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Abstract

Using NV T Monte Carlo simulations an attempt is made to discover a quasicrystaline phase in a binary
mixture of hard spheres. This is done by finding and following the structural cross-over line calculated
theoretically by Statt et al. [Sta+04]. This line separates the (ηs, ηb)-plane into two areas where the pair
correlation function has a wavelength on the order of the big and small particles’ size respectively. At
this cross-over line there should be competing length scales in the system, which is common in quasicrys-
tals. The pair correlation function is measured from simulations at different total- and relative packing
fractions. The wavelength is measured for all of them, and an area in the (ηs, ηb)-plane where structural
crossover occurs is extrapolated. Although no quasicrystals were found in any of the simulations, the
data collected on the structural cross over could prove valuable in doing so in the future.
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1 Introduction

In this work we will make an attempt at figuring out what conditions will allow the formation of a qua-
sicrystaline phase in a binary hard sphere mixture. We will use a Monte carlo simulation to simulate a set
of particles with two different sizes. The diameter of the larger particles is used as the unit of length, the
diameter of the smaller particles is therefore the same as the ratio between the two diameters λ. By varying
the packing fractions of the particles, we attempt to find an initial setup that causes the particles to form
a quasicrystal. First, we will look into what a quasicrystal actually is in this section. In section 2 we will
discuss the methods by which we will simulate the system. Then we will discuss the results of our simulations
in section 3. And finally, we will make some concluding remarks in section 4

Quasicrystals are solids that exhibit many crystal-like properties, but do not adhere to some of the ’rules’ for
crystals. In a regular crystal, particles are aranged in a lattice. This means that in a k-dimensional system,
one can define a set of k lattice vectors such that a vector pointing from any partilce to any other particle
can be obtained using an integer sum of the lattice vectors. In addition, any vector that is an integer sum
of the lattice vectors will point from any particle to another particle. This means that crystals are periodic
structures, and have translational symmetry with respect to translations along integer sums of lattice vectors.
A crystal can be defined by a single piece of it, a unit cell, that is copied an infinite amount of times, filling
all of space.
The requirement that all of space must be filled with only copies of the same unit cell means that unit
cells can only posses 2-, 3-, 4-, and 6-fold rotational symmetries (see figure 1), as only shapes with these
symmetries can fill all of space alone.

Figure 1: The 2-dimensional Bravais lattices. It should be possible to describe any crystal (in 2D) using one
of these lattices. All of them have 2-fold symmetry, number 4 also has 3- and 6-fold symmetry, and number
5 also has 4-fold symmetry. A similar set exists for three dimensional lattices.[Kit96]

Quasicrystals differ from regular crystals in that they have quasi-periodic translational order [LS84]. This
means they appear to possess periodic translational order, but they actually do not. Particles in a quasicrys-
tal are not on a regular lattice. This means that one cannot define a single unit cell to describe the whole
system.
All of this does not mean that quasicrystals are disordered. Using multiple different shapes, all of space can
still be filled (see figure 2). Quasicrystals can posess rotational symmetries not found in regular crystals. For
example, the one in figure 2 has 5-fold rotational symmetry.
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In mathematics, the idea of differently shaped ’tiles’ filling all of space has been around since the nine-
teen sixties. Roger Penrose and other mathmaticians tried to come up with ways of filling space using tiles
with symmetries other than 2, 3, 4, or 6. Penrose found one way of doing so using a set of tiles shown in
figure 2. [RPe79]

Figure 2: A penrose tiling, these tiles can fill all of space in an aperiodic fashion. This is often used as a
visual example of a quasicrystal.[GS16]

The first documentation of what we now call a quasicrystal appeared in november of 1984, when Schechtman
et al. reported finding a ”metallic solid with long-range orientational order, but with icosahedral point group
symmetry, which is inconsistent with lattice translations.”[DSh+84]. Soon after, Levin et al. [LS84] described
quasicrystals more exactly in their work ”Quasicrystals: a new class of ordered Structures” and confirmed
that the findings of Schechtman et al. matched their definition.
Quasicrystals can form when there are multiple different relevant length scales in a system. This can happen
because there are forces with different behaviors at different ranges, or because the interactions between the
particles have multiple distances at which a particle can remain (meta)stable. We will be working with a
binary mixture, which means there are two kinds of particles with different sizes. Because there are bigger
and smaller particles, there are two relevant length scales: the radius of the big particles and the radius of
the smaller particles.

