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Abstract

In this thesis, we will attempt to inverse design the interactions for single particle
quasicrystals. We use 2D Monte Carlo simulations with a square shoulder potential
of width 1.4σ. We calculate the pair correlation function g(r) for various densities
and temperatures. A quasicrystal is expected to form at a crossover line at which the
pair correlation function transforms from one form to the other. We attempt to find a
crossover line with two different methods. One of these methods resulted in a crossover
line, but no quasicrystals have been found yet around this line.
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2 THEORY AND METHODS 1

1 Introduction

In this thesis, we will attempt to inverse design a quasicrystal using single particle Monte
Carlo simulations. We search for a crossover line where the form of the pair correlation
function g(r) changes from one form to another. To find a crossover line we use two different
methods. Firstly, we use the Ornstein-Zernike equation and performing a pole analysis.
Secondly, we manually look at the first two peaks of the pair correlation function and look
for points in the (T , ρ) plane where the first peak becomes bigger than the second one.

A quasicrystal is a solid that seems to have some form of order, but it doesn’t have
translational symmetry like real crystals have. For example, normal crystals can be brought
back to a single unit cell that is repeated in every direction. Quasicrystals on the contrary,
can’t be brought back to a unit cell, while they do fill all space. Their tiling is completely
random and never repeats [1]. Another interesting property of quasicrystals is that they have
a rotational symmetry that normally is not allowed. Normal crystals can have 2, 3, 4 or 6
fold rotational symmetries, but quasicrystals have other rotational symmetries. For example,
a 2D quasicrystal can have a 12 fold (dodecagonal) rotational symmetry [2]. Quasicrystals
have been found several alloys and in soft-matter systems. The first one was discovered
experimentally in 1984 [3]. Most known quasicrystals today are synthesised and consist of
multiple particles. There is a known quasicrystal that appears in nature [4].

Quasicrystals are thought to arise due to two competing length scales. These different
length scales can, for example, be created with different sized particles. [5] A different way,
and the one that is used in this thesis, is to use a single particle system, but choose a
potential that can give rise to two different length scales. Monte Carlo simulations confirm
that quasicrystals can arise with both methods [6, 7].

Important research has been done by Dotera et al where various single particle quasicrys-
tals with 10, 12, 18 and 24 fold symmetries have been found using Monte Carlo simulations
with a hard-core square shoulder potential [2]. In this paper we also choose to use this hard-
core square shoulder potential. This potential is more thoroughly explained in the theory
section.

It is interesting to investigate the formation of quasicrystals in simulations, because it
might help us understand the circumstances where quasicrystals form. Understanding where
and how the quasicrystals form, might help with synthesising these crystals experimentally.

2 Theory and methods

2.1 Potential

Our simulation is a two-dimensional system with hard disks particles with diameter σ. We
want these particles to adhere to certain rules. For example, we don’t want two particles to
be in the same point of space. To make the particles interact, we need to choose a potential.
A potential describes the energy of a particle that is a certain distance from another particle.
The hard-core square shoulder potential has a hard-core with a soft area around the core [8].
This means that the potential is infinite for distances r smaller than the particle diameter σ,
and the potential is a fixed ε for distances between r = σ and r = δσ, where δ is called the
shoulder of the potential. It is zero for distances r > δσ. Since ε is positive, the potential
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works repulsive at short distances. Together the hard-core square shoulder potential reads

V (r) =


∞, r < σ
ε, σ < r < δσ
0. r > δσ

(1)
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Figure 1: Representation of the hard-core square shoulder potential. The potential is infinite
for r smaller than the particle diameter σ. It has a value of ε for values bigger than σ, but
smaller than the shoulder width δσ. In this case δ = 1.4

For most simulations done in this paper, we use a shoulder δ of 1.4 and a value for ε of
1 (see figure 1). This shoulder is chosen such that it is approximately the square root of 2.
This means it favours both triangular and square length scales. In earlier research, it has
been shown that this should result in a dodecagonal quasicrystal [2, 9, 10].

A physical system this shoulder can represent is a particle with an (hard) aromatic core
and (soft) alkyl chains [9]. The aromatic core represents the part in the potential that is
infinite, while the alkyl chains are deformable and thus represent the part where it is ε.
Another system at which the potential has been used is the interactions of Cesium or Cerium
atoms [11].

