
Utrecht University

Graduate School of Natural Sciences
Institute for Theoretical Physics

Master’s thesis

Spontaneous dissolution of graphene
in super acids investigated using

mean field theory

Danny Baumgarten

Supervisors:

Prof. dr. P.P.A.M. van der Schoot

Prof. dr. R.H.H.G. van Roij

November 2018





Abstract

Graphene and other allotropes of carbon, such as carbon nanotubes, cannot be
dissolved in common solvents such as water or alcohols. Dispersion is possible
with the use of surfactants, but this requires sonication. It was experimentally
found that spontaneous dissolution is possible however in super acids, such as
chlorosulfonic acid. From Raman spectroscopy measurements it is concluded
that hydrogen ions, formed by the autodissociation of the acid, bind to Carbon
atoms in graphene and carbon nanotubes and, by Coulombic repulsion cause
a disjoining pressure that explains the dissolution. To validate this claim, we
set up a mean-field theory using charge regulation to describe the disjoining
pressure between platelets of graphene due to electric double layer interactions.
We consider several complicating factors such as the image charge effect and the
finite thickness of the graphene platelets. Our final conclusion is that, within the
limitations of our model, double layer repulsions cannot explain the spontaneous
dissolution of graphene in chlorosulfonic acid.

i



Acknowledgements

I am very grateful to my supervisors, prof. dr. Paul van der Schoot and prof.
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Introduction

Graphene is what is called an allotrope of carbon consisting of a single layer
of carbon atoms arranged in a hexagonal lattice. Other allotropes of carbon
include for example graphite and diamond. Graphene needs no introduction.
It has attracted large interest in recent years due to its remarkable physical
properties, such as its extraordinary strength and high thermal and electrical
conductivity. In one of the first publications on graphene in 2004, Geim et
al. [1] demonstrated the ability to control the electronic properties of a few-layer
graphene samples by an externally applied voltage, making it suitable for use
in electronic devices. Graphene could potentially be used to manufacture more
efficient solar panels [2], flexible and transparent screens in mobile devices [3]
and even as a replacement for silicon in computer chips [4].

Because of the importance of graphene for both science and industry, find-
ing an efficient means of production is of crucial importance. It is well known
that carbon allotropes like graphite cannot be dissolved into graphene in com-
mon solvents such as water or alcohols. Dispersion is possible with the use of
surfactants [5], but this requires sonication.

Over the years, several production methods for graphene have been devel-
oped, including so-called graphite oxide reduction [6]. As a first attempt, in
2004 Geim et al. used adhesive tape to split graphite into graphene [1]. Many
of these production methods are reported to compromise the properties of the
acquired graphene [7], yield low amounts or reduce the size of the acquired
graphene flakes. Therefore, the quest to find a good production method for
graphene remains an active one.

Exfoliation by superacids

In 2010 it was shown by Pasquali et al. [8] that graphite exfoliates sponta-
neously into single-layer graphene when immersed in chlorosulfonic acid. Con-
centrations as high as ∼ 2 mg ml−1 were reported. It was shown that the acid
disperses graphite from several different sources (such as graphoil and micro-
crystalline graphite) into graphene at high concentrations without the need for
sonication. Chlorosulfonic acid is what is called a superacid, meaning it has
an acidity greater than 100% sulfuric acid. Other superacids have been used
to dissolve single-walled carbon nanotubes (SWNTs). However, chlorosulfonic
acid seems to be the most promising candidate for dissolving both SWNTs
and graphene into substantial concentrations. In this report we focus on the
graphite/graphene system with its planar geometry and on its ability to dissolve
in chlorosulfonic acid.
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Chlorosulfonic acid is a colourless or straw-coloured liquid consisting of tetra-
hedral molecules with formula ClSO3H and was first produced by Williamson
in 1854 [9] by the action of phosphorus pentachloride on concentrated sulfuric
acid. It is a powerful acid that reacts explosively with water producing toxic
fumes of hydrogen chloride and sulfuric acid. Chlorosulfonic acid has a high
dielectric constant given by εr ≈ 60±10 [10,11], it goes by several other names,
including chlorosulfuric acid, but we will refer to it by its most common name
of chlorosulfonic acid, which we shall sometimes abbreviate to CSA.

Figure 1 is taken from the work of Matteo Pasquali and co-workers [8],
and shows the spontaneous exfoliation of graphite into single-layer graphene in
chlorosulphonic acid for varying acid strengths, obtained by mixing chlorosul-
phonic acid with concentrated sulphuric acid. The horizontal axis shows the
volume percentage of chlorosulphonic acid in sulfuric acid. On the vertical axis,
the Raman shift is shown. It is not important for this report to know the details
of what the Raman shift means exactly, we can be satisfed by saying that it is
a measure for the degree of solubility. It can be seen from the graph, and from
the pictures in the insert, that the degree of solubility increases with increasing
acid strength.

Figure 1: The Raman shift is a quantitative measure for the degree of solubility.
Here it is plotted against acid strength for the chlorosulfonic acid dispersion of
graphite. Acid strength is varied by mixing chlorosulfonic acid with sulfuric acid.
The image in the insert shows the dissolution of graphite for different solvents.
From left to right, graphite is dissolved in NMP(N-methyl pyrrolidone), 50, 65
and 80 vol% chlorosulfonic acid in sulfuric acid and finally in pure chlorosulfonic
acid. Image taken from [8].

According to Pasquali et al. and also earlier works, the exfoliation of graphite
in chlorosulfonic acid is due to protonation of the graphene layers: Hydrogen
ions that form through the autodissociation of the acid bind to carbon atoms
in graphene and hereby create a repulsive Coulomb interaction between the
individual layers which drives them apart. However, it remains unclear how
this process exactly occurs and how it can lead to exfoliation. In fact, it only
explains the stability of the dissolved graphene layers in solution, not the process
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of exfoliation itself. In this report we attempt to describe the physics of this
mechanism by using a mean field Poisson-Boltzmann theory. We attempt to
construct our theory in such a way that the effect of acid strength, as well as
several other physical parameters, including surface charge, on the solubility
can be investigated theoretically.

Theoretical Description

Traditionally, a system of charged surfaces interacting through a liquid medium
is described by DLVO theory, named after Boris Derjaguin and Lev Landau, Ev-
ert Verwey and Theodoor Overbeek. Our approach will be no different. DLVO
theory combines attractive Van der Waals forces and the so-called double layer
forces, which are of Coulombic origin and in general repulsive [12].

Van der Waals forces are well known. They are relatively weak and short-
ranged attractive forces between atoms, molecules and surfaces. Nevertheless,
they play a vital role in describing the interaction of particles, especially at
short range. The double layer interaction may require some explanation. A
so-called electric double layer forms on the charged surface of an object if it
is immersed in a liquid such as water or chlorosulfonic acid. The first layer
consists of the surface charge itself, which is always localised at the surface.
The second layer consists of counter ions from the liquid; they carry a charge
opposite to the surface charge and are therefore attracted to the surface, but
due to thermal motion also distribute themselves more or less evenly throughout
space. The result is a well-localised surface charge and a diffuse layer of counter
ions. Together they form the electric double layer, which has a typical thickness
called the Debye length. The overlap of two double layers will, in general,
produce a repulsive interaction between the charged surfaces.

Depending on the chosen physical parameters, the double layer forces have
a much longer range than the Van der Waals forces. It is the combination of
attractive Van der Waals forces and repulsive double layer forces that dictates
whether two particles attract or repel each other. Physical properties of the
system under investigation, such as acid concentration, surface charge and tem-
perature determine the transition from repulsive to attractive interaction. The
dependence of this threshold on the various physical parameters is one of the
aspects investigated in this report.

There are several ways for the surface charge on our object to be described.
One can, for example, assume either a fixed surface charge or a fixed surface
potential. Both these assumptions make the model more readily solvable but
they are often not very realistic physically. In general, physical objects such
as colloids (and in our case flakes of graphene) have ionizable surface groups,
meaning ions can either adsorb to, or dissociate from the surface. When im-
mersed in an ionic solution, they therefore do not behave as insulators with
fixed surface charge, nor as conductors with a fixed surface potential. Instead,
both the surface charge and the surface potential are interdependent. This phe-
nomenon is referred to as charge regulation [13]. The surface charge has to be
determined from the surface potential, which follows from the solution of the
Poisson-Boltzmann equation that in turn depends on the surface charge, making
this a self-consistent problem.

Because of its planar geometry, our graphite/graphene system can be real-
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istically described by a setup of two parallel plates. For this setup we solve
the Poisson-Boltzmann equation for the case of charge regulation. We do so for
the full nonlinear Poisson-Boltzmann equation, as well as the linearised version
labeled the Debye-Hückel equation. We also study the so-called zero-field so-
lution, which turns out to be both remarkably accurate and straightforward to
solve for small particle separations. We aim to improve our results by consid-
ering two possible complications: First we will consider, instead of semi-infinite
plates, two interacting membranes of finite thickness. This turns out to be of
considerable importance for our particular setup. Second, we consider the issue
of image charges: Objects, such as colloids usually have a much lower dielectric
constant than the solvent in which they are immersed and this is certainly the
case for our combination of graphene and chlorosulfonic acid. This mismatch in
dielectric constants causes polarisation charges to form on the interfaces. The
effect these polarisation charges have on our system can be represented by so-
called image charges. We study two separate methods to describe the image
charge effect.

From the Poisson-Boltzmann, Debye-Hückel and zero-field solution we shall
determine physical quantities, such as the electrostatic potential, the ion densi-
ties and the effective surface charges of our system. Ultimately, we are of course
interested in the interaction between the objects. We wish to determine under
what conditions the objects repel and under what conditions they attract each
other. This can be quantified by either considering what is called the disjoining
pressure between the objects, or alternatively, the free energy of interaction.
Both quantities are going to be determined and we demonstrate several meth-
ods of deriving them. The disjoining pressure due to the double layer forces
turns out to show some unexpected behaviour for which we shall attempt to
find a plausible explanation.

To conclude this introduction, we give a short outline of what to expect in
this report. In Chapter 1 we give a detailed description of the electric double
layer and find a solution for the electrostatic potential. Next, in Chapter 2 we
introduce the theoretical setup of our model and look, in detail, at interactions
between layers of finite thickness. In Chapter 3 we consider the image charge
effect, by means of two different methods and look at Van der Waals forces as
well as an alternative method of solving for the electrostatic potential, dubbed
the zero field method. Chapter 4 is devoted to applying our theoretical results to
the specific case of graphite dissolution in chlorosulfonic acid. Final conclusions
and a short summary are given in Chapter 5.
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Chapter 1

The electric double layer

In the introduction it was mentioned that the interaction between two objects
immersed in a liquid, according to DLVO theory is governed by two types of
force: The Van der Waals forces and the double layer forces. In this chapter
we shall discuss the so-called electric double layer. A double layer forms on the
surface of an object when it is immersed in a liquid. The object can be, for
example a colloidal particle, a macromolecule like DNA, a virus, or in our case
a flake of graphene. The solvent can be characterized, among other things, by
its dielectric constant εr, temperature T and typically contains a certain con-
centration of both positive and negative ions. The solvent can, for example be
water to which a salt like NaCl is added. The salt crystals typically dissociate
and thereby introduce a certain concentration of ions into the liquid. In this
report we consider the solvent (pure) chlorosulfonic acid which, through self-
dissociation, introduces a certain concentration of ions in the solvent. At the
moment however, it is not important where the ions originate from, we can be
satisfied by considering a solvent that has a given concentration of positive and
negative ions.

The object under scrutiny is considered to be large compared to the indi-
vidual ions in the solvent. We will therefore not consider boundary effects and
think of our object as a planar wall that extends to infinity in both directions.
Also, we do not describe its inside region. At a later point in this report we
examine whether the theory can be improved, by considering the inside region
of the object to have a different dielectric constant than the solvent. For now
we will only describe the region where the solvent resides, and assume that the
dielectric constant of the object is similar to that of the solvent.

We imagine that the surface of the object acquires an electrical surface charge
located at fixed sites, labeled ‘S’. This can come about either because the surface
is in contact with an external source of electrons or, more interestingly, when
ions are adsorbed from the solution (or dissociated into the solution) on an
initially uncharged surface. This procedure of either adsorption or dissociation
of ions will result in the formation of a so-called double layer on the surface.

Imagine for example that the surface acquires a positive charge through the
adsorption of positive hydrogen ions, a process called protonation. This layer is
well-localised at the surface, with the protons being located at the fixed sites ‘S’.
Positively charged ions in the solvent will then be repelled from and negatively
charged ions attracted to the surface. This movement of counterions in the
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solvent however, is counteracted by thermal motion, resulting in a negatively
charged layer that is rather diffuse. It turns out that the second layer’s profile
can be described by the Boltzmann distribution, as will be derived in one of the
next sections. The final result, consisting of the well-localized surface charge
and the diffuse layer of opposite charge in the solvent, is what is called an
electric double layer. The width of the double layer is characterised by the
Debye screening length λD = 1/

√
8πλBnb, where we have introduced the bulk

ion density nb and the so-called Bjerrum length λB = βe2/4πεrε0. The Debye
length is the most important length scale in DLVO theory, it is a measure of
the screening of electric charge: With every Debye length the electric potential
will decrease by a factor 1/e. It also means that when two objects approach
each other to a distance less than about two Debye lengths, the overlap of
their double layers causes an interaction between the objects: The double layer
interaction. Figure 1.1 shows a schematic representation of a double layer on
the planar surface of an object immersed in a solvent.

Figure 1.1: Schematic representation of a double layer on a single planar surface
immersed in a liquid. The surface is located at z = 0 and is considered to have
fixed sites S to which positive ions can adsorb. This creates a well-localized
layer of positive surface charge. Counterions of negative charge are attracted
to, and ions of positive charge repelled from the surface. However, due to
thermal motion the second layer will be more diffuse. These two layers together
form what is called the electric double layer. The width of the double layer is
characterised by the Debye length λD.

As is common practice when studying a system of charged particles, we use
Poisson-Boltzmann mean-field theory: Instead of describing the interactions be-
tween all the particles separately, we consider non-interacting particles in the
presence of the mean field generated by all the other particles. As mentioned
before, the ions in the double layer are distributed according to a Boltzmann
distribution, derived in the next section using classical density functional the-
ory. By combining the Boltzmann distribution and the Poisson equation, the
Poisson-Boltzmann equation is obtained.

Several simplifying assumptions are made in our model. The ions are as-
sumed to be point-particles and also the surface charge is described as being
continuously spread across the surface instead of consisting of individual charges.

In this report SI units will be used. Where possible, we introduce dimen-
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sionless units. A full list of variables and definitions used in this report is given
in Appendix A.1.

1.1 The Poisson equation

Our starting point is the Poisson equation

∇2ψ(r) = −ρe(r)/εrε0, (1.1.1)

where ψ is the electrostatic potential, ρe is the electric charge density, εr is the
relative permittivity of the solvent and ε0 is the permittivity of free space. If
we then use the Bjerrum length, this can be written as

∇2φ(r) = −4πλBn(r) = −4πλB(n+(r)− n−(r)), (1.1.2)

where now φ = βeψ is a dimensionless electrostatic potential and (1/e)ρe(r) =
n+(r) − n−(r) are the number densities of positive and negative ions respec-
tively. The Bjerrum length λB defines a length scale for which the Coulomb
interaction equals the thermal energy. Hence, it is a measure of the strength of
the electrostatic interaction. Because our wall extends to infinity in the x and
y directions, our problem reduces to a one-dimensional problem where the only
spatial variable is the z-coordinate. The Poisson equation then becomes

φ′′(z) = −4πλB(n+(z)− n−(z)). (1.1.3)

In the next section the Boltzmann distribution is derived.

1.2 The Boltzmann distribution

To derive the Boltzmann distribution we use a classical density functional theory,
inspired by [14]. We start by writing down the functional for the Helmholtz free
energy density

F [n±, σ] =
1

β

∑
α=±

∫ ∞
−∞

dz{nα(z)(log[nα(z)Λ3
α]− 1)}

+
1

2β

∫ ∞
−∞

dzQ(z)φ(z) +
σ

β
{log[

σ

σm
] + βFb}

+
(σm − σ)

β
log[1− σ

σm
],

(1.2.1)

where Q(z) = n+(z) − n−(z) + σδ(z) is the total charge density consisting of
the ions in the solvent and the surface charge, Λα is the thermal wavelength of
the ions and Fb is a free energy of binding. Fb is the free energy associated with
the binding of an ion to a site S on the surface. Finally, σ is the surface charge
density and σm is the maximum surface charge density, when all possible sites
S on the surface are occupied by ions. Note that F is a free energy density per
surface area.

Equation (1.2.1) contains several terms. The first term represents the ideal
Helmholtz free energy of the ions, the second term the mean-field Coulombic
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energy of the system, and the last two terms represent the free energy of coupling
between the surface and the ions in the solvent. In Appendix A.2 we explain
exactly how these different terms come about.

We further assume that our system is in osmotic contact with a reservoir that
has particle density nb for both positive and negative ions. The total ion density
is therefore 2nb. It is then prudent to consider our system grand-canonically,
via the following Legendre transformation

Ω[n±, σ] = F [n±, σ]−
∫ ∞
−∞

dz{
∑
α=±

µαnα(z) + µ+σδ(z)}, (1.2.2)

with the ion chemical potential given by µα = (1/β) log[nbΛ
3
α] for both positive

and negative ions: α = ±.
The density profiles n±(z) minimize the grand potential Ω in thermodynamic

equilibrium and should therefore satisfy the Euler-Lagrange equations. That is,
we can minimize Ω with respect to n+(z) and n−(z) to obtain expressions for
the ion distributions. The details of this derivation can be found in Appendix
A.3. It finally leads to the celebrated Boltzmann distribution

n±(z) = nb exp[∓φ(z)], (1.2.3)

which describes the distribution of the ions in the solvent, once the electrostatic
potential φ(z) is known. Inserting the Boltzmann distribution in the Poisson
equation gives us the Poisson-Boltzmann equation

φ′′(x) = sinh[φ(x)], (1.2.4)

where we have now made the transition to dimensionless variables: x ≡ z/λD
by denoting our coordinate x in units of Debye lengths λD.

Equation (1.2.4) is our most important equation. It lies at the heart of
the majority of results, presented in this report. It turns out however, that it
can be solved analytically only for a few special cases, the setup with a single
planar surface being one of them. If one considers, e.g. a spherical setup, or two
parallel planar walls, no analytical solution is available and one has to resort to
either numerical computation or use special functions to describe the solution.
Therefore it can sometimes be insightful to look at the linearized version of
equation (1.2.4) which turns out to be a good approximation if the (absolute)
value of the potential φ(x) is small. The linearized Poisson-Boltzmann equation
is more commonly referred to as the Debye-Hückel equation and given by

φ′′(x) = φ(x), (1.2.5)

which is easily obtained from (1.2.4), by noting that sinh[x] ≈ x for x . 1. A
solution to the Debye-Hückel equation (1.2.5) is, in many cases more straightfor-
ward to obtain, as opposed to (1.2.4). We shall use the Debye-Hückel equation
many times in this report, as a comparison to the nonlinear solution and some-
times to get a general idea of what a solution should look like, before looking
at the more complicated nonlinear case. It turns out that the Debye-Hückel
solution is a valid approximation if the dimensionless electrostatic potential has
values up to φ ≈ 1, which corresponds to an electric potential of about 25mV
under typical room temperature conditions. This statement is shown to be true
in one of the next sections.
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Both equations (1.2.4) and (1.2.5) are second order differential equations,
meaning two boundary conditions are needed to solve them. Boundary condi-
tions are the subject of the next section.

