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Abstract

The global climate transition which occurred approximately 33.7 Ma ago at the Eocene-Oligocene transition is
characterised by a still largely unexplained two step cooling of the Earth, separated by a 200 kyr plateau visible
in proxy data. Study by Tigchelaar et al. (2011) [36] suggests the potential explanation where a transition in the
ocean overturning circulation induces the inception of Antarctic land ice, effectively cooling the Earth in a step-wise
manner. In this thesis, we will discuss the behaviour of cascading fold bifurcating dynamical systems, as introduced
by Dekker et al. (2018) [7], and apply these concepts to the ocean and land ice systems, to argue that the Earth’s
climate can be interpreted as such a cascading system. Through numerical simulation using the box model devised
by Gildor and Tziperman (2000, 2001) [12, 13], Gildor et al. (2002) [14], and subsequently adapted by Tigchelaar et
al. (2011) [36], we present qualitative manifestations of this cascading behaviour, and argue that stochastic noise or
insolation variability has the potential to induce the plateau observed in proxy data.
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Introduction

One of the most distinct global climate transitions from
a ’Greenhouse’ to a partly glaciated Earth occurred near
the Eocene-Oligocene (E-O) boundary, 33.7 Ma ago. The
Eocene climate was considerably warmer than it is at
the present day, with polar surface and deep water tem-
peratures up to 10°C higher than today. The Antarctic
continent already lay at its current latitude, but was ice-
free and lushly vegetated in contrast to its present ap-
pearance. The transition away from this state of climate,
is in biology often referred to as the Grande Coupure,
or the ’great break’ in continuity of mammalian fauna,
due to the large-scale extinction that occurred at this
time. From many climate proxies it is deduced that at
the E-O boundary, global temperatures dropped and a
semi-permanent ice sheet was formed on the Antarctic
continent (Lear et al., 2000; Dockery and Lozouet, 2003;
Coxall and Pearson, 2007; Liu et al., 2009) [2, 10, 20, 21].
Some of the most pronounced evidence in support of

such a cooling event comes from the marine benthic δ18O
record, which in numerous cores taken from the ocean
floor, shows an increase of 1.2 − 1.5h during this pe-
riod. The shift lasts for approximately 500 kyr and most
remarkable is the fact that this transition takes places in
two steps, both lasting approximately 40 kyr, separated
by a 200 kyr plateau during which the δ18O remained
approximately stagnant. The E-O transition ends with a
sustained maximum lasting 400 kyr, after which δ18O
decreases again in a step-wise manner (Coxall et al.,
2005) [3], to eventually stabilise at a value ∼ 1h higher
than before the transition (Zachos et al., 1996; Zachos
and Kump, 2005; Coxall and Pearson, 2007) [3,43,44]. The
rapid increase in δ18O is associated with a rapid and ex-
tensive glaciation of at least the Antarctic continent, an
hypothesis supported by glaciomarine sediments in the
vicinity of the continent. Although there is geological ev-
idence for Northern Hemispheric land ice dating back to
the middle Eocene, data is insufficient to determine the
extent of a Northern Hemisphere glaciation at this time
(Eldrett et al., 2007) [11].
It is believed that, during the Eocene, deep water

formation was more pronounced in the Southern than
in the Northern Ocean. Sedimentary and seismic evi-
dence, in combination with the analysis of neodymium
isotopes, suggests that at the beginning of the Oligocene,
a transition from such a southern sinking circulation
(SPP) to a bipolar deep water formation (TH) occurred
(Thomas et al., 2003; Thomas, 2004; Via and Thomas,
2006) [37,38,40]. The initiation of deep water forma-
tion in the North Atlantic Ocean was facilitated by the
subsidence of the Greenland-Scotland Ridge which may
have occurred around the E-O boundary (Davies et al.,
2001) [5].
One mechanism which has been studied as a potential

explanation for the Eocene-Oligocene transition is the
opening of the Drake Pasage between Antarctica and
South-America and of the Tasmanian Passage between
Antarctica and Australia, facilitating the organization
of an Antarctic Circumpolar Current (ACC). This would
reduce southward oceanic heat transport, effectively
cooling the Southern ocean and, having occurred
around the Eocene-Oligocene boundary, it might have
played a role in glaciation of the Antarctic continent.
However, determining the exact timing of the opening
of these passages has proven problematic (Livermore et
al., 2005; Scher and Martin, 2006; Coxall and Pearson,
2007) [2, 22, 29] and the influence of a colder Southern
ocean on Antarctic meteorology is poorly resolved
(DeConto and Pollard, 2003) [6]. Other model and data
studies support the notion of the development of an
ACC promoting Antarctic ice inception, but not as the
ultimate cause (Sijp and England, 2004; Sijp et al., 2009;
Cramer et al., 2009; Haywood et al., 2010) [4, 16,33,34].

Tigchelaar et al. (2011) [36] proposes the transition
between two stable states of the meridional overturning
circulation (MOC) as a mechanism for the E-O transition.
In this model study the first increase in marine benthic
δ18O values is the result of the MOC transition from an
SPP to a TH overturning state, i.e. a southern-only deep
water formation to a bipolar deep water formation. This
transition leads to a cooling of the deep ocean and thus
an initial increase in marine benthic δ18O. The second
step is induced by lowering the atmospheric pCO2 below
a critical threshold value, for which Antarctic land ice
will rapidly grow, further increasing the marine benthic
δ18O values. It was found that the shift in MOC can
occur spontaneously by random density fluctuations
or induced by tectonic changes, i.e. the subsidence of
the Greenland-Scotland Ridge and/or the opening of
the Drake Passage and Tasman Gateway. The results
of this model study where qualitatively in accordance
with proxy data, but both these steps were still studied
independent of each other. In Dekker et al. (2018) [7]

a first attempt was made to study this system in the
context of bifurcation theory; in terms of a cascade of
rapidly transitioning systems, i.e. a cascading tipping
event.

In this thesis, we will further expand on previous re-
search by Tigchelaar et al. (2011) [36] and Dekker et
al. (2018) [7], and investigate to what extent the E-O
transition can be described as a cascading tipping event.
We will discuss the mathematical framework of bifurcat-
ing systems, cascading tipping events and the effects of
stochastic noise. The multiple stable climate equilibria
as found by Tigchelaar et al (2011) [36] will be reintro-
duced, after which we will argue from simple coupled
quasi-analytical ocean and land ice models that the cli-
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mate system can be interpreted as a cascaded tipping sys-
tem. Using a model developed by Gildor and Tziperman
(2000, 2001) [12, 13], Gildor et al. (2002) [14], and subse-
quently adapted by Tigchelaar et al. (2011) [36] for study
of the Eocene climate, we will present and qualitatively
analyse different (cascading) transition scenarios. This
model, comprising 4 atmosphere boxes, 8 ocean boxes,
with added land and sea ice components and a biogeo-
chemistry module, will be comprehensively described in
Section 4. Furthermore, we will investigate the possible
effects of orbital variations on the time scales within the
cascading transition.
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Part I

Theoretical Framework
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1 Bifurcating systems

1.1 Saddle-node bifurcations

In mathematical bifurcation theory, a saddle-node bifur-
cation or a fold bifurcation is characterised as a local
bifurcation in which two equilibria of a dynamical sys-
tem collide and annihilate each other. A typical example
of a differential equation which has one saddle-node bi-
furcation is

dX
dt
= a1 + X2, (1.1)

where a1 is a constant, X is a one-dimensional state
variable and t is time. With steady states given by the
condition dX/dt = 0, there are three different cases to
discern:

1. a1 > 0: no real solutions, thus no equilibria.

2. a1 = 0: exactly one equilibrium at X = 0.

3. a1 < 0: two equilibria at
√
−a1 and −

√
−a1, of

which the first is unstable and the latter is stable1.

