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Abstract

This thesis investigates the effects of nonlinearity on physical neural
networks as part of the Vaporware network project. The Vaporware net-
work, which has not been implemented yet, will do computations which
are done by neural networks using the propagation of laser light. For
large enough networks this will speed up the evaluation of these neural
networks. In this network the role of a nonlinear activation function is
taken on by propagating the light through dense atomic vapour. To get
nonlinear effects the frequency of the light has to be near an absorption
line and the intensity high enough that the vapour is partially saturated.
We simulated the Vaporware model numerically using Keras to see how
different values of the susceptibility affected the accuracy of the network.
A susceptibility of zero corresponds to propagation in a vacuum and this
corresponds to having no activation function. As expected this showed
the lowest accuracy for the MNIST dataset. We found a maximum accu-
racy of 96%. We found that the sign of the susceptibility only matters to
a small extent for the accuracy.

1 Introduction

Neural networks, a form of machine learning, have become quite popular over
the years and has use in areas ranging from medical imaging to the newest
snapchat filter. Neural networks have grown more complex over the years and
as such the larger networks take longer to execute and consume more power.
Physical networks try to solve this. If the execution of these networks can
be performed using an optical setup, then the execution will happen at the
speed of light and we are only limited in the readout time. The size of the
network will not matter anymore. This would be useful for self-driving cars
which rely on huge neural networks and they require fast execution times and
low power usage. The Vaporware network is a proposed network which makes
use of a laser and multiple spatial light modulators. The pixels of the spatial
light modulator are like the weights in neural networks; the pixels are tunable
parameters which are continuously changed during the training phase. The
training phase will take longer than conventional neural networks but once it
is trained the network becomes static and will provide computation essentially
as fast as you can read out the the signal. Neural networks consist of layers
which usually have linear parts which then feed in nonlinear functions called
activation functions. Without these nonlinear functions the network is limited
in its capabilities because stacking on linear layers has no effect. These nonlinear
functions will be modeled by vapour with nonlinear optical properties. In this
thesis we will study the effect of this nonlinear vapour.
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2 Theory

2.1 Machine Learning

Machine learning is a set of algorithms that aim to perform tasks with as little
human intervention as possible. An example would be image recognition; sup-
pose you have a collection of images and you want to locate any faces that are
on them. Before machine learning the usual thing to do would be to hand craft
an algorithm that would first detect features like eyes, a mouth, nostrils etc.
and would then decide, based on the relative locations of these features, if it is
seeing a face. The machine learning approach would be to provide a large data
set of faces to the computer and have it ’train’ on the data set. This training
is done by incrementally adjusting various parameters of the model , which will
be explained in more detail in the theory section. The machine learning ap-
proach has proven itself time and time again and machine learning has started
appearing in numerous disciplines (too many to list).

A notable example of the strength of machine learning is the Alphazero
software by google. The goal of Alphazero was to create a general purpose
algorithm for playing games. It competed in three games: chess, go and shogi.
For each of these games there exists well optimized software that is designed
to play the games as well as possible. Basically a more sophisticated version
of what you play against when you play ’against the computer’. Especially the
chess engine (Stockfish) was optimized very well and has years of research and
improvements to precede it. Using only self-play as training it was to able to
beat all three engines within a total of 24 hours. This shows the potential of
raw computing power in the right setting.

2.1.1 The Perceptron network

Machine learning really started to take of when neural networks were developed.
Neural networks are a particular structure that is inspired by how neurons are
connected in the brain. Even though the resemblance to actual brains is far
sought, neural networks have proven themselves to be useful. The first neural
networks used perceptrons which are a very basic model of how neurons fire.
A perceptron has multiple inputs and performs a weighted sum on them to
determine the output. They are usually depicted as a little circle with every
input and output represented by a line, see Fig. 1. Every input is associated
with a weight so in drawings of networks every line also represents a weight. By
chaining many perceptrons together it is possible to make complex decisions.
Suppose one such perceptron has to model whether you want to buy a bar of
chocolate or not. In that case it has three inputs which are all numbers: how
hungry you are, how much money you have and much you need to lose weight.
The input could then look like this (0.9, 0.25, 0.5) where the inputs are scaled
so they are between 0 and 1. Not every input is equally important; if you
think hunger is very important, give less importance to money and your health,
the weights could for instance become (2, -0.5, -0.5). The last two weights are
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negative because when the inputs are high you are less likely to buy the bar.
To compute the final outcome you would perform a weighted sum of the inputs
and weights: 0.9 · 2 + 0.25 · (−0.5) + 0.5 · (−0.5) = 1.425. If this sum is bigger
than some threshold the output is 1 (buy it) and if it’s less than the threshold
it’s 0 (don’t buy it).

We can write this last step as

a = σ(w · x + b), (1)

where a is called the activation (a term borrowed from neuroscience) and the
weighted sum is written as the dot product a weight vector. The function σ is
called an activation function and in this case it is a simple step function:

σ(x) =

{
1 x ≥ 0

0 x < 0

The threshold is then equal to −b since w · x + b > 0 is equivalent to saying
w · x > threshold.

Figure 1: Depiction of a perceptron with 3 inputs. Source: towardsdata-
science.com

2.1.2 Layered networks

As mentioned in the previous section, chaining multiple perceptrons can result
in networks that make complex calculations. It has been proven even that,
under some assumptions, neural networks can approximate arbitrary functions.
The most common method to do this is by dividing the networks in layers. Each
layer is connected only to the layer before and after it. If every neuron in a layer
is connected to every input neuron that layer is called a dense layer. Dense layers
have long been the standard and even though there are now alternatives like
convolutional layers dense layers are still ubiqitous. An example of a dense
network can be seen in Fig. 2. Dense networks are particularly suitable for
parallelization. Equation (1) can be extended easily for multiple inputs and
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multiple outputs. The weight vector is replaced by a matrix and the bias is
replaced by a vector, yielding

ai = σ(wijxj + bi), (2)

a = σ(wx + b). (3)

Using this notation you can write the entire network as function composition.
Let an denote the nth layer of the network. Then the nth layer of a network
can be writtes as

an = σ(bn−1 + wan−1).

