
fixation is honoured (5.10). Note that, just like with the verifier ILP, the maximum makespan and
the availability of jobs are honoured by the definition of the time indices, and that they therefore
do not need a separate constraint.

max

n∑
j=1

min(C,d̄j)−pj∑
t=rj

bjt (λj + tQj) s.t.

min(C,d̄j)−pj∑
t=rj

bjt ≤ 1 ∀j ∈ {1, . . . , n} (5.7)

n∑
j=1

min(t,min(C,d̄j)−pj)∑
t′=max(rj ,t+1−pj)

bjt′ ≤ 1 ∀t ∈ {0, . . . , C} (5.8)

min(C,d̄j)−pj∑
t=rj

bjtt−
min(C,d̄i)−pi∑

t=ri

bitt ≥ qij −Mij ∀r : (i, j) ∈ R (5.9)

min(C,d̄i)−pi∑
t=ri

bit =

min(C,d̄j)−pj∑
t=rj

bjt ∀r : (i, j) ∈ {r | r ∈ R ∧ fr = 1} (5.10)

bjt ∈ {0, 1} ∀j ∈ {1, . . . , n} ∀t ∈ {rj , . . . ,min
(
C, d̄j

)
− pj}

(5.11)

5.4.3 A new pricing heuristic

The ILP formulation of the pricing problem outlined above can be solved to optimality using a
CPLEX implementation, though this can take a lot of time, so a faster heuristic is employed as
well — only when that is unable to find any new columns, the ILP is invoked. Because of the time
indices for each job, we are unable to aggregate jobs that are fixated together, meaning we are
not able to diminish the search space that way. Instead, we divide the pricing heuristic into two
phases — during the first we determine which jobs are included in the new column, and during
the second we set the starting time of each of the chosen jobs.

To determine which jobs get selected for the new column, we solve the LP relaxation of the
formulation presented above. By relaxing constraint 5.11 to bjt ≥ 0 — an upper limit of 1 is
already implied by 5.7 — the problem becomes easier to solve. We use the resulting set of values,
consisting of a number between 0 and 1 for each task, as the chances to include the corresponding
jobs. When the solver has successfully solved the relaxation, we iterate over the sets of jobs that
are grouped together based on the current fixation, and sum up their values of bjt. That sum,
divided by the number of jobs in the set, represents its chance of inclusion. We then randomly
select some of those sets, and try to create a feasible assignment of starting times for them using
the second phase. To increase our chances of finding an improving column and possibly generating
more than one, we repeat the random selection of sets of jobs a number of times.
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The second phase of this heuristic is tasked to return the starting times for a given set of jobs,
such that the reduced cost of the resulting column is as low as possible. For this phase we make use
of a constraint programming problem, that tries to construct a valid machine roster that includes
all the jobs that were selected during the first phase. The constraints given to the CP solver
ensure that each of the given tasks is scheduled within its availability and the current maximum
makespan, and that at all times at most one job is included, as we are generating a single machine
schedule. The value of each task starting at a specific time is calculated from the shadow prices,
just like in the objective of the ILP above. If we are able to find a feasible assignment for the
starting times of the indicated jobs, i.e. one that honours these constraints and makes the reduced
costs come out negative, we return the generated roster — otherwise we return nothing.

After having called the second phase for each of the generated lists of jobs during the first phase,
we possibly have multiple new columns that can be returned to the indicator LP, which can then
be solved again. If we found no feasible columns, the integer linear programming implementation
of the pricing problem as described in the previous section is invoked.
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Chapter 6

Objective terms

This chapter presents two extensions to the terms used in the objective function of the problem
category — we detail the addition of weights to relations, and discuss how to better approximate
the original robustness measure

∑
γ. As before, the first two sections describe the rationale for

their inclusion, the others give the updated formulations of the search methods.

6.1 Introducing weighted relations

Along with the simplification of precedence relations to correlations in section 1.3, an example use
case was given in the form of scheduling related computations over several computers. In that
scenario, tasks might benefit from the efforts of other tasks — and it could very well be possible
that some tasks benefit more from this effect than others. It could therefore be beneficial to the
robustness of the resulting schedule to fixate some relations in favour of others. The inclusion of
precedence relations in the previous chapter does not change this, as we can still prefer the jobs
of a relation scheduled on the same machine over the jobs of some other relation — although the
partial ordering imposed by the precedence relations must be honoured at all times.

To model this preference for the fixation of a specific relation, we introduce a weight for each
relation r, represented by the property wr. Technically, this property could have any real number
as its value, although we assume positive values, as those are the most common, indicating how
much we would like to the relation fixated. A negative number would indicate the opposite, i.e.
making us prefer not having the jobs of this relation on the same machine. Using zero for the
weight of a some relation means we do not reward its fixation in any way; in this case we do not
even need to try to fixate it, as this would never be beneficial. Note that up to now, we acted as
if all weights were set to 1.

6.2 Better approximating
∑

γ

With the introduction of fixations in section 2.2, the objective of the search became to find a
schedule with the most fixated relations. While this does give an upper bound on

∑
γ — recall

that γjk was defined to take a value of 1 if job j itself is not scheduled on machine k, but has at
least one successor that is, and 0 otherwise — it does not necessarily minimise that term, which
Hoppenbrouwer (2011) introduced to maximise robustness.

It is even possible for a schedule to have more relations fixated but a lower
∑
γ, as figure 6.1

demonstrates. The first schedule in this figure has one fixated relation, between J1 and J2, but a
non-fixated relation to both jobs scheduled on machines two and three, i.e. γ12 = γ13 = 1, leading
to a

∑
γ score of 2. Schedule 6.1b on the other hand, has none of its three relations fixated,

making it inferior when using the original objective — however, since it only has non-fixated
relations to jobs on machine two, its

∑
γ is equal to 1, meaning this schedule could just as well be

considered superior to the first. This makes sense from the viewpoint of delay propagation, since
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machine

1
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3

time

t0 t1 t2

J1 J2

J3

J4

(a)
∑

−frwr = −1,
∑
γ = 2

machine

1

2

3

time

t0 t1 t2

J1

J2 J3 J4

(b)
∑

−frwr = 0,
∑
γ = 1

Figure 6.1: Two example schedules with four jobs and three relations, with wr = 1.

in schedule 6.1a two other machines would have to wait when the first gets delayed, whereas this
would only affect one other machine in the second schedule.

6.2.1 Additional correlations

To address this issue, we add some extra relations to the problem instance. For every job j,
we add a correlation between each possible pair of elements in the set succ(j), without adding
any additional partial ordering constraints. In the example given above, we would thus add the
correlations (J2 ↔ J3), (J2 ↔ J4) and (J3 ↔ J4), all between successors of J1. If there already is
a precedence relation between some combination of jobs, we leave out the additional correlation
for that pair, e.g. if the previous example contained the relation (J2 → J4), we would only add
the correlations (J2 ↔ J3) and (J3 ↔ J4). Augmenting the problem in this way effectively turns
the set of successors of each job into a clique, giving the solver a higher incentive to schedule the
involved jobs on the same machine.

Because we do not want these additional correlations to overshadow the original precedence
relations in the objective function, we include the former with smaller weights. For our example
to work, the three correlations have to outweigh the one precedence relation, otherwise the first
schedule would still be superior. We therefore set the weights to half the average weight of the
precedence relations, i.e. to 1

2 when those weights are still set to 1 — using a different weight ratio
would obviously lead to different results; the higher the weights of the additional correlations,
the more the search algorithms focuses on cliques, specifically large cliques. Figure 6.2 shows the
result of this extension, and demonstrates how the second schedule now is better according to
both metrics.

machine

1

2

3

time

t0 t1 t2

J1 J2

J3

J4

(a)
∑

−frwr = −1,
∑
γ = 2

machine

1

2

3

time

t0 t1 t2

J1

J2 J3 J4

(b)
∑

−frwr = − 3
2
,
∑
γ = 1

Figure 6.2: The example schedules of figure 6.1 augmented with additional correlations.
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Note that this augmentation of the objective function is still an approximation of
∑
γ, and

the values of these metrics can still differ. Figure 6.3 shows two example schedules with six tasks,
of which jobs two through six are successors of J1. In schedule 6.3a, there are possibilities for
propagations of delays to two machines, whereas this number is three in the second example. On
the other hand, when considering the summed weight of the fixated relations, the search algorithms
will prefer example 6.3b over the first, which is not what we wanted. The difference between these
two schedules is fairly small however, and considering the amount of added relations it is quite
likely that a fixation is generated that has even more jobs bound to a single machine.

