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Abstract

We study the propagation of electrical signals in neurons by numerically solving the
Hodgkin & Huxley cable equations of action potential propagation for the squid giant axon.
For this we represent the biological membrane as an equivalent circuit containing voltage-
gated ion channels that selectively open depending on the voltage. The presence of these
voltage-gated channels turn out to be critical for obtaining the standard action potential
form. The results that we obtain from simulations are in good agreement with experimental
recordings done by Hodgkin & Huxley. We numerically solved the Hodgkin & Huxley
equations for the squid giant axon at different temperatures and studied the obtained action
potentials and ionic currents as a function of time and position.

1



Contents

1 Introduction 3

2 The Neuron 3

3 The membrane 4
3.1 Equilibrium potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Equivalent circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 The passive cable model 10
4.1 Cable model assumptions & derivation . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 Physical meaning of time/length constant . . . . . . . . . . . . . . . . . . . . . . . 14

4.2.1 time constant τ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2.2 length constant λ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5 Numerical solution of the passive cable equation for the squid giant axon 15

6 Hodgkin & Huxley model of action potential propagation 17
6.1 Action potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.2 Active ion channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.3 The potassium conductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.4 The sodium conductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.5 The active cable model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

7 Numerical solution of the Hodgkin & Huxley equations 27

8 Discussion and outlook 35

9 Appendix: Discretization 39
9.1 The passive cable equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

9.1.1 (Explicit) Forward-Euler method . . . . . . . . . . . . . . . . . . . . . . . . 40
9.1.2 (Implicit) Backward-Euler method . . . . . . . . . . . . . . . . . . . . . . . 41
9.1.3 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
9.1.4 Matrix form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

9.2 The active cable equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2



1 Introduction

The Nervous system and its regulation of bodily function and activity is a fascinating area of
study. Ages of evolution have optimized our body into a machine which is able to transmit
and receive information at a very rapid pace. A necessary requirement for our survival. Aside
from the fact that it is fascinating to know how it works, understanding the workings of the
nervous system could not only provide us with possible solutions for those that suffer from
neurological disorders (a disorder of the nervous system), but it could, for instance, also lead
to the development of artificial muscle fibres or even teach us ways to optimize transmission of
electrical currents through conductors. So it is very relevant to study the propagation of signals
through the nervous system. Questions that arise when thinking about its functions are how
these signals propagate through the nervous system, what ensures their fast propagation and
whether it is possible to model them by simple principles. We have set out to answer these
questions by studying physical models of currents through excitable cells. An outline of this
thesis will then be as follows:
First we will introduce the object of interest which is the neuron. We will briefly describe its
various components and illustrate their scales by providing some experimentally measured
lengths. Next we take a closer look at the membrane of our cells and introduce its various com-
ponents. Having done this, we turn our attention to modelling the flow of current in excitable
cells. For this, we start by representing the membrane as an equivalent circuit which we use to
write down expressions for the membrane currents. Next, Using this equivalent circuit form,
we derive the standard model for describing current flow in neurons called the cable model.
We first look at a simple form of this cable model, in which we consider a passive membrane,
and solve this to study the passive flow of current in cells. After having studied the passive
flow of current in cells, we extend the model to account for the voltage dependent properties of
the membrane [6]. This will lead us to the active cable model provided by Hodgkin & Huxley
[6]. Finally, by solving the Hodgkin & Huxley model, we study the current flow in excitable
cells and compare these results with experiments.

2 The Neuron

In Fig. 1, the structure of a neuron is represented schematically. Neurons are electrically ex-
citable cells which are specialized in long-distance transmission of electrical signals. A neuron
consists of a cell body (soma), dendrites and a single axon. Electrical impulses enter the neuron
through the dendrites, into the soma and leave through the axon to excite other dendrites. The
number of inputs a neuron can receive is dependent on how big its dendritic tree is. While
some neurons may lack dendrites, others have a very complex dendritic tree (see Fig. 2). The
axon may have branches as well, but they are not as elaborate as those made by dendrites.
The object of interest to us however, is the axon (see 3, 1). The axon is the portion of the nerve
cell specialized in relaying electrical signals over long distances. Depending on the type of
neuron and the size of the animal, the axon can extend from a few micrometers all the way to
meters. In most animals, the axons are periodically covered by fat layers called myelin sheets
(1). These myelin sheets consist of multiple layers of fat pressed on top of each other (3, [15]).
The primary function of these myelin sheets is to increase the conduction velocity of signals by
insulating the axon. One can compare the axon with the myelin sheets as an electric wire(axon)
surrounded by insulating material (myelin). However, unlike plastic covering a typical electric
wire, myelin sheets do not extend continuously along the axon, but have periodic gaps called
the nodes of Ranvier (1). These gaps turn out to be the reason for the long-distance quick signal
transmission. The general idea behind this faster conductive velocity is saltatory conduction
[24]. However, in the following we will be working with the squid giant axon as did Hodgkin
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& Huxley. The squid giant axon is an unmyelinated axon which means that we wont be delving
into the precise effects of the myelin on signal propagation. Instead we will briefly come back
to it after our discussion of the current flow in unmyelinated excitable cells.

Figure 1: A schematic diagram of a neuron. The different components and some size ranges
are displayed. Source(modified): [26].

Figure 2: Neuron morphology in different human cells. The drawings are tracings of actual
nerve cells stained by impregnation with silver salts. The asterisks indicate that the axon runs
on much farther than shown. The drawings are not at the same scale. Source: [18].

3 The membrane

Having discussed the neuron, we now zoom in on the cell membrane. The key components of
the membrane that we will be considering are shown in Fig. 4. The inside(intracellular) and
outside(extracellular) solutions are separated by an insulating lipid bilayer with a thickness of
approximately 5 nm. This lipid bilayer is impermeable to ions which means that there need to
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Figure 3: Schematic diagram of an axon segment of the myelinated cat nerve fibre. The values
have been extracted from [11].

be other structures in the membrane that will allow ions to flow in and out of the cell. This flow
is regulated by ion channels and pumps as depicted in Fig. 4.
The ion channels are protein pores in the membrane that will allow ions to enter and exit the
cell. These channels can be either passive or active. The difference between these two is that
active channels can close themselves depending on the value of the membrane potential, ionic
concentrations or due to the presence of inactivating particles. Passive channels on the other
hand have unchanged permeability and can be thought of as holes in the membrane. Both
channel types exhibit selective permeability for certain ions. This means that they allow one
particular ion to permeate the most. We label these channels by the ions to which they are most
permeable. For instance, a sodium(Na+) channel will allow mostly sodium ions to enter and
leave the cell. In Fig. 4, both a sodium as well as a potassium channel is illustrated.
Finally, the membrane also contains various ion-pumps(ion-exchangers). These are protein
structures in the membrane that actively pump certain ions in and out of the cell. If left to
their own devices, ions will flow from large to low ion concentrations such that the concen-
tration gradient is lowered. The ion pumps however, counteract this flow by pumping in the
oppostite direction. There are many pumps of which one is illustrated in Fig. 4. This sodium-
potassium exchanger pumps 2 K+-ions in and 3 Na+-ions out of the cell. The energy required
for this process is provided by the cell metabolism. Since this sodium-potassium pump pushes
2 potassium ions in and 3 sodium ions out of the cell, there is a net loss of charge in the cell.
These types of pumps we call electrogenic. There are also non-electrogenic pumps such as
the sodium-hydrogen pump which pushes one H+-ion out of the cell against its concentration
gradient and one Na+-ion into the cell. With this exchange, the Na+-ions flow down their con-
centration gradient which will supply the energy for the flow of H+-ions out of the cell. Hence
the cell does not need to provide any energy for this exchange.
These pumps make it possible for the cell to maintain a true steady state at rest. However, we
are interested in studying action potentials, which are fast disturbances to the steady state, and
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Figure 4: Components of the membrane. The inside and outside solutions are separated by a
lipid bilayer which is impermeable to ions. The ion channels are clusters of protein that allow
certain ions to pass. Finally, the Na+ − K+ pump is displayed which exchanges three Na+ ions
from the inside with two K+ ions from the outside using the energy from the hydrolysis of ATP.
Source: [23].

it turns out that the immediate effects of shutting down these pumps is small [16]. Furthermore,
a nerve cell can transmit hundreds of action potentials after its ion pumps have been shut down
[16]. Hence, from now on we will consider a simplified membrane where we ignore the ion-
pumps.