The most generic form of a system which has a back-
to-back saddle node bifurcation, and the one that is of
interest for this subject matter, is given by the following
differential equation;

dX
dt
= a1X3 + a2X + a3, (1.2)

where ai with i ∈ {1, 2, 3} are constants. It is proven
in Appendix A. that this system has multiple equilibria if
and only if a1 < 0, a2 > 0 and |a3 | <

(
−4a3

2/
(
27a1

) )1/2.
Given that a1 and a2 satisfy these conditions, this sys-
tem as a function of a3 thus has a regime between
a3 = ±

(
−4a3

2/
(
27a1

) )1/2 where there are multiple stable
equilibria and outside this regime only one stable equilib-
rium prevails at each side (Fig. 1.1). We shall refer to the
points where one of the two stable equilibria ceases to ex-
ist, as critical thresholds. This is thus one of the simplest
systems which can undergo a rapid transition from one
equilibrium to another as a function of a time-dependent
parameter2.

1.2 Double fold cascade

The simplest case which can exhibit a cascaded tipping
event, is a system of two linearly coupled fold-bifurcating
systems, i.e. 

dX
dt
= a1X3 + a2X + φ(t),

dY
dt
= b1Y3 + b2Y + κ(X).

(1.3)

1see Appendix A.
2note that strictly speaking this parameter should vary infinitely

slowly, something unattainable in numerical simulation of course.

Here ai and bi are constants, X is the leading sys-
tem, Y is the following system, and κ(X) is a linear
coupling function given as κ(X) = κ1 + κ2X . φ(t) is a
time-dependent variable which can be used to force the
leading system into a transition.

In Fig. 1.1 we present the bifurcation diagram
of the leading and following system for the values
{a1, a2, b1, b2, κ1, κ2} = {−1, 1, −1, 1, −1.5, 1} along-
side a temporal evolution of this system where φ is lin-
early increased from φ = −10 to φ = 10 throughout the
simulation in Fig. 1.2. Directly apparent is the distinct
two step mechanism present in the temporal evolution
of the following system; this is also support by the bi-
furcation diagram of the following system where we see
two subsequent regions where there are two different
stable equilibria in the system. When considering this
system for {a1, a2, b1, b2, κ1, κ2} = {−1, 1, −1, 1, 0, 1},
one can also find the situation where in the region of
bifurcation all equilibria overlap. In the time evolution
this is simply reflected as a single step mechanism in the
following system instead of two steps. Another interest-
ing limit case was found by Dekker et al. (2018) [7] for
{a1, a2, b1, b2, κ1, κ2} = {−0.5, 0.5, −0.5, 1, 0, 0.48}
where there are four stable equilibria overlapping with
each other.

Fig. 1.1: Bifurcation diagram for the leading system X
(top) and the following system Y (bottom) as in Eq. 1.3
for {a1, a2, b1, b2, κ1, κ2} = {−1, 1, −1, 1, −1.5, 1}.
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Fig. 1.2: Temporal evolution of the leading and fol-
lowing system X and Y as in Eq. 1.3 and Eq.
1.4 for {a1, a2, b1, b2, κ1, κ2} = {−1, 1, −1, 1, −1.5, 1},
alongside the forcing φ(t). Simulation with-
out noise is shown in green. Two simulations
with different seeds of Gaussian white noise are
shown in blue (numpy.random.seed(11)) and red
(numpy.random.seed(10)).

1.3 Stochastic advance and delay

An extensive analysis of the effects of a noise term on cas-
cading systems like this has been conducted by Dekker
et al. (2018) [7]. The effects discussed there encompass
phenomena like stochastic flickering, where the follow-
ing system randomly transitions between two equilibria,
but in this study we are most interested in the effects
stochastic noise can have on the timing of the transitions.
We introduce a Gaussian white noise term ζx and ζy to
the leading and following system respectively, hence our
system becomes

dX
dt
= a1X3 + a2X + φ(t) + ζx,

dY
dt
= b1Y3 + b2Y + κ(X) + ζy .

(1.4)

We set ζx = ζy = ζ, ζ̄ = 0 and σ(ζ) = 10 and con-
sider the system for two different seeds of white noise3.
The time evolution of this system is presented in Fig. 1.2,
alongside the system without noise. We can clearly ob-
serve that the added white noise can either advance or
delay the transitions within the system. This is readily
explained by the fact that depending on the phase of the
noise, the system crosses the critical thresholds earlier or
later than it would have as a result of only the linear in-
crease of φ. As the newly attained stable equilibrium also
exists for forcing below the critical threshold⁴, when the

3this simulation was executed in Python; we consider
numpy.random.seed(10) and numpy.random.seed(11) here.

⁴you could interpret this as a two-way hysteresis.

noise term becomes negative the system does not directly
transition back to the original equilibrium. For both this
case and the case of stochastic flickering, the white noise
introduces a component of internal variability to both
the leading and following system which allows for tip-
ping independent of external forcing or forcing through
the leading system in the case of tipping in the following
system.
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2 The climate system

2.1 The Meridional Overturning Cir-
culation (MOC)

In the Earth climate system, a wide range of components
interact with each other on a variety of temporal and
spatial scales. Among these systems are the atmosphere,
the oceans, land and sea ice, the terrestrial biosphere and
ocean biochemistry, under the external forcing of, among
others, solar insolation and variations in this as a result
of orbital variability, plate tectonics and volcanism. One
of the most important components of the climate system
on both local and global scale is the ocean circulation,
and specifically the system of the large scale meridional
flows which we refer to as the meridional overturning cir-
culation (MOC). At present day, this circulation is char-
acterised by flow of warm, salty water from the equator
towards both poles, where the water cools and sinks,
giving rise to transport of colder water back towards the
equator in the deep ocean. This circulation is a major
driver of meridional heat transport, as it interacts with
the overlaying atmosphere, and its varying strength has
cautiously been related to global climate change and the
glacial-interglacial cycles (Mcmanus et al., 2004; Ivanovic
et al., 2017) [18, 25]. As we will see in Sec. 2.2 there exist
more stable states of this overturning circulation than just
the one we observe at the present day, and as noted in
the introduction, there is geological evidence suggesting
that a transition between such two different equilibria
occurred at the Eocene-Oligocene boundary.

2.2 Multiple overturning equilibria

Differential heating of the Earth’s surface leads to warm,
salty equatorial surface waters, and relatively cooler,
fresh polar surface waters. The effect of this, is that tem-
perature and salinity play opposing roles in determining
surface flow direction and hence the location of deep wa-
ter formation. This suggests that multiple MOC patterns
exist. This notion was studied by Stommel (1961) [35]

using a density driven two-box model1 representing a
single hemisphere, with which he showed two different
states of the MOC to exist on a single hemisphere; sink-
ing in the polar box or sinking in the equatorial box. An
extended version of this model with three boxes (two
polar boxes and one equatorial box) (Welander, 1986;
Thual and McWilliams, 1992) [41] allows for four solu-
tions: sinking in the North and upwelling in the South
(NPP), sinking in the South and upwelling in the North
(SPP), bipolar sinking (TH) and bipolar upwelling (SA).
These different overturning patterns are also observed
in more sophisticated 3D models (Dijkstra and Weijer,
2003) [8], however the SA pattern has never really been

1now often referred to as the Stommel box model.

observed in such models. Following the emphasis put by
Tigchelaar et al. (2011) [36] on an SPP-TH overturning
transition for the Eocene-Oligocene boundary, through-
out this study only the SPP and TH overturning states are
of interest.
In Fig. 2.1 we present the flow patterns and average at-

mosphere and ocean temperatures for a southern sinking
(SPP) overturning and for a bipolar sinking (TH) over-
turning equilibrium state. These diagrams are the re-
sult of numerical simulation using the Gildor-Tziperman
model (Gildor and Tziperman, 2000, 2001; Gildor et al.,
2002) [12–14] which we will describe and utilise later in
Part 2. Directly apparent is the temperature difference
between states for the Northern polar atmospheric and
surface ocean boxes; in the SPP state there is slight up-
welling in the Northern polar ocean, i.e. cold deep ocean
water rising to the surface, effectively cooling the sur-
face ocean and atmosphere. In the TH state on the other
hand, there is significant downwelling in the Northern
polar ocean, which occurs in conjunction with the trans-
port of warm water from the equatorial latitudes to the
polar latitudes along the surface, effectively warming the
Northern polar surface ocean and atmosphere. Due to
the differential distribution of the total energy budget
between both states, all boxes other than the Northern
polar surface ocean and atmosphere are cooler in the TH
state than they are in the SPP state.