To completely avoid these situations in which a better fixation actually has a worse
∑
γ, we

would have to set the weights of the additional correlations equal to the weight of the precedence
relations. However, it is questionable whether that is desirable, as that might focus on these
additional correlations too much to be beneficial for the robustness. Also, with the introduction
of weighted relations in the previous section, precedence relations can be set to have non-uniform
arbitrary weights, so that is not an option. We therefore leave the weights of the additional corre-
lations at half the average weight of the precedence relations, which still gives us the improvement
over the original situation of figure 6.1.
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3
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t0 t1 t2

J1

J2 J3

J4 J5 J6

(a)
∑

−frwr = − 4
2
,
∑
γ = 2

machine
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2
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4

time

t0 t1 t2

J1 J2 J3

J4
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J6

(b)
∑

−frwr = −2 1
2
,
∑
γ = 3

Figure 6.3: Two example schedules with five jobs, four precedence relations and six correlations.

In the remainder of this chapter we present the updated search algorithms for finding the best
fixations, where we continue to use Rp to indicate the set of original precedence relations and
introduce Rc to represent the set of additional correlations. We also redefine R as the union of
these two sets, i.e. R = Rp ∪Rc.

6.3 Solving the extended problem to optimality

To solve the problem with the mentioned extensions to optimality, we update the ILP presented
in section 2.3 by adding a time index to its variables. This makes it very similar to the updated
verifier ILP, as it then also has xjkt indicating whether job j is scheduled to start on machine k
at time t. The other variable, yij , is still used to fixate jobs i and j on the same machine, with
the only difference that r : (i, j) now comes from the union of Rp and Rc. We include the weights
of the relations in the objective function, leading to the following formulation. The first three
constraints are the same as those in section 5.3, stating that every job is to be included once (6.1),
each machine is executing at most one job at a single point in time (6.2), and the precedence
relations are to be honoured (6.3). The last two ensure that fixated relations are to be executed
by the same machine (6.4 & 6.5). Also here, the availability of jobs is taken into account by the
definition of the time index in each constraint.
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max
∑

r:(i,j)∈R

yijwr s.t.

m∑
k=1

min(C,d̄j)−pj∑
t=rj

xjkt = 1 ∀j ∈ {1, . . . , n} (6.1)

n∑
j=1

min(t,min(C,d̄j)−pj)∑
t′=max(rj ,t+1−pj)

xjkt′ ≤ 1 ∀k ∈ {1, . . . ,m} ∀t ∈ {0, . . . , C} (6.2)

m∑
k=1

min(C,d̄j)−pj∑
t=rj

xjktt−
m∑

k=1

min(C,d̄i)−pi∑
t=ri

xiktt ≥ qij ∀r : (i, j) ∈ Rp (6.3)

min(C,d̄i)−pi∑
t=ri

xikt −
min(C,d̄j)−pj∑

t=rj

xjkt ≤ 1− yij ∀k ∈ {1, . . . ,m} ∀r : (i, j) ∈ R (6.4)

min(C,d̄j)−pj∑
t=rj

xjkt −
min(C,d̄i)−pi∑

t=ri

xikt ≤ 1− yij ∀k ∈ {1, . . . ,m} ∀r : (i, j) ∈ R (6.5)

xjkt ∈ {0, 1} ∀j ∈ {1, . . . , n} ∀k ∈ {1, . . . ,m} ∀t ∈ {rj , . . . ,min
(
C, d̄j

)
− pj}

yij ∈ {0, 1} ∀r : (i, j) ∈ R

As searching for the optimal fixation using this ILP continues to be far too inefficient, the
rationale for using the decomposition approach still stands. The next section describes how we
adapt the local search approaches for the extended problems.

6.4 Extending the search algorithms

To incorporate the weighted relations into the genetic algorithm and simulated annealing approach,
we only need to change their objective function into the following, and no other modifications have
to take place:

min
∑
r∈R
−frwr.

The better approximation of
∑
γ comes for free with the newly introduced additional correlations,

as these immediately become part of the solution and are eligible for fixation.

6.4.1 Merging job-sets

The strategy for determining which sets of jobs to unify while combining fixations during the
genetic algorithm, or while changing the current solution of the simulated annealing algorithm by
merging sets used to be similar. The program would check whether merging two sets was possible
by ensuring the sum of their processing times stayed within the maximum makespan. While this
is still a valid criterion, we can extend that check by seeing whether we can construct a roster for
the combined set of jobs, in which the starting times of all included jobs have a valid value and
all precedence relations are honoured.

To this end we use the constraint programming implementation used by the new pricing heuris-
tic introduced in section 5.4.3. Whenever two sets of jobs are selected for a merge, we invoke the
CP solver to create a roster that includes all those jobs. If we manage to find a roster, we unify
the two sets; otherwise we abort the merge — then we continue like before. Also, if a roster is
returned, we immediately add it to the indicator LP, making solving it easier once we get to the
evaluation of the fixation that is being generated.
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Chapter 7

Additional search

During the evaluation of the solutions generated by the search algorithms, many single machine
rosters are generated as columns for the indicator LP. In this chapter we show how we can use
these columns to look for fixations in a different manner.

7.1 Combining columns

By combining all the single machine rosters we have generated while evaluating fixations, and
selecting an appropriate subset of these, we might be able to find fixations the search algorithms
have missed. With the goal of finding the best fixation, we thus have to set the objective to
maximising the sum over the weights of relations that are fixated in each column. To achieve this,
we add a parameter ws to every known column s, that is calculated by summing up the weights
of the relations of which both jobs are included, i.e. ws =

∑
r∈{r | r:(i,j)∈R ∧ ais ∧ ajs} wr.

Using S′ to indicate the set of known columns, we formulate the following integer linear pro-
gramming problem. Although the objective is different, the first two constraints of this formulation
are the same as the ones for the master problem of the indicator LP, described in section 5.4.1
— stating that all jobs should be included exactly once (7.1), and that the precedence relations
are to be honoured (7.2). Additionally, we have to enforce that no more columns are chosen than
there are machines available (7.3).

max
∑
s∈S′

xsws s.t.∑
s∈S′

xsajs = 1 ∀j ∈ {1, . . . , n} (7.1)∑
s∈S′

xsajsSjs −
∑
s∈S′

xsaisSis ≥ qij ∀r : (i, j) ∈ Rp (7.2)∑
s∈S′

xs ≤ m (7.3)

xs ∈ {0, 1} ∀s ∈ S′

7.2 Implementation

Because this ILP needs the columns that were generated during the execution of the other search
algorithms, it is not possible to run it separately. It could however come up with solutions that
were missed by the local search heuristics, so running it afterwards might lead to improvements.
When the genetic search and simulated annealing algorithms are done, all columns that were
generated are passed to this approach. Should an improved solution be found, it is added to the
genetic populations, to give them a better starting point for their next run.
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To determine the effectiveness of this approach, we also backported its implementation to the
original code by Van Roermund (2013) that worked on the simplified problems, to see how this
extension improves the quality of found solutions. The results of these experiments can be found
in section 9.3.5.
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Part III

Results
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Chapter 8

Parameters

Before putting the presented approach to the test, we first need to set appropriate values for its
parameters. To do this, we run the program multiple times on a set of problems, each time with a
different setting, and choose the best performing value as the default. The first section describes
the problem instances that were used for these and further experiments. The remaining sections
describe the various parameters that were tested, belonging to the different search algorithms.

8.1 Problem instances

The problem instances we used to test the approach on have all been randomly generated. Each
instance is titled nj-rr-mm, where n indicates the number of jobs, r the number of relations
and m the number of machines — e.g. 30j-40r-8m is a problem with 30 jobs, 40 relations and
8 machines. The processing times were picked between 1 and 20, the release dates of jobs were
randomly chosen from the interval [0, n2 ], and the deadlines were randomly set ranging from the
release date plus the processing time to some big number. The precedence relations were added
between randomly selected pairs of jobs, with weights of 1 and the value of qij randomly chosen
between 0 and the processing time of the predecessor job, i.e. within [0, pj ].