2.2 Monte Carlo simulation

We need a way of simulating Crystals and their stability. To do this, we use Monte-Carlo
simulations. In the following subsections we largely follow the discussion from reference [12].

In a Monte Carlo move we randomly choose a particle in the box. This particle is moved
a random amount between −∆ and ∆ in both x and y directions. The energy of the particle
is calculated before and after a move. If the new energy of the system is lower than the old
energy, the move is always accepted. If the energy is higher, the chance of move acceptance
is calculated by the Boltzmann weight

W = e
− dE
kBT . (2)
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Here dE is the energy difference, kB is the Boltzmann constant and T the temperature. The
chance of move acceptance with the hard-core square shoulder potential would thus be

P (acc) =


0, r < σ

e
− ε
kBT = e−

1
T∗ , r > σ

1, r > σ

(3)

where T ∗ = kBT
ε

is the reduced temperature. If ∆ is too low, it would mean our simulation
is not very efficient, because the particles would barely move and almost every move would
be accepted. If we choose a value for ∆ that is too high, the chance of overlapping particles
would be very large and almost every move would be rejected. To make the simulation most
efficient, the value for ∆ should be chosen such that the chance of accepting a move is around
50%. In one Monte Carlo cycle we attempt to move the same number of particles, as there
are in the box.

2.2.1 Canonical ensemble

The Monte Carlo simulations are performed in the canonical (N, V, T ) ensemble. Where N
is the number of particles, V the volume and T the temperature of the system. These are
held constant throughout the simulation. This also means that the density ρ can be held
constant. In simulations it is convenient to use the reduced density ρ∗ = Nσ2

V
and the reduced

temperature T ∗ = kBT
ε

. This will make certain that the results will always be the same for
the same T ∗ and ρ∗.

2.2.2 Periodic boundary conditions

We don’t want a surface in the box to interact with the particles. Our number of particles
is relatively small. Creating a hard border at the edge of the box could potentially have
a big influence in how the particles behave. To make the box bigger than it actually is,
we can use Periodic Boundary Conditions (PBC). When periodic boundary conditions are
implemented, the box has no walls. When a particle reaches the edge of the box, it disappears
and reappears at the other end of the box.

Because of the periodic boundary conditions, there are multiple ways we can draw a
straight line between two particles. This causes trouble when we want to calculate the
distance between these particles, because we only want the shortest distance to calculate the
energy. To fix this problem, we use the nearest image convention. If the particle distance
is bigger than half the box size, we add or subtract a full box length to the distance. This
makes sure we always have the shortest distance between two particles.

2.2.3 Cell lists

The simulations contain a lot of particles and the potential has a finite length. This means
that the energy between a lot of particles is zero. A lot of time is wasted on calculating the
energy between these particles. To speed up calculations we’ve implemented cell lists to the
simulation. This method divides the box up to different cells. Of each cell it is known which
particles it contains. This way the energy difference can be calculated by only summing over
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the particles in the current cell of a particle and the neighbouring cells. This method can
speed up the simulations significantly and we measured an increase in simulation speed of up
to 30 times, which meant that we were able to do a lot more Monte Carlo steps than before.
However, it is important that grid cells are chosen big enough, so that they are still bigger
than the particles.

2.2.4 Equilibation

To see if a simulation is finished, we can look of the total energy of the system. If it hasn’t
changed much in the last moves, we can assume that the energy is stable and thus the
simulation has reached an equilibrium state. After the system has reached an equilibrium
state, we can start measuring the relevant parameters.

0 200 400 600 800 1000
3900

4000

4100

4200

4300

4400

4500

#MCSteps (x100.000)

E
ne
rg
y
(ϵ
)

Figure 2: Plot of the energy as a function of Monte Carlo cycles. The used parameters were
T ∗ = 0.25, ρ∗ = 0.945, δ = 1.4 and N = 1840. In the figure it visible that the energy goes
down at first, but eventually the simulation reaches an equilibrium and doesn’t change much
anymore. In this case it seems the system equilibrates after 80 million Monte Carlo cycles.

