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Abstract

Ask-Elle is an adaptable tutor, designed to help students learn the programming language
Haskell. A teacher specifies a model solution and Ask-Elle uses this model to provide step-
wise, interactive feedback to students while they solve the programming exercise. Ask-Elle
uses normalisation to compare two programs for equivalence, to assess the correctness of
a program and to provide hints. Normalisation is only suitable for comparing complete
programs. Serrano Mena et al. are developing a unification-based algorithm UM, which is
able to compare both incomplete and complete programs. By using algorithm UM we can
potentially improve the feedback system of Ask-Elle. The main contribution of our work
is to extend the unification-based algorithm to work on real student data. We analyse the
situations in which the algorithm can not completely process the student data and extend
the algorithm accordingly. We construct a pipeline to process student data in order to
compare the results of unification to Ask-Elle’s normalisation and a strategy-based check.
We analyse unification results and successfully enhance algorithm UM.
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CHAPTER 1. INTRODUCTION

1. Introduction

Ask-Elle is an Intelligent Tutoring System (ITS) for the domain of functional programming
[3]. An ITS is computer software that is designed to provide immediate and customisable
feedback to a user whilst performing a task, without the intervention of a human teacher.

Ask-Elle is an adaptable programming tutor, designed to help students learn the func-
tional programming language Haskell by giving automated feedback [3]. Ask-Elle provides
step-wise, interactive feedback to students while they solve programming exercises. A
teacher specifies a model solution. Automatically generated hints and tips then guide the
user towards this solution. To provide adequate feedback, a student program is compared
with a model solution. If a student program can not be compared with a model solution,
program properties are tested using QuickCheck, a lightweight tool for random testing of
Haskell programs [2]. However, the feedback provided by QuickCheck is limited.

1.1 Ask-Elle in Action

Let us demonstrate the strengths and limitations of Ask-Elle’s step-wise feedback with an
example. The origin of this research is similar to previous research by Ochagav́ıa [8]. As a
result, this demonstration of Ask-Elle in action will resemble his, to some extent. We will
take on the role of student and solve a simple exercise. While doing so, we conveniently let
Ask-Elle guide our every step towards the solution. One of Ask-Elle’s example functions
is dupli :: [a] -> [a], which duplicates every element in a list of arbitrary type a.
Although Ask-Elle supports having multiple model solutions per exercise, assume there is
only one specified model solution:

dupli = concatMap (replicate 2)

Figure 1.1 shows how we can use Ask-Elle’s hints to make steps towards the specified
model solution. We start with an empty program and fill in the hole (? represents a hole)
every step, using the hint system. The process of filling in the holes is called refinement.
Ask-Elle’s hints consist of refinements that are automatically generated from the model
solution [8]. As such, filling in the holes every step using Ask-Elle’s hints will ultimately
result in a solution that is equivalent to a model solution.

-- Let’s start with an empty program (? represents a hole)

?

-- Hint: Introduce the function dupli.

dupli = ?

-- Hint: Use the concatMap function.

dupli = concatMap ?

-- Hint: Use the replicate function.

dupli = concatMap (replicate ?)

-- Hint: Introduce the integer 2.

dupli = concatMap (replicate 2)

Figure 1.1: Using Ask-Elle’s step-wise hints to solve an exercise.
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1.2. PROGRAM UNIFICATION CHAPTER 1. INTRODUCTION

Of course, using concatMap is just one of numerous solutions to the dupli exercise. An-
other, extensionally equivalent solution to the one in Figure 1.1, uses recursion:

dupli [] = []

dupli (x:xs) = x : x : dupli xs

Suppose we want to solve the exercise using recursion. Let us start with a non-empty
program, by writing down the outline of a typical recursive structure. Imagine we are
not sure how to continue and want to ask Ask-Elle for a hint. Sadly, Ask-Elle can not
match our request. In this example, only the non-recursive model solution is provided to
Ask-Elle. As a result, we can see in Figure 1.2 that Ask-Elle is unable to provide hints
for our recursive approach. Providing a recursion-based model solution would in this case
resolve the issue. In general, a naive approach to account for this lack of feedback is to
supply Ask-Elle with different model solutions per exercise. However, this means a teacher
has to specify many different solutions to account for all possible approaches. Taking into
account variations in syntax, this is all but a feasible approach. We need a more dynamic
solution. This is part of the focus of this thesis.

dupli [] = ?

dupli (x:xs) = ?