8.2 Stop count

The stop count parameter determines the number of iterations, in which no improvements to a
solution are found, after which a search algorithm is stopped. This setting is therefore applicable
to both the genetic and simulated annealing local search. Choosing a value that makes it come
out too low would make the algorithm give up the search while there are still possibilities for
improvements. If set too high however, it would keep searching for better fixations long after the
best solution was found, only wasting time. We therefore expect there to be a certain threshold,
above which the quality of solutions is no longer improved. To find the height of this threshold,
we set the stop count to a very high value, and keep track of the number of iterations between
improvements.

When looking at the found numbers, shown in figure 8.1, we can see that for the genetic
algorithm, the threshold lies higher for instances with more machines — for the tested instances
with only 2 machines, at most one iteration passed in which no improvement was made, whereas
this was up to 70 iterations with 8 machines. For the simulated annealing algorithm we see a
similar pattern, although the difference is larger — up to 330 iterations without improvements
passed, after which a better solution was found. We therefore choose the value of this parameter
to be 15m−20 for the genetic search and 60m for the simulated annealing algorithm. These values
allow for a large enough stop count to not affect the quality of the solutions, while still keeping
the total runtime of the algorithm in check.
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Figure 8.1: Experiments for the stop count parameter.

8.3 Genetic local search

In this section, we explore the performance of the genetic algorithm, by tweaking its parameters.
During these experiments the simulated annealing algorithm was not used to improve the fixations
found by the genetic algorithm, to get a clear view of the effect of these settings on the quality
of the solutions. For each parameter we show two charts, demonstrating the effect of a setting on
both the quality of the solutions and the runtime of the algorithm. The multi start approach was
kept, each result represents the best of three separate runs; the time is the total time taken by
those three runs.

8.3.1 Elitist selection

This parameter determines the number of best solutions in the population that are unconditionally
copied to the new generation, as defined in section 4.1.1. Setting it to zero means that every
iteration the entire population is thrown away after selecting the parents, and therefore provides
no guarantee that the best solution of the next generation is as good as the current best. On the
other hand, setting it to the size of the population minus one means that only the worst solution
in the population is replaced during an iteration, and might smother the diversity of the solutions
in the population. With a population-size of 10, the tested values for the elitist selection count
are 0, 1, 3, 5, 7 and 9.
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Figure 8.2: Experiments for the elitist selection count parameter.

As can be seen from the chart depicting the runtime in figure 8.2, the higher the value of this
parameter, the faster the populations converge. However, the average distance to the best known
solution also increases slightly with a higher setting. We therefore choose the middle ground, 5 —
half the size of the population — as the default value for this parameter.
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8.3.2 Combiner inclusion chance

When combining parent solutions to create new fixations, the common parts of the parents are
copied with a certain chance, which is governed by this parameter. With a low value, only
little information is transfered between generations, leading to a longer time before a population
converges. However, a high setting might ensure that once some relation is fixated by all solutions
in the population, no new solutions can be generated in which that relation is not fixated, thereby
leading to premature convergence. The tested settings are 0.7, 0.8, 0.85, 0.9 and 1.
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Figure 8.3: Experiments for the combiner inclusion chance parameter.

Figure 8.3 shows how setting the combiner inclusion chance to a higher value indeed leads to
a faster converging population. The distance to the best known solutions also increases when the
value approaches 1, confirming our assumption. We therefore choose 0.8 as the default value for
this parameter, as it has one of the lowest runtimes and still few errors — off-by-one errors can
be explained due to the random nature of the search algorithms, making this the best setting.

8.4 Simulated annealing

We also investigate the performance of the simulated annealing search algorithm, by changing its
parameters. Since the simulated annealing algorithm is normally intended to be run after the
genetic search, we do these experiments by running simulated annealing on a fixed solution that
is somewhat close to the best known fixation for each instance.

8.4.1 Cooling schedule

As described in section 4.2.2, the cooling schedule governs the temperature during the run of the
simulated annealing algorithm, and consists of a starting temperature, a modifier and the cool
count, i.e. the number of iterations after which the current temperature is decreased by multiplying
it with the modifier. Setting the temperature too high, or not lowering it enough, might make
the search slow to converge, whereas starting off with a very low temperature, or decreasing it too
fast, will allow the algorithm to explore only a small part of the search space.

In section 4.2.1 we introduced two different changes for modifying fixations, i.e. merge two sets
of jobs or scattering one set. Since only the latter can — and always will — lead to a decrease in the
fitness value of the current solution, this is the only occasion the temperature will be needed. As
the sizes of the sets that are scattered are proportionate to the number of relations in the problem
instance, we make the starting temperature dependent on that number. The tried settings are 0.5-
0.9-25, 0.5-0.95-10, 1-0.9-25 and 1-0.95-10, where a-b-c indicates a · |R| as the starting temperature
and b as the modifier that is applied to the current temperature every c iterations.

The charts in figure 8.4 show how a higher starting temperature leads to a longer runtime,
but also to slightly worse results. Lowering the temperature more often but more gradually seems
to slightly decrease the effectiveness, although the effect is not very large. We therefore pick
0.5-0.9-25 as the default cooling schedule, as it is the fastest and has the best results.
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Figure 8.4: Experiments for the cooling schedule parameter.

8.4.2 Changer ratio

As described above, we defined two changes to fixations during the simulated annealing search
algorithm. Since the scattering of a set turns every job in that set into a singleton, it would take
the size of that set minus one merges to return to the original solution. And as the size of the sets
of jobs is expected to grow with the size of the problem, we make the ratio for choosing between
the two changes dynamic and dependent on the number of relations in the problem instance. This
parameter only influences the initial choice of which change to apply; if there are no sets to merge
or the scattering of a set is rejected based on the current temperature, the other change is tried
anyway. The tried values are 0.2, 0.5 and 1, where a value r results in a r · |R| : 1 ratio for choosing
the merging change.
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Figure 8.5: Experiments for the changer ratio parameter.

Figure 8.5 shows how different values for this parameter make little difference to the effective-
ness of the search algorithm. We thus pick the value 1 as the default setting, as that has the
smallest average runtime, although other values might work as well.

8.5 Pricing heuristic retries

The last parameter we investigate controls the application of the pricing heuristic. When solving
the indicator LP to evaluate the feasibility of a fixation, we use the shadow prices of the current
solution to generate a new column. This can either be done by the optimal approach, which is
another ILP by itself, or the pricing heuristic, which solves the LP relaxation of that ILP. After
finding a solution to the latter, the heuristic tries to construct a column by rounding the relaxed
variables either up or down, and, to maximise the chance of finding a column that improves the
solution of the indicator LP, it does so multiple times. This parameter controls the number of
times the pricing heuristic will try to build a column from the result of its LP relaxation.
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We test this parameter by measuring the time needed to evaluate a single fixation that is close
to the best know solution. The tested values are 0, 1, 3, 5 and 9, where 0 means that the pricing
heuristic is completely skipped and only the optimal solution to the pricing problem is determined.
Each experiment has been repeated five times; the results are displayed in figure 8.6, where the
colored bars represent the averages and the black error bars show the minimal and maximum
results.
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Figure 8.6: Experiments for the pricing heuristic retry parameter.

We can see that not using the pricing heuristic at all, i.e. setting this parameter to 0, still
gives us a decent running time for evaluating solutions. However, setting it to 3 gives the overall
quickest results, so we will choose this as the default value. Another noticeable thing from this
chart is the fact that evaluating a fixation for a problem instance with many machines takes much
less time than doing so for an instance with only few machines. We will return to this observation
when discussing the results in the next chapter.
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Chapter 9

Experiments

This chapter describes the experiments that we carried out to prove the effectiveness of the pre-
sented approach. We start with a description of the simplification of the problem instances we
needed to compare with optimal solutions, followed by the detailing of the various statistics that
were gathered during the execution of the program. The results are presented in the last section,
combined with an interpretation and explanation of the tables that can be found in the appendices.

9.1 Simplified problem instances

In order to determine the effectiveness of our approach, we need to compare the solutions it finds
to the optimal ones. Unfortunately, running the ILP defined in section 6.3 on the generated
problem instances proved intractable — trying to solve 20j-30r-2m to optimality crashed after
more than 1000 minutes, because it had exhausted all the 8GB of available memory in the system
running the experiments. We therefore decided to generate a second set of instances, which were
simplified in order to determine the optimal solutions. For these problem instances, the processing
times of all tasks were set to 1, the release dates to 0 and the deadlines equal to the number of
jobs. The qij values of precedence relations were still randomly chosen from the range [0, pj ], but
because of the unit processing times this becomes [0, 1]. We refer to these simplified instances as
nj-rr-mm-simple.