2.3 Milanković forcing

As was already first observed centuries ago, the Earths or-
bit around the Sun is not invariable, but is characterised
by oscillations in precession, obliquity or axial tilt, ec-
centricity and the longitude of the perihelion. The link
between these orbital variations and cyclical variations
in the climate due to the resulting varying solar inso-
lation was not first, but most notably, made by Milutin
Milanković in the 1920’s. As reliable geological evidence
was limited at that time, it was not until 1976 (Hays et
al., 1976) [15] that this hypothesis was truly accepted, but
since then we bring these cyclical variations in the cli-
mate together under the name of the Milanković cycles.
In Fig. 2.2 we present the typical timescales associated
with the different components of the orbital variation.
Obviously, these variations were also present during the
Eocene/Oligocene, and a numerical solution devised by
Laskar et al. (2004) [19] allows for accurate reconstruc-
tion of these variations up until 40-50 Myr ago, after
which chaotic evolution of the Earth’s orbit prevents fur-
ther precise determination. While the Milanković forcing
is generally of greatest interest for the glacial-interglacial
cycles of the last 5 Myr, on the time scales we consider in
this study it effectively can act as a pseudo-random noise
with a very distinct frequency composition.
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Fig. 2.1: Flow diagrams for southern sinking (SPP) overturning (left) and for bipolar sinking (TH) overturning.
Flow magnitudes are denoted in Sv (106 m3 s−1). Box colours represent time averaged box temperatures.

Fig. 2.2: Characteristic timescales of orbital variations. Figure originally by Rohde (2006) [28].
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3 Interpretation as a cascading system

In this chapter we argue from simple isolated ocean
and land ice models that the interaction between these
two components of the climate system can display bi-
furcating behaviour analogous to the behaviour of dou-
ble fold cascading systems. We will do so using the
two-box ocean model devised by Stommel (1961) [35],
the extended three-box variant of this model (Welander,
1986) [41] and the land ice model as in Oerlemans
(2003) [27]. We shall discuss the formulation and bifur-
cation behaviour referencing the research of Dijkstra and
Weijer (2003) [8] and Oerlemans (2003) [27].

3.1 Two-box ocean model

One of the simplest models for the description of the
ocean circulation on one hemisphere, is the two-box
model originally devised by Stommel. In this type of
model the ocean on one hemisphere is divided into a po-
lar box and an equatorial box, with Tp (Sp) and Te (Se)
as respective box averaged temperatures (salinity). The
two boxes are connected by an overflow region at the
top and a capillary tube connecting the bottom of both
boxes. This construction allows flow along the surface,
which we consider positive when directed towards the
polar box. A schematic representation of this model is
presented in Fig. 3.3 at the end of this chapter. Even
though this type of model is limited to representing only
one hemisphere, we can use it in our analysis and it is a
valuable mean to introduce the formulation that is also
followed by the Welander three-box model.

3.1.1 Formulation

The flow in this model is density driven. The average
density in each box is derived from both T and S around
a reference density ρ0, i.e.

ρi = ρ0(1 − αT (Ti − T0) + αS(Si − S0)), (3.1)

where T0 (S0) is a reference temperature (salinity) and
αT (αS) the thermal (saline) expansion coefficient. The
evolution of T and S in each box is assumed to be dictated
only by exchange through flow1, heat exchange with the
overlaying atmosphere and a constant freshwater forcing
between boxes for the salinity (F). Under these assump-
tions the system of equations becomes

1where the direction of the flow is not important.



Vp
dTp
dt
= |q|∆T + cp(Ta, p − Tp)

Ve
dTe
dt
= −|q|∆T + ce(Ta, e − Te)

Vp
dSp
dt
= |q|∆S − F

Ve
dSe
dt
= −|q|∆S + F,

(3.2)

where ∆T = Te − Tp, ∆S = Se − Sp and Vi are the
box volumes, where i = {p, e}. The box temperature
adjusts to a constant atmospheric temperature Ta, i with
ci as the corresponding coefficients. Note however that
this formulation inhibits us from dynamically modelling
the atmosphere temperature, as the atmosphere is con-
sidered to be an infinite heat reservoir.
The flow strength is found from the density difference

between both boxes as

q = −
k
ρ0
(ρp − ρe) = k(αT∆T − αS∆S). (3.3)

3.1.2 Bifurcating behaviour

From the bifurcation diagram presented in Fig. 3.1
we clearly see the two-box ocean model exhibits a dis-
tinct back-to-back saddle node bifurcation in the flow
strength as a function of the freshwater flux. The fig-
ure presented here is originally from Dijkstra and Wei-
jer (2003) [8] and this publication uses ψ for the dimen-
sionless flow strength and λ denotes the dimensionless
freshwater flux. For weak freshwater fluxes there ex-
ists only a TH/NPP2 state, where there is sinking in the
Northern oceanic box. For strong freshwater fluxes we
find an SA/SPP state3, i.e. upwelling in the Northern
oceanic box. Between these regions of single stable equi-
libria there is a region where both overturning states are
equally stable, which thus allows for tipping behaviour.

3.2 Three-box model

The Welander three-box model is the simplest iteration
of the ocean box model with which the interaction be-
tween both hemispheres can be represented. This model
comprises two polar boxes, and one equatorial box rep-
resenting the tropical regions of both hemispheres. The
coupling of both polar boxes with the equatorial box
are identical to the Stommel box model formulation. A
schematic representation of this model is presented in
Fig. 3.4 at the end of this chapter.

2while we only consider one hemisphere here, TH and NPP over-
turning states are indistinguishable.

3as previous footnote, but for SA and SPP overturning states.
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Fig. 3.1: Bifurcation diagram of the two-box oceanmodel
as originally published by Dijkstra and Weijer (2003) [8].
Dimensionless flow strength ψ as a function of dimen-
sionless freshwater flux λ.

3.2.1 Formulation
TheWelander three-boxmodel follows the same formula-
tion as the Stommel box, merely extended to three boxes.
The system of equations becomes



Vs
dTs
dt
= |qs |∆Ts + cs(Ta, s − Ts)

Ve
dTe
dt
= −|qs |∆Ts − |qn |∆Tn + ce(Ta, e − Te)

Vn
dTn
dt
= |qn |∆Tn + cn(Ta,n − Tn)

Vs
dSs
dt
= |qs |∆Ss − Fs

Ve
dSe
dt
= −|qs |∆Ss − |qn |∆Sn + Fs + Fn

Vn
dSn
dt
= |qn |∆Sn − Fn,

(3.4)

qi = k(αT∆Ti − αS∆Si). (3.5)

where ∆Ti = Te−Ti, ∆Si = Se−Si and qi with i ∈ {s, n}
are the temperature difference, salinity difference and
flow between respectively the Southern and equatorial,
and Northern and equatorial boxes.

3.2.2 Bifurcating behaviour

The bifurcation diagrams (Dijkstra and Weijer, 2003) [8]

presented in Fig. 3.5 show a considerable increased level
of complexity for the three-box model relative to the two-
box model. Here we recognise all four overturning states
(TH, SA, NPP and SPP), where in the case of a symmetric
freshwater forcing it is apparent that the NPP and SPP
states exist besides each other. For weaker freshwater
fluxes both states fall back to the TH overturning, while

for stronger freshwater fluxes the symmetric overturn-
ing is of the SA type. In this situation there is only a fast
transition possible from an SPP to an NPP state, but more
options are present when the freshwater forcing is asym-
metric. The bifurcation diagram splits into two detached
branches, consequently allowing for fast transitions be-
tween all combinations of asymmetric (NPP, SPP) and
symmetric (TH, SA) overturning circulations.