3.1 Equilibrium potentials

Having looked at the membrane and its key components, we now turn to the membrane po-
tentials, and in particular the resting membrane potential. All electrical signals of the nervous
system are caused by membrane potentials (which by standard convention is defined as the
intracellular minus the extracellular potential) due to the flow of ions through ion channels.
In our study of the propagation of these membrane potentials along the axon, a key element
that we need to understand first is the resting membrane potential. Before we can talk about
the resting potential of the membrane however, we first need to consider when the flow of a
particular ion through its channel reaches equilibrium. The hope is that if we can determine
the equilibrium potentials for all permeable ions, we can combine these to determine the full
resting potential of the membrane.
In order to accomplish this, we first need to explain what we mean by an equilibrium potential
for a permeable ion. Hence, consider the example given in Fig. 5. We start with two solu-
tions, consisting of K+ cations and arbitrary anions A−, of different concentrations separated
by a semi-permeable membrane that only allows potassium ions to pass (5a). Initially, both
solutions are charge neutral. Because the concentration of K+ ions is bigger in the left solution
compared to the right, there will be a net potassium flux to the right. Since the anions cannot
pass the membrane, a net charge will set on both ends of the membrane. The left solution lost
cations and hence will acquire a net negative charge while the right solution gained cations and
hence will gain a net positive charge. Note that these charges are confined to the membrane
surface as an electrical double layer [16]. These net charges then cause an electrical force which
results in a potassium current to the left that counteracts the diffusion current (5b). After some
time, the electric forces have grown large enough to fully counter the thermal forces. At this
point, there is no net current present and the system is said to be in equilibrium. The potential
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Figure 5: Visualization of the potassium currents through K+ channels due to thermal and
electrical forces. a) Because of the concentration gradient, there will be a net K+ flux to the
right. b) electrical forces give rise to a potassium current to the left. c) The thermal and electrical
forces have balanced each other out. The system has reached equilibrium. Source: [23].

difference at which the system is at equilibrium is called the equilibrium potential for that ion.
For the particular example of Fig. 5, we considered K+ ions, but the same could be done for the
other permeable ions.
One can determine the equilibrium(Nernst) potentials for these ions by equating the intracel-
lular and extracellular chemical potentials. These are given by:

EK =
kBT

e
ln

cK,o

cK,i

ENa =
kBT

e
ln

cNa,o

cNa,i

(1)

Where kB is the Boltzmann constant, T is the absolute temperature, e is the elementary charge
and co/ci is the ratio of the outside and inside concentrations of ion X. In table 1 the concentra-
tions and corresponding Nernst potentials for K+ and Na+ are given for a squid giant axon at a
temperature of 23◦C. Note that the initial and final concentrations of the ions will differ due to
the ionic currents. However, as it turns out, this change is very minimal. In fact, the amount of
ions on the membrane is millions of times smaller than the amount in the cytoplasm [23] which
means that we can simplify our problem by considering the ion concentrations to be constant.

Table 1: Ion concentrations measured for the squid giant axon at a temperature of 23◦C. Source:
[26]

Having discussed the equilibrium potentials of ions, one is tempted to think that the resting
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potential of the membrane is just the sum of the Nernst potentials. This is however not quite
correct. In fact, in what follows, we will show that Nernst potentials need to be weighted by
the different conductivities of the membrane for different ions.

3.2 Equivalent circuit

Cm

ENa

gNa

EK

gK

Figure 6: The equivalent electrical circuit of a patch of membrane that contains sodium (Na)
and potassium (K) ion channels in parallel with a capacitance Cm. Source: [23](modified).

When considering the example above, we found out that the membrane can both separate
charges as well as conduct electric currents which is carried by ions. These are properties
which resemble those of an electrical circuit. Hence we would like to represent the membrane
as a combination of electrical circuit components. The fact that it can separate charge, means
that one of these components must be a capacitor. Next we consider the conduction of ionic
currents. Many different models have been devised to describe the ionic currents, but the
one which we will be using is the Ohm’s law description used by Hodgkin and Huxley in
their work on nerve excitation [6]. In this description, the ionic currents through K+ and Na+

channels are given by:

IK = gK(Vm − EK)

INa = gNa(Vm − ENa)
(2)

Where Vm is the membrane potential and gK, gNa are the potassium and sodium ion channel
conductivity’s. One important thing to note here is that in excitable cells, these conductivity’s
are in fact functions of voltage and time and not constants. We will look at the full form of
these conductivity’s later but for now we do not need to know them. So we can represent the
ion channels by resistors, corresponding to the respective conductances gK, gNa, in series with
electrochemical batteries that are given by the Nernst potentials EK, ENa. With this we have
represented the membrane components as electrical components which, when put together,
yield us the equivalent circuit illustrated in Fig. 6. Note that the poles of the batteries match
the convention we use for the membrane potential (inside minus outside potential). A positive
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Nernst potential means that the lower wire is at a higher potential and hence this is where the
plus pole lies. Similarly, a negative Nernst potential means that the plus pole is connected to
the upper wire.
Now that we have managed to represent the membrane as an equivalent electrical circuit, we
turn to the resting membrane potential. The potential across the membrane given by Vm leads
to a capacitive current CmdVm/dt, and ionic currents IK, INa. Then by Kirchoff, we require that
the sum of all currents in a closed circuit be zero. Which gives us the equation:

Cm
dVm

dt
= −INa − IK = −gNa(Vm − ENa)− gK(Vm − EK). (3)

In the resting state, where Vm = Er, the membrane potential is independent of time which
means that

dVm

dt
= 0 (4)

Plugging this into the equation above yields us the following expression for the resting poten-
tial Er:

−gNa(Er − ENa)− gK(Er − EK) = 0 (5)

Rewriting this, we arrive at the expression for the resting membrane potential:

Er =
gNaENa + gKEK

gNa + gK
(6)

Hence we see that indeed the resting potential is not just the sum of the equilibrium poten-
tials. Instead, the equilibrium potentials are weighted by their respective conductances and
normalized by the sum of the conductances.
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4 The passive cable model

Symbols:

im Outward membrane current per unit length [µA/cm]

iax Longitudinal current through the axon core [µA]

Vax Potential inside the axon core [mV]

Vo Extracellular potential [mV]

Vm = Vax −Vo Membrane potential [mV]

V = Vm − Er Departure of Vm from its resting value [mV]

Er Rest value of V [mV]

rax Axon core resistance per unit length [kΩ/cm]

Rax Axon core resistivity [kΩ cm]

rm Membrane resistance for unit length [kΩ cm]

Rm Resistance across a unit area of membrane [kΩ cm2]

cm Membrane capacitance per unit length [µF/cm]

Cm Membrane capacitance per unit area [µF/cm2]

λ =
(rm/rax)1/2

Length constant of core conductor [cm]

τ = rmcm Passive membrane time constant [ms]

d Axon core diameter [cm]
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x1 x2

Δx = x2 - x1

Figure 7: Longitudinal and membrane currents for a segment ∆x of the passive axon. Here Er
is the resting potential of the membrane.

In the previous sections, we looked at the membrane and its components. We defined the
membrane potential as being the difference between the intracellular and extracellular po-
tentials and studied the resting potential of the membrane. First we defined the equilibrium
potentials of each ion and moved on to represented the membrane as an equivalent electri-
cal circuit consisting of a capacitance(representing the lipid-bilayer) in parallel with conduc-
tances(representing the ion channels). We found out that the resting potential is not just the
sum of the equilibrium potentials, but is instead weighted by the conductances.
Until now, we have been considering the currents that can leave the axon through the mem-
brane. Now we would like to add the longitudinal currents through the axon core into the
equations. For this we will introduce a cable theory for the axon that will complete our equiv-
alent electrical circuit (see Fig. 7 & 8). We start with the simple case of a passive membrane.
That is, a membrane with a leak channel given by a constant resistance. One can imagine these
channels as pores through which currents can escape the axon core when the membrane is not
at rest. By using some basic laws such as Kirchhoff and Ohm’s law, one can show that in the
cable model, the membrane potential V(x, t) at position x and time t is given by the second
order equation:

λ2 ∂2V
∂x2 = τ

∂V
∂t

+ V. (7)

Where λ and τ are the length and time constants which are material dependent. In the follow-
ing, we will derive the above equation and look at some numerical solutions.