Every layer that is not the input or the output is called a ’hidden layer’
because the outputs of these layers has no apparent meaning. That is why neural
networks are usually treated as a black box. The hidden layers are usually not
looked at, although some work has been done at better understanding their
role (for example Google Deep Dream). The number of hidden layers can vary
greatly. For simple datasets such as MNIST (which will be discussed later) a
single hidden layer is sufficient while state of the art networks can have up to a
100 layers.

Figure 2: A dense network with two hidden layers. sourec:
towardsdatascience.com

2.1.3 Backpropagation

Now we know how calculations are done in neural networks there is one thing
missing: determining the weights. Determining what weights to use is central
to machine learning. This is an optimization problem so this problem is usually
casted in a form where gradient descent can be used. To do this we need a
’loss function’ that tells us how good the network is performing with its current
weights. Let the output of the network be denoted by y. For some input of the
network we know how the output should like, let’s call this target output yt. A
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possible loss function would then be the mean squared error:

L =
∑
i

1
2 (yt,i − yi)2 (4)

If y is very close to yt then the loss is small and vice versa. One can view
the loss as a single function of all the inputs and weights:

L = f(x, {wn
ij})

If the network is using only continuous and differentiable activation functions
then it is possible to calculate the gradient with respect to all the weights;

∇wL ≡
∂L

∂wn
ij

.

Calculating it is just a matter of applying the chain rule iteratively. Minimizing
L is then as simple as moving all the weights against the gradient. The weight
update then looks like

wn
ij −→ wn

ij − η
∂L

∂wn
ij

.

where η is an important parameter called the ’learning rate’ that determines
how large the stepsize should be. Naively computing the gradient for every
weight is very slow. Here is where backpropagation shines. Backpropagation
makes intelligent use of the layered structure of neural networks. If you were to
calculate the partial derivatives by hand you should notice at some point that
you are just multiplying a lot of Jacobians. A neuron gives the same Jacobian
to every one of its inputs so for this neuron it has to be calculated only once. A
second insight is that a layer depends only on the layer before it, neurons have no
dependencies in the layer they are in. So to perform backpropagation you start
by calculating the Jacobians in the last layer and them pass them backwards to
they can be multiplied with the Jacobians of that previous layer. This continues
until every layer is reached. This way each Jacobian is calculated the minimum
number of times. A Jacobian is always evaluated at some point, so before calcu-
lating the gradient you first have to evaluate the input which is propagated like
normal, but intermediate values are saved. This called the forward pass. After
the forward pass the gradient is propagated backwards using the precomputed
values from the forward pass.The rough idea of backpropagation is shown in
Fig. 3.

The update as I mentioned is actually a bit of a simplification. In practice
there are many ways to update the weights. The learning rate can change,
the magnitude of the gradient vector can be rescaled and momentum can be
used, which means the gradient doesn’t directly change the weight but instead
accelerates the weights. The algorithm that performs the update is called an
optimizer and finding good optimizers is still an active area of research.
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Figure 3: Rough idea of backpropagation for a sin-
gle neuron. source: https://becominghuman.ai/

back-propagation-in-convolutional-neural-networks-intuition-and-code-

2.1.4 Activation Functions

As mentioned before, For backpropagation to work the activation functions
should be continuous and differentiable. A small change in the output should
mean a small change in the output. This is clearly not the case for the step
function. This is why the sigmoid function (also known as logistic function)
quickly emerged as a better alternative for the step function.

See Fig. 4 for the definition of these functions.
The sigmoid function is basically a smoothed version of the step function. For

large negative values it approaches zero. For large positive values it approaches
one. A similar function is Tanh, which is a rescaled version of the sigmoid.
The range is [−1, 1] instead of [0, 1]. The range being centered around zero
works slightly better for learning. The sigmoid (together with tanh) was the
standard for a long time but was slowly replaced by ReLU because it suffers
from the vanishing gradient problem: when the input weights become very large
the sigmoid can get stuck in the flat portion of the function. The gradient of
the sigmoid becomes extremely small so any further updates also become really
small and the neuron becomes ’stuck’ at whatever value it is at the time.

The Rectified Linear Unit (ReLU) solves this problem and is therfore very
popular in modern networks. The positive part doesn’t suffer from the vanishing
gradient since the gradient is always constant. Its biggest advantage is its speed.
Evaluating the ReLU and its derivative are both very cheap, allowing for more
training. The fact that the output is zero for some inputs also means it interferes
less with the other neurons (sparse activation), which may be desirable. The
gradient for the negative part is zero so there it suffers from a vanishing gradient
(for ReLU’s this is usually called the dying ReLU problem) but this is often not
a big problem if the learning rate is not too high.

If the dying ReLU problem does become severe, it is often battled with
a Leaky ReLU, which has a small slope αx for x < 0 instead of being zero.
Despite being slightly better ReLU’s are often still preferred for their simplicity
and speed (α is another parameter you have to get right). Parametric ReLU’s

8

https://becominghuman.ai/back-propagation-in-convolutional-neural-networks-intuition-and-code-
https://becominghuman.ai/back-propagation-in-convolutional-neural-networks-intuition-and-code-


are Leaky ReLU’s with α being learnable. These can perform better but are
also harder to train.

