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Machine learning has become increasingly popular as a computational tool in all
aspects of science and the private sector, however its application as an additional
computational physics tool has only recently began to gain traction. This thesis aims
to study the application of supervised and unsupervised neural networks to com-
putational classical statistical physics problems, focusing on what is learned and
whether it is a useful tool for these applications. Supervised neural networks are
used to distinguish between the different phases of four different models, contain-
ing a second-order phase-transition (PT), infinite-order PT, and both in close prox-
imity to one another, as well as a model without a PT but with frustration. Different
iterations of the restricted Boltzmann machine (RBM), a type of unsupervised neu-
ral network, are trained on the one- and two-dimensional Ising model. The neural
network is able to differentiate between the different phases only if the PT is clearly
discernible from the input configurations. It is too crude a tool to differentiate be-
tween two close subsequent PTs. It is concluded that application of neural networks
to detect PTs in classical statistical physics models where an intuition for the PT ex-
ists, holds no advantage over alternative conventional computational methods. This
thesis concludes that restrictions placed on the RBM, such that the RBM has trans-
lation invariance, still allow the restricted RBMs to learn the magnetisation really
well, while two-spin correlations are learned less well. Surprisingly, the block Gibbs
sampling of the restricted RBMs is better behaved than for the unrestricted RBM, as
can be explained using an analysis of the trained weight-matrix.
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Chapter 1

Introduction

Though machine learning has now ingrained itself in the public consciousness with
the rise of its commercial success over the past decade, it has been an intensively
studied academic subject since the 1950’s. One of the first learning machines which
captured the attention of the academic community was built as early as 1954 by
Marvin Minsky[1]. Research really took of from there, propelled even further with
the invention of the neuron-inspired perceptron[2] in 1958. This was the first real
link between neuroscientific concepts and mathematical networks, sparking the ini-
tial inspiration for many more years of research to come. Over the next few years
much progress was made, including making a machine which could play the game
of tic-tac-toe[3]. Ironically it was Minsky himself who set the stage for the first arti-
ficial intelligence (A.I.) winter by the publication of his book about perceptrons[4],
co-authored by Papert Seymour. The book provided a mathematical introduction
to the field of perceptron-based learning, and presented a quite critical view of the
limitations of these type of machine learning algorithms. This led to a decade-long
recession in machine learning research, now referred to as the first A.I. winter. It was
in this recession that Finnish computer scientist Seppo Linnainmaa[5] laid the foun-
dation for one of the central algorithms in machine learning, the backpropagation
algorithm. Unfortunately, the importance of his research went unnoticed for many
years.

The interest in machine learning was rekindled in the 1980’s, where the founda-
tions for different kinds of machine learning algorithms still in use nowadays were
laid. For example, convolutional neural networks, monumental in classifying pic-
tures, are ultimately based on an initial design by Fukushima[6] in 1980. The re-
vival of interest in neural networks by the mainstream was mainly due to the re-
discovery of the backpropagation algorithm[7]. This allowed the neural network to
learn much faster than before, which allowed for application of machine learning
on personal computers. This paved the way for the commercialisation of machine
learning, which led to the first machine learning package for commercial markets in
1989, evolve[8]. From that moment, machine learning really takes off. From beat-
ing the world champion in chess in 1997[9] to beating the world champion in Go in
2016[10], machine learning has made heaps of progress. It has now become a part of
our everyday lives, from giving you recommendations on what to watch next[11] to
automatically organising your pictures based on their contents[12].

1.1 Machine learning and physics

Given the success of machine learning in many different areas of science, it is nat-
ural to ask whether machine learning can be of any use in physics. Its application
in classifying large amounts of data by finding the underlying structure is similar to
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the goal of the theoretical physicist. Ultimately any physical theory should be able to
describe and explain the results from experiments. Unfortunately the link between
the two is not always as clear-cut. Theoretical derivations are limited by the analytic
mathematical tools to our disposal, which often prove insufficient to describe reality
exactly. The theorist is forced to make informed simplifications, filtering out small
irrelevant effects, and to take limits.

To circumvent part of the limitations of analytic derivations, numerical techniques
can be used. Sometimes the numerical technique simply consists of evaluating inte-
grals unsolvable by hand to obtain estimates for physical observables. In condensed
matter physics one often deals with complex models of many interacting particles.
While the underlying theoretical structure of how each pair of particles should inter-
act is usually known and well-studied, the up-scaling of this behaviour to a many-
body problem can greatly temper analytic derivation. There are theoretical tools to
deal with many-body problems, but exact solutions are usually limited to a select
group of models. However, numerical techniques can be used to simulate these
other groups of models. The Monte Carlo method is often used to simulate these
kinds of systems[13], and has helped in confirming analytic predictions of certain
models and providing insight in systems resistant to analytic techniques.

Just as the physics community was quick to embrace Monte Carlo techniques, ma-
chine learning has now garnered an interest within all parts of the community. It can
be used a tool to discriminate between phases in quantum mechanical systems[14–
17]. It is also possible to construct neural networks in such a manner that they can
represent quantum-mechanical groundstates[18–23]. Machine learning has been ap-
plied to classical statistical physics models as well. It is possible to classify differ-
ent phases of the model[24–29], or to learn to model the underlying structure of
the physical system[30–33]. There are applications in active matter[34], quantum
computing[35, 36], particle physics[37], and physics can even offer insights into the
fundamental aspects of machine learning[38].

1.2 The goal of this thesis

The goal of this thesis is to provide a critical investigation into the use of machine
learning tools in classical statistical physics models. Specifically, the use of neural
networks to locate and learn phase transitions is analysed with regard to blind ap-
plication and physical interpretation of the results. A generative neural network’s
ability to encode the physical properties of the Ising model is studied in detail as
well. This serves to provide a critical picture of machine learning tools in physics,
and to separate the hype of a novel numerical technique from the actual usefulness
of the technique.

The application of neural networks as a tool to locate phase transitions is anal-
ysed by studying the application of feed-forward neural networks, convolutional
neural networks and the confusion-scheme network to the two-dimensional Ising
model on a square lattice, the two-dimensional xy-model, the two-dimensional anti-
ferromagnetic Ising model on a triangular lattice, and the two-dimensional Coulomb
gas on a square lattice. The neural networks are used to classify the different phases
of the Ising model, the xy-model, and the Coulomb gas model. The anti-ferromagnetic
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Ising model on a triangular lattice is a model without a phase transition and is stud-
ied as an example for dealing with degenerate groundstates and frustration.

Earlier studies have shown that neural networks are able to learn the phase tran-
sition in the Ising model[25, 28], and the xy-model[24]. These studies are repeated,
including an in-depth analysis of different neural network topologies and how that
affects the results of the neural network. The learned behaviour of the neural net-
work when faced with a system with degenerate groundstates and frustration is
studied by training the network as a thermometer. The application of the network
will then show how well the network is able to pick up on subtle changes in the
configurations, for example by training the convolution layer such that the subse-
quent hidden layer looks at a configuration directly corresponding to frustrated and
unfrustrated triangles. The application of neural networks as a way to get an esti-
mate for the temperature of a given configuration was used in earlier research[31],
although it was not the main focus of the paper. Finally, different types of neural net-
works are applied to the two-dimensional Coulomb gas model, which has not been
studied with neural networks before to the knowledge of the author at the moment
of writing. This model is said to have both an Ising-like and KT-like phase transition,
which should be detectable according to earlier research. Both the feed-forward and
convolutional neural network are applied to the system. In addition, an unsuper-
vised variation on the conventional neural networks, the confusion-scheme neural
network, is applied to the model as well. The confusion-scheme neural network was
shown to work on the Ising model[27], as well as on systems with quasi long range
order (QLRO) and multiple phase transitions[29].

Another application of machine learning, namely to learn the underlying probabil-
ity distribution of the physical system, is studied by training a restricted Boltzmann
machine (RBM) on the one-dimensional and two-dimensional Ising model. Numer-
ical studies training an RBM on configurations of the two-dimensional Ising model
have been done before[31, 32]. Instead of repeating these results we instead focus
on a more analytic derivation of the trained RBM by minimising the KL-divergence
directly, as opposed to using conventional numerical techniques like contrastive di-
vergence[39] as in the aforementioned papers. Specific restriction are placed on the
RBM to enforce symmetries present in the Ising model, such as the global spin-flip
symmetry and translation invariance. The behaviour of different iterations of the
RBM are then analysed and compared to show how well the RBM is able to capture
the Ising model, and what physical aspects it picks up on the most.

The layout of this thesis is as follows. Chapter 2 provides a short introduction to
the concepts of machine learning necessary to understand the contents of this thesis.
No prior experience with machine learning is expected. Chapter 3 gives a theoretical
background to the physical models encountered in this thesis. Some derivations will
be made to provide the reader with sufficient physical insight to understand the re-
sults of the machine learning. The results are included in chapter 4 and 5. Chapter 4
contains the results for the neural network analysis of phase transitions for the Ising
model, xy-model, anti-ferromagnetic Ising model, and Coulomb gas model. Chap-
ter 5 contains the results for training different RBM iterations on the Ising model.
The results for both chapters are recapped and discussed in chapter 6.
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Chapter 2

Introduction to Machine learning

In this chapter a brief introduction to the machine learning concepts relevant for
this thesis is given. First the general concept of machine learning is discussed, after
which follows a brief mathematical introduction to neural networks, continuing into
adaptations to the basic neural network in the form of convolution layers and the
confusion scheme. Another class of neural networks called Boltzmann machines are
given a brief mathematical introduction, after which the more practical restricted
Boltzmann machine is discussed.

2.1 A brief introduction to machine learning

The question of what machine learning is can best be answered by looking at the
two constituents that make up the concept. A machine, while commonly associated
with something physical, is in this context best understood as a function: an opera-
tion which takes a set of inputs and generates a single output. This function could
for example be a probability distribution g(x|w), which is a function of the inputs x,
given the parameters w. The learning aspect then comes in by relating this function
to a desired outcome. Lets say we have a set of configurations X where each config-
uration has an associated value y′ and we want the machine to predict the value y′

when we put in a configuration of X. How well the machine does this is measured by
some cost function C(y′, g(X|w)), which relates the outcome of the function g (and
thus of the machine) to the desired output y′. The actual learning then comes in via
the minimisation of this cost function, the values of the parameters w are changed
such that the cost function is minimised. This minimisation process and updating of
the parameters w is what is meant by learning.

In the field of machine learning there are generally considered to be two types of
learning a machine can do: supervised and unsupervised.
Supervised learning means that the machine learns using labelled data, meaning
that each configuration x put in the machine to learn needs to have an associated de-
sired outcome y′, i.e. label. The cost function of supervised machine learning models
depends on these labels to correctly classify how well the machine is performing. An
example of a supervised machine learning model is a feed-forward neural network.

On the other hand, unsupervised machine learning models do not need such an as-
sociated label for its inputs. The cost function is able to judge how well the machine
is performing without needing any additional labels with the data. An example of
an unsupervised machine learning model is the restricted Boltzmann machine.
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2.2 Neural Networks

An artificial neural network is a nonlinear model for supervised machine learning,
which was originally inspired by the neural networks seen in biological systems[40].
A neural network consists of a multitude of neurons connected to each other in a par-
ticular topology. The network itself is not a learning algorithm, but rather a frame-
work for many different machine learning algorithms to work together and process
data inputs.

The basic building block of neural networks is the neuron, referred to as a node
in graphs. The neuron can be understood as a function which takes an input vec-
tor z and gives an output ai(z). This output is usually a scalar, although there are
functions which give vectors as outputs. Figure 2.1 shows a schematic picture of
such a neuron. The inputs of the neuron, z, are represented by the arrows pointing
towards the node. The form of the function ai, referred to as the activation function,
depends on the type of non-linearity used in the network. The inputs of neurons
are generally weighted by their relevant importance using a linear transformation
z = wx + b, where the parameters w rescale the inputs x, and b adds a bias-term.
The output of the neuron can thereafter be used as new inputs for other neurons.

FIGURE 2.1: Schematic picture of a neuron as used in neural networks.

2.2.1 From neuron to network: the feed-forward Neural Network

One of the simplest and commonly used neural networks is the feed-forward neural
network (FNN). It consists of just three layers of neurons, where a layer of neurons
consists of a group of neurons which are not connected to other neurons in the same
layer. All the neurons in the layer take their inputs from a single other layer and
have their outputs connected to a single other layer. Since the network is directional,
these layers are typically ordered from input to output. The first layer in the FNN
is the input layer, which takes the form of the input configurations. Then comes the
hidden layer, where each neuron takes all the linearly transformed inputs from the
input layer and puts them through their activation functions. Finally we have the
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output layer, where each output neuron also linearly transforms all the outputs of
the hidden layer and puts them through their activation functions.

This can be made more clear in a mathematical form. We denote each layer by an
upper index between brackets, for example the linear transformations fed into the
activation functions of the i-th layer will be denoted as z(i). If we have d-dimensional
configuration x as input, we can write the input layer as a vector of the form

x(1) = (x1, x2, ..., xd)
T. (2.1)

The first linear transformation is denoted as

z(2) = W(2)x(1) + b(2), (2.2)

where W is a N(2) × N(1) weight matrix with N(i) the number of neurons in the i-th
layer. b(2) is a N(2)-dimensional bias vector. Each component of the z vector then
gets acted on by the activation function of the corresponding neuron in the hidden
layer:

a(2)(z(2)) = [(a1(z1), a2(z2), ..., aN(2)(zN(2)))(2)]T. (2.3)

This gives us the output of the hidden layer

x(2) = a(2)(z(2)), (2.4)

which then forms the input of the output layer. The output layer again transforms
the input of the hidden layer

z(3) = W(3)x(2) + b(3). (2.5)

The vector z(3) is the input for the activation functions of the output neurons so that
we get the final output of the neural network

x(3) = a(3)(z(3)) = y. (2.6)

We call the final output layer y. This process is shown schematically in figure 2.2.
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FIGURE 2.2: Schematic graph of a feed-forward neural network. The arrows
between nodes denote the linear transformations of the value of the nodes at
the base of the arrows to be used as the inputs for the activation functions of

the nodes at the head of the arrows.

Training the feed-forward neural network

The learning procedure of a FNN is done through the backpropagation algorithm.
The algorithm can be derived through simple partial differentiation and application
of the chain rule. Here we make use of the same notation as before, but we denote
the matrix multiplication more explicitly in terms of the individual components of
the matrix. For example w(l)

jk denotes the weight for the k-th neuron in layer l − 1 to
the j-th neuron in layer l. In a general feed-forward neural network we can relate
the outputs of the j-th neuron in the l-th layer to the outputs of the neurons in the
l − 1-th layer by

x(l)j = a(l)j (∑
k

w(l)
jk x(l−1)

k + b(l)j ) = a(l)j (z(l)j ). (2.7)

The training of the neural then happens by minimising some predefined cost func-
tion C(y, y′), which depends on the output layer y and the labels y′ paired with the
input data x. The minimum of this function is found numerically by gradient de-
scend, each learning step consists of moving through the neural network parameter
space spanned by the W-matrices and biases b towards a lower cost function. The
direction of this step is determined by taking the derivative of each individual pa-
rameter with respect to the cost function.

To calculate expressions for all these derivatives we start with the derivative of the
final layer, which we label layer L. Note that for the FNN L = 3, the derivation pre-
sented here is valid for deep neural networks with any number of layers. The error
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∆(L)
j of the j-th neuron in the L-th layer is defined as the change in the cost function

with respect to the weighted input z(L)
j :

∆(L)
j =

∂C
∂z(L)

j

. (2.8)

Similarly, we can define the error ∆(l)
j of neuron j in layer l with respect to the

weighted input z(l)j as

∆(l)
j =

∂C
∂z(l)j

=
∂C

∂a(l)j

ȧ(l)j (z(l)j ), (2.9)

where ȧ(l)j (x) denotes the derivative of the activation function of neuron j in the l-th

layer with respect to its input evaluated at x. Since ∂b(l)j /∂z(l)j = 1, equation (2.9) can

also be interpreted as the derivative of the cost function with respect to the bias b(l)j .

Because the error of the neurons in layer l depends on the activation functions of
neurons in the subsequent layer l + 1, the chain rule can be used to write the error
of neuron j in layer l in terms of the error of the neurons in layer l + 1:

∆(l)
j =

∂C
∂z(l)j

= ∑
k

∆(l+1)
k

∂z(l+1)
k

∂z(l)j

= ∑
k

∆(l+1)
k w(l+1)

kj ȧ(l)j (z(l)j ). (2.10)

We need just one more equation to have expressions for the partial derivatives of all
parameters. Differentiating the cost function with respect to the weight w(l)

jk gives

∂C
∂w(l)

jk

=
∂C

∂z(l)j

∂z(l)j

∂w(l)
jk

= ∆(l)
j a(l−1)

k . (2.11)

The equations (2.8), (2.9), (2.10) and (2.11) define the four backpropagation equa-
tions. These equations relate the parameters of different layers to each other and the
cost function.

Because the updating of parameters of one layer is related to the subsequent layer,
the updating of the parameters can be done layer by layer, starting from the outer-
most layer L. This is where the algorithm gets its name, backpropagation, from. The
error is said to propagate backwards through the neural network. Because there are
no intra-layer connections, the parameters can be updated in parallel per layer. This
greatly speeds up the learning process, especially on a system with many cores or
when the program runs on a GPU.
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2.2.2 Encoding translation invariance: the convolutional neural network

While the feed-forward neural network is already capable of distinguishing between
the ordered and disordered phases in the two-dimensional Ising model, as will be
shown in this thesis, it fails to take advantage of certain symmetries in the system.
The convolutional neural network (CNN) has a design aimed at taking advantage
of local features and translation invariance present in the system. The core idea is
that explicitly including these ideas in the topology of the neural network helps the
network pick up on these symmetries faster while requiring less parameters to train.

The CNN builts upon the FNN by adding an additional kind of layer: a convolu-
tion layer. This layer consists of a set of filters typically followed by pooling layers
which coarse-grain the input while maintaining locality and spatial structure. The
size of the filters depends on the dimensionality of the input data. For typical two-
dimensional data the filter is characterised by a height H, and width W given in
number of neurons. The number of different filters, usually related to the amount
of relevant local features one wishes to extract from the input data, is given by the
depth D. The neurons corresponding to a particular filter all share the same weights
and biases.

The convolution filters take a small spatial patch of the previous layer as inputs.
This spatial patch is sometimes called a receptive field. Each filter then identifies
the neurons of the receptive field one-to-one to the neurons of the filter (they are
of equal size). The values of the neurons in the receptive field then get multiplied
with the values of the corresponding neurons in the filter. The resulting values all
get added together and form the value for a single neuron in a convolution layer be-
longing to that particular filter. The convolution then consists of ’running’ this filter
over all locations in the spatial plane. How the filter moves over this spatial plane is
defined by the stride S. Usually the input data is padded with additional neurons at
the edges to make sure the filter can run over all input data neurons. These padded
neurons are conventionally given the value 0, however in this thesis periodic bound-
ary conditions are used unless specified otherwise.

When the input layer has moved through the filters, it hits the pooling layer. In
this layer the filtered data is coarse-grained via some pooling operation. One of the
most common used pooling operations is the max pool. In max pool a small region
of neurons is replaced by a single neuron whose output is the largest value of the
output within the region. This reduces the dimension of outputs thus speeding up
the learning process. This layer is then followed by an all-to-all connected layer and
an output layer. This means that we can still use the backpropagation algorithm to
train the CNN. Figure 2.3 shows a schematic illustration of a CNN.

By designing the network in such a way local properties and translation invariance
are explicitly incorporated in the network topology. Each filter can be related to a
single local property and is applied over the entire input data space. The final all-to-
all connected layer can then take relative location and the amount of certain features
into account to give a prediction. Because each filter is described by a single set of
weights and biases the number of free parameters is reduced drastically compared
to adding an additional all-to-all layer. This allows us to build much larger networks
than would be possible with fully connected layers.
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FIGURE 2.3: Schematic illustration of a convolutional neural network. The
network consists of a single convolution layer with D filters of size H ×W
followed by a pooling operation decreasing the size of the convolutional layer.
The two-dimensional pooling layer is then flattened to a one-dimensional

input vector for a feed-forward neural network (FNN).

Interpreting filters through visual analysis

Interpreting the learned behaviour of a neural network is quite difficult. An advan-
tage of CNNs is that they act on the original two-dimensional input configuration,
rather than a flattened version as in the FNN. This means that the filters have a clear
visual interpretation attached to them. The filters act on a part of the input config-
uration, adding the site (or pixel) values within the filter field with their associated
filter values. It is common in CNN literature to show the convoluted image along-
side the original image to show the effect of the filter[41]. By keeping track of the
convoluted filters over the learning process it may become clear what the network
is learning. As an example consider the filter

fSobel =

1 0 −1
2 0 −2
1 0 −1

 . (2.12)

This filter is commonly used for edge detection in images, and is named after Irwin
Sobel[42]. The effect of this filter is immediately clear when we apply it to an image,
as is shown in figure 2.4. Clearly the bars of the staircase are highlighted out of the
image by the filter. It may also be helpful to visualise the filter itself by transforming
it to a heatmap picture. By thinking of these filters in this visual manner they can
be given an interpretation of simple feature detectors. Multiple filters may then be
correspond to different features, which are in turn fed into a FNN. Thinking of CNN
in this way may help in interpreting the results, as well as help in the initial design
of the network for a specific task.
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(A) original picture

(B) Sobel filter

(C) convoluted picture

FIGURE 2.4: Visualisation of the effect of the Sobel filter. Photo by Annie
Spratt on Unsplash.

2.2.3 Practical considerations

When building neural networks, several practical alterations are usually made. To
prevent overfitting, it is common to introduce a L2-regularisation term of the weight-
matrices. The L2-regularisation term of a parameter is nothing more then the squared
magnitude of this parameter. Adding these terms to the cost function introduces a
cost-penalty for increasing the absolute size of the parameters, preventing the learn-
ing procedure from increasing the parameters to decrease the cost function on the
training set, while not increasing the accuracy on the validation set.

Another highly successful method to prevent overfitting, both in feed-forward neu-
ral networks and Boltzmann machines, is dropout[43]. In this method neurons can
be randomly dropped during each learning step, where dropped means that all con-
nections to and from this neuron are set to zero temporarily for this learning step.
The idea is that this forces the other neurons to take over certain tasks previously
performed by the dropped out neurons, which results in a better overall network
which is less susceptible to noise.

In the previous discussion the activation functions where kept as general as they
could be, however when actually making a neural network one has to chose the ac-
tivation functions. There are a few popular choices. A very common one is called
the sigmoid-function:

asigmoid = σ(z) =
1

1 + e−z . (2.13)

This function is commonly used for hidden neurons, and is also used a lot through-
out this thesis. An alternative to the sigmoid-function is a simple tanh-function

atanh(z) = tanh z =
ez + e−z

ez − e−z (2.14)

which has similar behaviour as the sigmoid-function, with the main difference that
the tanh-function has a range of [−1, 1] and the sigmoid-function a range of [0, 1].

A popular alternative to these functions is the rectifier-function, often called ReLu
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for short, which is defined as

aReLu(z) = z+ = max(0, z). (2.15)

This activation function has seen a lot of application in deep neural networks, and
appears to allow for faster learning while retaining high accuracy compared to the
non-linear activation functions.

For the output layer it is common to use a different kind of function, especially for
classification problems. The function that will be used for the most part in this thesis
is the softmax function:

asoftmax(z)i =
ezi

∑K
k ezk

. (2.16)

This activation function is actually a vector, as indicated by the index i. Essentially
this function takes the input vector z and normalises it into a probability distribu-
tion of K probabilities. For example when classifying two phases of matter, K = 2
and z corresponds to the input vectors for the two output neurons. The output of
the output neurons then gives the normalised probability of the input configuration
being in the phase corresponding to each neuron.

In this thesis the feed-forward and convolutional neural networks built for identify-
ing phases in physical systems were all built in Google’s TensorFlow API for Python
[44].

2.2.4 Losing supervision by confusion

Neural networks like the FNN and CNN are generally used as supervised machine
learning tools. The data is accompanied with the correct labels, and the neural net-
work is able to minimise its cost function and will have learned something. How-
ever, there are situations where the labelling of the data might not be known. In
such situations we can turn to unsupervised methods, such as Principle Component
Analysis (PCA) or Boltzmann Machines, for example. However, there is also a way
to transform the neural networks we have discussed in this section to the unsuper-
vised kind.

A scheme which performs this task is the so-called confusion scheme[27]. This
scheme is based on a very simple adaption of the regular neural network training
procedure, where instead of providing the data with the correct labels, a wrong la-
bel is purposefully assigned to the label. For thermodynamic models it is possible to
choose a false critical temperature T′ and base the data labelling on that false critical
temperature. The neural network is then trained on that falsely labelled data, and
the accuracy of the network over the entire dataset is noted. One then repeats this
procedure over a range of false critical temperatures, tracking the accuracy of the
trained networks for each false critical temperature: a(T′).

The general idea is then that if the system truly exhibits a (or numerous) phase tran-
sitions in the mapped out T′ range, this will show up in a(T′). The accuracy of the
network will be large if T′ is at the real critical point Tc, because then the data is
correctly labelled and the network should be able to learn a correct identifier to dis-
tinguish the phases. For T′ 6= Tc some of the labelled data will be false, which will
lead the neural network to be unable to classify part of the data. This leads to a drop
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in accuracy. The neural network is said to be confused because of the false labelling,
hence the name.

The true critical temperature can then be inferred by analysing the general shape
of a(T′). It can be argued that this function should follow a rough W-shape. This
argumentation is based on the assumption that the data has two different structures
above and below Tc, and that the network is able to differentiate between them.
Lets assume we have a dataset of configurations that run from Ti to Tf of a phys-
ical system with two phases, say phase 1 and phase 2, and a critical temperature
Ti < Tc < Tf . If we then set T′ = Ti all the data will be labelled as phase 2, and
the network will just ascribe phase 2 to every configuration. The accuracy will be
1. The same goes for T′ = Tf , except the network now ascribes phase 1 to every
configuration. When T′ = Tc the network is able to differentiate between the two
structures, and again the accuracy will be 1. For Ti < T′ < Tc the network will see
data with the same structure for Ti to T′ and T′ to Tc, but with different labels. We
assume the network will choose to learn the label of the majority data, so that the
accuracy in this range will be

a(T′) = 1− min(Tc − T′, T′ − Ti)

Tc − Ti
. (2.17)

A similar argumentation holds for Tc < T′ < Tf , so that the full function becomes

a(T′) =


1− min(Tc−T′,T′−Ti)

Tc−Ti
Ti ≤ T′ < Tc

1 T′ = Tc

1− min(T′−Tc,Tf−T′)
Tf−Tc

Tc < T′ ≤ Tf

. (2.18)

This function is plotted in figure 2.5 for Ti = 0, Tf = 2 and Tc = 1. Clearly this
function has a W-shape, where the middle peak of the W corresponds to the critical
temperature. The confusion scheme is then based on the assumption that the actual
trained neural networks will show this same behaviour, so that the peak in the mea-
sured a(T′) can be identified with the critical temperature. It is thus a method to
obtain the location of the phase transition for unlabelled data.
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FIGURE 2.5: Plot of equation (2.18) with Ti = 0, Tf = 2 and Tc = 1.
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2.3 Boltzmann machines

Neural networks like the ones discussed previously are classified under the denom-
inator supervised machine learning. They are typically used to classify data into
different classes. Unsupervised machine learning does not require any label to be
given along with the training data and instead relies on some internal measure to
determine how well it is performing. One such machine classified under the de-
nominator unsupervised learning is the Boltzmann machine.

2.3.1 A mathematical introduction to Boltzmann machines

The Boltzmann machine is what is known as a generative machine. Its main objec-
tive is to model the underlying probability distribution of the training data during
the training process, after which the machine can be used to generate new data given
by its own probability distribution. The Boltzmann machine can be interpreted as a
special kind of Markov random field or as a stochastic neural network. Here we fol-
low a condensed derivation of Boltzmann machines starting from Markov random
fields following Fisher and Igel[45].

To start we first need to consider Markov random fields. Markov random fields are a
type of undirected graph. An undirected graph is defined in terms of labelled nodes
v1, v2, ... assembled together in a set V. Two nodes can be connected to each other
via a line, or edge, which we denote by pairs of nodes. E.g. a connection between
nodes v1 and v2 is denoted by {v1, v2}. The set of all edges together are labelled E.
The entire topology of the graph G is then defined by combining the sets G = (V, E).
The neighbourhood Nv = {w ∈ V : {w, v} ∈ E} of v is the set of nodes connected
to v. A clique is a subset of V in which all nodes are pairwise connected. The clique
is maximal if no node can be added such that the clique is still a clique. An example
of an undirected graph is shown in figure 2.6. In this example Nv1 = {v2, v3} and
{v1, v2, v3} is a maximal clique.

FIGURE 2.6: Example of an undirected graph.
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To each node v is then assigned a random variable Xv taking values in a state
space Λv = Λ. The set of all these random variables over all nodes X = (Xv)v∈V is
considered a Markov random field if the joint probability distribution p satisfies the
(local) Markov property with relation to the graph. If for all v ∈ V the random vari-
able Xv is conditionally independent of all other variables given its neighbourhood,
that is if

∀v ∈ V, ∀x ∈ Λ|V| : p(xv|(xw)w∈V�{v}) = p(xv|(xw)w∈Nv) (2.19)

holds, the local Markov property will be fulfilled. There are other Markov properties
but for our purposes this one is sufficient.

If the probability distribution p satisfies this local Markov property, the Hammersley-
Clifford theorem tells us the probability factorises with maximal cliques C:

p(x) =
1
Z ∏

C∈C
ψC(x). (2.20)

Here Z is the partition function of the distribution, given by

Z = ∑
{x}

∏
C∈C

ψC(xC). (2.21)

The sum over {x} denotes taking the sum over all possible configurations of x. If
p is strictly positive, then so are the potential functions ψC, and we can write the
probability function in a more suggestive form:

p(x) =
1
Z

exp ( ∑
C∈C

lnψC(xC)) =
1
Z

exp (−E(x)). (2.22)

We call E the energy function. This distribution is also called the Gibbs distribution.