4.1 Cable model assumptions & derivation

• The first assumption we make is that the potential V = V(x, t) is only dependent on the
distance in the axon core, denoted by x. We neglect radial and angular dependences.
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Er
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Δx

Vo

Inside

Outside

Figure 8: A compartmental model of the passive axon with rax and rm the longitudinal resis-
tance per unit length and membrane resistance for unit length respectively.

• The second assumption is that the intracellular medium is a simple ohmic resistance [19].
In other words, we can describe the resistance in the core by the resistance per unit length
rax [Ω/cm].

• Now we apply Ohm’s law to the cylindrical geometry. By taking ∆x to be very small we
can assume that iax [A] is constant along the increment. Then by ohm’s law we have the
relation

∆Vax = −iaxrax∆x (8)

Here the minus signs ensures that when iax is positive (positive charge moves in the di-
rection of increasing x), Vax,1 > Vax,2 since then position 1 will be more positive compared
to position 2. Now we can divide each side by ∆x and take the limit ∆x → 0 to obtain:

∂Vax

∂x
= −iaxrax (9)

• Next we apply conservation of current. This tells us that if ∆iax 6= 0, the excess current
must leak out of the membrane as im (see Fig. 7 & 8). Again by taking the increment to
be small such that the currents don’t change, we have that the total amount of membrane
current is equal to im∆x. Then current conservation implies:

im∆x = −∆iax (10)

Again we divide both sides by ∆x and take the limit ∆x → 0 to obtain:

im = −∂iax

∂x
(11)
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• Now we can combine eq’s 8 & 11 to obtain:

∂2Vax

∂x2 = imrax (12)

• In many cases of interest the external potential Vo has very small variation w.r.t x com-
pared to the inside potential Vax [19]. Hence we have ∂Vo/∂x = 0.

• The membrane potential difference is defined as Vm = Vax −Vo. Furthermore, we define
the departure of Vm from its resting value as V = Vm − Er. Here Er is the resting potential
of the membrane. This resting potential is set up by the selective diffusion of ions between
the cytoplasm and the extracellular solution. Combining these two relations give us:

V = Vax −Vo − Er. (13)

For a uniform membrane we must have ∂Er/∂x = 0. Together with ∂Vo/∂x = 0 we can
differentiate (13) to obtain:

∂2V
∂x2 =

∂2Vax

∂x2 (14)

Using this and equation 12 we get:

1
rax

∂2V
∂x2 = im (15)

• Now we finalize the derivation of the simplest model by assuming a passive membrane
(see Fig. 8). In the passive membrane model we assume constant trans-membrane re-
sistance and emf. The standard electrical circuit representation of a passive membrane
consists of a capacitor (representing the lipid bi-layer) electrically in parallel with a bat-
tery where the emf equals the resting potential of the membrane.

The total outward membrane current im∆x, is the sum of the resistive and capacitive
current given by:

im∆x = (Vm − Er)(
∆x
rm

) + (cm∆x)(
∂Vm

∂t
) (16)

Now we can simplify this by dividing by ∆x, using V = Vm − Er and that Er is indepen-
dent of time to obtain:

im =
V
rm

+ cm
∂V
∂t

(17)

• Finally we can equate (15) and (17) to obtain the passive membrane cable equation

rm

rax

∂2V
∂x2 = rmcm

∂V
∂t

+ V (18)

Here we can define the time and length constants τ = rmcm and λ2 = rm
rax

respectively, to
obtain eq (7):

λ2 ∂2V
∂x2 = τ

∂V
∂t

+ V (19)
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Figure 9: Cable parameters for invertebrate giant axons. Source: [19]

4.2 Physical meaning of time/length constant

4.2.1 time constant τ

Following excitation, the membrane potential has a decay for which the time course is given by
τ = rmcm [s]. The fact that τ is a measure for the decay of the membrane potential can be shown
easily for a spatially uniform membrane potential (V(x, t) = V(t)) for which eq (7) reduces to

dV
dt

= − 1
τ

V (20)

Which has the general solution

V(t) = V0 exp(−t/τ) (21)

Where V(0) = V0. From the equation above it is clear that τ is the decay constant.
When the membrane potential is not spatially uniform however, its passive decay is more com-
plicated than the result given above.

4.2.2 length constant λ

λ is a characteristic length scale of the nerve cylinder which is a measure for how far a potential
will travel along the axon via passive conduction. In order to see this, we consider the steady
state where V depends on the position but not time. Hence, we have that ∂V/∂t = 0 and
equation (7) reduces to:

λ2 d2V
dx2 = V (22)

Now consider a semi-infinite cylinder starting at x = 0 and extending to x = ∞. Then the
general solution is given by:

V(x) = V0 exp(− 1
λ

x) (23)

Where V(0) = V0. From this solution it is clear to see why λ is a natural length scale for the
nerve cylinder. As you progress further away from x = 0, the potential decreases with a decay
constant given by λ. When you reach x = λ, the potential has decreased to 1/e of V0.
In Fig. 9 a collection of length and time constants are displayed for invertebrates that possess
large axons.
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5 Numerical solution of the passive cable equation for the squid gi-
ant axon

x = 0 x = L

iinj

Figure 10: Passive cable with sealed ends where we inject a current iinj at x = 0 for a certain
amount of time.

Now we turn to numerically solving the passive cable equation (7) and studying its results.
In section 9, we discretize the passive cable equation and show how to incorporate relevant
boundary conditions. In this section we will present the results that we obtained by solving the
set of discretized equations of section 9.
Consider the initial value problem displayed in Fig. 10. The boundary conditions are given by
eq (69). We start with an axon that is initially at rest everywhere. Then, Starting at t = 0, we
inject 10 µA of longitudinal current at position x = 0 for a total time of 7 ms before we seal
this end. Using this initial state and the sealed end boundary conditions, we then solve for the
membrane potential as a function of time and space.
The parameters that we used for our simulations are those for the squid giant axon as shown
in table 9. These are:

d = 500 µm,
Rax = 30 Ωcm,

Rm = 1000 Ωcm2,

Cm = 1 µF/cm2,
λ = 0.65 cm,
τ = 1 ms.

(24)

Furthermore, we choose our axon dimensions to be:

L = 50 λ,
T = 50 τ,

Nx = 1000,
Nt = 1000.

(25)
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The results that we obtained are shown in Fig. 11.
By looking at these results, we observe that we can divide the course of the membrane poten-
tials into three parts.

• The first part is the charging of the capacitances. In this phase which takes a little over
2τ ms, the capacitances will be charged to their maximum values.

• After the capacitances are fully charged, we enter the steady state phase in which the
potentials are no longer dependent on time. We have shown previously that in this state,
the potentials decay exponentially w.r.t the space variable x given by the length constant
λ: V(x) = V0 exp(−x/λ).

• The final phase is the discharging phase in which we stop injecting current and the po-
tentials rapidly decay back to the rest potential. Note that the positions a bit further away
from the injection site decay slower since there will still be some left-over longitudinal
current that enters these parts.
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Figure 11: Solution of the passive cable equation (7) for the squid giant axon. The membrane
potential is plotted as a function of time at various spatial positions.
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Figure 12: Action potential and resting potential recorded between the inside and outside of a
giant axon. Source: [16].

6 Hodgkin & Huxley model of action potential propagation

6.1 Action potentials

In the previous sections, we looked at the very simplified model of a passive membrane. We
solved the cable equation numerically and studied its results. Fig. 11 showed us behaviour
that we would expect from a passive cable. Namely, the injected current can only travel a small
distance along the axon before it has fully leaked out through the membrane. Furthermore, as
soon as we stop injecting current, the membrane capacitance quickly discharges and drops the
membrane potential back to its resting value. In this case, the membrane potential is character-
ized by a steady increase and a quick decrease back to rest.
However, Intracellular recordings (see Fig. 12) demonstrate that the membrane potential Vm
is actually characterized by a sharp increase (depolarization) that reverses the potential sign,
followed by a decrease back to the resting potential (repolarization). Before returning to the
rest, the potential can drop under the resting value which we call hyperpolarization. We call
these types of propagated signals action potentials.
What we would like to do now is to adjust our passive cable model such that we can describe
and study these action potentials. For this we will follow the work of Hodgkin and Huxley
[6] who were the first to provide a quantitative description of active membranes. These mem-
branes contain ion channels that open or close depending on the membrane potential.