1.3 Boundary conditions and charge regulation

To be able to solve the Poisson-Boltzmann equation, two boundary conditions
are needed. We can immediately write down the first boundary condition

φ′(x→∞) = 0, (1.3.1)

which is obviously true, if we consider our plane to be located at x = 0. Next,
to find a second boundary condition we can either use Gauss’s law, or we can
consider the condition of charge neutrality. At this point, we use the latter
method to obtain∫ ∞

0

dz(ρ+(z)− ρ−(z)) = −σe, (1.3.2)

where σe = eσ is the surface charge density on the plate. This equation repre-
sents the statement that our total system must remain charge neutral: The total
charge in the solvent must be equal and opposite to the total surface charge on
the plate. Rewritten to our dimensionless variable x this becomes

λD

∫ ∞
0

dx(n+(x)− n−(x)) = −σ, (1.3.3)

where we have also used that ρ± = en±. By using the Boltzmann distribution
for the ion densities n±(x) from (1.2.3) we find

λDnb

∫ ∞
0

dx(exp[−φ(x)]− exp[+φ(x)]) = −σ. (1.3.4)

From the definition of the Debye length we find for the bulk ion density nb =
1/(8πλBλ

2
D). We then multiply the entire expression by λ2

B to obtain

1

8πλ

∫ ∞
0

dx(exp[−φ(x)]− exp[+φ(x)]) = −σ̃, (1.3.5)

where we have defined σ̃ ≡ λ2
Bσ and λ ≡ λD/λB such that σ̃ is a dimensionless

surface charge density and λ is a dimensionless variable that, among other less
interesting parameters, relates to the bulk ion density and the permittivity of
the solvent. By inserting the Poisson-Boltzmann equation from (1.2.4) we finally
find

φ′(x ↓ 0) = −4πλσ̃, (1.3.6)

where we have used the first boundary condition from (1.3.1) to compute the
integral. This relation between the derivative of φ at the surface and the surface
charge σ̃ in (1.3.6) must always be true. We can now consider three distinct
surface conditions, leading to three different forms for the second boundary
condition.
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First, we can keep the surface charge density σ̃ in (1.3.6) fixed and use it
as one of our input parameters. We will label this situation as FC for Fixed
surface Charge. A second possiblity is to keep the surface potential φs fixed and
use it as one of our input parameters

φ(x = 0) = φs. (1.3.7)

This option is labeled FP for Fixed surface Potential. In general however, phys-
ical objects such as colloids (or, in our case platelets of graphene) have ionizable
surface groups, meaning ions can either adsorb to, or dissociate from the surface.
Therefore, they do not have a fixed surface charge, nor a fixed surface potential.
Instead, both the surface charge and the surface potential vary interdependently.
The surface charge has to be determined from the surface potential, which fol-
lows from the solution of the Poisson-Boltzmann equation which in turn depends
on the surface charge, making this a self-consistent problem. This phenomenon
is referred to as charge regulation and will be labeled CR for short in this report.

When considering the case of charge regulation we assume that only a frac-
tion α ≡ σ̃/σ̃m of available sites S on the surface is actually occupied by ions,
which leads to the following form for the second boundary condition

φ′(x ↓ 0) = −4πλσ̃mα, (1.3.8)

where σ̃m now stands for the dimensionless maximum surface charge density, if
all sites S were charged by the adsorption of ions.

To be able to move forward, we need an expression for α. One can be
obtained by minimizing the grand potential Ω with respect to the surface charge
σ: ∂Ω[n±, σ]/∂σ = 0. The steps of this derivation are presented in Appendix
A.4, it finally leads to the so-called Langmuir adsorption isotherm

α =
1

1 + exp[βFb − βµ+ + φs]
, (1.3.9)

where φs is the dimensionless potential at the surface φs ≡ φ(x = 0). In
Appendix A.5, an alternative expression for α is also derived by applying the
law of mass action. This leads to

α =
1

1 +K exp[φs]/nb
, (1.3.10)

where K is defined as the surface dissociation constant for the chemical equi-
librium SP+ −−⇀↽−− S + P+ between the surface and the ions in the liquid, such
that

K ≡ [S][P+]s
[SP+]

. (1.3.11)

The square brackets represent concentrations; [S] stands for the concentration
of empty sites S, [P+]s represents the concentration of positive ions near the
surface and finally [SP+] represents the concentration of sites that have been
charged by adsorbing an ion. By comparing the two expressions in (1.3.9) and
(1.3.10) we see that K = nb exp[βFb − βµ+]. This provides us with a useful
relation between the equilibrium constant K and the binding energy Fb.
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We shall introduce the dimensionless variable r ≡ K/nb, called the surface
reaction constant. From (1.3.10) we can obtain the following expression for r

r ≡ K

nb
=

(
1

α
− 1

)
exp[−φs] =

σm − σ
σ

exp[−φs], (1.3.12)

while α in this notation is given by

α =
1

1 + r exp[φs]
. (1.3.13)

We use r as a so-called fitting parameter to describe the adsorption of ions at
the surface, when considering the case of charge regulation. More information
about this is given in Chapter 4, when we consider the actual case of graphene
dissolution in chlorosulfonic acid. For now, r will simply be used as one of our
input parameters. Since α is defined as the portion of available surface sites
that is actually ionized, it always take values between 0 and 1.

We now have a complete boundary value problem which can be solved to
obtain the electrostatic potential. It consists of either (1.2.4) or (1.2.5), com-
bined with boundary condition (1.3.1) and as a secondary boundary condition
one of the expressions in (1.3.6), (1.3.7) or (1.3.8). In most cases, we use (1.3.8)
as our second boundary condition and describe the case of charge regulation, as
this is the most interesting and physically realistic surface condition. Also, the
case of fixed surface charge can easily be obtained from it by setting r = 0.

1.4 Solution for a single double layer

We start by considering the most straightforward case, that of a single planar
double layer. Consider a single planar surface, immersed in a solvent and located
at x = 0, under charge regulation conditions. As mentioned before, we only
consider the region x > 0, where the solvent resides. The complete boundary
value problem is then given by

φ′′(x) = sinh[φ(x)]; (1.4.1a)

φ′(x→∞) = 0; (1.4.1b)

φ′(x ↓ 0) = −4πλσ̃mα. (1.4.1c)

From the Poisson-Boltzmann equation and the boundary condition (1.4.1b) a
general solution can be obtained,

φ(x) = 2 log
1 + C exp[−x]

1− C exp[−x]
. (1.4.2)

By using the boundary condition (1.4.1c) and the expression for α from (1.5.4)
we can obtain an expression for the integration constant C given by

4C

1− C2
= 4πλσ̃m

[
1 + r

(
1 + C

1− C

)2
]−1

. (1.4.3)

The equation in (1.4.3) can, in principle, be solved analytically for C. The
expression however is very lengthy and not particularly easy to work with. We
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therefore choose to solve (1.4.3) numerically, to find an expression for C for
given λ, σ̃m and r.

As mentioned in the previous section, we can also look at the linearised
version of the Poisson-Boltzmann equation, commonly referred to as the Debye-
Hückel equation

φ′′(x) = φ(x); (1.4.4a)

φ′(x→∞) = 0; (1.4.4b)

φ′(x ↓ 0) = −4πλσ̃mα. (1.4.4c)

The solution is straightforward and given by

φ(x) = C exp[−x], (1.4.5)

where this time C is given implicitly by

C =
4πλσ̃m

1 + r exp[C]
. (1.4.6)

Again, (1.4.6) and (1.4.5) together form the complete solution. We are now
in a position to make a comparison between the Debye-Hückel solution and
the full nonlinear solution, in order to check our statement from the previous
section that the Debye-Hückel equation is a good approximation for values of
the electrostatic potential up to φ ≈ 1. To this end, we will set r = 0, meaning
we are considering a fixed surface charge, such that σ̃m = σ̃. At this point it
is convenient to introduce a new combined dimensionless parameter Σ ≡ 4πλσ̃.
Later, if we want to consider the influence of different parameters separately
we can revert to denoting them individually, but for now a single parameter is
more convenient.

In Figure 1.2, the electrostatic potential is plotted for various values of the
parameter Σ. Several observations can be made from this plot. First of all, it
can be seen that, for increasing Σ, the overall value of the potential increases.
Remember that we defined Σ as Σ = 4πλσ̃ = 4πλBλDσ, meaning that it hides
several physical parameters. For example, Σ is directly proportional to the
surface charge density σ̃: Σ ∝ σ̃, but inversely proportional to the square root

of the bulk ion density: Σ ∝ n
−1/2
b . One can therefore imagine increasing Σ

by increasing the surface charge σ̃, while keeping all other parameters fixed.
Furthermore, we can see that the linear Debye-Hückel solution gives acceptable
results as long as Σ . 1 which, in this case also corresponds to φ . 1. The
first important result we can mention, is therefore that linear Debye-Hückel
theory is valid when the dimensionless electrostatic potential φ = βeψ . 1. At
a temperature of T = 293K this corresponds to an electric potential of about
ψ ≈ 25mV . This confirms the statement we made in Section 1.2. In general,
linear Debye-Hückel theory overestimates the value of the potential when it
reaches values beyond φ ≈ 1.

Beyond these observations, the single double layer setup does not offer very
interesting physics, as there are no interactions involved. We therefore quickly
turn our attention to a setup of two double layers in the next section.
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Figure 1.2: The dimensionless electrostatic potential φ = βeψ for a single double
layer, for various values of the combined parameter Σ ≡ 4πλσ̃, both from the
full nonlinear Poisson-Boltzmann (PB) equation and the linear Debye-Hückel
(DH) equation.

1.5 Two interacting double layers

At this point, we want to turn our attention to interacting objects. That is,
we want to see what happens when two double layers start to overlap. We
expect that the solution for the potential from overlapping double layers will
not simply be given by the sum of the potential of two independent single double
layer solutions. To find out whether this is indeed the case, we introduce the
following model.

We consider two parallel planar surfaces of infinite thickness, separated by
a distance d. The system is again considered to be in contact with a reservoir.
The setup then looks as in Figure 1.3. To find the electrostatic potential, we
have to write down a somewhat different set of boundary conditions as opposed
to the setup with a single planar surface. The boundary condition at the surface
remains valid, however, we can no longer specify the slope of the potential at
large distance from the surface. Instead, by assuming mirror symmetry with
respect to the plane at x = 0, we can infer that the slope of the potential
midway between the planes is always zero. We therefore arrive at the following
boundary value problem

φ′′(x) = φ(x); (1.5.1a)

φ′(x = 0) = 0; (1.5.1b)

φ′(x = ±d/2) = ±Σmα, (1.5.1c)

where, as a first attempt, we have written down the linear Debye-Hückel equa-
tion with charge regulation surface conditions and we have made the definition
Σm ≡ 4πλσ̃m, analogous to the definition for Σ in the previous section. The
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Figure 1.3: Our setup for two parallel plates. The plates are thought to extend to
infinity in the directions perpendicular to the x-axis and have infinite thickness.
The plates are separated by a distance d = D/λD.

general solution is given by

φ(x) = C cosh[x], (1.5.2)

where the second boundary condition can be used to find an expression for C

C =
Σm

sinh[d/2]
α. (1.5.3)

In Section 1.3 we already obtained an expression for α

α =
1

1 + r exp[φs]
. (1.5.4)

Now, we can find φs from the general solution for φ(x) by setting x = ±d/2.
When everything is put together, an implicit expression for C is found

C =
Σm

sinh(d2 )(1 + r exp[C cosh(d2 )])
, (1.5.5)

which can be solved numerically. Together (1.5.2) and (1.5.5) form the solution
for our two plate problem in the Debye-Hückel approximation.

Alternatively we can use the full nonlinear Poisson-Boltzmann equation to
find the solution for the electrostatic potential. The method we are using here
is inspired by [12] and [15]. Once again, all the steps to finding this solution
can be found in Appendix A.6. It turns out that, in the nonlinear case, it is
much more convenient to specify both φ and φ′ at x = 0. We label the potential
midway between the plates φm ≡ φ(x = 0), as shown in Figure 1.4. This means
that we start with the following set of equations

φ′′(x) = sinh[φ(x)]; (1.5.6a)

φ′(x = 0) = 0; (1.5.6b)

φ(x = 0) = φm. (1.5.6c)
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Figure 1.4: In determining the electrostatic potential for the case of two electric
double layers in the nonlinear approach, it is convenient to define the potential
at the center between the plates: φ(x = 0) ≡ φm.

From the Poisson-Boltzmann equation we find

d

dx

(
dφ

dx

)2

= 2 sinh[φ(x)]
dφ

dx
. (1.5.7)

This can be integrated once to give(
dφ

dx

)2

= 2 cosh[φ(x)] + C. (1.5.8)

Using both boundary conditions we then obtain(
dφ

dx

)2

= 2(cosh[φ(x)]− cosh[φm]), (1.5.9)

and the solution finally works out to

φ(x) = 2 arcsinh

[
sinh[φm/2]

cn(x cosh[φm/2], 1
cosh[φm/2] )

]
, (1.5.10)

where arcsinh is the inverse hyperbolic sine and cn is one of the Jacobi elliptic
functions, known as the Jacobian cosine amplitude. However, we do now have
an expression for φ(x) as a funtion of φm. To obtain a full solution for φ(x), we
need an additional expression to determine φm.

As before, we focus mainly on the charge regulation case. The additional
expression we have at our disposal is the boundary condition that describes the
relation between the slope of the potential at the surfaces and the surface charge
density

φ′(x = ±d/2) = ±Σmα. (1.5.11)

By inserting this boundary condition in (1.5.9) we obtain

Σm
1 + r exp[φ(x = d/2)]

=
√

2 cosh[φ(x = d/2)]− 2 cosh[φm], (1.5.12)
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where we have also used the expression for α from (1.3.10). Equations (1.5.10)
and (1.5.12) together provide us with the complete solution for the potential
φ(x) with input parameters Σm, r and d.

Now that we have an expression for φ(x), we are in a position to plot the
electrostatic potential for varying values of the input parameters. We might,
for example look at how the potential behaves as a function of plate separation.
To this end, in Figure 1.5 we have plotted the potential for decreasing plate
separation, ranging from d = 4 to d = 1. The solution from this section, for two
interacting double layers is plotted and compared to the sum of the potentials
from two independent double layers, one at x = −d/2 and one at x = d/2.
It can clearly be seen that the overall potential increases for decreasing plate

Figure 1.5: The nonlinear (PB) dimensionless potential φ(x) for two interacting
double layers compared to the sum of the potentials from two independent
double layers (2P). Going from figure (a) to (d) the plate separation decreases
from 4, 3, 2 to finally 1 times the Debye length λD. In all cases we have set
Σm = 1 and r = 0, such that the surface charge is kept fixed.

separation, when the other parameters are kept fixed. Also, we can observe
that the solution from the independent sum of potentials starts to deviate from
the solution for interacting double layers, when plate separation is of the order
d ≈ 2 and smaller. This is exactly what we expect: Distance d between the
plates is measured in units of Debye lengths, so when d = 2 there is a distance
of 2λD between the plates. Since the Debye length is the characteristic thick-
ness of the electric double layer, the two double layers begin to overlap when
d ≈ 2. It is clear from these plots that indeed, as we expected, considering two
independent double layers does not lead to a correct determination of the elec-
trostatic potential and one should use the solution for two interacting double
layers instead.
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Finally, we also want to look at the effect of varying the charge regulation
parameter r. In Figure 1.6 the potential from the nonlinear solution is plotted
for several values of the surface reaction constant r. It can be noted that, as

Figure 1.6: The dimensionless potential φ = βeψ for two parallel plates in the
case of charge regulation for various values of the surface reaction constant r,
from the nonlinear solution. In all cases Σm = 1 and the distance between the
plates is d = 5. The value r = 0 corresponds to maximum ionization of the
surfaces.

the value of r increases, the overall value of the potential decreases. This is
not unexpected and is a result of the lower value for the surface charge density.
That this is the case can be seen by recalling the definition of r from (1.3.12),

r =
K

nb
, (1.5.13)

whereK is the surface dissociation constant for the chemical equilibrium SP+ −−⇀↽−−
S + P+

K =
[S][P+]s
[SP+]

. (1.5.14)

If we imagine keeping nb fixed, a larger value for r will result in a larger value for
K and we expect the equilibrium to shift to a lower concentration of protonated
sites SP+.
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Chapter 2

Interacting membranes of
finite thickness

In the previous chapter we set up our theory and found both the solution for a
single planar object with a double layer, as well as for two planar objects with
interacting double layers. Ultimately, we want to describe how separate layers
of graphene, called platelets, are dissolved in chlorosulfonic acid. A platelet of
graphene is very thin, only one layer of atoms thick. Compared to its thickness,
its other dimensions can thus be considered very large. We therefore consider
in this chapter a setup that more closely resembles the physical properties of
the system we are describing. That is, we consider the objects to be of finite
thickness, dubbed membranes. In Chapter 1 we already looked at two interact-
ing plates that have infinite thickness, now we want to see what effect the finite
thickness of the object has on the potential profile, ion densities and ultimately,
the interaction between the objects. The finite thickness of the membranes im-
plies that now we must also describe the outer region, where solvent resides as
well. We start in the next section by setting up our model, which was inspired
by [15].

2.1 Setting up the model

We consider the model as shown in Figure 2.1. It consists of two membranes of
finite thickness, placed a distance d apart and having thickness h. Both d and
h are dimensionless variables, measured in units of Debye lengths, such that
d = D/λD and h = H/λD. We imagine the membranes to extend to infinity in
directions perpendicular to x and the entire system is thought to be in contact
with a monovalent salt reservoir, as before. At the moment we assume that
the membranes consist of a medium that has the same dielectric constant as
our solvent, to avoid the effect of image charges. The image charge effect is
considered in Chapter 3.

When the membranes are immersed in a solvent, we expect electric double
layers to form on all four surfaces. When the membranes are far apart, no
difference between the inner and outer surfaces is to be expected. However,
as the membranes move closer together, the inner double layers will start to
interact and, as a result a discrepancy between the inner and outer surfaces
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Figure 2.1: Two membranes of finite thickness, immersed in a solvent. The
membranes are separated by a distance d and have thickness h. As before, the
system is connected to a reservoir that has a given density of both positive and
negative ions.

might very well develop. We do however assume mirror symmetry with respect
to the plane x = 0. All results in this section were obtained using the nonlinear
Poisson-Boltzmann equation.