There is a myriad of other activation functions which each have their advan-
tages and disadvantages. See for example Fig. 4. In this thesis, we will introduce
a new activation function with the main benefit that it can be calculated using
a physical setup.

Figure 4: Common activation functions and their deriva-
tives. Source: https://towardsdatascience.com/

activation-functions-neural-networks-1cbd9f8d91d6

2.1.5 Convolution Layers

In visual neural networks there has been a breakthrough called ’convolutional
neural networks’. They make use of the fact that images are spatially correlated,
a pixel is often connected to its neighbours but not necessarily to pixels further
away. So instead of connecting every neuron to every other neuron each neuron
only has as input only a small neighbourhood. Subsequent layers then determine
increasingly features. This was inspired by the way neurons are connected in
the visual cortex. This small neighbourhood is realized using convolutions. To
perform convolution on an image you first select a pixel and then calculate the
value of the output pixel with a weighted sum of the neighbouring pixels. The
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weights are constant for the image and is called a ’kernel’. The kernel is always
a rectangle and is often a square with odd dimensions like 3x3 or 5x5 so the
kernel can be centered around the input pixel. The convolution operation is
shown in Fig. 5.

Figure 5: The convolution operation.

2.2 Linear optics

In this thesis the Vaporware network is modeled numerically to look at its
behaviour. Since the propagation is done by light some knowledge on nonlinear
optics is needed. This will be explained in the next sections.

2.2.1 The Wave equation

To derive the wave equation we start with the following form of Maxwell’s
equations [4]

∇ ·D = 0 (5)

∇ ·B = 0 (6)

∇× E = −∂B
∂t

(7)

∇×H =
∂D

∂t
(8)

where D and B are defined by

D ≡ ε0E + P (9)

B ≡ µ0H +M. (10)
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Here E and H are the electric and magnetic field, ε0 and µ0 are the vacuum
permittivity and permeability and D and B are the electric displacement and
magnetic flux. We have assumed here are no free charges or currents in the
material (atomic vapour). We also put the magnetization M to zero since its
effect will be negligible. If we assume the medium is linearly polarizable we get

P = ε0χE (11)

where χ is the electric susceptibility of the medium. This implies

D = ε0(1 + χ)E ≡ εE (12)

By taking the curl of (7) you get

∇×∇× E = − ∂

∂t
∇×B. (13)

Plugging in (8) gives

∇×∇× E = −µ0ε
∂2E

∂t2
. (14)

We can then use ∇×∇×E = ∇(∇·E)−∇2E which can be simplified to −∇2E
since the divergence of E is zero. For a derivation see appendix A. This gives

∇2E = µ0ε
∂2E

∂t2
. (15)

This has the form of a wave equation so we have proven that, under the as-
sumptions given above, the electric field obeys the wave equation. We can read
off the phase velocity and relate it to the vacuum speed of light with (12)

v =
1
√
µ0ε

(16)

=
1√

µ0ε0(1 + χ)
(17)

=
c√

1 + χ
(18)

With v defined like this the wave equation becomes(
∇2 − 1

v2
∂2

∂t2

)
E(x, t) = 0 (19)

The refractive index is then

n ≡ c

v
=
√

1 + χ. (20)

With the refractive index we know how fast the light travels at every location
and in principle we can propagate from any initial configuration.
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2.2.2 Fourier optics

We are now going to look at optical propagation; given the field in an initial
plane we want to know the field in some other plane. This plane-to-plane prop-
agation is typical for setups with lasers where the light travels a large distance
in one direction (the optical axis) but not so much in the other directions.

The fact that the propagation is in one direction means that we can use the
paraxial approximation. The paraxial approximation assumes that the angle
between the wave propagation and the optical axis is really small. This has
many implications among the fact that the polarisation direction ê, defined by
E(x, t) = êE(x, t), can be taken constant to a good approximation. This reduces
the wave equation to the scalar wave equation given by(

∇2 − n2

c2
∂2

∂t2

)
E(x, t) = 0.

Using separation of variables it is possible to split off the time dependence.

E(x, t) = ψ(x)T (t) (21)

=⇒ 1

ψ
∇2ψ =

1

v2T

d2T

dt2
≡ −k2 (22)

Both sides of equation 22 must necessarily be constant so we define it as −k2.
The time dependence is just a second order differential equation so the solution
is given by

d2T

dt2
= −(kv)2T (23)

T (t) = e±ikvt (24)

T (t) = eiωt (25)

where the angular frequency is given by ω = vk. Without loss of generality I
picked the positive solution. This solution describes light oscillating at a single
frequency f = ω/(2π), this is because separation of variables only works for
monochromatic light. Our setup uses a narrow band laser so monochromatic
light is a good description. Now we know that the time dependence is a simple
phase factor we can ignore it and move on to the spatial dependence. Once
we know the spatial solution finding the full solution is trivial. Looking at
the spatial part of equation (22) we get the equation known as the Helmholtz
equation,

(∇2 + k2)ψ(x) = 0. (26)
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Using separation of variables we get analogously

ψ(x) =X(x)Y (y)Z(x) (27)

=⇒


X(x) = eikxx

Y (y) = eikyy

Z(z) = eikzz

(28)

=⇒ ψ(x) = ei(kxx+kyy+kzz). (29)

After plugging this solution into the Helmholtz equation we get the following
equation for the wave vector components

k2x + k2y + k2z = k2. (30)

This last equation is important because it allows us to eliminate one of the wave
vector components. With this restriction it is possible to propagate ψ knowing
only a plane as boundary condition, as we will see shortly. By eliminating kz
for example you get

ψ(x) = ei(kxx+kyy)e±iz
√

k2−k2
x−k2

y (31)

The general solution of the Helmholtz equation is formed by taking a super-
position of (31) with different values of the wave vector k = (kx, ky, kz):