6.2 Active ion channels

In order to model the active properties of the membrane, we need to extend our passive mem-
brane model of before and add active ion channels. These are channels that selectively open
to ions depending on the membrane potential. Since the work of Hodgkin and Huxley, a large
number of active channels have been discovered. However, we will only look at potassium and
sodium channels as did Hodgkin and Huxley when studying the squid giant axon. Although
there many more channels, the sodium and potassium currents are the major players in the
propagation of action potentials and hence, this simplification is not that bad.
In Fig. 13, the equivalent circuit used by Hodgkin and Huxley is displayed. Instead of having
a leaky membrane consisting of holes, we now have three types of ionic currents in the circuit:
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Figure 13: The Hodgkin-Huxley equivalent circuit. Source: [23].

A large potassium and sodium current, and a small leak current which will mostly consist of
chloride ions. Note that the conductances of the sodium and potassium channels are variable
and depend on voltage. This voltage dependence contains the active mechanism of the mem-
brane. Just like before, we can write down expressions for the ionic currents in terms of their
conductances as:

IK = gK(Vm − EK),
INa = gNa(Vm − ENa),

IL = ḡL(Vm − EL).
(26)

Note that we put a bar over ḡL which indicates that this is a constant unlike gK and gNa which
depend on the voltage. In our discussion of the passive cable model, we worked with the
departure from the resting potential given by V = Vm − Er. Since in most works this is the
standard choice, for practical reasons we would like to rewrite the equations for the ionic cur-
rents in terms of this potential as well. For this we define the potentials:

VK = EK − Er,
VNa = ENa − Er,

VL = El − Er.
(27)

Using these equations, we can then rewrite our current expressions to a more practical form
given by:

IK = gK(V −VK)

INa = gNa(V −VNa)

IL = ḡL(V −VL).
(28)

In order to use the equations above, we first need to find expression for the ionic conductances.
Hodgkin and Huxley did this by fitting equations to experimental data. In the next sections,
we will consider both the potassium and sodium currents and provide the relevant expressions
which were obtained by Hodgkin and Huxley by fitting to data.
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Figure 14: Time course of the potassium conductance. A) Rise of potassium conductance due to
a depolarization of 25 mV. B) Fall of potassium conductance due to repolarization to the resting
potential. The circles represent experimental data points obtained for a squid giant axon at a
temperature of 21◦C in choline sea water. The solid line is drawn according to eq (33) with the
following parameters:
Curve A: gK0 = 0.09 m.mho/cm2, gK∞ = 7.06 m.mho/cm2, τn = 0.75 ms.
Curve B: gK0 = 7.06 m.mho/cm2, gK∞ = 0.09 m.mho/cm2, τn = 1.1 ms. Source: [6]

6.3 The potassium conductance

We mentioned before that the potassium and sodium conductances depend on the voltage. Be-
fore we look for their expressions however, we first show where this idea of voltage dependent
conductances come from. By using voltage clamp experiments, Hodgkin and Huxley were able
to measure the potassium conductance for a number of holding potentials for the squid giant
axon. Some of the results they obtained are shown in Fig. 14, 15. All of these plots show similar
behaviour, namely, by depolarizing the membrane, the potassium conductance increases until
it has reached its peak value. After one drops the holding potential, the potassium conductance
decays exponentially back to zero. Note here that although the depolarizations of 25 mV in Fig.
14 and 26 mV in Fig. 15 are almost the same, the rise of the first one is much faster. This is due
to the fact that the first experiments were done at a temperature of 21◦C while the second ones
were done at a much colder temperature of 6◦C.
By looking at the family of curves in Fig. 15, one can make the following observations:

• The peak conductance value gK∞, which is reached after some time, becomes larger if we
increase the holding potential V. Furthermore, this increase slows down which means
that there is a maximum value for the conductance which Hodgkin and Huxley named
ḡK.

• By increasing the depolarization, the conductance rises faster to its peak value.

Hence, the results shown in Fig. 14, 15 show us that the conductance indeed depends on the
voltage. Now that we have convinced ourselves of its voltage dependence, lets us turn to its
expression. Hodgkin and Huxley tried a number of models to describe this voltage depen-
dence. By considering the rise and fall of the data points in Fig. 14, they speculated that the
rising phase of the conductance can be fitted by a third- or fourth-order equation while the
drop can be fitted by a first-order equation. This idea can be simplified by assuming that gK is
proportional to the fourth power of a variable which obeys a first-order equation. The simplest
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Figure 15: Rise of the potassium conductance associated with different depolarizations. The
circles represent experimental data points obtained for a squid giant axon at temperatures be-
tween 6-7◦C in choline sea water and sea water. The solid lines are drawn according to eq (33).
Source: [23].

assumptions that provided the best fits to the data are:

gK = ḡKn4

dn
dt

= αn(1− n)− βnn.
(29)

Here ḡK is the maximum conductance with dimensions of [conductance/cm2], αn and βn [1/time]
are rate constants which vary with voltage but not with time and n is a dimensionless variable
which can vary between 0 and 1.
Now let us see if these equations do indeed provide a good fit to the data points. At rest, we
have dn/dt = 0 which, when plugged into the rate equation above, gives us an expression for
the resting value of n, denoted n0:

n0 =
αn0

αn0 + βn0
. (30)

Using the boundary condition n(0) = n0 we can solve the inhomogeneous linear differential
equation (29) to obtain the following expression for n.

n = n∞ − (n∞ − n0) exp(−t/τn)

n∞ =
αn

αn + βn

τn =
1

αn + βn

(31)

Finally, using the relations

gK∞ = ḡKn4
∞

gK0 = ḡKn4
0

(32)
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And the expression for n, we can rewrite eq (29) to the form

gK = {(gK∞)
1/4 − [(gK∞)

1/4 − (gK0)
1/4] exp(−t/τn)}4 (33)

Where gK0 is the value of the conductance at t = 0 and gK∞ is the value which the conducatance
finally attains. The solid lines shown in Fig. 14, 15 were calculated from eq (33) while using
values for gK∞, gK0 and τn to get the best possible fit. One can clearly see the good agreement
between the expression and the measurements.
Using these fits, we can determine the voltage dependence of the rate coefficients αn and βn.
We start by rewriting the expressions for n∞ and τn in eq (31) to the form:

αn = n∞/τn,
βn = (1− n∞)/τn.

(34)

So after fitting eq (33) to the measurements, we can use the fit parameters n∞ and τn to deter-
mine the values of αn and βn at that particular holding potential. In order to find the expres-
sions for αn and βn as a function of the membrane potential V, Hodgkin and Huxley collected
all the values of αn and βn from the fits in Fig. 14, 15 and plotted them against V. However,
not all measurements which were used to calculate αn, βn were done at the same temperature.
So in order to compare the different measurements, one needs to scale the values of the rate co-
efficients to the desired temperature. Hodgkin & Huxley used the Q10 temperature coefficient
to do this. The Q10 coefficient is a measure of the rate of change of biological parameters as
a consequence of increasing the temperature by 10◦C. It is often used in biological systems to
compare parameters at different temperatures and is given by the expression:

Q10 = (
R2

R1
)10/(T2−T1). (35)

Where T2, R2 are the desired temperature and corresponding rate coefficient and T1, R1 are the
temperature and corresponding rate coefficient which were measured. Hodgkin & Huxley
found from measurements that they could compare measurements done at different temper-
atures by assuming a Q10 of 3 [7]. The results that they obtained for αn and βn are shown in
Fig 16. Finally, Hodgkin and Huxley wrote down the simplest expressions for αn and βn that
provide good fits to the data. These are given by:

αn = 0.01(10−V)/
[

exp
10−V

10
− 1

]
,

βn = 0.125 exp(−V/80).
(36)

To summarize, the set of equations that describe the potassium current for the squid giant axon
are:

IK = gK(V −VK),

gk = ḡKn4,
dn
dt

= αn(1− n)− βnn,

αn = 0.01(10−V)/
[

exp
10−V

10
− 1

]
,

βn = 0.125 exp(−V/80).

(37)
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Figure 16: The potassium rate constants αn and βn as a function of the membrane potential.
Here the empty shapes represent measurements of αn while the filled shapes represent mea-
surements of βn. The different shapes represent measurements of different axons. Source: [6].