2.2.5 Starting configuration

As a starting configuration, we choose a hexagonal lattice as in figure 3. Most simulations
done in this work are 100 million Monte-Carlo cycles long, have a number of particles N =
1840 and have a shoulder δ = 1.4.
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Figure 3: A hexagonal lattice is used as a starting configuration. In this case N = 418 which
is less than most simulations performed.

2.3 Pair correlation function g(r)

To get insight of how particle distances are correlated, we can construct a pair correlation
function g(r). This function is essentially the occurrence of particle distances divided by a
weight factor. For large r, when there is no more correlation, it goes to 1. It is calculated as

g(r) =
V

N2

〈
N∑
i=1

N∑
j 6=i

δ(r− rij)

〉
, (4)

where δ is the Dirac delta function, and rij = ri − rj is the distance vector between the
particles i and j. The way it is calculated in my simulation is by creating a histogram of
particle distances and dividing them by nid. In formula form this reads

g(r + 0.5δr) =
1

N

nhis(b)

nid(b)
, (5)

where b is the bin and nid is (for a 2D system)

nid = πρ[(r + dr)2 − r2]. (6)

Because the system is not always in a perfect state, the pair correlation functions are calcu-
lated from the last ten snapshots of a simulation. The final pair correlation function is an
average of these ten functions. This helps factoring out any randomness that might appear
in a single snapshot. An examples of pair correlation functions are shown in figure 4.
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Figure 4: The pair correlation function g(r) for a simulation with parameters T ∗ = 0.25 and
δ = 1.4 after 100 million Monte Carlo cycles. For figure (a) the density is ρ∗ = 0.5 and
for figure (b) the density is ρ∗ = 0.7. The pair correlation is calculated from the last 10
snapshots of the simulation and averaged.

As we see in figure 4, the pair correlation function has a peak at r = σ and r = δσ. After
those we see multiple smaller peaks. As the density of the simulation increases, the first peak
at r = σ will increase and the second at r = δσ will decrease.

2.4 Ornstein-Zernike

The total correlation function h(r12) is defined as

h(r12) = g(r12)− 1. (7)

The Ornstein-Zernike equation splits the influence of the total correlation function h(r12) in
two parts. It can be written as

h(r12) = c(r12) + ρ

∫
c(r13)h(r32)dr, (8)

where c(r) is an unknown function called the direct correlation function. The Ornstein-
Zernike equation splits the influence in a direct part c(r12), that describes the influence of
particle 1 on particle 2, and an indirect part, that describes the influence of particle 1 on
another particle 3. This particle 3 also influences particle 2 directly and indirectly. Usually
the Ornstein-Zernike equation is solved with an extra relation between h(r) and c(r), called
a closure. However, in our simulation we have a way of calculating the total correlation
function h(r) directly and use this to calculate the direct correlation function c(r). To solve
this, we can write this Ornstein-Zernike equation in terms of the Fourier transforms

ĥ(q) = ĉ(q) + ρĉ(q)ĥ(q). (9)

We can rewrite this equation to find ĉ(q) or ĥ(q):
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ĉ(q) =
ĥ(q)

1 + ρĥ(q)
, (10)

ĥ(q) =
ĉ(q)

1− ρĉ(q)
. (11)

With q = α1 + iα0. Where the 2D Fourier f̂(k) transform of a function f(r) is [13]

f̂(q) = 2π

∫ ∞
0

J0(rk)f(r)rdr. (12)

The inverse Fourier transform is given by

f(r) =
1

2π

∫ ∞
0

J0(rq)f̂(q)qdq, (13)

with J0 the zeroth order Bessel function.
The decay of h(r) is determined by the poles q = α1 + iα0 that satisfy the relation [14][13]

1− ρĉ(q) = 0. (14)

Every h(r) can be described by one of two different forms [13]. If q = iα̃0 is purely imaginary
the solution is of the form

h(r) ≈ Ã
−eα̃0r

√
r
, (15)

with Ã the amplitude. If the real part is non-zero q = α1 + iα0, h(r) is of the form

h(r) ≈ Ae−α0rcos(α1r + θ)√
r

, (16)

with A the amplitude and θ a phase. The total correlation function changes from one form to
the other as the density of the simulation increases. At this so-called crossover it is expected
that a quasicrystal can form.

