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Abstract

In the last years economic climate modeling has attracted a lot of attention because of
its fundamental interest and applications to policy-making. The most famous economic
climate model is DICE, made by William Nordhaus. In his model he assumed that the
climate sensitivity is constant. Motivated by the results of the IPCC reports, which
over the years show big deviations in estimates of the climate sensitivity, this thesis
develops a framework to model the economy and the climate with uncertain climate
sensitivity. This is done by implementing Bayesian learning, the results in this thesis
show that the framework works and that Bayesian learning has a significant impact on
the welfare. It is found that Bayesian learning will enhance the performance of a policy
by 476%.
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1 Introduction

Climate change is a hot topic in research right now. Since the first article that carbon dioxide
(CO2) is warming up the climate[1], a lot has changed. And the amount of research in the
topic has tremendously increased. Besides that, there is a scientific consensus on the topic.[2]
Despite all that, the number of people believing in climate change has remained constant
over the years.[3] The future does not seem all so bright, especially when one thinks about
the fact that we are emitting more CO2 than the worst-case scenario stated in 1999. To make
it even worse the 1.5 degree Celsius heating mark has already been passed.[4] We do not even
understand the consequences of global warming and we might not even want to know what
would happen when the global temperature rises 3 degrees Celsius. Therefore, it would be
wise to try and lower the CO2 concentration. But as far, for now, this is not happening.
Policies of countries play an important role in this. For example, the presidential election of
Donald Trump in the United States or Jair Bolsonaro in Brazil, who both completely disre-
gard climate change as an issue and even state publicly that climate change is not happening
at all. Brazil had one of the cleanest electricity portfolios in the world. This is assumed to
decrease under the policy making of Bolsonaro.[5] This depicts how changing a policy can
affect the climate, climate change is a worldwide problem. Therefore, choosing the correct
policy can make a big difference.

Since the meat industry and the big companies are the biggest emitters[6] of CO2, a
carbon tax, for those who emit the most, seems more than reasonable. It is always ben-
eficial for the economy to get a lot of energy for the lowest price. This rises a problem,
there is always going to be a trade-off between green energy being good for the climate and
grey energy being good for the economy. Therefore you cannot expect firms to lower their
emissions just for the sake of climate change, you need to obligate them and make green
energy economically more attractive for them. This means that without any policies on
emissions, the main energy source will stay fossil fuels. This is why it is important to link
the economy to climate change. More specifically, to look if it is economically efficient to
’care’ about climate change. This topic was first addressed by W. Nordhaus in his famous
DICE (Dynamic Integrated model of Climate and the Economy) model which won him the
Nobel price in economics. He found that the best policy would lead a to global warming of
about 3 degrees Celsius.[7] This article got criticism, because of the hand-wavy assumptions
he made, especially regarding the climate. After this, a few improvements were made and a
lot of research has been done on this model. However, improvements in the climate side of
DICE and the policy-making side are still behind. A big step on the economy side has been
made by F. Lamperti et all with an agent-based model which models the economy called the
DSK (Dystopian Schumpeter meeting Keynes) model. The climate and policy part of this
model, however, is fairly slim.[8]

One of the biggest problems that all these models have, considering the climate side, is
that they model the climate’s response to CO2 as just a variable. This variable is known by
everyone and therefore also by the policymaker in the model. In the real world, this is not
the case, the climate’s response to CO2 is related to the increase in equilibrium temperature
after a doubling of CO2. This so-called climate sensitivity is very unclear, which can be
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seen from disagreement on that matter in the IPCC (Intergovernmental Panel on Climate
Change) reports over the years.[9] This uncertain climate has been studied in the DICE
model over the years, where some results were more disastrous than others.[10] However, it
has never been done using an agent-based model of the economy. In this thesis, the first step
of introducing uncertain climate sensitivity in an agent based model is done. Motivated by
the DSK model and the DICE model a new non-agent based model is created called the Hot
Small World Model, most of the model is based on DICE but the ultimate goal is to improve
it and make an agent based model from it. The purpose is to find the ’best’ policy under
uncertain climate sensitivity in this model. The ’best’ policy is the policy that maximizes
welfare. This is important to study because the climate is uncertain and we do not know
how the climate would change due to emissions. Motivated by the papers of Traeger and
Lemoine et all [11, 12] the Hot Small World Model uses Bayesian’ learning to accomplish a
learning effect on climate sensitivity.

2 Theory

Figure 1: The simplified schematic chart of the Hot Small World Model. Green lines mean positive feedback, while red lines
mean negative feedback

The Hot Small World Model tries economic climate policy under uncertain climate sen-
sitivity. The model is build up out of three boxes, the climate box, the economy box, and
the policy box. All those boxes have an influence on one another and together they form the
total model. The policy box will make the policy and therefore controls the climate and the
economy box. In this section, the working of these boxes will be explained, as well as how
they work together. Finally, the implementation of uncertainty in the model is explained. 1

In figure 1. a simplified chart of the Hot Small World Model is displayed. Red lines indicate
negative feedback while Green lines indicate positive feedback.

1All variables and constants with description can be found in the appendix
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2.1 The Climate Box

The climate is modeled in the climate box, this is done using C-ROADS.[13] C-ROADS
models the climate by distributing the carbon and temperature over different resevoirs. You
can divide the model into two parts, there is a Carbon cycle in the model and there is a part
that accounts for the radiative forcing and warming.

2.1.1 The Carbon Cycle

The carbon Cycle again can be divided into two parts. Namely the carbon in the atmosphere,
biosphere, and hummus and the carbon in the ocean.

Atmospheric Carbon First, there will be a net primary production, this is the production
of atmospheric carbon from the plants. It is logical to assume that the production of carbon
decreases linearly with the global temperature because most biological processes increase
or decrease linearly with temperature. The plants namely get stressed with heat and dry
out, therefore they will not produce as much carbon. It also makes sense that there will
be more bioproduction when the atmospheric CO2 increases because there will be more
photosynthesis. This is believed to be a logarithmic relation. Hence the primary production
is given by:

PN = PN0

[
1 + pfert log

( Cat
Cat0

)][
1 + pheat∆T

]
(2.1.1)

Where PN , PN0 , Cat, Cat0 and ∆T are the net production, the initial net production, the
CO2 concentration in the atmosphere, the initial CO2 concentration in the atmosphere and
the change in temperature from initial conditions respectively. Furthermore the constants
pfert and pheat denote the CO2 fertilization constant and the heat-stress respectively. So the
plant material is formed by this net production but it also dies out with a residence time of
τbio, therefore the carbon concentration in the biosphere is given by:

dCbio
dt

= PN −
Cbio
τbio

(2.1.2)

Note that PN is still indirectly a function of time because it is a function of ∆T and Cat.
Therefore the carbon concentration in the biosphere only follows an equilibration towards PN

τ

for constant net production. A fraction phum of the died plants will be incorporated in the
humus layer, also the humus layer dies out with a residence time of τhum. The humus layer
is the layer of organic material from the plants and animals that form when they die. So the
carbon concentration in the humus is given by:

dChum
dt

= phum
Cbio
τbio
− Chum
τhum

(2.1.3)

The net production removes carbon from the atmosphere and puts it in the biosphere, but
the carbon from decaying humus and a fraction of 1− phum of the decaying biomass carbon
will return in the atmosphere. In addition emissions, E enter the atmosphere mostly due
to burning fossil fuels. Then there are also ocean processes that have an influence on the
atmospheric carbon. This results in the following equation for the atmospheric carbon:

dCat
dt

= −PN + (1− phum)
Cbio
τbio

+
Chum
τhum

+ E + OCEAN (2.1.4)
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Oceanic Carbon In this model the ocean consists of nlay = 5 layers, there is a well-mixed
upper layer and nlay − 1 lower layers; the depth of layer k is represented as dlay(k). The
layers exchange carbon due to diffusion, more specifically eddy diffusion. The upper-layer
also exchanges, due to winds and waves, carbon with the atmosphere to reach equilibrium.
The mixing-related carbon flux through two layers is related to the vertical derivative of the
carbon concentration. The ocean is assumed to be homogeneous in the horizontal direction
so the carbon concentration in layer k is just given by Con(k)

dlay(k)
, Con(k) is the oceanic carbon in

layer k. In this way the carbon flux between two ocean layers k and k + 1 is:

Mk,k+1 = χeddy
Con(k)/dlay(k)− Con(k + 1)/dlay(k + 1)

1
2
(dlay(k)− dlay(k + 1))

(2.1.5)

As can be noted equation 2.1.5 is positive if the carbon flux is in the downward direction.
So now in the lower layers k 6= 1 the carbon concentration can be written as:

dCon(k)

dt
= Mk−1,k −Mk,k+1 (2.1.6)

Only in the lowest and the upper layer, these equations are not valid, in the lowest layer
there is no layer below it so equation 2.1.6 results in:

dCon(nlay)

dt
= Mnlay−1,nlay (2.1.7)

The upper layer is exposed to the atmosphere and will exchange carbon with the atmosphere.
This means that the two will be in equilibrium i.e. they satisfy the equilibrium condition:

Con(1) = Cmix,ref (1−RT∆T )
( Cat
Cat0

)γ
(2.1.8)

Where Cmix,ref is the reference carbon concentration in the mixing layer. RT is the temper-
ature dependence of the carbon concentration in the mixed layer and γ is given by:

γ =
1

R0 +RC log
(
Cat
Cat0

) (2.1.9)

Where R0 is the Revelle factor and RC is the carbon dependent Revelle factor. Satisfying this
equilibrium is achieved in the model by first calculating the total carbon in the two resevoirs
Ctot = Cat + Con(1), then Ctot is given by:

dCtot
dt

= −M1,2 − PN + (1− phum)
Cbio
τbio

+
Chum
τhum

+ E (2.1.10)

This total carbon now gets split over the ocean and the atmosphere so that it satisfies equation
2.1.8. In this way, the carbon in the first layer and in the atmosphere are modeled.
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2.1.2 Heating and Radiative Forcing

Climate sensitivity is a key parameter of the C-ROADS model. Climate sensitivity relates the
equilibrium temperature increase to the CO2 increase. The equilibrium climate sensitivity is
defined as the increase in equilibrium temperature when the CO2 concentration is doubled
leaving everything else the same. As you can guess this is a very hard parameter to measure
precisely. The outgoing radiation per Kelvin is the energy intensity that the earth emits per
K. The climate sensitivity is related to the outgoing radiation as follows:

λ =
fCO2 log(2)

κout
(2.1.11)

Where λ and κout are the climate sensitivity and the outgoing radiation respectively. Where
fCO2 is the scale of the radiative forcing, which is related to the radiative forcing (FCO2) as
follows.

FCO2 = fCO2 log
( Cat
Cat0

)
(2.1.12)

The value for fCO2 is well established and is believed to be fCO2 = 5.35 Wm−2. The additional
forcing due to outgoing radiation due to global warming is approximated as:

Fout = κoutT (2.1.13)

When earth’s temperature has reached equilibrium the outgoing radiation is equal to the
radiative forcing, so the equilibrium temperature can be found if the radiative forcing is
known.
Air has a low heat capacity due to its low density and the solid land has a low heat capacity
because heat can only be transported by conduction. The ocean however has a high heat
capacity, due to this it takes some time for earth to reach equilibrium temperature. As
shown in figure 2 the surface temperature of the earth, that starts at 0 K, overshoots after
an emission schock of 800 gigatonne and then slowly reaches equilibrium, . This means that
the equilibrium temperature can not just be measured and therefore there is a complication
in measuring the climate sensitivity. This is why researchers now are not certain about the
climate sensitivity.
The heat transfer in the ocean is modeled similar to the carbon transfer in the ocean. So

again now for the heat flux through from layer k to layer k + 1:

Hk,k+1 = χeddy
Hon(k)/dlay(k)−Hon(k + 1)/dlay(k + 1)

1
2
(dlay(k)− dlay(k + 1)

(2.1.14)

With Hon(k) the heat in layer (k) and χeddy the eddy diffusivity. Equation 2.1.14 will lead
to equation 2.1.5 but then for the heat and the heat flux instead of the carbon concentration
and the carbon flux. Again the upper layer of the ocean is exposed to the atmosphere so
besides mixing there is also absorption of heat in this layer, hence:

dHon(1)

dt
= −H1,2 +

(F − Fout)αyr
Asea

(2.1.15)

Where Asea is the area of the sea and αyr is the conversion factor that converts dHon
dt

to be
measured in years instead of seconds like F . Furthermore the Asea is needed because this
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Figure 2: Temperature of the ocean layers and the equilibrium temperature after an emission shock of 800 Gt at t = 0. The
initial equilibrium temperature was 0 K. This plot is obtained using the C-ROADS model.

equation describes the heat in the ocean and F is measured over the entire earth surface.
Now the temperature can be in layer k is described by:

Ton(k) =
Hon(k)

cdlay(k)
(2.1.16)

where c is the heat capacity per volume.

2.2 The Economy Box

In Hot Small World the economy is modeled by using some principles of DICE2013 and
making it fit the RCP8.5 scenario.[7, 15] The driving force in the economy are the firms, the
model can have n firms. These firms are free to compete or to work together. This competition
can all be modeled in a competition matrix, which describes the relations between different
firms. This means that in this matrix one could model the growth of a firm due to the growth
of a firm that has relations with it. Every firm generates an output, has a certain capital
and has emissions. The economy box just like the climate box can be split up in different
parts, the economic production, interaction with the climate, climate policy and the cost of
abatement.

2.2.1 Economic Production

Every firm will generate an output, the gross output of a firm is a function of its capital its
labor force and the productivity:

Qgross = A0exp
(2.66 arctan(t/100)

π

)
KγL1−γ (2.2.1)



2 THEORY 7

where time t is in years K is the capital, L is the labor force, A0 is a constant that determines
the initial output and γ determines how much each factor contributes. This is based on the
DICE function for the output, but it is made to fit the RCP8.5 scenario when no abatement is
done. Namely when no abatement is done the output grows with a factor 6 over the first 100
years, which is consistent with the RCP8.5 scenario.[15] Equation 2.2.1 shows a decreasingly
rising productivity with the A0e

arctan(t/100) factor. The net output of a firm is dependent on
the climate damage that happened see section 2.2.2, the abatement a firm did, the cost of
this abatement see section 2.2.4 and the carbon tax see section 2.2.3. Then the net output
is given by:

Q(t, µ, T, E) = Qgross(t)− cµ(t, µ)−D(T (t), Qgross(t))− (1− µ)Egross(t)τ(t) (2.2.2)

Where µ is the abatement which is the factor of the gross emissions that the firm has not
emitted. D is the damage, Egross is the gross emission of the firm and cµ the costs for
abatement.

The capital in equation 2.2.1 naturally depreciates because machines are getting worse
and need to be replaced. On the other hand capital also increases because a fraction s of the
net output is saved up. To import this in the model the capital is given by:

K(t) = K0(1−∆K)t +Q(t)s (2.2.3)

where ∆K is the capital depreciation per year, t is the time in years, s is the saving rate per
year and Q is the net output. Knowing the net output and the saving rate the consumption
per person can be given by:

Cpp(t) = Cpp(t) =
Q(t)(1− s)

N(t)
(2.2.4)

Where N(t) is the number of people which is also equal to the labor force for the Hot Small
World Model. Now the ”happiness” (utility) can be defined just as in DICE2013 [14]:

U(t) =
C1−χelas
pp (t)

1− χelas
N(t) (2.2.5)

The utility obeys 2.2.5, i.e. it increases monotonously with consumption, but less than
linearly because a person already consuming much will gain less additional happiness from
1 extra unit of consumption than a person consuming little. where χelas is the elasticity of
the market. This utility can then be used to calculate the welfare. The welfare is important
because the welfare needs to be optimized in order to get an optimal policy. The welfare is
defined just like in DICE2013[14]:

W (t) =

∫
U(t)

( 1

1 + ρ(t)

)t
dt (2.2.6)