Some applications for quasicrystaline materials have been proposed by Dubois et al. [DKP94]. They conclude
that their low friction coefficient and malliability at high temperatures make quasicrystals useful as a coating
on softer materials to prevent wear and tear. Quasicrystals also have much lower electrical and thermal
conductivity than one would expect from a metallic solid. This means they could also serve as insulation
materials.

Quasicrystals have been observed experimentally in binary mixtures before[Tal+09]. But in this work we will
use Monte Carlo simulations to investigate quasicrystals in binary mixtures. Finding a quasicrystal using
simulations might give us more insight into the theory behind the way quasicrystals form.

To find a quasicrystal we should start by finding a way to get two competing length scales. We already
have two length scales: the diameters of the two types of particle. But we need to find a setup in which both
are ’competing for dominance’ so that multiple different shapes form in the structure of the system.
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A good place to start could be the structural cross-over line described by Statt et al.[Sta+04]. In their article
they describe the cross-over line as a curve in the space of relative packing fractions. On one side of this curve
the diameter of the bigger particles is the most relevant length scale, and on the other side the diameter of
the smaller particles is the most relevant length scale. We will go more in depth about the cross-over line in
section 2.
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2 Method

We will use NV T Monte Carlo simulations to try and create a quasicrystal. In this Section we will first
explain what a monte carlo simulation is and how it works. Second, we will introduce our system and its
specifics. Third, we will discuss how we intend to find the right initial conditions for the formation of a
quasicrystal. And finally, we will show how our similation works and what it does.

2.1 Monte Carlo

Normally, to find values for certain observables in a many-particle system, one would need to average over
a large set of configurations in the system. Averaging over all of the configurations would be impossible,
as there are an almost endless number. Simply generating a lot of random configurations isn’t desirable
either, as the Boltzmann distribution tells us not all configurations are equally likely [BB10]. A Monte Carlo
simulation makes use of the Boltzmann distribution to generate configurations according to their correct
statistical weight. The Monte Carlo simulation begins by taking a starting configuration, either randomly
generated or pre-created, and calculating its Boltzmann weight.[BB10]

WBoltz = e−βE , β =
1

kbT
(1)

This weight depends on the potential of the system, and thus on the interaction potential between particles.
We will discuss the interaction potential of our system below. After calculating the weight, the simulation
tries to make a change by moving a particle, adding a particle, changing the volume, or something like that.
Ours is an NV T Monte Carlo simulation, which means the number of particles(N), the volume(V ) and
the temperature(T ) are fixed. This means the only change left is moving a particle. Then the simulation
calculates the Boltzmann weight after the attempted change. If the weight after the change is larger than
the weight before the change, the move is always accepted. If the weight after the change is smaller than the
weight before the change, the move has a chance of

Wbefore

Wafter
to be accepted. This means the chance of being

accepted is

Pacceptance =

{
1 Wbefore ≤Wafter
Wbefore

Wafter
Wbefore > Wafter

(2)

Before measurements can start, the simulation needs to equilibrate. This is because the starting configuration
might not be a configuration with a very high probability. The system must be allowed to equilibrate for
quite a while to ensure fluctuations in observables due to the starting configurations are not taken into the
measurements. The process of reaching equilibrium can take thousands of Monte Carlo cycles to complete, a
monte carlo cycle is an amount of attempted moves roughly equal to the amount of particles in the system.
After the system has reached equilibrium, the relevant observable is measured at regular intervals. The mea-
sured observable can then be averaged over all the measurements. Because the simulation already generates
configurations with their correct statistical weight, there is no need to take these weights into account further
when averaging (provided the system was given enough time to equilibrate and enough measurements were
taken).

2.2 System specifications

To use a Monte Carlo simulation, we need a system to work on. In this work we will be making use of a
binary hard sphere mixture, we’ll discuss what that means now. The term ’binary mixture’ refers to the
fact that in our system, there are two different kinds of particles mixed together. We refer to these particles
as Big (b) and Small (s), any variable (A) specifically associated with either the big particles or the small
particles will be written as Ab or As respectively. The particles have a size ratio σs

σb
= λ, where σb and σs

are the diameters of the two particle types
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Figure 3: The hard core potential, r is the distance between the centers of two particles and U(r) is the
potential between the two. [PJ17]