3.3 Land ice model

3.3.1 Formulation

In the construction of this model we follow the formula-
tion by Oerlemans (2003) [27]. We assume the Antarctic
ice sheet to be perfectly plastic and approximately axi-
symmetric around the South Pole. This yields that the
height h of the ice is simply proportional to the square
root of the radial distance r from the South Pole, i.e.

h(r) =
(
µ0(R − r)

)1/2
. (3.6)

Here R is the radius of the ice sheet, r is the radial
position and µ0 is the profile parameter. Furthermore,
we assume that the undisturbed bed rock on which the
ice sheet lays slopes linearly downwards away from the
centre of the ice sheet. The bed rock height d(r) is given
as

d(r) = d0 − sr, (3.7)

where d0 denotes the undisturbed height of the bed
at the centre and s is the slope. We assume that s has
no effect on the surface profile or characteristics. Note
however that for a given value of d0, the mean surface
elevation decreases for increasing s. This is taken into
account by formulating the ice sheet profile as follows;

h(r) = d0 − sR +
(
µ(R − r)

)1/2
, (3.8)

where

µ = µ0 + cs2, (3.9)

with c a constant which is chosen based on numerical
experimentation.
In this present study we will not include calving of ice

into the ocean. Under this simplification, and initially
ignoring the response of the bed to the ice load, we can
find the total volume of the ice sheet through straight-
forward polar integration, i.e.,

V = 2π
∫ R

0
h(r) r dr =

8πµ1/2

15
R5/2 −

1
3
πsR3. (3.10)

However, the interesting non-linear behaviour of the
ice sheet originates from the dependence of the mass
budget Btot on the shape of the ice sheet. To formulate
an expression for the mass budget as a function of the
ice height, we introduce the concept of the run-off line,
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denoted by hR. Above the run-off line the mass balance
B is constant, while below the run-off line the balance
gradient with respect to altitude is constant. As such, we
define {

B = A for h ≥ hR
B = A − β(hR − h) for h < hR,

(3.11)

where A is the accumulation and β is the balance gra-
dient with respect to altitude. The more commonly used
altitude of the equilibrium line hE relates to hR as

hE = hR − A/β (3.12)

For a continental ice sheet we find the total mass bud-
get Btot to be

Btot =

2π∫
0

R∫
0

B r dr dφ

= πAR2 − π β(hR − d0 + sR)
(
R2 − r2

R
)

+ 4π βµ1/2
(1
5
(R − rR)5/2 −

1
3
R(R − rR)3/2

)
,

(3.13)

where

rR = R − µ−1(hR − d0 + sR)2 (3.14)

is the radial position at which the runoff line intersects
the ice sheet surface. Now equilibrium states of R can
be found by setting Btot = 0 and using either numerical
root-finding algorithms, or integrating the time evolution
of the ice volume dVtot/dt = Btot, which we did not
discuss here but is extensively explained in Oerlemans
(2003) [27].

3.3.2 Bifurcating behaviour
Study of the bifurcating behaviour of this ice sheet model
by Oerlemans (2003) [27] found a structure reminiscent
of a back-to-back fold bifurcation. Considering the ice
extent R as a function of the difference between the
equilibrium height and the highest point of the surface
elevation, R = 0 is a stable solution for the whole pa-
rameter space. However, due to the constraint R ≥ 0,
this solution is only valid for hE − d0 ≥ 0. Additionally
a second branch is found where R > 0, and this branch
overlaps with the R = 0 branch in the parameter space.
An unstable branch (not shown here) connects both limit
points. This reflects the hysteresis effect which is a known
phenomenon in ice dynamics; due to the ice-albedo and
height-mass feedbacks an existing ice sheet can stably
persist for climate scenarios which would not allow for
new ice inception.

3.4 Proposed coupling

Assuming that the atmospheric temperature adjusts to
the ocean temperature, the ocean and land ice models

Fig. 3.2: Bifurcation diagram of the land ice sheet model
as originally published by Oerlemans (2003) [27].

could potentially be coupled linearly via the Southern
ocean temperature Ts and the equilibrium height hE, i.e.

hE = hE,0(1 − kE(Ts,0 − Ts)), (3.15)

where hE,0 andTs,0 are respectively a reference equilib-
rium height and Southern ocean temperature and kE is a
coupling coefficient. As such this ocean - land ice system
would take the form of the generic cascading fold-fold
system we discussed in Sec. 1.2 where the ocean is the
leading system, and the ice sheet is the following system.

3.5 Preliminary conclusions and
shortcomings

The isolated bifurcation behaviour of both the ocean and
land ice models reflect characteristics of the elementary
fold bifurcating systems discussed in Sec. 1.1. Through a
simple linear relation one would expect the coupled sys-
tem, where the ocean is the leading system and the land
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ice sheet is the following system, to reflect the temporal
evolution observed in Sec. 1.2. The linear coupling ap-
proach proposed here has little physical validity however
besides making the argument for the cascading tipping
hypothesis. A more physically correct coupling should
relate the Southern atmospheric temperature to the equi-
librium height, but in doing so an actively modelled at-
mosphere becomes a necessity, complicating the model
further than what is within the scope of this present
thesis. However, as we will see in Part 2, the changes
in Southern ocean and atmospheric temperatures for a
transition from an SPP overturning to a TH overturning
are comparable in magnitude, thus still allowing for this
argument to be made.
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Fig. 3.3: Schematic representation of the Stommel box ocean model.

Fig. 3.4: Schematic representation of the Welander three-box ocean model.
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Fig. 3.5: Bifurcation diagram of the two-box ocean model as originally published by Dijkstra and Weijer (2003) [8],
showing North-South polar temperature difference as a function of a symmetric (asymmetric) dimensionless fresh-
water flux λ in top (bottom) panel.
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Part II

Earth System Approach to Cascading
Tipping
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4 Model description

General layout

The model described here is the 4+8 climate box model
developed by Gildor and Tziperman (2000, 2001) [12, 13]

and Gildor et al. (2002) [14], originally intended for
study of the glacial-interglacial cycles, and subsequently
adapted by Tigchelaar et al. (2011) [36] for study of the
Eocene climate. This model comprises four vertically
averaged atmospheric boxes, which extend latitudinally
from the South Pole to 45°S, from 45°S to equator, from
equator to 45°N and lastly from 45°N to the North Pole.
These boxes overlay eight ocean boxes divided into two
layers; four representing the upper ocean and four for
the deep ocean, all spanning the same latitude bands as
the atmospheric boxes. In this study we will disregard
the effect of sea ice as explained in Sec. 4.7.

SP

45S

EQ

45N

NP

Ocean

Land

Land ice

Fig. 4.1: Top view of the Gildor-Tziperman model, indi-
cating ocean, land and land ice fractions.

4.1 Atmosphere model

As stated in the previous section, the atmosphere is de-
scribed by four atmospheric boxes laying above the ocean
boxes; a polar and an equatorial box for each hemi-

sphere. The lower interface can be either land or ocean,
where the land/ocean fractions for each box are dictated
by estimates of the Eocene geography, as in Tigchelaar
et al. (2011) [36] (Fig. 4.1). Land fractions in the polar
boxes can be partially covered by land ice. The box aver-
aged potential temperature is calculated from the energy
balance in the box, comprising incoming solar radiation
and outgoing longwave radiation, air-ocean heat flux and
meridional atmospheric heat transport. The potential
temperature of each box is determined by the difference
between the heat flux at the top of the atmosphere (Ftop)
and at the surface (Fsur f ace), i.e.

∂θ

∂t
=

2R/Cpg
p0Cp

[ (
Ftop − Fsur f ace

)
+

(
F inmerid − Foutmerid

) ]
=

2R/Cpg
p0Cp

[ (
Hin − Hout − QT,a

)
+

(
F inmerid − Foutmerid

) ]
,

(4.1)

with respectively the incoming and outgoing radiation
terms at the top of the atmosphere defined as

Hin = (1 − αsur f )(1 − αC)QSol

Hout =

(
ε − κ ln

[CO2]

[CO2]0

)
σBθ

4.
(4.2)

Here R is the gas constant for dry air, Cp is the specific
heat capacity of the atmosphere at constant pressure,
po is a reference pressure, σB is the Stefan-Boltzmann
constant and g is the gravitational acceleration. The
incoming solar radiation Qsol varies seasonally and as a
result of orbital variations, with the latter modelled using
the model devised by Berger (1978) [1]. αC is the cloud
albedo and αsur f is the surface albedo defined as

αsur f = fL(1 − fLI)αL + fL fLIαLI + fOαO, (4.3)

with fL, fL I, fO the land, land ice and ocean frac-
tions respectively. Corresponding typical albedoes
are denoted with the same subscripts. The outgoing
radiation is determined by a mean box emissivity ε
and a logarithmic term depending on the the ratio
between the atmospheric CO2 concentration and a
reference concentration [CO2]0, where κ is chosen such
that an instant doubling of the CO2 concentration will
cause a radiative forcing of 4 Wm−2 in accordance
with contemporary climate sensitivity. QT,a is the heat
flux between the atmosphere and ocean which we will
further quantify when discussing the ocean model (Sec.
4.3).