6.4 The sodium conductance

The expression for the sodium conductance was found in a similar way as the potassium con-
ductance. We start off by considering a set of measurements done at different depolarizing
holding potentials (see Fig. 17). Comparing with the behaviour of the potassium conductance
in Fig. 14, we note that the major difference is that, even though we have not dropped the
holding potential, the sodium conductance rises to its peak and then drops back to zero. This is
unlike the potassium conductance which rises to its peak and remains there until the holding
potential has been dropped. We call this fall of the sodium conductance inactivation. In order
to quantify this inactivation process, Hodgkin and Huxley performed a range of voltage clamp
experiments [8]. They then settled for the simplest description that would provide good fits
to their experimental results. This description has two rate variables m and h to represent the
level of activation and inactivation respectively, and the relevant equations are:

gNa = m3hḡNa,
dm
dt

= αm(1−m)− βmm,

dh
dt

= αh(1− h)− βhh.

(38)

Where ḡNa is the maximum sodium conductance with dimensions of [conductance/cm2] and
αm, αh, βm and βh [1/time] are rate coefficients which vary with voltage but not with time and
m, h are dimensionless variables which can vary between 0 and 1.
Now we wish to see how well the equations above fit to the experimentally measured data.
The solutions of the rate equations in (38) which satisfy the boundary conditions m(0) = m0
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Figure 17: Rise and fall of the sodium conductance associated with different depolarizations.
The circles are measurements took from a squid giant axon at temperatures of 6-7◦C. The
numbers to the left show the depolarization in mV while the scales on the right are given in
m.mho/cm2. Source: [6].

and h(0) = h0 are

m = m∞ − (m∞ −m0) exp(−t/τm)

h = h∞ − (h∞ − h0) exp(−t/τh)

m∞ =
αm

αm + βm

τm =
1

αm + βm

h∞ =
αh

αh + βh

τh =
1

αh + βh

(39)

By plugging these expressions for m and h into eq (38), one can can obtain an expression for gNa
as a function of time and the parameters ḡNa, m∞, h∞, τm, τh, m0, h0. Then, by using appropriate
values for the parameters, this equation for gNa can be compared to the measurements as shown
by the solid lines in Fig. 17. One can see that the agreement is quite good.
After having fitted the theoretical curves to the data points, the voltage dependence of αm, αh, βm
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Figure 18: Rate coefficients αm and βm as a function of membrane potential. The points rep-
resent measurments while the solid lines are drawn according to eq (41). The measurements
were done at temperatures between 3 and 11◦C, but were scaled to 6◦C using a temperature
coefficient (Q10) of 3. Source: [6].

and βh can be determined similar to the case for potassium by using:

αm = m∞/τm,

βm = (1−m∞)/τm

αh = h∞/τh,

βh = (1− h∞)/τh.

(40)

Using the fit parameters, Hodgkin and Huxley collected the values of αm, βm, αh and βh from
different experiments and plotted them against the holding potential in Fig. 18 and 19. They
then wrote down equations for αm, βm, αh and βh in terms of the potential V that would provide
the best fit to the data and settled for the following equations which are represented as solid
lines in Fig. 18 and 19:

αm = 0.1(25−V)/(exp
25−V

10
− 1),

βm = 4 exp(−V/18),

αh = 0.07 exp(−V/20),

βh = 1/(exp
30−V

10
+ 1).

(41)
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Figure 19: The rate coefficients of inactivation αh and βh as a function of the membrane poten-
tial. The points represent measurements while the solid lines are drawn according to eq (41).
Not all of the measurements where done at the same temperature, but they were scaled to 6◦C
by using a temperature coefficient of 3. Source: [6].

To summarize, the set of equations that describe the sodium current for the squid giant axon
are given by:

INa = gNa(V −VNa),

gNa = ḡNam3h,

dm/dt = αm(1−m)− βmm,

dh/dt = αh(1− h)− βhh,

αm = 0.1(25−V)/(exp
25−V

10
− 1),

βm = 4 exp(−V/18),

αh = 0.07 exp(−V/20),

βh = 1/(exp
30−V

10
+ 1).

(42)
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6.5 The active cable model
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Figure 20: Schematic drawing of the active cable with variable potassium and sodium conduc-
tances.

Having determined the voltage dependent expressions for the sodium and potassium conduc-
tances, we now wish to combine everything together to form an active cable model that de-
scribes action potential propagation in axons. Luckily, We have already done most of the work
in our derivation of the passive cable equation. The only thing that we need to do is change
the passive membrane from before to an active membrane consisting of variable conductances.
See Fig. 20 for a drawing of a segment of an axon with active membrane components.
In our derivation of the passive cable equation, we found the following expression for the
membrane currents:

1
rax

∂2V
∂x2 = im (43)

Where im [µA/cm] is the outward membrane current per unit length, V = Vm − Er [mV] is the
departure of the membrane potential from its resting value and rax [kΩ/cm] is the axon core
resistance per unit length.
We first rewrite this in more conventional units by using the relations:

rax =
4Rax

πd2 ,

im = πdIm.
(44)

Here Rax [kΩ cm] is the axon core resistivity and Im [µA/cm2] is the membrane current density.
Using these relations, we rewrite the equation above in the following form:

d
4Rax

∂2V
∂x2 = Im. (45)
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In the active cable model, the membrane current is the combination of potassium, sodium, leak
and capacitive currents. Using the expressions for the potassium and sodium currents that we
found in the previous sections, we can write the membrane current as:

Im = Cm
∂V
∂t

+ ḡL(V −VL) + ḡKn4(V −VK) + ḡNam3h(V −VNa) (46)

Where Cm [µF/cm2] is the specific membrane capacitance. Combining the two equations above,
we arrive at the Hodgkin and Huxley active cable equation:

d
4Rax

∂2V
∂x2 = Cm

∂V
∂t

+ ḡL(V −VL) + ḡKn4(V −VK) + ḡNam3h(V −VNa) (47)

With the potassium and sodium rate variables given by:

dn
dt

= αn(1− n)− βnn,

αn = 0.01(10−V)/
[

exp
10−V

10
− 1

]
,

βn = 0.125 exp(−V/80).

(48)

dm
dt

= αm(1−m)− βmm,

dh
dt

= αh(1− h)− βhh,

αm = 0.1(25−V)/(exp
25−V

10
− 1),

βm = 4 exp(−V/18),

αh = 0.07 exp(−V/20),

βh = 1/(exp
30−V

10
+ 1),

(49)

Now that we have a full quantitative description of the active membrane, we turn to numer-
ically solving the above equations and studying the results. First of all, we would like to see
whether the above equations can indeed reproduce measurements. If the agreement turns out
to be good, we will analyze the conductances and currents in order to understand the process
behind action potential propagation.

7 Numerical solution of the Hodgkin & Huxley equations

In section 9, we provide the discretization and numerical procedure that we used to solve the
Hodgkin & Huxley equations. Just like in the passive cable case, we initiate our system by
injecting a current at x = 0 for a certain amount of time (see 10) while keeping the ends sealed
by eq (69). The parameters that we used for the simulations are those for the squid giant axon
provided by Hodgkin & Huxley [6]. They are given by:

d = 476 µm
Rax = 35.4 Ωcm
Cm = 1 µF/cm

(50)

gNa = 120 mS/cm2

gK = 36 mS/cm2

gL = 0.3 mS/cm2

VNa = 115 mV
VK = −12 mV
VL = 10.613 mV

(51)

We choose our dimensions such that the length and time of the cable is long enough for us to
be able to study the propagation of the action potentials while not having too long simulation
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times.