The ’hard sphere’ part of the system refers to the way the particles interact with one another. The interaction
potential we use here is the hard core potential, this is one of the very simplest interaction potentials you can
think of (aside from perhaps the ideal gas, where the potential is always zero). The hard core potential is a
function of the distance between the centers of particles, it is zero everywhere exept the region in distance
space where the particles would overlap, the potential in that region is taken to be infinite. Because we have
two types of particles, we need three different potentials, φbb, φss, and φbs, these are given by:

φbb(r) =

{
0 r > σb

∞ r ≤ σb
, φss(r) =

{
0 r > σs

∞ r ≤ σs
, φbs(r) =

{
0 r > σb

2 + σs

2

∞ r ≤ σb

2 + σs

2

, (3)

From now on, we will take the diameter of the big particles to be our unit of length. The small particles
will therefore have a diameter of λ. The total energy of the system is easily calculated using this potential,
as even a single overlap will immediately turn it infinitely large. The total energy is thus 0 if there are no
overlaps, and infinite if there are any. This means we can calculate the probability of a move being accepted
using equations 1 and 2. If we use that limx→∞e

−βx = 0 we find:

Pacceptance =

{
1 no overlaps

0 otherwise
(4)

As you can see, as long as no two particles occupy the same space, any move is accepted.

As mentioned earlier, to get the simulation going you need a starting configuration. In the simulations
we used two different starting configurations with different advantages. These are described in two dimen-
sions, as this is what we mainly used, but everything translates fairly easily to three dimensions.
The first starting configuration we used is a centered square crystal phase. In this configurations the particles
are placed in a regular lattice. The big particles are placed in a square shape with regular distances between
them, then a small particle is placed in the center of each square. The advantage of this is that it takes very
little time for the simulation to set up. A disadvantage is that the number of particles cannot be set freely,
and the numbers of small and big particles have to be always equal
The other starting configuration is a fluid phase, in which all the particles are simply given random postitions
until none of them overlap. The advantage here is that the number of small and big particles can both be
set to whatever value you want. A disadvantage is that the simulation takes a very long time to set up this
configurations at higher packing fractions.
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2.3 How to find a quasicrystal

To find a quasicrystal we could just scan all of (ηb, ηs)-phase space for several values of λ and hope to find
one. But that would take much too long. Instead we will use some previous research to get an idea of the
area in phase space we need to look at. The methods we used to find the right state point are similar to those
used by Statt et al.[Sta+04] and Evans et al.[REv+94]. We try to find the line in (ηb, ηs)-space where the
wavelength of oscillations in the pair correlation function (h(r) = g(r)−1) changes abruptly from roughly the
diameter of the big particles to roughly the diameter of the small particles. The wavelength of oscillations in
h(r) is given by 2π

α1
with α1 the real part of the leading pole of h(r). These poles come from the Fourier-space

Ornstein-Zernike equations for binary mixtures[FG57]:

ĥii(q) =
ĉii(q) + ρj [ĉ

2
ij(q)− ĉii(q)ĉjj(q)]
D(q)

(5)

ĥij 6=i(q) =
ĉij(q)

D(q)
(6)

D(q) = [1− ρbĉbb(q)][1− ρsĉss(q)]− ρbρsĉbs(q) (7)

Here ĥ(q) and ĉ(q) are the Fourier transforms of h(r) and c(r) respectively, and i,j can refer to the big(b)
and small(s) particles. The poles are given by α = α1 + iα0 such that D(α) = 0. Since D(q) is the same for
all the different h(r)s, they all share the same wavelength.
To find the leading pole of h(r), we first measure the three g(r)s in the simulation and calculate hij(r) =
gij(r)− 1. We then invert the mixture OZ equations ((5)-(7)) to calculate the three ĉ(q)s.

ĉii(q) =
ĥii(q)− ρj [ĥ2ij(q)− ĥii(q)ĥjj(q)]

E(q)
(8)

ĉij 6=i(q) =
ĥij(q)

E(q)
(9)

E(q) = [1− ρbĥbb(q)][1− ρsĥss(q)]− ρbρsĥbs(q) (10)

We then use reverse Fourier transformations to find the c(r)s.
We obtain a set of equations to solve by entering ĉij(q) = 2π

∫∞
0

[rcij(r)J0(qr)dr] into D(α) = 0. Here,

J0(qr) = 1
π

∫ π
0

[cos(−qrsin(τ))dτ ] is the zeroth order Bessel Function. We can now find a set of equations
to solve for α1 and α0 by equating the real and imaginary parts. To do that we need to find the real and
imaginary parts of J0(α1 + iα0).