Lastly concerning the energy balance, F inmerid − Foutmerid
is the effective heating due to meridional heat transport
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between atmospheric boxes. Meridional heat fluxes are
calculated as

Fmerid = Kθ∇θ, (4.4)

with Kθ chosen such that the meridional heat trans-
port between the two Northern hemispheric boxes
is ∼ 2.2 PW during interglacial periods (Gildor and
Tziperman, 2001) [13].

Concluding the atmosphere model, the meridional
moisture transport FMq between atmospheric boxes is
parametrised as

FMq = KMq |∇θ |q, (4.5)

with q the humidity in the box of concern and KMq
a constant. We assume a constant relative humidity,
with the saturation humidity at the potential temperature
θ computed from an approximate Clausius-Clayperon
equation;

q = 0.7AeB/θ, (4.6)

with A and B constants. Over land ice in the polar
boxes there is an additional source of precipitation, which
is the local evaporation of the ocean not covered by sea
ice;

Fq = Kq fowq, (4.7)

where fow is the surface fraction of open water relative
to a surface fraction of sea ice fsi with fow = 1 − fsi, and
Kq is a constant. The total precipitation in each box is
then given as

P − E = −∇ · (FMq − Fq), (4.8)

where P and E are respectively the precipitation and
evaporation in the box of concern. Precipitation falling
over land/sea ice is assumed to turn into additional
land/sea ice.

4.2 Land ice model

Themain equation for the land ice model is a simple mass
balance, i.e.

dVland ice

dt
= LIsource − LIsink. (4.9)

The source term LIsource depends on the precipitation
falling over existing land ice or, if there is no existing
land ice present at these positions, 1/4 of the land area
of the box;

LIsource =
max

(
{0.25Larea, LIarea}

)
boxarea

(P − E), (4.10)

where Larea is the land area in the box, LIarea the ice
sheet area, boxarea the total area of the box. The ice sheet

shrinks due to a constant ablation term CLI , plus an extra
modulation by the summer Milanković forcing, i.e.

LIsink = CLI + γLI(Sjune − S̄june) (4.11)

where Sjune − S̄june is the anomaly in the summer inso-
lation for the box of concern relative to the 1 Myr aver-
age. γLI is a constant used to tweak the sensitivity of the
land ice to the summer Milanković forcing. The model
will create ice when the local atmospheric temperature
is below a threshold set as Tmelt. These values may dif-
fer for both the Northern and Southern polar boxes and
throughout this study we will vary Tmelt for the Southern
polar box, to control the inception of an Antarctic land
ice sheet.

4.3 Ocean model

Due to the two-dimensional nature of the box model,
the dynamics of the ocean model include a simple two-
component frictional momentum balance which is hydro-
static and mass-conserving,

−
1
ρ0

∂p
∂z
−

g
ρ0
ρ = 0, (4.12)

−
1
ρ0

∂p
∂y
− rv = 0, (4.13)

∂v
∂y
+
∂w
∂z
= 0, (4.14)

where (y, z) are the meridional and vertical coordi-
nates and resp. (v,w) the corresponding flow velocities.
g is the gravitational constant, p the pressure, ρ0 a ref-
erence density and r a friction coefficient. The average
density in each box is determined by the temperature
T and the salinity S through the full nonlinear equation
of state as recommended by UNESCO (1981) [39]. Tem-
perature and salinity are determined by the following
balances;

∂T
∂t
+
∂(vT)
∂y
+
∂(wT)
∂z

=

Kh
∂T
∂y
+ Kv
∂T
∂z
+ QT,a,

(4.15)

∂S
∂t
+
∂(vS)
∂y
+
∂(wS)
∂z

=

Kh
∂S
∂y
+ Kv
∂S
∂z
+ QS,a + QS, LI .

(4.16)

Here Kh and Kv are resp. the horizontal and vertical
mixing coefficients. QS, LI is the salinity flux as a result of
evaporation and ice formation. QT,a is the atmosphere-
ocean heat flux due to the sensible, latent and radiative
fluxes, defined as

QT,a =
ρ0CpwDu

τ
(θ − T)

[
fow + fsi

γ

Dsi

]
, (4.17)
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where Cpw is the heat capacity of water,θ is the temper-
ature in the overlaying atmospheric box, Du is the depth
of the upper ocean box, Dsi is the thickness of an optional
layer of sea ice and γ the insolation effect of this layer.
fow and fsi are respectively the fractions of surface area
of open water and of sea ice with fow = 1 − fsi. The time
scale τ is chosen to accommodate an ocean-atmosphere
heat transport of about 2.3 PWduring interglacial periods
(Gildor and Tziperman, 2001) [13]. This equation greatly
simplifies as we disregard sea ice in our study with this
model, so the term within square brackets equals 1. The
atmosphere-ocean salinity flux QS,a is dictated by the
precipation P and evaporation E;

QS,a = −
(
P − E

)
S0, (4.18)

with S0 a reference salinity.

4.4 Bio-geochemistry model

The bio-geochemistry model includes total CO2 (
∑

CO2)
and alkalinity (AT) as prognostic variables which are used
to calculate pCO2. PO4 is used as a limiting nutrient in
this model; this allows for the disregarding of the com-
plex interactions the complete nitrogen cycle introduces
(Maier-Reimer, 1993) [23]. This model is of the closed-
system type (Sigman and Boyle, 2000) [32], which im-
plies that AT and total PO4 are constant and only the
distribution through the ocean changes. Surface pCO2 is
calculated from

∑
CO2, alkalinity, salinity, temperature,

according to Yamanaka (1996) [42]. The equations for∑
CO2, AT and PO4 are identical to those for T and S

apart from an extra source/sink term, i.e.

∂i
∂t
+
∂

∂y
(v i) +

∂

∂z
(wi) = Kh

∂i
∂y
+ Kv

∂i
∂z
+ Si, (4.19)

where we used i as a placeholder for the different trac-
ers. The source/sink term is different for each variable,
and below we will discuss the included processes. The
ratio P:N:C is assumed constant at 1:16:122 in particulate
organic matter. We denote the ratio P:N as RN and the
ratio P:C as RC .
The rate of export production per box, EP (the part of

organic matter that is produced in the surface boxes and
sinks as particulate organic flux), depends on the latitude
of the box (via the light factor), the amount of PO4 and
the ocean area not covered by sea ice, Aow , i.e.

EP = rbL f [PO4]Aow, (4.20)

where L f is the light factor taken to be the average
solar radiation in each box and [PO4] the phosphate con-
centration in each box. rb is a tuning parameter which
can be used to implicitly take into account other factors
affecting the production, like a lack of iron, and thus dif-
fers for each box. We define the rain ratio (RR) as by
Maier-Reimer (1993) [23];

RR = 61 exp (0.1(T − 10)), (4.21)

with T the surface temperature. This rain ratio
dictates the ratio of organic to inorganic carbon atoms
from the total ΣCO2 per PO4 molecule that sinks as
particulate flux.