ψ(x, y, z) =

∫
dk Ψ(kx, ky)ei(kxx+kyy)e±iz

√
k2−k2

x−k2
y (32)

Integrals are assumed to run from −∞ to +∞. This equation almost has the
form of a Fourier transform. Let’s say we want to propagate along z and we
know the solution at a plane located at z = 0:

ψ0(x, y) = ψ(x, y, 0) (33)

At z = 0 the solution is exactly a Fourier transform. Here it becomes

ψ0(x, y) =

∫
dk Ψ(kx, ky)ei(kxx+kyy) = F −1{Ψ} (34)

where I use the following definition of the Fourier transform:

F{f}(k) = f̂(k) =
1

(2π)n

∫
dxn f(x)e−ik·x (35)

F −1{f̂}(x) = f(x) =

∫
dkn f̂(k)eik·x (36)

Now the power of Fourier optics emerges. Since ψ0 is the inverse Fourier trans-
form of Ψ we can calculate Ψ using the Fourier transform. This allows us to
write the propagation of light as follows:

ψ(x, y, z) = F −1 {h(kx, ky) ·Ψ(kx, ky)} (37)

= F −1 {h(kx, ky) · F {ψ0(x, y)}} (38)
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Or put in words: to calculate ψ at some z, first calculate the Fourier transform
of ψ at z = 0, then multiply by a kernel

h(kx, ky) ≡ eiz
√

k2−k2
x−k2

y

and finally transform back to real space using an inverse Fourier transform.
Equation (38) almost has the form of the convolution theorem:

f(x) ∗ g(x) = F −1 {F {f} · F {g}} . (39)

Rewriting 38 as

ψ(x, y, z) = F −1
{
F
{
F −1 {h(kx, ky)}

}
· F {ψ0(x, y)}

}
(40)

makes it an exact convolution

ψ(x, y, z) = F −1 {h(kx, ky)} ∗ ψ0(x, y) (41)

This has two implications; it means convolution, a useful mathematical oper-
ation, can be performed by light propagation. Although only for this specific
kernel. This is one of the driving reasons for the Vaporware network. It is
also means it is possible to simulate light propagating through our setup using
convolutions. Convolutions are often well optimized, especially in software for
training neural networks. So this is good for execution speed.

It is convenient to be able to shift the kernel. The numerical implementation
of the 2D fourier transform for is often has the origin in the top left corner which
is not desirable. For a convolution the origin of the kernel needs to be in the
center. The sifting property of convolution,

f(x− x0) = f(x) ∗ δ(x− x0), (42)

can be used to shift F −1 {h(kx, ky)}, which has coordinates in real space, to
arbitrary locations. After applying the convolution theorem once again this
results in multiplying h by the fourier transform of δ2x0,y0

= δ(x− x0)δ(y − y0):

ψ(x, y, z) = F −1
{
h(kx, ky) · F

{
δ2x0,y0

}}
∗ ψ0(x, y). (43)

The discrete version of this equation is how (linear) wave propagation is imple-
mented in the Vaporware network. The expression that is convolved with ψ0 is
also the impulse response; the response of the system to a delta function. As
a nice bonus this shows the connection between fourier optics and Linear Time
Invariant theory, which also uses impulse responses.

—–
Maxwells equations -¿ dependence of n on chi propagation of fields (fourier

optics)
nonlinear optics: nonlinear dependence of P on E propagation using nonlin-

ear n helmholtz equation spectral method-¿ kernel
self focusing?
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2.3 Nonlinear Optics

The optics described in the previous sections are linear; the electric field obeys
the wave equation which is a linear equation. Consequently the fields obey the
superposition principle, which means a linear combination of two solutions to the
wave equation is also a solution. Linear optics is applicable too many situations
in the everyday life, but when the intensity of the light is too high like for
high-intensity lasers this breaks down. The superposition principle is no longer
obeyed and this introduces headaches but also a ton of interesting phenomena.
Neural networks rely on nonlinear functions to work. That is why this nonlinear
regime has to be explored for the Vaporware network. Fundamental to this
discussion is the equation for the polarization

P (ω) = ε0χ(ω)E(ω). (44)

Where χ generally depends on the frequency. This equation tells how the atoms
and the field interact. The field induces dipoles by moving apart the charges in
the atoms. These dipoles in turn modify the field. The susceptibility is generally
a complex number:

χ = χ′ + iχ′′ (45)

The imaginary part is associated with damping or amplification of the wave.
You can see this by expanding for small χ

k =
ω

c
n (46)

=
ω

c

√
1 + χ (47)

≈ ω

c
(1 + 1

2χ) (48)

and noticing that plugging in this n in the plane wave solution ei(ωt−kz) leads
to an extra factor ∝ ezn

′′
Classically these dipoles can be imagined as charges

attached on springs, which would allow us to calculate the positions of the
charges and thus the dipole moment p = qd with d the distance vector between
the charges. The dipole moment is related to the polarization density simply
by P = Np with N the amount of dipoles per volume.