Here ρ(t) is the rate of impatience and is given by ρ(t) = ρ0e
−gρt. The rate of impatience

states that you would rather take 100 euros than 100 euros in a few years.
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2.2.2 Interaction With The Climate

The interaction between the economy box and the climate box is modeled by firms emissions
and the interaction between the climate box and economy box is modeled by damages. The
emissions will higher the carbon concentration and therefore the temperature, the damages
are assumed to be temperature dependent and will cause a decrease in output see equation
2.2.2. Every firm has some emissions (E) this emission depends on three factors. First of all
the firms abatement if the firm does more abatement their emissions will decrease. Then there
is the net output it is believed that when the output increases the emissions also increase.
Lastly it is dependent on time, when the time grows the firms will get more technological
advanced and will emit less for the same abatement. The latter is modeled in a variable
called the technological advancement factor. Taking all this into account the emissions of a
firm are given by:

E(t) = (1− µ(t))E0e
−αtQ(t) (2.2.7)

Where E0 is the initial emission, α is the technology advancement factor and µ is the abate-
ment at time t. E0e

−αtQ(t) are then defined as the gross emissions, the emissions when µ = 0.
The technology advancement factor(α) states that firms will get more technological advanced
overtime and due to this the emissions for a given output decreases. These factors can be
made different per firm. These emissions will heat up the planet via the C-ROADS model
which causes damage. The damage due to heating is modeled like DICE2013, however this
can be easily changed to for example the damage function of Weitzman [16]. The damage
function that is used in DICE2013 is:

D(T,Q) = (1−
( 1

1 + ψ0T (t)2

)
Qgross(t) (2.2.8)

The Weitzman Damage function is given by:

D(T,Q) = (1−
( 1

1 + ψ1T (t)2 + ψ2T (t)6.76

)
Qgross(t) (2.2.9)

2.2.3 Climate Policy Box

Due to the damages in equation 2.2.8 and 2.2.9 the output of the firms decreases, and
therefore decreases the welfare. So there has to be some sort of policy that does not let
the temperature increase too much. This is the chess piece that the policymaker has to
control the climate while optimizing the welfare. The firms only increase the damage by
emissions, so when the firms would not emit at all they would not cause any harm. So the
policy maker needs to control the emissions of the firms, as can be seen in equation 2.2.7
there are a few possibilities, the policymaker could let the firms travel in time, as for now
there is no possible way to time travel so we sadly have to discard this option. Next the
policymaker could regulate the output of the firms, but decreasing the output would also
directly decrease the welfare. The last option is to regulate abatement this, in fact, would
work. So the policymaker has to make abatement attractive for the firms, there are many
ways to do that, like subsidies for green firms or a tax on the firms emissions. Here the latter
is assumed, the policymaker can tax the emissions of a firm, the tax τ is collected at the end
of the year and put into a fund f . At the beginning of next year the firms are asked to do
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abatement and can receive subsidy for it this subsidy can maximally be equal to the money
in the fund or to half of the abatement costs (see section 2.2.4). The leftover parts are used
to compensate damage again only half of the damage can be compensated at most because
some damages are non reparable like the extinction of a certain plant. If there is any money
left over after this it will be added to the fund next year. This is essentially what the policy
maker does in the Hot Small World Model.

2.2.4 Cost of Abatement

Sadly enough abatement is not free. In DICE the cost of abatement depends on time the with
the same argument as the technological advancement. The Hot Small World Model takes
another approach it uses a learning factor called lµ. This learning factor models a learning
effect on the abatement the more abatement a firm does the more advanced it becomes with
the technologies of abatement and the cheaper the abatement becomes. The learning effect
is given by:

lµ = g0e
µ log(gl) (2.2.10)

Here g0 is the abatement cost when there is no abatement and therefore when there was not
any learning and gl is the learning factor.

It makes sense that the abatement costs will be higher when the abatement is higher,
because an abatement of 0.1 is easily realizable by for example just turning the lights of when
there is enough light in the room. However, to reach 0.9 abatement a lot more expensive
measures should be installed like getting your energy from a more expensive but greener power
plant. Also the abatement costs will increase linearly with the emissions more emissions
means that you have to abate more CO2, in general it is more expensive for a car firm to
achieve an abatement of 0.1 than for a bakery, because the car industry will have more
emissions. So finally the abatement costs are given by:

cµ = lµoldEgrossµ
2.15 (2.2.11)

As discussed in section 2.2.3 the policymaker gives some subsidy(σµ) for abatement this
subsidy is maximal half of the abatement cost or the entirety of the fund:

σµ(cµ, τµ) = min(0.5cµ, f(t)) (2.2.12)

Then there will also be costs for the firm due to the tax of the policymaker, therefore the
total cost of the firm is given by:

c = cµ(lµold , µ, Egross)− σµ(0.5cµ, f) + Egross(1− µ(t))τ(t) (2.2.13)

Firms are assumed to be selfish i.e. the firms only do abatement if it is financially beneficial
for them. This means that the firms will do a certain abatement that minimizes their costs:

µ = minµ(c(µ,Egross,cµ,σµ)) (2.2.14)

This is how µ is found in the Hot Small World Model.
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Figure 3: esitmates of the climate sensitivity over the years. The different colored curves represent different estimates of the
climate sensitivity. As can be seen there is a lot of difference over the years in the estimates of the climate sensitivity.

2.3 Handling Uncertainty

The policy maker can regulate the climate by taxing the emissions, a higher tax and a
higher fraction of this tax that goes to subsidy for abatement will encourage or even obligate
firms to do abatement. There are other options to make abatement more attractive for
firms, but only tax is discussed here. In principle the policymaker has two decisions that
he can make. He can tax the emissions and he can decide what to do with this tax. For
the latter it is assumed that the policymaker can put a certain factor of the money into
subsidy the leftovers will be used to pay for the damages. The policymaker has a relatively
easy job when he knows exactly how the global temperature will respond to emissions, or
in other words when it knows the climate sensitivity exactly. Then the policy maker could
just maximize the wealth with respect to the τ . A constant climate sensitivity however is
not realistic, the climate sensitivity is not known exactly. The true value of the climate
sensitivity is still highly uncertain, and estimates have hardly narrowed down over the last
few decades. The latest estimates for the climate sensitivity are shown in figure 3. When
the climate sensitivity is high the policy maker would tax the emissions more than when the
climate sensitivity is low, because a high climate sensitivity would result in more damage
per emitted Gt (gigatonne) CO2. As of now there are only probabilities that some climate
sensitivity will occur as can be seen in figure 3. there is a small but real chance that the
climate sensitivity is around 10, this would probably mean that the policymaker has to
take this into consideration and will probably want to tax more than just the optimal path
for the mean climate sensitivity of the pdf(probability density function). In principle, we
can measure climate sensitivity by emitting sufficient CO2 and determining the temperature
change. Currently, the global warming signal is still to small (compared to natural variability)
as to yield a sufficiently precise value. However, in the future, the policy maker can ”learn”
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the true value by taking temperature measurements. This process can be formalized by the
method of Bayesian learning. With Bayesian learning the policymaker could guess the climate
sensitivity by the mean of a certain pdf that is constructed by temperature measurements
over time. As time evolves the guess of the policymaker will be more accurate and reach
the actual climate sensitivity. It is assumed that the CO2 concentration is well known and
that the only uncertainty is due to natural variability of the surface temperature. Since
temperature variability on timescales of years to decades are largely due to fluctuations in
the heat exchange between the surface and deeper ocean, we mimic this process by adding
a noise to the temperature flux between the mixed and the second highest ocean layer, this
is done by adding a noise in equations 2.1.14 and 2.1.16. The policymaker however does not
know this and assumes that the noise is just a Gaussian noise in the surface temperature:

T = Tλ + δT (2.3.1)

Where Tλ is the temperature increase due to emissions and δT is some added noise on the
temperature, the policymaker measures T , but wants to know λ, if the policymaker would
be able to measure Tλ it is simple to find λ via equation 2.1.11, 2.1.12 and 2.1.13.
The policymaker has an initial guess of the climate sensitivity in the form of a pdf, he then
updates this guess given the measurements. Inspired by the paper by Baker et all [12] , κout
can be taken as Gaussian, this yields a skewed pdf for λ. A first guess will resemble the
current pdf of λ, a Gaussian for the outgoing radiation is in general given by:

p(κout) =
1

2πwκ
e
− (κout−mκ)