This graph is then considered a (stochastic binary) Boltzmann machine if the energy
function of the graph is given by

E(x) = −
(

∑
i<j

wijvivj + ∑
i

bivi

)
, (2.23)

where wij gives the weight between two connected binary nodes vi and vj, which
can take the values {0, 1}. bi is the bias associated with node vi. The learning of
this model then means altering the weights and biases such that the probability dis-
tribution p(v) best fits the unknown underlying probability distribution q(v) of the
training data S. This is done by maximising the so-called likelihood

L(W, b|S) =
l

∏
i=1

p(vi|W, b), (2.24)

with l the number data samples. This is generally not possible analytically and nu-
merical techniques like gradient ascend are used.

Maximising the logarithm of the likelihood corresponds to minimising the Kullback-
Leibler divergence (KL-divergence), which is a measure for the distance between
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two distributions. The KL divergence of p and q for a finite state space Ω is

KL(q||p) = ∑
{v}∈Ω

q(v) ln
q(v)
p(v)

(2.25)

= ∑
{v}∈Ω

q(v) ln q(v)− ∑
{v}∈Ω

q(v) ln p(v). (2.26)

It can be understood as the difference between the entropy of q and p averaged over
all v configurations weighted by q. The KL divergence is always positive and zero if
and only if the two distributions are equal.

2.3.2 Gibbs sampling

Once the Boltzmann machine is trained it can be used to produce samples from the
joint probability distribution. The way to this is by constructing a Markov chain by
updating each variable based on its conditional distribution given the state of the
other variables. The particular procedure to construct this Markov chain for a Boltz-
mann machine is called Gibbs sampling.

We again consider a Markov Random Field (MRF) X = (X1, ..., XN) in an undirected
graph G = (V, E) with V = 1, ..., N. The random variables Xi, i ∈ V take values in a
finite set Λ. The joint probability distribution of X is given by

π(x) =
1
Z

e−E(x), (2.27)

where E is some energy function. The Markov chain can then be constructed by
assuming that the MRF changes its state over time, so that the Markov chain is

X = {X(k)|k ∈ N0}. (2.28)

The chain takes values in Ω = ΛN . So X(k) = (X(k)
1 , ..., X(k)

N ) describes the state of the
MRF at a time k ≥ 0.

New states of the chain in between the timesteps are constructed by first randomly
picking a variable Xi, i ∈ V, with probability q(i). q is a positive definite probability
distribution on V. The new state for this variable Xi is sampled based on its condi-
tional probability distribution given the state of all other variables, which reduces to
the conditional probability distribution given the state of the neighbourhood of Xi
because of the local Markov property. The transition probability pxy for two states x,
y of the MRF X with x 6= y is

pxy =

{
q(i)π(yi|(xv)v∈V�i), if ∃i ∈ V so that ∀v ∈ V with v 6= i : xv = yv

0, else
. (2.29)

The transition probability for the state to remain the same is

pxx = ∑
i∈V

q(i)π(xi|(xv)v∈V�i). (2.30)

The Markov chain defined by these transition probabilities is called the Gibbs chain.

Next we need to show that the Gibbs chain converges to the joint distribution π
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of the MRF. We first show that the detailed balance condition holds:

π(i)pij = π(j)pji ∀i, j ∈ Ω. (2.31)

If this condition holds, π is a stationary distribution, meaning that

πT = πTP, (2.32)

where P is the transition matrix of the markov chain: P = (pij)i,j∈Ω.

For x = y the detailed balance obviously holds. If x 6= y the condition holds if
more than one random variable differs between the two, since then pxy = 0. If x and
y differ by exactly one random variable we can write

π(x)pxy = π(x)q(i)π(yi|(xv)v∈V�i)

= π(xi, (xv)v∈V�i)q(i)
π(yi, (xv)v∈V�i)

π((xv)v∈V�i)

= π(y)q(i)π(xi|(xv)v∈V�i) = π(y)pyx. (2.33)

So detailed balance holds and π is the stationary distribution.

To see that the Markov chain converges to the stationary distribution π, note that
π is strictly positive. Since π is strictly positive, so will then the conditional prob-
ability distributions of the single variables. So every single variable Xi has a finite
probability to take every state xi ∈ Λ in a single transition. This means that every
state of the MRF can reach any other in the state space in a finite number of steps.
The Markov chain is thus irreducible. Since pxx > 0 for all x ∈ ΛN , the chain is
aperiodic. The aperiodicity and irreducibility of the Markov chain guarantee that
the chain converges to the stationary distribution π.

2.3.3 Adding hidden nodes

In general the amount of nodes in the graph does not have to be equal to the di-
mension of the input data. The graph can be divided in a set of nodes which couple
directly to the input nodes, which we call the visible nodes

V = {v1, v2, ..., vm}. (2.34)

The nodes which do not directly couple to the input data are called the hidden (or
latent) nodes

H = {h1, h2, ..., hn}. (2.35)

Figure 2.7 shows a example of a Boltzmann machine with hidden nodes. Now the
goal is for the marginal distribution of V to describe the data distribution q. So the
visible variables correspond to the input data while the hidden variables introduce
dependencies between the visible variables. The marginal distribution over v is thus
given by summing over all configurations of h:

p(v) = ∑
{h}

p(v, h) =
1
Z ∑
{h}

exp (−E(v, h)). (2.36)



2.3. Boltzmann machines 19

The marginal distribution over h is

p(h) = ∑
{v}

p(v, h). (2.37)

Likewise, the conditional distributions are defined as

p(v|h) ≡ p(v)
p(v, h)

(2.38)

p(h|v) ≡ p(h)
p(v, h)

. (2.39)

The learning is then done through gradient ascend of the natural logarithm of the
likelihood. In general the derivative with respect to some parameter θ can be written
as

∂ lnL(θ|v)
∂θ

=
1

p(v|θ)
∂p(v|θ)

∂θ

=
1

p(v|θ)

[
− 1

Z ∑
{h}

∂E
∂θ

e−E +
1

Z2

(
∑
{v}

∑
{h}

∂E
∂θ

e−E

)
∑
{h}

e−E

]

= −∑
{h}

p(v, h|θ)
p(v|θ)

∂E
∂θ

+
1

p(v|θ)

(
∑
{h}

∑
{h}

p(v, h|θ)∂E
∂θ

)
p(v|θ)

= −∑
{h}

p(h|v, θ)
∂E(v, h|θ)

∂θ
+ ∑
{v}

∑
{h}

p(v, h|θ)∂E(v, h|θ)
∂θ

. (2.40)

This can be interpreted as the difference between the expected value of the energy
function under the model distribution and the expected value of the energy func-
tion under the conditional distribution of hidden variables given a training exam-
ple. It turns out that directly calculating these sums is computationally expensive,
so Monte Carlo Markov chain methods are generally used. This is possible because
it can be shown that the Markov chain nicely converges to the expected stationary
distribution. This is still quite computationally expensive, since in general any node
can be connected to any other node, which makes computing a Markov step expen-
sive. A solution to this is to restrict the Boltzmann Machine in such a way as to make
the Monte Carlo sampling faster.
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FIGURE 2.7: Example graph of a Boltzmann machine with hidden nodes,
denoted by H = {h1, h2, h3}.

2.3.4 Restricted Boltzmann Machines

The restricted Boltzmann Machine (RBM) is a restriction of the more general Boltz-
mann Machine. It restricts connections between nodes of the same type, so there are
no visible-visible or hidden-hidden connections anymore. This divides the graph in
a visible and hidden layer with no intra-layer connections. Every visible node is still
connected to every hidden node and vice versa. The energy function for a L × N
RBM can be rewritten in the form

E(v, h) = −
(

L

∑
i=1

N

∑
a=1

viWiaha +
L

∑
i=1

bivi +
N

∑
a=1

caha

)
, (2.41)

where cj is the bias associated with the hidden node hj. Figure 2.8 shows an example
graph of a restricted Boltzmann machine.

FIGURE 2.8: Graph of a 4× 3 restricted Boltzmann machine.
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With this new energy function we can rewrite the average of equation (2.40) over
the dataset S with underlying distribution q(v) for the weight parameter Wia as

1
l ∑
{v}∈S

∂ lnL(θ|v)
∂Wia

=
1
l ∑
{v}∈S

[
∑
{h}

p(h|v)viha −∑
{v}

∑
{h}

p(v, h)viha

]

=
1
l ∑
{v}∈S

[
〈viha〉p(h|v) − 〈viha〉p(v,h)

]
= 〈viha〉p(h|v)q(v) − 〈viha〉p(h,v), (2.42)

where l are the number of samples in the dataset S and the term in between the
brackets 〈...〉 indicates taking the average over the distribution in the subscript. This
can be done for all parameters in the energy-function, so that the derivatives of the
logarithm of the likelihood are

1
l ∑
{v}∈S

∂ lnL(θ|v)
∂Wia

= 〈viha〉p(h|v)q(v) − 〈viha〉p(v,h), (2.43)

1
l ∑
{v}∈S

∂ lnL(θ|v)
∂bi

= 〈vi〉p(h|v)q(v) − 〈vi〉p(v,h), and (2.44)

1
l ∑
{v}∈S

∂ lnL(θ|v)
∂ca

= 〈ha〉p(h|v)q(v) − 〈ha〉p(v,h). (2.45)

In RBM literature it is common to call the average over p(h|v)q(v) the average over
the data, since the visible layer, v, comes from the data distribution q(v) only. Like-
wise, the average over p(v, h) is referred to as the average over the model since it is
determined by the internal distribution of the RBM only.

The averages needed to update the variables are calculated through Monte Carlo
Markov Chain methods, just as for the unrestricted Boltzmann machine. However,
because there are no intra-layer connections the probability to get one layer given
the other layer factorises over the individual values of the layer. I.e.

p(v|h) =
L

∏
i=1

p(vi|h) and (2.46)

p(h|v) =
N

∏
a=1

p(ha|v), (2.47)

which greatly simplifies matters. From this perspective it can be useful to regard
RBMs as a kind of stochastic neural network, with activation probabilities for the
neurons

p(vi = 1|h) = σ(∑
a

Wiaha + bi) (2.48)

p(ha = 1|v) = σ(∑
i

Wiavi + ca), (2.49)

where σ is the sigmoid function (2.13). Note that the activation probabilities only
take this form if we take v ∈ {0, 1}. Because the probability distribution factorises,
the averages needed for learning can be calculated by iterative sampling from the
conditional distributions (2.48) and (2.49) in a Markov Chain.
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Block Gibbs sampling and the RBM flow

The procedure of Gibbs sampling as described for the unrestricted Boltzmann ma-
chine simplifies significantly for the restricted case. Since the variables in the same
layer are conditionally independent, the states of all variables in one layer can be
sampled jointly. Compared to the unrestricted case, where the Markov chain was
defined by single-site transitions only this gives a significant increase in computa-
tional speed.

The Gibbs sampling can now be performed in just two steps. First a new hidden
layer state h is sampled based on p(h|v). A new state for the visible layer can then
be sampled from the new hidden layer with the conditional probability p(v|h). This
essentially generates a new flow of visible configurations v as

{v}(0) → {h}(0) → {v}(1) → ...→ {h}(k−1) → {v}(k). (2.50)

This process is known as block Gibbs sampling. Since the units are conditionally
independent this can be done in parallel, greatly speeding up the process in com-
parison to the unrestricted Boltzmann machine.

In theory this sampling should go on for infinite steps, because then the sample
has truly converged to the equilibrium distribution of the model. In practice far
fewer iterations are made. A commonly used alternative to proper Gibbs sampling
is Contrastive Divergence (CD) introduced by Hinton[39]. This is a form of approx-
imate Gibbs sampling. In CD-n, n iterations of block Gibbs sampling are performed
(sometimes n is as small as 1) to obtain approximations to the averages over the
model distribution. This comes at a cost of less sampling far from the datapoints in
the mini-batch. So part of the ability to generalise gets sacrificed in order to improve
the trainability of the model.

There are other methods to calculate the averages, like Persistent Contrastive Diver-
gence[46] which builds upon CD. Sometimes completely other methods are used,
like parallel tempering or other Metropolis schemes.
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Chapter 3

Theoretical background

This chapter contains the relevant physical background needed to appreciate the
results obtained from the neural network analysis as well as the connection to the
restricted Boltzmann machine. First a general introduction to the phenomenon of
phase transitions will be discussed. A very pedestrian view of the real-space renor-
malisation group will be given. After these general condensed matter subjects, the
specific physical models used in this thesis will be discussed in detail. Some deriva-
tions will be made for the models which serve to provide a deeper understanding
of the particular models. This deeper understanding is necessary to interpret the
learned behaviour of the neural networks and restricted Boltzmann machine.

3.1 Introduction to phase transitions

Central in the field of condensed matter physics is the topic of phase transitions
(PT). These are the transitions of a particular phase of a system to another phase of
the same system. The typical classical example of a phase transition is the transition
from the liquid phase of water to the gaseous phase. It turns out that many different
kinds of systems display phase transitions and significant effort has gone into de-
scribing these transitions as precisely as possible.

Phase transitions are typically characterised by a jump in some thermodynamic vari-
able. Universally this can be classified in terms of the free energy of a system, from
which all thermodynamic quantities of a system can be derived[47]. According to
the Ehrenfest classification of phase transitions, a phase transition where the first
derivative of the free energy with respect to some thermodynamic variable exhibits
a discontinuity is a first order phase transition. Likewise, a second order phase tran-
sition exhibits a discontinuity in the second derivative of the free energy. In more
modern literature, the phase transitions are separated in two distinct classes: first
order and continuous. First order transitions involve a latent heat and continuous
phase transitions have a divergent susceptibility, an infinite correlation length (in the
thermodynamic limit) and a power-law decay of correlations near criticality. Transi-
tions which are continuous but break no symmetries are called infinite-order phase
transitions.

While this description is useful for classification, for theoretical purposes one usu-
ally discusses so-called order parameters. An order parameter is usually defined
as a quantity which has some non-zero value in one phase while it vanishes in the
other phase. This could be a thermodynamic quantity, such as the magnetisation in
the Ising model, but it does not have to be. Since this is mostly used as a theoretical
tool to study phase transitions in mathematical models, the quantities used do not
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need to be experimentally measurable but rather more emphasis is placed on the
mathematical properties. As such these parameters are not necessarily physical, but
rather very human in that they are explicitly chosen by the theorist such that they
are the most useful to their calculation.

Phase transitions are usually accompanied by a break of symmetry, although this
does not have to be the case. What is meant by this is that particular symmetries are
present in one phase, while they are not present in the other phase. To stay with the
example of water, the phase transition of ice to liquid water displays such a break of
symmetry. Ice has a discrete rotational symmetry since it sits on some lattice. Liquid
water has no such lattice but is said to have continuous rotational symmetry since
it looks the same in any direction. Typically lower temperature phases have ’less
symmetry’ than higher temperature phases, meaning that more symmetry opera-
tions leave the phase unchanged in higher temperature phases. A system is said to
display spontaneous symmetry breaking if the ground states of the system do not
display the same symmetry as is present in the mathematical model of the system
itself. The system is thus forced to choose one of the ground states, breaking the
symmetry. The two dimensional Ising model is an example of this: the mathemati-
cal model is invariant under a global spin-flip transformation (a Z2 transformation),
but the low-temperature ground states are states with either all spins up or all spins
down. The ground states are evidently not invariant under the spin-flip transforma-
tion (they transform into one-another), but the system still has to choose one of these
ground states. So the symmetry is said to be spontaneously broken.

As mentioned before, systems tend to have particular behaviours of physical quanti-
ties near criticality. These quantities tend to scale according to some power as a func-
tion of the reduced temperature (in classical systems). How they scale is described
by particular exponents, called the critical exponents. They are very important for
the classification of different models since the behaviour of these physical quantities
is believed to be dependent on a few general features of the models, which allows
for the grouping of models sharing the same critical exponents values. These models
should thus display the same general features near criticality and are said to belong
to the same universality class.
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3.2 Introduction to the real-space renormalisation group

Renormalisation Group (RG) is an important part of modern physics, it is present in
both high- and low-energy physics, albeit in slightly different forms. In this thesis
only the low-energy approach will be considered, more specifically only the real-
space renormalisation group. While the approach is different in different fields of
physics, the main philosophy is the same. The idea is to step-by-step re-scale the
system such that you only keep the important aspects while disregarding the irrele-
vant physics. It can be thought of as ’zooming out’ on the physical system, rescaling
the parameters such that the system still describes the same physics. In condensed
matter physics it is commonly used to investigate phase transitions by studying how
the physical parameters change close to the phase transition. At criticality a phys-
ical system is scale-invariant, meaning that changing the scale leaves the system
unchanged. So a system at criticality is invariant under RG transformations.

We can make these statements more concrete. Lets say we have a discrete real-space
system which can be described by the state variables {si} and the coupling variables
{Jk} in some function which can describe all the physics, for example the Hamilto-
nian H({si}, {Jk}). A real-space RG transformation would then be a reduction and
transformation of the state variables

{si} → {s′i},

such that there are less state variables than before. If we can transform the coupling
variables

{Jk} → {J′k}

such that the Hamiltonian remains the same, i.e.

H({si}, {Jk}) = H({s′i}, {J′k}),

we say that we have a renormalisable theory. The change in the coupling variables
can typically be described by a set of equations which give the mapping of the cou-
pling variables to their next value. This change of coupling variables under each RG
transformation is said to describe a flow of the coupling variables. This is what is
meant with the RG flow. If the coupling variables remain unchanged under a RG
transformation the system is at a fixed point. As mentioned before these points tend
to correspond to critical points. An example of a RG flow diagram is shown in figure
3.1.

In RG a distinction is made between coupling parameters which continually de-
crease, increase or do something else under RG transformations. Coupling parame-
ters which decrease under RG transformations are said to be irrelevant, meaning that
they contribute less and less the more you rescale the system. Likewise, coupling
parameters that increase under RG transformations are said to be relevant, clearly
the process corresponding to this variable becomes more and more important under
rescaling. Coupling parameters which do not fall under one of these classifications
are called marginal, they require special inspection depending on the system.

This idea of relevant and irrelevant parameters also connects back to universality
classes as discussed in the previous section. Just like some coupling parameters are
irrelevant under RG transformations, so are certain observables. This means that
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the apparent similarities of systems in the same universality class can be explained
by the relevant and irrelevant variables. Systems in the same universality class will
thus ultimately end up with the same relevant observables near criticality, while the
irrelevant observables account for the differences on the microscopic level.

FIGURE 3.1: Schematic picture of a RG flow as a function of the parameters
K and J. The white circle is the fixed point of the flow, corresponding to
the critical point. The red line is a critical line, on which the system flows
towards the critical point under the RG transformations. The blue line flows
away from the critical point. The areas separated by the critical line are the
two phases the system can be in. The black lines give a schematic indication

on how the variables on the line will flow under RG transformations.
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3.3 The Models

In this thesis many different well-known classical statistical physics models describ-
ing different condensed matter systems will be considered, either in the context of a
numerical neural network analysis or in a restricted Boltzmann machine context. In
this section the models will be introduced and the concepts relevant to understand
the analysis following later will be explained and derived if needed.

3.3.1 The Ising chain

One of the most studied mathematical models in physics is the Ising model, concep-
tualised by Ising in 1925 to describe ferromagnetic systems[48]. The basic philoso-
phy of the system is to describe the behaviour of a ferromagnetic system in terms of
its most basic constituents only: the spins of the individual particles. In the standard
Ising model these spins are binary, they can only be in the states ’up’ or ’down’. The
particles of the system are placed on a fixed lattice, where each lattice site contains
a single particle. The form of the lattice has to be disclosed beforehand, since this
can drastically impact the behaviour of the model. In this subsection we consider
the one-dimensional Ising chain, where the lattice is just a line of lattice points. In
the model the spin at lattice site i is represented by the symbol si. The spin can then
take the values si = {−1, 1}, which correspond to spin down or up respectively.

The true physics of the Ising model lies in how these spins interact with one another.
Typically only nearest-neighbour type interactions between spins are considered, al-
though there are models which extend the range of the interactions. The interaction
between two neighbouring spins at sites i and j is modelled by the interaction pa-
rameter Ji,j and the product of the spins. The influence of an external magnetic field
on the system can be modelled by including a hsi term for every site, where h rep-
resents the magnetic field strength, or the strength of the coupling between the spin
and the magnetic field. A Hamiltonian can then be defined for a system of L spins:

H = −
L

∑
i=1

Ji,i+1sisi+1 −
L

∑
i=1

hsi. (3.1)

In this thesis we will consider a constant interaction parameter for every spin couple
that is greater than zero: Ji,j = J > 0. The external magnetic field strength will be
zero unless mentioned otherwise: h = 0. The Hamiltonian then becomes

H = −J
L

∑
i=1

sisi+1. (3.2)

The main strength of this model, apart from giving a conceptually clear model de-
scribing ferromagnetic systems, is that it is extremely well studied and understood.
It is possible to derive expressions for physical quantities analytically. This makes
this model an excellent candidate for performing novel numerical analyses since the
results can be compared against the analytic results.

The main method to obtain expressions for physical quantities is to compute the
partition sum Z of the system. Here periodic boundary conditions are assumed,
thus one of the nearest neighbour sites of site i = L is L + 1 = 1. The partition
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function can then be calculated using the transfer-matrix method:

Z = ∑
{s}

exp (β(J
L

∑
i

sisi+1 − h
L

∑
i

si)) (3.3)

= ∑
{s}

L

∏
i

exp (Ksisi+1 + βhsi) (3.4)

= Tr(T L), (3.5)

where β = 1
kBT with kB the Boltzmann constant which we will set to 1, K = βJ and

∑{s} represents the sum over all possible spin configurations. Here we included the
magnetic field strength h to be able to calculate the magnetic susceptibility later on.
The transfer-matrix T is then given by

T =

[
eK+βh e−K

e−K eK−βh

]
. (3.6)

The trace of a product of the same matrices is equal to the sum of the product of the
individual eigenvalues:

Z = λL
1 + λL

2 , (3.7)

where λ1 and λ2 are the two eigenvalues of the transfer-matrix T . These eigenvalues
are

λ1 = eK cosh βh +
√

e2K(sinh βh)2 + e−2K (3.8)

λ2 = eK cosh βh−
√

e2K(sinh βh)2 + e−2K. (3.9)

Such that the partition function becomes

Z = (eK cosh βh +
√

e2K(sinh βh)2 + e−2K)L+

(eK cosh βh−
√

e2K(sinh βh)2 + e−2K)L. (3.10)

With this expression for the partition function it is possible to find expressions for
certain physical quantities. The average energy of the system at zero magnetic field
strength can be expressed as

〈E〉
∣∣∣
h=0

= − 1
L

∂ ln Z
∂β

∣∣∣
h=0

= − J(cosh K)L−1 sinh K + J(sinh K)L−1 cosh K
(cosh K)L + (sinh K)L . (3.11)

Likewise an expression for the magnetic field can be found, however for finite β the
magnetisation vanishes:

〈M〉
∣∣∣
h=0

= − 1
L

∂ ln Z
∂h

∣∣∣
h=0

= 0. (3.12)
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Another important quantity which will be used to evaluate the RBM results is the
magnetic susceptibility, which can be expressed as

χ
∣∣∣
h=0

i =
∂〈M〉

∂h

∣∣∣
h=0

= β2e2K (cosh K)L − (sinh K)L

(cosh K)L + (sinh K)L (3.13)

for a vanishing magnetic field. Note that the one-dimensional Ising model has a
free energy, defined as f = 1

L ln Z, which is analytic away from T = 0 even in the
thermodynamic limit. This means that the one-dimensional Ising model displays no
phase transitions.

When analysing what a particular machine learning algorithm has learned, physical
quantities such as the ones mentioned before can be useful to ascribe some physical
meaning to the learned result. Apart from these thermodynamic quantities, statisti-
cal quantities such as correlations and variances can be useful. In turn, these quanti-
ties tend to have some connection to other physical quantities. A particular quantity
which is useful in analysing the behaviour of a probability distribution is the two-
point correlation function. For the one-dimensional Ising model this quantity can be
calculated exactly. We start with the definition of the two-point correlation function
of two spins located r-sites apart:

〈sisi+r〉
∣∣∣
h=0

=
1
Z ∑
{v}

sisi+r exp (K ∑
i

sisi+1).

Note that this expression can be written in a transfer-matrix form, with the extra
matrix

D =

(
1 0
0 −1

)
. (3.14)

This matrix then represents the ±1 values the factors si and si+1 can individually
take in the partition sum, which is then represented in the transfer-matrix form by
inserting D before the transfer-matrix for site i and one before the transfer-matrix for
site i + r. This gives the expression

〈sisi+r〉 =
1
Z

Tr(T i−1DT rDT L−(i−1+r)). (3.15)

The matrix product squashed between the two D matrices has the same eigenvalues
as a product of L T matrices, but the eigenvalues correspond to the opposite eigen-
vectors as for the T matrix. This means that the two-spin correlation function can be
expressed as

〈sisi+r〉 =
1
Z
(λL−r

1 λr
2 + λL−r

2 λr
1)

=
(cosh K)L−r(sinh K)r + (sinh K)L−r(cosh K)r

(cosh K)L + (sinh K)L . (3.16)

Taking the thermodynamic limit, where L→ ∞, one gets the simple expression

lim
L→∞
〈sisi+r〉 = (tanh K)r. (3.17)
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From this one can easily find an expression for the correlation length ξ, defined as
〈sisi+r〉 ∝ exp (−r/ξ), for the one-dimensional Ising model in the thermodynamic
limit:

ξ = −(ln tanh K)−1. (3.18)

Note that this quantity only diverges in the limit K → ∞, which further strengthens
the argument that the one-dimensional Ising model does not experience a phase
transition at any finite temperature.

Renormalisation Group equations

The argument that there is no phase transition in the one-dimensional Ising model
can be made even more strongly by applying RG to the model. If we consider an
Ising chain with an even number of sites L, the Hamiltonian will be given by equa-
tion (3.2). The RG then consists of summing over the even sites, so that we are left
with an effective Hamiltonian Heff only over the odd sites:

∑
{s}even

e−βH(s) = e−Heff(sodd). (3.19)

The odd sites are now a distance 2 apart from one another and there are half as many
of them as in the original Hamiltonian, so that we have effectively ’zoomed in’ by a
factor of 2.

For the one-dimensional case this rescaling can be calculated exactly by explicitly
performing the sum over the even sites. For a single even site this gives:

∑
s2=±1

exp (Ks2(s1 + s3)) = 2 cosh K(s1 + s3) ≡ ∆eK′s1s3 , (3.20)

where ∆ and K′ are new constants defined by the equation above. The sum over all
the even spins then gives

∑
{s}even

e−βH = ∆N/2 exp (K′
L/2

∑
i=1

s2i−1s2i+1) (3.21)

= e−Heff ,

where the effective Hamiltonian can be written as

Heff(s′) = ∑
i∈Zodd

K′sisi+2 +
N
2

ln ∆. (3.22)

The ln ∆-term just adds a constant to the Hamiltonian, which can be removed from
the Hamiltonian without changing any of the physics.

The new parameters of the effective Hamiltonian can be expressed in terms of the
old parameters by considering the values s1 and s3 can take in equation (3.20). There
are only two distinct cases, s1 = s3, and s1 = −s3. Those cases give

2 cosh 2K = ∆eK′ if s1 = s3 (3.23)

2 = ∆e−K′ if s1 = −s3. (3.24)
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Taking the product of the two cases gives an expression for ∆:

∆2 = 4 cosh 2K → ∆ = 2
√

cosh 2K. (3.25)

Likewise the ratio of the two cases gives an expression for K′:

e2K′ = cosh 2K. (3.26)

The equation is typically rewritten in terms of v = tanh K:

e2K′ = 2 cosh2 K− 1
2

e2K′ + 1
=

1
cosh2 K

−e2K′ − 1− (e2K′ + 1)
e2K′ + 1

=
1

cosh2 K
e2K′ − 1
e2K′ + 1

=
cosh2 K− 1

cosh2 K
tanh K′ = tanh2 K. (3.27)

This can be written more cleanly as

v′ = v2, (3.28)

where v ∈ [0, 1]. Equation (3.28) then provides a RG map where the degrees of free-
dom are integrated out over each step.

This map has two fixed point: v0 = 0 and v1 = 1. The point v0 corresponds to
that of K = 0, where the temperature is infinite or where there are no interactions
between spins. The spins are then fully uncorrelated and the model is in its param-
agnetic phase. The point v1 corresponds to K = ∞, where the temperature vanishes
or where the interaction strength becomes infinitely large. The spins will all align in
this case, so this fixed point corresponds to the ferromagnetic phase. Since there is
no fixed point for any finite temperature, there is no phase transition where the cor-
relation length diverges and the system becomes scale-invariant. The stability of the
fixed points can be easily checked by taking the derivative of the map: ∂(v2) = 2v,
which is 2 for v1 and is thus unstable. The fixed point v0 has derivative 0, which
means that it is stable. Since 0 ≤ v ≤ 1 and v = 1 is unstable, the RG flow of the
system runs from the v1 fixed point in the direction of v0. This can also be easily seen
by noting that v′ < v ∀ 0 < v < 1. A schematic illustration of the RG flow is shown
in figure 3.2. Thus it should be clear that the one-dimensional Ising model does not
contain any phase transitions at finite temperatures.

FIGURE 3.2: Schematic illustration of the RG flow for the one-dimensional
Ising model.
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3.3.2 Two-dimensional Ising Model on a square lattice

The one-dimensional Ising chain discussed in the previous section can be easily gen-
eralised to two dimensions. Rather than having a single line of spins, the spins now
occupy a two-dimensional lattice and are connected to their nearest neighbours.
There are a multitude of different two-dimensional lattices, which can change the
behaviour of the Ising model. In this section we will consider a square lattice with
periodic boundary conditions, where every spin is connected to four nearest neigh-
bours. We will refer to this model as the two-dimensional square Ising model. The
spins are now labelled by two indices: si,j where i and j denote the horizontal and
vertical positions on the lattice respectively. The Hamiltonian can then be formu-
lated as

H = −J ∑
i,j

si,j(si+1,j + si,j+1). (3.29)

While this models appears to be a straightforward generalisation of the one-dimensional
Ising chain to two dimensions, the analytic results as were obtained for the one-
dimensional Ising model are not so simple to derive.