We can now divide space into five regions and write down the expressions
for the electrostatic potential in each of them. The five regions of our system
will be denoted with Roman numerals as follows.
Region I: x < −d/2− h;
Region II: −d/2− h < x < d/2;
Region III: −d/2 < x < d/2;
Region IV: d/2 < x < d/2 + h;
Region V: x > d/2 + h.
Because there are no charges inside the membranes, the electric field is constant
and the electrostatic potential can be described by a linear expression ax + b.
For the outside regions, the solution for a single electric double layer can be
applied, while for the inner region we can use the solution for two interacting
double layers, both of which were found in Chapter 1. The solutions for the five
regions we defined are then given by

φI(x) = 2 log

[
1 + a1 exp[x+ d/2 + h]

1− a1 exp[x+ d/2 + h]

]
; (2.1.1a)

φII(x) = a2x+ a3; (2.1.1b)

φIII(x) = 2 arcsinh

[
sinh[a4/2]

cn(x cosh[a4/2], 1
cosh[a4/2] )

]
; (2.1.1c)

φIV (x) = −a2x+ a3; (2.1.1d)

φV (x) = 2 log

[
1 + a1 exp[−x+ d/2 + h]

1− a1 exp[−x+ d/2 + h]

]
, (2.1.1e)

where we now have 4 unknown constants: a1, a2, a3 and a4. Note that a4 = φm,
the potential at the midplane of our system. By applying the appropriate bound-
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ary conditions, these separate solutions can be combined to find the solution of
the electrostatic potential for the entire system. At each interface we can write
down two boundary conditions. Because of the mirror symmetry of our system,
we can suffice with using the boundary conditions at x = d/2 and x = d/2 + h,
the two interfaces of the right membrane. The first two boundary conditions
are easily written down, they follow from the fact that the potential needs to
be continuous at the interfaces. A second set of boundary conditions can be
obtained by using Gauss’s law.

Consider for example a Gaussian box S around the interface at x = d/2.
Because our system is symmetric in the plane of the interfaces, we find in SI
units ∮

dS

D.dS =

∮
dS

εrε0E.dS = Aσe, (2.1.2)

where A is defined as the surface of the Gaussian box in the plane of the in-
terfaces and where the dielectric constant of both the internal region of the
membranes as well as our solvent is taken to be εr. We still think of our sys-
tem as extending to infinity in the lateral directions, it therefore becomes a
one-dimensional problem

−Aεrε0E(z = D/2− δ) +Aεrε0E(z = D/2 + δ) = Aσe, (2.1.3)

where δ is half the thickness of the Gaussian box and tends to zero. This then
becomes

dφ

dx
(x = d/2− δ)− dφ

dx
(x = d/2 + δ) =

eλDσe
kBTεrε0

= 4πλσ̃, (2.1.4)

where we have made the transition to our dimensionless variables φ, x, λ and σ̃
once again. A similar procedure gives the boundary condition at x = d/2 + h,
so we finally have the following system of four boundary conditions

φIII(x =
d

2
− δ) = φIV (x =

d

2
+ δ); (2.1.5a)

φIV (x =
d

2
+ h− δ) = φV (x =

d

2
+ h+ δ); (2.1.5b)

φ′III(x =
d

2
− δ)− φ′IV (x =

d

2
+ δ) = 4πλσ̃mα3; (2.1.5c)

φ′IV (x =
d

2
+ h− δ)− φ′V (x =

d

2
+ h+ δ) = 4πλσ̃mα4. (2.1.5d)

We have defined the surface charges as: σ̃i = σ̃mαi, with i = 1, 2, 3, 4 labeling
the four interfaces from left to right, and where αi = 1/(1 + r expφi]). Because
of symmetry α1 = α4 ≡ αout and α2 = α3 ≡ αin, where ’in’ and ’out’ refer
to the inner and outer surfaces respectively. Applying the boundary conditions
in (2.1.5) to the set of solutions in (2.1.1) gives us a system of 4 equations
with 4 unknowns a1, a2, a3, a4. By solving it, we find the total solution for the
electrostatic potential in all regions.

At this point we would like to emphasise the difference of the second set of
boundary conditions in (2.1.5) with respect to the second boundary condition
used in Section 1.5. Here we see that the difference of the first derivatives of
the potential (the electric field) on either side of the interface is proportional
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Figure 2.2: The dimensionless electrostatic potential for membranes (full line)
compared to plates of infinite thickness (dotted line) for charge regulation con-
ditions. In going from top left to bottom right we have h = 20, d = 10 in (a),
h = 3.0, d = 3.0 in (b), h = 0.5, d = 2.0 in (c) and finally h = 0.25, d = 1.0
in (d), where d and h are measured in units of Debye lengths: d = D/λD and
h = H/λD. The other parameters were set such that Σm = 1.0 and r = 1.0.

to the surface charge density. The boundary condition from Section 1.5 can
be retrieved by assuming a vanishing electric field, or constant electrostatic
potential, inside the membranes, as is typically done in DLVO theory. This will
turn out to have an effect on the total charge of the“inner regio”, consisting
of the two surfaces at x = −d/2 and x = d/2, together with the solvent that
resides between these two surfaces, as we shall demonstrate later on. First, we
turn our attention to the electrostatic potential.

2.2 Electrostatic potential and ion densities

In Figure 2.2 the electrostatic potential is plotted for various membrane thick-
nesses and compared to the case where the membranes are of infinite thickness.
In plot (a) we see that for a membrane thickness of 20 Debye lengths, the poten-
tial between the membranes is almost indistinguishable from that for plates of
infinite thickness. As the membrane thickness (and plate separation distance)
decreases we see the difference between the two setups increasing, with the po-
tential between two membranes being increasingly lower than that between two
infinite plates. Also, we can see that for the setup with membranes, the value of
the electrostatic potential is higher at the inner surfaces than it is at the outer
surfaces. We can note as well that for large membrane thickness, such as in (a)
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where the membrane is 20 Debye lengths thick, the potential profile becomes
flat inside the membranes and therefore the electric field vanishes. It is there-
fore seen that the assumption of vanishing electric field inside the membranes,
as made in standard DLVO theory, corresponds to taking the membranes to be
very thick.

We can now also plot ion densities ñ±(x) ≡ n±(x)/nb in the inner and outer
regions. This is done in Figure 2.3 for two different separation distances of
d = 3.0 and d = 1.0. We see that when the membranes are far enough apart,
the finite thickness of the membranes has no effect on the ionic density profile
in the inner region. However, when the plates move closer together, the finite
thickness effect of the membranes becomes more pronounced. In plot (b) it
can be seen that, both for positive and negative ions, the deviation from the
bulk density is smaller for the membranes, as compared to plates of infinite
thickness. Remember that our surfaces are positively charged, the upper curves
therefore correspond to negative ions, the lower curves to positive ions. We can
also observe that the deviation from bulk density is lower at the outer surfaces
than at the inner surfaces. This is to be expected, since as we saw in Figure
2.2, the potential is lower at the outer surfaces as well. Finally, we can see that
within a few Debye lengths from the outer surfaces, the ion densities return to
their bulk values, meaning they are no longer being influenced by the electric
double layer at the surface.

Figure 2.3: The ion densities ñ±(x) ≡ n±(x)/nb in the inner and outer regions
for two membranes of thickness h = 1.0, for separation distances d = 3.0 in (a)
and d = 1.0 in (b). For comparison, the ion densities in the inner region are
plotted for plates of infinite thickness, h =∞. Remember that our surfaces are
positively charged, the upper curves therefore correspond to anions, the lower
curves to cations. The other parameters were set such that Σm = 1.0 and
r = 1.0.

We have seen that, both for the electrostatic potential and the ion densi-
ties, a difference starts to occur between the inner and outer regions when the
membranes get thinner and move closer together. It is also interesting to study
what happens to the surface charge of the inner and outer surfaces. We have
plotted, in Figure 2.4, the difference between surface charge on the inner and
outer surfaces for several values of the membrane thickness h. Here, we have
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plotted the difference of the fractional charge between outer and inner surface,
scaled to the outer surface charge: ∆α̃ ≡ (αout − αin)/αout as a function of
plate separation distance. Remember that α is the fraction of surface sites S
that is actually protonated, it therefore takes values between 0 and 1. It can

Figure 2.4: Difference between the fractional surface charge for outer and inner
surfaces, ∆α̃ ≡ (αout − αin)/αout as a function of plate separation distance
d = D/λD, for several values of the membrane thickness h = H/λD. Remember
that α is the fraction of surface sites S that is actually protonated, it therefore
takes values between 0 and 1. The other parameters were set such that Σm = 1.0
and r = 1.0.

be seen from the plot that the effect is larger for larger membrane thickness, as
well as for smaller separation distance. This is not a surprising result. If we
look, for example at the situation where h = 50, the thickness of the membranes
causes the outer region not to be influenced by what is going on in the inner
region. When the membranes move closer and closer together, the charge on
the inner surfaces is expected to dissipate away, meaning αin → 0, while on the
outer surfaces the charge remains at its equilibrium value being described by
αout, like it would for a single double layer. The resulting effect is that ∆α̃→ 1
for vanishing separation distance, which is what we see in the plot. As the
membranes get thinner, apparantly the outer surfaces are affected as well and
surface charge is dissipated away, not only from the inner surfaces, but from the
outer surfaces as well, resulting in a smaller value for ∆α̃.

We already mentioned the impact of the adjusted boundary conditions for
finite thickness membranes on the total charge of the inner region. At this point,
we want to calculate the total charge of the inner region, consisting of the two
surfaces at x = −d/2 and x = d/2, together with the solvent in between. It is
given, per surface area by

Σtot =

∫ D/2

−D/2
dz [ρ+(z)− ρ−(z)] + 2σe. (2.2.1)

If we define a dimensionless total charge per surface area of λ2
B as Λ ≡ λ2

BΣtot/e
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and use our dimensionless parameters, we find

Λ =
−1

4πλ

∫ d/2

−d/2
dxφ′′(x) + 2σ̃in. (2.2.2)

By using the boundary conditions from (2.1.5), we find

Λ =
−1

4πλ
[4πλσ̃in + φ′(x = d/2 + δ) + 4πλσ̃in − φ (x = −d/2− δ)] + 2σ̃in,

(2.2.3)

where σ̃in stands for the surface charge of the inner surfaces, σ̃in = σ̃mαin. This
works out to

Λ =
1

4πλ
[φ′(x = −d/2− δ)− φ′(x = d/2 + δ)] . (2.2.4)

From the expressions in (2.1.1), we see that the derivatives of the electrostatic
potential are simply given by a2 and −a2 respectively, since we are considering
mirror symmetry. Therefore, we finally find for the dimensionless total charge
of the inner region

Λ =
1

4πλ
(2a2) =

a2

2πλ
. (2.2.5)

Clearly, in our case where we assume mirror symmetry around x = 0, the
expression for Λ is only zero if the electric field is zero inside the membranes.
Remember that, in this expression, a2 is directly proportional to the electric field
inside the membranes. As can be seen from Figure 2.2, the electric field inside
the membranes only vanishes if the membrane thickness is much larger than the
Debye length. As the membrane thickness and separation distance decrease,
as in plots (b), (c) and (d), we find a non-vanishing electric field inside the
membranes. In these cases therefore, the inner region is not charge neutral. Our
total system of course still needs to conform to charge neutrality. Therefore, we
must conclude that for decreasing membrane thickness and separation distance,
charge migrates from the inner region to the outer regions. We can plot the
total charge in the inner region as a function of separation distance d, this is
done in Figure 2.5 for various values of the membrane thickness h, and charge
regulation parameter r.

We find that for large plate separations the inner region is indeed charge
neutral in all cases. This is to be expected, as there is no interaction between
the double layers. As separation distance decreases however, the total charge
of the inner region increases and is always positive. Since our surfaces are
positively charged, this means that counterions migrate from the inner region
to the outer region, such that they no longer compensate the charge present on
the surfaces. In plot (a) we have set r = 0, meaning that the surface charge
is fixed on all four surfaces. We see that a thicker membrane has the effect of
decreasing the charge migration. Apparently, as the membranes get thicker it
is harder for the ions to migrate to the regions beyond the membranes. For
a membrane thickness of h = 50, the effect is almost negligible. However, if
we plug in a non-zero value for r, an additional proces will occur due to the
charge regulation effect. In addition to ions migrating from the inner to the
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Figure 2.5: The dimensionless total charge in the inner region Λ ≡ λ2
BΣtot/e as a

function of membrane separation distance d = D/λD. In all cases Σm = 4πλσ̃m
is set to 1.0, while the surface reaction constant is set to 0, 0.1 and 1.0 for plots
(a), (b) and (c) repsectively.

outer regions, the surface charge will also migrate from the inner to the outer
surfaces, as was seen in Figure 2.4. Still, we see in plots (b) and (c), that the
total charge in the inner region increases for decreasing separation distance. We
can therefore conclude that the ion migration process has a stronger effect than
the surface charge migration.

From Figures 2.2, 2.3, 2.4 and 2.5, we can conclude that the finite thickness
of the membranes has a profound effect on the behaviour of our system. As we
have seen, electrostatic potential, ion density profiles as well as surface charges
and the total charge in the inner region are all affected by the finite thickness
of the membranes. We therefore expect that the interaction between objects
is affected as well. To find out to what extent this is indeed the case, in the
next section we look at the so-called disjoining pressure between double layers,
taking into consideration the finite thickness of the membranes.

2.3 Langmuir’s disjoining pressure

If we want to make predictions about the physical behaviour of our system, we
need to know how the particles interact. That is, we want to try and find either
the potential energy of interaction, or the force between the objects. We now
turn our attention to the latter, by looking at the so-called disjoining pressure,
which is defined as the force per unit area that one charged surface exerts on
the other. Of course, once the force between the plates is known, the interaction
energy can be obtained by integration, as shown in Appendix C.1. However, the
disjoining pressure is interesting in itself, as it tells us about the force between
the particles.

Suppose our solvent reservoir contains both positive and negative ions with
number density nb, such that the total ion density equals 2nb. The osmotic
pressure of the reservoir is then given by 2nbkBT . Our derivation for the dis-
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joining pressure, denoted by Π, is inspired by [16]. We start by considering the
total ion density in the region between the plates

n(x) = n+(x)+n−(x) = nb exp[−φ(x)]+nb exp[φ(x)] = 2nb cosh[φ(x)]. (2.3.1)

The excess amount of ions between the plates with respect to the reservoir is
then

∆n(x) = 2nb cosh[φ(x)]− 2nb = 2nb(cosh[φ(x)]− 1) ≥ 0 ∀φ(x). (2.3.2)

So we see that in the space between the plates there will always be a higher
ion density, as compared to the reservoir. This increased ion density builds
up an excess pressure which drives the plates apart. This osmotic pressure is
however counteracted by the Maxwell stress, which is a negative pressure due
to the electric field between the surfaces. The net pressure, due to the osmotic
pressure and the Maxwell stresses, must be the same for all x between the plates
since we are considering our system to be in equilibrium. It is therefore most
convenient to calculate it at the midplane between the plates (x = 0) where the
electric field, and therefore the Maxwell stresses, are zero. This gives us the
following expression for the disjoining pressure

Π(d) = kBT∆n(x = 0) = 2kBTnb(cosh[φm(d)]− 1), (2.3.3)

where φm(d) is the potential at the midplane φm(d) = φ(x = 0; d) and where
we have explicitly included the dependence on plate separation distance d in
the equation. This expression for the disjoining pressure is known as Lang-
muir’s equation. Note that (2.3.3) implies that the force between the plates is
determined completely by the potential at the midplane φm. It is convenient to
introduce a dimensionless disjoining pressure, given by

Π̃(d) ≡ Π(d)

kBTnb
= 2(cosh[φm(d)]− 1). (2.3.4)

To calculate the disjoining pressure, all we need is an expression for φm, the
potential midway between the plates, which can easily be obtained from the var-
ious expressions for φ(x) we found earlier. In the next section, we first compare
the disjoining pressure for two plates of infinite thickness, distinguishing fixed
charge, fixed potential and charge regulation surface conditions. After that, we
look at the impact of finite thickness by considering two parallel membranes.
Note that, as an alternative method [17] the disjoining pressure can also be
derived from the grand potential. It can be obtained by taking the derivative of
the grand potential with respect to plate separation distance. We do not pursue
this derivation in this report.

2.3.1 Disjoining pressure for plates of infinite thickness

Here, we consider again the setup as in Figure 1.3. In order to calculate the
disjoining pressure for fixed charge (FC), fixed potential (FP) and charge reg-
ulation (CR) surface conditions, all we need is the potential at the midplane
where φm = φ(x = 0), and insert it into the equation for the disjoining pressure

Π̃(d) = 2(cosh[φm]− 1). (2.3.5)
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We use the expression from nonlinear Poisson-Boltzmann theory, which for
charge regulation conditions was found in Chapter 1. From this expression,
the equation for fixed surface charge is easily obtained, simply by setting the
surface reaction constant to zero, r = 0. This corresponds to the situation
where α = 1, meaning all surface sites S are protonated. The expression for
fixed surface potential conditions is given in Appendix A.6.1. In Figure 2.6 we
have plotted the dimensionless disjoining pressure as a function of separation
distance, for two parallel plates of infinite thickness. In the inset is the same
plot, but this time on a log-log scale. For this plot we have set our parameters
such that for large plate separation d, the disjoining pressure is equal for all
three cases.

Figure 2.6: The reduced disjoining pressure Π̃ = βΠ/nb between two semi-
infinite plates as a function of separation distance d for fixed surface charge (FC),
fixed surface potential (FP) and charge regulation (CR) surface conditions. For
this plot, the parameters were adjusted in such a way that the disjoining pressure
approaches the same value for large d, in all three cases. This means Σ = 1.0
for the FC case, φs = 1.0 for the FP case and Σm = 3.72 and r = 1.0 for the
CR case. In the inset is the same plot, this time on a log-log scale.

Some remarkable observations can be made from these plots. There seems
to be very different behaviour between fixed charge and charge regulation con-
ditions on the one hand, and fixed potential conditions on the other. For fixed
potential conditions the disjoining pressure levels off at a certain value for small
plate separations, while for fixed charge and charge regulation conditions the
disjoining pressure seems to diverge when the plates move closer together. Both
for fixed charge and fixed potential conditions this seems to agree with what
one would expect intuitively: On the one hand, for fixed potential, the surface
charge can adjust itself through the adsorption and dissociation of ions. For
fixed charge conditions on the other hand, the surface charges necessarily stay
put on the surfaces such that the disjoining force increases rapidly for decreas-
ing plate separation distance. Therefore it seems plausible that the disjoining
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pressure would diverge.
For CR conditions we see that the curve lies right in between the FC and

FP curves: Π̃FP ≤ Π̃CR ≤ Π̃FC . Also, the disjoining pressure diverges for
decreasing plate separation, albeit somewhat less strongly than for FC condi-
tions. This behaviour is not very easy to understand. Under CR conditions,
the surface potential and the surface charge can adjust themselves interdepen-
dently to changing conditions, such as plate separation distance. Naively, one
would expect that as the plates move closer and closer together, the repulsive
nature of the interaction between the charges on the surfaces would cause them
to be dissociated from the surface and move beyond the inner region between
the two plates. This process could potentially continue until all counterions
have dissipated away at zero plate separation. The disjoining force then would
not diverge. But this is apprarently not what happens: Some charges remain
adsorbed on the surface. Necessarily some counterions will remain behind in
the region between the plates to neutralize the surface charge. These remaining
counterions are responsible for the diverging disjoining pressure.

From the log-log plot in the inset of Figure 2.6, we can make an estimate of
the scaling behaviour of the disjoining pressure, as a function of plate separation.
We find that Π̃FC ∼ d−1 and Π̃CR ∼ d−1/2, while Π̃FP tends to a constant for
small d. This determination is however not exact. To that end, we would have
to further analyse the expressions for the disjoining pressure, which we have not
done for this report. However, our results seem to agree very well with what is
found in the literature, e.g. [13]. This distinct behaviour for small separation
distance of CR, as compared to FC and FP conditions warrants the statement
that charge regulation surface conditions cannot be described as a limiting case
of either FC or FP conditions. Rather, charge regulation conditions can be
considered as a third boundary condition with its own unique dependence on
plate separation distance.