9.2 Statistics

Various statistics have been gathered from the experiments, which are presented in the tables
found in the appendices. In the first set of tables, each instance is presented using up to four rows,
each one with a different value for the maximum makespan. The tables start with the following
three columns:

Problem The name of the instance;
C The maximum makespan used when solving the problem;
Best Indicates the value of the best solution found for this C;

Timing statistics

The next 9 columns contain information on the amount of time spent on operations:

Total This indicates the total time spent on the indicator LP, including the next
6 columns;

Solving This is the time taken by the Gurobi solver on the indicator LP;
Pricing: Heuristic The time spent on solving the pricing problem heuristic;
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Pricing: Optimal The time spent on solving the ILP implementation of the pricing problem;
Columns: − The time spent removing columns at the end of evaluating a fixation;
Columns: ± The time spent re-adding columns that were previously removed;
Columns: 	 The time spent updating columns at the start of evaluating a fixation;
CS The time taken by the column-based search of chapter 7;
ILP Indicates the total time taken by solving the verifier ILP.

Counting statistics

The last 9 columns contain statistics on how many times operations were executed:

Evals The number of fixations that were evaluated by the indicator LP;
Iters The total number of iterations made by the indicator LP;
Pricing: Heuristic The number of times the heuristic for the pricing problem returned a new

column, over the total number of times the pricing problem was called;
Pricing: Optimal The number of times the integer linear programming implementation of

the pricing problem was successfully solved, over the total number of times
it was called;

Columns: + The total number of unique columns added to the indicator LP;
Columns: − The total number of times a column was removed;
Columns: ± The total number of times a column, that was previously removed, was

re-added;
LB The number of evaluations that were aborted because the lower bound

was higher than the number of available machines;
ILP The number of fixations checked by the verifier ILP.

9.3 Results

When looking at the tables in the appendices, the following things can be noticed.

9.3.1 Effectiveness of the approach

Appendix A, starting at page 50, contains the tables with the statistics of the experiments as
described above. One thing that attracts the attention is the last column of each of those tables,
showing the number of times the verifier ILP was called, which mostly contains ones — even more
so for the simplified instances. This means that the verifier ILP is able to prove the feasibility
of the best fixation found by the search algorithms most of the time, and thus that the indicator
LP does not return many false positives when evaluating a fixation. Because of its formulation
as a LP-relaxation, we are ensured that it can never return false negatives, i.e. it will never claim
a fixation is not feasible while in fact it is. We can thus conclude that the assumption made in
section 3.2 — that finding a solution to the LP, which minimises the number of used machines,
is a good indicator of feasibility — is valid for these problems. The fact that the verification
step succeeds does not mean that the verifier ILP can be skipped however, for it is this step that
actually generates a schedule, whereas the evaluation LP uses fractions of columns to determine
the alleged feasibility of a fixation and does not build a complete roster.

The few instances where the ILP had to be invoked many times before finding a feasible fixation
though, the time taken by those checks is immense compared to when run only once — when a
solution is being verified, all possible schedules need to be checked before we can conclude its
infeasibility, which can take a lot of time. It would therefore be good to ensure the number of
possibly infeasible solutions that are checked is minimised when implementing this approach for
real problems — see section 10.3.3 for more thoughts on this.

Also evident from these tables, is the application of the intermediate lower bound on the
indicator LP — topping at 4628 times for the first run of 40j-50r-8m — and the effectiveness
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of the pricing heuristic. When looking at for example the eighth entry of table A.1, i.e. 20j-
30r-2m with C = 120, we see it takes 297072ms for 3030 runs, against 8569449ms for 1502 runs
of the optimal pricing problem — meaning the heuristic is almost 60 times faster to run, which
corresponds to the other entries in the table. Note that this does not mean that the columns found
by the heuristic implementation of the pricing problem actually improve the solution of the LP
— we looked at this earlier in section 8.5, and came to the conclusion that including the heuristic
definitely improves the runtime of the approach.

9.3.2 Evaluations with zero iterations

In the statistics tables, rows can be found where the number of iterations of the indicator LP
is very low. This is possible because the program first tries to solve the LP using the columns
that have already been generated during previous evaluations. If this succeeds and the number
of machines needed is small enough, no iterating needs to be done, as we already deem the given
fixation feasible. The number of evaluations is usually quite low in those cases as well, which can
be explained by the fact that the program also caches the evaluation results, meaning fixations that
have previously been checked and deemed feasible do not have to be evaluated again — solutions
that were deemed infeasible are also cached, but cleared when the value of C is increased, as those
fixations then could be feasible. The low values of both the number of iterations and evaluations
indicate that the search algorithms were unable to find any fixations that were an improvement
over the best known solution at that stage, most likely because they were at a (local) optimum.

9.3.3 Comparison of results

The next set of tables, found in appendix B at page 53, displays the comparison of solutions found
by our approach and the optimal ones. The cells showing the value of the found solutions have been
colour-coded to allow for a quick overview of the divergence from the optimal value. A green cell in-
dicates that the optimal solution was found, a lime one means there was a difference of 0.5 or 1 ;

yellow means that the search algorithm could find a value of up to 2 less than the optimal value;

orange and red cells indicate differences of up to 3 and more than 3 respectively. Note that

these tables only contain the simplified problem instances (pj = 1, rj = 1, d̄j = n).
Without exceptions, the heuristic approach is able to come to, or very close to, the optimal

value for all instances. The minor offsets can be explained by the random nature of the local search
algorithms, and re-running the search might lead to the optimum being found that time. This
means that our approach is a very good alternative to the ILP that solves problems to optimality.

9.3.4 Comparison of running times

In those same tables, the total time it took to find the solutions is provided for comparison
between runs of the same algorithm, to show which instances are harder than others. Comparing
the times of the optimal search and the heuristic can be misleading, as the stopping criteria for
the local search algorithms have been set in a very general way. For tackling a specific problem,
the parameters of the genetic and simulated annealing algorithms could be tailored to minimise
the running time; or we could give it a target value that is no higher than the optimal value, so it
can stop searching after finding a good enough solution.

Note that for smaller instances, solving it to optimality still is more efficient — for larger in-
stances however, especially those with many machines and more precedence relations than jobs, the
tables show that the running time of the ILP drastically increases, quickly making it intractable.
For example, have a look at the running time of the optimality ILP for the instances 30j-40r-
*m-simple; it perfectly shows how incrementing the number of available machines increases the
time needed to find an optimal solution.

The running time of the heuristic approach also grows with the size of the instances, but is
less dependent on the number of machines. The exception to that is when there are only two
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machines, in which case the search algorithms need way more time to come up with a solution.
When looking at the 30j-40r-*m-simple instances, we see that the time needed to run the search
algorithms actually decreases when the number of available machines grows. Although this does
not show for the other simplified instances, it is a pattern that is better visible in table A.1 showing
the statistics for the non-simplified problem instances, where the larger instances with only few
machines could not be solved within 24 hours, whereas those same instance with more machines
could. This is most probably caused by the indicator LP being able to more easily combine
columns when the number of allowed machines is higher, leading to a quicker conclusion on the
feasibility of a fixation.

Another advantage of our approach is the fact that it needs less system resources to run than
the ILP implementation — whereas the latter often ran out of memory on larger instances, our
approach never needed more than 1GB of memory, even for the largest instances that were exe-
cuted — meaning much larger problems can be tackled before running into hardware limitations.
These observations, along with the conclusion that our approach comes very close to the optimum
solution, makes it a most adequate alternative to the ILP, especially for larger instances with many
machines.

9.3.5 The improved genetic algorithm

The tables in appendix C, at page 55 and onwards, show the results of the improved genetic
algorithm as presented in chapter 4, compared to the naive method introduced by Van Roermund
(2013) — with and without the column search ILP of chapter 7 — and the optimal solution for
each problem instance. These experiments were run on the original problem instances, with the
relations still as mere correlations, and are therefore not comparable to the instances discussed
earlier. The format used to indicate them, i.e. nj-rr-mm and nj-rr-mm-simple, is identical; also
here the simplified versions have all processing times set to 1.