For a more accurate description some quantum mechanics is necessary. The
dipole moment is replaced by the dipole operator

p = 〈qx〉 = q〈ψ|x|ψ〉. (49)

It is important to note that for the regular atomic states this always zero due
to symmetry of the wavefunctions. Only when the atom is in a superposition
of states can it have a dipole moment. We’ll study a two level system, so we
consider only the ground state and first excited state of the atom. This captures
a lot of the dynamics without too much theory. The dipole moment occurs only
with an oscillating electric field since otherwise the atom would decay quickly to
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the ground state. If we consider the nonlinear response of this two level system
to a sinusoidal driving frequency it can be shown that

χ′(ω) ∝ f(ω)

1 + I/Is
· δ (50)

χ′′(ω) ∝ f(ω)

1 + I/Is
(51)

where δ is the difference between the frequency ω and the resonant frequency
(δ is also called detuning), I is the intensity of the light and Is is a constant
called the saturation intensity. The derivation of this is beyond the scope of
this thesis so we will refer to [2] or [5]. For high intensities the medium becomes
saturated; at this point the number of atoms in the excited state is equal to
the atoms in the ground state. Additional light cannot be absorbed anymore
and the medium will appear transparent. The dependence of I is the reason
for the nonlinear propagation. The intensity depends on the electric field by
I = |E|2 and since the propagation of E now depends on itself the linearity no
longer holds. For the rest of this thesis we will focus on the real part of the
susceptibility for reasons that will become apparent. The total effect is that for
high intensities the extra phase factor, which is picked during propagation when
n 6= 1, is diminished and the medium acts more like a vacuum.

3 Simulation

3.1 The MNIST dataset

The MNIST dataset is a large, labeled collection of images of handwritten digits.
It is a modification of the original NIST dataset that extended and improved
it. The images are 28x28 grayscale images. The MNIST dataset is relatively
easy to train because it is so well behaved. For that reason it is often called
the ’hello world of machine learning’ since it is usually the first dataset you
encounter when learning machine learning. In this thesis we use the MNIST
dataset because its simplicity gives us a clearer picture of the performance of
the network.

Figure 6: Small subset of the MNIST dataset.
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The dataset contains 60 000 training images and 10 000 validation images.
During training the validation images are never shown to the network and this
is necessary to detect ’overfitting’. Neural networks often suffer from overfitting
because they have so many parameters. It occurs when the network learns
specific features of a single image to classify it correctly instead of learning
more general features that are applicable to other digits as well. The equivalent
would be a student learning all the answers to a multiple choice by heart without
actually understanding the questions. Because this is so common it is important
to have validation data to detect when it happens. Validation accuracy measures
how accurate a neural network is at predicting these validation images and this
is the most important metric when discussing performance.

3.2 Keras

Keras is a high level machine learning API that aims to make coding neural
networks easy and concise while still allowing for flexibility. This flexibility is
important for us because we want to define custom layers that can model the
physical processes. Keras is built on top of three, more low-level API’s: either
TensorFlow, CNTK, or Theano. We chose Tensorflow for this project since it
is the most standard. Keras adds functionality to these low-level API’s that
makes it more abstract and less cumbersome to use.

Creating a model in Keras consists of three steps: creating the network
(also called ’model’ in Keras), compiling the model and finally performing the
training. Creating the model looks as simple as

model = Sequential([
Dense(128, activation=’relu’, input shape=(784,)),
Dense(10, activation=’softmax’ ),

])

Here sequential means the model contains only stacked layers, each layer only
feeds into the layer after it. There is one hidden layer which has 28x28=784
inputs since each image in the MNIST dataset has 28x28 pixels. The input layer
is not explicitly defined in the model. Finally there is an output layer with ten
units for each of the classes. The output is in this case ’one-hot encoded’. The
output ’three’ is represented by a list of ten zeros where the third zero is replace
by a one. The Softmax activation ensures that the output is between zero and
one. Compiling the model looks like

model.compile(
loss=’categorical crossentropy’,
optimizer=’adam’,
metrics=[’accuracy’]

)

This call does a couple of things. Firsly it specifies the loss, which tells you how
large the error is. The ’categorical crossentropy’ is a loss function specifically
designed for one-hot encoded outputs. Secondly it specifies the optimizer. Adam
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is an optimizer with variable learning rate that generally performs well. The
metrics parameter defines which metrics are saved during training but has no
effect on the performance.

Now the model is ready to train on the data. The standard MNIST dataset
is used for training. The images are normalized such that a pixel value of zero
corresponds to black and one corresponds to white. The class labels are one-hot
encoded. To train the network you would use

model.fit(data, labels,
epochs=10,
batch size=128,
validation data=(testdata, testlabels)

)

The model will train for 10 epochs and one epoch is equal to a full iteration
over the dataset. The validation data is never used for training so the model
can be benchmarked against data the network has never seen. The batch size
determines how many images get taken into account in a single gradient update.
Larger batch sizes train quicker because Keras can more efficiently make use of
the GPU, but smaller batch sizes tend to improve more per epoch and generalize
better.

3.3 Simple network

3.3.1 Importance of nonlinearity

When training neural networks one should take care in picking the right acti-
vation functions. One of the important properties of an activation function is
that it is nonlinear; if the activation function is linear the entire network will be
essentially a single matrix multiplication. When you compose multiple linear
operators the result is a single linear operator. If we take the identity operator
as the activation function our network will look like this:

y = bN + wN (bN−1 + wN−1(. . . (b0 + w0x))) = b̃ + w̃x

where b̃ and w̃ are the result of multiplying everything out. This means that our
network which has 784 inputs and 10 outputs can never perform better than a
784x10 matrix with bias vector1, regardless of the size of the hidden layers.

Linear networks do show some modest results, Lecun [1] reported a validation
accuracy of 88% for the MNIST data set. Nonlinear networks are far superior
though and can easily get accuracies of over 98%. Because wave propagation is
linear we hypothesize that we need to add a nonlinear medium in our setup to
get decent results.

To inverstigate the effect of nonlinearity on the accuracy we will first look
at a simple dense network. To be able to smoothly transition between a linear

1You can write an N-dimensional translation (bias) as an (N+1)x(N+1) matrix. So you
could also say that the network performs as good as a 785x11 matrix.
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and non-linear activation I will use a leaky ReLU with a constant parameter:

f(x) =

{
x x > 0

αx otherwise

When α = 0 this becomes a regular ReLU and when α = 1 this becomes the
identity function (linear activation). An important question comes to mind. Is
the accuracy a continuous function of α? Do we get a big jump in performance
when α goes from 1 to 0.99 or does it transition smoothly? With α = 0.99
the network is technically non-linear but it is not obvious if the strength of the
nonlinearity matters.