Fortunately, Onsager showed nearly twenty years after the introduction of the model
by Ising that this model can be solved in the thermodynamic limit[49]. The very
lengthy calculations will not be repeated in this thesis, rather the results will be
quoted as given. Onsager showed that the free energy in the thermodynamic limit
can be written as

− β f = ln 2 +
1

8π2

∫ 2π

0
dθ1

∫ 2π

0
dθ2 ln

(
cosh2 2K− sinh 2K(cos θ1 + cos θ2)

)
.

(3.30)
This function is not analytic for all values of K and in fact displays a phase transition.
The point where this phase transition occurs was postulated by Onsager, and later
proved by Yang[50] to be:

Kc =
1
2

ln (1 +
√

2), (3.31)

where Kc is the critical value for K where the phase transition occurs. At this critical
point the system is said to go from an ordered to a disordered state. By an ordered
state is meant a state where all the spins all either pointing up or down, while in the
disordered state the spin directions are distributed randomly. The ordered phase is
characterised by constant two-spin correlations, while the disordered phase is char-
acterised by an exponential decay with distance between the spins in the two-spin
correlations. This phase transition is then characterised by an order parameter: the
magnetisation M. In the ordered state M will be ±1, while in the disordered state
it will be 0. The system is then said to undergo a spontaneous symmetry breaking
when it crosses the critical point, since the ground state is invariant under a global
spin flip transformation in the disordered state just like the Hamiltonian, while in
the ordered state performing a global spin flip transformation changes the sign of
M. The ground state of the system thus no longer contains the same symmetries as
the Hamiltonian and is then said to have broken the symmetry.

Finite-size scaling

Since the numerical analysis of this thesis will be concerned with finite systems,
some finite-size corrections need to be made to the analytic results in the thermo-
dynamic limit. For a second-order phase transition the finite-size effects of critical
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phenomena can be extracted from the size dependence of the free energy. This scal-
ing of the free energy is described by the scaling ansatz[51]:

F(L, T) = L−(2−α)/νF (tL1/ν), (3.32)

where α and ν are the usual critical exponents, L is the size of the system, t is the
reduced temperature T/Tc− 1 and F is a function of the scaled variable tL1/ν. Since
the various thermodynamic quantities of a system can be expressed in terms of
derivatives of F, one can get the scaling forms for the thermodynamic quantities:

M = L−β/νM0(tL1/ν), (3.33)

χ = Lγ/νχ0(tL1/ν), (3.34)

C = Lα/νC0(tL1/ν). (3.35)

HereM0, χ0 and C0 are the scaling functions and again β and γ are the usual critical
exponents. These functions are what actually will be measured in finite-size calcula-
tions, such as Monte Carlo simulations. This scaling ansatz is only taken to be valid
for sufficiently large system sizes and temperatures close to the critical temperature
Tc.

Likewise for systems with periodic boundary conditions undergoing a second-order
phase transition (where the correlation length diverges), a simple relation between
the critical temperature at the thermodynamic limit Tc and the apparent finite-size
critical temperature Tc(L) exists:[52]

Tc(L) = aL−1/ν + Tc. (3.36)

Here a is a scaling parameter. This particular equation will be useful in determining
Tc from the neural network analysis as described in chapter 4, where the neural
network is only capable of determining Tc(L).

Renormalisation Group equations

A renormalisation similar to the even-odd spin renormalisation that was applied to
the Ising chain can be applied to the two-dimensional Ising model on a square lat-
tice[53]. Because we are now dealing with a two-dimensional problem, the ’even’
spins now lie on alternate diagonal rows in the square lattice. This means that the
remaining ’odd’ spins form a π/2-rotated square lattice with a lattice spacing in-
creased by a factor

√
2. The lattice transformation is shown schematically in figure

3.3. Since none of the ’even’ spins that are summed over couple to any of the other
’even’ spins being summed over (the Ising model has nearest-neighbour interactions
only), the sum over these ’even’ spins for every ’odd’ site can be performed indepen-
dently. For ’odd’ site (i, j) the sum is

∑
si,j=±1

exp [Ksi,j(si−1,j + si+1,j + si,j−1 + si,j+1))]

= 2 cosh [K((si−1,j + si+1,j + si,j−1 + si,j+1)]. (3.37)

While the form of the function is similar, there is a major difference between the one-
dimensional case and this case. In the one-dimensional case there were only two
cases, all spins aligned or anti-aligned. This allowed us to write the result in terms
of a single interaction parameter K′.



34 Chapter 3. Theoretical background

FIGURE 3.3: Schematic picture of the lattice transformation under a RG
step. The initial lattice is shown in black. The green lattice is the new lattice
after the RG step, corresponding to the odd-numbered spins on the original
lattice. The (even-numbered) spins which are integrated out lie on the red

lattice.

Now there are three cases: all spins aligned, one anti-aligned pair and zero mag-
netisation. Since the original Hamiltonian only has the single interaction parameter
K, it is not going to be possible to rewrite the renormalised Hamiltonian in its origi-
nal functional form. Instead we take a trial form with three renormalised interaction
strengths:

2 cosh [K(si−1,j + si+1,j + si,j−1 + si,j+1)]

= ∆(K) exp[K′1(si−1,jsi,j−1 + si+1,jsi,j−1 + si−1,jsi,j+1 + si,j+1si+1,j)

+K′2(si−1,jsi+1,j + si,j−1si,j+1) + K′3si−1,jsi+1,jsi,j−1si,j+1]. (3.38)

The new interactions can be understood as the renormalised nearest-neighbour cou-
pling (K′1), a new interaction between next-nearest neighbours (K′2) and a new in-
teraction between the four spins at the vertices of any square of the lattice (K′3). A
relation between K and the new couplings can be derived in the same manner as for
the Ising chain. We consider the now four distinct cases:

2 cosh 4K = ∆(K) exp [4K′1 + 2K′2 + K′3] (3.39)
2 cosh 2K = ∆(K) exp [−K′3] (3.40)

2 = ∆(K) exp [−2K′2 + K′3] (3.41)
2 = ∆(K) exp [−4K′1 + 2K′2 + K′3], (3.42)

since the case with zero magnetisation is now split into two cases: one with two
anti-aligned neighbouring pairs and one with four anti-aligned neighbouring pairs.
By solving this set of equations we can get solutions for the renormalised coupling
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constant:

K′1 =
1
4

ln (cosh 4K) (3.43)

K′2 =
1
8

ln (cosh 4K) (3.44)

K′3 =
1
8

ln (cosh 4K)− 1
2

ln (cosh 2K) (3.45)

∆(K) = 2 cosh1/2(2K) cosh1/8(4K). (3.46)

Our renormalised Hamiltonian is now of another functional form, which means that
the renormalisation procedure outlined above can not be iterated again and again, as
was done for the Ising chain. It is possible to derive a flow if we make the assumption
that K′3 will not matter in our calculations, so that it can be ignored. We will do the
same to the next-nearest neighbour interactions K′2, but since K′2 is positive definite
and will thus strife for aligned spins, its presence is approximated by including it in
a new nearest neighbour coupling parameter

K′ = K′1 + K′2. (3.47)

The model is then again of the same functional form as the original Hamiltonian,
so that the process can be repeated. This gives us a recursion relation for the new
renormalised coupling constant:

K′ =
3
8

ln (cosh 4K). (3.48)

∆(K) is kept the same.

The recursion relation (3.48) has three fixed points:

K0 = 0, (3.49)
K∗ = ∞ and (3.50)
Kc ≈ 0.506981. (3.51)

The stability of these points to linear order can again be checked by taking the
derivative of the map, ∂K′:

∂K′ =
3
2

tanh 4K. (3.52)

For K0 the derivative is ∂K′ = 0, so K0 is a stable fixed point. For K∗ the derivative is
∂K′ = 3/2 > 1, so the point should be unstable, however it is nonsensical to consider
deviations around infinity and from the form of equation (3.48) it is clear that K′

grows for each new iteration with sufficiently large K. Since K′ just grows larger and
larger in this limit, K∗ is said to be stable. Kc has ∂K′ ≈ 1.449 > 1, so the fixed point
is unstable. This means that the RG flow will flow towards K0 for K0 < K < Kc
and towards K∗ for Kc < K < K∗. To check that the assumption to ignore K′3 was
permitted, we can calculate K′3 at the critical point Kc. We get K′3 ≈ −0.053, which
suggests that the four-spin coupling is small at the critical point and can be dealt
with in perturbation theory. Figure 3.4 shows a schematic illustration of the RG
flow.
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FIGURE 3.4: Schematic illustration of the RG flow for the two-dimensional
Ising model.

Scaling relations

From the RG equations derived above it is also possible to derive a scaling form
of the free energy f ≡ 1

L ln Z near the critical point. This is particularly useful for
deriving critical exponents. From the expressions for the renormalised coupling pa-
rameters we can derive the renormalised free energy:

f (K′) = 2 f (K′)− ln ∆(K). (3.53)

Since we are interested in the region near the critical point and ln ∆(K) is analytic in
K, we can neglect this term. A more general recursion relation between the singular
part of the free energy can be written as

fs(K) = b−d fs(K′), (3.54)

where in our example b =
√

2, which represents the change in nearest-neighbour
distance, and d = 2 for dimensionality. If we are close to the critical point Kc we can
express K′ in terms of a linearised recursion relation:

K′ = Kc +
dR
dK

∣∣∣
K=Kc

(K− Kc) + . . . , (3.55)

where R is the map between K′ and K: K′ = R(K). This can be rewritten in terms of
δK′ = K′ − Kc and δK = K− Kc

δK′ = λδK = byδK. (3.56)

Here λ = dR
dK

∣∣∣
K=Kc

. This is written as by, since subsequent application of the RG

transformation yields λ(b)λ(b) = λ(b2). The singular free energy can now be ex-
pressed as

fs(Kc + δK) = b−d fs(Kc + byδK). (3.57)

Since Kc is a constant this is equivalent to

fs(δK) = b−d fs(byδK). (3.58)

We can rewrite δK in terms of the reduced temperature t:

δK = Kt. (3.59)

Since K is finite at the critical point, the singular free energy is written as

fs(t) = b−d fs(byt). (3.60)

This equation should hold for any b, so we can set b equal to b = |t|−1/y, so that

fs(t) = |t|d/y fs(t/|t|). (3.61)
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With this form of the free energy we are able to derive critical exponents from our
RG transformations. For example, the specific heat is defined as

CV = −T
∂2F
∂T2

∣∣∣
V

, (3.62)

where F = L f = ln Z. In a second-order phase transition, such as the one present
in the two-dimensional Ising model, second derivatives of the free energy will have
a singularity. For the specific heat this singularity is usually characterised by CV ∝
|t|−α, where α is the critical exponent related to CV . This means that the singular free
energy has to be proportional to fs ∼ |t|2−α, so d/y = 2− α and

fs(t) = |t|2−α fs(t/|t|). (3.63)

Since we set by = λ we can find y:

y =
ln λ

ln b
(3.64)

=
ln(3/2 tanh 4Kc)

ln
√

2
(3.65)

≈ 1.070, (3.66)

so that
α = 2− d

y
≈ 0.131. (3.67)

The exact result from Onsager’s solution is α = 0, so we are still a ways off. More
involved RG calculations of the two-dimensional Ising model are able to get much
more accurate results. Simple RG calculations such as this one are able to provide
insights to the critical behaviour of the model however, and was included in this
thesis to compare to the flow of configurations of restricted Boltzmann machines.
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3.3.3 Two-dimensional AF Ising Model on a triangular lattice

Another model which appears very similar to the two-dimensional Ising model on a
square lattice is the two-dimensional anti-ferromagnetic Ising model on a triangular
lattice (referred to in short as TIAF). The Hamiltonian looks similar to that of the
two-dimensional square Ising model:

H = J ∑
(i,j)

sisj, (3.68)

where (i, j) indicates the sum over all nearest neighbours of site i. Note that the
minus-sign in front of the interaction strength J has disappeared and that J > 0 still
holds. This change means that the system will prefer to anti-align spins rather than
align them as for the Ising model on a square lattice. Since the system is on a trian-
gular lattice the number of nearest neighbours has increased to 6 compared to 4 on
a square lattice.

However, these seemingly simple changes lead to drastically different behaviour of
the model. To see how the system behaves in the low-temperature limit we first con-
sider a single triangle lattice, such as the one shown in figure 3.5. There are 23 = 8
different spin-configurations possible on this lattice. Of those 8, 2 are the states with
all three spins pointing either all up or all down, as in figure 3.5a and its spin-flipped
state. Obviously these states have the highest energy of all possible states since none
of the spins anti-align. The 6 other states will constitute of states with either two
spins up and one down or one spin up and two down, one of these configurations is
shown in figure 3.5b. These states all have two anti-aligned spin pairs and thus all
have the same energy. On this simple triangle lattice the system thus has a sixfold
degenerate groundstate. Another way to look at this is to start the triangle configu-
ration with an anti-aligned spin pair. The third (and last) spin can be either pointing
up or down, it will not change the energy of the configuration. This ambiguity of
not having a preferred spin direction for a particular spin in a configuration is called
having a frustrated spin. This phenomenon of having frustrated spins is due to the
geometric frustration induced by the triangular lattice: the model is said to not ’fit’
on the lattice.

(A) Not frustrated (B) Frustrated

FIGURE 3.5: Spin configurations on a triangle lattice. Aligned spins have
a red line in between them, while anti-aligned spins have a green line in

between them.

This phenomenon stretches further than just on single triangle lattices, if one
considers the zero temperature ground state of this model on a triangular lattice



3.3. The Models 39

this frustration stretches to the entire lattice. The degeneracy of the groundstate
is quantified in terms of the residual entropy: the entropy of the system at zero
temperature. A lower bound for this system can be found quite easily. One possible
groundstate for the TIAF is shown in figure 3.6, where hexagonal spin configurations
with frustrated spins in the middle are shown. In this configuration a third of all
spins are frustrated, so that this configuration has a degeneracy of 2L/3. This gives
us a lower bound on the residual entropy:

S(0)
L
≥ 1

3
ln 2 ≈ 0.210. (3.69)

It is actually possible to analytically calculate the residual entropy for the TIAF, as
was first done by Wannier[54] in 1950. The residual entropy in the thermodynamic
limit is equal to

S(0)
L

=
3
π

∫ π/6

0
dω ln (2 cos ω) ≈ 0.338314. (3.70)

The TIAF actually does not undergo a phase transition, unlike the anti-ferromagnetic
Ising model on a square lattice. That being said, there is a transition from being
near frustrated ground states to pure temperature-induced disorder. There is no
phase transition associated with this change since there does not appear to be any
discontinuity in the free energy in the thermodynamic limit.

FIGURE 3.6: Example of frustrated ground state of the anti-ferromagnetic
Ising model on a triangular lattice. Sites with spins pointing in both direc-

tions have frustrated spins.
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The transition from order to disorder

Even though there is no phase transition, there are still indicators tracking the tran-
sition from frustrated groundstates to temperature-induced disorder. For example,
one could imagine that counting the amount of frustrated triangles versus not frus-
trated triangles would be an indication for the type of phase the system is in. This
can be quantified simply by summing over the spins on each triangle vertex. If we
sum over the upper triangle M and lower triangle O for each site, where the site is al-
ways the left-most corner of the triangle, we sum over all triangles in the triangular
lattice. The individual summations of the triangles can give 4 possible outcomes:

∑
Mi

si =


−3, all spins down
−1, frustrated
1, frustrated
3, all spins up

, ∑
Oi

si =


−3, all spins down
−1, frustrated
1, frustrated
3, all spins up

. (3.71)

We can then obtain a normalised triangle-histogram by summing over all sites and
dividing by the number of sites L and 2 for counting each site double. The results
of such a calculation is shown in figure 3.7, using Monte Carlo simulations at low
temperature (T = 0.1) and high temperature (T = 4.5). The figure shows that this
triangle sum distribution behaves as we would expect.

For low temperatures we would expect nearly all triangles to be in a frustrated state,
as in the ground state configuration of figure 3.6. There is no preference for any spin
direction, so we expect the −1 and 1 sums to occur at the same frequency. In terms
of the histogram we would expect values of around ∼ 0.5 of −1 and +1, as we see
in the histogram of the low temperature simulation.

For high temperatures we expect total temperature-induced disorder, so that essen-
tially only the combinatorics of filling the triangular lattice plays a role. As was
discussed at the start of this section, for an individual triangle 1/4 of the possible
configurations are not frustrated configurations. These are the configurations with
all spins up or down, which correspond to the triangle sums +3 and−3 respectively.
The addition of multiple connected triangles does not change the probability of each
triangle configuration occurring. This can be seen by first considering an empty tri-
angular lattice. Creating a single triangle configuration anywhere on the lattice then
follows the combinatorics of the single triangle lattice. There is a probability of 3/4
to get ∑M si = ±1 and 1/4 to get ∑M si = ±3. If we build the lattice from here, by
placing spins in adjacent sites to the triangle, the new created triangles will have the
same sum probabilities. We can thus consider the individual triangle sum proba-
bility for each triangle on the lattice, so that we expect triangle sums with ±1 with
chance 3/4, and triangle sums with ±3 with chance 1/4. Since there is again no
preference for spins up or down, the chances will split evenly between the ± sums.
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FIGURE 3.7: Histograms of the normalised triangle sums obtained from
Monte Carlo simulations of the TIAF of size L = 36× 36 at two different

temperatures.

The two-spin correlation function 〈s(0)s(r)〉 could also be used as an indicator
for the phase the system is in. For low temperatures there is clearly a sense of order,
so one would expect a non-vanishing correlation function. For zero temperature
in the thermodynamic limit this correlation function can be calculated exactly, and
shown to behave as[55]

〈s(0)s(r)〉 ∝ ε0r−
1
2 cos (

2
3

πr), (3.72)

where ε0 is a constant defined in terms of ET
0 , which is the decay amplitude of the

pair correlation at the critical point of an isotropic ferromagnetic triangular lattice:

ε0 ≡
√

2(ET
0 )

2. (3.73)

For high temperatures we expect the correlations to vanish, since the spins are com-
pletely independent of each other. A comparison between the two-spin correlations
at low and high temperatures from Monte Carlo simulations is shown in figure 3.8,
where equation (3.72) is plotted with the low temperature case.
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FIGURE 3.8: Two-spin correlation 〈s(0)s(r)〉 as a function of the spin-
spin distance r from Monte Carlo simulations at different temperatures (blue

dots) of a 36× 36 lattice. The dashed red line is equation (3.72).
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3.3.4 xy-Model

Another classical model of spins is the xy-model. In this model the spins are no
longer restricted to the binary up-down states, but are modelled as two-dimensional
vectors free to point anywhere in the lattice plane (which we will call the xy-plane
for obvious reasons). The interaction between the spins is modulated by the dot
product between neighbouring vectors. The Hamiltonian of the system then takes
the following form:

H = −J ∑
(i,j)

si · sj (3.74)

= −J ∑
(i,j)

cos (θi − θj). (3.75)

Here the sum over (i, j) indicates a sum over all nearest neighbour pairs, si is the
spin-vector at site i and θi ∈ [0, 2π) is the angle of the spin-vector at site i with re-
gards to the x-direction. We consider the xy-model on a square lattice.

While the spins are now two-dimensional vectors, the Hamiltonian is still only de-
pendent on one degree of freedom per spin: the angle θ(x), defined at each site x
on the lattice. Since the spin-interaction only depends on the difference between the
angles of neighbouring spins, it is invariant under O(2) symmetry transformations
of s. An order parameter that breaks this symmetry is the average over all spins, the
two-dimensional vector 〈s〉 = s(cos φ, sin φ), whose direction and magnitude are
specified by the angle φ and the scalar s respectively. In an ordered phase where all
the spins are pointing in a similar direction 〈s〉 will point in the average direction of
all the spins with some finite s. In a disordered phase, where the spins are pointing
in random directions, 〈s〉 will vanish. For low finite temperatures the system will
actually be in a quasi-long-range order (QLRO) phase, where the two-spin correla-
tions decay algebraically, as will be shown. The average spin 〈s〉will actually vanish
in this QLRO phase in the thermodynamic limit.

Free energy in the low-temperature region

It is straightforward to see that having all spins pointing in the same direction will
minimise the energy. The ground state energy is invariant under spatially uniform
changes of θ(x), as this will just rotate all the spins but will not change their interac-
tions. This corresponds to a change of 〈s〉 in φ only. However, spatially non-uniform
changes, such as twists, splays and bends, will change the energy. This change in
energy can be formalised in terms of the elastic free energy[56]

Fel = F[θ(x)]− F[θ = const], (3.76)

where F is the free energy. This expression is expected to be analytic in ∇θ and can
be thought of as an expansion around the minimum free energy. Since any spatially
non-uniform deformation of θ(x) will increase the free energy, there will be no linear
term in ∇θ. The simplest form of Fel is then

Fel =
1
2

∫
d2x ρs[∇θ(x)]2, (3.77)

where ρs is called the spin-wave stiffness or helicity modulus. In two dimensions
ρs has the units of energy. Note that Fel is invariant under uniform displacements
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of θ and to uniform displacements and rotations of space. The helicity modulus can
be defined in terms of the difference between the free energy F[θ0], with boundary
conditions θ = 0 along the plane z = 0 and θ = θ0 at z = L, and the free energy F[0],
with boundary conditions θ = 0 at z = 0 and z = L:

ρs = lim
L→∞

2(F[θ0]− F[0])/θ2
0 . (3.78)

This quantity can then be interpreted as the inherent response or resistance to a force
that tries to impose a twist at the boundaries of the system.

Spin correlations and QLRO

To study more concretely the type of phase transition from an ordered to disordered
phase one might naively expect, we consider the spin correlation function:

〈s(x) · s(0)〉 = 〈cos[θ(x)− θ(0)]〉
= Re〈exp (i[θ(x)− θ(0)])〉. (3.79)

This expression can be evaluated explicitly in the low-temperature regime where we
approximate the Hamiltonian by Fel . The Fourier transforms of the fields fields are:

θ(x) =
∫ d2k

(2π)2 θ̂(k)e−ik·x, (3.80)

θ(0) =
∫ d2k

(2π)2 θ̂(k), and (3.81)∫
d2x [∇θ(x)]2 =

∫ d2k
(2π)2 k2θ̂(k)θ̂(−k). (3.82)

Note that because θ(x) is real, θ̂(−k) = ¯̂θ(k), where the bar denotes taking the
complex conjugate. This means that we can write the spin correlation function as

〈s(x) · s(0)〉 = Re
Z

∫
Dθ exp

[∫ d2k
(2π)2 (iθ̂k(e−ik·x − 1)− βρsk2

2
θ̂k θ̂−k)

]
(3.83)

=
1
Z

∫
Dθ exp

[∫ d2k
(2π)2 (−

βρsk2

2
θ̂k θ̂−k +

(1− e−ik·x)

k2βρs
)

]
(3.84)

= exp
[
−
∫ d2k

(2π)2
(1− eik·x)

k2βρs

]
, (3.85)

whereD is a short-hand notation for the product of integration as well as containing
any normalisation factors. The precise values of these factors are irrelevant in this
calculations since they cancel with the partition function fraction. To obtain the sec-
ond line we take the affine transformation θ̂k → θ̂k − i

k2βρs
(eik·x − 1) and its complex

conjugate for θ̂−k = ¯̂θk. The integration left over θ is the same as the partition func-
tion, so only equation (3.85) is left.

Unfortunately the integral over k can not be evaluated analytically. In the limit
|x| → ∞ this integral evaluates to[56]

lim
|x|→∞

∫ d2k
(2π)2

(1− eik·x)

k2βρs
=

1
β2πρs

(ln Λ|x|+ γE +
1
2

ln 8 +O((Λ|x|)−3/2), (3.86)
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where γE is the Euler-Mascheroni constant and Λ is a high wave-number cutoff. So
the spin correlation function scales as

〈s(x) · s(0)〉 ≈
(
Λ̃|x|

)− 1
β2πρs , (3.87)

where Λ̃ = ΛeγE+1/2 ln 8. The spin correlation function thus decays algebraically to
zero with a temperature dependent exponent. The system is said to have quasi-long-
range order, since the order-parameter correlation function decays with a power-law,
provided T/ρs is not zero or infinite. If the helicity modulus tends to zero, the spin
correlation function will decay faster than algebraically. In this case the system will
transition from QLRO to disorder when ρs → 0.

Vortex corrections to the free energy

The helicity modulus actually can decrease due to vortex corrections to the free
energy. In the xy-model topological defects known as vortices can appear. These
defects appear in order parameter space as singularities of the order parameter
〈s(x)〉 = s(cos θ(x), sin θ(x)). These points are characterised by integrating over
a closed contour C in real space enclosing these points:

v =
∮

C
∇θ · d~̀ = 2πk, k = 0,±1,±2, .... (3.88)

The integer k is called the winding number of the vortices enclosed by the contour.
A nonzero winding number indicates the existence of a vortex somewhere enclosed
in the contour.

An energy associated with the vortex can be calculated by introducing two non-
intersecting cuts Σ+ and Σ− along the line on which θ undergoes a discontinuity of
2πk. The vortex energy can be calculated using equation (3.77):[56]

Eel =
1
2

∫
d2xρs(∇θ)2

=
1
2

ρs

(∫
θ(∇θ) · dΣ−

∫
d2x θ∇2θ

)
(3.89)

=
1
2

ρs

(∫
θ+(∇θ) · dΣ+ +

∫
θ−(∇θ) · dΣ−

)
=

1
2

ρs(θ
+ − θ−)

∫ R

a
dr |∇θ|

= πk2ρs ln (R/a), (3.90)

where the observation that the configuration obtained by minimising the free energy
means that it will obey ρs∇2θ = 0 was used. a is the lattice constant and R the
linear dimension of the system. Note that this energy appears to diverge for large
system sizes. However, if another vortex is added the energy of the two vortices
with winding numbers k1 and k2 is

Eel = E1 + E2 + 2πρsk1k2 ln (R/r) (3.91)

= ρsπ(k1 + k2)
2 ln (R/a) + 2πρsk1k2 ln (a/r), (3.92)

where E1 and E2 are the energies of the isolated vortices and r is the distance between
the two vortices. Note that the divergent lnR will disappear if k1 = −k2, so when the
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vortex is accompanied by another vortex with an opposite winding number, which
we will call its anti-vortex. Generally, if the sum over all winding numbers in the
system is zero the divergent term will vanish.

It can be shown[56] that including thermally excited vortex pairs lead to a reduc-
tion in the macroscopic spin-wave stiffness ρR

s :

ρR
s = ρs −

ρ2
s

(d− 1)T

∫
ddx〈v⊥s (x) · v⊥s (0)〉. (3.93)

To get to this equation one has to split the gradient vs = ∇θ(x) of the microscopic
angle θ in an analytic and singular part arising from vortices. The velocity can then
be split in a longitudinal (analytic) and transverse (vortex) part v⊥ = ∇θsing. The
spin-correlation function is then also controlled by the renormalised ρR

s . The phase
transition can be understood as a transition from an ordered phase with an increas-
ing number of vortex pairs at increasing temperatures to a disordered phase where
the vortex pairs are said to unbind. This type of phase transition does not have a di-
verging derivative of the free energy to any order and is referred to as a phase tran-
sition of infinite order. In literature this phase transition is often called a Kosterlitz-
Thouless (KT) transition, named after the scientists who first described this kind of
phase transition[57].

Critical temperature

The location of the phase transition can be determined by analysing the RG equa-
tions near the critical point[58]. The critical temperature then occurs when the equa-
tion

Tc =
ρR

s π

2
(3.94)

holds. By these same RG equations it is also possible to infer the finite-size scaling
behaviour of the critical temperature:

Tc(L) =
π2

4c ln2(L)
+ Tc. (3.95)

where c is a constant to be fitted in the finite-size scaling analysis. The critical tem-
perature as determined by simulations is Tc ≈ 0.893 [59–61].
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3.3.5 Coulomb Gas

The next model is technically not a spin-model, although it can be cast to one. The
two-dimensional Coulomb gas on a square lattice is a model of charges interacting
with the discrete Coulomb interaction in two dimensions. The model can be formu-
lated simply as

H =
1
2 ∑

i,j
qiV(ri − rj)qj, (3.96)

where qi is the charge on site i, ri is the distance from the origin to site i, and V(r) is
the lattice Coulomb potential in two dimensions. The lattice Coulomb potential can
be derived from

∆2V(r) = −2πδr,0, (3.97)

where ∆2 is the discrete form of the Laplacian, defined as

∆2 f (r) = ∑̂
µ

[ f (r + µ̂)− 2 f (r) + f (r− µ̂)]. (3.98)

The µ̂ are unit vectors pointing from the site at r to its nearest neighbours. For the
square lattice this is just

{µ̂} = {x̂, ŷ}, (3.99)

where x̂ and ŷ are the usual unit vectors in the x- and y-directions respectively. The
square lattice is thus taken to lie in the xy-plane. An expression for the Coulomb
potential can be found by substituting the Fourier transforms

V(r) =
1
L ∑

k
Vkeik·r (3.100)

δr,0 =
1
L ∑

k
eik·r (3.101)

into equation (3.97):

1
L ∑
{µ̂}

∑
k

Vk

[
eik·(r+µ̂) − 2eik·r + eik·(r−µ̂)

]
= −2π

L ∑
k

eik·r. (3.102)

Performing the sum over {µ̂} and equating the terms of the k-summation gives:

Vk =
−2π

eik·x̂ + e−ik·x̂ + eik·ŷ + e−ik·ŷ − 4

=
π

2− cos k · x̂− cos k · ŷ (3.103)

This equation diverges if k → 0. This problem can be averted by defining a non-
diverting Coulomb potential:

V ′(r) ≡ V(r)−V(r = 0) =
1
L ∑

k
Vk(exp (ik · r)− 1). (3.104)
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We can rewrite the Hamiltonian in terms of this non-diverting potential:

H =
1
2 ∑

i,j
qiV ′(ri − rj)qj +

1
2

V(r = 0)∑
i,j

qiqj

=
1
2 ∑

i,j
qiV ′(ri − rj)qj +

1
2

V(r = 0)(∑
i

qi)
2. (3.105)

Since V(r = 0) diverges, configurations with ∑i qi 6= 0 will have infinite energy and
will thus not contribute to the partition sum and physics of the model. This means
that the final Hamiltonian for the system can be written as

HCG =
1
2 ∑

i,j
qiV ′(ri − rj)qj, (3.106)

with the extra constraint that
∑

i
qi = 0, (3.107)

so that the system is charge neutral and charge is conserved. The charges can take
the values q ∈ {−1, 1}, the model can then be thought of as spins interacting with
an interaction strength V ′(r) ∝ ln r.