L = 50 cm
∆x = 0.05 cm

T = 50 ms
∆t = 0.005 ms

(52)

In order to study the action potentials at different temperatures, Hodgkin & Huxley scaled the
rate coefficients αy, βy for y = n, m, h by multiplying them with a Q10 coefficient of 3. The rest
of the parameters were chosen to be independent of temperature [6]. By using the above set of
parameters and scaling the rate coefficients with a Q10 of 3, we solved the Hodgkin & Huxley
equations at different temperatures.
Let us start by considering action potentials at a low temperature of 9.1◦C. These are in fact
temperatures in which the squid giant axon naturally resides. The results are shown in Fig.
21. We can see that the agreement between our simulation of the Hodgkin & Huxley equa-
tions with measurement is quite good. The forms, amplitudes and time-scales are very much
in agreement with each other. Our calculated action potential does however differ from the
experimental one in the following ways: 1) Our potential drops slower. 2) The peak is sharper.
and the end of the falling phase is sharper. These differences could be caused by our numeri-
cal procedure but we will not delve into this here since the agreement is good enough for the
purpose of our study.
Our result at a temperature of 9.1◦C showed a long return to rest which took around 12 ms.
This is to be expected since we are considering quite low temperatures. We would then expect
the duration of the action potential to decrease if we increase the temperature. We have done
this by solving the Hodgkin & Huxley equations at a temperature of 20.5 ◦C. The results are
shown in 22. Again we can see the agreement with experiment. As expected, the rise of the
temperature has greatly reduced the duration of the action potential. Furthermore, it has low-
ered the amplitude by a small amount. Hence, by increasing the temperature, we get faster and
slightly weaker action potentials.
Having convinced ourselves that our solutions of the Hodgkin & Huxley equations agree with
experiments, we now turn to studying the various properties of action potentials. We started
by plotted the action potential for different initial depolarizations (see Fig. 23). We observe that
there is a threshold potential below which no action potential gets initiated. Instead the signal
then just dissipates passively. When we increase the initial depolarization above the threshold,
an action potential is initiated and propagates along the axon. Hence, the action potential is an
all-or-nothing response.
Furthermore, if we try depolarizing the membrane during the hyperpolarizing phase (see Fig.
24), we observe that no action potential gets initiated. This means that during this phase, the
membrane is not primed for another action potential. We call this phase of the action potential
the refractory period. This property ensures that action potentials cannot propagate backwards.
Now let us look at the propagated action potential. In Fig. 25, we plotted the membrane poten-
tial ,with different initial stimuli, as a function of time at various points along the axon. From
these results, we make the following observations: 1) The action potential moves down the
axon at a constant speed. Which in Fig. 25 comes down to roughly 15 m/s. 2) The time course
of each action potential is the same. 3) The peak is independent of the distance traveled (action
potential preserves shape). 4) Above threshold stimuli create a propagating action potential
whose amplitude is independent of the strength of the initial stimulus.
Now that we have seen the long-distance signal transmission of the action potential, we take a
point along the axon and study the ionic currents at this point when an action potential passes.
In Fig. 26, we have plotted the membrane potential, conductances and currents as a function
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Figure 21: Top: Calculated action potential using the HH equations with the set of parameters
given in eq (50) and (51) for a temperature of 9.1 ◦C. Bottom: Membrane potential recorded at
T=9.1 ◦C, Source: [6].

of time at position x = 15 cm when an action potential passes. By looking at the conductances
and the ionic currents, we can separate the action potential in the following 3 phases: Phase 1)
As soon as the membrane potential passes its threshold value, The sodium conductance shoots
up. This means that the channels open up causing sodium ions to flow into the axon which
rapidly increases the membrane potential. This keeps going until the Membrane potential has
reached its peak value. Phase 2) After the membrane potential has reached its peak value, the
sodium conductance drops while the potassium conductance starts rising. This means that
during this phase the sodium channels close while the potassium channels open causing a
flow of potassium ions out of the axon. Potassium ions keep flowing out until the membrane
potential has reached its rest value again. Phase 3) A excess outflow of positive charge can
causes the membrane potential to drop below its resting value before it slowly returns to rest.
A graphical summary of the flow of ionic currents during the propagation of an action potential
is provided in Fig. 27.
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Figure 22: Top: Calculated action potential using the HH equations with the set of parameters
given in eq (50) and (51) for a temperature of 20.5 ◦C. Bottom: Membrane potential recorded at
T=20.5 ◦C, Source: [6].
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Figure 23: Solutions of the HH equations for different initial depolarizations. The simulations
were done at a temperature of 18.5 ◦C and the system was initiated by injecting currents at
x = 0 for 0.1 ms such that the membrane depolarizes to the desired value. Below the threshold
potential of around 11 mV, initiations do not cause an action potential to emerge.
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Figure 24: Results showing the refractory period in which the membrane is less likely to initiate
another action potential. Two identical currents have been injected at different times. One at
the beginning and one during the refractory period. We see that During the refractory period,
the membrane is not primed for another action potential and the signal progresses passively
instead. Temperature was set to 18.5 ◦C.
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Figure 25: Solutions of the HH equations for different initiation strengths. In the top figure we
injected 5 µA for 0.5 ms while in the bottom figure we injected 40 µA for 0.5 ms. It is clear that
the propagated action potential does not depend on the initiation strength.
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Figure 26: Top: Membrane potential as a function of time taken at x = 15cm. Middle: The
sodium, potassium and total conductance as a function of time. Bottom: Current densities as a
function of time. Potassium IK, sodium INa, ionic Iionic = IK + INa, capacitive Ic and membrane
Im = Ic + Iionic. The temperature was set to 18.5 ◦C.
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Figure 27: The active and passive current flows due to a passing action potential. Depolariza-
tion opens Na+ channels locally and produces an action potential at point A of the axon (time
t = 1). The resulting inward current flows passively along the axon, depolarizing the adjacent
region (point B) of the axon. At a later time (t = 2), the depolarization of the adjacent mem-
brane has opened Na+ channels at point B, resulting in the initiation of the action potential at
this site and additional inward current that again spreads passively to an adjacent point (point
C) farther along the axon. At a still later time (t = 3), the action potential has propagated even
farther. This cycle continues along the full length of the axon. Note that as the action poten-
tial spreads, the membrane potential repolarizes due to K+ channel opening and Na+ channel
inactivation, leaving a “wake” of refractoriness behind the action potential that prevents its
backward propagation. Source: [18].
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8 Discussion and outlook

With the results that we obtained for the propagated action potential, we are ready to conclude
this thesis. We set out to understand the propagation of signals through neurons and to find a
model that could describe them by means of simple principles. After introducing the neuron
and in particular the axon, we approached these questions by first working towards a cable
model that could describe the passive flow of current in axons. For this model, the equivalent
circuit representation of the cellular membrane was crucial. After studying the passive flow
of current in axons, we extended the model to account for active currents by following the
work of Hodgkin & Huxley [6]. This lead us to the Hodgkin & Huxley model which is an
active cable model that describes the propagation of action potentials in excitable cells. For this
one assumes that the membrane consists of voltage dependent ion channels that selectively
open depending on the membrane potential. We then solved the Hodgkin & Huxley equations
numerically and studied the propagated action potential. Form our results we found that the
action potential has the following properties:

• They require a combination of active and passive currents.

• A threshold potential needs to be reached in order to initiate an action potential. This
means that the action potential is an all-or-nothing response and hence is not graded.

• The regenerative property of the voltage-gated channels ensure long-distance transmis-
sion of electrical signals at constant speed.

• Following an action potential, there is a period in which the membrane is not primed for
excitation. This is called the refractory period and it limits the number of action potentials
that can be produced. Furthermore, it ensures that signals do not move backwards.

So we managed to model the propagation of signals in excitable cells and study its properties.
However, this is only the beginning for there are still many questions left unanswered of whom
I will mention a few here in the form of an outlook.
For instance, from our results we found that the conduction velocity was actually quite low
(15 m/s for the squid giant axon at 18.5 ◦C). This is definitely not fast enough for most an-
imals that require fast reaction. So then what causes the fast propagation of signals through
axons? Recall that action potential conduction requires both active and passive flow of cur-
rent. In order to speed up the conduction velocity, the passive flow of current along the axon
needs to be improved. One way of doing this is by increasing the axon diameter, which will
effectively lower the core resistance and increase the conduction velocity. Another way to im-
prove the passive flow of current, which is the more efficient strategy, is to insulate the axonal
membrane. This will reduce the leaking of current and hence increase the distance that the sig-
nal can flow passively. In most organisms, the conduction velocity is increased by insulating
the axon with myelin [15]. Myelinated axons can conduct action potentials at velocities up to
120 m/s which is often 100 times faster than unmyelinated axons [18]. The idea behind it is
saltatory conduction [24, 27]. Due to periodic gaps between myelin sheets, the time consuming
process of action potential generation only occurs at specific points along the axon called the
nodes of Ranvier (see Fig. 1). Studying this process called saltatory conduction and its precise
effects on the propagation of action potentials in axons is something that we were unable to do
in the amount of time available. Hence, this is an area which yet holds unanswered questions
and worth pursuing.
There is another area of interest which is connected to myelin. The theory of saltatory conduc-
tion assumes that the myelin sheets act as insulators through which no currents can leak out.
However, evidence has been found that the myelin sheets are in fact no perfect insulators but
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instead contain a small pathway between the myelin and the axon core called the periaxonal
space through which current can flow [2]. Double cable models have proposed to account for
this leakage pathway by extending the familiar single cable model and assigning a voltage to
the periaxonal space [1, 3, 4, 5, 11, 22]. The precise function and effects of this periaxonal space
on the propagation of action potentials is something which is yet an active area of research with
many unanswered questions.
Finally I wish to mention a topic that concerns the cable model description. Namely, The cable
model which is widely used to describe the propagation of action potentials in axons has its
flaws. Some of them are:

• The model assumes that ionic concentrations are not significantly altered by changes in
conductivity due to changes in membrane permeability. Hence the assumption is that
the equilibrium potentials do not change and remain fixed in the battery. However, there
are cases where this is not a good assumption to make. For instance if the intracellu-
lar volume is relatively small, as in dendritic spines, then ionic concentrations tend to
vary significantly due to changes in ionic conductance. Furthermore, in certain systems
the ionic concentration on one side can change by orders of magnitude in milliseconds,
causing a concentration gradients [21].