The goal of these experiments is to show the effectiveness of the improvements presented in this
paper. Each table displays the time it took to find the solutions and the number of relations that
were fixated in those solutions. Table C.1 holds the results for problems with 10 jobs, table C.2
does the same for instances with 25 jobs, and table C.3 has those with 60 jobs. The columns
showing the number of found fixated relations are colour-coded in the same way as the previously
discussed tables.

The first thing that draws the attention here is the fact that the improved genetic algorithm
always finds an optimal solution, and does so quicker than the old naive method came up with
an answer. Only for small instances the ILP that solves the problem to optimality is quicker, but
its running time explodes when tasked to solve larger problems, proving the improved GLS much
more stable in its running time.

The results of the naive algorithm were taken directly from Van Roermund (2013), to give a
basis for comparison. Extending that heuristic with the column based ILP of chapter 7 shows
some merit, but it never comes close to the improved version. The only major differences it shows
are when the naive approach fell short of the optimal solution by a long way — i.e. instances 25j-
60r-2m and 60j-150r-*m — where the extension is able to make a relatively big improvement,
but is still far from the optimum.

The performance of the column-based search in the experiments displayed in appendices A
and B was comparable to this, i.e. only when the search algorithms failed to come up with a
reasonably good solution, this column-based ILP could present an improving solution; otherwise
it just came to the same fixation as the searches had returned. Looking at the difference in the
running times for similar sized problems, e.g. 60j-60r-8m of both appendix B and C, we can see
how adding precedence relations and job availabilities makes the problems so much harder to solve
— both optimally and heuristically.
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Chapter 10

Conclusion

In this final chapter we give a summary of the entire approach as presented in this work, and we
draw the conclusions from the results of the experiments. The last section gives pointers for future
research into this field.

10.1 Summary of the approach

In this thesis we set out to construct an approach for maximising the robustness of schedules. We
have done this by fixating relations and thereby forcing the involved jobs to be executed by the
same machine. To traverse the search-space and find the best fixations, we defined a genetic local
search algorithm and a simulated annealing approach. Any found solution was then evaluated by a
linear programming formulation based on column generation, which tries to minimise the number
of machines needed to schedule all jobs while enforcing the fixation. By re-using the solver for
that LP, we were able to quickly evaluate thousands of solutions, and identify those that give the
highest robustness.

In summary, the complete approach for finding a schedule that maximises robustness using the
presented method works as follows:

1. We determine the value of C by solving P|rj , d̄j , prec|Cmax;

2. We run the search algorithms, thereby tackling P|rj , d̄j , prec, Cmax ≤ C|
∑
−fr;

• Every iteration of the search algorithms generates one or more fixations, which are
evaluated using the indicator LP;

– Every iteration of the indicator LP, we solve the pricing problem to generate new
columns;

– When the indicator LP has been solved, we draw a verdict on the feasibility of the
evaluated fixation;

• After a set amount of iterations in which no improvement was made, the search algo-
rithms return the best solution encountered;

3. We solve the verifier ILP to check whether the returned solution is feasible — if it is not, we
try the next best solution, until we have found a fixation that is;

4. Optionally, we increase the value of C and repeat from step 2, until we have a good idea of
the interplay between the maximum makespan and the achieved robustness.
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10.2 Conclusion

Following the interpretations of the results of the experiments in the previous chapter, we can
conclude that the presented approach performs very well. Although it is not very quick on smaller
problems, because of the overhead of the local search algorithms, and it can take a lot of time to
solve larger instances with only a few machines, it excels at solving problems with many machines.
Seeing that those instances are also the weak spot of the ILP that solves them to optimality,
because of the symmetry in its formulation, this makes our approach an excellent heuristic for
solving those problems.

10.3 Future work

In order to enhance the usefulness of the approach presented in this thesis, there are several
extensions that are worthwhile to investigate in future works.

10.3.1 Other types of precedence relations

As mentioned in section 5.1, we only looked at precedence relations of the form Sj−Si ≥ qij , with
qij ≥ 0, and did not consider other types of relations. Ignoring the constraint that qij is positive
for a moment, we could rewrite the other types quite easily, making them all alike:

Sj − Si ≥ qij
Sj − Si ≤ qij ⇒ −Sj + Si ≥ −qij
Sj − Si = qij ⇒ −Sj + Si ≥ −qij ∧ Sj − Si ≥ qij

However, instead of simply including these rewritten forms into the constraints, we could come
to a better approach by taking a closer look at what these relations actually indicate. The included
precedence relations, with positive values for qij , signify a minimal time between the starting times
of jobs i and j. The second type indicates the opposite, i.e. a maximum time between the starting
of jobs i and j. And the last of these relations, with their equality condition, demand a precise
difference in the starting times of involved jobs. This makes the last type much harder to satisfy
from the viewpoint of robustness, as the possibility of delay propagations now work both ways —
a delay of the execution of job i can have as much impact on a schedule as the postponing of job
j. As expected, the second type has the delay propagations working only one way, but opposite
from the type that was implemented — whenever job j is delayed and there is no more slack time,
we also need to postpone job i, even though it is scheduled before j, which might not even be
possible, as it could have already started, making it impossible to fulfill that constraint.

It would therefore make sense to treat these relations differently when fixating them, to take
full advantage of their meaning. Seeing that the third type poses the most restrictions on the
schedules, it would be best to first fixate as many of these relations as possible. Since the second
type can be harder to overcome when delays actually take place, we would want to fixate these
next, before moving on to the first type. A weighted sum over the value of these fixations might be
useful as an objective function, although the exact interplay between the terms should be looked
into.

10.3.2 Specific problem instances

As mentioned in section 9.3.4, we could significantly improve the running time of the program
when targeting a specific problem. The problem instances in this work were chosen randomly,
with a wide range of parameters, to investigate the effectiveness of the approach on various types
of problems. Knowing that our heuristic is most effective on larger instances with many machines,
this problem-type can be further explored, to get the most out of the strengths of this method.
Trying our approach on some real-world instances might have some value as well, and give more
insight in its applications.
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Also, the precedence relations of the instances that were experimented on have all been added
between random jobs, leading to no specific structure. As an alternative, we could generate these
relations in such a way that it forms a tree — possibly an in-tree or an out-tree — or even other
types of graphs. The performance of the presented approach might be affected differently by
various types of dependency graphs, which makes for another interesting piece of research.

10.3.3 Extending the verifier ILP

The verifier ILP, as described in sections 3.1 and 5.3, is invoked after the search algorithms return
a list of the solutions found, to determine whether they are actually feasible. As noted in the
previous chapter, when many fixations turn out to be infeasible, the process of finding one that is
can take a lot of time. This part of the approach could be accelerated by preprocessing the ILP
model and thereby reducing the search space.

Instead of adding a variable for scheduling each job on each machine, we could for make a
graph. In this graph, we merge jobs that are fixated together into a single node, and add edges
for every relation that is not fixated. Since we are verifying the feasibility of the best fixation
found, we assume no trivial improvements are possible, i.e. we are not able to improve the solution
by simply fixating any single relation that was not already fixated. Using this assumption, we
know that the edges in the graph we just created indicate that the connected sets of jobs must be
scheduled on different machines. And since the machines are identical, it does not matter which
machine execute which jobs. We can therefore simply restrict the jobs in a node to a specific
machine, and the jobs of a connected node to another machine, etcetera. Each job still needs
its own set of variables, as the precedence relations still have to be enforced within the ILP, but
restricting some jobs to only one machine significantly diminishes the search space, leading to a
faster conclusion on the feasibility of the evaluated fixation.

Let us look at the example in figure 10.1 with 6 jobs and 5 precedence relations — (J1 → J2),
(J1 → J3), (J4 → J2), (J4 → J3) and (J5 → J6). For the fixation [1, 0, 0, 0, 1], the graph described
above is shown in figure 10.1b. When constructing the ILP, we would restrict jobs 1 and 2 to the
first machine, job 3 to the second and job 4 to the third machine. Jobs 5 and 6 can be scheduled
on any machine, although we still demand that they end up on the same one. Doing so decreases
the possible schedules the ILP solver can consider while solving this instance, lowering its runtime,
but does not create a chance of a false negative — if a feasible schedule is possible for the given
fixation, it can still be found after this preprocessing step.

J1

J2

J3

J4

J5

J6

(a) Problem instance.

J1, J2 J3

J4 J5, J6

(b) Preprocessed graph for the
fixation [1, 0, 0, 0, 1].

J1, J2 J3

J4

J5

J6

(c) Preprocessed graph for the
fixation [1, 0, 0, 0, 0].