The particular behaviour of the disjoining pressure under charge regulation
conditions has, as an additional parameter, the surface reaction constant which
we labeled r. It decribes the adsorption of, in our case, positive hydrogen ions, to
surface sites S. As was shown in Section 1.3, it is related to the binding energy of
the surface sites Fb. It is therefore interesting to look at the disjoining pressure
under charge regulation conditions for varying r. We have done so in Figure 2.7.
We have plotted the disjoining pressure on a log-log plot for values of r ranging
from r = 0.1 to r = 50. For comparison, the plot for r = 0, which corresponds
to fixed surface charge conditions is also shown. The scaling behaviour does
not seem to depend strongly on the value of r. The curves for which r 6= 0 are
all seen to have roughly the same slope for a certain value of d. The curve for
FC conditions (r = 0) deviates considerably from this behaviour. As mentioned
before, these observations are not very rigorous. To make more accurate claims
about the scaling behaviour of the disjoining pressure, the expressions would
have to be studied more thoroughly. We did not do so for this report.

It might also be interesting to look at how the surface charge behaves for
vanishing plate separation. It is plotted for all three surface conditions in Figure
2.8. As for Figure 2.6, the parameters of our system are adjusted in such a way
that at large plate separations the dimensionless surface charge σ̃ is the same
for all three surface conditions, namely 1/4π. Again, we see that the curve
for CR conditions lies in between the curves for FC and FP conditions. As
expected, the charge is dissipated from the surfaces for both the FP and CR
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Figure 2.7: The disjoining pressure for charge regulation conditions, for varying
values of the surface reaction constant r on a log-log plot. The case r = 0
corresponds to fixed surface charge conditions. We set Σm = 1.0 for this plot.

Figure 2.8: Surface charge σ̃ = λ2
Bσ as a function of plate separation d for

three cases: Fixed surface charge (FC), fixed surface potential (FP) and charge
regulation (CR). For this plot we have set our parameters such that for large
plate separation d, the surface charge σ̃ is equal for all three cases. This means
Σ = 1.0 for the FC case, φs = 1.0 for the FP case and Σm = 3.72 for the CR
case. The surface reaction constant was set at r = 1.0 for the charge regulation
case.

surface conditions as the plates move closer together, but more quickly for the
FP case. In fact, the CR curve is so steep near d = 0 that even at very small
plate separations there is still some surface charge left. This would seem to agree
with the diverging disjoining pressure we observed earlier for CR conditions.
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At this point however, we should note that the mean-field theory we are using
loses its validity for extremely small plate separations. Since ions are treated
as point-particles, their density between the plates can remain large, even for
extremely small plate separation distances. This is of course not a physically
realistic situation. Reasonably therefore, we should consider a cutoff distance,
e.g. given by the ionic diameter. For values smaller than this cutoff distance,
we consider our theory to no longer be valid. In Chapter 4 we will look at this
in more detail when we look at the specific case of graphene and chlorosulfonic
acid.

2.3.2 Disjoining pressure for membranes

We have already seen that the electrostatic potential, ion densities and surface
charges are profoundly affected by the finite thickness of the membranes, as was
shown in Figures 2.2, 2.3 and 2.4. Therefore, we expect a significant effect on the
disjoining pressure as well. As before, once the potential is known, it is an easy
task to find the disjoining pressure from (2.3.4). In Figure 2.9, we have plotted
the reduced disjoining pressure for several values of the membrane thickness
h under charge regulation conditions. For comparison, we have included the
case for plates of infinite thickness h =∞, which corresponds to the disjoining
pressure we found in the previous section. In the inset is the same plot, this
time on a log-log scale.

Figure 2.9: The reduced disjoining pressure as a function of separation distance
under charge regulation conditions for several values of the membrane thickness.
In the inset is the same plot, but this time on a log-log scale. The parameters
were chosen such that Σm = 1.0 and r = 1.0.

From the plot, it is seen that the finite thickness of the membranes has
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the effect of reducing the disjoining pressure between the objects considerably.
Remember that, as was shown in Figure 2.5, in the case of membranes, the
inner region is no longer restricted to the charge neutrality condition, as we had
for plates of infinite thickness. However, the entire system, including the outer
regions is still considered to be charge neutral. This means that ions, from the
inner region, are able to migrate to the outer region. Since it is the excess ions
in the inner region that are responsible for the disjoining pressure, this explains
why the disjoining pressure is so much lower for membranes of finite thickness.
When the membranes are very thick, the charge migration from inner to outer
region will be more prohibited. This consideration makes the behaviour of the
disjoining pressure for various values of the membrane thickness, as presented
in Figure 2.9 understandable.

Also, we can see that for small membrane thickness, as wel as small plate
separation distance, the curves in the log-log plot start to level off for vanishing
plate separation d, implying the behaviour is no longer divergent, but showing
behaviour that much more resembles the fixed surface potential case we saw ear-
lier. As noted before however, we have to be careful when analysing behaviour
at these extremely small separation distances, because at some point our mean
field theory will no longer be able to provide valid results. We provide a more
extensive analysis in Chapter 4.
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Chapter 3

Image charges, Van der
Waals forces and Zero Field

In this chapter, three different subjects are studied. As mentioned in the in-
troduction, to complete our theory, we have to consider two final ingredients:
The image charge effect and the well-known Van der Waals forces. We start
out by considering the image charge effect. We investigate two separate meth-
ods of describing the image charge effect, in an attempt to determine to what
extent this phenomenon affects our system and the strength of the interactions
between the membranes. In the first method, we use the model of Chapter 2 to
study membranes of finite thickness. However, this time we take the mismatch
of the dielectric constants between object and solvent into account by adjust-
ing the boundary conditions. In the second method we consider a modified
Poisson-Boltzmann equation by introducting a correction potential.

Next, we turn to Van der Waals interactions between membranes of finite
thickness. We use the standard expressions for the Van der Waals free energy of
interaction from the literature, to obtain the Van der Waals disjoining pressure.
We also study its dependence on membrane thickness. Finally, in the last section
we take a small detour to study the so-called zero field solution. We demonstrate
that, despite its straightforward computations, it has a high degree of accuracy
for small plate separations and, under these circumstances, is a valid alternative
to solving the Poisson-Boltzmann equation.

3.1 The image charge effect

3.1.1 The general theory

Objects, such as colloids, usually have a much lower dielectric constant than
the solvent in which they are immersed. This is, for example true for biologi-
cal systems in general, and certainly applies to our setup of graphene (εr ≈ 7)
in chlorosulfonic acid (εr ≈ 60) as well. This mismatch in dielectric constants
causes polarization charges to form on the interfaces. The effect these polariza-
tion charges have on the system can be represented by so-called image charges.

Imagine the situation as in Figure 3.1, where a charge q is placed between two
interfaces, separated by a distance d. The dielectric constant in the inner region
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is given by εsolvent, while the dielectric constant of the objects is denoted as
εobject. This setup is therefore representative of our model of two parallel plates.
According to the general theory [18], every charge q causes an image charge to

Figure 3.1: Every charge in a solvent causes the appearance of an image charge
accross a surface with a medium of different dielectric constant. Every image
charge, in turn brings about a new image charge and so on. The prefactor ∆ is
a function that depends on the dielectric constants of both solvent and medium.

appear at its mirror point across the interfaces. This mirror charge then causes
another mirror charge to appear and so on. Every time a charge is ‘mirrored’,
its value is multiplied by a prefactor ∆, which is determined according to

∆ =
εsolvent − εobject
εsolvent + εobject

. (3.1.1)

From this formula, it is easily seen that the original charge and its image charge
have equal sign if εsolvent > εobject, while the image charge has opposite sign
if εsolvent < εobject. If the dielectric constants are equal, we find that ∆ = 0
and therefore the image charge effect will be nonexistent. If the image charge
is of the same sign as the original charge, the original charge will be repelled
by its own image charge. If on the other hand, the image charge is of opposite
sign, an attractive interaction will be present. From this quick analysis we can
therefore conclude that charges in a solvent are repelled from surfaces with a
lower dielectric constant, while they are attracted to surfaces with a higher
dielectric constant.

In general, as well as in our case of graphene in chlorosulfonic acid, the
solvent has the higher dielectric constant, meaning the free ions in the solvent
will be repelled from the surface. We therefore expect the ionic density profiles
to drop near the surfaces.

To study the image charge effect, we apply two different methods. The first
method is from [15] and consists of solving the system of equations for two
membranes of finite thickness, as we did earlier in Chapter 2. However, this
time the mismatch of dielectric constants between the solvent and the object
is taken into account. This is done by adjusting the boundary conditions at
the interfaces. In the second method by [19] we consider a modified Poisson-
Boltzmann (mPB) theory that accounts for the image charge effect.
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3.1.2 A system of membranes with index-mismatched con-
ditions

As mentioned, our first method to study the image charge effect consists of solv-
ing our model for interacting membranes of finite thickness from Chapter 2, but
this time with modified boundary conditions. We consider a system, identical
to that of Section 2.1, with two membranes of finite thickness, immersed in a
solvent that is connected to a reservoir. The solutions for the various regions of
the system are again as given in (2.1.1).

φI(x) = 2 log

[
1 + a1 exp[x+ d/2 + h]

1− a1 exp[x+ d/2 + h]

]
; (3.1.2a)

φII(x) = a2x+ a3; (3.1.2b)

φIII(x) = 2 arcsinh

[
sinh[a4/2]

cn(x cosh[a4/2], 1
cosh[a4/2] )

]
; (3.1.2c)

φIV (x) = −a2x+ a3; (3.1.2d)

φV (x) = 2 log

[
1 + a1 exp[−x+ d/2 + h]

1− a1 exp[−x+ d/2 + h]

]
. (3.1.2e)

However, the boundary conditions need to be modified to include the dielectric
constant mismatch between the object and the solvent. They now take the
following form

φIII(x =
d

2
− δ) = φIV (x =

d

2
+ δ); (3.1.3a)

φIV (x =
d

2
+ h− δ) = φV (x =

d

2
+ h+ δ);

(3.1.3b)

φ′III(x =
d

2
− δ)− γφ′IV (x =

d

2
+ δ) = 4πλσ̃mα3; (3.1.3c)

φ′IV (x =
d

2
+ h− δ)− γφ′V (x =

d

2
+ h+ δ) = 4πλσ̃mα4, (3.1.3d)

where we have defined γ ≡ εobject/εsolvent. The factors of γ in (3.1.3) come
about when the boundary conditions are derived using Gauss’s law for two
media with different dielectric constants, as we shall now demonstrate.

Consider, as in Section 2.1 a Gaussian box S around the interface at x = d/2.
We can write∮

dS

D.dS = Aσe, (3.1.4)

where A is the surface area of the Gaussian box in the plane of the interfaces.
We still think of our system as extending to infinity in the lateral directions, it
therefore becomes a one-dimensional problem

−Aεsolε0E(z = D/2− δ) +Aεobjε0E(z = D/2 + δ) = Aσe, (3.1.5)

where δ is half the thickness of the Gaussian box and tends to zero, and where
we have abbreviated εsolvent and εobject to εsol and εobj respectively. When
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rewritten to our usual dimensionless variables, it becomes

dφ

dx
(x = d/2− δ)− εobj

εsol

dφ

dx
(x = d/2 + δ) =

eλDσe
kBTεsolε0

= 4πλσ̃, (3.1.6)

with our dimensionless variable λ still defined as λ = λD/λB and where λD
and λB are the Debye length and Bjerrum lenght of the solvent, respectively. A
similar procedure gives the boundary condition at x = d/2 + h, leading to the
total set of boundary conditions given in (3.1.3).

By combining the expressions in (3.1.2) and (3.1.3), it is then quite straight-
forward to find the solutions for the potential, ion densities and disjoining pres-
sure, as we did in Section 2.1. In Figure 3.2, we have plotted the dimension-
less potential φ(x) for decreasing plate separation distance, both for the index-
matched as the index mis-matched case. We can also compare the disjoining

Figure 3.2: The dimensionless electrostatic potential for membranes for index-
matched case (blue curve), compared to index mis-matched case (green curve)
under charge regulation conditions. For the index mis-matched case, γ =
εobject/εsolvent = 0.05, meaning the dielectric constant of the solvent is much
larger than that of the object. In going from top left to bottom right we have
h = 20, d = 10 in (a), h = 3.0, d = 3.0 in (b), h = 0.5, d = 2.0 in (c) and finally
h = 0.25, d = 1.0 in (d). The other parameters were set such that Σm = 1.0
and r = 1.0.

pressure for varying values of the dielectric constants. We have done so in Fig-
ures 3.3 and 3.4. From the plots in Figures 3.2, 3.3 and 3.4 we can make some
interesting observations. First of all, when the plates have considerable thick-
ness, the difference in dielectric constants does not seem to have much impact
on potential and disjoining pressure. We can see this in plot (a) of Figure 3.2,
where both curves fall right on top of each other, and in the right most plot of
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Figure 3.3: The reduced disjoining pressure for various values of γ and mem-
brane thickness h, as a function of plate separation distance d. From left to
right, membrane thickness increases from h = 1.0 to h = 50.

Figure 3.4: The reduced disjoining pressure for various values of γ and mem-
brane thickness h, as a function of plate separation distance d. From left to
right, γ increases from γ = 0.1 to γ = 10.

3.3, where there is also very little difference between the three curves. Another
remarkable observation comes from the left most plot of Figure 3.4, where it
can be observed that for small values of γ the impact of finite thickness is mini-
mal. We find these results surprising. In Section 3.1.1 we showed that, when an
object has a lower dielectric constant than the solvent in which it is immersed,
we expect a repulsive force as a result of the image charge effect. We therefore
expect the ion densities to be lower close to the interface. We have plotted
the ion densities in Figure 3.5 and clearly this is not what we observe in the
plots. In plot (a) no image charge effect is observed at all, even for a significant
discrepancy between the two dielectric constants. In fact, the only parameter
that has significant impact seems to be the plate separation distance d. When
this becomes small, we can see that the density of anions (Figure 3.5 (b)), as
well as the potential in the inner region (Figure 3.2, (c) and (d)) increase. As
a direct result, in Figure 3.3, we see that the disjoining pressure is larger for
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Figure 3.5: The ion densities ñ±(x) ≡ n±(x)/nb in the inner and outer regions
for two membranes of thickness h = 1.0, for index-matched and index mis-
matched conditions. The blue curve represents the index-matched condition,
the green curve corresponds to the situation where the object has much lower
dielectric constant, as compared to the solvent. In (a) separation distance is
d = 3.0 and in (b) d = 1.0. Remember that our surfaces are positively charged,
the upper curves therefore correspond to anions, the lower curves to cations.
The other parameters were set such that Σm = 1.0 and r = 1.0.

smaller values of γ as well.
At this point, we are not convinced the method used in this section describes

the image charge effect correctly. The main feature we would expect from the
image charge effect is a drop in ion density close to the interfaces. This is
not observed. We therefore now turn our attention to a different method for
describing the image charge effect in the next section.

3.1.3 A modified Poisson-Boltzmann equation

The method described here is from Levin [19]. A modified Poisson-Boltzmann
(mPB) equation is constructed that accounts for the ion-image and charge-
charge correlation effect near the interfaces. This leads to an interaction po-
tential W (z) that is essentially a correction to the general expression for the
electrostatic potential. The full expression for this interaction potential W (z)
is given in Appendix B.1.

The setup we consider is once again that of two parallel plates under charge
regulation conditions, placed a distance D apart with a solvent filling the space
between them, as in Figure 1.3. In the method by Levin it is assumed that the
dielectric constant of the object is much lower than that of the solvent in which
it is immersed: εobj/εsol � 1. This approximation is valid for the system we are
considering, the applicable dielectric constants of graphene and chlorosulfonic
acid being approximately 7 and 80 respectively. We elaborate further on this in
Chapter 4.

Since for our setup the ion densities are relatively low, we choose to ignore
the charge-charge correlation effect by setting the particle radius to zero, hereby
considering the ions as point charges, as we have continuously done until now.
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This simplifies the expression for W (z), which now only describes the image
charge effect. When written in SI units it takes the following form

W (z) =
kBTλB

2

∫ ∞
0

dk
k

p(exp[2Dp]− 1)
{exp[2pz] + exp[2p(D − z)]} . (3.1.7)

In this expression z is the coordinate, D is the plate separation distance, λB is
the Bjerrum length, p =

√
1/λ2

D + k2 and k is a wave vector that comes about
from the Fourier transform of the potential, which is used in the derivation. Ac-
cording to [19] the correction potential W (z) corresponds to the work necessary
to insert an ion at position z and is calculated using the Güntelberg charging
process. However, at this point we choose not to elaborate on the derivation of
(3.1.7), but to simply apply it to our setup. By using the definition ξ ≡ λDk,
along with our usual dimensionless variables, we can rewrite the equation

βW (x) =
ν

1
2 ε
− 3

2

sol

2

∫ ∞
0

dξ
ξ√

1 + ξ2(exp[2
√

1 + ξ2d]− 1)

×
(

exp[2
√

1 + ξ2x] + exp[2
√

1 + ξ2(d− x)]
)
, (3.1.8)

where we have multiplied W by β to find the dimensionless correction potential
βW (x), and have chosen to explicitly write the dielectric constant εsol in the
expression. This means that we have also defined a new dimensionless variable,
directly proportional to the ion bulk density ν ≡ (β3e6/(8π2ε30))nb. This choice
of variables is convenient because, at this point, we want to be able to vary
εsol as one of our parameters. We have plotted the dimensionless correction
potential βW (x) for various value of the solvent dielectric constant in Figure
3.6. Immediately we see that the correction potential is smaller for larger values

Figure 3.6: The dimensionless correction potential Ŵ (x) ≡ βW (x), for various
values of the solvent dielectric constant. The dimensionless ion bulk density was
set at the best known value for CSA: ν = 492, while plate separation distance
was set to d = 4.

of the solvent dielectric constant. At first sight this might seem counterintuitive,
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as one would expect the correction potential to be larger when the difference in
dielectric constants of object and solvent is larger. We come back to this when
we plot the corrected ion density profiles. Note that in this section, we have
placed our left and right planar surfaces at x = 0 and x = d respectively.

At this point we want to mention that we have jumped a little ahead of
ourselves and, in plotting Figure 3.6, we have used the best known values of
the parameters for the graphene/CSA system. Since we want to determine
whether the image charge effect has a large impact on our actual system, this
seems like a sensible thing to do. Since βW must be seen as a correction to the
dimensionless potential, we need to compare its values to that of the potential
in the actual graphene/CSA system. As shown in Chapter 4, typical values for
the dimensionless electrostatic potential near a surface are of the order of ∼ 2
at a distance of one Debye length. We can therefore already see that βW is a
small correction indeed, especially for larger values of the dielectric constant εr.