• In the cable model the driving force for the ionic current inside the cytoplasm is the po-
tential gradient. However, driving forces caused by large concentration gradients are not
incorporated. This could cause errors for small compartments like dendritic spines where
large concentration gradients occur.

• Another limitation is the fact that the cable model considers the total cytoplasmic resis-
tivity. This can cause errors when different ions have different concentration-dependent
cytoplasmic resistivities. Since then large concentration gradients will cause the total re-
sistivity to be a bad approximation.

Hence, another topic that one could pursue is to try and account for the above mentioned prob-
lems by considering electro-diffusion models [21, 25, 12, 14, 13, 17, 20, 9]. Clearly, in the study
of nerve signal propagation there is still a lot of exciting things to pursue. In my time studying
this field, I only scratched the surface of a very complex and interesting area of research which
I personally will closely follow from now on.
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9 Appendix: Discretization

9.1 The passive cable equation

V0 V1 V2 VNx

im, 0 ∆x im, 1 ∆x im, 2 ∆x im, Nx ∆x

iax, 0 iax, 1
iax, 2 iax, Nx-1

iax, -1
iax, Nx

Δx

Figure 28: Discretization of an unmyelinated axon of total length L. The axon is split up into
Nx segments of equal length ∆x = L/Nx. Each segment has an associated membrane current
and incoming/outgoing axonal currents.

In this section we discretize the passive cable equation (7) such that we can numerically solve
it. Recall the form of the passive cable equation:

τ
∂V(t, x)

∂t
= λ2 ∂2V(t, x)

∂x2 −V(t, x). (53)

Consider x to be in the interval [0, L]. We split this interval up into Nx segments of equal
length ∆x = L/Nx with Nx + 1 the amount of space lattice points. With this we can define
Vi(t) = V(t, i∆x) with 0 ≤ i ≤ Nx (see Fig. 28).
The derivative is given by the limit

∂V(t, x)
∂x

= lim
h→0

V(t, x + h)−V(t, x)
h

. (54)

However, our space interval has been discretized and hence h has a smallest value given by ∆x.
This means that we can write the derivative as

∂V(t, x)
∂x

≈ V(t, x + ∆x)−V(t, x)
∆x

. (55)

This is the forward difference method as we consider V at a point x + ∆x to the right of x.
Similarly we can define the backward and central differences respectively:

∂V(t, x)
∂x

≈ V(t, x)−V(t, x− ∆x)
∆x

, (56)
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∂V(t, x)
∂x

≈ V(t, x + ∆x/2)−V(t, x− ∆x/2)
∆x

. (57)

We will use the central difference method twice to approximate our second order spatial deriva-
tive

∂2V(t, x)
∂x2 =

∂V(t,x+∆x/2)
∂x − ∂V(t,x−∆x/2)

∂x
∆x

=
V(t, x + ∆x)− 2V(t, x) + V(t, x− ∆x)

(∆x)2 . (58)

Substituting this expression into the cable equation and considering the point x = i∆x gives us

τ
dVi(t)

dt
= λ2 Vi+1(t)− 2Vi(t) + Vi−1(t)

(∆x)2 −Vi(t). (59)

Having discretized the spatial dimension x, we now turn to the time t. Consider t to be on the
interval [0, T]. We split this interval into Nt segments of equal length ∆t = T/Nt where we
define the potential at the spatial point x = i∆x and at time k∆t to be Vk

i = V(k∆t, i∆x) with
0 ≤ k ≤ Nt.
Depending on which finite difference we consider for the time, we will arrive at the Forward
or Backward Euler method.

9.1.1 (Explicit) Forward-Euler method

The simplest difference one could consider is the forward difference given by:

dVi(t)
dt

≈ Vi(t + ∆t)−Vi(t)
∆t

. (60)

Substituting this expression into the cable equation and considering the time k∆t for k ≥ 0, we
obtain the forward-Euler equation.

τ
Vk+1

i −Vk
i

∆t
= λ2 Vk

i+1 − 2Vk
i + Vk

i−1

(∆x)2 −Vk
i . (61)

Rewriting this equation gives us

Vk+1
i = ψVk

i−1 + φVk
i + ψVk

i+1, (62)

where we define the dimensionless constants

ψ =
∆t
τ

λ2

∆x2,

φ = 1− 2ψ− ∆t
τ

.
(63)

Hence we can see that the forward Euler method (62) is an explicit method since Vk+1 at the
next time step depends on the known values Vk at the previous time step. This makes this
method very easy to implement, but it is known to suffer from numerical instability depending
on the values one takes for ∆x, ∆t [10]. For this reason, we instead choose to implement the
backward-Euler method since this method does not suffer from the same numerical instabilities
as the explicit method.
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9.1.2 (Implicit) Backward-Euler method

For the backward-Euler method, we approximate the time derivative as follows:

∂Vi(t)
∂t

≈ Vi(t)−Vi(t− ∆t)
∆t

. (64)

Substituting this into the cable equation and considering the time (k + 1)∆t for k ≥ 0, such that
we avoid a negative time argument, we arrive at the backward-Euler equation.

τ
Vk+1

i −Vk
i

∆t
= λ2 Vk+1

i+1 − 2Vk+1
i + Vk+1

i−1

(∆x)2 −Vk+1
i . (65)

Using the dimensionless constants

ψ =
∆t
τ

λ2

∆x2 ,

φ = 1 + 2ψ +
∆t
τ

,
(66)

we can rewrite this equation to obtain

Vk
i = −ψVk+1

i−1 + φVk+1
i − ψVk+1

i+1 . (67)

From eq (67) we can see why this is an implicit method. At each time step one needs to solve a
linear system of equations in order to compute the new potential values. Although this method
is a bit harder to implement, it is superior to the explicit method since we do not have to worry
about the numerical instabilities that can arise for certain choices of ∆t, ∆x.

9.1.3 Boundary conditions

Next we present possible boundary conditions. One type is the Dirichlet boundary condition
for which we specify the values of V at the spatial end points.

V(t, 0) = V0,
V(t, L) = VL.

(68)

These conditions at the end points are commonly denoted by "clamped-end" boundary con-
ditions. We call the special case where V0 or VL equals the rest potential Er, an "open-end"
boundary condition. This can be easily seen by considering the definition of the potential
V = Vm − Er, Vm = Vax − Vo. When V = Er, then Vm = 0 which means that Vax = Vo.
Since the potential inside the axon equals the outside potential, this end is cut "open" which
explains the name "open-end" boundary condition.
Another type is the Neumann boundary condition for which we specify the current at the end
points.

∂V(t, 0)
∂x

= −iinj(t)rax,

iinj(t) =

{
iinj t ≤ tinj

0 else

∂V(t, L)
∂x

= 0.

(69)

Recall that in the derivation of the single cable equation we showed that ∂Vax(x, t)/∂x is pro-
portional to the longitudinal current iax(x, t). Since V = Vm − Er = Vax − Vo − Vr, and Vo, Vr
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are assumed spatially uniform, we have that ∂V(x, t)/∂x = ∂Vax(x, t)/∂x. This shows that the
two conditions above are indeed conditions for the longitudinal current inside the axon core.
The first condition corresponds to injecting a current iinj (see Fig. 28) at the beginning of the
axon for a certain period of time while the second condition is called a "sealed-end" boundary
since no current is allowed to exit through this end point.
In order to use the Neumann boundary conditions presented above in numerical simulations,
we need to discretize them. Due to its simplicity, we choose to discretize them using forward
differences:

∂Vk(0)
∂x

=
Vk

0 −Vk
−1

∆x
,

∂Vk(L)
∂x

=
Vk

Nx+1 −Vk
Nx

∆x
.