2

2w2
κ (2.3.2)

Taking mκ = 1.23 W/(m2K) and wκ = 0.3 W/(m2K) yields a good pdf of the current
estimates for λ. You can switch between pdf’s of λ and κout by using p(x(y)) = p(y) dy

dx
, or in

this case

p(λ(κout)) = p(κout)
dκout
dλ

(2.3.3)

Naturally the policymaker knows that there is noise, he can also predict the temperature
TP (κout) based on his guess of κout and the current CO2 concentration. The policymaker
puts a normal distribution around his predicted temperature, this normal distribution is
given by:

p(T |κout) =
1

2πσT
e
− (T−TP (κout))

2

2σ2
T (2.3.4)

The noise that he assumes σT does not have to be equal to the initial noise guess δT .
Basically p(T |κout) is the policy maker’s estimate of how likely it is to measure temperature
T if a certain value for κout holds. Now Bayesian learning can be used to actually learn
something about p(κout|T ),this is the how likely it is to have a outgoing radiation κout when
a certain T is measured. Bayes’ rule is given by:

P (H|E) =
P (E|H)P (H)

P (E)

in this case, E the ”evidence” is the temperature that is measured and H the ”hypothesis”
is a value of κout. This means that Bayes’ rule in this case can be written as:

P (κout|T ) =
P (T |κout)P (κout)

P (T )
(2.3.5)
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Equation 2.3.2 and 2.3.4 give the two pdf’s in the numerator of this rule. Now only P (T ) is
unknown, this actually is not a problem because the pdf’s are properly normalized∫
P (κout|T )dκout = 1, the pdf for P (T ) can be taken as the normalization constant. Equa-

tion 2.3.5 makes it possible for the policy maker to update P (κout) after every temperature
measure. Therefore the estimate of the climate sensitivity goes towards the actual climate
sensitivity as more measurements are done. This means that the policymaker will make tax
based on his current believe of the climate sensitivity and his uncertainty in this value. This
means that it is assumed that the policymaker will tax in the following way:

τ = h(E[λ](t), σλ(t), t) (2.3.6)

where h is an arbitrary function, E[λ] is the mean climate sensitivity drawn from the pdf
and σλ is the standard deviation in the climate sensitivity also drawn from the pdf. To guess
this function the social cost of carbon is used. The social cost of carbon can be calculated
given a certain climate sensitivity and is defined as:

SCC =
∂W
∂E
∂W
∂C

(2.3.7)

With C the consumption, this gives the social cost of carbon the unit euro
Gt

, i.e. euros per
gigatonne CO2. This can of course be any unit of money and any unit of carbon emissions.
So the social cost of carbon measures how much consumption will increase the welfare as
much as extra emissions will lowers it. For example, if the Social cost of carbon is 100 euros
per tonne CO2 it means that one tonne CO2 is worth 100 euros. This means that it is better
for the welfare if a company just emits this tonne than pay more than 100 euros. Hence this
is exactly what the optimal tax should be. This means that the policy and hence the tax
2.3.6 can be written as:

τ = h(SCC(E[λ](t), t), σλ(t), t) (2.3.8)



3 METHODOLOGY 13

3 Methodology

The goal is to find τ(t) that maximizes the welfare as stated in equation 2.2.6 for current
estimates of the climate sensitivity. First the policymaker would have to make a guess of
the climate sensitivity, then the Social cost of carbon has to be estimated. Finally different
policies are tried and are evaluated by calculating an estimated welfare. In figure 1. the
schematic drawing of the Hot Small World Model is shown. It is important to keep this in
the back of your mind. It only displays which important factors influence each other. The
green lines in the chart mean positive feedback, while the red lines means negative feedback.
So for example increasing the abatement lowers the output directly, but it also increases the
output indirectly because it lowers the damage. In that case this climate cycle that works
indirectly on the output will be a lot slower than the direct payment for abatement. In other
words increasing the abatement is can be an investment for later.

3.1 Guessing The Climate Sensitivity

For the stochastic model it is important to remember that the underlying climate sensitivity
still has a true value, this value determines how the climate will develop even though the
policymaker does not know this value. The policymaker can only guess the climate sensitivity.
He will update his current guess the climate sensitivity according to his observations of the
temperature. Every time-step he measures the temperature and updates his guess for the
outgoing radiation using Bayes’ rule equation 2.3.5 and using equation 2.3.4 he has a guess.
He will use this guess to adjust his policy, note that his guess is a probability density function
so the policymaker can extract E[λ] and σλ from the pdf. Assume that you have a pdf given
by p(λ) then the expectation value and the uncertainty can be calculated by

E[λ] =
∑
i

λip(λ) (3.1.1)

σλ =

√∑
i

[λi − E(λ)]2p(λ) (3.1.2)

Where λi are elements of a vector in which all possible values of λ are stored, λi ∈ {λ0, λcutoff}.
Here λ0 is taken to be around 1.2 K and λcutoff is taken to be around 18.6 K. These are just
the values that are allowed for the climate sensitivity, since we know quite certain that the
climate sensitivity has a higher value than 1.5 K and a lower value than 10 K see figure 3.
So guess for the climate sensitivity that has λ0 < 1.5 and λcutoff > 10 will be a suitable. In
figure 4. the Bayesian learning is shown, as can be seen the initial guess of the policymaker
is wrong, and when time increases the guess of the policymaker goes towards the real climate
sensitivity with more accuracy.
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Figure 4: Bayesian learning the initial guess of the climate sensitivity is 3.14 K. The actual climate sensitivity is 3.0149 K. The
color on the graph represents the probability density of that specific climate sensitivity at that specific time.

3.2 Social Cost of Carbon

The Welfare is an important factor for the calculation of the social cost of carbon. The
Welfare is computed in the model in the following way:

W =
∑
ti

∑
j

Uj(ti)
( 1

1 + ρ(ti∆t)

)ti∆t
(3.2.1)

Where ti is the number of iteration of the time-step and ∆t = 1 is the size of one time-step.
Then the sum over j means the sum over all firms. The utility of each firm at ti’th time-step
is naturally given by equation 2.2.5 for t = ti The consumption per person at time-step ti is
given by 2.2.4 for t = ti

The saving rate is taken as constant in this model, because it would only complicate the
model and it will not have a significant impact on the Bayesian learning results. In this model
the population is modeled in the following way to fit the RCP85 scenario[15] N(t) = 2

1+e−0.03t ,
t is the time at time-step ti hence t = ti∆t. For simplicity it is assumed that there is only
one firm, one could see this firm as the world economy. The elasticity of the market is taken
the same as in DICE [14], so χelas = 1.45. Recall from section 2.3, the policy maker uses an
estimate of the social cost of carbon (SCC) to set the carbon tax. Now looking at equation
2.3.7 it involves derivatives. It is not possible to calculate these derivatives analytically. This
means that the derivative is approximated by:

SCC =
W (Q,E+∆E)−W (Q,E)

∆E
W (Q+∆Q,E)−W (Q,E)

∆Q

(3.2.2)

When estimating the SCC, it is assumed that we have a reference scenario W (Q,E) for the
entire future. Even though one could argue that the policy maker, when estimating the SCC
(and hence the carbon tax) does not exactly know the future, and thus the reference scenario
does not need to be exactly the future, it is at least needed to have a reasonable guess. Note
that W (Q,E) in general depends on the climate sensitivity. It is assumed that the policy
maker, when estimating the SCC, uses his current best guess of the climate sensitivity, E[λ].
Now ∆E is chosen to be 1/10 the emissions at that time plus 1/2 a gigatonne and ∆Q is
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taken to be 1/10 of the output at that specific time. This is different than equation 2.3.7,
because the output is increased instead of the consumption, but since the two are related
and have the same unit it does not matter if you increase the calculate the social cost of
carbon using the output or the consumption. Now there is a problem for the policymaker
who estimates the social cost of carbon it is not known what the abatement will be in the
future. Several methods were tested to obtain the reference scenario for the abatement. The
simplest way is to let the policy maker assume that abatement will remain constant in future.
This is a pessimistic worldview, but one could argue that for climate change you can better
be save than sorry. In this scenario the abatement for the social cost of carbon µSCC(t) is
given by:

µSCC(t) = µ(t0) (3.2.3)

A slightly more sophisticated method would be to use Taylor expansion, a taylor expansion
upto second order is used so this will result in the following µSCC(t):

µSCC(t) = µ(t0) +
∂µ

∂t

∣∣∣
t0
t+

1

2

∂2µ

∂t2

∣∣∣
t0
t2 (3.2.4)

In equation 3.2.4 the partial derivatives are calculated with respect to the policy time-steps,
because only every time the policy changes the tax the abatement will change. Since the
policy time-step (dtpol is not necessarily equal to the actual time-step dt this derivative will
be calculated with respect to dtpol. In the Hot Small World Model dt is set to one year,
while dtpol can be chosen as you like, in the DICE model it is assumed dtpol = 5 years. The
derivatives from equation 3.2.4 are then calculated in the following way:

∂µ

∂t
≈ µ(t)− µ(t− dtpol)

dtpol

∂2µ

∂t2
≈ µ(t)− 2µ(t− dtpol) + µ(t− 2dtpol)

dt2pol

Only the backward difference method for calculating derivatives can be used, because the
abatement in the future is not known.

It is important to understand the drawback of this method; because it is assumed that the
tax is a function of the social cost of carbon the tax can only have indirect time dependence. In
theory the carbon tax can be a function of the estimated climate sensitivity, the uncertainty
in the estimation of the climate sensitivity and the time as shown in equation 2.3.6. If
you look at equation 2.3.8 this is still valid, only in the results obtained it was assumed
τ = SCC(E[λ](t), µ(t)), this is of course a simplification. There is no time dependence and
moreover the social cost of carbon is not a function of µ(t) it is a function of time and the
optimal abatement as a function of time and the climate sensitivity is well known.This gives
rise to a circular argument, you have to know the optimal deterministic policy to find the
social cost of carbon. Imagine you are a policymaker, you do not know the optimal policy as
a function of time and climate sensitivity, how would you be able to estimate the optimal tax?
You could calculate the social cost of carbon, but then you had to estimate the abatement
over the years. The only possible ways of doing that is looking back into the past and look
at how the abatement had changed over the years. From this information you could estimate
the social cost of carbon. This is a pessimistic simplification, you will probably have a higher
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carbon tax than optimal, however in the long run this will be a better policy than not taxing
at all. In general a tax that is assumed to be τ = SCC, will start taxing a lot in the beginning.
This probably hurts the welfare a lot.

Therefore there is a need for a better estimation of µSCC ; the best method would be to
make an optimization of a deterministic version of the Hot Small World Model with various
climate sensitivities, and let the policy maker assume that future abatement will follow this
optimal trajectory. Since unfortunately the deterministic version of the Hot Small World
Model could not be optimized numerically, optimized trajectories of the fairly similar DICE
model to generate the policy maker’s guesses of the reference scenario were used. The idea
is to guess µoptimal(λ, t) and use this as µSCC(t). This is done by assuming that the optimal
policy in DICE follows the function:

µoptimal(λ, t) = ξ(λ)eβ(λ)t (3.2.5)

By optimizing the Dice model for different λ ξ(λ) and β(λ) can be found. For a certain λ ξ
can be found by using the following relations:

ξ(λ) = µoptimal(λ, 0)

β(λ) =
log
(

0.5
ξ(λ)

)
t 1
2

Where t 1
2

is the time at which µoptimal = 0.5. Then the final abatement that is used in the
calculation of the social cost of carbon is:

µSCC(t, E[λ]) = ξ(E[λ])eβ(E[λ])t (3.2.6)

3.3 Calculating the Estimated Welfare

As discussed above it is now possible to calculate the welfare for different climate sensitivities,
also the true climate sensitivity can be learned using Bayesian learning. Using the social cost
of carbon the policy can be estimated, now the most important thing is to combine all
these possibilities to calculate the estimated welfare for different taxes under the current
estimate of the climate sensitivity. First it is important to model the current estimates of
the climate sensitivity. As we know from Baker et all, the guess of the climate sensitivity is
not normally distributed, but if the guess of the outgoing radiation is normally distributed
the curve of the guess of the climate sensitivity can be replicated.[12] So it is assumed that
the outgoing radiation is normally distributed, if the outgoing radiation is assumed to have
a mean of E(κout) = 1.23 W/m2 and a standard deviation of σκout = 0.3 W/m2, the curve
for the climate sensitivity looks like the current estimates figure 3. From this distribution
we can take a nmem members, the probability of every member can be estimated using the
distribution from figure 5. The nmem members are linearly spaced between 1.5 K and 10 K.
Because a climate sensitivity below 1.5 K and above 10 K are highly unlikely. So for

λi ∈ Λ, λi ∈ {1.5, 10}

With Λ a linearly spaced vector with nmem elements over the range {1.5, 10}. For every λi a
probability of this λi can be calculated, this will result in a weight ωi. The weight is given
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Figure 5: The probability density function (pdf) of the climate sensitivity that is assumed in the model.

by the distribution in figure 5., then for the weight the following relation holds:

ωi = p(λi) (3.3.1)

With p(λi) the distribution shown in 5. All these elements will result in a in a weight vector
such that:

Ω = p(Λ) (3.3.2)

For every λi the model can be run and computes the welfare for a given λi. So the Hot Small
World Model acts as a function that computes the welfare for a given climate sensitivity. This
is of course all still dependent on the model parameters and model functions. But overly
simplifying it can be seen that:

wi = HSM(λi) (3.3.3)

With wi the welfare for λi and HSM the Hot Small World Model. All these elements of
course form a welfare vector for a given Λ:

W = HSM(Λ) (3.3.4)

Then the expected welfare is defined as:

E[W ] = Ω ·W (3.3.5)

This expected welfare depends on the policy, if equation 3.2.6 is close enough to the optimal
tax, τ = SCC would be a good policy. however, estimating SCC via this approach seems to
be too pessimistic (see results for details), leading to overly high taxes. therefore a scaling
factor a is introduced then the tax is set to:

τ = aSCC (3.3.6)

Most DICE-like models ignore learning of the climate sensitivity. Therefore it is important
to check if ignoring learning causes big deviations or whether the mistake of ignoring learning
is small. This is done by running the model with Bayesian learning and without Bayesian
learning and looking at the difference in estimated welfare between the two. Motivated by
C. Wieners et all. [18] the performance of a policy (π) is defined; to say something about
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the significance in the expected welfare difference with and without Bayesian learning. The
difference in performance between two policies is defined as:

ζ(π1, π2) = 100%×
(
E[W ]π1 − E[W ]π2
E[W ]π2 − E[W ]0

+ 1

)
(3.3.7)

Where E[W ]π1,2 is the performance of policy π1,2 and E[W ]0 is the expected welfare when
there is no policy. In this specific case π1 is the policy with learning and π0 is the policy
without learning. The performance is used to distinguish the effect two policies have on the
welfare. It is the relative difference between two policies with respect to the business as usual
scenario. If both policies are the same it means that both policies are equally effective hence
ζ = 0%. So when policy π1 is three times as effective as policy π2 the performance is equal
to 300%.
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4 Results

In this section the results are given, first some general results of the Bayesian learning imple-
mentation are given. Then the results for the optimal abatement as a function of the time
and climate sensitivity are given as in equation 3.2.6. Then some general results of the model
are given to show how the model relates to the DICE model. Then the results of the optimal
policies are given for different damage functions and different µSCC . After some results of this
optimal policy are given. Lastly results for the estimate welfare with and without Bayesian
learning are given.