J0(qr) =
1

π

∫ π

0

[cos((−α1r − iα0r)sin(τ))dτ ] (11)

J0(qr) =
1

2π

∫ π

0

[eα0rsin(τ)eiα1rsin(τ) + e−α0rsin(τ)e−iα1rsin(τ)dτ ] (12)

J0(qr) =
1

π

∫ π

0

[cosh(α0rsin(τ))cos(α0rsin(τ)) + i sinh(α0rsin(τ))sin(α0rsin(τ))dτ ] (13)

Now we can separate D(α0 + iα1) = 0 into real and imaginary parts.

1 = ρbRbb + ρsRss + ρbρsR
2
bs − ρbρsRbbRss (14)

1 = ρbIbb + ρsIss + ρbρsI
2
bs − ρbρsIbbIss (15)

Rij = 2π

∫ ∞
0

[rcij(r)
1

π

∫ π

0

[cosh(α0rsin(τ))cos(α1rsin(τ))dτ ]dr] (16)
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Iij = 2π

∫ ∞
0

[rcij(r)
1

π

∫ π

0

[sinh(α0rsin(τ))sin(α1rsin(τ))dτ ]dr] (17)

This set of equations can be solved numerically to find the wavelength we want.
Now we can find a crossover line like the one described in figure 1 of the article by Statt et al.[Sta+04]. If
the packing fraction is increased along this line into the crystal phase, we would have two competing length
scales in a solid structure. That might cause a quasicrystaline phase to form. Statt et al. calculated the line
theoretically using the Percus Yevick closure. (figure 4)

Figure 4: A sketch of the cross over line calculated by Statt et al. [Sta+04] using the Percus Yevick closure.

2.4 Our simulation

Now that all of the basics have been explained, we are going to go through our own simulation step by step,
explaing what it does and how it works. Once again, this explaination will assume a two-dimensional system,
but it is easily expanded to three dimensions.
Before the simulation can run, it needs a few values to be set, these can be varied between runs so different
state points can be considered. The values that can be varied are: the size of the system (L), the total and
relative packing fractions (η, ηb, ηs), the size ratio, the number of moves the simulation will attempt, the
maximal displacement for a single move (∆), and the number of measurement points for the calculation of
g(r) (more on this later). The amount of moves between two measurements of g(r) and the point at which
measurements start can also be set.

The simulation starts by generating a starting configuration. If the starting configuration is a crystal phase,
the number of particles, and the distance between them (len) are calculated to match the specified packing
fraction as closely as possible while creating an integer number of unit cells. The actual packing fraction this
results in is usually close to the set value, but it is rarely exact. This also means the number of particles
cannot be set directly. Then a big particle is placed at every point (n*len, m*len) with n and m integers.
Every time a big particle is placed, a small particle is placed at position (len/2, len/2) from the big particle.
This way they form a centered square crystal (figure 5)
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Figure 5: A crystal phase starting configuration. The big particles form squares, a small particle is placed
at the center of each square, forming a centered square crystal. In this configuration, the number of big
particles and the number of small particles are always equal.

If the starting configuration is a fluid phase, the number of big and small particles are calculated to match
their respective packing fractions. This way the actual packing fraction is exactly the set value. The number
of big and small particles can be set exactly if the packing fractions are chosen well. The way the particles are
placed is very simple: A set of two random numbers is generated for every particle, representing its position.
If the particle overlaps with any others, a new set of random numbers is generated. This is repeated untill
all particles are placed. The result looks like figure 6.

Figure 6: A fluid phase starting configuration. Particles are randomly placed in the box. Notice how here,
there are many more small particles than big particles.
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Now that all of the particles are in the system, it is divided into a grid of 1x1 squares. Then a record is
made of which particles are in each grid square. Then the simulation starts moving particles. For each
move, a random particle is selected and moved a random distance between ∆ and −∆ in both the x- and
y-directions. We use periodic boundary conditions, so if the particle moves outside the system, it is placed
back into the system on the other side. Then the distance between the selected particle and each particle in
the nine grid squares around it are calculated, as these are the only particles it could possibly overlap with.
Only calculating these few distances significantly reduces the time it takes to run the simulation. We use
the nearest image convention for calculating particle distances. What this means is that we assume there
are identical copies of our system repeated endlessly in all directions. The particles in these copies are called
the ’images’ of the particles in the main system, and when a particle moves, all its images move the same
way. This is also a way of explaining periodic boundary conditions: if a particle moves to a neighbouring
copy of the system, one of its images moves into the system from another neighbour. The nearest image
convention states that particles can only interact with the nearest image of another particle. This means
that the largest distance between two particles in any direction is L/2. If the distance is larger than this, a
different image must be closer, as the images are separated by distances of L. We implement this convention
by subtracting/adding L for any distances greater/smaller than ±L/2. For every distance calculated, the
simulation checks for overlaps. If any overlaps occur, the selected particle is returned to its original position.
Otherwise, its new position is recorded.