Phase transitions and order parameters

It turns out that this model can be cast to a special case of the xy-model with al-
ternating interaction strengths ±1 between even-odd and odd-even nearest neigh-
bour sites at low temperatures[62]. This connection is used as an argument that the
Coulomb model contains a KT-like phase transition. Conceptually this phase tran-
sition can be understood as an unbinding of neutral charge-pairs to a mixture of
free charges and bounded neutral charge-pairs. This is conceptually similar to the
vortex-binding and unbinding of the regular xy-model. However, a derivation of
RG equations of the Coulomb Gas model[63] has shown a few differences between
the usual KT RG equations, which are believed to be obeyed for systems undergoing
a KT transition. This derivation, while approximate, provides an indication that the
system can undergo both a continuous (KT-like) phase transition and a discontinu-
ous (Ising-like) phase transition. This prediction is also supported by Monte Carlo
simulations[64], which measured two phase transitions in very close proximity to
one-another. They found

TKT ≈ 0.516± 0.008, and TI ≈ 0.532± 0.004, (3.108)

where the subscripts KT and I denote the KT-like and Ising-like phase transitions
respectively.

The different phase transitions are characterised by different order parameters. The
order parameter for the Ising-like phase transition is the same as the one typically
used for the anti-ferromagnetic Ising model on a square lattice: the staggered mag-
netisation. The staggered magnetisation is defined as

MS =
L

∑
i
(−1)iqi. (3.109)
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At low temperatures the system is most likely in the ground state, which consists of
a chequerboard pattern of positive and negative charges. In this state the staggered
magnetisation will be either +1 or −1, depending on the charge of the first site. The
ground state is thus considered doubly degenerate and they are separated by any
global odd-numbered translation of the charges.

The order parameter for the KT-like phase transition is similarly analogous to the
one used for the classical xy-model: the spin-wave stiffness. The inverse dielectric
constant serves the same role as the spin-wave stiffness in the xy-model. From linear
response theory one can derive an expression for the inverse dielectric constant[65]:

ε−1(k) = lim
k→0

[
1− 2πβ

k2L
〈qkq−k〉

]
, (3.110)

where qk is the Fourier transform of q:

qk ≡∑
i

qie−ik·ri . (3.111)

This quantity goes from 1 in the ordered (chequerboard) phase to 0 when the neutral
charge pairs decouple.

Finite-size scaling

Since we are interested in simulating the Coulomb Gas model at finite sizes, we will
need finite-size scaling relations to obtain information about physical quantities in
the thermodynamic limit. The scaling relations of physical quantities related to the
Ising-like transition (magnetisation, magnetic susceptibility) are expected to behave
according to equations (3.33)-(3.35).

Similarly, ε−1 is expected to scale as ρR
s in the xy-model. For a system of size L it

is expected to scale as[66]

ε−1(Tc, L) = ε−1
∞

[
1 +

1
2 ln L + c

]
, (3.112)

where ε−1
∞ ≡ ε−1(Tc, ∞) = 4Tc and c is a fitting parameter. The scaling of the critical

temperature for the KT transition is then the same as for the xy-model and is given
by equation (3.95).
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Chapter 4

Neural Network analysis of phase
transitions

The goal of this numerical analysis using neural networks is to probe the useful-
ness of neural networks in numerical condensed matter physics tasks. This chap-
ter will focus specifically on the detection of phase transitions in classical statistical
physics systems using neural networks, and what the neural network is actually
learning. We would expect the neural network to learn markers discriminating be-
tween phases related to the order parameter that is used for theoretical work. The
hope is then that the neural networks is also capable of distinguishing between mul-
tiple phases in matter where there might not be a clear order parameter present, or
where the phase separation is not so clearly defined.

To this end, we study a selection of classical statistical physics systems with neu-
ral networks. Each physical system displays different difficulties that can be used to
test the capabilities of the neural network. A brief theoretical introduction to each
of the treated physical models is given in chapter 3. An introduction to neural net-
works was given in chapter 2. Here we first consider the two-dimensional Ising
model on a square lattice. We then move on to the xy-model, followed by the anti-
ferromagnetic Ising model on a triangular lattice. We close the discussion with the
two-dimensional Coulomb Gas model. More detail regarding the Monte Carlo sim-
ulations that were done to obtain configurations to train the neural networks can be
found in appendix A.
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4.1 Two-dimensional Ising model on a square lattice

The archetypal classical model to study any novel numerical technique on is the
two-dimensional Ising model on a square lattice, as described in chapter 3. This is
because it is an extremely well studied model where analytic results are known in the
thermodynamic limit and finite-size effects are well documented in numerical stud-
ies. In this paper the two-dimensional Ising model is used to train a feed-forward
neural network as described in chapter 2 to distinguish between the ordered and
disordered phases of the system.

4.1.1 Training the neural network

To train the feed-forward neural network, Monte Carlo simulations of the two di-
mensional Ising model on a square L× L lattice were performed for multiple lattice
sizes L = {20, 30, 40, 50, 60, 70} at temperatures ranging from T = 1 to T = 3.5
with temperature steps ∆T = 0.1 using the Wolff algorithm[67] which is described
in more detail in appendix A. At each temperature 2000 configuration snapshots are
taken which will be used to feed the neural network.

The feed-forward neural network consists of an input layer of L× L neurons, which
is connected to a hidden layer of just 3 sigmoid neurons, which is sufficient to clas-
sify the different phases. The hidden layer then in turn connects to an output layer of
two softmax neurons, which correspond to the probability of the system being in the
ordered or disordered phase. The neural network is then fed a batch of configuration
snapshots with accompanying label. During the training phase the neural network
is only fed configurations sufficiently far from the critical point so that the phase of
the configuration is well established. The neural network measures its success by
calculating the cross entropy plus L2-regularisation terms of the weight matrix W
and biases b associated with each layer to make sure the values are kept sufficiently
small. The neural network then learns by minimising this value using the Adam
optimiser algorithm[68], which is a more sophisticated algorithm based on the basic
stochastic descent algorithm.

The system is trained using mini-batches of 10 configurations, with one epoch of
training consisting of 11500 mini-batches. The training continues until the loss-
function no longer seems to decrease and start to fluctuate around a fixed value,
which tends to happen after about 10 epochs of training. Once the training is com-
plete the system is fed a test set of configurations it has not seen in the training phase
to obtain an unbiased estimate of the true accuracy of the training. To analyse what
the neural network has learned it is fed all the configurations for each temperature
step at a time, where the average of the output neurons as well as the average of the
hidden layer neurons is calculated and saved for analysis.

4.1.2 Neural network results for a single system size

As an example of the kind of results one gets for a trained feed-forward neural net-
work we will discuss the results of the 50× 50 model in depth. Figure 4.1a shows
the typical average output values of the output layer neurons 〈y〉 of a trained feed-
forward neural network fed configurations of the 50× 50 Ising model at different
temperatures T. We then take the value where the system is most uncertain of which
phase it is in (when y1 = y2 = 0.5) as the critical temperature Tc(L). Via simple linear
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interpolation we find Tc(L) ≈ 2.3486. To find an approximation of the actual critical
temperature Tc, the finite-size critical temperature needs to be determined for mul-
tiple system sizes. Note that this would only be true if the neural network’s output
depends on some physical quantity which scales according to the scaling ansatz.
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(A) The average output values of the output layer
y (blue and red lines) at different temperatures T.
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(B) The input values of the hidden layer z(2) for
configurations at magnetisation M. Each colour

corresponds to a different hidden neuron.

FIGURE 4.1: Graphs of the neural values of a trained feed-forward neural
network with 3 hidden neurons of a 50× 50 square Ising model.

To investigate this further we consider the input values of the activation function
of the hidden layer z(2) as a function of M. The results of feeding the trained neural
network a multitude of configurations with corresponding magnetisation M on z(2)

is shown in figure 4.1b. Clearly there exists a linear relation between the output of
the hidden layer and the magnetisation, which leads us to believe the neural net-
work as effectively learned the order parameter of the system, without having any
feature-engineering done explicitly beforehand. This follows the same argument in
the appendix of the paper by Carrasquilla et al[25], where a toy model of a neural
network with only 3 hidden neurons was created which could separate the phases
of the two-dimensional Ising model.

4.1.3 A toy model to explain learned behaviour

To summarise Carrasquilla et al’s[25] argumentation, they started with a neural net-
work with 3 hidden perceptrons: neurons with a Heaviside step activation function.
The first perceptron activates when the system is in a state with mostly up spins, the
second perceptron activates when the system is in a state with mostly down spins
and the third perceptron activates when the system is unpolarised or in a state with
mostly up spins. They then define the first weight matrix and bias connecting the
input layer to the hidden layer as

W(2) =
1

N(1 + ε)

 1 1 · · · 1
−1 −1 · · · −1
1 1 · · · 1

 , and b(2) =
ε

ε + 1

−1
−1
1

 , (4.1)
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where 0 < ε < 1 is a parameter left free for now. In terms of an Ising configuration
x = (s1, s2, ..., sL×L) the input for the activation function of the hidden layer becomes

W(2)x + b =
1

1 + ε

 M− ε
−M− ε
M + ε

 . (4.2)

So the first perceptron activates when M > ε, the second perceptron activates when
M < −ε and the third perceptron activates when M > −ε. The parameter ε thus
controls the size of the region of M where two perceptrons are active to distinguish
between the ordered and disordered state and is taken to be 0 < ε � 1. The output
layer can then be rather arbitrarily chosen to be

W(3) =

(
2 1 −1
−2 −2 1

)
, and b(3) =

(
0
0

)
. (4.3)

This particular parametrisation guaranties that the output neuron for the ordered
state will be active if only the first or second perceptron are active. If the third per-
ceptron is active but the first perceptron is not, the output neuron for the disordered
state will be active. This simple toy neural network is then able to distinguish be-
tween the ordered and disordered state for a given Ising configuration by effectively
having learned the magnetisation. We state that this argumentation then also holds
for the numerically trained neural network, which showed a clear linear dependence
in the hidden layer on the magnetisation of the given Ising configuration. Thus we
say that our neural network has effectively learned the magnetisation, and so the
order parameter, of the system by itself.

4.1.4 Extrapolating to the thermodynamic limit

Since the system has learned to distinguish the different phases using a physical
quantity of the system, finite-size scaling can be used to extrapolate the predicted
critical temperature. By training 10 neural networks on systems of different sizes
and obtaining the average of the finite-size critical temperature of these systems of
different sizes, one is able to fit the finite-size scaling equation (3.36) with ν = 1 to the
data. We obtain using a weighted least-squares method the parameters a = 2.7± 1.3
and Tc = 2.254± 0.029, where the uncertainty corresponds to a 2σ deviation. As can
be seen in figure 4.2, the error for the 20× 20 system is quite large, a lot larger than
the other system sizes. This is due to some of the neural networks settling into un-
favourable minima of the cost function, never reaching an acceptable accuracy. This
is a consequence of training the 10 neural networks from different initial parame-
ter values, but keeping the same learning rate. Nevertheless the obtained critical
temperature Tc after just single training of the neural network for relatively few dif-
ferent system sizes is remarkably accurate. Figure 4.2 shows the least-squares fit of
equation (3.36) to the measured Tc(L).
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FIGURE 4.2: Measured critical temperatures Tc(L) of a two-dimensional
Ising model on a square lattice at different system sizes L× L obtained from
a feed-forward neural network plotted against the inverse system size 1/L.
The finite-sized critical temperatures averaged over 10 FNN iterations are
displayed as orange dots. The errorbars show the standard deviation of the
average. The blue line is a weighted least squares fit of equation (3.36) with
ν = 1 to the data. The grey dashed line is the analytic critical temperature

in the thermodynamic limit Tc.

4.1.5 Adding a convolutional layer

While the results for the feed-forward neural network are already enough to differ-
entiate between the different phases in the Ising model, that might not be the case
for more complicated models. That is why this subsection will focus briefly on the
application of a convolutional neural network (CNN) as described in chapter 2 on
the Ising model. We start with a relatively simple convolutional neural network of 4
filters of size 2× 2 moving with unitary stride over the configurations. The config-
urations are padded such that periodic boundary conditions apply. The input layer
then connects to the convolutional layers consisting of these 4 filters. The convolu-
tional layer is then flattened and connects to a hidden layer of 3 sigmoid neurons,
which connects to the output layer of 2 softmax neurons. Note that no pooling layer
was used.

Training the convolutional neural network in the same way as was done for the
feed-forward neural network gives excellent numeric results. The accuracy rate is
near the 99% for the test set, with a cross entropy of order O(10−3). However, we
are more interested in what the neural network has learned now that it has added
a convolutional layer. By comparing the input arguments of the hidden layer z(2)

to the magnetisation M one can see that the linear relation of the feed-forward neu-
ral network has disappeared. If we compare z(2) to the energy E however, a linear
relation is once again visible. The z(2)-outputs for a trained convolutional neural
network trained on a 20× 20 Ising model as a function of the configuration energy
E and magnetisation M is shown in figures 4.3a and 4.3b respectively. While the
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trained neural network clearly shows a linear relation between the hidden layer in-
puts and the configuration energy E, this is not the case for CNN trained on larger
Ising models. Figures 4.3c and 4.3d show z(2) as functions of E and M respectively
for a 50× 50 Ising model. The system appears to now have learned both the mag-
netisation and the energy of the system. Further analysis of other system sizes shows
differences in which hidden neurons learns what. Sometimes two hidden neurons
have learned the magnetisation, while only one neuron is concerned with the energy
of the system. The results seems dependent on the learning rate and batch size that
are used to train the system.
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FIGURE 4.3: Hidden layer input arguments z(2) of a trained convolutional
neural network as functions of the magnetisation M and energy E for Ising
models of sizes 20× 20 and 50× 50. The different colours correspond to the

different hidden neurons.

While at first glimpse it may seem useful to use both the magnetisation and energy as
indicators for the phase transition, an finite-size scaling analysis of the final trained
systems shows no improvement in accuracy. In fact, the scaling seems worse, giving
an underestimation of the expected critical temperature. The results of the finite-size
scaling analysis using equation (3.36) is shown in figure 4.4. The estimated critical
temperature is Tc = 2.224± 0.0021, where the uncertainty has been underestimated
since no uncertainty in the finite-size critical temperatures were included. This leads
us to conclude that while a convolutional neural network can be a great asset to learn
different physical quantities, blind application of the network might not always give
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the optimal results. Because of the sheer amount of free parameters the neural net-
work is unlikely to end up in its global minimum of the loss function. Adding a
convolutional layer to the neural network increases the complexity of the network
(and thus the amount of local minima in the cost function), causing the predictability
of the final trained network to decrease. For finite-size analyses this predictability is
necessary to ensure the network always learns the right parameters for every system
size such that the finite-size scaling is consistent. This predictability problem may
be partially circumvented by proper feature-engineering based on the system. This
problem of making sure the finite-size scaling is correct is also prevalent in the xy-
model, as is evident from Beach et al[24] and will be discussed later in this chapter.

The neural network analysis of the two-dimensional Ising model on a square lattice
has shown us that even a simple feed-forward neural network is capable of learn-
ing, without any feature-engineering, the order parameter of the system to be able
to distinguish between the two phases. Precisely because it has learned a physical
quantity we are able to perform standard extrapolating procedures, such as fitting
the finite-size scaling equations one would use for Monte Carlo simulations to the
data. This has shown us that neural networks can be a viable tool to study phase
transitions numerically while still being able to get physically meaningful results
from it, at least for relatively simple models. The rest of this chapter will be con-
cerned with further developing and studying the results of neural network analysis
on more complicated physical systems.
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FIGURE 4.4: Measured critical temperatures Tc(L) of the two-dimensional
Ising model on a square lattice at different system sizes L× L obtained from
a convolutional neural network plotted against the inverse system size 1/L.
The finite-size critical temperatures are plotted as orange dots. The blue line
is a least squares fit of equation (3.36) with ν = 1 to the data. The grey

dashed line is the expected critical temperature.
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4.2 xy-model

A system which displays an entirely different phase transition than the Ising model
is the xy-model. While the system can still transition from an ordered (spins tend
to point in the same direction locally) to a disordered state, like the Ising model, the
O(2) symmetry is actually preserved during the phase transition. So the xy-model
does not experience spontaneous symmetry breaking as the Ising model did. The xy-
model undergoes what is called a Kosterlitz-Thouless (KT) transition, as explained
in section 3. Here we try to learn the KT-transition using neural networks.

4.2.1 Applying a feed-forward neural network

Naively we might start with a simple feed-forward neural network (FNN). Apply-
ing a neural network to configurations of the xy-model (obtained using Monte Carlo
simulations with Wolff’s algorithm[67]) gives reasonably acceptable accuracy rates
of the FNN, around 88% over the test set within 20 epochs. A further analysis of the
results for the different lattice sizes shows that the scaling of the critical temperature
Tc(L) for different lattice sizes L× L does not scale as expected. Figure (4.5) shows
measured critical temperatures as a function of the lattice size. The figure clearly
shows that the scaling of the critical temperature does not follow the expected scal-
ing behaviour from equation (3.95). This is an indication that the neural network
has not learned any physical observable, at least not consistently the same on for the
different system sizes.

An analysis with just 3 hidden neurons similar to the one done in the previous sec-
tion shows no indication that the system has learned the magnetisation or energy
to distinguish between the two phases. This ambiguity in what it has learned is
likely a result of the system settling into a local minimum of the loss-function, which
does not appear to correspond to any obvious physical quantities. This is a com-
mon problem in neural network literature and the consensus seems to be that as
long as the local minimum is performing well enough, the neural network has suc-
cessfully learned to perform its task. However, to improve on the performance of
these unrestricted neural networks settling into local minima some changes can be
made. These changes can either be of the network itself, for example by adding a
convolution layer or by placing restrictions on the fitting parameters, or by chang-
ing the format of the inputted data. In this section we will follow the lead of Beach
et al[24] and apply a convolutional neural network to the configurations, as well
as performing some feature-engineering to feed the convolutional neural network a
vortex configuration instead of an angle configuration.
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FIGURE 4.5: Plot of the measured critical temperature Tc(L) using a
trained feed-forward neural network for different lattice sizes L × L of the

xy-model. The grey dashed line is the expected value of Tc.

4.2.2 Adding a convolution layer

One thing that might improve the performance of the neural network is to add a
convolution layer in front of the hidden layer. By adding a set of filters which stride
across the input configuration, the neural network might be able to pick up local
translation invariant features of the system, such as the energy between neighbour-
ing sites or the vorticity. The convolutional layer consists of four 2× 2 filters which
stride over each lattice site of the input configuration, applying periodic boundary
conditions as padding. The number of hidden neurons is kept the same as for the
feed-forward neural network (100 hidden neurons). The results of the critical tem-
peratures as well as a least-squares fit of equation (3.95) is shown in figure 4.7. The
fit gives Tc = 1.029± 0.164, where again the uncertainty in Tc(L) was not taken into
account. While the result is near the expected value of Tc ≈ 0.893, the uncertainty is
still very high.

By looking at figure 4.7 one can see that the scaling of the finite-size critical tem-
peratures is not convincing. Once again the problem appears to be the ambiguity
in what the system picks up on. To get a better idea of what the neural network is
learning we might look at the filters of the trained network. For the CNN trained on
the 50× 50 configurations the filters f have the values

f1 =

[
0.283970 −0.230723
0.267527 −0.254183

]
, f2 =

[
−0.224006 −1.108324
−0.673558 0.622721

]
,

f3 =

[
0.822974 0.391843
−0.054578 0.181431

]
and f4 =

[
−0.577750 −0.826530
−0.620391 1.949122

]
. (4.4)

To make interpreting their forms more intuitive, the values have been transformed
into a heatmap picture, as shown in figure 4.6.



58 Chapter 4. Neural Network analysis of phase transitions

FIGURE 4.6: Heatmap of the four filters f for a trained CNN.

While it is possible to infer some information from these values, no clear conclu-
sion can be drawn from it. One might say that f1 appears to calculate the differences
between horizontally neighbouring sites and f4 calculates the difference between the
right down site and the three sites left, up and diagonal from it. The functions of f2
and f3 are less clear however, and as such no clear function of the convolution layer
appears to present itself. If we look at the filters f from CNNs trained on 40× 40 and
30× 30 configurations the filters have a very similar form, albeit with slightly dif-
ferent numerical values. The CNN trained on 20× 20 configurations has a slightly
different f2 while the rest of the filters are similar to the ones of CNNs trained on
larger configurations. The top left value is slightly higher (still negative) for this
CNN. This might be the reason why the scaling is off, because the CNN trained
on the smaller configurations might pick out slightly different quantities to use for
its discrimination between phases. This results in a slightly different finite-size crit-
ical temperature prediction than those of the CNNs trained on larger configurations.

This highlights the importance of consistency of the quantity used to discriminate
between phases. This is hard to remedy, because the outcome of gradient descent
in loss functions with many local minima is very much dependent on the initial
values chosen for the parameters, the kind of configurations the neural network
is fed as well as the learning parameters of the neural network. While for com-
puter science applications, such as discriminating between hand drawn numbers,
any well-performing local minimum will be sufficient, for physics applications the
local minimum the neural network chooses is crucial for finite-size scaling analysis.
In order to force the system in a particular direction we transform the initial angle
configurations to a vorticity configuration à la Beach et al[24].

4.2.3 Transforming the input configurations to vorticity configurations

To force the neural network to settle in a more clear minimum of the loss function so
that finite-size scaling will give the expected results, we transform the input config-
urations to vorticity configurations. This transformation is performed by explicitly
designing the convolution layer such that the hidden layer is essentially fed a trans-
formation of the original angle configuration to a vorticity configuration. To do this
the convolution layer consists of 4 filters f of the forms

f1 =

[
1 −1
0 0

]
, f2 =

[
0 1
0 −1

]
,

f3 =

[
0 0
−1 1

]
and f4 =

[
−1 0
1 0

]
. (4.5)
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FIGURE 4.7: Plot of the measured critical temperatures Tc(L) as a function
of the system size L × L (orange dots) obtained from a trained CNN. The

grey dashed line is the expected value of Tc.

These filters essentially take the angle differences of neighbouring sites which we
shall call ∆θ ∈ [−2π, 2π]. These angle differences can then be mapped to the range
(−π, π] by applying the saw function:

saw(x) =


x + 2π, x ≤ −π

x −π < x ≤ π

x− 2π x > π

. (4.6)

This function is applied to the angle differences corresponding to the four differ-
ent filters, which are then added together to give a discrete approximation of the
local vorticity as defined in equation (3.88). By performing a discrete sum over a
2× 2 square of lattice sites’ nearest neighbour angle differences, an approximation
of the local vorticity is made whose value is mapped to a lattice site on a new lattice.
This sum operation is then dragged over every single lattice site of the angle con-
figuration, using periodic boundary conditions where necessary. The result is a new
lattice where each lattice point corresponds to the value of one such sum of the angle
configuration. Applying the filters to each lattice site thus results in a transformed
configuration from angles on each lattice site to a local measure of the vorticity on
each lattice site.

By explicitly transforming the angle configuration to a vortex configuration using
a convolutional layer the hope is that the system will be able to distinguish between
the two phases better and in a more consistent manner. By implicitly designing the
convolutional layer as described above, the neural network can be trained on the
same xy-model configurations as before. The predicted finite-size critical tempera-
tures Tc(L) for different system sizes L× L with a least squares fit of equation (3.95) is
shown in figure 4.8. As is visible in this figure, the critical temperatures seem to fol-
low the finite-size scaling much better than the FNN and the CNN trained on angle
configurations. The least squares fit gives an estimation of the critical temperature
of Tc ≈ 0.8545 ± 0.0663, where again no error estimation of the finite-size critical
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temperature was included. Clearly this is a much better estimation of the critical
temperature as for the FNN and CNN, which falls more closely to the expected crit-
ical temperature of Tc ≈ 0.893. This result shows the power of feature-engineering
the input data to steer the neural network to a better performance.

However, by explicitly performing these kind of transformations on the input data
part of the allure of neural networks is lost. The main goal of neural network analy-
sis of classical statistical physics systems’ phase transitions is to study and compare
the learned observables of the neural network to the typical theoretical and numer-
ical tools used in these kinds of analyses. By explicitly transforming the input data
you are essentially taking one of the steps which would make sense to do in the the-
oretical understanding of the model and doing it for the neural network, rather than
seeing if it would figure it out on its own. While this makes it significantly easier
to get better results, as is evident from the comparison between the three different
neural networks used, part of the initial goal is lost. Ideally the neural network
would indeed learn to transform the angle configuration to a vortex configuration,
if this would lead to the best results, without any guidance by human hand. If that
would have been the case, a much stronger argument for the application of neural
networks to distinguish between phases of physical models would have been made.
The power of a neural network to adapt and successfully find a minimum of the loss
function which performs as we would like without any feature-engineering would
have been a strong argument for naive application of neural networks to physical
systems with unclear or hard to determine order parameters. Since this is not the
case however, it seems like application of neural networks still need a firm guiding
hand to get the network to do what we want. This lowers the neural networks ap-
peal to more conventional, and as of now more accurate, numerical methods (which
are often based on a theoretical understanding of the model) which are commonly
used alongside Monte-Carlo simulations to get meaningful physical results.
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FIGURE 4.8: Plot of the measured critical temperatures Tc(L) as a function
of the system size L × L (orange dots) obtained from a vortex CNN. The
blue line is a least squares fit of equation (3.95). The grey dashed line is the

expected Tc.
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4.3 Anti-ferromagnetic Ising model on a triangular lattice

The anti-ferromagnetic Ising model on a triangular lattice is a bit of a different model
compared to the others in this chapter. The model does not undergo a phase tran-
sition, but rather has a highly degenerate ground state due to geometric frustration.
The goal of this neural network analysis is then not to distinguish between two dif-
ferent phases and find the critical temperature, but to see if the network is able to
learn to discriminate between the frustrated groundstates and the high-temperature
disordered phase by itself.

4.3.1 Evaluating the thermometer

To train the neural network for this task, it is designed a bit differently than the
others. Rather than having two or more output neurons, a single output neuron
is used. This output neuron is then compared to the temperatures associated with
the configurations the network is fed, so that the neural network essentially acts as
a thermometer. The hope is then that the network learns to recognise the typical
frustrated configurations, compared to the purely disordered configurations. We as-
sume that it is easier for the network to recognise the differences by employing a
convolutional layer rather than just a single hidden layer. The convolutional layer
consists of 6 filters of size 2× 2. A hidden layer of 100 neurons is used. The system
is then trained on configurations obtained via Monte Carlo simulations in the tem-
perature range T ∈ [0.1, 4.5] with temperature steps of ∆T = 0.2. The network is fed
a random set of configurations over the entire temperature range. The Monte Carlo
simulations are repeated for the system sizes L = {21, 24, 30, 36, 42}.

The result for a temperature measurement for the CNN trained on a 42× 42 triangu-
lar lattice is shown in figure 4.9. Clearly the performance is very good: the measured
temperatures all fall very close to the Monte Carlo temperature. One thing to note
is that the errorbars increase for higher temperatures. This is somewhat expected,
since the higher temperatures include more noise and a wider spectrum of the pos-
sible configurations will be shown to the neural network. The performance of the
CNN trained on a 42× 42 lattice is in no way special. CNN’s trained on the other
system sizes showed similar behaviour. The 42× 42 result is merely shown as an
example of the learned behaviour.

To gain insight into what aspects of the physical model the neural network has
learned, it may be helpful to look at the form of the convolution filters. Rather than
giving the numeric values obtained after training, each individual filter can then be
visualised as a 2× 2 heatmap picture, shown in figure 4.10. It is difficult to obtain in-
sight from the pictures, but by realising that the blue and red squares have the largest
numeric difference, one can think of blue and red pairs as differences between the
spins corresponding to the sites. Then the upper three filters can be seen as taking
the difference between diagonal spins. The lower three filters seem to represent the
difference between a single spin and the three others. This is a rather weak argument
however, and we would like to find another way to really infer what the network
has learned.
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FIGURE 4.9: Temperature measurements from a trained CNN, TNN, as a
function of the input configuration temperature, T, at which they were gen-
erated in Monte Carlo simulations. The CNN was trained on a 42 × 42
anti-ferromagnetic Ising model on a triangular lattice. The blue dots show
the average temperature given by the CNN, with the errorbars indicating 1σ

of error. The red line is a linear function TNN = T for visual reference.

FIGURE 4.10: Heatmap representations of the six convolution filters of the
trained CNN. The colours run from blue (low) to red (high).

Another way to see what the network has learned, is to track the output of the
hidden layer for a set of configurations and to try and find a correlation between
physical quantities of those configurations. For the two-dimensional Ising model
this was a clear-cut procedure, the magnetisation is an obvious guess for a physical
quantity to check the learned behaviour against. For the anti-ferromagnet on a tri-
angular lattice this is less obvious. Since there is no phase transition, there is also no
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order parameter. One can think of other physical quantities that increase with tem-
perature, such as the average energy for example. In chapter 3 we also discussed that
the distribution of frustrated and unfrustrated triangles should change with temper-
ature, which is also something that a convolutional network might be able to pick up
on. To check these guesses, we run configurations through the trained CNN while
tracking the values of some of the hidden neurons. These outputs are then coupled
to the energy and triangle distribution of the configurations.