-- Feedback: You have drifted from the strategy in such a way

that we can not help you any more.

Figure 1.2: No recursion-based model solution was provided to Ask-Elle. As a result,
no refinements are available for this approach.

1.2 Program Unification

To assess a finished program, we need to determine whether it is equivalent to a model
solution. One way to compare programs for equivalence is by means of program unification.
Unification is not powerful enough to compare two seemingly different programs that have
the same behaviour. In order to compare student solutions to model solutions, Ask-Elle
uses normalisation to iron out the differences [4].

1.2.1 Normalisation

Normalisation is the process of rewriting a program to a more general, normal form by
a series of semantics-preserving transformations. After transforming the programs to
their corresponding normal forms, it attempts to unify them. If it succeeds in making a
syntactical unification, we can safely conclude the programs are equivalent.

In practice, Ask-Elle fails in many cases to provide hints or to assess the correctness
of a finished program. As Ochagav́ıa noted in his research, previous research by Gerdes
et al. [3, 4] shows that part of the problem lies in limitations of Ask-Elle’s normalisation
procedure [8]. Ochagav́ıa then continues to show that Ask-Elle’s normalisation algorithm
can be extended to enhance its effectiveness in comparing solutions. I will discuss the
results of his research in section 2.1. Normalisation is, however, only suitable when com-
paring complete programs. In this research we explore a different approach to program
unification that can compare incomplete programs as well as complete programs.

3



1.3. RELEVANCE CHAPTER 1. INTRODUCTION

1.2.2 Higher-Order Unification

A natural framework for solving program equality problems is higher-order unification.
Higher-order unification is undecidable, but there exist restricted versions that have ac-
ceptable behavior in practice [9]. Serrano Mena et al. are developing an algorithm (from
here on referred to as ’algorithm UM’) that works by means of a decidable, restricted
version of higher-order unification [9]. Unification is a goal-oriented algorithmic process,
performing step-wise substitutions to unify expressions (see Chapter 2 for details). As a
result, a unification-based algorithm is able to compare both incomplete and complete pro-
grams. As such, algorithm UM could prove more useful than the default, normalisation-
based algorithm. By using algorithm UM to compare incomplete student solutions to
(complete) model solutions, we can potentially improve the feedback system of Ask-Elle.

1.3 Relevance

The subject of program unification and equivalence is an interesting subject within the
field of Computer Science and Artificial Intelligence. In practice, programs are usually
checked by testing program properties or running predefined test-cases and edge-cases.
Testing, however, can not guarantee that a program is flawless or that two programs
are equivalent. Unification can guarantee equivalence, making it a rigid way of checking
programs. Implementing a unification-based algorithm in Ask-Elle or any other ITS could
prove fruitful in providing users with better and more reliable feedback.

1.4 Research Questions

In this Bachelor Thesis, I will contribute to the development of Ask-Elle, by focusing on
the following research questions:

− How can we extend the algorithm UM to work on real student data in Ask-Elle?
− How does algorithm UM compare against earlier approaches to unifying incomplete

programs?

The structure of this thesis is as follows: in Chapter 2 we first take a look at related research
on Ask-Elle. We then cover the necessary background information on Ask-Elle’s strategy
generation, on higher-order unification and algorithm UM itself. Chapter 3 explains our
research methodology. We discuss the pipeline and implementation in Chapter 4 and
analyse the results of running data through the pipeline in Chapter 5. We summarize our
research and offer suggestions for future research in Chapter 6.