Figure 7: A visual aid for the nearest image convention and periodic boundary conditions. Each box represents
a copy of the system. The green particle interacts with the image of the purple particle in the system to the
left of its own, as this is the closest image.[Fei04] When the green particle moves out of its own system, one
of its images moves back in on the other side.

These moves are repeated until the moment measurements are set to start. In our case, the pair corre-
lation function g(r) is calculated. More specifically, the pair correlation function is separately calculated for
big-big, small-small, and big-small pairs. We need all three of them for equations 5 through 17. To calculate
the g(r) we start by realising that it should give the probability density of finding a particle at a distance
r from another particle. This is approximated by making a histogram of the distances between every pair
of particles, a separate histogram is made for each type of pair. The amount of measurement points for
g(r) mentioned earlier is now used to calculate the size (dr) of each bin in the histogram. Each bin k holds
the amount of particle pairs with distance between kdr and (k + 1)dr, these amounts are called Nbinbb(r),
Nbinss(r), and Nbinbs(r). We only need to apply some normalisation factors to approximate g(r) using
these.

gij(r) =
Nbinij(r)

Nid(r)× (Ni ×Nj/N2)×N
(18)
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Where Nid is Nbin if the system were a monatomic ideal gas. N is the total number of particles, and Ni is
the number of particles of type i. The factor (Ni ×Nj/N2) is there to compensate for the fact that we are
not counting all of the pairs in the system, just the ij-pairs. The calculation is repeated at specified intervals
of moves, and g(r) is averaged over all the calculations at the end of the simulation.
After the g(r)s have been calculated, they can be used for the pole analysis described earlier.
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3 Results

To find the structural crossover in our system, we ran 51 simulations with diferent relative packing fractions.
The total packing fraction was kept constant at 0.5 and the small packing fraction was varied from 0.0 to
0.5. We should see crossover happening here as we have a simulation with only big particles on one end, and
a simulation with only small particles on the other. The g(r)s we get from these simulations should exhibit
wavelengts of roughly the size of the big particles and roughly the size of the small particles respectively.
This means that somewhere in all the different packing fractions the wavelength has to change from one value
to the other.

Unfortunately, we failed to get the code that was designed to perform the pole analysis outlined in sec-
tion 2.3 to work. It failed to solve the set of equations because it simply took too long. Due to time
constraints it was therefore necessary to measure the wavelengths by hand. This was done by measuring the
distance between the three most prominent peaks in the graph and averaging the wavelength that way (see
figure 8). It would have been better to use more peaks at higher r, but those are too small to be measured by
hand. Because the distances are calculated by hand, they can only be considered accurate within a margin
of ±0.1.
The measured wavelength is plotted against the small packing fraction in figure 9.

The points marked in blue have a dominant wavelength close to the diameter of the big particles, and
the points marked in red have a dominant wavelength close to the diameter of the small particles. The points
marked in purple are ones where there are two possible wavelengths, this is why there are two purple points
for each value of ηs. The wavelength has two potential values due to the appearance of a small peak at
intermediate r that grows larger with increasing ηs (see figure 10). We were not certain of when we should
start to consider this extra peak when calculating the wavelength. The points where this peak is visible, but
still smaller than the one to its right are the ones marked in purple. Before ηs = 0.13 the peak is not visible
and definitely does not contribute to the wavelength. After ηs = 0.20 the peak is larger than the next one,
and thus definitely does contribute to the wavelength. Because the wavelength changes sharply across that
interval, the cross over point is somewhere inside it.
We also ran simulations at total packing fractions of 0.4 and 0.6. The results of these simulations are plotted
in figures 11 and 12. Once again, blue points have wavelengths of roughly σb, red points have wavelengths
of roughly σs, and purple points could have either. We can combine these three sets of data to extrapolate
a ”cross-over area” in the (ηs, ηb)-phase space. This is done in section 4