Figure 4.11 shows the transformed inputs for the hidden layer z(2) as a function
of the energy E of the inputted configurations. The inputs are grouped together in
groups of similar general form. Of these groups, two show near flat response to
the energy, meaning that their value does not really change as a function of energy.
This is quite peculiar, because this means that the inputs are also flat as a function
of temperature. These inputs thus correspond to inactive neurons, which give of a
near constant value for all inputs. Of the three groups left, all show some form of
linear behaviour, albeit with a lot of noise. We see this as an indication that the net-
work has indeed manage to learn the energy, or triangle distribution, of the physical
system. However, performance is clearly not optimal, as there is a lot of noise in
the response functions. A redesign of the CNN might be able to steer the network
towards a better performance.
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FIGURE 4.11: Figures of the transformed inputs of the hidden layer z(2)

as a function of the energy E of the inputted configuration. The figures are
grouped together in terms of similar responses to the input configurations.

Different colours correspond to inputs for different hidden neuron

4.3.2 A toy model learning the triangle sum histogram

To illustrate that the network is able to learn the triangle sum distribution we present
a toy model CNN. The convolution layer consists of 4 different 3 × 2 filters with
stride S = [x, y] = [1, 2]. That layer is then flattened and connected to two other
1× 1 filters with different biases and ReLu activation functions. The output of the
last convolution layer is then flattened and connected to four output neurons with
ReLu activation functions, where each neuron corresponds to a possible triangle sum
outcome. This way the network will effectively produce a histogram of the triangle
sum distribution.
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f M f O

1

0 0
1 0
1 1

 3

1 1
1 0
0 0


2

0 1
1 1
0 0

 4

0 0
1 1
0 1


TABLE 4.1: Convolution filters f corresponding to upwards pointing trian-

gles M and downwards pointing triangles O.

The four filters are designed such that they measure the triangle sums corre-
sponding to either the upwards or downwards pointing triangles. Since the config-
urations are fed to the CNN as a square L× L black and white image, special care
needs to be taken in the filter design with regards to the original triangular lattice.
The resulting filters are shown explicitly in table 4.1. Precisely because of the trian-
gular lattice and the design of the filters, taking the stride as S = [1, 2] makes sure
every triangle on the lattice is counted only once. The image is padded with periodic
boundary conditions as well.

Applying these filters on the original configuration, or image, then creates a L ×
L × 4 three-dimensional matrix. Each filter dimension, or third dimension, now
corresponds to each triangle defined by the filter. The convolution layer is then
flattened so that it now consists of a vector of triangle sum outcomes, ordered by
triangle type. The next convolution layer consists of two 1× 1 filters of values +1
and −1 respectively going through a ReLu activation function. The result is a two-
dimensional L2 × 2 matrix where the first filter corresponds to the positive triangle
sum outcomes only, since the negative outcomes equate to 0. Likewise, the second
filter corresponds to the negative triangle sum outcomes only. The matrix thus con-
sists only of the values 3, 1 and 0.

Next another convolution layer is applied. This layer has two filters, f± = ±1,
with an associated bias b± = ∓2. The output are again going through a ReLu ac-
tivation function. The result is a three-dimensional L2 × 2 × 2 matrix, where the
second dimension corresponds to the positive and negative triangle sums, and the
third dimension corresponds to the 3 and 1 outcomes. By flattening this matrix to a
one-dimensional vector we have a vector of four parts of length L2, each of which
corresponds to a different triangle sum outcome. The first part corresponds to trian-
gle sums with outcome 3, the second to 1, third to -1 and the last to -3.

The final step to obtain the triangle sum histogram is to connect the final vector
to the four output neurons. Since each part of the final vector corresponds to differ-
ent outcomes of the triangle sums, it suffices to define the weight-matrix connecting
the final vector to the output neurons as

W =
1
L2


L2︷ ︸︸ ︷

1 1 · · · 1
L2︷ ︸︸ ︷

0 0 · · · 0
L2︷ ︸︸ ︷

0 0 · · · 0
L2︷ ︸︸ ︷

0 0 · · · 0
0 0 · · · 0 1 1 · · · 1 0 0 · · · 0 0 0 · · · 0
0 0 · · · 0 0 0 · · · 0 1 1 · · · 1 0 0 · · · 0
0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 1 1 · · · 1

 . (4.7)
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Essentially this matrix separates and normalises the triangle sums as computed by
the foregoing convolution layers. Since the layers already take the triangle sums and
reduce them to values of 1 and 0, the normalisation just consists of summing over
all the triangle sums with the same values and dividing by the amount of triangles.
Figure 3.7 shows a schematic picture of the CNN design.

FIGURE 4.12: Schematic picture of the CNN design for counting triangles.
The blue circles with white lines indicate that the layer uses a ReLu acti-
vation function. The output layer is a fully connected layer with a weight

matrix given by equation (4.7).
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4.4 Two-dimensional Coulomb Gas

Now we consider a model which contains a less well-defined phase transition, the
two-dimensional Coulomb Gas. As discussed in chapter 3 there are arguments for
two different kinds of phase transitions (PT) in this model, a KT-like and an Ising-
like PT. There exists analytic argumentation based on approximate RG equations[66]
that predicts the existence of a KT-like transition followed by a second-order Ising-
like transition, which is further supported by numerical simulations[65]. The detec-
tion of the different PTs is usually done by tracking two different order parameters,
ε−1 and MS for the KT-like and Ising-like transition respectively, and extrapolating
to the thermodynamic limit using the finite-size scaling equations appropriate for
the type of transition. In this section we are interested in letting the neural network
detect the phase transitions, and extrapolating to the thermodynamic limit using
finite-size scaling.

To this end we obtain a set of configurations for a L × L lattice using Monte Carlo
simulations. Two sets are generated, one ranging over a large range of temperatures:
0.01 ≤ T ≤ 1.0 with ∆T = 0.01, and the other near the predicted critical tempera-
tures 0.4900 ≤ T ≤ 0.5495 with ∆T = 0.0005. This model is time-consuming to
simulate, which is why the range of system sizes is limited to L = {10, 16, 20, 30}.
These configurations can then be used to train the neural network. A couple of dif-
ferent training procedures and neural network designs will be used in this section.
First we consider a regular CNN trained on the low- and high-temperature phases
from just the first dataset. Next we consider a CNN trained on all three phases, us-
ing the second dataset to obtain configurations for the phase in between the KT-like
and Ising-like transitions. Finally we consider a confusion scheme FNN on the first
dataset, followed by a confusion scheme FNN on the second dataset.

4.4.1 CNN on the low- and high-temperature phases

We first consider a CNN with 4 filters of size 2× 2 moving with unitary stride on the
configurations padded with periodic boundary conditions. The convolution layer
has neurons with ReLu activation functions. The convolution layer is flattened and
connected to a hidden layer of 100 nodes with sigmoid activation functions. The
output layer consists of two nodes representing the two phases, with a softmax acti-
vation function. Only the first dataset over the large range of temperatures is consid-
ered. This makes it difficult to assign configurations for the in-between phase, which
is why the CNN is trained on the low- and high-temperature phases only. The inter-
esting results of this simulation will then be in what transition the neural network
will detect. Instead of linking the input of the hidden layer to physical quantities,
the learned quantity is only analysed in finite-size analysis. How the quantity scales
will then tell us whether the quantity is related to the Ising-like or KT-like transition.

The CNN reaches 100% accuracy within 20 epochs for all system sizes, where each
epoch consists of 1000 training steps based on mini-batches of size 100. The system
is only trained on low- and high-temperature configurations, where little ambiguity
about which phase the system is in exists. The values of the output layer Y of the
trained CNN is measured for all Monte Carlo configurations of the system size the
network was trained on. The resulting values are plotted in figure 4.13. The location
of the phase transition is then identified with the location where the network is most
uncertain, when Y1 = Y2 = 0.5. As can be seen in the figure, the critical temperature
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gets higher for larger system sizes.

Plotting the measured critical temperature per system size Tc(L) shows us that the
measured critical temperature scales according to the second-order Ising-like scaling
equation (3.36). The neural network has thus learned to identify the Ising-like tran-
sition. The measured temperatures fitted with equation (3.36) using a least-squares
method is shown in figure 4.14.

The least-squares fit gives an extrapolation of the critical temperature to the ther-
modynamic limit. It finds Tc = 0.53± 0.02, where the uncertainty corresponds to a
2σ deviation. This is an underestimation of the real uncertainty, since no uncertainty
in the network performance or extrapolation of the Y outputs to the 0.5-crossings
was included. The found critical temperature agrees with earlier simulations, which
found TI = 0.532 ± 0.004 [64]. However, the uncertainty range also includes the
critical transition for the KT-like transition TKT = 0.516± 0.008. We would like the
neural network to be able to differentiate between the two transitions, so that an
estimate of the critical temperatures for both transitions can be made. The result of
this neural network analysis is then that the network naturally tends to pick up the
Ising-like transition, as is evidenced by the finite-size scaling analysis.

This could also be expected by noting that the staggered magnetisation MS is a more
natural quantity to pick up from real-space configurations of the model. The inverse
dielectric constant on the other hand is defined in for k-space, and might be some-
thing the neural network is less keen to pick up on. It should also be noted that the
high-temperature phase obviously corresponds to a pure disordered phase, while
the low-temperature phase corresponds to an ordered state. Purely in terms of the
types of configurations the network gets to see, there is very little difference between
the Coulomb Gas configurations and the anti-ferromagnetic Ising model, which also
has the staggered magnetisation as order parameter. To circumvent this problem we
need configurations representing the in-between phase, so that the network is able
to learn two different order parameters.
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FIGURE 4.13: Output Y as a function of T of the CNN trained on the low-
and high-temperature phases. The output of Y1 and Y2 for the same sys-
tem size are related by colour, with Y2 corresponding to the brighter colour.

Different colour-pairs correspond to different system sizes.
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FIGURE 4.14: Finite-size scaling of the critical temperature at system size
L× L as measured by a CNN trained on low- and high-temperature phases.
The blue line is a fit of equation (3.36) to the datapoints, the orange dots, by

a least-squares fit.
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4.4.2 CNN on all three phases

To be able to train a CNN to differentiate between three phases, the network needs
to be fed configurations representing all three phases. The first dataset over a large
range of temperatures does not have enough configurations which can unambigu-
ously be qualified as being in the second (in-between) phase. Adding the second
dataset, ranging over a range of temperatures near the critical temperatures might
be able to give us configurations being in the second phase. However, since the two
phase transitions are so close to another, according to earlier simulations, even with
temperature steps as small as ∆T = 0.0005 it may be difficult to label configurations
which are unambiguously in the second phase.

Nevertheless, we will attempt to train a CNN with 8 filters of size 2 × 2, moving
with unitary stride. Again the filters are connected to neurons with ReLu activa-
tion functions. The convolution layer is connected to a hidden layer of 50 hidden
neurons with sigmoid activation functions. The output layer now consists of three
neurons with a softmax activation function. To train the network the training data
is divided in three parts. The first part consists of low-temperature configurations,
taken from the first dataset with a cut-off temperature of T1 = 0.4. The second part
is the high-temperature configurations, also taken from the first dataset, which run
from T2 = 0.6 to Tf = 1.0. The third part then consists of configurations in the
in-between phase taken from the second dataset, taking a temperature interval of
0.5255 < T < 0.5320.

The outputs Y of the trained CNN for L = {16, 20} is shown in figure 4.15. The
first row shows the output over the first dataset, while the second row shows the
output over the second dataset. While the behaviour of the output over the first
dataset seems fine at first glance, the locations of the phase transitions are a ways
off. The scaling is also not consistent between different system sizes. The output
over the second dataset also shows quite different behaviour for the two different
system sizes. Different divisions of the temperature for the in-between phase were
tried, as well as different distributions of the training configurations and different
learning parameters, but to no avail. It seems like the CNN is unable to learn to
differentiate between the three phases. Since this might be a problem to do with
unclear labelling of the data, we turn to the confusion scheme neural network next.
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FIGURE 4.15: CNN output Y for L = 16 (L = 20) on the left (right) for
dataset 1 on the first row and dataset 2 on the second row.

4.4.3 Finding the phase transition with confusion

Since the in-between region is hard to define, it may be useful to apply the confusion
scheme to try to find the locations of the phase transitions. We attempt to do this in
two different settings. The confusion scheme is first applied to the first dataset only,
to see if the confusion scheme picks up two or three phases and which phase that is.
After that we apply the confusion scheme to the second dataset as well, testing the
accuracy a(T′) on the second dataset only.

The confusion scheme is applied by cycling through the possible values for T′, train-
ing the neural network for 100 epochs per T′. Each epoch a save of the network state
is made, and an accuracy test over a separate test dataset not shown during training
is made. The iteration with the highest test dataset accuracy is then loaded after the
training is over to prevent working with an overfitted network. The accuracy is then
tested through all configurations for each temperature, taking the average over the
results of the entire temperature range.

The first dataset

The results for the accuracy per T′ is shown in figure 4.16 for L = {16, 20, 30}. L = 10
was omitted because no clear W-shape could be obtained. The expected W-shape
is clearly visible for all other system sizes. An extrapolation to the thermodynamic
limit can then be made by taking the middle-highest point of the W-shape as the crit-
ical temperature for that system size: Tc(L). By doing a finite-size scaling analysis
one can then find the critical temperature in the thermodynamic limit Tc. A compari-
son between the Ising-like and KT-like finite-size scaling shows that the Ising-like fit
is the closest match. The datapoint with the fit are shown in figure 4.17. The found
critical temperature is Tc ≈ 0.51 ± 0.14. The uncertainty is quite high since there
are only three datapoints, and since the confusion scheme took temperature-steps
of ∆T′ = 0.01 that is the highest precision possible. Unlike for the regular neural
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network analysis, there is no interpolation to infer Tc(L), so the results are stuck to
the used values for T′.

We take the results as an indication that the network is unable to differentiate be-
tween the three phases of the physical system with just the first dataset. The network
does find a single phase transition, which is the Ising-like transition. To try to find
both phase transitions present in the system we need to include the second dataset.
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FIGURE 4.16: Accuracy over the first dataset for 0.01 ≤ T′ < 1.00 for
L = {16, 20, 30} from left to right.
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FIGURE 4.17: Ising-like Finite-size scaling for Tc(L) found from the confu-
sion scheme for the first dataset.

The second dataset

Adding the second dataset to the set of configurations fed to the neural network
during the training phase does not seem to allow the network to learn two different
phase transitions. The training procedure of the confusion scheme network is the
same as for the first dataset, except now the configurations near the critical temper-
atures of the second dataset are also included in the training process. The accuracy
of the trained neural network is then tested on all the configurations of the second
dataset to hopefully find a VVV-shape depicting three different phase transitions.
Unfortunately this is not the case. Figure 4.18 shows a(T′) for L = 16 and L = 20.
Instead of a VVV-shape of even a W-shape, just a V-shape is found. The neural net-
work is unable to find a classifier to distinguish between the different phases within
dataset 2. Different learning parameters and configuration distributions were used,
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but to no avail.

This leaves us no choice but to conclude that the neural network is unable to dif-
ferentiate between the two phase transitions of the two-dimensional Coulomb gas.
The numerical technique can not be used to find an unbiased basis for finding out
if the model really has two separate phase transitions and three distinct phases. In
principle the neural network should be able to differentiate between Ising-like and
KT-like phase transitions, as indicated by the earlier neural network analysis done
on the Ising model and xy-model. In this case however, the network is unable to
differentiate. This is again an indication of the limited power of neural networks as
a naive tool to implement for physical systems.
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FIGURE 4.18: Accuracy over the second dataset for 0.49 < T′ < 0.5495
for L = {16, 20} from left to right.



73

Chapter 5

Restricted Boltzmann Machines
and spin models

This chapter breaks away from the focus of classifying different phase transitions
using neural networks, and rather focuses on another class of neural networks: re-
stricted Boltzmann machines (RBM). As described in chapter 2, RBM are a type of
generative unsupervised neural network. Their primary function is to model the un-
derlying probability configuration of the configurations it is fed as best as it can. The
RBM does this by minimising the difference between its own underlying probability
distribution p(v) and the probability distribution we wish to model q(v), where v is
a configuration of the visible neurons. The difference between the probability distri-
butions are measured via the Kullback-Leibler divergence (KL-divergence) given in
equation (2.25).

The main goal of this chapter is to figure out what kind of properties the RBM is able
to pick up from physical probability distributions, and whether there is any physical
relevance to these properties. Specifically we are interested in studying RBMs where
the hidden layer consists of less nodes than the hidden layer. The information en-
tropy in the hidden layer will then be less than the information entropy of the visible
layer. The RBM can then never retain the same amount of information when transi-
tioning from the visible to hidden layer, as done in block Gibbs sampling. The RBM
will thus have to make choices in what information to keep, which is conceptually
analogous to real-space RG’s relevant and irrelevant parameters. We aim to study
this by a combination of analytic and numerical arguments related to training a RBM
on both the one-dimensional and two-dimensional square-lattice Ising models. This
work is a continuation of preliminary work by Ter Hoeve[69].

This chapter will start with a discussion of the general structure of an RBM, followed
by a short recap of the results by Ter Hoeve, which will be followed by an exact
mapping of the one-dimensional Ising model to a RBM. We will then continue to an
analysis of a RBM with a restricted number of free weight-matrix components based
on translation invariance arguments. The RBM flow is then computed and analysed
for the different RBM designs. Finally a continuation of the one-dimensional results
to the two-dimensional Ising model is discussed, where the one free W-value case is
discussed in detail and a comparison to mean-field theory is made.
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5.1 An investigation into the general RBM structure

In this section the structure of an unrestricted RBM, meaning no restrictions are
placed on the weight-matrix W, is investigated. Some results of this investigation
may come in handy when discussing possible restrictions of the RBM. The only re-
striction set on the RBM is that the biases are 0. In analogy to the spins of the target
distribution, the possible values of the visible and hidden neurons are {+1,−1} as
opposed to the usual binary values {1, 0}. The energy-function for the RBM is then

E = ∑
i,a

viWiaha. (5.1)

From this we can derive the probability distribution of the visible neurons by sum-
ming over all possible hidden neuron values:

p(v) = ∑
{h}

p(v, h)

=
2N

Z

N

∏
a=1

cosh (
L

∑
i=1

viWia), (5.2)

where N and L are the number of hidden and visible nodes respectively, and Z is
the partition function of the whole probability distribution of the RBM p(v, h).

The RBM tries to minimise the KL-divergence (or rather maximise the likelihood,
which is equivalent to minimising the KL-divergence) to best represent the target
probability distribution q(v). The partial derivative of the KL-divergence (denoted
by KL) with respect to a weight-matrix component Wjb is

∂KL
∂Wjb

= −∑
{v}

q(v)
p(v)

∂p(v)
∂Wjb

= 2N ∑
{v}

q(v)
p(v)

[ ∂Z
∂Wjb

1
Z2

N

∏
a=1

cosh (
L

∑
i=1

viWia)

− 1
Z

N

∏
a 6=b

cosh (∑
i

viWia) sinh (∑
i

viWib)vj

]
=

2N

Z
∂Z

∂Wjb
− 2N ∑

{v}
q(v)vj tanh (∑

i
viWib). (5.3)

Here we have used that q(v) does not depend on W, Z does not depend on v and
∑{v} q(v) = 1. We want to update the weight-matrix components such that the KL-
divergence is at its global minimum. That corresponds to setting the partial deriva-
tives of the KL-divergence w.r.t. the weight-matrix components to 0. We can further
expand on the Z-term:

2N

Z
∂Z

∂Wjb
= 2N ∑{v,h} vjhb exp (∑i,a vihaWia)

∑{v,h} exp (∑i,a vihaWia)
, (5.4)
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so that the equation we need to solve for every Wjb weight-matrix component is

∑{v,h} vjhb exp (∑i,a vihaWia)

∑{v,h} exp (∑i,a vihaWia)
= ∑
{v}

q(v)vj tanh (∑
i

viWib). (5.5)

We can further expand on the left-hand-side of the equation. The denominator, Z,
can be evaluated further as

Z = ∑
{v,h}

∏
a

exp (∑
i

vihaWia)

= ∑
{v}

∏
a

[
exp (∑

i
viWia) + exp (−∑

i
viWia)

]
= 2N ∑

{v}
∏

a
cosh (∑

i
viWia). (5.6)

The numerator can be evaluated in the same vein:

∂Z
∂Wjb

= ∑
{v,h}

vjhb ∏
a

exp (∑
i

vihaWia)

= ∑
{v}

vj ∏
a 6=b

[
exp (∑

i
viWia) + exp (−∑

i
viWia)

]

×
[

exp (∑
i

viWib)− exp (−∑
i

viWib)

]
= 2N ∑

{v}
vj ∏

a 6=b
cosh (∑

i
viWia) sinh (∑

i
viWib). (5.7)

The equation that minimises the KL-divergence with regards to Wjb is now

2N

Z ∑
{v}

vj ∏
a 6=b

cosh (∑
i

viWia) sinh (∑
i

viWib) = ∑
{v}

q(v)vj tanh (∑
i

viWib). (5.8)

Since tanh−x = − tanh x, cosh−x = cosh x and sinh−x = − sinh x we can see
that this equation is invariant under global spin flips v→ −v just like the Ising spin
models we are considering. It is also invariant under a change of sign of all Wib.
It is not invariant under a translation vi → vi+1, unlike Ising models with periodic
boundary conditions.

We can compare the equations that minimise Wjb and Wj+1b to try and find other
symmetries, since q(v) is invariant under translations. Since both equations should
vanish, we can equate the two. By explicitly summing over vj = {−1,+1} and
vj+1 = {−1,+1} we get an equation which might give more insight in possible
symmetries between Wjb- and Wj+1b-solutions that minimise the KL-divergence. The
(vj, vj+1) = (1, 1) and (−1,−1) contributions in the configuration sums cancel each
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other, so that we end up with the final equation

2
(vj,vj+1)=(1,−1)

∑
{v}

q(v) tanh ( ∑
i 6=j,j+1

viWib + Wjb −Wj+1b)

−2
(vj,vj+1)=(−1,1)

∑
{v}

q(v) tanh ( ∑
i 6=j,j+1

viWib −Wjb + Wj+1b) =

2N

Z
[2

(vj,vj+1)=(1,−1)

∑
{v}

∏
a 6=b

cosh ( ∑
i 6=j,j+1

viWia + Wja −Wj+1a)

× sinh ( ∑
i 6=j,j+1

viWib + Wjb −Wj+1b)

−2
(vj,vj+1)=(−1,1)

∑
{v}

∏
a 6=b

cosh ( ∑
i 6=j,j+1

viWia −Wja + Wj+1a)

× sinh ( ∑
i 6=j,j+1

viWib −Wjb + Wj+1b)]. (5.9)

While this equation gives no obvious hard conditions, one can see that having Wja =
Wj+1a ∀a fulfils the equation since the sums in the hyperbolic functions will no longer
contain the j- and j + 1-terms and q(v) has translation invariance. The terms will
thus cancel out and vanish. This is by no means the only solution to the equation
however. If we take the condition to be true, that means that the weights are inde-
pendent of the visible layer, in other words independent of j. Since there is nothing
special about the j + 1-th site we took, it should hold for any other visible site.

With the weights independent of j equation (5.8) becomes

2N

Z ∑
{v}

vj ∏
a 6=b

cosh (VWa) sinh (VWb) = ∑
{v}

q(v)vj tanh (VWb). (5.10)

Again, since the equation only differs in the product of hyperbolic cosines for weights
of different hidden nodes there probably is a solution for which the weights are in-
dependent of the hidden sites. There seems to be no a priori indication that this is
the solution which minimises the KL-divergence the most.
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5.2 The Ising chain and the mean-field RBM

This section is an analytic and numerical analysis on the training of a RBM with
a single weight-matrix W value as per Ter Hoeve[69]. The choice to reduce L × N
weight-matrix W, where L and N are the number of visible and hidden neurons
respectively, to a matrix where every component is equal to W can be understood
as follows. In general the weight-matrix component Wia encodes the interaction
strength between the visible node i and hidden node a. Since we known that the
one-dimensional Ising chain is translation invariant, we can demand that the RBM
probability distribution is also translation invariant in the visible neurons. There are
multiple ways to enforce this. As was shown by equation (5.9) one way of enforcing
translation invariance is by removing the visible i-dependency of the weight-matrix
on the hidden nodes: Wia →Wa. The probability distribution now factorises over a:

p(v) =
1
Z ∑
{h}

exp (∑
i,a

viWiaha)

=
1
Z ∑
{h}

N

∏
a

exp (
L

∑
i

viWaha)

=
1
Z

N

∏
a

2 cosh (
L

∑
i

viWa). (5.11)

Since the optimisation of the KL-divergence with respect to each Wa will give a set
of N equal equations, a solution to this equation is sure to be a solution to the others
as well. This means that setting Wa = W is able to give us a minimum of the KL-
divergence as long as such a minimum also existed for Wa. Note that setting Wia =
W might not give the solution with the lowest KL-divergence, as we will see later
in this chapter. The greatest advantage of reducing the degrees of freedom of W to
one is that this allows us to take several analytic derivations where this would have
been impossible for a general W. p(v) can now be written as

p(v) =
2N

Z
(cosh WV)N , (5.12)

where V = ∑L
i vi. The partition sum is

Z = ∑
{v}

2N(cosh WV)N . (5.13)

We refer to this reduction of the W-matrix to a single W-value as the mean-field
RBM. For a comparison between the two-dimensional mean-field Ising model and
the mean-field RBM see section 5.7. Since the W-matrix is reduced to a single free
W parameter, the learning process of the RBM consists solely of minimising the KL-
divergence with respect to W. The KL-divergence depends on the probability distri-
bution of the Ising chain q(v):

q(v) =
1

ZIsing
∑
{v}

exp (K
L

∑
i

vivi+1), (5.14)

where K = βJ > 0 is the temperature-dependent interaction strength. The partition
sum is given in equation (3.10), which, for zero magnetic field (h = 0), can be written
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as
ZIsing = (2 cosh K)L + (2 sinh K)L. (5.15)

The minimum of the KL-divergence can be found by taking the derivative of the
KL-divergence with respect to W:

∂KL
∂W

= −∑
{v}

q(v)
p(v)

∂p(v)
∂W

= −∑
{v}

[
q(v)NV tanh (WV) + q(v)

1
Z

∂Z
∂W

]
. (5.16)

The second term on the right hand side can be significantly simplified by noting
that Z is independent of the configuration of v and that q(v) is normalised to 1.
Minimising the KL-divergence then comes down to solving the equation

∂ ln Z
∂W

= ∑
{v}

q(v)NV tanh (WV). (5.17)

Ter Hoeve does not solve this equation analytically, but rather finds numerical solu-
tions for finite-sized configurations using Mathematica. We repeated the numerical
calculations for a 6× 3 RBM trained on a Ising chain of 6 sites at a interaction strength
K, and repeated the calculation for a multitude of K-values in the range (0, 2.5]. This
results in a curve equating K to W such that the KL-divergence is minimised. The
resulting curve is shown in figure 5.1a. The final KL-divergence associated with the
solution of equation (5.17) is shown in figure 5.1b.
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FIGURE 5.1: Graphs showing the relation between W and K obtained by
solving equation (5.17) numerically for a 6 × 3 RBM, as well as the KL-

divergence of the trained RBM.

As is visible in figure 5.1, the single W-valued RBM is most inaccurate around K ≈
0.6, when the Ising chain is transitioning from its preference for disordered states in
the high temperature (low K) region to more ordered states in the low temperature
(high K) region. Note that while the Ising chain in the thermodynamic limit exhibits
no phase transition and is always disordered for any finite temperature, a finite size
system will show different behaviour. A finite sized system can technically never
undergo a phase transition, since a phase transition is only defined in the thermo-
dynamic limit. That the RBM is unable to capture essential features from the Ising



5.2. The Ising chain and the mean-field RBM 79

probability distribution is made more clear in figure 5.2, which shows a compari-
son between the average absolute magnetisation 〈|M|〉, the magnetic susceptibility
χ and two different two-spin correlations: 〈v1v3〉 and 〈v1v4〉.

While the RBM is able to model the average absolute magnetisation 〈|M|〉 extremely
well, it fails to capture the fluctuations in the magnetisation present in the magnetic
susceptibility of the absolute magnetisation:

χ|M| = LK
(
〈|M|2〉 − 〈|M|〉2

)
= LK ·Var(|M|). (5.18)

This can be understood conceptually from the fact that by restricting the RBM to a
single W-value, p(v) essentially becomes a distribution of the total magnetisation
LM = ∑i vi = V only. Hence it should make sense that the RBM manages to model
the mean of M as well as it does since it is one of the central characteristics of a
probability distribution in M. The variance of |M|, which is equal to the magnetic
susceptibility χ|M| up to a linear K-dependent scaling, is evidently not captured as
well by the RBM. Precisely because the RBM is a function of V only, it is unable to
fully capture correlations between individual spins (the vi’s), which are included in
the 〈M2〉 term. This point is supported by the two spin correlations shown in fig-
ure 5.2, which show significant deviation between the RBM and the Ising chain in
the small K region. For large K’s, the correlations between spins grow in the Ising
chain, leading to similar behaviour between all two-spin correlations. In the RBM,
all two-spin correlations are the same, so for large K one can expect the difference
in two-spin correlations to matter less. This explains why the two-spin correlations
for the Ising chain and RBM are again similar in the large K region, which results in
similar Var(|M|) behaviour as well.
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FIGURE 5.2: Graphs comparing 〈|M|〉, Var(|M|), 〈v1v4〉 and 〈v1v4〉 of a
trained 6× 3 RBM to a 6-sited Ising chain of interactions strength K.

While the mean-field RBM is unable to fully capture the Ising chain, it is able to cap-
ture the average absolute magnetisation of the Ising chain. In the large K and K ≈ 0
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regions the RBM is able to model the Ising chain really well. This can be understood
by the arguments mentioned above. Additional insight can be gained by investigat-
ing certain limits of the RBM, where a connection to the RBM and renormalisation
group (RG) can be made.