3.4 Simple model with Softmax

3.4.1 Setup

To answer the question mentioned in the previous section we used the following
model:

model = Sequential([
Dense(128, activation=LeakyReLU(alpha=slope),

input shape=(784,)),
Dense(10, activation=’softmax’ ),

])

model.compile(loss=’logcosh’,
optimizer=’rmsprop’,
metrics=[’accuracy’])

Here ’slope’ is a variable that is defined outside this code block to change
the behaviour of the network. It is the same parameter as α in the previous
section. Instead of the usual loss and optimizer we have chosen for ’logcosh’ as
loss and ’rmsprop’ for optimizer. Because the network is linear for α = 1 it was
harder to train than your standard network and preliminary testing showed this
loss and optimizer performed the best.

3.4.2 Results

The experiment was performed by changing α and by completely rebuilding the
model each time to ensure everything was reset between runs. The accuracy as
a function of α is shown in 7.

This plot answers the question asked in the previous section. The graph is
continuous. This means that the network is not only sensitive to the presence
of a nonlinearity but also to the strength of the nonlinearity. We can’t just
pick any nonlinearity and call it a day. We have to also pick the right scale
for the model to train well. I suspect this will be the same for the Vaporware
model. When we look at the shape of this curve it looks like an asymmetric
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Figure 7: Performance of a dense 784x128x10 network with Leaky ReLU activa-
tion in the hidden layers and Softmax activation in the final layer. The accuracy
is plotted against α, the Leaky ReLU parameter. The value α = 1 corresponds
to a linear activation and α = 0 to a nonlinear activation (standard ReLU).

sigmoid (steeper towards α = 1). We can also see the network shows significant
overfitting; the training data performs a lot better than the validation data.
The number of neurons in the hidden layer (128) is quite high for the MNIST
data set. We chose this number because this gave clean results. Our focus is on
investigating the effect of nonlinearity.

The performance of this network is actually too high in the linear regime
when compared to Lecun’s cited values. Two linear networks should produce
the same results. We suspected this was due to the presence of the Softmax
activation in the last layer so we will investigate this further in the next section.

3.5 Simple model without Softmax

3.5.1 Setup

In the previous section we trained a model that could interpolate between
linear and nonlinear. The last layer has a Softmax activation. The reason-
ing behind this activation was as follows: the Softmax doesn’t change the
outcome (the largest value stays the largest value) so it shouldn’t have im-
pact on the accuracy. The network should still have the same accuracy as a
purely linear network. To test this assumption we modified the last layer to
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have the same activation function. So the last layer of the network is now
Dense(10, activation=’LeakyReLU(alpha=slope)’) instead of
Dense(10, activation=’softmax’). Now the network can become genuinely
linear.

3.5.2 Results

The same experiment was repeated with the new network. The result is shown in
Fig. 8. In this graph you see behaviour similar to the previous experiment, but
this time the accuracy for α = 1 is much lower. This accuracy is in line with the
value reported by Lecun. So we can conclude that adding a Softmax activation
can improve the performance of the network. This is important because the
Vaporware network also has a Softmax as final activation. The inset of Fig.
8 shows the same plot but with a slightly bigger range of α. For α = 0 the
performance is significantly worse than the other values. We suspect this is a
combination of the lack of normalization in the last layer and the dying ReLU
problem. Normally the Softmax would rescale the values to be between zero
and one, but here the weights in the last layer can grow unchecked as long as
they provide the right answer. Large weights backpropagate large gradients and
the dying ReLU problem is sensitive to large gradients. This is just speculation
and a definitive answer would require a more thorough investigation. Since this
behaviour is relevant for the ReLU but not for our narrative we will focus on
α > 0.

We also fitted a power law on the fully linear network to get a rough idea of
how the accuracy behaves. This fit is shown in Fig. 9

3.6 Vaporware Network

3.6.1 Physical Setup

The setup will consist of a laser source, three spatial light modulators (SLM’s),
two vapour cells and a camera to read out the signal. To send input to this
network one should imprint the image in the laser light. The light then bounces
of the SLM’s, which allow control over the light, and passes through the atomic
vapour. Finally the light is focused in ten spots. Whatever spot lights up is
the prediction of the model. If the third spot lights up the network predicts the
input was an image of a 3. To get an idea on how to imprint the light you could
cut out the digit from a piece of cardboard and have the laser pass through it. A
more precise way would be to imprint it via intensity modulation either on the
first SLM or on an additional SLM between the laser and first SLM. An SLM is
like a mirror that is divided into pixels. Each pixel provides control over either
the phase or the intensity of the light. Control over both phase and intensity
is also possible although for current SLM’s this restricts the attainable range
of values [3]. The vapour cells are filled with rubidium vapour and will provide
the nonlinear behaviour of the light. Rubidium is chosen because lasers with a
narrow linewidth are readily available for the absorption lines. It is important to
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Figure 8: Performance of a dense 784x128x10 network with Leaky ReLU acti-
vation in the hidden layers. The accuracy is plotted against α, the Leaky ReLU
parameter. The value α = 1 corresponds to a linear activation and α = 0 to a
nonlinear activation (standard ReLU). The inset is the same as the big plot but
shows a slightly bigger range of α

keep the absorption as small as possible, but any nonlinear behaviour necessarily
has to be near an absorption line (small detuning). Finally the camera will read
out the intensity in the output plane and location of the brightest spot will be
the output of the network. A schematic of the setup can be found in Fig. 10

3.6.2 Model

We will now elaborate how this physical model is implemented in Keras. The
components are modeled as layers and are then stacked using Sequential. The
output of each layer is plotted in Fig. 11 to get a better understanding of the
model. The following layers were used.