Figure 10.1: Example problem with 6 jobs and 5 precedence relations.

Note that when the preprocessed graph is a forest, like in figure 10.1c, we can only restrict the
jobs of one of its trees to specific machines. To decrease the search space as much as possible, we
should select the largest tree for this, and add some additional constraints that demand that jobs
involved in non-fixated relations are not scheduled on the same machine.
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Part IV

Experimental data
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Appendix A

Statistics

See section 9.2 for the description of these tables. If less than three rows are shown for an
instance, it means that the heuristic approach was able to find a solution with all relations fixated,
so increasing the maximum makespan will not allow for any improvements. The empty rows,
containing only n/a, belong to instances that could not be run within 24 hours — tuning the
parameters of the search algorithms to each specific instance would lead to better results, but for
these experiments we only used the settings as presented in chapter 8.
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Problem C Best

Timing statistics (in ms) Counting statistics
LP

CS ILP
LP

ILP
Total Solving

Pricing Columns
Evals Iters

Pricing Columns
LB

Heuristic Optimal − ± 	 Heuristic Optimal + − ±

20j-10r-2m 107 11.5 194555 41 7992 186466 4 2 4 18 1713 8 110 64/112 48/48 187 208 23 0 1

20j-10r-5m
45 2.0 100915 1143 22986 75845 131 560 26 135 148346 563 798 215/1241 590/1026 3289 99882 96635 14 92
46 5.0 98594 911 20924 76087 98 383 14 92 33004 427 790 181/1161 619/980 2799 68116 65305 40 7
47 6.5 84931 648 15447 68423 56 218 18 52 304 365 557 118/848 446/730 2160 43211 41048 85 1

20j-10r-8m
43 5.5 81508 968 22497 57228 115 453 37 109 213 477 795 218/1214 578/996 3099 79846 76789 20 1
44 5.5 83280 948 23256 58403 85 386 16 87 276 410 860 287/1270 573/983 3177 74232 71057 33 1
45 6.5 79727 860 18132 60176 61 327 25 61 275 463 668 191/995 483/804 3159 67539 64381 24 1

20j-30r-2m
120 38.0 8870069 1394 297072 8569449 127 1364 32 1524 1029 1256 2707 1528/3030 1251/1502 4167 51060 46926 32 1
122 38.0 775206 197 37712 737159 8 50 10 59 1212 509 331 226/382 127/156 717 1827 1080 2 1
124 38.0 475735 140 33672 441819 10 18 14 54 1284 546 279 208/319 92/111 642 1607 990 3 1

20j-30r-5m
51 15.0 1278450 10052 225085 1017431 1223 22655 280 790 83516 4771 5570 1459/9084 4211/7625 14548 1029171 1014639 287 222
52 18.5 609198 3080 124902 475296 278 4670 142 266 7256 2515 2919 860/4917 2143/4057 6088 165399 159308 286 20
53 22.0 751995 4722 145527 590907 516 9062 186 526 308 3658 3324 1131/5558 2337/4427 8539 382075 373536 220 1

20j-30r-8m
46 16.5 895939 11632 189468 668026 1196 23656 350 391 368 6683 4353 872/8754 3538/7882 14295 1034199 1019925 460 1
47 17.0 570503 5002 124799 431608 493 7455 231 222 1169 3992 2735 596/5421 2193/4825 8975 315595 306614 238 3
48 17.0 743062 5546 149159 576514 592 9924 229 176 793 4360 3153 537/6285 2672/5748 9652 384311 374663 288 2

30j-20r-2m
158 22.5 19460433 3344 965166 18487647 210 2720 26 2864 19048 866 5223 3102/5451 2199/2349 6587 140251 133666 58 1
161 22.5 9633308 2353 571909 9056489 135 1615 33 1170 3755 668 2884 1888/3078 1106/1190 3694 108543 104859 19 1
164 22.5 7091189 1926 420450 6666600 113 1516 27 647 3407 566 2030 1298/2250 859/952 2833 85471 82641 15 1

30j-20r-5m
64 17.5 4303843 8241 208329 4072534 1095 12387 142 922 8433 2952 3826 1900/5216 2148/3316 10310 1178101 1167811 394 1
65 18.5 1784103 3802 92801 1682607 404 3894 89 319 9241 1849 1666 848/2334 1007/1486 6456 403288 396825 146 1
66 19.5 1140813 2170 57600 1078655 195 1785 78 113 3440 1431 996 674/1440 477/766 4633 185657 181041 203 1

30j-20r-8m
41 8.5 988917 27893 217806 703262 4537 33316 502 591 196054 9055 2618 1199/10148 1502/8949 26154 4783790 4757660 1140 15
42 11.5 511945 10320 115507 373531 1461 10106 271 186 1297 5023 1475 714/5207 823/4493 13327 1382750 1369423 568 1
43 12.5 299602 5651 71010 216381 680 5159 178 134 2410 3449 1017 553/3202 534/2649 8425 674807 666381 453 1

30j-40r-2m n/a

30j-40r-5m
64 38.0 39699022 27044 1728037 37867941 2172 68043 402 3418 2117 4805 17672 5585/21555 12143/15970 25572 1770719 1745165 557 1
65 39.0 14809415 8017 811360 13972403 794 14505 228 1447 1501 2705 6819 1597/9172 5256/7575 9658 487075 477419 510 1
66 39.0 10579574 5026 582188 9982867 367 7426 176 801 2003 1865 4969 1098/6555 3906/5457 7544 235554 228015 359 1

30j-40r-8m
64 38.0 44328545 31198 1702216 42508280 2585 78326 453 3680 2030 5210 17772 5289/21756 12534/16467 29295 2199347 2170072 485 1
65 39.0 18419460 10729 961985 17422135 917 20784 264 2264 1714 3389 8851 1848/11749 7033/9901 13392 635855 622465 558 1
66 39.0 15496184 7777 813594 14659014 744 12988 229 1099 2077 2645 6321 1418/8436 4944/7018 11884 419705 407828 645 1

40j-30r-2m n/a

40j-30r-5m n/a

40j-30r-8m
50 23.5 3783038 37004 367777 3291921 5260 77726 712 1515 10892 10874 5777 2332/11688 3869/9356 27158 5332939 5305806 1527 1
51 24.5 1216352 12569 142707 1040154 1522 17913 407 452 4831 5951 1984 934/4347 1334/3413 14320 1508957 1494633 570 1
52 24.5 848504 8684 111860 715708 907 10228 339 252 10889 5274 1230 746/3515 721/2769 12117 865580 853464 1298 1

40j-50r-2m n/a

40j-50r-5m n/a

40j-50r-8m
58 30.0 16735995 133379 1449854 14733347 16163 392095 2391 6362 3981555 17680 18264 7103/30934 11605/23831 57649 15080187 15022562 4628 84
59 33.5 7613978 36476 670006 6806478 5024 90826 1525 2451 1484354 10530 6470 2364/13700 4468/11336 24945 4029580 4004631 2888 21
60 34.5 3474190 15967 357724 3063712 2085 32045 888 895 14521310 6650 2947 1364/7032 1842/5668 15281 1630183 1614899 1559 108

Table A.1: Statistics for non-simplified problem instances.
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Problem C Best

Timing statistics (in ms) Counting statistics
LP

CS ILP
LP

ILP
Total Solving

Pricing Columns
Evals Iters

Pricing Columns
LB

Heuristic Optimal − ± 	 Heuristic Optimal + − ±

20j-10r-2m-simple
10 10.0 6697 240 4545 1632 35 147 8 84 27 304 307 243/324 81/81 822 18290 17475 0 1
11 11.0 104 2 100 0 0 0 0 3 30 1 8 9/9 0/0 23 16 0 0 1

20j-10r-5m-simple
4 6.5 14811 791 9719 3650 120 351 25 57 20 599 487 154/855 361/701 2237 66310 64108 25 1
5 8.5 6155 351 3726 1871 33 98 15 61 20 372 282 75/358 227/283 1623 21374 19741 2 1
6 9.5 3517 240 2190 971 19 54 9 20 22 229 155 73/193 105/120 1544 10183 8664 0 1

20j-10r-8m-simple
4 6.5 14096 838 8614 3976 99 375 31 53 32 678 448 74/795 379/721 2980 63591 60639 29 1
5 8.5 7561 484 4468 2338 26 146 19 70 33 440 331 77/437 276/360 2561 27260 24697 1 1
6 9.5 3496 242 2221 894 14 62 10 24 36 237 145 62/182 105/120 2162 10243 8113 0 1