4.1 Bayesian Learning

in figure 6 (next page) the results of the implemented Bayesian learning are shown. The true
climate sensitivities are 1.5, 5.75 and 10 respectively. The tax in this simulation was set to
equal the social cost of carbon. The colors in the plot shows the probability for a certain
climate sensitivity that is on the x-axis, while time is on the y-axis. As can be seen the
policy-maker alters his guess of the climate sensitivity and every time-step and learns the
true climate sensitivity. The policymaker clearly learns the climate sensitivity in roughly 200
years except for the extreme case when the climate sensitivity is 10 K, then the policymaker
does not have enough time to finish the learning because the actual value deviates a lot from
the initial guess of the policymaker (3.14 K). The policymaker’s uncertainty of the climate
sensitivity also decreases overtime.

As can be seen in figure 6., the Bayesian learning seems to work but for high true climate
sensitivity, the policy seems to struggle with guessing the climate sensitivity, this is because
of the abatement. If the abatement maxes out, the only change in temperature he sees is due
to the noise. This makes it hard to guess the climate sensitivity, because the temperature
change is dominated by this noise and therefore if the assumed noise is not the actual noise,
this is impossible to filter out. If the abatement is taken out the climate sensitivity guess
will be a lot more accurate as shown in figures 7. and 8.

It seems to be hard to guess the climate sensitivity when it is so far away from the initial
assumed climate sensitivity, but after 400 years the guess for the climate sensitivity is 9.8 K,
this seems about right. While with policy and thus abatement the guess of the climate
sensitivity is 9.1 K after 400 years. So the abatement makes a big difference. However this
is not such a big problem, because if the abatement is already at 1 the guess of the climate
sensitivity does not really matter, because the guess of the climate sensitivity is only used to
make a policy. So however it is harder to guess the policy whenever the climate sensitivity
becomes higher it is not a problem for the policymaker as abatement 1 is reached long before
then. In general the Bayesian learning in the model yield reliable results.
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Figure 6: Bayesian learning the initial guess of the climate sensitivity is 3.14 K. The actual climate sensitivity is 1.5 K in the
first plot, 5.75 K in the second plot and 10 K in the last plot. The color on the graph represents the probability density of that
specific climate sensitivity at that specific time.
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Figure 7: Bayesian learning with policy, the initial guess of the climate sensitivity is 3.14 K. The actual climate sensitivity is
10 K. The color on the graph represents the probability density of that specific climate sensitivity at that specific time. The
simulation runs for 400 years

Figure 8: Bayesian learning without policy, the initial guess of the climate sensitivity is 3.14 K. The actual climate sensitivity
is 10 K. The color on the graph represents the probability density of that specific climate sensitivity at that specific time. The
simulation runs for 400 years
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Figure 9: The β parameter for different values of the climate sensitivity. These results were obtained using equation 3.2.5.

4.2 Optimal Abatement DICE Results

By optimizing DICE and finding the value for ξ and β for different climate sensitivities a
certain curve can be fitted through the results. The results for β(λ) are given in figure 9.
The results for ξ(λ) are given in figure 10. As can be seen in figure 9. for small climate
sensitivity β deviates from its average. For small climate sensitivity the effect of β on the
optimal tax is negligible. Therefore β(λ) is taken to be constant for its value λ > 2. This
yields a value β = 0.1965. In figure 10. a curve is fitted through the data, also a generic data
point is added namely the point (0, 0) this is because it is known that the optimal abatement
is 0 when the climate sensitivity is 0. This helps the fitting procedure, the fitted curve is
given by:

ξ(λ) = 0.0137erf(0.6223(λ− 2.2868) + 1)λ0.7379

Where erf(x) = 1√
π

∫ x
−x e

−tdt and the float numbers are fitted parameters. This is just done

by trial and error. Having these results for β(λ) and ξ(λ) those can be used to calculate
µSCC(t, λ) using equation 3.2.6:

µSCC = 0.0137erf(0.6223(E[λ]− 2.2868) + 1)E[λ]0.7379eβt (4.2.1)
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Figure 10: The ξ parameter for different values of the climate sensitivity. These results were obtained using equation 3.2.5. The
line through the model is the fitted equation which is given in equation 4.2.1

4.3 General Results

In figure 11. and 12. the temperature and the emission control in DICE2013[9] are shown.
Emission control is the same as abatement, the base scenario in figure 12. does not stay zero,
because the abatement cost lower over time and some abatement becomes free. In figure 13.
and 14. the temperature and the abatement are shown for the Hot Small World Model with
no learning effect on the abatement like in equation 2.2.10, but abatement will get cheaper
over time like in DICE. The tax in these simulations is set equal to the social cost of carbon.
The abatement used in the calculation in the social cost of carbon is calculated using the
results of equation 4.2.1. As can be seen from the figures the Hot Small World Model follows
roughly the DICE mode. The biggest difference is that the Hot Small World Model naturally
abates more than the DICE model. This is because of the pessimistic estimated social costs
of carbon of the Hot Small World Model. Despite the differences the Hot Small World Model
does not behave weirdly this is an indication of the validity of the Hot Small World Model.

The fact that the SCC policy differs from the optimal DICE policy is probably because
the social cost of carbon is not the actual social cost of carbon, but it is just an estimation
of the social cost of carbon. This will be discussed in a lot more detail in section 4.4. The
estimation of the social cost of carbon pessimistic than the actual social cost of carbon,
in theory the actual social cost of carbon should give a policy like DICE’s optimal policy.
Because the SCC policy is pessimistic the social cost of carbon calculated in the Hot Small
World Model will be a lot higher than the actual social cost of carbon. This therefore will
result in a higher tax than the theory would give us and therefore the abatement are not the
same.
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Figure 11: Evolution of the temperature for different scenarios in DICE2013[14], the interest lays primarily on the optimal case
this should be roughly compare-able to figure 13.

Figure 12: Abatement for different scenarios in DICE2013[14], the interest lays primarily on the optimal case this should be
roughly compare-able to figure 14
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Figure 13: Temperature of the Hot Small World Model with abatement learning like in DICE, so no learning by doing. The tax
is equal to the estimated social cost of carbon. Note that the temperature is stochastic.

Figure 14: abatement of the Hot Small World Model with abatement learning like in DICE, so no learning by doing. The tax
is equal to the estimated social cost of carbon. Note that dtpol = 4.
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Figure 15: The expected welfare as a function of a from equation 3.3.6, DICE damage is assumed. The simulation runs for 200
years. µSCC is calculated using equation 3.2.4.

Figure 16: The expected welfare as a function of a from equation 3.3.6, Weitzman damage is assumed. The simulation runs for
200 years. µSCC is calculated using equation 3.2.4.

4.4 finding the best SCC estimate

Now the performance of different ways by which the policy maker can estimate the SCC are
compared (See section 3.2). Firs the Taylor method see equation 3.2.4 is discusseed.This
is done for two damage functions: the one from DICE see equation 2.2.8 and the one by
Weitzmann see equation 2.2.9. As explained in section 3.3, the estimate for the SCC performs
well if a in equation 3.3.6 equals 1, i.e. if it is optimal to set the tax exactly equal to the
estimated SCC. However, in figure 15. it is shown that for the DICE damage function it is
optimal to do no abatement and in figure 16. it is shown see that for Weitzman damage the
optimal tax is equal to 0.16SCC. So clearly the Taylor method yields bad estimates for the
SCC, why Taylor yields bad results was discussed in section 3.2. However most probably for
a longer simulation for example 400 years or longer the optimal tax will most probably go
towards the sub-optimal policy that is now around a = 0.52, because the damage for no policy
will increase a lot as time goes on. For no policy the expected global temperature increase
will only be around 6 K after 200 years as shown in figure 18., in 200 years the damage
will be relatively low because of this. The welfare decrease due to the high abatement at
the beginning by assuming τ = aSCC apparently is higher than the decrease in welfare
due to the damage. In figure 16. it can be seen that amax = 0.16. This is lower than
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Figure 17: The expected welfare as a function of a from equation 3.3.6, dtpol = 4, DICE damage is assumed. The simulation
runs for 200 years. µSCC is calculated using 4.2.1.