SLM layer The first two SLM layers perform a pure phase rotation. This
rotation can range from 0 to 2π. The rotation of each pixel is a learnable
parameter. The last SLM is presented differently, it is called matrix multiply.
In the setup there is a large distance between the SLM and the camera and the
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Figure 9: Power law fitted to the performance curve for the simple network. The
accuracy is plotted against α, the Leaky ReLU parameter. This curve follows
y(x) = 0.98− 0.025(x+ 0.52)3.92

. More precise values can be found in Appendix B.

Figure 10: Setup of the Vaporware network. Image by Sybren Huitink.

light is focused in a relatively a small area. The intensity of the light at the a
single spot on the camera is a superposition of all the lightrays that come from
the SLM. We assume that the SLM has enough resolution that we have full
control over this superposition (this time we control intensity as well) and as
such we can write it as a matrix multiplication. This is a crude approximation
of the SLM but it keeps the model simple. It is possible for an SLM to shape
an arbitrary wavefront to a point (see wavefront shaping) so this approximate
model has some credibility.

Propagation layers The propagation layer propagates the wave through
space. The saturation of the vapour is approximated using a split-step method.
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Figure 11: Output of all the different layers of the Vaporware network. The
output consists of complex numbers except for the last 5 layers which are just
real numbers. The brightness indicates the absolute value of the complex num-
bers and the hue indicates the phase. Under the layer names you can see the
dimensions of each layer.

Instead of modeling the propagation through saturable vapour exactly, the light
is first propagated through free space and then the saturation effects are applied.
By alternating these two, the nonlinear propagation can be well approximated
if the steps are small enough. The number of propagation layers is relatively
small, only two free propagation and two saturation layers between the SLM’s.
Training slowed by a lot when more layers were added. This could perhaps be
improved later for better accuracy.

Intensity layer The output of the last SLM is a complex number repre-
senting the phase and magnitude of the light. The to intensity layer takes
the square of the magnitude to compute the intensity, which is ultimately what
is measured by the photodiodes.

Multiplication layers These layers just multiply every pixel with a scalar.
As mentioned in the simple network section, the scale of the data is important
for learning. In our network it modifies the strength of the nonlinearity. It also
modifies the behaviour of the softmax. The first multiply layer multiplies by
7 and the second layer by 0.4. These values were found by first making these
values trainable and then looking whether they had changed during training. If
they had changed by much the model was trained again with a large step in the
direction of these new values, because the parameters can only change so much
during training. The input data was normalised to be scaled between 0 and 1.

Dropout A dropout layer randomly disables neurons during training. This
does not have a physical representation but it speeds up training and helps the
model generalize better.

Softmax layer The softmax layer is a postprocessing layer that helps learn-
ing. For a definition we will refer back to Fig. 4 The softmax is sensitive to
scale: in the limit of large inputs it behaves as a max function (the output is
1 for the largest value, 0 for the other values) and in the limit of small values
every output is the same (every output is 1

10 ). If the wrong scale is chosen the
gradients will vanish, because the max function and the constant function both
have zero gradients. That is why there is multiply layer just before the softmax.
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3.6.3 The saturation layer

The saturation is one of the two propagation layers. Since this layer is our topic
of interest we will elaborate further upon it. This layer represents an additional
phase factor that is picked up during propagation:

ψ(x, y, z + ∆z) ≈ ψ(x, y, z) exp

(
i∆z

σ

1 + I/Is

)
Here σ is a loosely defined parameter that defines the strength of the saturation
behaviour. We will call this parameter the susciptibility even though it is not
exactly equal. In the simulation we define the intensity in units of Is so Is can
be taken as 1.

In general there will also be extinction; loss of intensity due to interactions
with the material. Here we have taken the extinction as zero because pure phase
rotation is possible experimentally at least to a reasonable approximation. If
we allow extinction then the intensity of subsequent layers will decrease which
is detrimental to the training process: layers with small intensity also pass on
small gradients while the first few layers get disproportionately large gradients.

If we let the σ go to zero then the phase factor becomes just one. In that
case no saturation takes place. The entire propagation is then linear. The
propagation in free space is written as a convolution with a kernel matrix and
since convolutions are linear, so is the propagation. The SLM-layers are also
linear because they multiply each pixel with some phase factor, which is the same
as multiplying by a constant. Therefor, σ is the parameter that determines the
nonlinearity of the propagation. The layer that converts to intensity is also
nonlinear together with the Softmax layer. The nonlinearity of the propagation
is important because a great part of the computation occurs during propagation.
If the propagation were linear it would greatly reduce the attainable complexity
of the network.

3.6.4 Results

We have determined the dependency of the accuracy on σ. Doing this was quite
straightforward: we let σ take on multiple values and for each value determined
the accuracy of the model after a set number of epochs. The same network as
in Fig. 11 was used. The result of this experiment is shown in Fig. 12.