2.5 Crossover in the pair correlation function g(r)

A different way of approaching a crossover is looking directly at the peaks of the pair correla-
tion function g(r). As earlier mentioned, this function has peaks at r = σ or at r = δσ. Here
we will focus mostly on those first two peaks. As the density of the simulation is increased,
the peak of r = δσ will become smaller, and the peak at r = σ becomes bigger. The density
at which both peaks are of equal height, could be a region at which quasicrystals might form.
We can investigate where these two peaks are of equal height for various temperatures.
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2.6 Diffraction pattern

Since it is hard to determine if a quasicrystal has formed by just looking at the lattice,
we need a method to analyse the structure of the crystal. A common method in electron
diffraction [15]. The diffraction pattern shows how waves would pass through the crystal.
In our simulation, the diffraction pattern is essentially the Fourier transform of the crystal
lattices. The diffraction pattern is a powerful way to determine what rotational symmetry
the crystal has by counting the dots in the circles. For example, in figure 5, we see a twelve-
fold rotational symmetry. This is a symmetry that is not allowed in the usual crystals. If the
material has a rotational symmetry that is not allowed by regular crystals, we can conclude
that a quasicrystal has formed [15, 16].

Figure 5: A diffraction pattern obtained from a simulation with parameters T ∗ = 0.25, ρ∗ =
0.975, δ = 1.4 after 100 million Monte Carlo cycles. Counting the dots in the circle, it seems
this diffraction pattern belongs to a dodecagonal quasicrystal.

3 Results

3.1 Ornstein-Zernike crossover

In this section we use the crossover method as described in section 2.4. The pole analysis
is done numerically using the Ornstein-Zernike formula 9. Unfortunately, I was not able to
produce a correct pole analysis for the total correlation functions h(r). This might have
multiple reasons, which will be discussed in section 4.
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3.2 Crossover in the pair correlation function g(r)

In this section we use the crossover method as described in section 2.5. First, we look at the
shoulder δ = 1.4. For this shoulder it is known that there exists a high density dodecagonal
quasicrystal with a density ρ∗ of about 0.98 at temperatures below T ∗ = 0.4 [9]. Furthermore,
there has been found an 18-fold quasicrystal with a slightly higher shoulder of δ = 1.43. This
quasicrystal was found at a lower density of ρ∗ = 0.6239 and temperature of T ∗ = 0.0885 [2].

3.2.1 High density 12-fold quasicrystal (HD12)

To test if the Monte Carlo simulation works correctly, we attempt to recreate the 12-fold
quasicrystal. The simulations are performed with parameters T ∗ = 0.25, ρ∗ = 0.975, δ = 1.4.

Figure 6: End configuration of system with parameters T ∗ = 0.25, ρ∗ = 0.975, δ = 1.4 after
100 million Monte Carlo cycles. There are both square and trigonal structures visible.

The diffraction pattern of figure 6 is shown in figure 5. The diffraction pattern in figure 5
shows a 12-fold rotational symmetry. This confirms the simulation works and a high density
dodecagonal quasicrystal does form under these circumstances. In figure 6 we see that both
length scales are present (square and trigonal), but it is not a perfect crystal. There are still
areas where the crystal is only square, so the quasicrystal is not defect free. These defects
might go away if we use more Monte Carlo cycles.
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Figure 7: Pair correlation function of simulation with parameters T ∗ = 0.25, ρ∗ = 0.975,
δ = 1.4. The pair correlation is calculated and averaged over from the last 10 snapshots like
figure 6. There is a large peak visible for r/σ = 1, while the peak at r/σ = 1.4 is much
smaller.

If we look at the pair correlation function in figure 7, it is visible that the peak at r/σ = 1
or at r/σ = 1.4 do not have the same height. This way we know this is not the quasicrystal
we are looking for, because we expect it to have peaks of the same height.

3.2.2 Low density 18-fold quasicrystal (LD18)

Because the shoulder is close to δ = 1.4, we also take a look at the 18-fold quasicrystal.