5.2.1 Limit behaviour of W(K) and connection to RG

The limit behaviour of limK→∞ W(K) can be derived by evaluating the right- and left
hand sides of equation (5.17). It is relatively straightforward to show that in the limit
of K → ∞ only the configurations with all spins pointing up or down will contribute
to the probability distribution:

lim
K→∞

q(v) = lim
K→∞

exp (K ∑i vivi+1)

(2 cosh K)L + (2 sinh K)L

≈ lim
K→∞

1
2

exp (K ∑
i

vivi+1 − KL)

=

{
0 if ∑L

i vivi+1 < L
1
2 if ∑L

i vivi+1 = L
. (5.19)

So only when ∑L
i vivi+1 = L will q(v) have a non-vanishing contribution. This is

only the case when all spins are pointing either up or down. All other configura-
tions add up to less than L, since they must include at least one anti-aligned spin
pair which reduces the sum by 2 compared to the spin pair being aligned. A more
detailed derivation of this limit is included in the appendix of Ter Hoeve[69]. So in
the limit of K → ∞ the right hand side of equation (5.17) reduces to

lim
K→∞

∑
{v}

q(v)NV tanh (WV) = NL tanh (WL), (5.20)

where we used that tanh−x = − tanh x. For the left hand side of equation (5.17) we
get:

1
Z

∂Z
∂W

=
1

∑{v}(2 cosh WV)N ∑
{v}

NV(2 cosh WV)N−12 sinh WV

=
∑{v} NV(cosh WV)N tanh WV

∑{v}(cosh WV)N . (5.21)

This equation will be equal to equation (5.20) in the limit W → ∞:

lim
W→∞

1
Z

∂Z
∂W
≈ lim

W→∞

∑{v} NV exp (WVN) tanh WV

∑{v} exp (WVN)
(5.22)

= lim
W→∞

∑{v} NV exp (WVN) exp (−WLN) tanh WV

∑{v} exp (WVN) exp (−WLN)
(5.23)

= NL. (5.24)

In deriving the last step we used limx→∞ tanh x = 1. Evidently this is equal to equa-
tion (5.20) in the limit W → ∞. Thus if K diverges, W does as well. By similar
arguments one can show that if K = 0, equation (5.17) will hold for W = 0.

To illustrate the connection between the RG and the RBM flow the expected value
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for the hidden neurons given a configuration {v} is given by the average value of
ha, where the average is taken over the probabilities given by equation (2.49). The
resulting average is

〈ha〉{v} = ∑
{ha}

ha p(ha|v)

= tanh (∑
i

Wvi). (5.25)

The expected value for vi can be calculated in a similar fashion using equation (2.48):

〈vi〉{h} = tanh (∑
a

Wha). (5.26)

A flow of configurations is now created by iterating new configurations of the hid-
den and visible layer given the configurations of the other layer. If the RBM is trained
on the Ising chain at K → ∞, the weight will also diverge. If the trained RBM is then
fed an arbitrary configuration {v}, the hidden layer will iterate to

〈h(0)a 〉 = lim
W→∞

tanh (W ∑
i

v(0)i ) =


1 if ∑i v(0)i > 0

−1 if ∑i v(0)i < 0

0 if ∑i v(0)i = 0

, (5.27)

where the superscript on the hidden and visible neurons indicates the configuration
iteration, where (0) is the initial configuration. Clearly the hidden layer configura-
tion will consist of all spins up (down) if V is larger (smaller) than 0. When V = 0,
the probability of getting an up or down spin is the same, and the hidden neuron
can go either way. With equation (5.26) the next iteration of the visible configuration
can be determined:

〈v(1)i 〉 = lim
W→∞

tanh (W ∑
a

h(0)a ) =


1 if ∑a h(0)a > 0

−1 if ∑a h(0)a < 0

0 if ∑a h(0)a = 0

. (5.28)

It is clear that the visible configuration will flow to a configuration of either all up
or all down spins eventually, if not already after the first iteration. This iterative
procedure can be seen as a flow of configurations at some finite T (if we assume the
initial configuration has at least some disorder in it) to a configuration at Tc = 0. It
is precisely this flow of configurations to the critical point which is analogous to the
flow seen in RG, where degrees of freedom are iteratively integrated out until the
system reaches a critical point, effectively changing the temperature of the classical
system along the way.

The derivation above effectively shows the RBM is able to model the Ising chain
at K → ∞ perfectly well, and mimics the iterative procedure of flow towards the
critical point. However at finite temperatures the system will not flow towards the
critical point, as W will be finite and so the probability of getting a single type of
spin will always be smaller than 1. Likewise, we would like to obtain a physical in-
terpretation in what the RBM learns from the model, specifically when the number
of hidden neurons is smaller than the number of visible neurons. To obtain some
physical insight to the RBM we first devise an exact mapping between the RBM and
the Ising chain.
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5.3 A spin barrier based mapping between the Ising chain
and L× L RBM

Since the Ising chain’s probability distribution only depends on the amount of spin-
barriers in each spin configuration, one might expect that a RBM based on spin-
barriers will be able to model the Ising chain really well. To explore this idea, we
begin with the RBM probability distribution over the visible units for a given spin
configuration {v}:

p({v}) = 1
Z

N

∏
a

2 cosh (
L

∑
i

viWia). (5.29)

A natural way to force the distribution to model to barriers is to only consider the
sum of spin with its neighbour for each hyperbolic cosine argument, so vi + vi+1.
This term will be labelled by Bi, which represents the barrier between sites i and
i + 1:

Bi = vi + vi+1. (5.30)

We have a barrier if Bi = 0, so when the spins at i and i + 1 are anti-aligned. If
the spins have the same sign we have either Bi = −1 or Bi = +1, which leads to the
same factor in the probability distribution since cosh is invariant under a sign change
in the argument. In this scheme each hyperbolic cosine argument carries only one
Bi term, so we need as many hyperbolic cosines as there are sites. We thus have
L hyperbolic cosines. This means that there are as many hidden as visible neurons
in the RBM. With this set-up only a single W value is needed, as the term in the
hyperbolic cosine should be the same for Bi = +1 or Bi = −1, as well as taking into
account the translation invariance of the system. This gives us

p({v}) = 1
Z

L

∏
i

2 cosh (WBi). (5.31)

The relatively simple form of this equation allows us to find an explicit expression
for the partition function Z using the transfer-matrix method:

Z = ∑
{v}

L

∏
i

2 cosh (W(vi + vi+1)) (5.32)

= 2L Tr[T L], (5.33)

where the transfer-matrix T is given by

T =

[
cosh (2W) 1

1 cosh (2W)

]
, (5.34)

which has the eigenvalues

λ± = cosh (2W)± 1. (5.35)

We can now easily calculate Z, since the trace of a matrix is equal to the sum of its
eigenvalues, and the eigenvalues of a product of equal matrices are the product of
the eigenvalues of the individual matrices corresponding to the same eigenvector.
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So the partition function becomes

Z = 2L
[
(λ+)

L + (λ−)
L
]

= 2L
[
(cosh (2W) + 1)L + (cosh (2W)− 1)L

]
= 2L

[
(2 cosh2(W))L + (2 sinh2(W))L

]
. (5.36)

Note that this looks very similar to the partition function for the Ising chain given
in equation (5.15). To see if this distribution is indeed capable of modelling the Ising
chain we follow the usual procedure of minimising the KL-divergence. We start by
calculating the left hand side term:

1
Z

∂Z
∂W

=
2L

Z
L[4(2 cosh2(W))L−1 cosh (W) sinh (W)

+ 4(2 sinh2(W))L−1 sinh (W) cosh (W)]

=
2L sinh (W) cosh (W)

(
cosh2L−2(W) + sinh2L−2(W)

)
cosh2L(W) + sinh2L(W)

. (5.37)

The right hand side (rhs) is slightly more complicated, but can also be brought into
a nice expression. After some rewriting we end up with

rhs = ∑
{v}

q({v}) 1
p({v})

1
Z

∂

∂W
(

L

∏
i

2 cosh (WBi))

= ∑
{v}

q({v}) 1
∏i cosh (WBi)

L

∑
j

Bj sinh (WBj)∏
i 6=j

cosh (WBi)

= ∑
{v}

q({v})
L

∑
j

Bj tanh (WBj)

=
1

ZIsing
∑
{v}

L

∏
i

exp (K(vivi+1))
L

∑
j
(vj + vj+1) tanh (W(vj + vj+1)). (5.38)

This expression can also be calculated using the transfer-matrix method, albeit with
some extra steps. We note that it is possible to write the configurational sum as the
trace of the product of the transfer matrices we would have for the Ising chain as
well as one different matrix representing the j to j + 1 transfer terms. We first focus
on just one of the vj + vj+1 terms, as all the terms will just contribute the same thing
to the rhs. We can write one such term as

∑
{v}

L

∏
i

exp (K(vivi+1))(vj + vj+1) tanh (W(vj + vj+1))

= Tr[T1T2 · · · Kj · · · TL], (5.39)
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where the transfer-matrices denoted by Ti are the usual Ising chain transfer matrices,
while Kj is the transfer matrix corresponding to the j and j + 1 terms:

Ti =

[
exp (K) exp (−K)

exp (−K) exp (K)

]
(5.40)

Kj =

[
exp (K)2 tanh (2W) 0

0 exp (K)2 tanh (2W)

]
, (5.41)

here we used that tanh−x = − tanh x. Since Kj only has diagonal terms which are
equal, we can write it as a 2× 2 identity matrix, 1, multiplied with a prefactor. This
allows us to rewrite the trace as

Tr[T1 . . .Kj . . . TL] = 2eK tanh (2W)Tr[T1 · · · 1 · · · TL]

= 2eK tanh (2W)Tr[∏
i 6=j
Ti]

= 2eK tanh (2W)
(
(2 cosh (K))L−1 + (2 sinh (K))L−1

)
. (5.42)

Note that the calculation of this term did not depend on the j and j + 1 sites, which
means that the sum over j in the rhs equation will just give an extra factor L. So we
end up with

rhs =
coshL−1(K) + sinhL−1(K)

coshL(K) + sinhL(K)
· LeK tanh (2W). (5.43)

So minimising the KL-divergence equates to solving the equation

1
Z

∂Z
∂W

= rhs. (5.44)

A solution to equation (5.44) can be found by first rewriting the equations in terms
of

x = e2W , and

y = eK. (5.45)

The left hand side equation (5.37) then takes the following form:

∂ ln Z
∂W

=
2L(x1/2 − x−1/2)(x1/2 + x−1/2)

[
(x1/2 + x−1/2)2L−2 + (x1/2 − x−1/2)2L−2]

(x1/2 + x−1/2)2L + (x1/2 − x−1/2)2L

=
2L(x− x−1)∑2L−2

k=even (
2L−2

k )xL−1−k

∑2L
k=even (

2L
k )xL−k

. (5.46)

The rhs takes the form

rhs =
2L(y + y−1)L−1 + (y− y−1)L−1

(y + y−1)L + (y− y−1)L y
x− x−1

x + x−1

=
2L ∑L−1

k=even (
L−1

k )yL−1−k

∑L
k=even (

L
k)y

L−k
y

x− x−1

x + x−1 . (5.47)
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A solution can then be found by considering the L = 2 case:

−1 + x4

1 + 6x2 + x4 =
(−1 + x2)y4

(1 + x2)(1 + y4)
. (5.48)

This equation can be solved for y > 1 and gives

x± = y2 ±
√

y4 − 1, (5.49)

which can be transformed back in terms of W and K to give

W± =
1
2

ln (exp (2K)±
√

exp (4K)− 1). (5.50)

Here the ± comes from the W-sign symmetry present in p(v). While proving that
equation (5.50) is a general solution that minimises the KL-divergence, for example
by induction, is not as straightforward as it sounds, it can be confirmed to hold nu-
merically up to small system sizes. This is taken as a sign that this equation holds
for any system size L. The KL-divergence can be calculated numerically as well, and
gives 0 up to numerical precision. We take this as a strong indication that equation
(5.50) gives the value of W expressed in K which exactly maps the RBM as described
in equation (5.31) to the classical Ising chain. Figure 5.3 shows a plot of equation
(5.50). It can easily be seen that in the limit K → ∞, limK→∞ W± = ±∞. So we
expect similar flow behaviour of the RBM in the K → ∞ region as was seen for the
mean-field RBM of the previous section.

While the exact mapping between the Ising chain and the RBM might give insight in
solutions found by numerical training of the RBM on an Ising chain, it is ultimately
based on having an equal number of visible and hidden nodes. While having an
equal number of visible and hidden nodes is not uncommon, we are primarily in-
terested in what the RBM will pick up when the degrees of freedom are effectively
reduced by making the step from the visible to hidden layer. This is done by making
sure the hidden layer has less nodes than the visible layer, in analogy with real-space
RG, where the number of spins in the system is reduced in a step-wise manner.
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FIGURE 5.3: Plot of W(K) given by equation (5.50).
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5.4 Finding W-restrictions based on translation invariance:
the weave-method

It should be clear that reducing W to a single W-value is not sufficient to model the
Ising chain, at least not for a RBM with less hidden neurons than visible neurons. In
this section we aim to reduce the degrees of freedom in W by symmetry arguments.
The spin-flip symmetry v → −v of the Ising chain is already made present in p(v)
by setting the biases to 0. Restrictions on W can be made by assuming that the trans-
lation invariance present in the Ising chain should also be present in the RBM. We
investigate this assumption by studying a 6× 3 RBM. For this RBM, the probability
distribution is given by

p(v) =
1
Z

23 cosh (
6

∑
i=1

viWi1) cosh (
6

∑
i=1

viWi2) cosh (
6

∑
i=1

viWi3). (5.51)

Note that the spin-flip symmetry is already present in the probability distribution,
since cosh (−x) = cosh (x). There are multiple ways to implement the translation
invariance. Equation (5.51) should be equal for all configurations connected through
translations. Since the probability distribution consists of a product of three hyper-
bolic cosines this equating has multiple solutions, which can be visualised as three
weaves representing the equating arguments of each individual hyperbolic cosine.
This is visualised in figure 5.4, with a more thorough interpretation of the figure
given in its description. Changing the weaves and configurations and connecting
the different solutions will give different constraints on the weight-matrix compo-
nents.

TABLE 5.1: Spin configurations ordered by probability, NB is the number
of barriers (anti-aligned spin pairs).

NB Spin configurations |M| No configurations ZIsing p(v)
0 ↑↑↑↑↑↑, ↓↓↓↓↓↓ 6 2 exp (6K)
2 ↓↑↑↑↑↑ + translations & spin-flip 5 12 exp (2K)
↓↓↑↑↑↑ + translations & spin-flip 4 12
↓↓↓↑↑↑ + translations & spin-flip 3 6

4 ↓↑↓↑↑↑ + translations & spin-flip 4 12 exp (−2K)
↓↑↑↓↑↑ + translations & spin-flip 4 6
↓↓↑↓↑↑ + translations & spin-flip 3 12

6 ↓↑↓↑↓↑, ↑↓↑↓↑↓ 3 2 exp (−6K)

Table 5.1 shows the spin configurations sharing the same probability in the Ising
chain and the absolute magnetisation, barriers in the configuration and the total
number of configurations which share all these qualities. We start with the braiding
of the |M| = 5 terms, so the terms with one spin pointing in the opposite direction to
all the other spins. We braid the arguments such that ∑i Wia relates to ∑i Wia+1 for the
translation of the spin configuration by one site. This can be visualised as displayed
in figure 5.4, where the three different lines symbolising equating the arguments all
run in parallel to one another with periodic boundary conditions. Solving this set of
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equations gives the three arguments:

∑
i

Wiavi = W11v1 + W31v2 + W21v3 + W11v4 + W31v5 + W21v6 (5.52)

∑
i

Wi2vi = W21v1 + W11v2 + W31v3 + W21v4 + W11v5 + W31v6 (5.53)

∑
i

Wi3vi = W31v1 + W21v2 + W11v3 + W31v4 + W21v5 + W11v6. (5.54)

So there are three dependent weight-matrix components: W11, W12 and W13. With
this choice of braiding the translational invariance of each spin configuration explic-
itly shown in table 5.1 is guaranteed, and they all keep the same braiding equiva-
lence. One observation has to be noted: Spin configurations with |M| = 3 and 2 or 4
barriers all have hyperbolic cosine arguments equal to 0 with this choice of braiding.
This means that the RBM will be unable to differentiate between |M| = 3 states with
2 or 6 barriers, even though the Ising chain clearly favours the 2 barriers.

FIGURE 5.4: Graphical representation of possible solution to a translation
invariant p(v) given the translation invariance of the spin configuration
↓↑↑↑↑↑ and its translations in q(v). Each black dot represents the argu-
ment of the hyperbolic cosine terms relating to one of the hidden nodes as
indicated above and a corresponding configuration as indicated to the right.
A black line between the dots indicates a product between the hyperbolic
cosines. Each coloured line (red, blue, green) represents equating the con-
nected hyperbolic cosine arguments so that the product of hyperbolic cosines

is equivalent for each spin configuration.
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In general the W-matrix with L× N degrees of freedom (d.o.f.) can be reduced
by Ntr×N d.o.f. at most, where Ntr is the number of translations of a particular spin
configurations which leaves q(v) unchanged and N is the number of hidden neu-
rons. For our 6× 3 RBM reduced by the |M| = 5 configurations the weight-matrix
is reduced by 5× 3 = 15 d.o.f., so that the reduced W has 18− 15 = 3 d.o.f. left.
The way the weaves are connected determines the form of the matrix, but the d.o.f.
should be the same, as long as the weaves do not contain doubly counted equations.
Thus there is a certain ambiguity in choosing the weave to use in reducing the d.o.f.,
especially since there is no clear cut way to make sure the chosen weave gives the
lowest KL-divergence.

To counteract this problem and provide an argument that the weave-formalism is
a sensible one, a comparison to the unrestricted RBM is made. The comparison con-
sists of numerically finding a minimum in the KL-divergence using conventional nu-
merical techniques, and repeating this several times from different (randomly cho-
sen) initial positions, choosing the solution with the minimal KL-divergence overall.
We call a solution generated with this procedure a swarm-solution. The swarm-
solution is then compared to the solution which minimises the KL-divergence of the
reduced W-matrix. If the performance of the reduced solution is lower or compara-
ble to the performance of the unrestricted RBM, the W-reduction is deemed valid.

The comparison between the mean-field RBM and the translation invariant RBM
can be made in a similar manner. Figure 5.5 shows the KL-divergence for the 6× 3
RBM restricted with the weave, as well as the mean-field 6× 3 RBM. The results for
the 4× 2 RBMs are shown as well. The figure shows a clear improvement for the
4× 2 model, while the 6× 3 model shows only a very small improvement. This is as
expected, as both models are unable to fully model the Ising chain. Nevertheless we
expect correlations to be picked up better by the translation invariant RBM, as will
be seen in comparisons of the variance of |M|.
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FIGURE 5.5: KL-divergence comparison between the mean-field RBM and
translation invariant RBM for 4× 2 and 6× 3 RBMs. Figure courtesy of

W. Zhong[70].
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5.5 A study of the translation invariant RBM

The weave-method described in the section above provides a systematic method
for restricting the W-matrix in such a manner that the RBM is translation invari-
ant. By restricting the W-matrix, the parameter-space gets significantly restricted.
This allows for a faster finding of solutions that minimise the KL-divergence. How-
ever, there is no guarantee that the found minimum in the restricted parameter-space
corresponds to a local minimum in the unrestricted parameter-space. The solution
found in the restricted parameter-space could for example be a saddle-point in the
unrestricted parameter-space. To get a better understanding of how the restricted
RBM compares to the unrestricted case, a numerical analysis for a small system size
L = 4 was done.

5.5.1 The stability of a 4× 2 translation invariant RBM

We start with a very small 4× 2 RBM. Using the weave-formalism, we can derive
that there are two candidates that restrict W such that the RBM is translation invari-
ant:

W1 =

(
W1 W2 W2 W1
W2 W1 W1 W2

)
, and W2 =

(
W1 W2 W1 W2
W2 W1 W2 W1

)
. (5.55)

A solution that minimises the KL-divergence can then by found by the conjugate
gradient method, starting from some initial set of W’s. An example of such a min-
imisation is shown in figure 5.6. This process is repeated for many randomly chosen
initial values, where the solution with the lowest final KL-divergence is chosen as
the ultimate solution. This procedure does not guarantee that the RBM ends up in
the absolute minimum of the KL-divergence, but the chances of ending in a ’suffi-
ciently good’ minimum are high. The final solutions for W1 and W2 for K = 1.2
are (W1, W2) ≈ (1.64, 0.61) and (W1, W2) ≈ (1.05, 1.05) respectively. Since the so-
lution for W2 corresponds to the single-W valued RBM, this choice of restriction is
discarded.
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FIGURE 5.6: Plots visualising the conjugate gradient minimisation method
of the TI RBMs from the initial value (W1, W2) = (1, 2) at K = 1.2. Green
and red dots correspond to function and gradient evaluations respectively.
The blue dots and lines show the gradient steps, where the arrow indicates

the direction of the step.
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Figure courtesy of W. Zhong[70].

The stability of the W1 solution with respect to the unrestricted RBM at K = 1.2
can be tested by initialising a gradient descend in the unrestricted parameter-space
starting from the W1 solution. If the gradient descent is initialised from exactly the
W1 solution, the solution remains unchanged. However, if a small deviation δ is
made in any Wij-direction, gradient descent flow to another solution. This is an indi-
cation that, at least at this particular value of K, the W1 solution is either a very shal-
low local minimum in the unrestricted parameter-space or a relatively flat saddle-
point. As an example of this, consider the KL-divergence for a model with two free
W-parameters: W1 and W2. The single-W restriction would then be W1 = W2. As
shown in figure 5.7, the minimum of the KL-divergence for the single-W restriction
clearly falls on the saddle-points of the KL-divergence in the unrestricted W-space.

Naturally this can be taken as an argument to disregard the weave-method and in-
stead look at the unrestricted case. However, we would like to argue that the weave-
method is still valid. The first argument is based on the difference in KL-divergence
between the shallow minimum of the W1 solution and the minimum in the unre-
stricted parameter space. For K = 1.2 this difference is of the order O(10−2), which
we consider relatively small. It is almost guaranteed that the unrestricted RBM will
perform better than the restricted RBM, since it is likely overdetermined. However,
we are interested in which aspects of the physical system the RBM picks up the
most. In an overdetermined system all aspects of the physical system are in princi-
ple included, which makes making statements of relevant and irrelevant variables
as decided by the RBM impossible.

The second argument is based on the importance of translation invariance. In phys-
ical systems this symmetry is a fundamental aspect of their behaviour. The unre-
stricted RBM solution does not necessarily have this symmetry, while the weave-
formalism guarantees translation invariance. The small difference in KL-divergence
is then a small price to pay for retaining this symmetry.
Perhaps the most important argument of all is the generalisation to larger system



5.5. A study of the translation invariant RBM 91

sizes. By restricting the free parameters by a significant amount, the computation
time decrease tremendously. This allows for a study of larger system sizes.

If we take the weave-method to be able to give us valuable answers, we can take
W1 as the W-matrix and minimise the KL-divergence for a range of K. This minimi-
sation can be done numerically by the swarm-method described earlier. The found
values for W1 and W2 are shown in figure 5.8 together with the average values of
|M|, M2 and Var(|M|). While this is only a very small system size, the variance
of |M| is already marginally better than variance measured for the single-W case.
This is most likely a direct result from the inclusion of more W-values, which allow
the RBM to model the spin-spin correlations more accurately. These correlations are
precisely the quantities that are important in capturing the variance of |M|.
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FIGURE 5.8: The upper left figure depicts the W1 values that minimise
the KL-divergence for a 4× 2 translation invariant RBM (TI) for different
values of K. The other figures show different physical quantities related to
M comparing the results from the TI RBM to the Ising chain. The results

for a 4× 2 mean field RBM (MF) are shown in yellow for comparison.
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5.6 Analysing the RBM flow

In the previous sections we have discussed several different iterations of the RBM.
We now turn our attention to the flow of these particular instances of the RBMs. To
this end we first need to calculate the conditional probability:

p(h|v) = p(v, h)
p(v)

=
e−E(v,h)

∑{h} e−E(v,h)
. (5.56)

Note that this conditional probability is normalised over all distributions of {h}
given any v. To iterate back to the visible layer we will also need the other con-
ditional probability:

p(v|h) = p(v, h)
p(h)

=
e−E(v,h)

∑{v} e−E(v,h)
. (5.57)

The RBM flow of probabilities will then be given by the mapping

π(n)(v) =
1

Zn
∑
{h}

p(v|h) ∑
{v}

p(h|v)π(n−1)(v), (5.58)

where the superscript (n) indicates the iteration number starting from some initial
n = 0 distribution π(0). Zn is the partition function making sure π(n)(v) is properly
normalised, it is defined as

Zn = ∑
{v}

∑
{h}

p(v|h) ∑
{v}

p(h|v)π(n−1)(v). (5.59)

The Markov chain defined by equation (5.58) then provides insight into the block
Gibbs sampling performed by the trained RBM, given some initial {v} distribution.
Since RBM’s are most commonly used as generative models, a trained RBM is used
to come up with new configurations that are similar to the set of configurations it
trained itself on. This generating of new configurations can be done through Gibbs
sampling, where the first input configuration could for example be chosen at random
and a new configuration can be generated after a few iterations of Gibbs sampling.
Here, rather that inputting a single configuration, we consider the results of putting
in configurations from some initial distribution π(0)(v), and seeing what the distri-
bution of the generated configurations at a step k, π(k)(v), looks like.

It can easily be checked that p(v) is a stationary solution to this mapping by just
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filling it in for the n- and n− 1-th iterations:

p(v) =
1

Zn
∑
{h}

p(v|h) ∑
{v}

p(h|v)p(v)

=
1

Zn
∑
{h}

p(v|h) ∑
{v}

p(v, h)

=
1

Zn
∑
{h}

p(v, h)
p(h)

p(h)

=
1

Zn
p(v). (5.60)

Since Zn = ∑{v} p(v) = 1, the equation clearly holds.

5.6.1 4-sited Ising chain and the RBM flow

We first consider a small system of size 4× 2. We consider the translation invariant
RBM with two free W-values, the mean-field RBM with a single W value, and the
unrestricted RBM with all W’s free. A comparison of these RBMs to the 4× 4 exact
mapping of the RBM to the Ising chain is made as well.

We first consider the RBM flow starting from the same distribution the RBM was
trained on, so that

π(0) = q(v, K0 = K), (5.61)

where the dependence of q on K0 is shown explicitly for clarity. This flow corre-
sponds to training an RBM on Ising configurations at some fixed K0, and generating
new configurations from the RBM by Gibbs sampling starting from the same Ising
configurations. Figure 5.9 shows the average absolute magnetisation and variance of
the absolute magnetisation for the different RBMs after 20 Gibbs sampling iterations
(k = 20).
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FIGURE 5.9: Average absolute magnetisation and variance of the abso-
lute magnetisation for the RBM flow configuration π(k) after 20 iterations
(k = 20) starting from π(0) = q(v, K). The different RBMS are labelled by

different colours as depicted in the legend.

From the figures we can see that the flow behaviour is as expected, after 20 it-
erations all RBMs have reached their stationary distributions p(v), at least in terms
of the observable behaviour of the distribution. Most RBMs reach the equilibrium
distribution in as little as 1 or 2 iterations, which makes sense starting from a distri-
bution which should already be very close to the stationary distribution. The unre-
stricted RBM and the exact RBM are the closest to the behaviour of q(v, K), as they
should be. The exact RBM is an exact mapping between the Ising chain and the
RBM, so that the stationary distribution p(v, W) is equivalent to q(v, K). The unre-
stricted RBM is perhaps overdetermined, it is able to minimise the KL-divergence to
machine precision, thus reaching behaviour close to that of the Ising chain.

A common way to obtain configurations from the RBM is by initialising the Gibbs
sampling from a random configuration of v. This corresponds to starting the RBM
flow from a discrete uniform distribution U({v}), where every distribution has
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equal probability of occurring. The discrete uniform distribution is equivalent to
the Ising chain at infinite temperature, at K0 = 0. Thus we start the RBM flow from

π(0) = U({v}) = q(v, K0 = 0). (5.62)
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FIGURE 5.10: Average absolute magnetisation and variance of the absolute
magnetisation for the RBM flow configuration π(k) after 20 iterations (k =

20) starting from π(0) = q(v, K = 0). The different RBMS are labelled by
different colours as depicted in the legend.

Figure 5.10 shows the average absolute magnetisation and variance of the ab-
solute magnetisation for k = 20 of the RBM flow. The mean-field RBM, transla-
tion invariant RBM and exact RBM all flow towards the stationary distribution p(v),
as expected. The unrestricted RBM shows quite unexpected behaviour however, it
flows to a stationary distribution, but this distribution does not behave like p(v) at
all. This is quite unexpect and will be explored in more detail after a discussion of
the RBM flows starting from limK0→∞ q(v, K0).

The unexpected behaviour of the unresticted RBM shows a deviation from the RBM
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flow to p(v), that the other RBMs do appear to adhere to. To explore the RBM flow
in more detail we initialise the flow from the other extreme: q(v, K → ∞). This
corresponds to the Ising model at zero temperature, which means that only the con-
figurations with all spins up or down have a finite probability: 1/2. We start the
RBM flow from

π(0) = q(v, K → ∞). (5.63)
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FIGURE 5.11: Average absolute magnetisation and variance of the absolute
magnetisation for the RBM flow configuration π(k) after 20 iterations (k =

20) starting from π(0) = q(v, K0 → ∞). The different RBMS are labelled
by different colours as depicted in the legend.