Figure 18: Temperature in the Hot Small World Model without policy.

expected, but this is due to the reason discussed above. At least for a more drastic damage
function the model gives that the tax should be non zero. Again an important fact is that
an oversimplification of the tax has been made and this tax is not the optimal policy for
a policymaker. Therefore the estimate based on the optimal policy for DICE is used see
section 3.3. for only the DICE damage function because the model was optimized using this
damage. As can be seen in figure 17. there is an optimal value for the tax at amax = 0.667.
This is clearly the superior estimation of the social cost of carbon. It is still not an optimal
path, this can be due to the assumption that µoptimal for DICE has an exponential shape.
Another thing is that the Hot Small World model is not exactly DICE so it will not behave
exactly the same so taking µSCC from optimizing DICE is sub-optimal. This means that
using DICE to estimate µSCC performs better than the Taylor method, this estimation of
calculating the SCC is used to obtain all following results. In these simulations the total time
was 200 years and the time over which the policymaker makes his assumptions for the SCC
is also 200 years. Now in the remainder of this sections overall results are given of the model
using the optimized DICE method to calculate the SCC. In figures 19., 20., 21., 22., 23. and
24. the Temperature, abatement, loss, emissions, output and expected welfare are shown for
the tax τ = 0.667SCC and the social cost of carbon is calculated using the optimization of
DICE using equation 4.2.1. In these figures the climate sensitivity is set to 3.24 K because
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that is the expected climate sensitivity from the pdf in figure 5. Overall the results look
promising, the temperature does not increase too much and it is a bit saver than DICE 2013.
The abatement increases more, this is because the climate model is a bit less optimistic in
the Hot Small World model than in DICE. Also abatement is probably a bit cheaper than
in DICE because the Hot Small World model uses learning by doing on the abatement, so
more abatement means that you know more about abatement so your abatement becomes
cheaper. Therefore the abatement will rise quicker than in DICE.

Figure 19: Global temperature increase with respect to pre-industrial with DICE damage for the tax equal to 0.667SCC. With
climate sensitivity 3.24 K. The µSCC is calculated using 4.2.1.

Figure 20: abatement done by firms over the years with DICE damage for the tax equal to 0.667SCC. With climate sensitivity
3.24 K. The µSCC is calculated using 4.2.1.
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Figure 21: Loss of the global economy so nfirm = 1 with DICE damage for the tax equal to 0.667SCC. With climate sensitivity
3.24 K. The µSCC is calculated using 4.2.1.

Figure 22: Total emissions with nfirm = 1 with DICE damage for the tax equal to 0.667SCC. With climate sensitivity 3.24 K.
The µSCC is calculated using 4.2.1.

Figure 23: Output of the global economy so nfirm = 1 with DICE damage for the tax equal to 0.667SCC. With climate
sensitivity 3.24 K. The µSCC is calculated using 4.2.1.
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Figure 24: Expected welfare over time with nfirm = 1 with DICE damage for the tax equal to 0.667SCC. With climate
sensitivity 3.24 K and with Bayesian learning. The µSCC is calculated using 4.2.1.

4.5 Estimated Welfare With and Without Bayesian Learning

Now the main question is investigated, namely whether Bayesian learning increases the wel-
fare - compared to a world in which the policy maker does not learn but always assumes that
the climate sensitivity equals 3.24K, i.e. the mean of the distribution. Figure 24. shows the
expected welfare as a function of time when the policy learns about the climate sensitivity.
In figure 25 the expected welfare without Bayesian learning is shown. Now an interesting
thing is if that actually makes a difference from not learning. In figure 26. the difference in
the expected welfare with and without Bayesian learning is displayed. A positive difference
means that Bayesian learning has a positive impact and a negative difference means that
Bayesian learning has a negative effect. As can be seen Bayesian learning has a positive
effect on the expected welfare.

As can be seen in figure 26. there is a difference between Bayesian learning and no
Bayesian learning. The estimated welfare when you use Bayesian learning is higher than
when you don’t. As time increases this difference gets bigger because the impact of not
knowing your climate sensitivity gets higher, however at a certain point this difference will
stay constant because in both cases the abatement already reached 1. It is interesting to see
that Bayesian learning still has a positive impact after 200 years because the slope is still
going up. This shows that the Damage that is caused by doing too less abatement for the
climate sensitivity actually still hits after 200 years, this is why it is important to keep doing
research in this area. The difference of the expected welfare is in the order of 10−4, this
does not seem much, but changes in the welfare are usually not big. So it is a relatively big
difference and cannot be disregarded.

To dig deeper into this the performance of the learning effect can be calculated using 3.3.7.
The difference in expected welfare of the policies at the end of the simulation is: 1.5160e− 4.
The difference between no learning and no policy (the numerator of equation 3.3.7) is equal
to 4.1284e− 5. This means that the performance of the learning effect is given by:

ζ = 467%
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Figure 25: Expected welfare over time with nfirm = 1 with DICE damage for the tax equal to 0.667SCC. With climate
sensitivity 3.24 and no Bayesian learning. The µSCC is calculated using 4.2.1.

Figure 26: Difference in expected welfare with and without Bayesian learning over time with nfirm = 1 with DICE damage for
the tax equal to 0.667SCC. With climate sensitivity 3.24 K. The µSCC is calculated using 4.2.1. With climate sensitivity 3.24
K
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5 Discussion

5.1 Possible Problems With the Model

The first problem that arrises with the Hot Small World Model is that the the SCC is
calculated using the estimated optimal abatement from DICE (see section 3.2). This is
because the numeric optimization of the deterministic version of the Hot Small World Model
did not work. One hypothesis for its vailer is that indeed all tax values above a certain
threshold yield the same optimal abatement, namely µ = 1. To be more precise, assume that
for a tax of x euro per gigatonne CO2 the abatement is equal to one. Then of course:

τ = x+ y where y ≥ 0 ⇒ µ = 1

So at later times, where abatement should be =1, the optimization cannot tell which tax
(above the threshold) it should take; this might cause the optimization to fail. In DICE the
problem can be easily fixed by requiring an upper bound abatement µ 6= 1. Here the upper
bound for the tax is not known a priori.

An additional difference between our model and DICE is that climate policy always
extracts money from the economy. After all, if there is a carbon tax, then firms pay both if
they do abate they pay abatement costs and if they don’t abate they pay taxes. Of course,
the tax money is not entirely lost to the economy, as it may be payed back in the form
of subsidies or damage compensation, but this can happen at a time lag, so the tax funds
effectively lose value due to discounting and the rate of impatience ρ > 0.

This phenomenon may make it disadvantageous to prescribe modest values of the tax and
hence abatement, as can also be seen from the local minimum at a ≈ 0.17 in figure 15. and
a ≈ 0.15 in figure 17. In those cases, the tax is high enough to extract significant money from
the firms, but too low to induce significant abatement, so it is better to either put the tax to
zero to avoid tax costs for the firms or make it higher, so that the tax at least induces strong
abatement. Thus we may have multiple local maximums of the carbon tax, hampering the
optimization process.

Furthermore some of the problems of DICE also were inherited by the Hot Small World
Model. The DICE model has been criticized for being overly simple [19]. In particular, it
employs a very simple damage function for assessing the material and immaterial cost of
climate change [7], which ignores the fact that damages can be irreversible or delayed (for
example, slow melt of the ice on the artics) in later model versions it received minder updates,
despite new studies on the subject[15]. Neither does it include climate adaptation. In ad-
dition, DICE has an overly simplified energy sector with exogenous costs for CO2 reduction
and does not include negative emission techniques. Finally, assuming only one policymaker,
it disregards the possibility of competitions or collaboration between policymakers.[20]

Lastly the implementation of learning-by-doing on the abatement is not very well looked
at. There is no experimental proof that the learning-by-doing effect described by equation
2.2.10 is the actual learning effect on the abatement. In addition, we did not add limitations
on the jumps of the abatement. It is not realistic that the abatement will jump by much,
especially it will not be realistic that the abatement will go down a lot after reaching 1. In
principle it is possible for the abatement to jump from 1 to 0 in one dtpol and then return
back to 1 again. If this actually would happen it would bring a lot of costs with it, you would
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have to destruct all the infrastructure and technology that made the abatement happen only
to build it up again in the next time step.