20j-30r-2m-simple
10 32.0 160996 1834 84902 72090 81 1343 44 1482 41 1442 3129 2142/3446 1138/1304 4810 40520 35714 0 1
11 32.5 83576 999 47368 34418 32 311 20 724 55 1098 2036 1526/2169 622/644 2805 13637 10836 3 1
12 33.0 86583 1012 59965 24765 25 367 37 488 56 956 1773 1464/1968 502/504 2490 14253 11761 0 1

20j-30r-5m-simple
6 23.5 396471 10081 150323 215208 755 17712 206 880 33 3643 8208 1888/10400 6456/8512 14660 601136 586495 5 1
7 26.0 168095 3351 66452 92241 228 4745 122 619 291 2370 3630 1186/4646 2633/3460 7700 139783 132073 28 3
8 28.5 179006 3260 83775 85845 251 4775 150 848 58 2773 3299 1617/4316 2068/2699 7925 140290 132371 3 1

20j-30r-8m-simple
6 23.5 507836 14262 191435 268326 1129 29561 277 1253 47 4734 10494 2185/13349 8459/11164 19802 951774 931988 13 1
7 26.0 206823 5490 78231 111776 432 9612 188 854 451 3800 3856 1381/5240 2698/3859 12372 341171 328796 12 3
8 28.5 166283 3560 79364 76341 273 5524 179 960 99 2949 3238 1594/4355 2051/2761 9494 186381 176888 4 1

30j-20r-2m-simple 15 21.5 4307 47 2870 1317 4 14 3 29 102 16 110 95/118 23/23 253 552 305 0 1

30j-20r-5m-simple
6 18.5 26090 2324 15144 6085 245 1928 86 192 101 2027 747 621/1168 300/547 5943 208732 202809 25 1
7 19.5 5289 1142 2840 471 76 590 54 89 60 1463 157 196/232 36/36 4587 56912 52320 0 1
8 19.5 5173 1258 2556 515 79 610 68 78 115 1365 137 174/206 32/32 3998 54519 50521 0 1

30j-20r-8m-simple
4 17.0 40471 4087 20573 12362 419 2513 191 113 55 4093 572 107/1698 488/1591 11600 333243 321661 65 1
5 18.0 24251 2574 11815 7755 202 1512 142 76 55 2941 505 101/956 432/855 9627 172720 163089 66 1
6 18.5 10861 1678 4858 3140 117 852 83 51 84 2297 216 99/379 165/280 8260 89010 80749 20 1

30j-40r-2m-simple
15 48.5 1763274 8007 844553 902748 179 5271 73 8436 1493 1688 10512 7098/10885 3690/3790 13259 100992 87739 56 6
16 49.5 940203 5675 614860 315450 95 2249 59 4409 137 1297 7486 5824/7803 1960/1983 9017 48884 39870 6 1
17 50.0 692340 3444 414995 271149 65 1572 55 3031 151 1077 4617 3643/4910 1255/1268 5734 38234 32505 1 1

30j-40r-5m-simple
6 32.5 1120624 44462 361868 612720 3308 92632 637 3285 78 7545 16571 3929/21931 13430/18002 30660 3117501 3086846 1268 1
7 34.5 310182 5886 105666 188767 454 7903 256 1632 466 3070 3945 1346/6126 2814/4780 9291 287518 278251 1422 3
8 38.0 495839 7091 219835 255836 493 10782 301 1813 472 3494 4380 1994/6488 2813/4494 11050 337203 326141 1430 3

30j-40r-8m-simple
5 29.0 531386 30597 220506 203896 2583 69857 624 1441 70 9505 10105 1936/15601 8314/13665 26576 2449472 2422912 2483 1
6 32.5 422670 12028 156500 226822 1056 23691 440 1279 120 5619 6411 1183/9425 5388/8242 15894 844399 828494 1466 1
7 34.5 402219 7858 128842 249609 665 13469 372 1244 902 4587 3902 1119/6750 2980/5631 14102 452215 438131 2102 4

40j-30r-2m-simple
20 32.5 233108 2124 84069 144546 148 1571 34 1328 270 838 2480 1812/2567 747/756 3716 83849 80135 0 1
21 32.5 105336 1383 37619 64884 87 1029 22 586 334 704 1345 1080/1440 356/360 2191 57822 55645 0 1
22 33.5 3793 36 2318 1425 0 0 0 5 293 7 64 52/66 14/14 91 107 2 0 1

40j-30r-5m-simple
8 29.5 108347 6492 53402 39601 496 7345 179 1043 138 2826 2383 1629/3216 1232/1588 8731 464860 456144 48 1
9 30.0 39449 3240 17935 15378 190 2247 150 274 242 2246 784 631/1016 368/385 5523 155992 150475 4 1
10 30.5 24315 2418 14526 5324 139 1549 135 231 207 1888 488 504/665 161/161 5117 99299 94180 0 1

40j-30r-8m-simple
5 24.0 513492 72362 202250 152927 6307 75450 917 1099 79 11476 7285 2047/14694 5733/12647 32338 6520303 6487992 1638 1
6 27.0 204955 15597 86705 81610 1335 17781 515 1065 119 6567 3264 664/5834 2686/5170 16991 1219931 1202933 664 1
7 29.0 99334 7454 40974 42882 562 6522 272 361 139 3897 1704 435/2553 1372/2118 11834 493941 482108 108 1

40j-50r-2m-simple
20 56.5 3393036 11490 1477135 1894323 135 6620 91 7587 340 1708 12610 9048/12925 3854/3890 15905 69736 53835 8 1
21 56.5 1763896 8124 1037373 714374 76 1695 49 4827 373 1226 8135 6487/8316 1823/1838 9850 35369 25519 1 1
22 56.5 2055868 7612 1180086 862873 98 2979 68 4726 458 1227 7958 6346/8305 1929/1969 9700 40796 31095 3 1

40j-50r-5m-simple
8 41.0 6758597 387341 2039657 3740732 17308 551051 1604 16915 114 10903 59850 16072/67789 44952/51719 86893 15116574 15029697 129 1
9 45.5 3109407 39856 1002495 1958008 3009 97702 1057 9393 238 6097 21568 5063/24915 17062/19852 32138 2191044 2158913 77 1
10 47.5 1656397 15831 727677 875529 1354 32122 658 4152 715 4142 9439 3352/11149 6629/7797 16765 836800 820028 107 1

40j-50r-8m-simple
8 41.5 9005981 557294 2161373 5179701 29379 1047598 2872 18312 204 17151 74790 15148/84927 59963/69779 111905 24026108 23914219 142 1
9 45.5 4071406 85672 1081157 2668866 8396 214900 2303 13334 512 9816 26315 5520/30885 21134/25365 45423 5839609 5794185 85 1
10 47.5 2390489 29703 820562 1442491 4065 86431 1717 5695 564 7487 12708 3583/15603 9641/12020 26626 2282733 2256097 49 1

Table A.2: Statistics for simplified (pj = 1, rj = 0, d̄j = n) problem instances.
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Appendix B

Interpreted results

See sections 9.3.3 and 9.3.4 for the description of these tables.

Problem
Total time

C
Value of fixated relations

Optimal Heuristic Optimal Heuristic

20j-10r-2m-simple 0m3.332s 0m9.945s
10 10.0 10.0
11 11.0 11.0

20j-10r-5m-simple 0m0.975s 1m1.329s
4 6.5 6.5
5 8.5 8.5
6 9.5 9.5

20j-10r-8m-simple 0m1.411s 1m29.583s
4 6.5 6.5
5 8.5 8.5
6 9.5 9.5

20j-30r-2m-simple 0m3.059s 5m44.777s
10 32.0 32.0
11 32.5 32.5
12 33.0 33.0

20j-30r-5m-simple 0m44.994s 13m30.345s
6 23.5 23.5
7 26.0 26.0
8 28.5 28.5

20j-30r-8m-simple 0m36.648s 16m31.281s
6 23.5 23.5
7 26.0 26.0
8 28.5 28.5

Table B.1: Interpreted results for simplified (pj = 1, rj = 0, d̄j = n) instances with 20 jobs.
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Problem
Total time

C
Value of fixated relations

Optimal Heuristic Optimal Heuristic
30j-20r-2m-simple 0m0.746s 0m5.400s 15 21.5 21.5

30j-20r-5m-simple 0m2.443s 1m36.935s
6 18.5 18.5
7 19.5 19.5
8 19.5 19.5

30j-20r-8m-simple 0m4.869s 3m20.735s
4 17.0 17.0
5 18.0 18.0
6 18.5 18.5

30j-40r-2m-simple 11m58.309s 57m7.741s
15 48.5 48.5
16 49.5 49.5
17 50.0 50.0

30j-40r-5m-simple 19m50.820s 34m11.604s
6 32.5 32.5
7 35.0 34.5
8 38.0 38.0

30j-40r-8m-simple 129m23.710s 25m29.471s
5 29.0 29.0
6 32.5 32.5
7 35.0 34.5

Table B.2: Interpreted results for simplified (pj = 1, rj = 0, d̄j = n) instances with 30 jobs.