Figure 5.11 show the average absolute magnetisation and variance of the abso-
lute magnetisation of the RBM flow at k = 20 starting from q(v, K0 → ∞). Again all
RBMs but the unrestricted RBM flow towards their respective stationary distribution
p(v). This is a strong indication that these RBM have a flow that always flows to-
wards the K the RBM was trained on. This was also checked by initialising the RBM
flow from distributions at the K-values K0 = {0.4, 0.9, 1.5}. The RBM flow always
flowed towards a distribution showing similar behaviour as the p(v) distribution.
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These RBM behave as one would naively expect a trained RBM to behave. Once
the RBM is trained, Gibbs sampling should take any configuration to the stationary
distribution p(v) which the RBM was trained for to make as close to the target dis-
tribution q(v) as possible. That precisely the unrestricted RBM, which is the most
general starting point for RBM simulations, does not show this behaviour is quite
peculiar and warrants further inspection.

5.6.2 6-sited Ising chain and the RBM flow

Before continuing onto a further inspection of the RBM flow for the unrestricted
RBM, we first consider the 6× 3 RBM flow for a six sited Ising chain. Three different
RBMs will be considered: a mean-field RBM with a single W-value, a translation-
invariant RBM with 3 free Ws and a RBM with all Ws left free (the unrestricted RBM).
The translation-invariant RBM is obtained from choosing a weave that gives the a
restriction on the W matrix so that there are only three free Ws left. The resulting W
matrix takes the form

W =

W1 W3 W2 W2 W3 W1
W2 W1 W3 W3 W1 W2
W3 W2 W1 W1 W2 W3

 . (5.64)

The RBM flow is computed starting from π(0) = q(v, K0), with K0 = {0, K, ∞} as in
the previous subsection. The RBMs take longer to settle to their stationary distribu-
tions, so we take 100 RBM flow iterations (k = 100) to find an accurate estimate for
the stationary distributions. The results are shown in figure 5.12.

As for the 4 × 2 RBM, the RBM flows of the mean-field and translation-invariant
RBMs seem to flow to their corresponding stationary distribution p(v). The unre-
stricted RBM deviates from this behaviour again, only if the flow is initialised from
K0 = K will the unrestricted RBM settle into their stationary distribution p(v). This
deviation from the expected flow will be further investigated in the next section.
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FIGURE 5.12: The average and variance of the absolute magnetisation
for the stationary distributions of the RBM flows initialised from K0 =
{0, K, ∞} for the translation-invariant RBM (TI), the unrestricted RBM
(uRBM), and the mean-field RBM (MF). The dashed lines are the measured
quantities for p(v) of the corresponding RBM, the dots are the results for

the stationary distribution of the RBM flow (k = 100).

5.6.3 The unrestricted RBM flow

The behaviour of the unrestricted RBM shown in figures 5.10, 5.11 and 5.12 is quite
strange and different than one might expect. In this subsection we attempt to ex-
plain the unrestricted RBM behaviour by looking at the form of the W-matrix for
the trained unrestricted 4× 2 RBM. To investigate the flow of the unrestricted 4× 2
RBM further, we calculated the RBM flow from a range of initial distributions π(0) =
q(v, K0), where K0 = {0, 0.4, 0.9, 1.5, ∞, K}. Here K is the temperature the RBM was
trained on. The average and variance of the absolute magnetisation for the 20th RBM
flow iteration distribution π(20) are shown in figure 5.13. The RBM flow shows very
little deviation from the distribution at k = 20, which we therefore take to be good
estimates of the equilibrium distribution of the RBM flow.
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FIGURE 5.13: Average and variance of the absolute magnetisation of π(20)

for a trained unrestricted RBM starting from π(0) = q(v, K0) for different
values of K0. The dashed red line corresponds to p(v). Different colours

correspond to different initial values of K0, as indicated in the legend.

From the figure we see that the behaviour for K0 = 0 and K0 → ∞ holds for
starting from other values of K0 6= K. Rather than flowing to a distribution similar
to p(v), it flows to an entirely different distribution. This flow is not universal how-
ever, meaning that the flows starting from any K0 6= K does not flow to the same
stationary distribution. Rather, the stationary distributions the flow settles in seems
related to the initial distribution. To try to understand this behaviour it may be use-
ful to inspect the W-matrices for the trained RBMs at different Ks in more detail.
Figure 5.14 shows a heatmap image of the W-matrix for the two unrestricted RBMs
trained at different Ks.
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FIGURE 5.14: heatmap for the W-matrix for the trained unrestricted 4× 3
and 6× 3 RBMs at different values of K.

From the heatmaps a couple of interesting things can be noted. The first is that
in a lot of the W-matrices there only tends to be a single large absolute (bright red
or deep blue) value per hidden layer. The spins corresponding to these large values
tend to be separated by a single other spin, as well the values being of opposite sign
in the 4× 2 RBM. This tells us the RBM prefers to model its hidden layer dependence
via single spins per layer, having the multiple hidden nodes take care of the spin-
spin interactions. This is different than our exact mapping, which explicitly models
the difference between two neighbouring spins per hidden node. To see how this
form plays a role in the RBM flow we first look at the conditional probability of a
single hidden neuron:

p(ha|{v}) =
e∑i viWiaha

2 cosh (∑i Wiavi)
. (5.65)
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The average value the neuron will take is then

〈ha〉 = tanh (∑
i

Wiavi). (5.66)

The average value the hidden neuron will take thus depends solely on the input
configuration v(0) and the weight-matrix row corresponding to that hidden neuron.
We can then attempt to understand the RBM flow by analysing 〈h(0)〉 given some
initial configuration v(0). The average hidden neuron values can in turn be used to
produce an estimate for the next iteration via

p(v(1)i |h) =
e∑i v(0)i Wiah(0)a

2 cosh (∑i Wiav(0)i )
, (5.67)

〈v(1)i 〉 = tanh (∑
a

Wiah(0)a ) (5.68)

Understanding the K0 → ∞ flow

The K → ∞ flow can be understood by noting that only configurations with all spins
pointing either up or down will be part of the initial configurations. The average
values for the hidden neurons need then only be calculated for these two configu-
rations. Since the weight-matrix has a single large absolute value for each hidden
layer, the average value for ha depends mostly on the value of the spin with the
strongest matrix-value. Lets assume for each hidden layer a there is a single matrix
value |Wjaa| >> Wia with i 6= ja. The average value for the hidden neuron will then
be

〈h(0)a 〉 ≈ sign(Wjaa)v
(0)
ja , (5.69)

so that the average value of ha is always {+1,−1} depending on the sign of the
matrix-element and the value of vja . A more even distribution of W-values could
have v-configurations where 〈ha〉 = 0 for example, where the actual value of the
hidden neuron can be +1 or −1 with a 50% probability for either. When the unre-
stricted RBM is fed configurations of only spin up or down, the values of the hidden
neurons depends on the relative sign between the largest absolute matrix values per
matrix-row. For the 4× 2 RBM for example, for most of the W, the largest absolute
values per matrix-row have opposite sign. That means that the expected values for
the hidden neurons is going to be

〈(h1, h2)〉± ≈ (±1,∓1), (5.70)

for example, where the± sign corresponds to the two input configurations. The next
visible layer can then be configured by considering equation (5.68). The expected
values for the hidden nodes need then be multiplied by the W matrix-columns. Note
that ja 6= jb for a 6= b, so that the large absolute matrix-values are never in the same
matrix-column. Here a difference between the low- and high-temperature trained
RBM comes in. For the visible nodes with the large absolute matrix-values the ex-
pected value is still dominated by the large matrix-value, so that

〈vja〉 ≈ sign(Wjaa)〈ha〉 ≈ vja . (5.71)

The expectation value of the other visible nodes differs from the low- to high-temperature
trained RBMs. For the high-temperature trained RBMs the expectation value of
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〈v(1)i 〉 is small, while it grows with increasing K. The expectation value of these
visible nodes as a function of K is shown in figure 5.15 from an initial configuration
of all spins up. The expectation is inverted for the initial configuration with all spins
down.
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FIGURE 5.15: Expectation value for the first iteration of the small visible
nodes for the unrestricted 4× 2 RBM, obtained from iterative application of
equations (5.66) and (5.68) for vi corresponding to W-matrix columns with

near equal small values. The initial configuration had all spins up.

Since the average hidden node values depend solely on vja , and vja remains the
same from iteration to iteration we can now understand the K → ∞ behaviour.
The iterative generated configurations have vja the same as the input configurations,
which means that these spins are pointing in the same direction for each new iter-
ation. The input configurations consists solely of a configuration with all spins up
and a configuration with all spins down, so the spins corresponding to the large
absolute matrix-values in iterative configurations remain pointing in the same di-
rection as for the initial configuration. The other spins are either going in random
directions, as for the high-temperature trained RBMs, or stay in the same direction
as the initial configurations as for the low-temperature trained RBMs. This allows
us to understand the 〈|M|〉 behaviour.

In the high-temperature RBM a set of N (the number of hidden nodes) visible nodes
are pointing either up or down together. The other L− N nodes are pointing either
up or down at random. So there are 2+ (L−N)2 different configurations with equal
probability. The average absolute magnetisation then becomes

〈|M|〉 = 1
L ∑
{v}

|∑L
i vi|

2 + (L− N)2 =
N
L

(5.72)

So for the high-temperature RBM we expect 〈|M|〉 = 1/2, which is also what we
saw in the RBM flow. For the low-temperature RBM 〈vi〉 ≈ vi for all i, so that
the iterative configurations are the same as the input configuration. The average
absolute magnetisation then becomes 〈|M|〉 = 1, which is also seen in the RBM flow.
The variance Var(|M|) is then expected to be the same as for limK0→∞ q(v, K0). The
behaviour of the unrestricted RBM K → ∞ flow can thus be understood as a direct
consequence of the W-matrix form.
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Understanding the K0 = 0 flow

The unrestricted RBM flow behaviour for an initial distribution π(0) = q(v, K0) with
K0 = 0 can be understood by a similar analysis as for the K0 → ∞ case. The main
difference between the two cases is that the set of initial configurations {v(0)} now
consists of all possible v-configurations with equal probability for all. The observa-
tion that 〈v(1)ja 〉 ≈ v(0)ja still holds, the 〈v(1)i 〉 for i 6= ja requires a bit more inspection.
The expectation value still follows figure 5.15 if vja for all a are pointing in the same
direction. If one of the vja has an opposite sign to the others, for some vi two of
the matrix-column terms will cancel each other since the matrix-terms are of simi-
lar size but opposite sign. One thing which is not visible in figure 5.14 is that the
matrix-columns without a large absolute value tend to have two matrix-values of
equal absolute value but opposite sign, and the other vanishing (for the 6× 3 RBM).
This holds for both the low- and high-temperature trained RBMs. This means that if
one of the vja has an opposite sign to the others, a few of the visible nodes will have
equal probability to end up in either the spin up or down state.

The behaviour of the unrestricted RBM flow trained on the high-temperature dis-
tribution can now be understood. The visible nodes corresponding to large absolute
matrix values vja keep the same distribution as the initial configuration. The other
visible nodes vi, i 6= ja, have a small preference for the direction they were already
pointing in in the previous configuration if all vja are pointing in the same direction.
If a single or more vja have a different value than the other vja , a couple of visible
spins vi will have an expectation value of 0, meaning they can be pointing either way
with equal probability. So for an initial configuration with all spin configurations at
equal probability the iteration configurations will follow the same distribution as
the initial distribution. This explains why the behaviour of the RBM flow iteration
is close to the initial distribution behaviour for the high-temperature unrestricted
RBMs.

For low-temperature unrestricted RBMs the initial configurations with vja pointing
in the same direction will go through the iterations relatively unchanged. The con-
figurations with a single or more vja different from the other vja will have a number
of vi equal to the number of pairs of different vja which will have expectation values
of 0. These configurations will thus have equal probability to be transformed into a
configuration where the vi spin is flipped. As a consequence certain configurations
will see their relative weight change compared to the initial distribution where ev-
ery configuration was equally likely. Carefully computing the iterative distributions
with the new weights and averaging over them will give the 〈|M|〉 values that were
calculated for the stationary unrestricted RBM flow distribution.

Understanding the entire flow

Now that we know why the results are as they are for the K0 = 0 and K0 → ∞
results, we can understand the general results on a qualitative level. The low- and
high-temperature RBMs both a little different behaviour in terms of which spins
they leave unchanged and which they do not. The low-temperature RBM leaves the
initial distribution relatively unchanged, with only a little bias inserted due to the
small but non-zero 〈vi〉. The high-temperature RBM tends to randomise the initial
distribution, with the strong spins vja kept the same. When the initial configuration
distribution for the unrestricted RBM trained for inverse temperature K is the same



104 Chapter 5. Restricted Boltzmann Machines and spin models

q(v, K), the result is close to p(v), which is a stationary distribution of the RBM flow.
Clearly the RBM flow does not pull the configurations to this p(v), but rather seems
to land in a mixture of the initial configuration distribution and randomness added
in by variation of the vi spins, but keeping the vja spins the same.

Overall this is quite odd behaviour, but it can be explained by the form of the
W-matrix. Apparently the form of this matrix minimises the KL-divergence more
than other possible configurations, as the values for the W-matrix was found by the
swarm-method. This results in a very close match between p(v) and q(v), but in a
RBM flow that is unable to pull other initial distributions to p(v). This makes the
found solution for the unrestricted RBM not applicable for generating new configu-
rations from its distribution, which tends to be the goal of RBM learning. Neverthe-
less, this particular analysis was done for the results that where found by numeric
minimisation of the KL-divergence, with q(v) explicitly present. Usually this min-
imisation is done through contrastive divergence or adjacent methods, which use
the Gibbs sampling procedure already within the learning process. Since it is clear
that Gibbs sampling does not converge to the p(v), it might be that learning through
contrastive divergence will not find this particular solution to the unrestricted RBM.
On the other hand, the learning is done through configurations obtained from q(v),
to which the flow does converge to p(v). It would be interesting to see if a con-
ventionally trained RBM will converge to the same general W-matrix form as was
found by minimising the KL-divergence directly. If so, the restrictions of the RBM
that were suggested in this thesis, the mean-field RBM and the translation invariant
RBM, are able to provide much better convergence of the Gibbs chain to p(v) while
also being less computationally demanding.
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5.7 Two-dimensional Ising model and a single-W valued RBM

While the Ising chain is an excellent model to study application to a RBM on, since
finite-sized results can be calculated exactly, the interesting behaviour of the model
is rather limited. There is no phase transition present in the model for finite temper-
atures, and the RG flow is not very exciting. The two-dimensional Ising model on
a square lattice does have a phase transition, which is relatively well understood.
The RG equations are known and can be derived using the block spin method.
This makes the two-dimensional Ising model an excellent candidate for studying
the learning behaviour of a RBM on.

To investigate what the RBM learns from the two-dimensional Ising model, we again
start with a single W-value and no biases. Since we take the same assumptions as
for the Ising chain, we can start from

Z = 2N ∑
{v}

coshN(WV)

= 2N
L

∑
V=−L

coshN(WV)

= 2N
L

∑
l=0

(
L
l

)
coshN((2l − L)W), (5.73)

where l is the number of active visible neurons (with v = +1). The possibility of
writing the partition sum in this form is a direct result of limiting the degrees of
freedom of W to 1. The RBM now only depends on V = ∑i vi, or equivalently the
unnormalised magnetisation of the Ising model of size L. The Ising model distribu-
tion is

q(v) =
1

ZIsing
exp (K

L

∑
(i,j)

vivj), (5.74)

where ZIsing is now the partition function corresponding to the finite-sized two-
dimensional Ising model and (i, j) denotes that the sum is taken over nearest-neighbour
pairs i, j. The equation that minimises the KL-divergence is then

∂ ln (Z)
∂W

= L ∑
{v}

q(v)V tanh (VW), (5.75)

which we refer to in terms of the left-hand-side and right-hand-side equations:

f (W) = g(W, K). (5.76)

Again an analytic expression is not possible, but a numerical evaluation is. The point
where these two functions intersect minimises the KL-divergence. The W-value of
the intersection between the two functions increases for higher K, as in the one-
dimensional case. As was shown for the one-dimensional case, if W goes to infinity
the system will flow to ordered states (see equation (5.28)). It seems likely that if
K → ∞, W will follow suit. Figure 5.16 shows a plot of W(K) for which W min-
imises the KL-divergence for a given K.

Inspecting figure 5.16 we see a similar form as for the Ising chain, which immedi-
ately tells us that the RBM learned something which does not diverge or disappear
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at the phase transition. We can compare some observables the systems produced
by calculating the expectation value (or average) of these observables. Figure 5.17
shows the average absolute magnetisation 〈|M|〉, the magnetic susceptibility χ and
two two-spin correlations 〈v1v2〉 and 〈v1v5〉 for a 3× 3 two-dimensional Ising model
on a square lattice and the corresponding trained 9× 4 RBM. The RBM appears to
replicate the magnetisation very well, which is to be expected since p(v) is a function
of V = L ·M only. The RBM performs less well on the magnetic susceptibility, which
is directly linked to the variance of M. This is also a direct consequence of the single
W-value restriction, since the two-spin correlations in the RBM are all equal. Any
spin-pair is equally connected in the single W-value RBM. The plots of the two-spin
correlations in figure 5.17 shows that the RBM is able to follow the basic features of
the spin correlations, but fails on the details. The two correlations are equivalent for
p(v). It is exactly these details which are important for χ, which is why the single
W-value RBM was unable to fully capture the details of χ.
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FIGURE 5.16: Figure (A) shows W as a function of K for a 9 × 4 RBM
trained on a 3× 3 Ising model on a square lattice, obtained via numerical
evaluations of equation (5.76). Figure (B) shows the KL-divergence corre-

sponding to the solution given by W(K).
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FIGURE 5.17: Absolute magnetisation |M|, magnetic susceptibility χ and
two-spin correlations comparisons of a 9× 4 RBM (p(v)) trained on a 3× 3

Ising model on a square lattice (q(v)).

5.7.1 Connection to mean-field theory

That the RBM fails to fully capture the details near the critical point is also shown in
the KL-divergence, which has its maximum around K ≈ 0.4 when the difference in
χ is the largest. This is around the critical value of the Ising model: Kc ≈ 0.44. The
RBM is thus unable to capture the details of the model around the critical point. The
single W-valued RBM is in many ways reminiscent of a mean-field theory. The spins
in p(v) all interact with the same value W:

p(v) =
1
Z

N

∏
a

2 cosh (W
L

∑
i

vi). (5.77)

This is very similar to how a mean-field theory of the two-dimensional Ising model
is usually derived. In the low-temperature limit the individual spins are rewritten
as

vi = m + (vi −m) ≡ m + δvi, (5.78)

where m is the average magnetisation of the spin if it was taken to be free and δvi is
taken to be small so that second-order contributions can be ignored. Essentially this
equates to ignoring correlations between spins, which is obviously not valid as long
as |ri − rj| < ξ, where ri is the distance from the origin to the spin at site i and ξ is
the correlation length. This means that their product can be written as

vivj = (m + δvi)(m + δvj)

≈ m2 + mδvj + mδvi

= −m2 + m(vi + vj). (5.79)
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The Hamiltonian for the mean-field Ising model then becomes

− HMFT = −JLm2 + 2Jm
L

∑
i

vi, (5.80)

so that the probability distribution looks like

qMFT(v) =
1

ZMFT
e−KLm2

exp (2Km
L

∑
i

vi). (5.81)

The value for m is then determined by minimising the mean-field free energy fMFT
with respect to m. The free-energy is defined as

fMFT ≡ −
1

βL
ln ZMFT

= −Jm2 +
1
β

ln (2 cosh 2Km). (5.82)

This equation is minimal when the self-consistent mean-field equation holds:

m = tanh 2Km. (5.83)

In a sense equation (5.77) is similar to the mean-field Ising model (5.81) in that they
both consist of uncorrelated spins interacting via a constant interaction strength, K
in the Ising model and W in the RBM. They are not equivalent however, as the form
of the probability distribution, a product of cosh-terms versus a single exponential
term, are sufficiently different. No simple mapping equating the two probability
distributions appears to exist.
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Chapter 6

Discussion and conclusion

In this chapter a short recap of the results obtained in chapters 4 and 5 will be given.
The results of the chapters will be discussed separately, followed by a conclusion of
the results, suggestions for further research and some final remarks.

6.1 A brief recap of the neural network analysis results

In chapter 4 we first discussed the application of a feed-forward neural network
to find the finite-size critical temperature from configurations of a two-dimensional
Ising model on a square lattice. The neural network was able to find the critical
temperatures with relative ease, and finite-size scaling was used to infer the critical
temperature in the thermodynamic limit Tc = 2.25± 0.03. The learned behaviour of
the network could be explained using a simple toy model, showing that the neural
network has learned the magnetisation. Next a convolution layer was added to the
neural network, which did not improve on the accuracy of the found critical temper-
ature. An analysis of the input values for the hidden layer showed that the neural
network is now able to learn both the magnetisation and energy of the physical sys-
tem.

A similar analysis was applied to the xy-model. A simple feed-forward neural net-
work was able to differentiate between the different phases of the system. However,
when comparing the neural network results for multiple system sizes and perform-
ing finite-size scaling analysis, the results did not fit the expected form. A convo-
lution layer was added to circumvent this problem, but to no avail. The correct
finite-size scaling was finally achieved by explicitly setting the values for four filters
so as to transform the angle-configuration to a vortex-configuration. With this trans-
formation a simple feed-forward neural network was able to successfully learn the
KT-transition with the expected finite-size scaling.

Next a different application of the neural network was then shown for the anti-
ferromagnetic Ising model on a triangular lattice (TIAF). Rather than trying to learn
a phase transition, which the system does not undergo, the neural network has
learned to infer the temperature of a given configuration. The performance for a
convolutional neural network was shown to be very accurate, decreasing in accu-
racy slightly for larger temperatures. An investigation of the filters and inputs for
the hidden layer was unable to conclusively show what the system had learned to
differentiate between the configurations. A simple toy model of a neural network
was introduced to show that a neural network is able to count the number of frus-
trated triangles.

Finally we considered the two-dimensional Coulomb gas. This model is said to
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have both an Ising-like and KT-like phase transition in relative close proximity to
one-another. Different neural networks were deployed with the task of differenti-
ating between the three phases of the system and finding the right finite-size scal-
ing relations. First a convolution neural network was applied on just the low- and
high-temperature phase. It found the Ising-like transition with the correct finite-
size scaling. A convolutional neural network trained on configurations of the in
between phase was unable to successfully differentiate between the different phases
with the correct finite-size scaling. A confusion scheme was applied to circumvent
the problem of false labelling. The confusion scheme was able to find the Ising-like
transition for the dataset over a large temperature range. Including a new dataset
over a smaller temperature range near the critical temperatures did not enable the
confusion scheme neural network to find the three phases.

6.2 Discussion and conclusion of the neural network analy-
sis

The goal of the neural network analysis was to study the application of neural net-
works as a novel numerical tool to find phase transitions in classical systems. While
the success of the initial application of the neural network on the Ising model was
a great start, the rest of the analysis was not as smooth. When the neural networks
became more complex, for example by including a convolution layer, then so be-
came the difficulty of training the network. While for the Ising model and xy-model
the neural networks, when applied to configurations at a single system size, showed
good results in terms of accuracy, this success did not carry on when regarding the
neural network results in a bigger picture. Getting the correct finite-size scaling
from the neural networks turned out to be a great difficulty, resulting in a great
deal of energy needing to be spent tweaking the learning parameters and network
topology. The more complex the neural network, the harder to get consistent results
over all system sizes. This greatly hinders neural network application to physical
systems, as most numerical applications of physics aim to get results valid in the
thermodynamic limit to be compared to theory. The network tends to settle in a
minimum of the cost function which simply does not give the desired physical re-
sult. This was most evident in the analysis of the xy-model. Only with sufficient
feature-engineering were we able to obtain useful results from the neural network.

Another difficulty with neural networks is the interpretability of the learned be-
haviour. In a sense this ties in with the difficulty of getting the correct finite-size
scaling. Precisely because these networks are so complex, it is hard to infer what
it has learned. As such, it is also difficult to design the system in such a way that
it picks up the correct behaviour. This defeats the purpose of neural networks as a
tool to apply when theory is lacking in how to discern between different phases in a
physical model. Because the learned behaviour of the neural network is so hard to
discern, it seems unlikely that any theoretical insight can be obtained from it.

The accumulation of these observations is perhaps most clear in the analysis of the
two-dimensional Coulomb Gas model. The neural network analysis was unable to
give any meaningful contribution to the discussion regarding the two phases in this
model. It seems that the most obvious conclusion to draw from these results is that
the neural network is a rather limited tool in numerical phase transition analysis in
classical systems. Apart from a few models with clearly defined phase transitions, it
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could be useful as a more specialised tool with the proper feature-engineering. An
example would be to give an estimate for the temperature of a given configuration,
as was done for the TIAF. The hope that this tool could be used as powerful all-round
phase classifier seems unlikely.

With that being said, there are plenty of directions to go into with neural networks
in physics. In context of this thesis specifically, a more in depth neural network anal-
ysis of the two-dimensional Coulomb gas could still shed some light on the different
phases of the model. More configurations in the in between phase for larger system
sizes might help, as could trying different, more advanced neural networks. There
are still many classical models for which neural networks could most likely be used
to differentiate between the different phases. There are also other applications in
quantum mechanical models represent the ground state with neural networks[22,
71]. They can also be used to help with error-correction in quantum computers[36,
72], or to model the nuclear distribution function to help with particle physics cal-
culations[37].

6.3 A brief recap of the RBM and spin models

Chapter 5 was concerned with training and analysing the behaviour of different it-
erations of RBM on the Ising model. First a discussion of the general structure of
the RBM was made, showing that restricting the weight-matrix W to a single W-
value is an extremum of the KL-divergence for a translation invariant target distri-
bution q(v). This allowed us to devise the mean-field RBM in the next section. The
mean-field RBM was then trained on a one-dimensional Ising model, comparing
the learned behaviour of the trained RBM to the Ising chain. The mean-field RBM
learned the magnetisation very well, but lacked in the spin correlations. The RBM
flow behaviour for K → ∞ was investigated, showing that W → ∞, so that the RBM
flow follows the RG flow.

Next an exact mapping from a RBM with equal number of visible and hidden nodes
to the Ising chain was derived using spin barriers and a single free W-parameter.
Another RBM iteration was derived by discussing a way to force translation invari-
ance upon the RBM. The weave-method was introduced as a method to obtain such
a RBM. The stability and performance of a 4× 2 translation invariant RBM was dis-
cussed in detail as well.

All the different RBM iterations for the Ising chain were brought together to anal-
yse the Gibss sampling, or RBM, flow of each different iteration. The trained RBM
were initialized from different initial distributions, and all but the unrestricted RBM
were shown to converge to the stationary distribution p(v) starting from any initial
distribution. The unrestricted RBM only converged to p(v) if it was initialised from
the Ising chain distribution it was trained on. The peculiar behaviour of the unre-
stricted RBM was discussed in detail and an explanation based on the W-elements
was given.

Finally the application of the mean-field RBM to the two-dimensional Ising model
on a square lattice was discussed, including a derivation of the weight-matrix com-
ponent W as a function for the Ising coupling constant K. The KL-divergence was
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found to be largest near the critical region. A comparison of the mean-field RBM to
mean-field theory of the Ising model was given as well.

6.4 Discussion and conclusion of RBM and spin models

Chapter 5 is very much the initial, exploratory part of possible further research. As
such, from the things discussed in chapter 5, only some preliminary conclusions can
be drawn. The work done on the one-dimensional Ising model primarily goes to
show the validity of certain restrictions on the RBM, and the interpretation of that.
The analytic arguments combined with numerical calculations has shown a restric-
tion of the W-matrix forces the system to pick up on a limited number of aspects
of the Ising chain, mainly focusing on the magnetisation before encoding higher or-
der moments. At the same time restricting W in a certain way enforces translation
invariance in the RBM. In fact, the RBM flow behaviour of the RBM is more well
behaved for the restricted RBMs, meaning that the RBM flow always goes towards
the stationary distribution p(v). This is an indication that restricting the RBM based
on physical symmetries can help in getting better behaving RBMs as well as being
computationally cheaper to train. The weave-method was shown to be a great gen-
eral method to apply to restrict the RBM such that p(v) has translation invariance,
while still performing better than the mean-field RBM and having a better behaved
RBM flow than the unrestricted RBM.

The next step would be to go to the two-dimensional Ising model. This model clearly
shows more interesting behaviour than the Ising chain, and as such the RBM be-
haviour is expected to be more interesting as well. Apart from the mean-field RBM,
the translation invariant RBM can also be applied to the two-dimensional case. To
this end, an extrapolation of the weave-method to two dimensions needs to be for-
mulated. The RBM flow behaviour of the mean-field RBM, translation invariant
RBM, and unrestricted RBM can then be compared, providing a stronger argument
for the advantages of restricting the RBM. It would also be interesting to see what
the RBM learns when exposed to a range of temperatures during training, instead
of a single temperature, and seeing if the results are similar to the results of Iso et
al.[31]
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Appendix A

Monte Carlo simulations

A.1 Introduction to Monte Carlo simulations

Monte Carlo simulations are an often used numerical tool to simulate finite physical
systems and obtain estimates for physical observables. The Monte Carlo method
approximates the average of an observable O by measuring the observable for each
configuration, averaging over all encountered configurations:

〈O〉 = 1
N

N

∑
i=1

Oi, (A.1)

where N is the number of configurations, and Oi is the measured observable for
configuration i. To obtain physical results, the configurations must be sampled from
a physical distribution, defined by the physical system the Monte Carlo simulation is
supposed to be modelling. This so-called importance sampling of the configurations
then follows the Boltzmann distribution

p({s}) = e−βH({s})

Z
, (A.2)

where {s} is a configuration of spins, H is the Hamiltonian and Z is the partition
sum. The configurations for the importance sampling are usually obtained from a
Markov chain, where from some initial configuration µ a new one ν is obtained ac-
cording to some transition probability P(µ → ν), which does not vary over time
and only depends on the properties of the states µ and ν. Naturally the transition
probability needs to be normalised. This process is then repeated so that a chain of
configurations is created, where the transition probability is chosen such that after a
while the distribution of created states follows the Boltzmann distribution. For this
to hold we need the conditions of ergodicity and detailed balance.