(a) (b)

Figure 8: End configuration (a) and corresponding diffraction pattern (b) of a simulation
with parameters T ∗ = 0.088, ρ∗ = 0.623, δ = 1.43 after 91 million Monte Carlo steps. We see
that an 18-fold rotational symmetry is starting to form.
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In figure 8 we see the results of a simulation with parameters T ∗ = 0.088, ρ∗ = 0.623 and
δ = 1.43 after 91 million Monte Carlo steps. Although the diffraction pattern is not very
clear yet, we observe that a crystal with an 18-fold rotational symmetry is starting to form.
For the quasicrystal to fully equilibrate it is reported that we need up to 3 billion Monte
Carlo steps [2], which is much higher than we were able to achieve.
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Figure 9: Pair correlation function of system with parameters T ∗ = 0.088, ρ∗ = 0.623,
δ = 1.43. Both the peak at r/σ = 1 and r/σ = 1.43 are present.

In figure 9 we see that the first two peaks of the pair correlation function g(r) are closer
to being of equal height than the high density 12 fold quasicrystal. This means that the
quasicrystal we are looking for could be related to the 18-fold low density quasicrystal.

To investigate the effect of the shoulder width on the crystal, we also performed a simu-
lation with the same temperature and density, but with shoulder of δ = 1.4.
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(a) (b)

Figure 10: End configuration (a) and corresponding diffraction pattern (b) of a simulation
with parameters T ∗ = 0.088, ρ∗ = 0.623, δ = 1.4 after 100 million Monte Carlo steps. The
system is in a low density hexagonal state.

In figure 10 we see the end configuration and diffraction pattern of this simulation. We
observe that the quasicrystal no longer forms, and that the system ends in a mostly low
density hexagonal state.
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Figure 11: Pair correlation function of system with parameters T ∗ = 0.088, ρ∗ = 0.623,
δ = 1.4. Both the peak at r/σ = 1 and r/σ = 1.4 are present, but the peak of r/σ = 1.4 is
significantly higher.

Looking at the pair correlation function in figure 11, we see that the second peak is quite a
bit larger, while the first peak is a bit smaller than the pair correlation function for δ = 1.43.
From this, we expect that the crossover of the peaks at δ = 1.4 will occur at a higher density
than δ = 1.43.
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3.2.3 Crossover line for δ = 1.4

To get an idea of where the crossover at which the peak of r/σ = 1 becomes bigger than the
peak at r/σ = 1.4, we perform a series of relatively short simulations of 500.000 Monte Carlo
cycles. The densities range from ρ∗ = 0.40 to 0.70 with intervals of 0.01. The temperatures
range from T ∗ = 0.10 to 2.0 with intervals of 0.1. The simulations are performed in a box of
N = 418 particles. The densities and temperatures at which the peaks are of equal height, are
determined manually. The result is shown in figure 12. Later, longer and bigger simulations
are performed at densities and temperatures near the red line.
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0.0
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Figure 12: The crossover line. Blue dots represent measured points where the peak of r/σ = 1
and r/σ = 1.4 were approximately of equal height. The red line is a fitted curve to these
points. The blue triangle approximately marks the area where the simulation is in a solid
phase.

In figure 12, the blue dots represent measured points where the peak at r/σ = 1 and
r/σ = 1.4 are approximately of equal height. The red line in figure 12 is a fitted curve of the
form

f(x) =
a

xb
. (17)

In this case a ≈ 0.0469271 and b ≈ 4. It is not a perfect fit, especially for the lower
temperatures, but it is close enough in our range of densities.

In most points, the simulation is still in fluid phase, except for the measurements with
temperatures below T ∗ ≤ 0.2. For these temperatures, hexagonal lattices form for densities
above ρ∗ ≈ 0.46 and below ρ∗ ≈ 0.65. (These low density hexagonal phases were also
measured in the phase diagram of reference [9]). Thus, if quasicrystal formation exists around
this line, we expect it to happen only at the very low temperatures. The density is in all
cases too low to form a high density dodecagonal quasicrystal, but there might still form an
other low density quasicrystal.