5.2 Further Research

A lot of interesting research can be done on this model. First of all it would be interesting
to uptimize DICE using Weitzman damage function see equation 2.2.9. This owuld give a
better feel of the impact of the damage function on the social cost of carbon. As can be seen
in figures 15. and 16. Weitzman gives a better estimation of the social cost of carbon when
using the Taylor method (see equation 3.2.4).

It would also be interesting to make the damage stochastic to allow for tipping points.
This would be more realistic, for further reading on how this implementation would work see
C. Wieners et all. [20]

Furthermore it would be interesting to look at the optimization of the fraction of the tax
that is used for subsidy in abatement. As of now the Hot Small World Model uses a fund and
first asks the firms to do abatement before compensating damages as discussed in sections
2.2.3 and 2.2.4. Will optimizing this factor give significantly different results? Is it better to
use the tax only to compensate damages or maybe use it to only subsidize abatement?

In addition as for now we did not look at the impact of different firms, in theory it
is possible to run the model for different firms and look at the difference that might make.
Especially how competition between firms would change the outcome. Competition still needs
to be implemented, this can be done using a matrix in which the connections between firms
are described, a positive matrix element would mean that firms cooperate and a negative
matrix element means that there is competition between the two firms.

An other interesting thing is implement the energy sector in a better way. Ideally you
would want to have a clean energy sector and a dirty energy sector. This means that you
do not assume abatement costs but you let the firms choose between green en grey energy
like in F. Lamperti et all [8]. This however would be hard to implement on short timescale.
Something that is in principle possible is to run the model all over again and assume the
abatement costs of DICE[14] to see if the effect is of any importance for the Hot Small World
Model.

Finally another thing to study is using the carbon tax as a way to compete with different
countries. This means that you will have nfirms representing countries, but every country
could choose its own tax. A low tax would make it more attractive for firms to settle in that
country. This would simulate the real world economy better because it is not realistic that
the entire world would agree on setting a carbon tax. It would however be hard to optimize
for all countries. Something that would be possible however is to let the tax increase in all
but one country and look if it is optimal for that one country to introduce a carbon tax.
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6 Conclusion

the aim of this study was to assess whether future Bayesian learning of the climate sensitivity
improves the welfare. This question is investigated using a simple model. The results show
that Bayesian learning improves the performance of the policy by ζ = 476%, this means that
learning will make the policy perform 4 times better.

To conclude the learning process of the policy maker is important, and omitting this
process might cause significant errors. We believe that it would be useful to incorporate
Bayesian learning into more sophisticated models. This might both validate our results and
potentially make these other models more realistic.
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7 Appendix

Table with all variables and parameters if the value is open it means that the symbol repre-
sents a variable.

Symbol Explanation Equation Value
PN net production of plants 2.1.1, 2.1.2 and 2.1.4
PN0 initial net production 2.1.1 85.1771 Gt/year
pfert CO2 fertilization for plants 2.1.1 0.42 Gt−1

Cat atmospheric CO2 2.1.1, 2.1.4, 2.1.8,
concentration 2.1.9 and 2.1.12

Cat0 initial atmospheric 2.1.1, 2.1.8, 2.1.9 769.3061 Gt
CO2 concentration and 2.1.12

pheat heat stress in plants 2.1.1 -0.01 K−1

∆T temperature change 2.1.1 and 2.1.8
Cbio CO2 in biosphere 2.1.2, 2.1.3 and 2.1.4
τbio residence time for biosphere 2.1.2, 2.1.3 and 2.1.4 10.6 year
Chum CO2 in the humus 2.1.3 and 2.1.4
phum humification fraction 2.1.3 and 2.1.4 0.428
τhum residence time for humus 2.1.3 and 2.1.4 27.8 year
E Carbon emissions 2.1.4, 2.1.10,

2.2.7 and 3.2.2
OCEAN carbon in the atmosphere 2.1.4

due to ocean processes
Mk,k+1 carbon flux between 2.1.5, 2.1.6 and 2.1.7

layer k and k+1
χeddy diffusivity of 2.1.5 and 2.1.14 4400 m2/year

eddies in ocean
Con(k) CO2 in ocean layer k 2.1.5, 2.1.6,

2.1.7 and 2.1.8
dlay(k) thickness of ocean layer k 2.1.5, 2.1.14 and 2.1.16
Cmix,ref reference CO2 2.1.8 1047.3 Gt

in the mixing layer
RT T dependence of CO2 2.1.8 0.003 K−1

in mixed layer
R0 Revelle factor 2.1.9 9.7
RC CO2 dependent Revelle factor 2.1.9 3.92
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Symbol Explanation Equation Value
λ climate sensitivity 2.1.11, 2.3.3, 2.3.6,

??, 2.3.8, 3.1.1,
3.1.2 3.3.1 and 3.3.3

fCO2 scale of radiative forcing 2.1.11 and 2.1.12 5.35 W/m2

κout outgoing radiation 2.1.11, 2.1.13, 2.3.2,
2.3.4 and 2.3.5

FCO2 radiative forcing 2.1.12
Fout forcing due to 2.1.13

outgoing radiation
Hk,k+1 heat flux from 2.1.14 and 2.1.15

layer k to layer k + 1
Hon(k) heat in layer k 2.1.14, 2.1.15 and 2.1.16
F Energy Forcing into ocean 2.1.15
αyr seconds to year transformation 2.1.15 31557600 s/year

Asea area of the sea surface 2.1.15 361.1508e6 km2

Ton(k) temperature in layer k 2.1.16
c heat capacity of ocean 2.1.16 4.23e6 J/m3

per volume
Qgross gross output 2.2.1, 2.2.8 and 2.2.9
A0 constant that determines 2.2.1 1359.7e9 dollar

initial gross output
K capital 2.2.1 and 2.2.3
L labor force 2.2.1
γ fraction that determines 2.2.1 0.3

how much capital and
labor force contribute

to the output
K0 initial capital 2.2.3 85.34e12 dollar
∆K capital depreciation 2.2.3 5.526e12 dollar/year
s saving rate 2.2.3 0.23
Q net output 2.2.3 and 2.2.2
µ abatement 2.2.7, 2.2.14, 2.2.13,

2.2.12, 2.2.11, 2.2.10,
3.2.3 and 3.2.4

E0 initial emissions 2.2.7 8 Gt
α technological advancement 2.2.7 0.0057 year−1

D Damage 2.2.8, 2.2.9 and 2.2.2
ψ0 damage parameter DICE 2.2.8 0.0028388
ψ1 damage parameter Weitzman 2.2.9 0.00245
ψ2 damage parameter Weitzman 2.2.9 0.0000198
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Symbol Explanation Equation Value
W welfare 2.2.6, 3.2.1, 3.3.3,

3.3.4 and 3.3.5
U utility 2.2.6 and 3.2.1
ρ impatience rate 2.2.6 and 3.2.1

χelas elasticity of the market 2.2.5 1.45
Cpp consumption per person 2.2.4 and 2.2.5
ρ0 initial rate of impatience 0.03
gρ depreciation of rate of impatience 0.00257 year−1

Egross gross emissions 2.2.14, 2.2.13 and 2.2.11
c(µ,Egross, cµ, σµ) cost of a firm 2.2.13 and 2.2.2

cµ cost of abatement 2.2.13 and 2.2.11
lµ learning effect of abatement 2.2.13, 2.2.11 and 2.2.10
σµ subsidy for abatement 2.2.13 and 2.2.12
τ tax 2.2.13, 2.3.6, 2.3.8,

2.2.12 and 3.3.6
f fund of tax that 2.2.12 and 2.2.13

was collected
g0 costs when no abatement is done 2.2.10 205e9 dollar
gl learning effect of the abatement 2.2.10 1

3

T measured surface temperature 2.3.1, 2.3.4 and 2.3.5
Tλ non stochastic 2.3.1

temperature increase
δT noise on surface 2.3.1 0.3 K

SCC social cost of carbon 2.3.7, 3.2.2, 2.3.8,
and 3.3.6
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