Once the correction potential βW (x) is known, we use it to construct a
modified Poisson-Boltzmann equation [19]. Together with the usual boundary
conditions, this leads to the following boundary value problem

φ̂′′(x) = exp[−βW (x)] sinh[φ̂(x)]; (3.1.9a)

φ̂′(x = d/2) = 0; (3.1.9b)

φ̂′(x = d) = 4πν−
1
2 ε
− 1

2
r ζα. (3.1.9c)

Again, in order to be able to explicitly write the dielectric constant εr in our
equations, we have defined a new dimensionless variable, ζ ≡ (βe2/4πε0)

2

σm.
It is a dimensionless surface charge density. Also, we have added a caret to
the notation for the potential, φ̂(x), in order to distinguish the solution of the
modified Poisson Boltzmann equation from the standard Poisson Boltzmann
equation. The set of equations in (3.1.9) can be solved numerically to find the

‘corrected’ electrostatic potential φ̂(x). Once this is done, it is an easy task to
compute the corrected ion density profiles

n̂±(x) ≡ exp[−βW (x)]× exp[∓φ̂(x)]. (3.1.10)

In Figure 3.7 we have plotted the ion densities for increasing values of the sol-
vent dielectric constant εsol. To get some general idea of how the ioin densities
behave under the influence of the correction potential W (x), we first plot them
for the general values we have used until now. In Figure 3.6, we already saw
that the correction term βW decreases, for increasing solvent dielectric con-
stant. This trend continues in Figure 3.7, where we see that the corrected ion
density profiles, represented by the green curves, are increasingly close to the
uncorrected curves, as the dielectric constant increases, going from the left to
the right plot. As mentioned earlier, at first sight this appears contrary to what
one would expect. From simple considerations, one would expect the effect of
image charges on the system to be larger when the difference in dielectric con-
stants is larger. This is for example easily seen from the expression for ∆ in
(3.1.1). However, in the general theory of Section 3.1.1, the screening by the
solvent is not taken into account. In fact, as the solvent dielectric constant
increases, the screening of the ions, by the solvent increases as well. One could
state that the screening effect causes the ions to not be able to ‘see’ its image
charges.
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Figure 3.7: The ion density profiles between two parallel plates for increasing
values of the solvent dielectric constant. Going from left to right, the dielectric
constant is set to 10, 30 and 60 respectively. The blue curves correspond to
the uncorrected ion density profiles, without the correction term W , the green
curves correspond to the corrected density profiles. For this plot we set the
parameters such that ν = 1.0 and ζ = 1/4π, while plate separation distance was
set to d = 4.

Of course, it is again prudent to plug in the values of our actual graphene/CSA
system. Since the dimensionless electrostatic potential takes on values ∼ 2 at a
distance of one Debye length, and even higher values closer to the surface, the
ion densities are expected to be relatively large. They are plotted in Figure 3.8
for the graphene CSA system. Again, we see that the difference between the

Figure 3.8: The ion density profiles between two parallel plates for increasing
values of the solvent dielectric constant. Going from left to right, the dielectric
constant is set to 10, 30 and 60 respectively. The blue curves correspond to
the uncorrected ion density profiles, without the correction term W , the green
curves correspond to the corrected density profiles. For this plot we set the
parameters to the best known values for the graphene CSA system.

corrected and the uncorrected profiles gets smaller for increasing values of the
solvent dielectric constant. In the middle and right most plot the two curves are
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virtually indistinguishable. We then finally come to the conclusion that, for our
setup of graphene in chlorosulfonic acid, with its large difference in dielectric
constants, the image charge effect can considered to have a very small contribu-
tion. In Chapter 4 we apply the general theory of Chapter 2 to the specific case
of graphene in chlorosulfonic acid. Considering the results found in this section,
we think it is justified to not take the image charge effect into account. But
first, in the next section, we want to look at the final ingredient of our theory,
the Van der Waals forces.

3.2 Van der Waals disjoining pressure

It was already mentioned in the introduction that in DLVO theory, the total
interaction between objects immersed in a solvent is a combination of double
layer forces and Van der Waals forces. The double layer forces have been ex-
tensively studied in Chapter 2 and were shown to always be repulsive, for the
cases we considered. Now, we turn our attention to Van der Waals forces. Van
der Waals forces are relatively weak and very short-ranged attractive forces.
However, they do play an important role in determining the overall interaction
between atoms, molecules and surfaces.

Van der Waals forces, named after Dutch scientist Johannes Diderik van der
Waals, are relatively weak forces between atoms or molecules and vanish quickly
as the distance between the objects increases. Nevertheless, at short range they
certainly cannot be ignored. Van der Waals forces generally contain a repulsive
and an attractive contribution. The repulsive contribution occurs at extremely
small separation distances and is a direct result of the Pauli exclusion principle.
When two atoms get too close, their electron clouds will begin to overlap. We
will not consider this contribution. The attractive Van der Waals forces result
from either permanent, or instantaneously induced dipoles, the latter also being
referred to as the London dispersion force [12].

In this section, we study Van der Waals forces between membranes of finite
thickness. We consider therefore the setup as in Figure 2.1. From [20] we find
the free energy of interaction, due to Van der Waals interaction for a setup with
this specific geometry, per unit area to be given by

f = −AH
12π

[
1

D2
− 2

(D +H)2
+

1

(D + 2H)2

]
, (3.2.1)

where AH is the so called Hamaker constant, a materials constant that measures
the relative strength of the Van der Waals forces and depends on the proper-
ties of the two objects and the intervening media. We shall come back to the
Hamaker constant in the context of graphene dissolution in chlorosulfonic acid
in more detail in Chapter 4. As before, D is the separation distance between
the membranes and H is their thickness. The Van der Waals disjoining pressure
can now be obtained by differentiating this expression

ΠV dW = − ∂f
∂D

= −AH
12π

[
2

D3
− 4

(D +H)3
+

2

(D + 2H)3

]
. (3.2.2)

If we define a dimensionless Hamaker constant as ÃH = AH/kBT , we can write
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the dimensionless Van der Waals disjoining pressure as

Π̃V dW = −4λÃH
3

[
1

d3
− 2

(d+ h)3
+

1

(d+ 2h)3

]
, (3.2.3)

where we have also returned to our dimensionless variables λ, d and h, which
are defined as before, such that λ is a dimensonless parameter and d and h rep-
resent the dimensionless separation distance and membrane thickness respec-
tively: λ = λD/λB , d = D/λD and h = H/λD. The Van der Waals disjoining
pressure is plotted in Figure 3.9 for various values of the Hamaker constant
ÃH and membrane thickness h. We see that the interaction is attractive in all

Figure 3.9: The reduced Van der Waals disjoining pressure between two parallel
membranes as a function of plate separation distance d = D/λD for various
values of the membrane thickness h = H/λD. Note that the disjoining pressure
is negative, meaning the interaction is attractive. For this plot the parameters
were set such that λ = 1.0 and ÃH = 2.5.

cases. From the left plot, we see that a larger Hamaker constant corresponds to
stronger attraction. From the right plot, we can see that Van der Waals forces
are generally weaker if the membranes are thinner. This makes sense, since if
the membranes are thinner, there is ’less bulk material’ available to produce the
attractive force. Remember that Van der Waals forces are caused by (induced)
dipole interactions.

We now have all the ingredients to look at our model of graphene in chloro-
sulfonic acid. In the final chapter, we start by looking at both graphene and
chlorosulfonic acid in more detail. We talk about its general properties and es-
pecially its physical properties that determine the strength of both the Van der
Waals interaction, and the interaction due to the electric double layers. After
that, we calculate the total disjoining pressure for our system by looking at the
combined effect of the Van der Waals and double layer disjoining pressures.

3.3 Zero field solution

At this point, we would like to make a small detour and present an alternative
method for solving the two-plate problem, from that in Section 1.5. Although
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it does not produce any actual new results, we still want to include it in this
report, as this method produces results that are in very good agreement with
the full nonlinear Poisson-Boltzmann theory, while at the same time being very
straightforward in its computations. It is called the zero field method and is due
to [16] and [17]. All results in this section will be computed for the physically
most interesting case of charge regulation surface conditions. We consider a
setup of two parallel plates of infinite thickness, as in Figure 1.3.

The method of the zero field solution starts with an observation. In Figure
3.10, we have presented the dimensionless electrostatic potential for this partic-
ular setup for decreasing plate separation, from both the Debye-Hückel and the
full nonlinear solution.

Figure 3.10: The dimensionless electrostatic potential between two double layers
for various plate separations for the case of charge regulation from both Debye-
Hückel and Poisson-Boltzmann theory. Plate separation runs from d = 4 in the
top left figure, via d = 2 and d = 1, to d = 0.2 in the lower right figure and
is measured in Debye lengths. For this plot the parameters are set such that
Σm = 1.0 and the surface reaction constant r = 1.0.

Some important observations can be made from this figure. First, for de-
creasing plate separation the mean value of the potential between the plates
increases. Second, for large separations the Debye-Hückel result agrees with full
Poisson-Boltzmann theory, but as the plate separation decreases, the Debye-
Hückel theory loses its validity. This happens at the threshold where the di-
mensionless potential is φ ≈ 1, and means that for larger values of φ we can no
longer use Debye-Hückel theory and therefore need to resort to, in most cases
numerical solutions of the Poisson-Boltzmann equation. These observations
confirm what we saw in previous sections.

However, another interesting fact that is immediately clear upon looking
at the plots is that, as the plate separation distance decreases, the potential
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profile becomes increasingly flat. A flat potential profile corresponds to a van-
ishing electric field. This means that, for interplate distances that are of the
order of one Debye length, or less, we can consider the limit of a very weak, or
zero electric field. By using the zero-field limit, the two-plate problem can be
solved without the need for solving the Poisson-Boltzmann equation, as we now
demonstrate.

If the potential profile is flat, obviously the potential is the same everywhere
between the plates and at the surfaces. This value of the potential will be
labeled as φ̄. As mentioned before, the power of the zero field solution stems
from the fact that the Poisson-Boltzmann equation need not be solved to find
it. Instead, φ̄ can be derived from the constraint of charge neutrality: The total
charge from mobile ions between the plates balances the adsorbed charge on the
plates. When written in SI units the constraint appears as

e

∫ D/2

−D/2
[n+(z)− n−(z)]dz + 2eσmα = 0, (3.3.1)

where e is the elementary charge, D is the plate separation distance, n± are the
ion densities, σm is the maximum surface charge density with all sites on the
surface charged and α denotes the fraction of sites that is actually charged, as
before. This can be rewritten to our dimensionless units to become∫ d/2

−d/2
[ñ+(x)− ñ−(x)]dx = −16πλσ̃mα. (3.3.2)

The next observation is that, for a flat potential profile, the ion densities will
also be independent of position between the plates and can be written as

ñ±(x) = n±(x)/nb = ñ± = exp[∓φ̄]. (3.3.3)

This makes the integral in (3.3.2) very straightforward to solve, such that we
get

−2 sinh[φ̄]d = −16πλσ̃mα. (3.3.4)

Inversion then gives for the mean electrostatic potential between the plates

φ̄ = sinh−1

[
8πλσ̃m

d(1 + r exp[φ̄])

]
, (3.3.5)

where sinh−1 stands for the inverse of hyperbolic sine (not 1/ sinh) and we have
inserted our usual expression for α. This is again a self-consistent equation that
can be solved for φ̄.

The derivation of the zero-field solution in (3.3.5) was very straightforward,
especially compared to the method of solving the two-plate problem using the
nonlinear Poisson-Boltzmann equation of Section 1.5. It is therefore interesting
to find out how its results compare, and what its range of applicability is.
One would expect the zero-field solution to be valid for small plate separation
distances, or for circumstances where the Debye screening length is relatively
large. In other words, whenever the distance between the plates is of order one
Debye length or less, resulting in a flat potential profile as we saw in Figure
3.10.
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At this point we would therefore like to compare the disjoining pressure found
from zero-field theory to that from Debye-Hückel and Poisson-Boltzmann theory.
The disjoining pressure is easily determined from the electrostatic potential at
the midplane φm. Obviously, in the zero-field case φm = φ̄. The expression for
the reduced disjoining pressure is

Π̃(d) ≡ Π(d)

kBTnb
= 2(cosh[φm]− 1). (3.3.6)

It is plotted in Figure 3.11 for all three solutions. It is immediately clear that the

Figure 3.11: The reduced disjoining pressure between two parallel plates as
a function of plate separation. Plotted are the Debye-Hückel(DH), Poission-
Boltzmann(PB) and Zero-field(ZF) solution. For this particular plot the para-
maters were set such that Σm ≡ 4πλσ̃m = 2.5 and r = 1.0.

zero-field approach yields very good results for small plate separation distances,
while Debye-Hückel theory is a good approximation for large plate separation
distances. This is even more clearly seen in the log-log plot presented in the in-
set. In Figure 3.12 we have plotted the disjoining pressure for increasing values
of Σm. When Σm is small, as in plot (a), we see that all three solutions produce
similar results. However, with Σm increasing, the zero-field solution loses its
validity for large plate separation distances, while the Debye-Hückel solution is
no longer accurate at small plate separation distances. But surprisingly, the
zero-field solution even produces good results under conditions when it is not
expected to. For example, in Figure 3.10 (c), the potential profile shows signif-
icant curvature. However, the disjoining pressure from zero-field theory shows
accurate results under these circumstances, as can be seen in Figure 3.12 (b),
where the disjoining pressure is plotted for similar values of the parameters.
Since the derivation of the solution for zero-field theory is based on the assump-
tion that the surfaces are close together, resulting in a flat potential profile, this

45



Figure 3.12: The reduced disjoining pressure between two parallel plates as
a function of plate separation distance, from Debye-Hückel (DH), Poisson-
Boltzmann (PB) and zero-field (ZF) solutions with Σm ≡ 4πλσ̃m set to 0.1,
1.0, 5.0 and 10 for plots (a), (b), (c) and (d) respectively. The surface reaction
constant was set to r = 1.0.

result is surprising. We can therefore state that the zero field method has a
higher degree of applicability than would be expected from first considerations.

The zero-field solution is not pursued any further in this report. However,
the results in this section demonstrate that it is a viable approach for a system of
graphene and chlorosulfonic acid, where the combination of a large Debye length
for chlorosulfonic acid on the order of 20nm, and an interplate separation for
graphene of approximately 0.3 nm, certainly fulfill the requirement of strongly
overlapping double layers.
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Chapter 4

Applying the theory to
graphene and chlorosulfonic
acid

In Chapter 2 we looked at the double layer interactions between two membranes
of finite thickness under charge regulation conditions. In Chapter 3, we studied
the Van der Waals interactions, also for membranes of finite thickness. Also in
Chapter 3, we investigated the image charge effect and found that its impact
on our system is not very significant, so we made the decision to ignore it. This
means we now have all the ingredients to look at the total interaction between
two membranes, immersed in an ionic solvent. Of paramount importance is
the question of attraction versus repulsion: From DLVO theory we know that,
when double layer and Van der Waals interactions are combined, in general
one finds attraction at very small separation distances, followed by a repulsive
peak at somewhat intermediate distance and finally a small secondary region of
attraction, followed by vanishing interaction for large separation distances. We
expect to find similar behaviour for our graphene/CSA system. Since we are
especially interested in describing the spontaneous exfoliation of graphene layers
in chlorosulfonic acid, we mostly want to know at what separation distance the
threshold between attractive and repulsive interaction takes place.

In this chapter, we will determine the best known values of all parameters of
interest, for the graphene/CSA system. That is, we want to find the appropriate
values for the dielectric constants, the bulk ion density, the layer thickness of
graphene etc. Once these values are determined, we can insert them into our
general theory from the previous chapters and find the total interaction. We
start by providing some additional information about graphene and chlorosul-
fonic acid in the next two sections. Then in Section 4.3, we put everything
together and present the main result of this report. Finally in Section 4.4, we
take a critical look at our model and review its limitations. We consider the
simplifying assumptions made and discuss possible improvements.
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Figure 4.1: Graphite can be considered to be built up of many layers of graphene,
where the layers are stacked in such a way that atoms in one layer are placed
at the hexagon centres of the layers above and beneath it.

4.1 About graphene

At this point we would like to provide some background information about
graphene, and look at its physical characteristics. In the introduction we already
discussed some of its properties, but now it is time to look in more detail.
According to Geim [22], graphene is the thinnest material in the universe and the
strongest ever measured. Graphene is capable of sustaining current densities six
orders of magnitude higher than copper. It also boasts extremely high thermal
conductivity and stiffness. According to Geim [22], graphene needs to be defined
as “sufficiently isolated from its environment to be considered free-standin”.

Graphene was first isolated in 2004 by Geim and Novosolev [1], using a
method called mechanical cleavage. This method consists of repeatedly us-
ing adhesive tape on a sample of graphite, until a single layer of graphene is
left. They were awarded the Nobel prize for their achievement in 2010. As
mentioned in the Introduction, over the years several alternative production
methods for graphene have been developed, but the resulting yield and quality
of the graphene samples is often not satisfactory [7].

However, we are of course especially interested in the physical properties of
graphene that affect its solubility. As is well known, graphene is an allotrope of
carbon consisting of a single layer of graphene, arranged in a hexagonal lattice.
Other allotropes of carbon include diamond and graphite, where diamond has
a lattice crystalline structure and graphite can be considered to be built up of
many layers of graphene, stacked on top of each other, where the stacking is
such that there are atoms in the upper layer placed at the hexagon centres of the
lower layer [23]. The thickness of a single layer of graphene is taken from [24]
as 0.37 nm. In the process of exfoliation of graphite in chlorosulfonic acid, as
described in [8], typically platelets of single layer graphene are formed with lat-
eral dimensions of the order of 100nm. This makes our one-dimensional model,
introduced in the previous chapters a valid description for the graphene/CSA
system.

To find a value for the maximum charge density, σm of our graphene sur-
faces, we can simply consider the density of carbon atoms in graphene. In the
hexagonal structure of graphene layers, the sides of the hexagon have dimen-
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sion l = 0.142nm. By using the expression for the surface area of a hexagon
A = 3

√
3l2/2, we find the surface density of carbon atoms to be σm = 3.82×1019

m−2. For convenience, we use the dimensionless surface charge density, defined
earlier as ζ = (βe2/4πε0)2σm, whose value is then given by ζ = 12.4× 104.

In Section 3.1.3, we already mentioned that the appropriate value to use for
the dielectric constant of graphene is ≈ 7. Considering the metallic properties of
graphene this may seem unexpected, one would potentially expect the appropri-
ate dielectric constant to be infinite. However, we have to keep in mind that we
actually need to consider the out-of-plane dielectric constant. The characteristic
geometric properties of graphene, especially its extremely small thickness com-
pared to its other dimensions, make it plausible that its properties depend on
the specific orientation as well. Indeed, in [25] it is found that the out-of-plane
dielectric constant of graphene has a value of approximately εr ≈ 7 and this is
the value we will use in our model. Next, we take a closer look at the superacid
called chlorosulfonic acid.

4.2 About Chlorosulfonic acid

Chlorosulfonic acid, also known as chlorosulfuric acid is what is known as a
superacid, meaning it has an acidity greater than 100% sulfuric acid. It is a
colourless liquid with chemical structure formula ClSO3H and consists of tetra-
hedral molecules, as schematically drawn in Figure 4.2. Chlorosulfonic acid is
a mineral acid with a Hammet acidity value of −12.78 [26] in its pure form. It
has a relatively high dielectric constant given by εr ≈ 60± 10 [10,11] at 15◦ C,
but values of 100 are also reported.

Figure 4.2: A chlorosulfonic acid molecule is a tetrahedral molecule.