4



CHAPTER 2. BACKGROUND KNOWLEDGE

2. Background Knowledge

In this Chapter, we first take a look at related research on Ask-Elle. We then cover the
necessary background information on Ask-Elle’s automatic strategy generation, as well
as on higher-order unification and in particular algorithm UM. We observe how the two
are similar and how this can be used to discover cases in which strategy checking and
unification differ in their results.

2.1 Related Work

As briefly stated in Chapter 1, the origin of this research is similar to previous research by
Ochagav́ıa [8]. In practice, Ask-Elle fails in many cases to provide hints or to assess the
correctness of a finished program. Previous research by Gerdes et al. [3, 4] shows that part
of the problem lies in limitations of Ask-Elle’s normalisation procedure [8]. Gerdes et al.
suggest implementing additional semantics-preserving transformations. Using this idea,
Ochagav́ıa sets out to find situations in which Ask-Elle’s normalisation algorithm does not
work as expected. Using this information, he then extends Ask-Elle’s normalisation algo-
rithm with additional transformations to handle a wider range of programs. The results
are very positive, but the interaction of the new transformations with Ask-Elle’s stepwise
feedback system is unclear. The concept of finding new transformations is similar to the
intent of our research. As such, we can draw inspiration from the relevant transformations.

2.2 Strategies

As mentioned in Chapter 1, Ask-Elle’s hints consist of refinements that are automatically
generated from a model solution. Ask-Elle generates a programming strategy that specifies
a sequence of steps that go from an empty program to a model solution [4]. Applying all
steps in a sequence in order will ultimately result in a solution that is equivalent to a model
solution. We can think of a strategy as a tree consisting of refinement steps. Figure 2.1
visualizes the generated strategy for the example function dupli, which was introduced in
Chapter 1. At the root of the tree is an empty program, represented with a hole (a question
mark). A branch consists of a refinement step towards a specified model solution. At each
step in the tree, Ask-Elle is able to provide the user with feedback, as demonstrated in
Figure 1.1. In the case of our example, branches B and C are empty, as only one model
solution was specified.

2.2.1 Checking Against a Strategy

One way to check whether a student solution can be refined into a model solution is by
checking it against a strategy. We traverse the strategy tree and see if the student solution
is equivalent to one of the nodes. If it is, we have found the student solution’s position
within the tree. This means the student solution can be refined into a model solution and
Ask-Elle is able to provide hints.

In order to check if a student solution is equivalent to one of the nodes in the
tree, we need to apply program unification. As discussed in Chapter 1, Ask-Elle first
uses normalisation, whereby a program is rewritten to a more general, normal form by

5



2.3. HIGHER-ORDER UNIFICATIONCHAPTER 2. BACKGROUND KNOWLEDGE

?

Bdupli = ?

Cdupli = concatMap ?

dupli = concatMap (replicate ?)

dupli = concatMap (replicate 2)

Figure 2.1: A strategy is automatically generated from a model solution and consists of
refinement steps towards a model solution. B and C are potentially non-empty branches,
depending on the specified model solution(s).

a series of semantics-preserving transformations. After both programs are transformed
to their corresponding normal forms, unification is applied at a syntactical level. If both
normal forms are syntactically equal, we have found a match. We can then access all
transitions from the current node to the next node(s) to provide the user with feedback.
Figure 2.2 shows a basic example of normalisation from previous research on the subject by
Ochagav́ıa [8]. In this example, an unnecessary anonymous function in the student solution
is normalised by means of a semantics-preserving transformation. Both the model solution
and the student solution are transformed to the same normal form.

-- Model solution -- Student solution

double = map (* 2) double = map (\x -> x * 2)

-- Normalised model solution -- Normalised student solution

double = map ((*) 2) double = map ((*) 2)

Figure 2.2: Unification after program normalisation. Both the model solution and
the student solution are transformed to the same normal form using semantics-preserving
transformations. Syntactical equivalence is obvious.