We will first see if a quasicrystal has formed anywhere in the intervals we measured. To do that we make
snapshots at different times of all the simulations. This way, if a quasicrystal forms, we can see it.
In this set of configurations, we did not find any quasicrystaline structures. This either means the total
packing fraction is too low, or this is not the way to find a quasicrystal in a binary hard-sphere system.
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Figure 8: Some examples of gbb(r) (blue), gbs(r) (purple), and gss(r) (orange). The wavelength is determined
by measuring the r-coordinate of the first three peaks and averaging their distances. Optimally, we would
use some later peaks, but those are too small to see. Distances are expressed in units of the big particle
diameter.
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Figure 9: The dominant wavelength of gbb(r) (top), gbs(r) (middle), and gss(r) (bottom) as a function of the
small packing fraction (ηs). The total packing fraction (η) is 0.5. The big packing fraction (ηb) is given by
ηb = η−ηs. the blue points clearly exhibit large wavelengths, the red points clearly exhibit short wavelengths,
and the purple points could exhibit either. Aside from a few points, the three have a similar wavelength, as
predicted by the theory.
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Figure 10: Some examples of gbb(r) for packing fractions in the purple region. At the bottom of the first
peak, there is a small peak that grows larger with increasing ηs.
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Figure 11: The dominant wavelength of g(r) for Big-Big, Big-Small, and Small-Small pairs as a function of
the small packing fraction (ηs). This time, the total packing fraction (η) is 0.4. The big packing fraction (ηb)
is given by ηb = η− ηs. the blue points clearly exhibit large wavelengths, the red points clearly exhibit short
wavelengths, and the purple points could exhibit either. Aside from a few points, the three have a similar
wavelength, as predicted by the theory.
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Figure 12: The dominant wavelength of g(r) for Big-Big, Big-Small, and Small-Small pairs as a function of
the small packing fraction (ηs). This time, the total packing fraction (η) is 0.6. The big packing fraction (ηb)
is given by ηb = η− ηs. the blue points clearly exhibit large wavelengths, the red points clearly exhibit short
wavelengths, and the purple points could exhibit either. Aside from a few points, the three have a similar
wavelength, as predicted by the theory. The points with etas below 0.6 and above 0.4 are missing because
the simulations for these points failed to finish in time.
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4 Conclusion & Discussion

Now that we have data from our simulations, we can extrapolate an area in (ηs, ηb)-space where structural
crossover occurs (see figure 13). Combining this with a phase diagram, we could find an area in the space
where structural crossover occurs and a solid state can form. Having both of these at the same time could
result in a quasicrystal.

To extrapolate the cross-over intervals we obtained, we plot all our data in a (ηs, ηb)-space diagram, and
connect the beginnings and the ends of all of the intervals we found with half-lines. Then the area in between
those lines is where we expect crossover to occur.

0.1 0.2 0.3 0.4
ηs

0.1

0.2

0.3

0.4

0.5

0.6

ηb

Figure 13: The data from figures 9 and 11 plotted in (ηs, ηb)-space. The purple points make up the cross-over
intervals. The purple area shows where the structural cross-over may occur at higher packing fractions.

Now we have an area in which structural cross-over may occur. If we could combine this with a phase
diagram made for a binary hard sphere mixture with size ratio λ = 0.4, we could find an overlap between
the crystal phase and the cross-over area. If a quasicrystal can be found in this kind of system, This overlap
area is a good place to investigate.

One problem with the result we have now is that while the theoretical cross-over line calculated by Statt
et al.[Sta+04] curved downward like this area, it was much less steep. To confirm wether this is acutally a
problem, more simulations would need to be ran at both higher and lower packing fractions. This way we
could get a more complete picture of the cross-over area.

Unfortunately, we were not able to find a quasicrystal yet, as running more simulations at higher pack-
ing fractions would take too long to finish in time. However, the cross-over area we found should still help in
finding binary mixture quasicrystals in the future.
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4.1 Outlook

As mentioned earlier, to actually find a quasicrystal, a few more things need to be done.
More simulations need to be ran at different packing fractions to get a more clear picture of the structural
cross-over line. Higher packing fractions need to be prioritised as they take more time to run, and it is more
likely that a quasicrystaline phase can be found there. Having more data to extrapolate from will narrow
the search area, making it easier to find a quasicrystal in the future.
Research into phase transitions in the (ηs, ηb)-space could allow for the creation of a phase diagram. This
could then be combined with the data on the structural cross-over line to give an even better idea of where
to search for quasicrystals.
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