A few interesting things can be seen from this figure. Firstly we see a sharp
dip at zero, this is luckily what we expected. Adding nonlinearity makes the
network better. Secondly the graph is quite symmetric around zero. The ac-
curacy improves slightly faster when going towards negative susceptibility, but
this effect is much smaller than we anticipated. A negative susceptibility cor-
responds to self focusing of the light in the medium and it was expected that
information propagated better through a negative susceptibility. A positive sus-
ceptibility tends to defocus the light which might result in information loss. So
to our surprise we see that this model predicts comparable outcomes for both
negative and positive susceptibilities. Finally we see that there is a maximum
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Figure 12: Performance of the Vaporware network for different susceptibilities.
Every measurement was repeated three times; the errorbars indicate the stan-
dard deviation of those three measurements. A susceptibility of zero corresponds
to a completely linear propagation.

at σ ≈ ±9. A susceptibility bigger than this will cause very large phase ro-
tations that are hard to control and cause big gradients. This value can’t be
translated yet to a physical value. In this simulation not enough care was taken
of the units to assign to this value a physical susceptibility. Either more units
have to be taken into account or the optimal value has to be found through
experimentation. Note that we are free to rescale the susceptibility as we like.
In the simulation σ only occurs next to ∆z and we can rescale both such that
their product remains constant.

A power law was also fitted to the Vaporware network. Two fits were used to
account for the positive and negative portions of the susceptibility. The positive
and negative part both follow a different power law, indicating there is at least
some difference between positive and negative susceptibility. The fits are shown
in Fig. 13.

These two fits tell us more about the accuracy dependency. The value for n
is slightly lower than for the simple network: 2.5 and 2.9 compared to 3.92. This
means that near the maximum the drop-off is quicker, so the optimum is harder
to find. The optimum is still broad enough though that this shouldn’t be a
problem. Finally we see that the maximal accuracy (according to the fit) occurs
at 96%. This value is not particularly impressive compared to conventional
networks, but our aim is not to improve upon conventional networks. Our aim
is to achieve good rates that are realisable on physical systems. This method is
still fairly new and we expect much better performance in the future.
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Figure 13: A power law fit of the form y(x) = c−|x−x0|n ·a for the Vaporware
network. Two separate fits were made for the positive and negative parts of the
susceptibility. The fits follow the formulae y−(x) = 0.96−|x+ 9.3|2.6 · 4.3 · 10−5

and y+(x) = 0.96 − |x − 9.3|2.9 · 2.2 · 10−5. The precise values can be found in
the appendix Tab. 2 and 3.
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4 Discussion and Outlook

We will briefly discuss all the results that are presented in previous sections.
The Vaporware network is a neural network, which has not been imple-

mented yet, that aims to perform most of its calculations by the propagation of
light. To control this propagation we make use of a spatial light modulator. We
intent to find out what properties the medium of propagation should have for
optimal learning and in this paper we focus on the susceptibility. The role of
the nonlinear activation functions is replaced by the optical response of dense
atomic vapour.

In preparation we looked at the importance of linearity for a simple dense
network to better isolate the behavior. We found that nonlinearity is important
for performance and that purely linear networks have an accuracy at around 86%
for the MNIST dataset. With nonlinearity these simple networks can achieve
over 97%. We also found that the mere addition of a Softmax activation in the
final layer can improve the accuracy of a linear network to about 93%.

Then we looked at the Vaporware network. As no physical implementation
exists yet, we simulated the behaviour. The nonlinearity of the Vaporware net-
work is controlled by the susceptibility of the medium. A positive susceptibility
corresponds to a defocusing nonlinearity. A negative susceptibility causes self
focusing in light. We expected the negative susceptibility to perform better
since defocusing light loses more information while propagating. A susceptibil-
ity of zero is the same as propagation through empty space. The results showed
the accuracy made a sharp dip around zero susceptibility and had two fairly
symmetric peaks for both the negative and positive susceptibility. The dip was
expected since the propagation is linear when the susceptibility is zero. The
accuracy improves slightly faster for the negative susceptibility near zero but
further from zero the accuracy is about symmetrical. This was against expec-
tations and apparently for large susceptibilities the sign doesn’t matter for the
accuracy.

We can conclude that there exists a maxium performance for a certain sus-
ceptibility. If it is not possible to tune the susceptibility it might be possible
to change how far the light propagates through the vapour. According to our
results it will not matter much if the susceptibility is positive or negative, so
either positive or negative detuning can be chosen.

For future research one could aim for a higher accuracy of the network. The
network is still in its proof-of-concept phase so we expect much improvement
performance wise. Its accuracy is still not competitive to conventional networks.
One could also look at better models for the light propagation. We looked at
a two level system, the simplest case. We know the ground and first excited
state of rubidium split into seven states due to hyperfine splitting. A better
approximation would be to consider two ground states and one excited state
(lambda system) since the second ground state can heavily influence the pop-
ulations. Atoms can easily enter this second ground state but once there they
cannot leave so after a while the medium becomes depleted of available atoms.
This would make the program slightly more complex but would provide more
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accurate results.
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6 Appendix

6.1 Appendix A
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6.2 Appendix B

Power law fit of the simple network

Parameter Value
n 3.920 789 019 397 453
a −0.025 324 627 798 680 03
x0 −0.526 398 924 637 799 6
c 0.983 129 397 248 702 5

Table 1: Precise values of the power law fit y(x) = c+ a|x− x0|n of the simple
network. Here x is the negative slope of the LeakyReLU activation (α) and y
is the accuracy of the model.

Power law fit of the Vaporware network
(positive susceptibility)

Parameter Value
n 2.867 677 678 148 010 2
a −2.201 163 316 101 709 5·10−5

x0 9.278 487 280 126 003 6
c 0.961 765 966 776 804 3

Table 2: Precise values of the power law fit y(x) = c+a|x−x0|n of the Vaporware
network

Power law fit of the Vaporware network
(negative susceptibility)

Parameter Value
n 2.593 957 456 691 524
a −4.311 672 648 172 587·10−5

x0 −9.290 051 096 155 036
c 0.962 602 704 674 515 6

Table 3: Precise values of the power law fit y(x) = c+a|x−x0|n of the Vaporware
network
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