2.3 Higher-Order Unification

Unification is a goal-oriented algorithmic process, performing step-wise substitutions to
unify expressions. In higher-order unification, an expression can contain higher-order
variables called functions. In λ-calculus, function names are abstracted away, leaving just
the structure of the function. We assume the reader to be familiar with the concept of
Church’s λ-calculus [1]. Higher-order unification is a process of finding a substitution
σ, given two λ-terms λ1 and λ2, for the metavariables (also known as free or unbound
variables) of the two terms. This substitution should be such that σ(λ1) is equivalent to
σ(λ2) under the conversion rules of lambda calculus [10]. A λ-term t is defined by the
following syntax:

6



2.4. ALGORITHM UM CHAPTER 2. BACKGROUND KNOWLEDGE

t = F (metavariable)
| x (variable)
| c (constant)
| λx.t (abstraction)
| t1t2 (application)

Application is left-associative, meaning F x y should be read as ((F x) y). A variable
x is bound by abstraction : λx.x. The above syntax technically allows for ”loose” bound
variables such as in λx.y. However, such loose bound variables normally only occur at
intermediate stages of a computation [7]. A metavariable (or free variable) is not bound
by abstraction, which makes it suitable for substitution. With Chapter 1 in mind, a
metavariable corresponds to a question mark (a hole) in a program. It’s value is variable
and yet to be determined.

Higher-order unification is undecidable, but for most practical applications we need
not implement full higher-order unification [6]. There exist decidable, restricted versions
that have acceptable behaviour in practice [9]. One of these restricted versions is pattern
unification [7].

2.4 Algorithm UM

Pattern unification of λ-terms is at the core of Algorithm UM, developed by Serrano
Mena et al. [9]. Patterns are λ-terms in which any occurrence of a metavariable F is only
applied to unique variables. For instance, λx.λy.F x y is a pattern, because x and y are
unique variables. Examples of non-patterns are F c (where c is a constant), λx.F x x

(application of F to non-unique variables), λx.F (F x) (F is applied to non-variable (F

x)) [7]. Algorithm UM implements an extended version of pattern unification. We will
provide a concise overview of the extensions made. The technical details can be read in
the corresponding research by Serrano Mena et al. [9].

2.4.1 Local Functions in λ-Terms

Programming languages based on λ-calculus, such as Haskell, include a notion of local
functions. Local functions bind a name to (part of) a term. This allows for ease of
reference and enhances legibility. In Haskell, local functions are defined using let. To
accommodate for let, the syntax of λ-terms from the previous section is extended:

t = ...
| ...
| let x = t1 in t2

This new syntactic rule not only allows for local functions using let, but also for recursive
let, in which the bodies of local functions refer to each other. This is analogous to
the functionality of Haskell. The extended syntax is reflected in the implementation, by
extending the pattern unification algorithms to support for recursive let. The algorithm
is further extended to increase awareness of certain pragmatic equalities that are regularly
found in practice. We call this pragmatics-aware unification.

7
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2.4.2 Pragmatics-Aware Unification

Algorithm UM is extended to increase awareness of certain pragmatic equalities that are
regularly found in practice. This allows a student a certain degree of freedom in construct-
ing their program, without the algorithm being unable to recognize their solution. As a
result, the algorithm can handle a wider range of programs. The pragmatic equalities
recognized by the algorithm are the following:

1. Permutation of arguments in local functions. Consider the following λ-terms:

λp.λq.let f = λx.λy.g x y in f p q

λp.λq.let f’ = λy.λx.g x y in f’ p q

We see that the above terms are extensionally equivalent, but the order of arguments
in the local function is permuted. The algorithm handles permutation of arguments
in local functions, if they have the same amount of arguments.

2. Constant arguments in local functions. (1) Covers equality for local functions that
have the same amount of arguments. This, however, does not cover situations in
which in one of the terms one of the local functions uses constant arguments. Con-
sider the following λ-terms:

λg.λp.let f = λx.λy.g x y in f 0 p

λg.λp.let f’ = λy.g 0 y in f’ p

The terms are extensionally equivalent. The difference between f and f’ is a result
of inlining the constant argument 0. Cases such as these are successfully handled by
the algorithm.