We make two assumptions about chlorosulfonic acid. The first is that it has
the following autodissociation mode

ClSO3H −−⇀↽−− ClSO3
− + H+ (4.2.1)

Paul and coworkers [27] concluded this to be the case, among other things, from
the high electrical conductivity of solutions of potassium and sodium chlorosul-
fates in chlorosulfonic acid. Our solvent of pure chlorosulfonic acid therefore
consists of neutral ClSO3H molecules, along with ClSO3

– and H+ ions.
Now, to find a value for the bulk density of ions in pure chlorosulfonic acid,

we need a value for its degree of autodissociation. This brings us to our second
assumption, which entails that pure chlorosulfonic acid has a small degree of
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autodissociation. From [28] we have a value for the autodissociation constant of
10−8 (mol/kg)2. For comparison, sulfuric acid has a degree of autodissociation
of 10−4(mol/kg)2, compared to for example water’s 10−14(mol/kg)2. Because
the degree of autodissociation is relatively small, the concentration of neutral
ClSO3H molecules can be considered constant and we can calculate our bulk
concentration of ions easily from the degree of autodissociation. By using the
density of chlorosulfonic acid, which is quoted as 1.7410 g/cm3 [10], we can find
a value for the number density of both species of ions. It is found to be given by
nb = 1.056 × 1023 m−3. Again, for convenience we use our dimensionless bulk
ion density, defined earlier as ν = (β3e6/8π2ε30)nb, to find its value as ν = 492.3.
From these numbers, it is now straightforward to find values for the Bjerrum
length and Debye length at room temperature, which are respectively given by
λB = 0.95 nm and λD = 19.9 nm.

There are several complicating factors to consider, for example the effect of
autoprotolysis of chlorosulfonic acid. This means that instead of roaming free,
the H+ ions are bound to neutral chlorosulfonic acid molecules. The equilibrium
than looks like

2 ClSO3H −−⇀↽−− ClSO3
− + ClSO3H2

+ (4.2.2)

This would mean that, as an additional step, there is an equilibrium between
surface sites S and the positively charged CSA molecule

S + ClSO3H2
+ −−⇀↽−− SH+ + ClSO3H (4.2.3)

In their experiments, Matteo Pasquali and co-workers [8] also considered mix-
tures of chlorosulfonic acid with sulfuric acid H2SO4 to be able to control the
level of acidity of their solvent. In this mixture, chlorosulfonic acid acts as a
weak acid and the following equilibrium needs to be considered

ClSO3H + H2SO4 −−⇀↽−− ClSO3
− + H2SO5

+ (4.2.4)

In this setup, the acid strength can be controlled by the ratio of chlorosulfonic
acid to sulfuric acid: A higher concentration of chlorosulfonic acid leads to a
stronger acid. We consider only the most simple case: pure chlorosulfonic acid
with free roaming ClSO3

– and H+ ions.
We then have to consider the equilibrium between H+ ions and the surface

sites S

S + H+ −−⇀↽−− SH+ (4.2.5)

Several models, due to [29], are available for describing this process. One could
assume sites S that consist of a single carbon atom. This is the simplest model
and would mean that every H+ ion that is bound to the surface is bound to a
single carbon atom. One could also envisage sites that are made up of several
carbon atoms, where each adsorbed H+ ion is in some way shared by and bonded
with several carbon atoms. We will not do this here, but instead assume that a
H+ ion is always bonded to a single carbon atom.
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4.3 Total disjoining pressure: Attraction vs re-
pulsion

We start this section by summarizing, in Table 4.1, the best known values of
the parameters for our system of graphene and chlorosulfonic acid. All values in

Table 4.1: Best known values for the graphene/CSA system at T = 293K

Physical property SI units Dimensionless units
dielectric constant CSA εr = 60± 10
dielectric constant graphene εr = 7
bulk ion density CSA nb = 1.056× 1023m−3 ν = 492.3 ≡ ν0

Bjerrum length CSA λB = 0.95nm
Debye length CSA λD = 19.9nm
layer thickness graphene H = 0.37nm h = 0.0186
maximum surface charge σm = 3.82× 1019m−2 ζ = 12.4× 104

surface reaction constant r = 0.02

Hamaker constant AH = 1.0× 10−20J ÃH = 2.5

Table 4.1 were already mentioned in previous sections, except for the Hamaker
constant AH and the surface reaction constant r. The value for the dimension-
less Hamaker constant of 2.5 is taken from [30] and is valid for a system of two
graphene layers, acting across a region filled with water. We were unable to
find values for a system of graphene and chlorosulfonic acid specifically in the
literature. The value of the Hamaker constant does depend on the salinity (ion
concentration) of the intervening media, but the dependence is weak [31]. Since
water and chlorosulfonic acid have dielectric constants of roughly the same order
of magnitude, the assumption that a value of ÃH ≈ 2.5 can also be used for the
graphene/CSA systems seems justified.

The other quantity for which, as of yet, we have not determined a physical
value is the surface reaction constant r. If we know a typical value for α,
the fraction of surface sites that is protonated under typical circumstances, we
can use the model for a single double layer under charge regulation conditions
to adjust the parameter r in such a way as to obtain the desired value of α.
In other words, we use r as a fitting parameter. We found, from unpublished
exeperimental work generously provided by Robert Pinnick [29] that α typically
ranges from 0.007 to 0.044. We will adopt the most basic model in which a
single hydrogen ion bonds to a single carbon atom. The quoted values for
α then simply imply that between 0.7 and 4.4% of the carbon atoms on the
surface are protonated under typical circumstances in pure chlorosulfonic acid.
As mentioned, we can use these values to find a value for our parameter r. In
doing so, we find a value for the surface reaction constant of r ≈ 0.02, which is
what we shall use.

It is also interesting to look at typical values of the electric potential for our
system. In Figure 4.3, we have plotted the electrostatic potential near a single
electric double layer, for the values given in Table 4.1. At a distance of one
Debye length from the surface, we see that the dimensionless potential attains
a value of ≈ 2, which increases to a value of the order ≈ 8, very close to the
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Figure 4.3: The dimensionless electrostatic potential φ = βeψ, near a single
graphene platelet in chlorosulfonic acid as a function of distance, measured in
units of Debye lenghts. Parameter values were used from Table 4.1.

surface. These are quite large values for colloidal systems and from Section 1.4,
we know that linear theory cannot be used if φ & 1. We expect the potential
to be higher still for interacting objects, with overlapping double layers. Our
choice for nonlinear theory is therefore shown to be justified.

Finally, we are now in a position to add all the ingredients of our theory
together. We can find the total disjoining pressure by adding the contributions
from the Van der Waals and the electric double layer forces

Π̃tot = Π̃DL+Π̃V dW = 2(cosh[φm]−1)− 4λÃH
3

[
1

d3
− 2

(d+ h)3
+

1

(d+ 2h)3

]
.

(4.3.1)

In this expression, the potential at the midplane φm is determined from the the-
ory in Chapter 2. Next, we insert all values of our parameters from Table 4.1, to
find the total disjoining pressure for the graphene/CSA system. It is plotted in
Figure 4.4. The upper dashed curve represents the repulsive interactions from
the double layer forces, the lower dashed curve represents the attractive interac-
tions from Van der Waals forces, while the blue curve represents their sum: the
total disjoining pressure. It is seen that the disjoining pressure vanishes for large
plate separation distance d, increases to reach maximum repulsion at a separa-
tion distance of around 0.25 Debye lengths, and then it quickly decreases and
turns into an attractive interaction for smaller separation distances. Also this
transition is very steep, meaning that for a small difference in separation dis-
tance, the interaction changes from being strongly attractive to being strongly
repulsive very quickly. In the introduction to this chapter, we mentioned that
a secondary region of attraction often occurs in DLVO systems. We found the
appearance of this secondary minimum to be dependent on the chosen param-
eter values. Especially when using a small membrane thicknes, the secondary
minimum would not occur, as is the case in Figure 4.4.

The main objective of this report however, was to find out more about the
interaction between platelets of graphene, immersed in chlorosulfonic acid. In
particular, our aim was to validate the claim that separate layers of graphene,
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Figure 4.4: The total disjoining pressure as a function of plate separation dis-
tance d = D/λD under charge regulation conditions, for the best known values
of the graphene/CSA system as presented in Table 4.1. The upper dotted curve
represents the repulsive double layer interactions, the lower dotted curve rep-
resents the attractive Van der Waals interactions, while the total disjoining
pressure is represented by the full blue curve. Finally, the dashed vertical line
represents the so-called critical distance: The separation distance of graphene
layers in solid graphite.

as they reside in graphite are exfoliated by Coulombic repulsion. That is, the
repulsive forces due to the electric double layer interactions need to overcome
the attractive forces due to Van der Waals interactions. The critical question
therefore is, what is the separation distance between layers of grapene, as it
resides inside graphite on the scale of our plot. We have denoted the distance of
0.37 nm, which we identify as the critical distance, by a vertical dashed line in
Figure 4.4. It is immediately apparent that this critical separation distance lies
far beyond the range of repulsive interactions. The only possible conclusion we
can draw from this, is that our model does not correctly explain the spontaneous
exfoliation, seen in experiment [8]. Certainly, once the graphene layers are
separated, we observe strong repulsive behaviour. This does explain why, once
exfoliated and dissolved in chlorosulfonic acid, the separate graphene platelets
remain in solution. In order to condense together, a substantial repulsive barrier
needs to be overcome. In the next section, we look in depth at this result and
what it means for the main question, posed at the beginning of this report.

At this point however, we want to go back to the parameter values of Table
4.1. In some instances, as for example in the case of the Hamaker constant,
no specific value was available in the literature and we were forced to proceed
under the assumption that the value for the graphene/CSA system does not
deviate too much from the value for the graphene/water system. To the best
of our knowledge, this assumption is justified, however, it remains a factor of
uncertainty.

Apart from these considerations, it is at all times prudent to study how the
predictions of our theory respond to varying parameter values. To this end we
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have, in Figure 4.5 plotted the total disjoining pressure for the graphene/CSA
system once more, but this time we have varied the parameters in order to
inspect their influence on the final outcome and to gauge their effect on the
location of the threshold for attractive vs repulsive interactions. In the top three

Figure 4.5: The total disjoining pressure for the graphene/CSA system, as a
function of plate separation distance d = D/λD. In the top row, the Hamaker
constant ÃH was varied, in the middle row the bulk ion density ν was varied
and finally, in the bottom row, the solvent dielectric constant εr was varied. In
all cases, the middle plot corresponds to the best known value of Table 4.1.

plots, we varied the Hamaker constant. In the middle plots the bulk ion density
was varied and finally, in the bottom row, we varied the dielectric constant of
the solvent. In all cases the middle graph corresponds to the best known value of
Table 4.1. We observe that, for example by lowering the Hamaker constant, or
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the dielectric constant, the threshold does indeed shift closer towards the critical
separation distance, denoted by the vertical dashed line. However, although we
have significantly varied the parameters, in all cases the transistion still occurs
quite far from the critical distance, having at least a factor of 7 for the separation
distance between them. We should also point out that varying the dielectric
constant εr, as well as the bulk ion density nb changes the value of the Debye

length, as λD ∝ n
−1/2
b × ε1/2r . Since the critical distance, represented by the

vertical dashed line corresponds to an actual fixed physical separation distance
of 0.37 nm, and the separation distance on the horizontal axis is measured in
units of Debye lengths, this means that the vertical dashed line moves position
when either εr or ν are varied, as can be seen in the plots.

We can of course investigate how far we need to “push” our parameters, in
order to actually find repulsive interaction at the critical distance. This is done
in Figure 4.6, where we see that the interaction threshold lies very close to the
critical distance indeed. For this plot, the values of Table 4.2 were used. From

Figure 4.6: In an attempt to find repulsive interactions at the critical distance,
the values of the parameters were pushed far beyond their best known values.
The repulsive behaviour at the critical distance, demonstrated in this plot was
obtained using the parameter values of Table 4.2.

Table 4.2: Pushing the dimensionless parameters to find repulsion at the critical
distance

Physical property Used in Figure 4.6 Best known values
dielectric constant CSA εr = 20 εr = 60± 10
bulk ion density CSA ν = 492.3 ν = 492.3
layer thickness graphene h = 0.0035 h = 0.0186
maximum surface charge ζ = 12.4× 104 ζ = 12.4× 104

surface reaction constant r = 0.02 r = 0.02

Hamaker constant ÃH = 0.1 ÃH = 2.5
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the values in the table we see that, especially the graphene layer thickness and
the Hamaker constant were pushed far beyond the best known values for our
system. It is therefore questionable whether these values still correspond to a
physically realistic scenario. This question, and others, are considered in depth
in the next section.

4.4 Considerations and outlook

In the previous section we finally presented the main result of this report: the
total disjoining pressure for the graphene/CSA system. We found, by inserting
the best known values for all parameters of our system, the interaction due to the
double layer and Van der Waals forces to be attractive at the critical distance.
In other words, the repulsive double layer interactions are not able to overcome
the attractive Van der Waals interactions and the spontaneous exfoliation of
graphite in chlorosulfonic acid cannot be correctly described by our model. Even
if we shift the values of our parameters somewhat, the threshold for which we
find repulsion lies far beyond the critical separation distance. At first sight,
this might seem like an unsatisfying result. However, this determination forces
us to take a critical look at our model and think about its limitations and
assumptions.

We can consider two possible explanations for not finding the repulsive in-
teractions at the critical distance we were looking for. First, in constructing
our model, several assumptions were made. Also, because of the nature of our
model as a mean field theory, it inherently has its limitations. As a second
explanation, one should also consider the possibility that the spontaneous ex-
foliation cannot be explained by electrostatics in principle. Even if our model
were more refined, the combination of repulsive double layer and attractive Van
der Waals interactions would lead to repulsive behaviour at the critical distance.
If this were the case, additional processes and considerations need to be taken
into account. Both possiblities are discussed next, starting with the limitations
of our model.

First of all, our model being of mean field nature, we consider our ions to
be point particles. This means we have ignored the excluded volume effect. In
general, this approximation is justifiable up to a packing fraction of η ≈ 10%,
which corresponds to an ion concentration of ∼ 1M . Now, by using this value
for the ion concentration, along with the bulk ion concentration of chlorosulfonic
acid in the expression for the ion densities

n±(x) = nb exp[∓φ(x)], (4.4.1)

we can find the maximum value of the electrostatic potential for which we can
safely use the point particle assumption. We find a value of φ ∼ log[1/(1.735×
104)] ≈ 9. Next we can compare this to the potential at the midplane φm, for
the graphene/CSA system. Note that it is safe to assume the potential between
the plates to have a flat profile, such that the potential at the surfaces of the
plates does not deviate too much from the midplane potential, as was shown
in Section 3.3, when considering the zero field solution. In Figure 4.7, we have
plotted the midplane potential for the graphene/CSA system as a function of
plate separation distance. We see that, at the critical distance, the dimensionless
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Figure 4.7: The dimensionless electrostatic potential at the midplane φm, as a
function of plate separation distance d = D/λD for the graphene/CSA system.
The dotted vertical line denotes the critical separation distance.

potential is of the order of ≈ 9. This means we are right on the threshold for
the point particle assumption.

Next, we want to take a critical look at our assumption that the image charge
effect is not of great importance for the graphene/CSA system. We came to this
conclusion after studying the image charge effect in Chapter 3. We found that,
especially for systems with a large solvent dielectric constant, the image charge
effect has a limited impact on the ion distributions and disjoining pressure.
However, in our model the surface charges are considered to be smooth, they
are evenly distributed across the surface. In reality of course, the surface charges
are located at fixed sites. According to [32], the influence of image charges on
the potential is minor. However, it is also claimed [32] that considering discrete
surface charges has a significant impact on the potential, due to image charge
effects. This means that quantities, such as the ion densities and disjoining
pressure would be affected as well. We cannot say with certainty how taking
the discreteness of the surface charges into account would affect our system, but
it is something that we have to remember when considering our result. Also,
when considering the method by [19] in Chapter 3, we chose not to consider
the electrostatic correlations between the ions. Since our system is right on the
threshold for the point particle assumption, taking ion correlations into account
could prove to be a valuable extension to the model.

Another simplifying assumption we made is that of mirror symmetry: In
constructing our theory for two interacting membranes of finite thickness, we
assumed mirror symmetry with respect to the central plane at x = 0. In reality,
this mirror symmetry can be broken in several ways. One could consider the
surface charges of all four surfaces to be independent, such that for example one
inner surface could be more strongly charged than the other. Or, one could go
one step further and consider the surface charge not to be smoothly distributed
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across the surface at all. One could for example imagine patches of higher and
lower surface charge forming on opposite surfaces. The first complication could
easily be described by our model and would not need any new concepts, but
simply requires a few more equations to be solved. The second complication on
the other hand would not be very easy to implement, and would require some
new ideas to be inserted into the model.

Another extension of the model that could easily be achieved is to consider
multiple interacting membranes. In our model we only considered two mem-
branes, but in reality we want to describe a system of many layers. One then
obtains the setup where membranes that reside on the outside have a special
status, with respect to layers that sit in the bulk of the multilayered system.
This extension could prove to be very interesting and would not require any
new concepts to be introduced, but would be possible by an extension of the ex-
isting model. We expect computations to become exceedingly difficult however,
possibly this extension could best be studied using dedicated simulations.

Furthermore, we have assumed a basic model for the adsorption of hydrogen
ions to the surface, where a single Hydrogen ion correlates with a single Carbon
atom. Due to [29], we are aware that more sophisticated models are available
where one hydrogen ion correlates with multiple carbon atoms. The effect of this
complication on the results of our model is at this point not easily estimated.

Certainly, we need to take a critical look at the Van der Waals forces, also
being of mean field nature. The expression we used for the Van der Waals free
energy of interaction was taken from [20], which is a general expression for the
Van der Waals interactions between two membranes of finite thickness. The
value for the Hamaker constant we used was taken from [30] and is valid for
a system of two graphene layers, acting across a region filled with water. As
already mentioned in the main text, we were unable to find a specific value
for the graphene-CSA-graphene system and therefore assumed the quoted value
to be applicable to our system. This assumption seems justified, considering
water and chlorosulfonic acid have similar values for their dielectric constant.
However, from the plots in Section 4.3, we see that the value of the Hamaker
constant is of great significance for the final results of our model. Also, as
mentioned before, Van der Waals theory is a mean field theory as well. Taking
into account the extremely small separation distance and membrane thickness
of our system, the validity of our description of the Van der Waals forces can be
questioned. A closer look at Van der Waals forces for a system with our specific
characteristics seems to be a prudent step to take in a future research project.

We have not performed an extensive study into the concept of interaction
energy in this report. Instead, we focussed on the disjoining pressure. For com-
pleteness, in Appendix C.1, we consider the free energy of interaction between
semi-infinite parallel plates, for the surface conditions of fixed charge, fixed po-
tential and charge regulation. We derive the free energy of interaction in three
different ways: By thermodynamic integration, by statistical mechanics meth-
ods, and by deriving it from the disjoining pressure. These considerations are
however not very elaborate. From [33], the experimentally determined separa-
tion energy of two 1-nm squares of graphene is over 2 eV, which can be regarded
as relatively large. A more thorough study into the energetic concepts of the
graphene/CSA system would however be needed to be able to say more about
this. This could potentially lead to more insights into the behaviour of the
system.
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Finally, as mentioned earlier, we also have to consider the possibility that the
spontaneous exfoliation of graphite in chlorosulfonic acid cannot be explained
by electrostatics in principle. That is to say, the attractive Van der Waals forces
cannot be overcome by the Coulombic repulsion due to the double layer interac-
tions alone. Other processes and considerations need to be taken into account.
Specifically, a closer look at the characteristic properties of chlorosulfonic acid
warrants further investigation in our opinion. In the next, final chapter, we
summarize our results.
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Chapter 5

Summary and final
conclusions

The main goal of this report was to describe a system of graphene layers and find
an explanation for the spontaneous exfoliation of graphite in chlorosulfonic acid,
as found by experiment. The generally accepted explanation in the literature is
that the exfoliation is caused by Coulombic repulsion, due to protonation of the
graphene platelets. Hydrogen ions, formed by autodissociation of the acid bind
to Carbon atoms in graphene, and are hereby responsible for its protonation.