A couple of longer simulations are done on and around the red line of figure 12. Some
pair correlation functions are shown in figure 13 and corresponding diffraction patterns in
figure 14. In figure 13 we see that the peaks at r/σ = 1 and r/σ = 1.4 are indeed of the
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same height around the red line. This confirms the line of figure 12 is also accurate for longer
Monte Carlo simulations with more particles. The diffraction patterns in figure 14 tell us
that the simulations are in a fluid phase.
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(a) T ∗ = 0.230, ρ∗ = 0.605, δ = 1.4.
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(b) T ∗ = 0.250, ρ∗ = 0.620, δ = 1.4.
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(c) T ∗ = 0.200, ρ∗ = 0.640, δ = 1.4.
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(d) T ∗ = 0.250, ρ∗ = 0.660, δ = 1.4.
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(e) T ∗ = 0.111, ρ∗ = 0.680, δ = 1.4.

Figure 13: Pair correlation functions of various simulations around the red line of figure 12
after 100 million Monte Carlo cycles. It is visible that the peaks at r/σ = 1 and r/σ = 1.4
are close to be the same height. Note that y axis differs in the pictures.



3 RESULTS 15

(a) T ∗ = 0.230, ρ∗ = 0.605, δ = 1.4. (b) T ∗ = 0.250, ρ∗ = 0.620, δ = 1.4.

(c) T ∗ = 0.200, ρ∗ = 0.640, δ = 1.4. (d) T ∗ = 0.250, ρ∗ = 0.660, δ = 1.4.

(e) T ∗ = 0.111, ρ∗ = 0.680, δ = 1.4.

Figure 14: Diffraction pictures of various simulations around the red line of figure 12 after
100 million Monte Carlo cycles. These pictures show that the simulations are still in a fluid
phase.
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4 Discussion and conclusion

We have tried to inverse design quasicrystals with single particle Monte Carlo simulations
and a square shoulder potential. This was attempted by two different methods. The first
method was by finding a crossover in the total correlation function h(r) using the Ornstein-
Zernike methods. Unfortunately, with this method, we did not succeed to return any usable
results. There are multiple reasons why this method could have failed. Firstly, it is possible
that we made a mistake in the derivation of the system of equations used to find the poles q.
It is also possible, that the expected forms of h(r) are not a good fit for the square shoulder
potential, (especially at distances r ≤ δσ). Lastly, we could have made a mistake in the
used numerical integration method for the Fourier transforms. We were unable to discover a
mistake in one of these potential problems before the end of the project.

The second method was by finding a line in a (T ∗, ρ∗) diagram at which the first two peaks
in the pair correlation function were of equal height. In a system with shoulder δ = 1.4, we
found a line at which we expect quasicrystals to form. If a quasicrystal indeed forms under
these circumstances, we expect it to form at low temperatures T ∗ < 0.2. This is because
normal crystals at these densities only seem to form at low temperatures. So far, we have
not been able to actually find a quasicrystal in this region. As we can see in figure 14, the
simulations around this line remain in fluid phase. If we look in figure 12, we see that the
line barely touches the area where the simulation is in a solid phase. There have been reports
of a low density 18-fold quasicrystal that formed under similar temperature and density, but
with a slightly higher shoulder width [2]. Since this low density quasicrystal is not very
stable, it is possible that we have not found just the right temperature and density yet for
our quasicrystal. It is also possible that the density at which the crossover occurs is just not
right for our purpose. In that case we should have chosen a shoulder at which the crossover
line clearly crosses a solid phase instead of barely touching it. Finally, the method we use to
find quasicrystals could be wrong.

5 Outlook

We could create more plots like figure 12 for different shoulder widths. Possibly, the crossover
line goes through a solid phase for an other shoulder. If a situation like this does occur, it
would be interesting to investigate if this results in a quasicrystal or not. Doing this could
definitively prove if our method of constructing quasicrystals is wrong or not. Another thing
we could do is extending our Monte Carlo simulations and use a larger number of particles.
Extending the Monte Carlo simulations could help with stabilising the quasicrystals a bit
more.

References

[1] D. Levine and P. J. Steinhardt, Phys. Rev. Lett. 53, 2477 (1984), URL https://link.

aps.org/doi/10.1103/PhysRevLett.53.2477.

[2] Dotera T, Oshiro T, and Ziherl P, Nature 506, 208 (2014), ISSN 0028-0836.

https://link.aps.org/doi/10.1103/PhysRevLett.53.2477
https://link.aps.org/doi/10.1103/PhysRevLett.53.2477


REFERENCES 17

[3] D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, Phys. Rev. Lett. 53, 1951 (1984),
URL https://link.aps.org/doi/10.1103/PhysRevLett.53.1951.