Problem
Total time

C
Value of fixated relations

Optimal Heuristic Optimal Heuristic

40j-30r-2m-simple 0m3.409s 5m55.130s
20 32.5 32.5
21 32.5 32.5
22 33.5 33.5

40j-30r-5m-simple 1m16.801s 4m1.367s
8 29.5 29.5
9 30.0 30.0

10 30.5 30.5

40j-30r-8m-simple 0m45.258s 17m16.292s
5 24.0 24.0
6 27.0 27.0
7 29.0 29.0

40j-50r-2m-simple 683m45.842s 120m48.166s
20 56.5 56.5
21 56.5 56.5
22 56.5 56.5

40j-50r-5m-simple 30m44.282s 195m48.664s
8 41.5 41.0
9 45.5 45.5

10 47.5 47.5

40j-50r-8m-simple 378m57.224s 263m51.832s
8 42.0 41.5
9 45.5 45.5

10 47.5 47.5

Table B.3: Interpreted results for simplified (pj = 1, rj = 0, d̄j = n) instances with 40 jobs.
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Appendix C

Improved genetic algorithm

See section 9.3.5 for the description of these tables.

Problem
Total time

C
Number of fixated relations

Optimal Naive Naive+CS Improved Optimal Naive Naive+CS Improved

10j-10r-2m 0m0.465s 0m3.909s 0m1.942s 0m8.556s

53 6 6 6 6
54 7 7 7 7
55 7 7 7 7
56 7 7 7 7

10j-10r-2m-simple 0m0.446s 0m0.845s 0m1.049s 0m1.094s

5 7 7 7 7
6 8 8 8 8
7 8 8 8 8
8 8 8 8 8

10j-10r-4m 0m0.687s 0m1.186s 0m2.701s 0m8.596s

27 2 2 2 2
28 4 4 4 4
29 4 4 4 4
30 5 5 5 5

10j-10r-8m 0m0.554s 0m0.647s 0m1.587s 0m0.881s

19 2 2 2 2
20 2 2 2 2
21 2 2 2 2
22 2 2 2 2

10j-25r-2m 0m0.540s 0m0.941s 0m1.592s 0m2.793s

42 15 13 12 15
43 15 13 13 15
44 15 13 13 15
45 15 13 13 15

10j-25r-2m-simple 0m0.548s 0m1.073s 0m1.567s 0m1.638s

5 14 13 13 14
6 16 13 13 16
7 17 15 15 17
8 19 16 17 19

10j-25r-4m 0m1.182s 0m0.900s 0m2.165s 0m10.267s

26 7 7 7 7
27 8 7 7 8
28 9 7 7 9
29 9 7 7 9

10j-25r-8m 0m1.539s 0m0.996s 0m2.144s 0m1.553s

17 5 5 5 5
18 7 5 7 7
19 7 7 7 7
20 7 7 7 7

Table C.1: Results of the improved genetic algorithm on the original instances with 10 jobs.
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Problem
Total time

C
Number of fixated relations

Optimal Naive Naive+CS Improved Optimal Naive Naive+CS Improved
25j-10r-2m 0m0.466s 0m0.660s 0m0.786s 0m0.540s 141 10 10 10 10
25j-10r-2m-simple 0m0.463s 0m0.734s 0m0.682s 0m0.483s 13 10 10 10 10
25j-10r-4m 0m0.487s 0m0.781s 0m0.831s 0m0.514s 71 10 10 10 10

25j-10r-8m 0m0.954s 0m1.894s 0m2.012s 0m15.810s

36 8 8 8 8
37 9 9 9 9
38 9 9 9 9
39 9 9 9 9

25j-25r-2m 0m0.560s 0m5.794s 0m8.956s 0m9.817s

153 21 21 21 21
156 22 22 22 22
159 22 22 22 22
162 22 22 22 22

25j-25r-2m-simple 0m0.572s 0m4.404s 0m3.076s 0m2.048s

13 23 23 23 23
14 23 23 23 23
15 23 23 23 23
16 23 23 23 23

25j-25r-4m 0m1.248s 0m13.160s 0m18.425s 0m9.976s

77 17 17 17 17
78 18 18 18 18
79 18 18 18 18
80 18 18 18 18

25j-25r-8m 0m17.241s 0m7.674s 0m16.423 0m59.069s

39 10 10 10 10
40 11 10 10 11
41 12 12 12 12
42 12 12 12 12

25j-60r-2m 0m0.756s 0m1.850s 0m2.752s 0m7.515s

141 44 31 36 44
143 45 31 36 45
145 45 36 38 45
147 45 36 38 45

25j-60r-2m-simple 0m0.721s 0m9.517s 0m4.085s 0m2.790s

13 46 45 43 46
14 46 45 45 46
15 46 45 45 46
16 47 45 45 47

25j-60r-4m 0m7.397s 0m4.266s 0m6.807s 0m22.700s

71 33 26 26 33
72 33 27 27 33
73 34 27 27 34
74 34 27 27 34

25j-60r-8m 47m43.342s 0m9.871 0m18.385s 1m50.012s

36 18 16 15 18
37 20 17 16 20
38 21 17 17 21
39 22 18 18 22

Table C.2: Results of the improved genetic algorithm on the original instances with 25 jobs.
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Problem
Total time

C
Number of fixated relations

Optimal Naive Naive+CS Improved Optimal Naive Naive+CS Improved
60j-25r-2m 0m0.565s 0m46.418s 0m5.574s 0m0.842s 333 25 25 25 25
60j-25r-2m-simple 0m0.556s 0m24.541s 0m6.829s 0m0.685s 30 25 25 25 25
60j-25r-4m 0m0.598s 0m8.067s 0m2.728s 0m0.890s 167 25 25 25 25

60j-25r-8m 0m1.482s 0m22.465s 1m31.075s 0m3.793s

84 23 23 23 23
85 23 23 23 23
86 23 23 23 23
87 24 24 24 24

60j-60r-2m 0m0.840s 20m43.988s 1m49.297s 0m18.278s

317 56 55 55 56
323 56 55 55 56
329 56 55 55 56
335 56 55 55 56

60j-60r-2m-simple 0m0.832s 12m57.844s 2m2.859s 0m9.954s

30 56 55 55 56
31 56 55 55 56
32 56 55 56 56
33 56 55 56 56

60j-60r-4m 0m2.729s 6m43.308s 2m44.254s 0m13.206s

159 51 49 51 51
162 52 49 52 52
165 52 50 52 52
168 52 50 52 52

60j-60r-8m 22m35.319s 2m40.046s 3m1.706s 0m17.393s

80 44 40 40 44
81 44 42 42 44
82 44 42 43 44
83 44 42 43 44

60j-150r-2m 0m9.646s 0m10.323s 0m9.542s 0m13.051s

313 116 89 103 116
319 117 89 103 117
325 117 89 103 117
331 117 89 105 117

60j-150r-2m-simple 0m6.748s 2m21.628s 0m21.888s 0m7.058s

30 116 87 104 116
31 117 87 105 117
32 117 87 105 117
33 118 87 105 118

60j-150r-4m 1000+m 7m18.352s 4m11.121s 0m50.246s

157 n/a 80 82 94
160 95 80 82 95
163

n/a
80 87 95

166 80 87 96

60j-150r-8m 200+m 5m57.544s 6m28.629s 3m57.197s

79

n/a

58 56 73
80 58 59 76
81 58 59 76
82 58 62 77

Table C.3: Results of the improved genetic algorithm on the original instances with 60 jobs.
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