(70)

Note that Vk
−1 and VNx+1 are potentials at non existing grid points. In order to use this method,

we will then have to write Vk
−1 and VNx+1 in terms of Vk

0 and VNx respectively by using the
Neumann boundary conditions that we set. We can then replace Vk

−1 and VNx+1 with these
expressions in the equations that we need to solve. For the Neumann boundary conditions
(69), we obtain the relations:

Vk
−1 = Vk

0 + ik
injrax∆x,

Vk
Nx+1 = Vk

Nx
.

(71)

9.1.4 Matrix form

Consider an axon subject to the Neumann boundary conditions (69). Using the implicit Euler
method, the linear system of equations that we need to solve are:

Vk
0 = −ψVk+1

−1 + φVk+1
0 − ψVk+1

1 ,

Vk
1 = −ψVk+1

0 + φVk+1
1 − ψVk+1

2 ,

Vk
2 = −ψVk+1

1 + φVk+1
2 − ψVk+1

3 ,

...

Vk
Nx−1 = −ψVk+1

Nx−2 + φVk+1
Nx−1 − ψVk+1

Nx
,

Vk
Nx

= −ψVk+1
Nx−1 + φVk+1

Nx
− ψVk+1

Nx+1.

(72)
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For Vk
−1 and VNx+1 we substitute the equations (71) to obtain the linear system of equations:

Vk
0 + ψik

injrax∆x = (φ− ψ)Vk+1
0 − ψVk+1

1 ,

Vk
1 = −ψVk+1

0 + φVk+1
1 − ψVk+1

2 ,

Vk
2 = −ψVk+1

1 + φVk+1
2 − ψVk+1

3 ,

...

Vk
Nx−1 = −ψVk+1

Nx−2 + φVk+1
Nx−1 − ψVk+1

Nx
,

Vk
Nx

= −ψVk+1
Nx−1 + (φ− ψ)Vk+1

Nx
.

(73)

Which we can write in matrix form

~Vk = A~Vk+1. (74)

Where the components of the vectors and matrix are given by the linear system of equations
above. Note that the matrix A is independent of the potential. Numerical simulations of the
passive cable equation will then proceed as follows:

• We always start with an axon that is initially at rest. Meaning that ~V0 = 0.

• Next we calculate the matrix A by using the values of ψ and φ which we calculate from
the relevant parameters.

• Afterwards we solve the matrix equation (74) to find the potential at the next time step
~V1.

• We then use the new potential to determine the next potential etc. We do this for all the
time steps until we have determined the full time course of ~V.

9.2 The active cable equation

In this section, we will discretize the Hodgkin & Huxley active cable equation and provide
a procedure with which one can numerically solve the equations. Recall that the Hodgkin &
Huxley equations are given by:

d
4Rax

∂2V
∂x2 = Cm

∂V
∂t

+ ḡL(V −VL) + ḡKn4(V −VK) + ḡNam3h(V −VNa) (75)

With the potassium and sodium rate variables given by the first order equations:

dn
dt

= αn(V)(1− n)− βn(V)n,

dm
dt

= αm(V)(1−m)− βm(V)m,

dh
dt

= αh(V)(1− h)− βh(V)h.

(76)
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Using the Implicit Euler method, we can discretize the Hodgkin & Huxley equation as follows:

Cm
∂V
∂t

=
d

4Rax

∂2V
∂x2 − IL − IK − INa,

Cm

∆t
(Vk+1

i −Vk
i ) =

d
4Rax(∆x)2 (V

k+1
i−1 − 2Vk+1

i + Vk+1
i+1 )− Ik+1

L,i − Ik+1
K,i − Ik+1

Na,i,

Vk
i = Vk+1

i +
d∆t

4Rax(∆x)2Cm
(−Vk+1

i−1 + 2Vk+1
i −Vk+1

i+1 ) +
∆t
Cm

(Ik+1
L,i + Ik+1

K,i + Ik+1
Na,i),

Vk
i = Vk+1

i + Ψ(−Vk+1
i−1 + 2Vk+1

i −Vk+1
i+1 ) +

∆t
Cm

(Ik+1
L,i + Ik+1

K,i + Ik+1
Na,i),

Vk
i = −ΨVk+1

i−1 + (1 + 2Ψ)Vk+1
i −ΨVk+1

i+1 +
∆t
Cm

(Ik+1
L,i + Ik+1

K,i + Ik+1
Na,i),

Vk
i = −ΨVk+1

i−1 + (1 + 2Ψ)Vk+1
i −ΨVk+1

i+1 +
∆t
Cm

[
ḡL(Vk+1

i −VL),

+ ḡK(nk+1
i )4(Vk+1

i −VK) + ḡNa(mk+1
i )3hk+1

i (Vk+1
i −VNa)

]
,

V k
i + ωk+1

i = −ΨV k+1
i−1 + (1 + 2Ψ + φk+1

i )V k+1
i − ΨV k+1

i+1 ,

Ψ =
d∆t

4Rax(∆x)2Cm
,

φk+1
i =

∆t
Cm

[
ḡL + ḡK(nk+1

i )4 + ḡNa(mk+1
i )3hk+1

i

]
,

ωk+1
i =

∆t
Cm

[
ḡLVL + ḡK(nk+1

i )4VK + ḡNa(mk+1
i )3hk+1

i VNa

]
.

(77)

For the boundary conditions, we use the same method described in our discretization of the
passive cable model. Again we can write the set of equations above in terms of the matrix
equation:

~Vk + ~ω = A~Vk+1. (78)

Where ~ω consists of the elements ωk+1
i and the matrix A depends on Ψ and φk+1

i .
In order to solve the matrix equation above, we need to know the values of the rate variables at
time k + 1. We know that the dimensionless variables are given by the differential equations:

dy
dt

= αy(1− y)− βyy for y = n, m, h. (79)
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Discretizing this differential equation by using the backward difference gives us

yk+1
i − yk

i
∆t

= αk+1
y,i (1− yk+1

i )− βk+1
y,i yk+1

i ,

yk+1
i =

yk
i + ∆tαk+1

y,i

1 + ∆tαk+1
y,i + ∆tβk+1

y,i

.

(80)

We see that in order to determine the rate variables at time k + 1, we need to know the potential
at time k + 1. Since αk+1

y,i and βk+1
y,i both depend on Vk+1

i . This makes the problem much more
complex so in order to make the computations tractable we decided to simplify the problem by
setting:

yk+1
i =

yk
i + ∆tαk

y,i

1 + ∆tαk
y,i + ∆tβk

y,i
. (81)

We argue that by taking the time step ∆t small enough, the error caused by this simplification
is acceptable. We will see from the results that we obtain that this is indeed the case. Hence,
given an initial condition for the rate variables and potential, we can calculate the values of the
rate variables at time k + 1. We choose our initial conditions for the rate varables to be:

dy
dt

(t = 0, x) = 0 for y = n, m, h. (82)

Which, when plugged into eq (76), yields us the initial condition for the rate variables:

y0
i =

α0
y,i

α0
y,i + β0

y,i
. (83)

Now we have everything we need in order to solve the Hodgkin & Huxley equations. Below
is the numerical procedure we used.

• One start with an axon that is initially at rest everywhere, meaning V0
i = 0 for all spatial

points i.

• Next we calculate the values of the rate variables y0
i at time t = 0 by plugging the values

for V0
i into the voltage dependent expressions for the rate coefficients α0

y,i, β0
y,i in eq (83).

• By using the backward difference on eq (82), we have that y1
i = y0

i . This allows us to start
the iterative procedure.

• Using the values of y1
i , we then determine the values of φ1

i and ω1
i from eq (77).

• Next, we calculate the matrix A by using the values of φ1
i and Ψ, and we add the values

of ω1
i to V0

i . With this, we are ready to solve for V1
i by solving the matrix equation (78).

• After having calculated V1
i , we determine y2

i by using eq (81).

• Then, by using y2
i , we redo the steps above to determine V2

i . Doing this for all time steps
yields us V as a function of time and space.
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