Export production of organic soft tissue and calcite
shells reduces the total CO2 at the surface at rates of
RC×EP and RR×EP respectively, and through the process
of remineralisation the total CO2 is increased in the deep
ocean boxes at these same rates. Secondly, the total CO2
is affected by the gas exchange between the atmosphere
and the upper ocean. The flux between the ocean and
atmosphere is linear in the pCO2 difference between the
atmosphere and surface ocean boxes;

FCO2 = PV
(
[CO2,a] − [CO2,o]

)
Aow, (4.22)

where PV is the piston velocity (Siegenthaler and
Sarmiento, 1993) [31]. Hence, for the surface ocean boxes
the ΣCO2 source/sink term is given as

SΣCO2 = −RC × EP − RR × EP+

PV
(
[CO2,a] − [CO2,o]

)
Aow,

(4.23)

and for the deep ocean boxes we have

SΣCO2 = RC × EP + RR × EP. (4.24)

Production of calcite shells at the surface reduces the
alkalinity of the surface boxes at a rate of 2×RR×EPwhile
dissolution of these shells in the deep ocean increases the
alkalinity at the very same rate. The export production
of soft tissue increases alkalinity at the surface boxes at
a rate of RN × EP and remineralisation in the deep ocean
decreases it at the same rate. For a surface ocean box
the source/sink term takes the form of

SAT = −2 × RR × EP + RN × EP, (4.25)

and for a deep ocean box

SAT = 2 × RR × EP − RN × EP. (4.26)

Lastly, for the phosphate, export production at the sur-
face and remineralisation in the deep ocean act as a sink
and source respectively, at a rate of EP. Thus

SPO4 = ∓EP, (4.27)

where the minus (plus) sign corresponds with the sur-
face (deep) boxes.

4.5 Milanković module

The Milanković cycles are incorporated in the calcula-
tion of the insolation per box, following the model as
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Table 4.1: Parameters modified or added by Tigchelaar (2011) [36] with respect to Gildor et al. (2002) [14].

Parameter, Unit Description Original Value Eocene Value

fL1,..., fL4 land fraction 0.5, 0.2, 0.35, 0.5 0.21, 0.19, 0.30, 0.57
Kh,up [m2 s−1] surface horizontal diffusion coefficient 6.0 × 10−4 1.5 × 10−4

Kh,deep [m2 s−1] deep horizontal diffusion coefficient 7.5 × 10−3 2.0 × 10−3

Kv [m s−1] vertical mixing coefficient 7.0 × 10−8 4.5 × 10−8

r [s−1] friction coefficient 3.0 × 10−4 4.2 × 10−8

Kθ [s−1 K−2] atmospheric heat transport coefficient 15.5 × 1020 13.5 × 1020

Plw1,..., Plw4 atmospheric emissivity 0.61, 0.49, 0.52, 0.67 0.62, 0.53, 0.51, 0.70
CO2, in [ppm] pCO2 320 1500
δice [h] isotopic composition of ice −35
VW

0 [m3] volume Eocene ocean 1.3 × 1018

δW
0 [h] δW Eocene ocean 0.244

I Smax [m3] maximum volume Antarctic ice sheet 9 × 1016 2.57 × 1016

proposed by Berger (1978) [1]. Fourier analysis of the so-
lar insolation arising from this model as presented in Fig.
4.2 reveals the relevant frequencies to be present. Be-
sides having effect on the total energy balance through
the insolation, the Milanković forcing also affects the bio-
geochemical production via the light factor L f and is in-
corporated as a sink term in the land ice model.

Fig. 4.2: Time evolution (top) and Fourier spectrum (bot-
tom) of insolation as modulated by the Berger model.

4.6 18O isotope module

An additional module was added by Tigchelaar et al.
(2011) [36] to compute variations in δ18O. The oxygen
isotopic composition of sea-water, δw is calculated from
changes in land ice and ocean volume combined with
conservation of total δ18O;

V0
w × δw = Vice × δice + Vw × δw, (4.28)

where V0
w is the volume of the Eocene ocean, and Vw

is the volume of the ocean after land ice formation, i.e.
Vw = V0

w − Vice. δice is the oxygen isotopic composi-
tion of land ice and δ0

w (δw) the Eocene ocean isotopic
composition before (after) land ice formation. The val-
ues used for these variables can be found in Table 4.1.

Following the calcite-temperature relation of Shackleton
(1974) [30], we compute the calcite isotopic composition
δc from the sea-water isotopic composition δw and the
simulated temperature T (in °C) of the deep ocean boxes
as

T = 16.9 − 4.38(δc − δw) + 0.1(δc − δw)
2. (4.29)

The initial value δ0
w was chosen such that the modelled

Eocene deep sea temperature matches the measured late
Eocene calcite isotopic composition.

4.7 Eocene reference state

The parameter values defining the climate system in the
model can be changed to resemble the Eocene climatic
boundary conditions. The adapted parameters, as they
were used in Tigchelaar et al. (2011) [36], are displayed
in Table 4.1. The representative land fractions were
originally obtained from Markwick et al. (2000) [24].
Tigchelaar et al. (2011) [36] Sec. 3.1 comprises an ex-
tensive comparison of this modelled climate with proxy
data, finding that this is not a perfect representation of
the Eocene climate, partly due to known shortcomings of
climate box models. In this study however, the details are
of limited importance, as our primary focus is the global
reflection of the tipping mechanisms as introduced by
an SPP-TH overturning transition. Lastly, in this present
model study we disregard sea ice as noted earlier. This
is because of the fact that this specific model, as many
other models, suffers from a too high sensitivity to the
sea ice albedo feedback, resulting in oceans potentially
becoming completely sea ice covered. Also, in studying
the inception of the Antarctic ice sheet on a warm Earth,
sea ice is deemed to initially only play a minor role, mak-
ing the disregard of it a safe assumption for now. As
noted earlier, throughout this study we will vary Tmelt for
the Southern polar box, to control the inception of an
Antarctic land ice sheet.
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5 Results

5.1 Transition between overturning
states

A simulation run lasting 1.0 Myr is executed in which the
climate system settles into an SPP overturning equilib-
rium. Following this, the system is run for 20,000 years
to let it adapt to an active bio-geochemistry and adjusted
parameter values.
In Dekker et al. (2018) [7], Kv is tuned with respect

to Tigchelaar et al. (2011) [36] to facilitate that the at-
mospheric pCO2 decreases down to roughly 800 ppm by
the change in overturning state. This choice was made
to be in accordance with other model studies by De-
Conto and Pollard (2003) [6] where ice growth was found
to be possible below this concentration, and resulted in
Kv = 1×10−9 m2 s−1 being used for this study. However,
this means that the atmospheric pCO2 would almost de-
crease by half merely due to the change in overturning
state; a step of a magnitude that seems unlikely and,
as we will see, is not a necessity for a scenario with ice
inception at a realistic Tmelt within this specific model.
Hence, in this study we retain Kv = 4.5× 10−8 m2 s−1 as
in Tigchelaar et al. (2011) [36].
After initialisation, a 100-day-long density perturba-

tion (1030 kg m−3) is applied to the upper northern
hemispheric polar ocean box. This perturbation forces
a transition from the SPP to the TH overturning state
(Fig. 5.1). From the SPP to the TH overturning state,
vertical transport in the northern polar ocean box is ini-
tiated and vertical transport in the southern polar box
decreases.

Fig. 5.1: Development of the vertical transport in the
northern and southern polar box (resp. in turquoise and
blue) following a density perturbation, for a run with no
ice inception. Difference qN−qS in black. Vertical dashed
line indicates start of density perturbation (1030 kg m−3

in upper northern hemispheric polar ocean box).

In Fig. 5.4 we see further substantiation of the afore-
mentioned characteristics whichwe also discussed in Sec.
2.2 and in Fig. 5.2 we display the effects of active bio-

geochemistry. Looking ahead qualitatively at the direct
effects of the SPP-TH transition in a case with no ice in-
ception and with active biogeochemistry (Fig. 5.4), it is
apparent that a transition from an SPP overturning to a
TH overturning state results in a considerable tempera-
ture increase in both the northern polar atmospheric and
upper ocean box. This is partly due to the fact that, in
contrast to the SPP overturning state, in the TH overturn-
ing state there is no upwelling from the northern polar
deep ocean box cooling the overlaying boxes, and instead
warmer water is transported from the northern equato-
rial upper ocean box. In all other boxes, average temper-
atures decrease; this is presumably a consequence of the
redistribution of energy in the system relative to the SPP
overturning state, and the fact that in the TH overturning
Southern sinking is weakened relative to the SPP over-
turning, resulting in less warm water being transported
towards the polar box.

Fig. 5.2: The evolution of the total carbon content of the
ocean and the atmospheric temperature in the southern
polar box. Inactive (active) biochemistry in (dashed)
black. Run with no ice inception.