To validate this claim, in Chapter 1 we set up a mean field theory using
charge regulation to describe parallel plates of infinite thickness using DLVO
theory. We constructed the grand potential for our system and from it, derived
the Boltzmann distribution that describes the density profile of the ions in
solution. By combining it with the Poisson equation, we arrived at the Poisson-
Boltzmann equation, which lies at the heart of DLVO theory. We solved the
Poisson-Boltzmann equation, both the full nonlinear version and the linearised
Debye-Hückel version, for a system of one and two interacting double layers. In
doing so, we considered three separate surface conditions: Fixed surface charge,
fixed surface potential and charge regulation. The latter being the physically
most interesting case, we focussed on setting up a charge regulation theory.
Since the charge regulation case involved a selfconsistent problem, numerical
computations were needed to find solutions for the electrostatic potential.

After finding solutions for the electrostatic potential, in Chapter 2 we fo-
cussed on interactions by considering the disjoining pressure between the plates.
We found distinct behaviour for the cases of fixed surface charge, fixed surface
potential and charge regulation conditions. Besides finding a divergent disjoin-
ing pressure for the fixed charge case, which was expected, divergent behaviour
was found for the charge regulation case as well. This result is not very easy
to understand and seems counterintuitive at first sight. The same results were
later found to appear in the literature as well and some considerations were put
forward in an attempt to explain them.

Since graphene platelets are only one layer of atoms thick, their thickness
is extremeley small compared to its other dimensions. To take this property of
our system into account, in Chapter 2 we focussed on describing a system of
membranes: The plates were now considered to have a finite thickness. As a
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direct result, the outer regions on either side of the system also had to be taken
into account and we had to consider four double layers, instead of two. We
set up a model to describe this finite thickness effect by combining the single
double layer solution and the solution for two interacting double layers. We
found that the disjoining pressure between the membranes depends greatly on
their thickness. For decreasing thickness, the disjoining pressure is decreased as
well.

Next, in Chapter 3 we considered the image charge effect. In general, objects
such as colloids have a much lower dielectric constant than the solvent in which
they are immersed. This is especially true for our system of graphene platelets
in chlorosulfonic acid. The mismatch in dielectric constant causes polarisation
charges to form, whose effect can be described by image charges. We used two
separate methods to study the image charge effect. The first consisted of solving
for the potential of our system of two membranes of finite thickness, but this time
taking the mismatch in dielectric constants into account. We found the result of
this method unsatisfying and therefore turned our attention to a second method.
In the second method, a modified Poisson-Boltzmann equation is considered.
An interaction potential is introduced that describes the image charge effect. In
the end, we found the effect to be increasingly small for larger solvent dielectric
constants. Considering the large dielectric constant of chlorosulfonic acid, we
judged the image charge effect to be of minor importance to our system.

As a small detour, the so-called zero field solution was derived. This solution
for the potential between two parallel plates proved, not only very straightfor-
ward in its computations, but also capable of providing a surprisingly accu-
rate solution for the electrostatic potential, without the need for solving the
Poisson-Boltzmann equation. This appeared to be true, even beyond the range
expected from the assumptions made in its derivation. Though very promising
as a method for solving systems with small separation distances, the zero field
method was not pursued.

The repulsive disjoining pressure due to the double layer repulsions was
finally complemented by the attractive Van der Waals forces. A general expres-
sion for the Van der Waals forces between two membranes of finite thickness
across an intervening medium was taken from the literature. Completing our
model, we were left with finding the appropriate values for the parameters of
our system. This was the subject of Chapter 4. Some parameter values were
easily found in the literature, others required some derivation and in a few cases
no specific values were available, forcing us to make an assumption. This was
particularly true for the Hamaker constant. Of specific interest is the charge
regulation parameter, which describes the adsorption of Hydrogen ions on the
surfaces and is related to the binding energy. The so-called surface reaction con-
stant was treated as a fitting parameter, an approximate value being obtained
by considering a single double layer in solution and ‘fitting’ the parameter to
obtain the degree of adsorption found by experiment.

Finally, upon inserting all parameter values, we were able to find the total
disjoining pressure for the graphene/CSA system. We found that the threshold,
where repulsive interactions transition to attractive interactions, occurs at a sep-
aration distance far beyond the critical distance. The critical distance being de-
fined as the separation distance between graphene layers in solid graphite. This
determination lead us to the conclusion that our model cannot correctly predict
the spontaneous exfoliation of graphite in chlorosulfonic acid. The statement
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often found in the literature, e.g., in [8], that the acid protonates the graphene to
induce repulsion between layers, according to the results of our model, deserves
to be approached with a critical mindset.

The first step in analysing our result was to take a critical look at the pa-
rameters of our system, by varying their values and determining the impact on
the final result. We found that the parameters had to be varied quite far be-
yond their best known values, in order to find repulsive behaviour at the critical
distance. The Hamaker constant in particular was found to be of great impact.

Besides the validity of our parameter values, we considered two possible ex-
planations for our inability to correctly predict exfoliation. First, the limitations
of our model and the assumptions we made. Our model, being of mean field
nature, inherently has its limitations. Also, in setting up our model, we made
several simplifying assumptions, including mirror symmetry and the limited im-
pact of the image charge effect. These considerations were described in detail
in Section 4.4. As a second explanation, we considered the possibility that the
observed exfoliation cannot be explained by electrostatics in principle. Besides
double layer repulsions and Van der Waals attractions, other processes must be
taken into account. This was briefly discussed in Section 4.4.

We concluded by observing that several extensions to our model can be
implemented, without the need for introducing new concepts. For example, one
can consider the mirror symmetry to be broken, or consider, instead of only
two membranes, a system of multiple membranes. These extensions would only
add to the technical complexity of solving the equations, without the need for
introducing new concepts and therefore seem like a logical next step for future
research projects.
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Appendix A

Appendices to Chapter 1

A.1 Definitions and notation

We have, in Table A.1 summarized the parameters used, and definitions made
in this report.

Table A.1: Parameters used in this report
SI quantity Dimensionless quantity

Coordinate z x ≡ z/λD
Electrostatic potential ψ φ ≡ βeψ
Bulk ion density nb ν ≡ (β3e6/8π2ε30)nb
Surface charge density σ σ̃ ≡ λ2

Bσ
Max. surf. charge density σm σ̃m ≡ λ2

Bσm
Σ ≡ 4πλσ̃
Σm ≡ 4πλσ̃m
λ ≡ λD/λB

Fraction charged sites α ≡ σ/σm
Surface reaction constant r ≡ K/nb
Plate separation distance D d ≡ D/λD
Membrane thickness H h ≡ H/λD
Charge inner region Σtot Λ ≡ λ2

BΣtot/e

Disjoining pressure Π Π̃ ≡ βΠ/nb
Free energy of interaction U Ũ ≡ (λ2

D/kBT )U
Prefactor image charge ∆ ≡ (εsol − εobj)/(εsol + εobj)

γ ≡ εobject/εsolvent
Hamaker constant AH ÃH ≡ AH/kBT
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A.2 Deriving the terms in the Helmholtz free
energy functional

In Section 1.2 we wrote down an expression for the Helmholtz free energy func-
tional

βF [n±, σ] =
∑
α=±

∫ ∞
−∞

dz{nα(z)(log[nα(z)Λ3
α]− 1)}

+
1

2

∫ ∞
−∞

dzQ(z)φ(z) + σ{log[
σ

σm
] + βFb}

+(σm − σ) log[1− σ

σm
].

(A.2.1)

Note, that we are considering a free energy density per surface area. This is
convenient since we imagine that our plates extend to infinity in both directions
perpendicular to the line that connects the two plates. Here, we elaborate on
how the different terms in the expression come about.

The first term represents the entropy of the ions and can be derived from
Gibbs entropy equation S = −kB

∑
ν pν log pν . Imagine that we have a total

volume V filled with N ions per species. Their density is then defined as n ≡
N/V . Further, imagine that the volume is divided into little cubes of volume
Λ3. The total number of cubes is then V/Λ3. We can now write down the
probability that a cube is occupied by an ion and the probability that it is
empty. They are nV/(V/Λ3) and (V/Λ3 − nV )/(V/Λ3) = 1− nΛ3 respectively.
If we insert these expressions into Gibbs entropy equation we can obtain the
entropy for a single site

s = −kB
∑
ν

pν log pν = −kB
{
nΛ3 log[nΛ3] + (1− nΛ3) log[1− nΛ3]

}
. (A.2.2)

The total entropy for V/Λ3 sites is then given by

S = −kBV
{
n log[nΛ3] + (1/Λ3 − n) log[1− nΛ3]

}
. (A.2.3)

If we now let Λ become very small and use that log[1− x] ≈ −x for small x, we
can write

S = −kBV
{
n log[nΛ3]− n

}
, (A.2.4)

which corresponds to the first term in (A.2.1) if we consider two species of
ions(positive and negative), replace the volume V by an integral and multiply
by −T .

The second term represents the mean-field Coulombic energy of the charges
in the electric field, in general expressed as the product of the charge and the
electric potential. With our charge distribution Q defined as Q(z) ≡ n+(z) −
n−(z) + σδ(z + D/2) + σδ(z − D/2) and the electric potential given by ψ =
(kBT/e)φ this works out to the second term in (A.2.1). Note, that since the
potential φ is generated by the charge distribution Q itself there is a factor
of one-half entering the expression for the energy to compensate for double
counting. Also, Q needs to be multiplied by the unit charge e, which then
cancels against the e from the expression for ψ.
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The last two terms represent the free energy of the coupling between bulk and
surface. We start out again with Gibbs entropy equation S = −kB

∑
ν pν log pν .

The probability that a site is occupied is given by σ/σm while the probability
for an empty site is (σm − σ)/σm. This gives for the free energy of coupling

F = U−TS = σFb+kBTσm

{
σ

σm
log

σ

σm
+
σm − σ
σm

log[
σm − σ
σm

]

}
, (A.2.5)

where σFb is the binding energy for occupied sites. This works out to

σ

β
{log[

σ

σm
] + βFb}+

σm − σ
β

log[1− σ

σm
], (A.2.6)

which corresponds to terms three and four in (A.2.1).

A.3 Deriving the Boltzmann distribution

In Section 1.2, we derive the Boltzmann distribution by minimizing the grand
potential Ω with respect to the density profiles n±(z). In this appendix all steps
of this derivation can be found. Starting point is our expression for the grand
potential

Ω[n±, σ] =
1

β

∑
α=±

∫ ∞
−∞

dz{nα(z)(log[nα(z)Λ3
α]− 1)}

+
1

2β

∫ ∞
−∞

dzQ(z)φ(z) +
σ

β
{log[

σ

σm
] + βFb}

+
σm − σ
β

log[1− σ

σm
]−
∫ ∞
−∞

dz{
∑
α=±

µα(z)nα(z) + µ+(z)σδ(z)},

(A.3.1)

which we minimize with respect to n±:

δΩ[n±, σ]

δn+(z)
=

1

β

∫ ∞
−∞

dz′
δ

δn+(z)

{
n+(z′) log[n+(z′)Λ3

+]− n+(z′) + n−(z′) log[n−(z′)Λ3
−]− 1

}
+

1

2β

δ

δn+(z)

∫ ∞
−∞

dz′Q(z′)φ(z′)

− δ

δn+(z)

∫ ∞
−∞

dz′ {µ+(z′)n+(z′) + µ−(z′)n−(z′) + µ+(z′)σδ(z)}

= 0 (A.3.2)

→ ∫ ∞
−∞

dz′
{
δ(z′ − z) log[n+(z′)Λ3

+] + n+(z′)
1

n+(z′)Λ3
+

δ(z′ − z)Λ3
+ − δ(z′ − z)

}
+

1

2

δ

δn+(z)

∫ ∞
−∞

dz′Q(z′)φ(z′)− β
∫ ∞
−∞

dz′ {µ+(z′)δ(z′ − z)} = 0

(A.3.3)
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→

log[n+(z)Λ3
+] +

∫ ∞
−∞

dz {δ(z′ − z)− δ(z′ − z)}+φ(z)−βµ+(z) = 0 (A.3.4)

→ log[n+(z)Λ3
+] = βµ+(z)− φ(z) = log[nbΛ

3
+]− φ(z) for z > 0 (A.3.5)

→ log

[
n+(z)Λ3

+

nbΛ3
+

]
= −φ(z) (A.3.6)

→ n+(z) = nb exp[−φ(z)] for z > 0. (A.3.7)

By following the same procedure, an expression for n−(z) can be obtained, so
we finally obtain the famous Boltzmann distributions

n±(z) = nb exp[∓φ(z)], for z > 0. (A.3.8)

A.4 Deriving the Langmuir adsorption isotherm

Starting point is again the expression for the grand potential as given in Section
1.2, which we now minimize with respect to σ:

∂Ω[n±, σ]

∂σ
=

1

2β

∂

∂σ

∫ ∞
−∞

dzQ(z)φ(z) +
1

β

∂

∂σ

{
σ(log[

σ

σm
] + βFb)

}
+

1

β

∂

∂σ

{
(σm − σ) log[1− σ

σm
]

}
− ∂

∂σ

∫ ∞
−∞

dzµ+σδ(z) = 0. (A.4.1)

→ 1

2

∂

∂σ

∫ ∞
−∞

dzQ(z)φ(z) + log[
σ

σm
] + βFb + 1− log[1− σ

σm
]− 1−

β

∫ ∞
−∞

dzµ+δ(z) = 0. (A.4.2)

→ φs + log[
σ

σm
] + βFb − log[1− σ

σm
]− βµ+ = 0. (A.4.3)

→ φs + βFb − βµ+ = log

[
σm − σ
σ

]
. (A.4.4)

→ α =
σ

σm
=

1

1 + exp[βFb − βµ+ + φs]
. (A.4.5)

A.5 The law of mass action

In Section 1.3, we use the law of mass action to find an expression for the
charge regulation parameter α. The law of mass action states that the rate of a
chemical reaction is directly proportional to the product of the concentrations of
the reactants. If we consider the equilibrium S+H+ −−⇀↽−− SH+ with equilibrium
constant K, where [S] denotes the concentration of empty sites on the surface,
[SP+] the concentration of sites where a positive ion has been adsorped and
[P+]s represents the density of positive ions near the surface, this gives us:

K =
[S][P+]s
[SP+]

=
σm − σ
σ

ρ+(0+) =
σm − σ
σ

nb exp[−φs]. (A.5.1)
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Rewriting this for σ gives:

σ = σm

{
1 +

K

nb
exp[φs]

}−1

, (A.5.2)

which finally leads to an expression for α

α =
σ

σm
=

1

1 +K exp[φs]/nb
. (A.5.3)

A.6 The solution of the nonlinear Poisson-Boltzmann
equation for two plates

In Section 1.5, we presented the solution to the nonlinear Poissoin-Boltzmann
equation for the setup with two parallel plates. Here, we will give the full deriva-
tion of this solution, both for fixed potential and charge regulation conditions.

A.6.1 Fixed surface potential

Here, we have the additional boundary condition

φ(x = ±d/2) ≡ φs, (A.6.1)

with φs the potential at the surfaces. By inserting this boundary condition in
(1.5.10) we can obtain a relation between φm, d and φs

φs = 2 arcsinh

[
sinh[φm/2]

cn[(d/2) cosh[φm/2], 1
cosh[φm/2] ]

]
, (A.6.2)

where cn is one of the Jacobi elliptic functions known as the Jacobian cosine
amplitude [34]. By inserting the obtained φm back into (1.5.10) we then have
φ as a funtion of x with parameters d and φs.

A.6.2 Charge regulation

We start with the following set of equations

φ′′(x) = sinh[φ(x)]; (A.6.3a)

φ′(x = 0) = 0; (A.6.3b)

φ(x = 0) = φm. (A.6.3c)

From the Poisson-Boltzmann equation we find

d

dx

(
dφ

dx

)2

= 2 sinh[φ(x)]
dφ

dx
. (A.6.4)

This can be integrated to give(
dφ

dx

)2

= 2 cosh[φ(x)] + C. (A.6.5)
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Using both boundary conditions we obtain(
dφ

dx

)2

= 2(cosh[φ(x)]− cosh[φm]). (A.6.6)

This can be rewritten to(
dφ

dx

)2

= 4(sinh2[
φ(x)

2
]− sinh2[

φm
2

]). (A.6.7)

Then define t ≡ sinh[φ(x)
2 ] and t0 ≡ sinh[φm

2 ] so that we get

dφ

dx
= 2
√
t2 − t20, (A.6.8)

from which we can write

dt

dx
=
dt

dφ

dφ

dx
= cosh[

φ(x)

2
]
√
t2 − t20 =

√
cosh2[

φ(x)

2
]
√
t2 − t20, (A.6.9)

which leads to

dx =
dt√

(t2 + 1)(t2 − t20)
, (A.6.10)

by using the fact that cosh2 x = sinh2 x + 1. Then we integrate from x = 0 to
x = x:∫ x

0

dx′ =

∫ t

t0

dt′√
(t′2 + 1)(t′2 − t20)

. (A.6.11)

This can be rewritten to an elliptic integral of the first kind by defining
k ≡ 1

cosh[φm/2] and α ≡ arccos t0t → dt = t0
cos2 α sinαdα

so that we get

x = k

∫ arccos
t0
t

0

t0 sinαdα

cos2 α
√

(t2 + 1)k2(t2 − t20)
, (A.6.12)

which after some manipulation works out to

x = k

∫ arccos
t0
t

0

dα√
1− k2 sin2 α

= kF (θ, k), (A.6.13)

with θ ≡ arccos t0t and k and α as defined above. F (θ, k) is en elliptic integral
of the first kind, defined as

F (θ, k) =

∫ θ

0

dα√
1− k2 sin2 α

. (A.6.14)

So, the expression we have then is

x =
1

cosh[φm/2]
F

(
arccos

sinh[φm/2]

sinh[φ(x)/2]
,

1

cosh[φm/2]

)
. (A.6.15)

This expression can finally be inverted to give

φ(x) = 2 arcsinh

[
sinh[φm/2]

cn(x cosh[φm/2], 1
cosh[φm/2] )

]
, (A.6.16)

where arcsinh is the inverse hyperbolic sine and again, cn is one of the Jacobi
elliptic functions known as the Jacobian cosine amplitude.
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Appendix B

Appendices to Chapter 3

B.1 Image charge effect: A modified Poisson-
Boltzmann equation

In Section 3.1.3 we consider a modified Poisson-Boltzmann equation in order
to study the image charge effect. This method is due to [19]. It starts by
considering a correlational and charge-image contribution W (z), which is given
in SI units by

W (z) =
kBTλB

4

∫ ∞
0

dkk(
f1

f3
exp[2pz]

× [(p+ k) exp[2rcp− rck] + (p− k) exp[2rcp+ rck]]

+
f2

f3
exp[−2pz + 2rcp]× [(p+ k) exp[2Dp+ rck] + (p− k) exp[2Dp− rck]]),

(B.1.1)

where k is a wavevector, p =
√

1/λ2
D + k2, rc is the ion radius, D is the plate

separation distance and the fi are given by

f1 = p cosh[krc] + k sinh[krc]; (B.1.2a)

f2 = p cosh[krc]− k sinh[krc]; (B.1.2b)

f3 = p(exp[2Dp]f2
1 − exp[4rcp]f

2
2 ). (B.1.2c)

W (z) corresponds to the work necessary to insert an ion at position z and is
calculated using the Güntelberg charging process. As mentioned in Section
3.1.3, we only consider the image charge effect and ignore the charge-charge
correlation effect, by setting rc = 0, which gives us

W (z) =
kBTλB

2

∫ ∞
0

dk
k

p(exp[2Dp]− 1)
{exp[2pz] + exp[2p(D − z)]} , (B.1.3)

which is the expression used in Section 3.1.3.
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Appendix C

Appendices to Chapter 4

C.1 Free energy of interaction

In the main text of this report we looked at the interaction between double
layers in a flat plane geometry, by considering the disjoining pressure. One can
also look at the interaction energy between the plates. Here, we derive this
interaction energy, which we might call the free energy of interaction, as we are
also considering entropic effects. There are different ways to calculate the free
energy of interaction. The first is by thermodynamic integration: We determine
the free energy between two plates for a given plate distance d, and then subtract
from it the free energy at infinite plate separation. This gives us the free energy
of interaction due to the double layers for that particular separation distance d.
Secondly, we use statistical mechanics to derive the free energy of interaction.
The third method is by integrating the disjoining pressure. In this section, the
equivalence of the three methods is shown. All results in this section are based
on the solution of the linear Debye-Hückel equation.