3. Unification of terms with local bindings. In some cases we would like to unify two
terms in which one of the terms refers to a local binding, but the other does not.
Consider the following λ-terms:

λf.λx.f x

λf.λx.let f’ = f x in f’

We can see the terms are extensionally equivalent. The difference here lies in inlin-
ing the local function f’. The algorithm deals with cases in which one of the terms
refers to a local binding, but the other does not.

2.4.3 Algorithm UM in Action

A successful run of algorithm UM means that the terms can be made extensionally equiv-
alent via substitution [9]. Figure 2.3 shows the pragmatics-aware pattern unification as
implemented in algorithm UM. For consistence, this example again uses the example func-
tion dupli, but now with a top-level let, to abide by the extended λ-term grammar. Note
how the progress unfolds in a goal-directed way. Algorithm UM is able to find a substitu-
tion to make an incomplete student solution extensionally equivalent to a model solution.

When comparing complete solutions, we can have three different situations. The

8
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first being that the two solutions are exactly equal in syntax. As such, no substitution
is needed and a simple syntactical unification is sufficient. In the second case a student
solution is incorrect and a unification by means of substitution can not be made. In a
third case, a student solution is correct, but it’s implementation is different from a spec-
ified model solution. In this case we can try to rewrite the solution using the available
rewrite rules. Figure 2.4 shows how this works for our simple example function dupli.
This does not mean that any two extensionally equivalent terms can be transformed into
one another using unification. However, if two terms can be unified, we can be sure they
are extensionally equivalent. Our test data for comparing complete solutions consists of
strictly correct submissions (see section 3.1). This means a student solution is either equal
or extensionally equivalent to a model solution.

λ1 = let dupli1 = (concatMap (replicate 2)) in dupli1
λ2 = let dupli2 = ?1 in dupli2

unify (λ1, λ2):
-- call1: ?1
-- assumed eq: <var dupli1, var dupli2>

-- unify: (?1, concatMap ?2)

-- call2: ?2
-- unify: (?2, replicate ?3)

-- call3: ?3
-- unify: (?3, 2)

-- success

-- exit3: ?3 = 2

-- exit2: ?2 = replicate 2

-- exit1: ?1 = concatMap (replicate 2)

unification found:

σ= {<?3,2>, <?2,replicate 2>, <?1, concatMap (replicate 2)>,
assumed eq <var dupli1, var dupli2>}

?0

Bdupli = ?1

Cdupli = concatMap ?2

dupli = concatMap (replicate ?3)

dupli = concatMap (replicate 2)

Figure 2.3: A unification is made between two λ-terms. There exists a sequence of
step-wise substitutions from the student solution to a model solution. This means that the
terms can be made extensionally equivalent.

9
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λ3= let dupli3 xs = concatMap (replicate 2) xs in dupli3
λ4= let dupli4 xs = concat (map (replicate 2) xs) in dupli4

unify(λ3, λ4):
σ={λf.λxs.(concatMap f xs.concat (map f xs)) (replicate 2) (xs),

assumed eq <var dupli3, var dupli4>}

Figure 2.4: Unification on two λ-terms without metavariables. The terms can be made
extensionally equivalent by introducing an anonymous function.

2.5 Similarities

In pragmatics-aware unification, a hole is represented as a metavariable. A metavariable
can be substituted by other λ-terms. A successful run of algorithm UM means that two
λ-terms can be made extensionally equivalent [9]. This means that there is a sequence
of step-wise substitutions from the student solution to a model solution. This sequence
results in a substitution for each metavariable in play.

As mentioned in section 2.2, a programming strategy specifies a sequence of steps
that go from an empty program to a model solution. Applying all steps in a sequence in
order will ultimately result in a solution that is equivalent to a model solution.