In the case with active biogeochemistry relative to the
case without active biochemistry, there is a second com-
ponent to the change in atmospheric temperature. This
second part of the temperature decrease is caused by
a decrease in the atmospheric pCO2 as a result of the
changed biogeochemical equilibrium. The total carbon
content of the ocean increases from ∼2417 mole/kg up
to ∼2427 mole/kg, acting as a sink facilitating an atmo-
spheric pCO2 decrease from ∼1530 ppm to ∼1435 ppm.
In this study, the net effect of this pCO2 decrease is only
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around 0.3 °C however.
Note that this is in stark contradiction with Tigchelaar

et al. (2011) [36], where the atmospheric pCO2 decrease is
coined as the driving factor of cooling and ice inception.
For this choice of Kv in this specific model study, the di-
rect temperature effect of the overturning strength is the
dominant driving factor of the climate transition and the
effect of the atmospheric pCO2 decrease as a result of the
active biochemistry is of negligible magnitude. Indeed,
when we estimate the temperature decrease resulting
from the observed pCO2 decrease using the contempo-
rary accepted climate sensitivity of ∼ 3.0 °C per instant
pCO2 doubling, i.e.

∆T = 4.33 ln
[CO2]

[CO2]0
, (5.1)

we find

∆T = 4.33 ln
1435 ppm
1530 ppm

≈ −0.28 °C, (5.2)

which is in agreement with the order of magnitude
found in the model study.

5.2 Cascading transitions

We run the described simulation for a range of {Tmelt ∈

R | 274 K ≤ Tmelt ≤ 280 K}. We consider 280 K to be a
realistic upper bound for the box-averaged southern po-
lar atmosphere temperature for which ice growth could
still initiate.
There are three distinct scenarios that can be dis-

cerned:

1. Subcritical scenario: The atmospheric temperature
decrease as a result of the transition in the ocean
overturning is not sufficient to initiate ice growth.

2. Supercritical scenario: The atmospheric tempera-
ture decrease as a result of the transition in the ocean
overturning is sufficient to initiate ice growth. Ice
volume stabilises at the maximum allowed volume.

3. Critical scenario: The atmospheric temperature de-
crease as a result of the transition in the ocean over-
turning is sufficient to initiate ice growth, but the
resulting ice volume is approximately a factor 106

smaller than the maximum allowed ice volume, and
disappears seasonally.

Additionally, we found a case closely related to the
critical scenario where the ice volume is still very small,
but is stable throughout the year. It is assumed that this
amount of ice is not yet sufficient to initiate the feedback
mechanisms that would allow further growth.

5.2.1 Subcritical transition

In this scenario, the atmospheric temperature decrease
as a result of the transition in the ocean overturning is

not sufficient to initiate ice growth. This scenario is en-
countered for Tmelt = 277.5 K and presented in Fig. 5.4.
The box-averaged southern polar atmosphere tempera-
ture decreases to ∼ 9.9 °C, just above the critical temper-
ature. Atmospheric pCO2 decreases from ∼ 1500 ppm
to ∼ 1435 ppm due to the adjusting biochemical equilib-
rium. As already noted in Section 5.1, the Northern polar
atmospheric temperature is increased considerably in the
TH overturning state with respect to the SPP overturning.
Atmospheric temperatures in all other boxes decrease.
In the δ18O profile we observe a single step of increase,
where it increases from ∼ 1.10h up to ∼ 1.56h within
the span of ∼ 5 kyr.

5.2.2 Supercritical transition

In this scenario, encountered for Tmelt = 277.9 K (Fig.
5.5), the atmospheric temperature decrease as a result
of the transition in the ocean overturning is sufficient
to initiate ice growth. The initial reaction of the cli-
mate system to the overturning transition is identical to
the subcritical transition, but additional effects are intro-
duced by the inception of the Antarctic ice sheet. Most
notably, an increase in the vertical transport in the South-
ern polar ocean is observed; this can be explained by
the fact that due to Antarctic ice inception the Southern
polar-equatorial ocean temperature difference increases
relative to the case without ice inception, strengthening
the surface flow towards the pole. Furthermore, this
is accompanied by a decrease in the Southern polar-
equatorial salinity difference aided by an increase in local
Southern polar evaporation, also effectively strengthen-
ing the surface flow towards the pole. Furthermore, the
atmospheric pCO2 decreases in an additional slow step
down to ∼ 1415 ppm. The atmospheric temperatures in
all boxes decrease slightly further relative to the subcrit-
ical transition, but the decrease is most pronounced in
the Southern polar box where it stabilises at ∼ 8.5 °C.
This decrease can be attributed to the albedo effect of
the increasing land surface which is covered by land ice.
Finally, in the δ18O profile we observe a distinct two-step
evolution, where in addition to the first step caused by
the overturning transition, the δ18O increases a further
∼ 0.92h up to ∼ 2.48h over the course of ∼80 kyr. The
combined magnitude of both steps is ∼ 1.56h, which
is in reasonable accordance to the observed 1.2 − 1.5h
change that is observed at the Eocene-Oligocene bound-
ary. Note however the lack of a distinct plateau between
the two steps; such behaviour is deemed unlikely to be
intrinsic to the overturning-ice coupled dynamical sys-
tem itself in this specific model, and is more probably
attributed to external forcings which we will discuss in
Section 5.3.

5.2.3 Critical transition

In this scenario, encountered at Tmelt = 277.8 K, the
atmospheric temperature decrease as a result of the tran-
sition in the ocean overturning is sufficient to initiate ice
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growth, but the resulting ice volume is approximately
an order 6 smaller than the maximum allowed ice vol-
ume, and disappears seasonally. Concerning the reaction
of climate system this case is identical to the subcritical
transition, so it is assumed that the seasonal nature of the
ice inhibits the feedback processes which would let the
climate settle into its consistently fully glaciated state.
In this study, a scenario as such is most interesting in the
context of delayed full glaciation due to external forcing,
which would pose a possible explanation for the plateau
in the δ18O profile.

5.3 Effects of Milanković forcing

We study the effect of variability in the insolation on
the climate system using the Milanković cycle module
available in the Gildor-Tziperman model. This module is
based on the Bergermodel, and is originallymeant to rep-
resent the last 5 Myr before present. However, under the
assumption that the periodicity and amplitudes of orbital
variations are equally applicable to the Eocene-Oligocene
boundary, we use it here to approximate the effects this
periodic forcing would have on the climate system. As
noted in Sec. 4.5, in this model the Milanković forcing
is incorporated in the atmospheric energy balance, as a
sink for the land ice and in the biochemical production.
In Fig. 5.3 we present a model run with Tmelt = 277.9K

where we implemented the Milanković forcing. Appar-
ent is that the variability in insolation has the potential to
delay the onset of ice inception, and with that the second
step of the two step mechanism. Simulations executed
with different phases of the Milankovic forcing delayed
or advanced the second step on differing time scales. The
introduction of noise to the system unavoidably reduces
the distinctness of the cascaded transition, but coinciden-
tally1 the simulation shown in Fig. 5.3 finds the duration
of the second step to be considerably closer to the ∼ 40
kyr observed in proxy data.
At present, we did not explicitly find scenarios where

with active Milanković forcing ice inception occurred
where it would not have occurred were it inactive, but
considering the nature of fold bifurcating systems such
scenarios should equally well exist.

1and presumably not more than that.