C.1.1 Free energy by using thermodynamic integration

In this method, which is due to Verwey and Overbeek [12] we calculate the free
energy by imagining a charging process that charges the plates from zero surface
charge to the final surface charge σ̃. In our case this involves the adsorption of
positive ions onto the surface.

When dΓ ions are adsorbed onto the surface(per unit area), the correspond-
ing change in free energy is given by

df = (µs − µb)dΓ, (C.1.1)

where µs and µb are the surface and solvent bulk electrochemical potential
respectively and we have introduced the free energy density f , which is a free
energy per surface area. For the surface electrochemical potential we can make
the definition

µs = µ̄s + qψs, (C.1.2)

where q is the charge of the ions and ψs is the surface potential. Here µ̄s is
the chemical part of the surface electrochemical potential and we assume that it
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does not explicitly depend on the surface potential ψs, but only on the amount
of ions adsorbed: µ̄s = µ̄s(Γ). Putting this in and integrating gives the following
expression for the free energy density

f =

∫ Γ

0

(µ̄s − µb)dΓ′ + q

∫ Γ

0

ψsdΓ′, (C.1.3)

which can be written as

f =

∫ Γ

0

(µ̄s − µb)dΓ′︸ ︷︷ ︸
chemical term

+

∫ σe

0

ψs(σ
′
e)dσ

′
e︸ ︷︷ ︸

electrical term

, (C.1.4)

where Γ is the surface density of the ions and qdΓ = dσe. Notice that there
are two terms in (C.1.4); the first is called the chemical contribution to the free
energy and the second term corresponds to the electrical work that is done in
creating the double layer. It is dubbed the electrical term.

The explicit form of the free energy density in (C.1.4) depends on the specific
case we are considering. For the case of charge regulation we do not have an
explicit expression for ψs as a function of σm and r available. Therefore, we
cannot readily determine the free energy by means of thermodynamic integration
in this case. However, both for the cases of fixed surface charge and fixed surface
potential, the integration can be performed as we now demonstrate.

The explicit form of the chemical term depends on the specific case and on
the way in which the surfaces acquire their charge. In case of constant surface
charge the density of adsorbed ions on the surface(Γ) does not change and is
thus independent of the separation distance. This means that µ̄s(Γ) does not
change and, by definition, µb is constant as well, meaning that in calculating
the free energy of interaction the chemical term can be ignored in the case of
constant σ.

For a constant surface potential we have that µs = µb at equilibrium and
so µb = µ̄s + qψs and from there µ̄s − µb = −qψs and since ψs is constant, the
chemical term becomes∫ Γ

0

(µ̄s − µb)dΓ′ = −qψs
∫ Γ

0

dΓ′ = −qψsΓ = −ψsσe. (C.1.5)

So, finally we have that

fFC =

∫ σe

0

ψs(σ
′
e)dσ

′
e, (C.1.6)

is the free energy density for fixed surface charge and

fFP =

∫ σe

0

ψs(σ
′
e)dσ

′
e − σeψs = fFC − σeψs, (C.1.7)

is the free energy density for fixed surface potential. So, to be able to calculate
the free energy we need an expression for the surface potential ψs as a function
of the surface charge density σ.
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Fixed surface charge

For fixed surface charge σe the expression for the free energy per surface area is
given by (C.1.6) where ψs(σe) is the electric potential at the surfaces, given by:

ψs(σe) =
kBT

e
4πλσ̃ coth[

d

2
] =

kBT

e2
4πλBλDσe coth[

d

2
]. (C.1.8)

To find the interaction potential between the plates, we calculate the free energy
density as a function of plate seperation d, and subtract from it the free energy
density at infinite plate seperation d→∞. After integrating we get for the free
energy per surface area:

fFC(d) =
2πkBTλBλD

e2
coth[

d

2
]σ2
e = 2πkBTλ coth[

d

2
]σ̃2/λ2

B , (C.1.9)

while for d→∞ we have:

fFC(d→∞) = 2πkBTλσ̃
2/λ2

B . (C.1.10)

So, the interaction potential for two parallel plates per unit surface area for
fixed σ̃ is given by:

UFC(d) = 4πkBTλ(coth[
d

2
]− 1)σ̃2/λ2

B , (C.1.11)

where we have multiplied the entire expression by a factor 2 since we are consid-
ering two plates. If we define a dimensionless interaction energy for two plates
in units of kBT per surface area of the Bjerrum length squared, we find:

ŨFC(d) ≡ λ2
B

kBT
UFC(d) = 4πλ(coth[

d

2
]− 1)σ̃2. (C.1.12)

Fixed surface potential

For fixed surface potential the expression for the free energy density is given by
(C.1.7) which works out to

fFP (d) =
2πkBTλ

λ2
B

coth[
d

2
]σ̃2 − eσ̃ψs

λ2
B

= −2πkBTλ

λ2
B

coth[
d

2
]σ̃2. (C.1.13)

Next, insert the expression for σ̃(ψs)

σ̃(ψs) =
eψs

4πkBTλ
tanh[

d

2
], (C.1.14)

to obtain

fFP (d) =
−e2ψ2

s

8πkBTλλ2
D

tanh[
d

2
], (C.1.15)

as the surface free energy density for fixed surface potential. The interaction
potential is obtained by subtracting the free energy for infinite seperation dis-
tance. For x → ∞: tanh[x] → 1 so the interaction potential per unit surface
area for two plates and fixed surface potential is given by:

UFP (d) =
−e2

4πkBTλλ2
B

(tanh[
d

2
]− 1)ψ2

s , (C.1.16)
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where we have multiplied by an overall factor of 2 since we are considering the
interaction between two plates. Rewriting to a dimensionless expression for the
interaction energy gives:

ŨFP (d) ≡ λ2
B

kBT
UFP (d) =

1

4πλ
(1− tanh[

d

2
])φ2

s. (C.1.17)

C.1.2 Free energy by means of statistical mechanics

Here, we derive the free energy of interaction by means of a different method.
We determine the free energy by inserting the expressions for n±(z) and φ(z)
back into the expression for the grand potential Ω. In this instance, we shall
calculate the energy for the case of fixed surface charge.

Starting point of our derivation will therefore be our expression for the grand
potential Ω

Ω[n±, σ] = F [n±, σ]

−
∫ ∞
−∞

dz{
∑
α=±

µα(z)nα(z) + µ+(z)σδ(z +D/2) + µ+(z)σδ(z −D/2)},

(C.1.18)

where the Helmholtz free energy functional F is given by

F [n±, σ] =
1

β

∑
α=±

∫ ∞
−∞

dz{nα(z)(log[nα(z)Λ3
α]− 1)}

+
1

2β

∫ ∞
−∞

dzQ(z)φ(z) +
σ

β
{log[

σ

σm
] + βFb}

+
σm − σ
β

log[1− σ

σm
].

(C.1.19)

If we now insert the thermal de Broglie wavelength Λα, given by the following
expression Λ3

α = (1/nb) exp[µα/kBT ], the first term in the expression for F
becomes

1

β

∑
α=±

∫ ∞
−∞

dz{nα(z)(log[
nα(z)

nb
]− 1)}+

∑
α=±

∫ ∞
−∞

dznα(z)µα. (C.1.20)

The second term now cancels against the second term in (C.1.18) and the full
expression for Ω becomes

Ω[n±, σ] =
1

β

∑
α=±

∫ ∞
−∞

dz{nα(z)(log[
nα(z)

nb
]− 1)}

+
1

2β

∫ ∞
−∞

dzQ(z)φ(z) +
1σ

β
{log[

σ

σm
] + βFb}+

1σm − σ
β

log[1− σ

σm
]

−
∫ ∞
−∞

dz{µ+(z)σδ(z +D/2) + µ+(z)σδ(z −D/2)}. (C.1.21)

Since what we are looking for is an expression for the interaction between two
plates, it is clear that only those terms that depend on the plate seperation
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distance D are important. In our present consideration we can therefore safely
ignore all but the first two terms. Now we are ready to insert our expressions
for the ion densities n±(z) = nb exp[∓φ(z)] which gives us

Ω[n±, σ] =
1

β

∫ ∞
−∞

dz{nb exp[−φ(z)](log[
nb exp[−φ(z)]

nb
]− 1)

+ nb exp[+φ(z)](log[
nb exp[φ(z)]

nb
]− 1)}

+
1

2β

∫ ∞
−∞

dz{n+(z)− n−(z) + σδ(z +D/2) + σδ(z −D/2))φ(z)}.

(C.1.22)

Working it out gives

Ω[n±, σ] =
Anb
β

∫ ∞
−∞

dz(φ(z) sinh[φ(z)]− cosh[φ(z)])

−nb
β

∫ ∞
−∞

dz sinh[φ(z)]φ(z)+
σ

2β

∫ ∞
−∞

dz{δ(z+D/2)φ(z)+δ(z−D/2)φ(z)},

(C.1.23)

which leads to

Ω[n±, σ] =
nb
β

∫ ∞
−∞

dz(φ(z) sinh[φ(z)]− 2 cosh[φ(z)])

+
σ

2β

∫ ∞
−∞

dz{δ(z +D/2)φ(z) + δ(z −D/2)φ(z)}. (C.1.24)

For small φ(z) we can write

Ω[n±, σ] =
Anb
β

∫ ∞
−∞

dz{φ(z)(φ(z)+
φ(z)3

3!
+...)−2(1+

φ(z)2

2!
+
φ(z)4

4!
+...)}

+
Aσ

2β

∫ ∞
−∞

dz{δ(z +D/2)φ(z) + δ(z −D/2)φ(z)}, (C.1.25)

which works out to

Ω[n±, σ] =
Anb
β

∫ ∞
−∞

dz{−2}

+
Aσ

2β

∫ ∞
−∞

dz{δ(z +D/2)φ(z) + δ(z −D/2)φ(z)}, (C.1.26)

if we ignore φ4 and higher contributions. Now, this first term is clearly a constant
and can therefore be ignored when considering interactions. This finally leads
to

Ω[n±, σ] =
1

2β

∫ ∞
−∞

dz{q(z)φ(z)} (C.1.27)

where q(z) is defined by:

q(z) = σδ(z +D/2) + σδ(z −D/2) (C.1.28)
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Inserting the expressions for q(z) and φ(z) we obtain

Ω = 4πkBTλ coth[
d

2
]σ̃2/λ2

B , (C.1.29)

where the expression for q(z) is used from C.1.28 and for φ(z) we have used the
solution for fixed surface charge given by

φFC(x) = 4πλσ̃
cosh[x]

sinh[d/2]
. (C.1.30)

Again, subtract the same expression for D → ∞ to obtain the free energy per
surface area which, when rewritten to our dimensionless variables looks like this

ŨFC(d) ≡ λ2
B

kBT
UFC(d) = 4πλ(coth[

d

2
]− 1)σ̃2 (C.1.31)

which is the same expression as obtained in C.1.12. However, we should note
that in this derivation we have assumed the dimensionless electrostatic potential
φ to be small. As seen in the main text, this is in general not the case for our
graphene/CSA system.

C.1.3 Free energy from the disjoining pressure

We already showed how the free energy of interaction can be obtained by ther-
modynamic integration, for the cases of fixed surface charge and fixed surface
potential. However, for the case of charge regulation no explicit expression for
ψs is available, rendering this method not readily applicable. In Section 2.3, we
derived an expression for Langmuir’s disjoining pressure

Π̃(d) ≡ Π(d)

kBTnb
= 2(cosh[φm]− 1). (C.1.32)

Now, we shall demonstrate how it can be used to find the free energy of in-
teraction, not only for the cases of fixed surface charge and potential, but for
charge regulation conditions as well. We imagine the scenario of bringing two
plates together from infinite seperation to a seperation distance of d, against
the disjoining pressure that exists between the plates. The required work to do
this is then the free energy of interaction between the plates. This means we
have to consider the integral

U(d) =

∫
dU = −λD

∫ d

∞
Πdy, (C.1.33)

where the integration runs from ∞ to d. In this expression, we have relabeled
the integration parameter d to y to avoid confusing notation. This means that
y is here the separation distance between the plates, in units of λD. We can
now perform this integral and find the free energy of interaction for the three
separate surface conditions, by plugging in the appropriation expression for the
disjoining pressure.
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Fixed surface charge

As we derived earlier, in the case of fixed surface charge, the potential between
the plates is given by

φ(x) = 4πλσ̃
cosh[x]

sinh[d/2]
, (C.1.34)

such that φm is given by

φm =
4πλσ̃

sinh[d/2]
, (C.1.35)

and we obtain the following expression for the disjoining pressure.

Π̃FC = 2(cosh[
4πλσ̃

sinh[d/2]
]− 1). (C.1.36)

We can now integrate to obtain an expression for the interaction energy

UFC = −λDnbkBT (4πλσ̃)2

∫ d

∞

(
1

sinh(y/2)

)2

dy

= 2λDnbkBT × 16π2λ2σ̃2 [coth(y/2)]
d
∞

=
4πkBT σ̃

2λ

λ2
B

(coth(d/2)− 1),

(C.1.37)

where we have used that d
dx coth(x2 ) = −1

2 sinh2(x/2)
and nb = 1

8πλBλ2
D

. This can

again be rewritten to a dimensionless interaction energy in units of kBT to find
the same expression as in(C.1.12).

Fixed surface potential

For the case of fixed surface potential, the electric potential between the plates
is given by

φ(x) = φs
cosh[x]

cosh[d/2]
, (C.1.38)

giving for the potential at the center between the plates

φm =
φs

cosh[d/2]
. (C.1.39)

Again we can insert this expression into equation (2.3.3) to obtain the disjoining
pressure:

Π̃FP = 2(cosh[
φs

cosh[d/2]
]− 1). (C.1.40)

Again, we can integrate to obtain the interaction energy:

UFP = −λDkBTρbφ2
s

∫ d

∞

(
1

cosh(d′/2)

)2

dy

= −2kBTλDρbφ
2
s [tanh(d′/2)]

d
∞

=
−2kBTλDφ

2
s

8πλBλ2
D

(tanh(
d

2
)− 1)

=
kBT

4πλ2
Bλ

(1− tanh[
d

2
])φ2

s.

(C.1.41)
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By rewriting this expression to a dimensionless interaction energy in units of
kBT per area λ2

B , we again find an expression similar to (C.1.17).

Charge regulation

For the case of charge regulation, the electrical potential is given by

φ(x) = C cosh[x], (??)

and its value at x = 0 by

φm = φ(x = 0) = C. (C.1.42)

This gives for the reduced disjoining pressure

Π̃CR = 2(cosh[C]− 1), (C.1.43)

where C is given implicitly by

C =
4πλσ̃m

sinh(d2 )(1 + r exp[C cosh(d2 )])
. (C.1.44)

Again, we can again integrate the expression for the disjoining pressure to ob-
tain the potential energy by means of (C.1.33). For the specific case of charge
regulation, the expression for the dimensionless free energy becomes

ŨCR(d) =
λ2
B

kBT
UCR(d) =

1

8πλ

∫ ∞
d

C2dy. (C.1.45)

We now have expressions for the free energy of interaction for the cases of
fixed surface charge, fixed surface potential and charge regulation conditions
in equations (C.1.12), (C.1.17) and (C.1.45) respectively. They are plotted in
Figure C.1.

We can now compare these plots to the disjoining pressure in Figure 2.6,
where we have to remember that the plots in Section 2.3.1 were obtained by
solving the nonlinear Poisson-Boltzmann theory, in contrast to the results from
this section, which were obtained using linear Debye-Hückel theory. However,
their general behaviour should be similar.

In Figure C.1, we again observe that the CR plot lies between the FC and
FP plots, as has typically been the case in all our results. From Section 2.3.1, we
have that the scaling behaviour of the disjoining pressure with plate separation
distance is given by Π̃FC ∝ d−1, Π̃FP ∝ C and Π̃FC ∝ d−1/2 for fixed surface
charge, fixed surface potential and charge regulation conditions respectively,
and where C denotes a constant. Note that this scaling dependence only holds
for small values of d. At this point, we want to make a small analysis of how
these values would relate to the scaling behaviour of the free energy, and if our
findings correspond to the plots in Figure C.1. This will not be a rigourous
analysis.

We start by mentioning the relation between the free energy and the disjoin-
ing pressure

U(d) ∝
∫ Y

d

Πdy. (C.1.46)
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Figure C.1: The dimensionless free energy of interaction Ũ = βλ2
BU between

two semi-infinite plates as a function of separation distance d = D/λD for fixed
surface charge (FC), fixed surface potential (FP) and charge regulation (CR)
surface conditions. For this plot, the parameters were adjusted in such a way
that the disjoining pressure approaches the same value for large d, in all three
cases. This means Σ = 1.0 for the FC case, φs = 1.0 for the FP case and
Σm = 3.72 and r = 1.0 for the CR case.

Since we want to look at the scaling behaviour of the free energy for small
separation distance only, the integral runs to a fixed value Y . By performing this
integration, for example for FP conditions, we find that the scaling behaviour
of the free energy obeys U ∝ (Y − d). This corresponds to a straight line
with a negative slope, which is exactly what we see for FP conditions in Figure
C.1. Looking at the CR case, we find U ∝

√
Y −

√
d, which agrees with the

interaction energy reaching a finite value for d ↓ 0. Finally, for FC conditions
after integrating we find U ∝ log[Y ] − log[d], which agrees with the divergent
behaviour we see in Figure C.1. As already mentioned, this was not meant
as a rigorous analysis of the behaviour of the free energy for small separation
distance, but according to our quick analysis, we find fundamentally different
asymptotic behaviour for the three surface conditions. We find them to be in
agreement with their relation to the disjoining pressure.
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