[4] Bindi L, Steinhardt PJ, Yao N, and Lu PJ, Science (New York, N.Y.) 324, 1306 (2009),
ISSN 0036-8075.

[5] P. W. Leung, C. L. Henley, and G. V. Chester, Phys. Rev. B 39, 446 (1989), URL
https://link.aps.org/doi/10.1103/PhysRevB.39.446.

[6] H. G. Schoberth, H. Emmerich, M. Holzinger, M. Dulle, S. Frster, and T. Gruhn, Soft
Matter 12, 7644 (2016), URL http://dx.doi.org/10.1039/C6SM01454B.

[7] H. Pattabhiraman and M. Dijkstra, The Journal of Chemical Physics 146, 114901
(2017), https://doi.org/10.1063/1.4977934, URL https://doi.org/10.1063/1.

4977934.

[8] D. A. Young and B. J. Alder, Phys. Rev. Lett. Physical Review Letters 38, 1213 (1977),
ISSN 0031-9007.

[9] Pattabhiraman H, Gantapara AP, and Dijkstra M, The Journal of chemical physics 143
(2015), ISSN 0021-9606.

[10] H. Pattabhiraman and M. Dijkstra, J. Phys.: Condens. Matter Journal of Physics:
Condensed Matter 29, 094003 (2017), ISSN 0953-8984.

[11] D. A. Young and B. J. Alder, Phys. Rev. Lett. 38, 1213 (1977), URL https://link.

aps.org/doi/10.1103/PhysRevLett.38.1213.

[12] M. Dijkstra, Modelling and Simulation (2018).

[13] M. C. Walters, P. Subramanian, A. J. Archer, and R. Evans, Phys. Rev. E Physical
Review E 98 (2018), ISSN 2470-0045.

[14] M. Dijkstra and R. Evans, The Journal of Chemical Physics 112, 1449 (2000), https:
//doi.org/10.1063/1.480598, URL https://doi.org/10.1063/1.480598.

[15] Z. M. Stadnik, M. Cardona, P. Fulde, K. von Klitzing, R. Merlin, H.-J. Queisser,
and H. Strmer, eds., Physical Properties of Quasicrystals, vol. 126 of Springer Se-
ries in Solid-State Sciences (Springer Berlin Heidelberg, Berlin, Heidelberg, 1999),
ISBN 978-3-642-63593-9 978-3-642-58434-3, URL http://link.springer.com/10.

1007/978-3-642-58434-3.

[16] D. V. Talapin, E. V. Shevchenko, M. I. Bodnarchuk, X. Ye, J. Chen, and C. B. Murray,
Nature 461, 964 (2009), URL https://doi.org/10.1038/nature08439.

https://link.aps.org/doi/10.1103/PhysRevLett.53.1951
https://link.aps.org/doi/10.1103/PhysRevB.39.446
http://dx.doi.org/10.1039/C6SM01454B
https://doi.org/10.1063/1.4977934
https://doi.org/10.1063/1.4977934
https://doi.org/10.1063/1.4977934
https://link.aps.org/doi/10.1103/PhysRevLett.38.1213
https://link.aps.org/doi/10.1103/PhysRevLett.38.1213
https://doi.org/10.1063/1.480598
https://doi.org/10.1063/1.480598
https://doi.org/10.1063/1.480598
http://link.springer.com/10.1007/978-3-642-58434-3
http://link.springer.com/10.1007/978-3-642-58434-3
https://doi.org/10.1038/nature08439

	Introduction
	Theory and methods
	Potential
	Monte Carlo simulation
	Canonical ensemble
	Periodic boundary conditions
	Cell lists
	Equilibation
	Starting configuration

	Pair correlation function g(r)
	Ornstein-Zernike
	Crossover in the pair correlation function g(r)
	Diffraction pattern

	Results
	Ornstein-Zernike crossover
	Crossover in the pair correlation function g(r)
	High density 12-fold quasicrystal (HD12)
	Low density 18-fold quasicrystal (LD18)
	Crossover line for = 1.4


	Discussion and conclusion
	Outlook