Fig. 5.3: Evolution of Southern hemispheric ice volume
(top panel) and δ18O (bottom panel) following SPP-TH
transition. Run for Tmelt = 277.9K, (in)active Milankovic
forcing denoted as dashed (solid).
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Fig. 5.4: From top left to bottom right: Development of 1) the vertical transport in the northern and southern polar
box (resp. in turquoise and blue) and difference qN − qS in black, 2) atmospheric pCO2, 3) average atmospheric box
temperatures, turquoise/blue for Northern/Southern polar boxes and green/red for Northern/Southern equatorial
boxes, 4) average ocean box temperatures before and after the transition (arrows indicate direction SPP to TH),
solid/dashed denotes surface/deep ocean, 5) d18O and 6) Southern hemispheric land ice volume. Vertical dashed
line indicates start of density perturbation. Simulation run for subcritical transition at Tmelt = 277.5 K.
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Fig. 5.5: From top left to bottom right: Development of 1) the vertical transport in the northern and southern polar
box (resp. in turquoise and blue) and difference qN − qS in black, 2) atmospheric pCO2, 3) average atmospheric box
temperatures, turquoise/blue for Northern/Southern polar boxes and green/red for Northern/Southern equatorial
boxes, 4) average ocean box temperatures before and after the transition (arrows indicate direction SPP to TH),
solid/dashed denotes surface/deep ocean, 5) d18O and 6) Southern hemispheric land ice volume. Vertical dashed
line indicates start of density perturbation. Simulation run for supercritical transition at Tmelt = 277.9 K.
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6 Conclusion

In this thesis, we applied the concepts of cascading
tipping events to the Eocene-Oligocene transition in an
attempt to describe it as such, where a transition in ocean
overturning circulation could induce a temperature drop
sufficient to initiate Antarctic land ice inception. We stud-
ied the individual bifurcating behaviour of the ocean and
land ice system, and argued that they exhibit character-
istics comparable to the elementary coupled fold-fold bi-
furcating system as presented in Dekker et al. (2018) [7].
We presented a rudimentary linear coupling between the
two systems to show the viability of such an interpreta-
tion, however for a more robust model a dynamically
modelled atmosphere is a necessity.
Using the 4+8-box Gildor-Tziperman climate model

we studied the effect of the SPP-TH overturning transi-
tion in a holistic manner, and found that for realistic Tmelt
there can exist scenarios where the climate system under-
goes a two-step cascaded tipping event as just described.
The combined magnitude of the δ18O steps was found to
be∼ 1.56h, which is in reasonable accordance to the ob-
served 1.2−1.5h change that is observed at the Eocene-
Oligocene boundary. In contradiction to Tigchelaar et al.
(2011) [36], the driving force of this cascaded tipping is
found not to be the change in atmospheric pCO2 due to
an adjusted biogeochemical equilibrium, but merely the
change in temperature due to changed vertical transport
in the ocean is sufficient to initiated such a transition.
We found that in this particular model study the 200
kyr plateau as observed in proxy data is not intrinsic to
the cascaded tipping mechanism itself, but we argue it
can potentially be introduced by stochastic noise or in
our simulation the Milanković forcing. This model study
failed to correctly reflect the duration of the first step due
to the overturning transition, but under the influence of
the Milanković forcing, the duration of the second step
due to land ice inception is found within the right order
of magnitude. An array of mechanisms not included in
this simple model might delay or extent either of the two
steps, so quantitative conclusions on this should be made
with caution and will not be made here.

Further research
The exclusion of sea ice in this present study proved prob-
lematic when Southern ice volume approached the maxi-
mum allowed volume. Further ice growth was simply cut
off here, inhibiting realistic behaviour in these regimes.
The inclusion of sea ice in further study would in all
probability allow study of the system evolution beyond
the limit we encountered here.
Furthermore, we deem there is value in more thorough

quantitative study of the effects of the Milanković forc-
ing, possibly using the full numerical solution (Laskar et
al., 2004) [19], considering the effect of varying amplitude
of this forcing. In addition to the phase of the Milanković
forcing, the amplitude of the forcing is expected to sig-
nificantly affect the precise bifurcating behaviour of the
climate system.

Outlook
To conclusively answer the question "can we explain
the Eocene-Oligocene transition as a cascading tipping
event?", I would say that the mechanism presented in
this thesis does certainly qualify as a potential explana-
tion. Modelling the exact timescales and magnitudes of
the individual steps remains a challenge, and even within
more sophisticated 3D models these would be subject to
the approximations and parameterizations made within
such models. Nevertheless, it would be valuable to study
this cascading behaviour in more complex models, to see
how this behaviour holds up in a climate system of higher
detail, and possibly finding hints to other dynamics which
might also exhibit a cascading tipping event. Such 3D
models could include the full ocean dynamics, including
an Antarctic Circumpolar Current, and potentially amore
realistic land/sea ice model than was used here. Tectonic
changes like the subsidence of the Greenland-Scotland
ridge and/or the opening of the Tasman Gateway and
Drake Passage could introduce additional forcing of the
system, but all this can still fit inside the framework dis-
cussed in this thesis. The cascading interaction between
the ocean overturning and land ice as presented might
not be the complete explanation of the transition, but
given the physical rigidity of this interaction, it might at
least be a part of the solution.
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A Proofs concerning bifurcations

Lemma A.1 For a1 < 0, the system X from Eq. 1.1 has two
equilibria at X ′ = −

√
−a1 and X ′ =

√
−a1, of which the

first is stable and the latter unstable.

Proof: We write X = X ′ + δX , where X ′ is a steady state
and δX a small perturbation around this state such that
X ′ � δX . Substituting this identity we find

dX ′

dt
+
dδX
dt
= a1+

(
X ′+δX

)2
= a1+

(
X ′2+X ′δX +δX2),

(A.1)
which upon neglecting the product of perturbations

and identifying dX ′/dt = a1 + X ′2 yields

dδX
dt
= X ′δX. (A.2)

For δX > 0, a negative derivative, as a consequence
of substituting X ′ = −

√
−a1, implies convergence to that

steady state, and thus stability. A positive derivative,
as a consequence of substituting X ′ =

√
−a1, implies

diversion of the perturbation from the steady state, and
thus instability. For δX < 0 the signs of all relations must
be opposite, which is readily facilitated by the change of
sign in δX .

Lemma A.2 The system X in Eq. 1.2 has only one stable
equilibrium at a maximum when a1 > 0.

Proof: As Eq. 1.2 is a third degree polynomial, by in-
duction we know it has a maximum of three roots, for
a1 , 0. The roots resemble equilibria of the system,
which are stable if and only if ÛX(X ′ + δX) < 0 and
ÛX(X ′ − δX) > 0 for X ′ � δX . Assuming a1 > 0,
and one singular equilibrium at X = X0 we know that
ÛX(−∞) → −∞; indicating ÛX(X ′ − δX) < 0, hence X0 is
unstable. Introducing a second equilibrium at X = X1,
we know that ÛX(+∞) → +∞; indicating ÛX(X ′+δX) > 0,
hence X1 is also unstable. Lastly, introducing a third equi-
librium, from the preceding reasoning we know both the
first and third equilibrium are unstable, leaving only one
equilibrium to be potentially stable.

Lemma A.3 The system X from Eq. 1.2 has multiple
equilibria if and only if a1 < 0, a2 > 0 and |a3 | <√
−4a3

2/
(
27a1

)
.

Proof: We know that system X does not have multiple
equilibria if a1 > 0. Additionally, we know that setting
a1 = 0 reduces system X to a linear system, for which
dX/dt by definition has only one root, and thus one equi-
librium. From this we conclude that a1 < 0 is a necessity
for system X to have a regime with multiple equilibria.
Secondly, we need a regime where d2X/dt2 > 0, as

otherwise the time evolution of X would bemonotonously
decreasing and thus have only one root. This yields

d2X
dt2
= 3a1X2 + a2 > 0⇒ |X | >

√
−a2/(3a1); (A.3)

given a1 < 0 and a2 , 0, this only yields real solu-
tions if a2 > 0. We conclude that a2 > 0 is the second
condition for system X to have a regime with multiple
equilibria.
Lastly, we must find the values of a3 for which there

are multiple equilibria, i.e. real solutions for dX/dt. If
the discriminant of the cubic equation is equal or greater
than zero, the equation has only real-valued roots with
at least one multiple, or three distinct real-valued roots
respectively. The system has multiple equilibria if and
only if all roots are real-valued and non-equal, so only
the latter satisfies this condition. The cubic discriminant
for polynomials of the form ax3 + bx2 + cx + d = 0 is
given by

∆ = 18abcd − 4b3d + b2c2 − 4ac3 − 27a2d2. (A.4)

For the reduced cubic equation of system X we thus
have

∆ = 4a1a3
2 − 27a2

1a
2
3 > 0. (A.5)

Taking into account both other conditions, the sys-
tem has multiple equilibria if and only if |a3 | <√
−4a3

2/
(
27a1

)
.
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