Ergodicity simply means that it must be possible to reach any state in the states-
pace of the Boltzmann distribution from any other state in a finite number of steps.
Any state with a finite probability in the Boltzmann distribution must be able to be
reached by the Markov chain, otherwise the Markov chain can never truly model the
Boltzmann distribution. This is something that needs to be checked for every new
algorithm which defines a new set of transition probabilities.

The detailed balance condition is a way to ensure that the Boltzmann distribution
is a stationary distribution of the Markov chain, and that there are no limit cycle
solutions to the chain. For a detailed derivation we point the interested reader to
Newmann et al.[73]. For our purposes it is sufficient to simply state that the detailed
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balance equation
p(µ)P(µ→ ν) = p(ν)P(ν→ µ) (A.3)

must hold. To make the equilibrium distribution equal to the Boltzmann distribution
of equation (A.2) we can see from the detailed balance equation that

P(µ→ ν)

P(ν→ µ)
=

p(ν)
p(µ)

= e−β(H(ν)−H(µ)). (A.4)

So the fraction of transition probabilities from µ to ν and back has to be equal to the
exponential of the energy difference between the two states. Different algorithms
have different transition probabilities that are computationally faster or have higher
acceptance rates, depending on the physical system being model. A common choice
is the Metropolis algorithm, which is based of the splitting of the transition proba-
bility into two parts:

P(µ→ ν) = g(µ→ ν)A(µ→ ν). (A.5)

The probability g(µ → ν) is the selection probability, giving the probability of gen-
erating the state ν given a state µ. A(µ → ν) is the acceptance ratio which gives the
probability of accepting the newly generated state ν. The Metropolis algorithm is
then based on choosing g(µ→ ν) to be symmetric, so that

A(µ→ ν)

A(ν→ µ)
= e−β(H(ν)−H(µ)). (A.6)

There are many choices for A that satisfy this condition, but the Metropolis algo-
rithm chooses

A(µ→ ν) =

{
exp (−β[H(ν)− H(µ)]) if H(ν) < H(µ)

1 if H(ν) ≥ h(µ)
. (A.7)

This essentially means that a trial move, generated from g(µ → ν), will be accepted
always if the energy for the new configuration ν is lower than the old configuration
µ. If this is not the case, the new configuration will be accepted with the probability
equal to the exponential of the energy difference between the two states, weighted
with the inverse temperature.

Monte Carlo simulations then consists of generating many configurations according
to this Markov chain method, making care to sample from the stationary distribution
of the chain by letting the chain reach equilibrium. Depending on the algorithm used
it might be necessary to take multiple steps between sequential observable measure-
ments to prevent unphysical correlations between the configurations.

A.2 Model specific details

In this section the specific algorithms used to generate configurations for the differ-
ent physical models will be discussed.

A.2.1 Ising and xy-model

For the Ising and xy-model a mixture of the spin-flip Metropolis algorithm and the
Wolff algorithm[67] was used. The spin-flip algorithm consists of picking a random
spin σi in the current spin configuration µ, and then flipping that spin σi → −σi (or
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rotating it with some randomly chosen angle for the xy-model) to generate a new
possible configuration ν. This new configuration is then accepted with the probabil-
ity given by equation (A.7). This algorithm suffers in the low-temperature region,
where many possible moves will be rejected and not all of statespace will be ex-
plored within a reasonable time. To counteract this the algorithm is augmented with
the Wolff algorithm.

The Wolff algorithm consists of growing a cluster of spins, and flipping (or rotat-
ing) the cluster all in one go. It is based on the reflection operation with respect so
the hyperplane orthogonal to r ∈ Sn−1 for O(n) spin-models

R(r)σi = σi − 2(σi · r)r, (A.8)

where for the Ising model (n = 1) this reflection simply consist of flipping the
spin. Note that the Hamiltonian is invariant under application of this operation
to all spins. The Wolff algorithm then consists of first choosing a random reflection
r ∈ Sn−1 and a random initial lattice site a marking the start of the cluster. The spin
on this site is then ’flipped’: σa → R(r)σa and marked. All nearest neighbours of a
are then considered to be added to the cluster, a nearest neighbour b is added with
probability

P(σa, σb) = 1− exp (min(0, Jβσa · [1− R(r)]σb)) (A.9)
= 1− exp (min[0, 2Jβ(r · σa)(r · σb)]). (A.10)

If b is added, it is flipped and marked. This process continues for each newly added
spin and its nearest neighbours. It can be checked that equation (A.4) holds for
newly generated configurations using this procedure, as does the ergodicity condi-
tion.

This cluster algorithm greatly increases the speed of obtaining new uncorrelated
configurations in the low-temperature limit and near the critical point.

A.2.2 Anti-ferromagnetic Ising model on a triangular lattice

The anti-ferromagnetic Ising model on a triangular lattice has a highly degenerate
groundstate, which means that if you want to generate configurations that are rep-
resentative of the model at low temperatures, most of these groundstates, or small
excitations thereof, will need to be reached. With just the Metropolis algorithm this
is nearly impossible. When starting from some initial configuration the simulation
will tend to settle in one of these groundstates, and apart from the occasional small
excitation of a single spin flip, it will stay there. The consequent Metropolis steps to
take to reach the other groundstates are simply so unlikely to happen that the sys-
tem is stuck in that particular groundstate.

This problem can be circumenvented by applying a cluster algorithm by Zhang et
al.[74]. The algorithm first divides the lattice in a chequerboard pattern of triangles,
randomly choosing one of the two possible sets of triangles (the black or white tiles).
Each individual triangle in the set is then considered. The energy for each triangle is
calculated, and based on the two options the bonds in the triangle are either frozen
or deleted.
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If the energy of the triangle is E = −3J, so that all spins are either pointing up
or down, the three unsatisfied bonds are deleted with probability p = 1. If the en-
ergy of the triangle is E = J, then with probability p = exp (4βJ) all three bonds of
the triangle are deleted. Otherwise, one of the two satisfied bonds is frozen and the
other two deleted. The bond to be frozen is chosen at random. This is done for every
triangle in the set, so that a cluster is created of spins connected by frozen bonds.
Two spins belong in the same cluster if there is a line of frozen bonds connecting
them. Then each cluster is flipped with a probability 1/2. This algorithm, combined
with Metropolis steps in between, is able to reach all of statespace of the model in
the low temperatures.

A.2.3 Coulomb gas

The Coulomb gas model is different than the previous spin models in that instead
of having just nearest-neighbour interactions, every charge is related to every other
charge. This greatly slows down the simulation when applying the Metropolis al-
gorithm, since for every step one would need to sum over all charges to calculate
the new energy of the suggested state. To circumvent this problem a algorithm by
Grest[64] is used. This algorithm is based on the simple Metropolis step, but the
energy difference is rewritten in a clever way.

Since charge must be conserved, a pair of nearest-neighbour sites (i0, i1) is chosen
at random. If the pair has opposite charge, the charge is flipped. Otherwise the
move is rejected. The flipped charge is accepted with the Metropolis probability
exp (−β∆E), where ∆E is the energy difference between the two states. Evaluating
this ∆E is time-consuming, but Grest noticed that it can be written as

∆E = ∑
i=i0,i1,j

[∆qiV ′(ri − rj)qj] + ∆qi0V ′(ri0 − ri1)∆qi1 . (A.11)

In this form each evaluation of ∆E is a computation of order L× L, for sweeping the
entire lattice. This can be sped up by rewriting it in terms of the total potentials per
site. The total potential at site i is defined as

Fi ≡∑
j

V ′(ri − rj)qj. (A.12)

Now the energy difference can be rewritten as

∆E = ∆qi0 Fi0 + ∆qi1 Fi1 + ∆qi0V ′(ri0 − ri1)∆qi1 . (A.13)

This is now a computation of order 1. However, now it is necessary to update the
total potentials for each site every time the charge configuration changes:

Fi,new = Fi,old + V ′(ri − rj)∆qi0 + V ′(ri − ri1)∆qi1 , (A.14)

which is again a computation of order L× L. However, only when an excitation is
accepted do the total potentials need to be updated. This algorithm thus provides a
substantial increase in speed compared to the direct computation of ∆E.
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Appendix B

One-dimensional xy-model and
RBM

Following the analysis as for the Ising chain, we set all the weights Wia equal to a
single value W. The main difference is that we now consider a RBM with real valued
visible nodes vi = [0, 1] which are modelled by the probability of the visible node
being equal to 1 in the binary RBM. So

vreal
i = p(vbinary

i = 1|h). (B.1)

This leaves the overall energy-function intact apart from having real valued visible
nodes and requires only minor changes in the sampling procedure. The learning
process remains the same[45]. We start with the probability distribution of the visible
layer:

p({vi}) =
1
Z ∑
{ha}

exp [W ∑
i,a

viha] (B.2)

where we have again put the bias to zero. The partition function then takes the
regular form

Z = ∑
{v,h}

exp [W ∑
i,a

viha]. (B.3)

Since the RBM’s aim is to minimise the KL-divergence KL(q||p) with respect to W,
the rest of the derivation will be concerned with minimising the KL-divergence.

The KL-divergence is given by

KL = ∑
{v}

q(v) ln
q(v)
p(v)

. (B.4)

We can then rewrite the derivative as

∂KL
∂W

= −∑
{v}

∂

∂W
[q(v) ln p(v)]

= −∑
{v}

q(v)
p(v)

∂p(v)
∂W

, (B.5)
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because q(v) is independent of W. We can rewrite the partial derivative of p in more
explicit terms

∂p(v)
∂W

=
∂

∂W
[

1
Z ∑
{h}

exp (W ∑
i,a

viha)]

= −
∑{h} exp (W ∑i,a viha)

Z2
dZ
dW

+
1
Z ∑
{h}

(∑
i,a

viha) exp (W ∑
i,a

viha). (B.6)

If we plug the second term on the right hand side of equation (B.6) back into equation
(B.5) we get the term

−∑
{v}

q(v)
∑{h} exp (W ∑i,a viha)

· (∑
i

vi) ∑
{h}

(∑
a

ha) exp (W ∑
i,a

viha). (B.7)

We can simplify this expression by explicitly performing some of the sums present
in the term. Note that

∑
{h}

exp (W ∑
i,a

viha) = ∑
{h}

exp (W(∑
i

vi)(h1 + h2 + ... + hN)) (B.8)

can be factorised as

=

(
∑

h1={0,1}
exp [W(∑

i
vi)h1]

)
...

(
∑

hN={0,1}
exp [W(∑

i
vi)hN ]

)

=
N

∏
a=1

(
∑

ha={0,1}
exp [WVha]

)

=
N

∏
a=1

(1 + exp [WV])

= (1 + exp [WV])N .

Here we take the sum over all possible values of {h} since h is still a discrete variable
with ha = {0, 1} and V = ∑i vi. So we have that

∑
{h}

exp (W ∑
i,a

viha) = (1 + exp [WV])N . (B.9)

We can use this expression to derive

∑
{h}

(∑
a

ha) exp (W ∑
i,a

viha) = ∑
{h}

(∑
a

ha) exp (WV ∑
a

ha)

= ∑
{h}

∂

∂WV
exp (WV ∑

a
ha)

=
∂

∂WV
(1 + exp [WV])N . (B.10)

Performing the derivative gives us

∂

∂WV
(1 + exp [WV])N = N (1 + exp [WV])N−1 exp [WV],
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which we can plug back in equation (B.7) together with equation (B.9) to get

∑
{v}
−q(v) (1 + exp [WV])−N VN (1 + exp [WV])N−1 exp [WV]

= −N ∑
{v}

q(v)V
1 + exp [−WV]

. (B.11)

We still need to evaluate the first term on the right hand side of equation (B.6):

−
∑{h} exp (W ∑i,a viha)

Z2
dZ
dW

= −p(v)
d ln (Z)

dW
(B.12)

and plug it in equation (B.5). We find

−∑
{v}

q(v)
p(v)

·
(
−p(v)

d ln (Z)
dW

)
=

d ln (Z)
dW

, (B.13)

where we have used that q(v) is normalised to unity. We then find for the derivative
of the KL-divergence:

∂KL
∂W

=
d ln (Z)

dW
− N ∑

{v}

q(v)V
1 + exp [−WV]

. (B.14)

The RBM wants to minimise the KL-divergence, so to find an expression for W in
terms of the coupling parameter J we need to solve

d ln Z
dW

= N ∑
{v}

q(v)V
1 + exp [−WV]

. (B.15)

All the information on the coupling constant is contained in q(v). If we only look
at the distribution at a fixed temperature T∗ the distribution will correspond to the
Boltzmann distribution

q(v) =
exp (−βH(v))

Zxy
, (B.16)

where H corresponds to the Hamiltonian of the 1 dimensional XY-model with peri-
odic boundary conditions and L sites. Zxy is its associated partition function: [75]

H(v) = −J
L

∑
i=1

cos (2π(vi − vi+1)) (B.17)

Zxy = (2π)L
+∞

∑
p=−∞

(
Ip(K)

)L . (B.18)

L corresponds to the number of visible units, K = βJ and Ip(K) is the modified
Bessel function of the first kind of order p. All together we now have

d ln Z
dW

= N ∑
{v}

exp (K ∑L
i=1 cos (2π(vi − vi+1)))

(2π)L ∑+∞
p=−∞

(
Ip(K)

)L · V
1 + exp [−WV]

. (B.19)
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Now we only need to evaluate Z, we can write

Z = ∑
{h}

L

∏
i=1

(∫ 1

0
dvi exp [WHvi]

)

= ∑
{h}

(
1

WH
(exp [WH]− 1)

)L

. (B.20)

We would again like to explicitly calculate this quantity which depends only on
H = ∑N

a=1 ha. We can take nearly the same approach as for the Ising case, only now
ha = {0, 1}. The partition function Z then becomes

Z = d(0) +
N

∑
n=1

d(n)
(

1
Wn

(exp [Wn]− 1)
)L

. (B.21)

Here d(H) describes the degeneracy and is given by the binomial coefficient:

d(H) =

(
N
H

)
. (B.22)

Again we need to resort to Mathematica to find solutions to equation (B.19). Figure
B.1 shows the left- and right hand side of equation (B.19) for different values of the
coupling strength K for the simplest case, a two-sited xy-model and a 2× 1 RBM.
Mathematica is unable to find solutions to the equations, even numerically. From the
figures one can see that there never is a solution with W(K) > 0, and that for large K,
W tends to be small. This corresponds to a strong preference for V = 0 in p(v). This
immediately highlights a problem with the single W-valued RBM for the xy-model:
p(v) is a function of V only, but q(v) does not depend explicitly on V. Meaning that
since q(v) depends on the differences between neighbouring spins only, changes in
V of a configuration will not necessarily alter the probability associated with that
configuration, as long as the differences between the spins are conserved. When K
goes to 0 one would expect W → 0, since all configurations would then be equally
likely. However, as is seen in the figure, it appears as if any W ≤ 0 would be an
extremum of the KL-divergence. For any finite K it appears as if K = 0 would
always form a solution as well as some other negative K value.
From this brief numerical study we conclude that a single W-valued continuous
RBM is unable to learn the one-dimensional xy-model.
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FIGURE B.1: Equation (B.19) left hand side (yellow) and right hand side
(blue) plotted for different values of K for a 2 × 1 RBM and a two-sited

xy-model.





123

Bibliography

1. Minsky, M. Neural Nets and the Brain Model Problem PhD thesis (Princeton Uni-
versity, 1954).

2. Rosenblatt, F. The perceptron: a probabilistic model for information storage and
organization in the brain. Psychological review 65, 386 (1958).

3. Michie, D. Experiments on the mechanization of game-learning Part I. Char-
acterization of the model and its parameters. The Computer Journal 6, 232–236
(1963).

4. Minsky, M. & Papert, S. An introduction to computational geometry. Cambridge
tiass., HIT (1969).

5. Linnainmaa, S. Taylor expansion of the accumulated rounding error. BIT Nu-
merical Mathematics 16, 146–160 (1976).

6. Fukushima, K. Neocognitron: A self-organizing neural network model for a
mechanism of pattern recognition unaffected by shift in position. Biological cy-
bernetics 36, 193–202 (1980).

7. Rumelhart, D. E., Hinton, G. E., Williams, R. J., et al. Learning representations
by back-propagating errors. Cognitive modeling 5, 1 (1988).

8. Markoff, J. What’s the best answer? It’s survival of the fittest. New York Times
(1990).

9. Campbell, M., Hoane Jr, A. J. & Hsu, F.-h. Deep blue. Artificial intelligence 134,
57–83 (2002).

10. Silver, D. et al. Mastering the game of Go with deep neural networks and tree
search. nature 529, 484 (2016).

11. Amatriain, X. Big & personal: data and models behind netflix recommendations in
Proceedings of the 2nd international workshop on big data, streams and heterogeneous
source Mining: Algorithms, systems, programming models and applications (2013),
1–6.

12. Rosenberg, C. Improving photo search: A step across the semantic gap. Google
Research Blog 12 (2013).

13. Binder, K. et al. Monte Carlo methods in statistical physics (Springer Science &
Business Media, 2012).

14. Araki, H., Mizoguchi, T. & Hatsugai, Y. Phase Diagram of Disordered Higher
Order Topological Insulator: a Machine Learning Study. <https://arxiv.org/
abs/1809.09865> (2018).

15. Hsu, Y.-T., Li, X., Deng, D.-L. & Sarma, S. D. Machine learning many-body local-
ization: Search for the elusive nonergodic metal May 2018.

16. Ch’ng, K., Carrasquilla, J., Melko, R. G. & Khatami, E. Machine Learning Phases
of Strongly Correlated Fermions. Physical Review X 7, 031038. ISSN: 2160-3308
(Aug. 2017).

https://arxiv.org/abs/1809.09865
https://arxiv.org/abs/1809.09865


124 BIBLIOGRAPHY

17. Dong, X.-Y., Pollmann, F. & Zhang, X.-F. Machine learning of quantum phase
transitions. <https://arxiv.org/abs/1806.00829> (2018).

18. Deng, D.-L., Li, X. & Sarma, S. D. Machine learning topological states. Physical
Review B 96, 195145 (2017).

19. Levine, Y., Sharir, O., Cohen, N. & Shashua, A. Bridging Many-Body Quantum
Physics and Deep Learning via Tensor Networks Mar. 2018.

20. Liang, X. et al. Solving frustrated quantum many-particle models with convo-
lutional neural networks. Physical Review B 98, 104426 (Sept. 2018).

21. Nelson, J., Tiwari, R. & Sanvito, S. Machine learning density functional theory
for the Hubbard model. <https://arxiv.org/abs/1810.12700> (Oct. 2018).

22. Gao, X. & Duan, L.-M. Efficient representation of quantum many-body states
with deep neural networks. Nature communications 8, 662 (2017).

23. Kashiwa, K., Kikuchi, Y. & Tomiya, A. Phase transition encoded in neural net-
work. arXiv preprint arXiv:1812.01522 (2018).

24. Beach, M. J. S., Golubeva, A. & Melko, R. G. Machine learning vortices at the
Kosterlitz-Thouless transition. Physical Review B 97, 045207 (Jan. 2018).

25. Carrasquilla, J. & Melko, R. G. Machine learning phases of matter. Nature Physics
13, 431–434. ISSN: 1745-2473 (Feb. 2017).

26. Iakovlev, I. A., Sotnikov, O. M. & Mazurenko, V. V. Supervised learning ap-
proach for recognizing magnetic skyrmion phases. Physical Review B 98, 174411
(Nov. 2018).

27. Van Nieuwenburg, E. P., Liu, Y.-H. & Huber, S. D. Learning phase transitions
by confusion. Nature Physics 13, 435 (2017).

28. Tanaka, A. & Tomiya, A. Detection of Phase Transition via Convolutional Neu-
ral Networks. Journal of the Physical Society of Japan 86, 063001. ISSN: 0031-9015
(Apr. 2017).

29. Lee, S. S. & Kim, B. J. Confusion scheme in machine learning detects dou-
ble phase transitions and quasi-long-range order. Physical Review E 99, 043308
(2019).

30. Funai, S. S. & Giataganas, D. Thermodynamics and Feature Extraction by Ma-
chine Learning. <https://arxiv.org/abs/1810.08179> (2018).

31. Iso, S., Shiba, S. & Yokoo, S. Scale-invariant feature extraction of neural network
and renormalization group flow. Physical Review E 97, 053304 (2018).

32. Torlai, G. & Melko, R. G. Learning thermodynamics with Boltzmann machines.
Physical Review B 94, 165134 (2016).

33. Efthymiou, S., Beach, M. J. & Melko, R. G. Super-resolving the Ising model with
convolutional neural networks. Physical Review B 99, 075113 (2019).

34. Casert, C., Vieijra, T., Nys, J. & Ryckebusch, J. Interpretable Machine Learning
for Inferring the Phase Boundaries in a Non-equilibrium System. <https://
arxiv.org/abs/1807.02468> (2018).

35. Biamonte, J. et al. Quantum machine learning. Nature 549, 195–202. ISSN: 0028-
0836 (Sept. 2017).

36. Liu, Y.-H. & Poulin, D. Neural belief-propagation decoders for quantum error-
correcting codes. Physical Review Letters 122, 200501 (2019).

https://arxiv.org/abs/1806.00829
https://arxiv.org/abs/1810.12700
https://arxiv.org/abs/1810.08179
https://arxiv.org/abs/1807.02468
https://arxiv.org/abs/1807.02468


BIBLIOGRAPHY 125

37. Khalek, R. A., Ethier, J. J. & Rojo, J. Nuclear Parton Distributions from Neural
Networks. arXiv preprint arXiv:1811.05858 (2018).

38. Lin, H., Tegmark, M. & Rolnick, D. Why Does Deep and Cheap Learning Work
So Well? Journal of Statistical Physics 168, 1223–1247. ISSN: 0022-4715 (Sept. 2017).

39. Hinton, G. E. Training products of experts by minimizing contrastive diver-
gence. Neural computation 14, 1771–1800 (2002).

40. Mehta, P. et al. A high-bias, low-variance introduction to Machine Learning for physi-
cists Mar. 2018.

41. Zeiler, M. D. & Fergus, R. Visualizing and understanding convolutional networks in
European conference on computer vision (2014), 818–833.

42. Sobel, I. An Isotropic 3x3 Image Gradient Operator. Presentation at Stanford A.I.
Project 1968 (Feb. 1968).

43. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R.
Dropout: a simple way to prevent neural networks from overfitting. The Journal
of Machine Learning Research 15, 1929–1958 (2014).

44. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems Software avail-
able from tensorflow.org. 2015. <https://www.tensorflow.org/>.

45. Fischer, A. & Igel, C. Training restricted Boltzmann machines: An introduction.
Pattern Recognition 47, 25–39 (2014).

46. Tieleman, T. & Hinton, G. Using fast weights to improve persistent contrastive diver-
gence in Proceedings of the 26th Annual International Conference on Machine Learn-
ing (2009), 1033–1040.

47. Jaeger, G. The Ehrenfest Classification of Phase Transitions: Introduction and
Evolution. Archive for History of Exact Sciences 53, 51–81. ISSN: 1432-0657 (May
1998).

48. Ising, E. Beitrag zur Theorie des Ferromagnetismus. Zeitschrift für Physik 31,
253–258. ISSN: 0044-3328 (Feb. 1925).

49. Onsager, L. Crystal Statistics. I. A Two-Dimensional Model with an Order-
Disorder Transition. Physical Review 65, 117–149 (Feb. 1944).

50. Yang, C. N. The spontaneous magnetization of a two-dimensional Ising model.
Physical Review 85, 808 (1952).

51. Landau, D. P. & Binder, K. A guide to Monte Carlo simulations in statistical physics
(Cambridge university press, 2014).

52. Ferdinand, A. E. & Fisher, M. E. Bounded and inhomogeneous Ising models. I.
Specific-heat anomaly of a finite lattice. Physical Review 185, 832 (1969).

53. Vvedensky, D. Renormalization Group for the Two-Dimensional Ising Model http:
//www.lorentzcenter.nl/lc/web/2010/404/presentations/VvedenskyI_2.
pdf. Lecture Notes.

54. Wannier, G. H. Antiferromagnetism. The Triangular Ising Net. Physical Review
79, 357–364 (July 1950).

55. Stephenson, J. Ising-Model Spin Correlations on the Triangular Lattice. III. Isotropic
Antiferromagnetic Lattice. Journal of Mathematical Physics 11, 413–419 (1970).

56. Chaikin, P. M., Lubensky, T. C. & Witten, T. A. Principles of condensed matter
physics (Cambridge university press Cambridge, 1995).

https://www.tensorflow.org/
http://www.lorentzcenter.nl/lc/web/2010/404/presentations/VvedenskyI_2.pdf
http://www.lorentzcenter.nl/lc/web/2010/404/presentations/VvedenskyI_2.pdf
http://www.lorentzcenter.nl/lc/web/2010/404/presentations/VvedenskyI_2.pdf


126 BIBLIOGRAPHY

57. Kosterlitz, J. M. & Thouless, D. J. Ordering, metastability and phase transi-
tions in two-dimensional systems. Journal of Physics C: Solid State Physics 6, 1181
(1973).

58. Nelson, D. R. & Kosterlitz, J. Universal jump in the superfluid density of two-
dimensional superfluids. Physical Review Letters 39, 1201 (1977).

59. Chung, S. G. Essential finite-size effect in the two-dimensional XY model. Phys.
Rev. B 60, 11761–11764 (16 Oct. 1999).

60. Olsson, P. Monte Carlo analysis of the two-dimensional XY model. II. Compari-
son with the Kosterlitz renormalization-group equations. Phys. Rev. B 52, 4526–
4535 (6 Aug. 1995).

61. Komura, Y. & Okabe, Y. Large-scale Monte Carlo simulation of two-dimensional
classical XY model using multiple GPUs. Journal of the Physical Society of Japan
81, 113001 (2012).

62. Villain, J. Two-level systems in a spin-glass model. I. General formalism and
two-dimensional model. Journal of Physics C: Solid State Physics 10, 4793 (1977).

63. Minnhagen, P. & Wallin, M. New phase diagram for the two-dimensional Coulomb
gas. Physical Review B 36, 5620 (1987).

64. Grest, G. S. Critical behavior of the two-dimensional uniformly frustrated charged
Coulomb gas. Physical Review B 39, 9267 (1989).

65. Lee, J.-R. & Teitel, S. Phase transitions in classical two-dimensional lattice Coulomb
gases. Physical Review B 46, 3247 (1992).

66. Minnhagen, P. & Weber, H. Non-universal Kosterlitz-Thouless jumps and two-
dimensional XY-type models. Physica B: Condensed Matter 152, 50–55 (1988).

67. Wolff, U. Collective Monte Carlo updating for spin systems. Physical Review
Letters 62, 361 (1989).

68. Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014).

69. Ter Hoeve, J. Renormalization Group connected to Neural Networks. Bachelor The-
sis (Utrecht University, June 2018).

70. Zhong, W. private communication. May 29, 2019.

71. Carleo, G. & Troyer, M. Solving the quantum many-body problem with artificial
neural networks. Science 355, 602–606 (2017).

72. Maskara, N., Kubica, A. & Jochym-O’Connor, T. Advantages of versatile neural-
network decoding for topological codes. arXiv preprint arXiv:1802.08680 (2018).

73. Newman, M. & Barkema, G. Monte carlo methods in statistical physics chapter 1-4
(Oxford University Press: New York, USA, 1999).

74. Zhang, G. M. & Yang, C. Z. Cluster Monte Carlo dynamics for the antiferro-
magnetic Ising model on a triangular lattice. Physical Review B 50, 12546–12549
(Nov. 1994).

75. Mattis, D. C. Transfer matrix in plane-rotator model. Physics Letters A 104, 357–
360 (1984).


	Abstract
	Acknowledgements
	Introduction
	Machine learning and physics
	The goal of this thesis

	Introduction to Machine learning
	A brief introduction to machine learning
	Neural Networks
	From neuron to network: the feed-forward Neural Network
	Encoding translation invariance: the convolutional neural network
	Practical considerations
	Losing supervision by confusion

	Boltzmann machines
	A mathematical introduction to Boltzmann machines
	Gibbs sampling
	Adding hidden nodes
	Restricted Boltzmann Machines


	Theoretical background
	Introduction to phase transitions
	Introduction to the real-space renormalisation group
	The Models
	The Ising chain
	Two-dimensional Ising Model on a square lattice
	Two-dimensional AF Ising Model on a triangular lattice
	xy-Model
	Coulomb Gas


	Neural Network analysis of phase transitions
	Two-dimensional Ising model on a square lattice
	Training the neural network
	Neural network results for a single system size
	A toy model to explain learned behaviour
	Extrapolating to the thermodynamic limit
	Adding a convolutional layer

	xy-model
	Applying a feed-forward neural network
	Adding a convolution layer
	Transforming the input configurations to vorticity configurations

	Anti-ferromagnetic Ising model on a triangular lattice
	Evaluating the thermometer
	A toy model learning the triangle sum histogram

	Two-dimensional Coulomb Gas
	CNN on the low- and high-temperature phases
	CNN on all three phases
	Finding the phase transition with confusion


	Restricted Boltzmann Machines and spin models
	An investigation into the general RBM structure
	The Ising chain and the mean-field RBM
	Limit behaviour of W(K) and connection to RG

	A spin barrier based mapping between the Ising chain and LL RBM
	Finding W-restrictions based on translation invariance: the weave-method
	A study of the translation invariant RBM
	The stability of a 42 translation invariant RBM

	Analysing the RBM flow
	4-sited Ising chain and the RBM flow
	6-sited Ising chain and the RBM flow
	The unrestricted RBM flow

	Two-dimensional Ising model and a single-W valued RBM
	Connection to mean-field theory


	Discussion and conclusion
	A brief recap of the neural network analysis results
	Discussion and conclusion of the neural network analysis
	A brief recap of the RBM and spin models
	Discussion and conclusion of RBM and spin models

	Monte Carlo simulations
	Introduction to Monte Carlo simulations
	Model specific details
	Ising and xy-model
	Anti-ferromagnetic Ising model on a triangular lattice
	Coulomb gas


	One-dimensional xy-model and RBM
	Bibliography