Both approaches thus give a sequence of steps from a student solution to a model
solution, if such a sequence exists. We can see how this is useful for comparing the results
of both approaches. If a strategy-based check results in a sequence of steps, a unification
should be available too. We can use this to expose short-comings of the current version
- and reveal potential benefits of the algorithm UM. Pragmatics-aware unification can be
useful when comparing incomplete programs. Much like a strategy-based check, unification
can be used to provide step-wise feedback. If we can extend the algorithm to handle a
wider range of programs than the strategy-based approach, this could prove a fruitful new
method indeed.

10
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3. Methodology

In this chapter we explain our research methodology. As formulated in section 1.4, our aim
is to extend the algorithm UM to work on real student data in Ask-Elle. In order to do
this, we use a set of student data, consisting of student solutions to programming exercises
in Haskell. We use the unification-based algorithm UM and extend this algorithm to
process student data. We analyse the situations in which the algorithm can not completely
process the student data and extend the algorithm UM accordingly. This will most likely
involve adding cases for abstract syntax constructs that are not covered yet in the current
algorithm, such as pattern matching.

To use the student data, we need to develop a pipeline to read and process student
data in a meaningful way. This processing step is two-fold: for use of a strategy-based
check and for use of algorithm UM. We then attempt to unify the student solutions with
the corresponding model solutions. Figure 3.1 shows a concept of the pipeline.

We want to the compare results of algorithm UM on both complete and incomplete
programs. By using complete programs, it is unnecessary to check the intermediate steps
in a strategy tree. Instead, we compare a student program to the leaves of said tree using
normalisation. Thus, by using complete programs, we are essentially comparing unification
to normalisation. Previous research by Ochagav́ıa [8] summarizes the results of Ask-Elle’s
naive normalisation on the student data. We compare the results of unification on complete
programs to the results of Ask-Elle’s naive normalisation. We compare the results of
incomplete programs (programs with holes) for algorithm UM to the strategy-based check.
We will discuss the implementation of the pipeline and the process of extending algorithm
UM to include cases for abstract syntax constructs such as pattern matching in Chapter 4.

We analyse the sets of student and model programs to reveal shortcomings of the
algorithm UM. Based on our findings, we can enhance the algorithm UM to resolve the
discovered shortcomings.

Figure 3.1: A concept of the pipeline. The student submission on the left and right
is the same submission, but has been duplicated to make the comparison methods more
apparent.

11
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3.1 Student Data

We analyse the solutions to Assignment I of the Functional Programming (INFOFP) course
at Utrecht University, during the academic year of 2017-2018. These solutions were all
correct and participants gave consent for their solution to be used for research purposes.
In the assignment, students are asked to implement 8 functions of growing complexity
on the subject of lists. The functions in the assignment are labeled Exercise 1 to 8 for
convenience. The document to Assignment I is included in Appendix A.

We use the model solutions as supplied by the teachers of the course. Most exercises
have multiple model solutions to compare with student solutions. The model solutions
are assumed to be generally better solutions than the student solutions. The data set is
summarized in Table 3.1.

Exercise Model solutions Correct submissions

1 1 110

2 6 111

3 3 103

4 4 108

5 1 109

6 2 101

7 6 99

8 5 100

Table 3.1: Model solutions and correct submissions per exercise.

3.2 Analysis

In Chapter 5 we will determine the effectiveness of the current version of algorithm UM
by reading in student data. We attempt to unify the student data with the corresponding
model solutions. We measure the number of student solutions that can be unified per
exercise. To identify the shortcomings of the algorithm, we examine the unification error
and analyse the student data to look for a pattern. Based on our findings, we can enhance
the algorithm by introducing new unification rules. An example of such a rule can be seen
applied in Figure 2.4, where the function concatMap is rewritten in terms of concat and
map. We measure the effect of the extended rule set by running the student data through
the pipeline once more.
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4. The Pipeline

In this chapter we describe the construction of the pipeline (as shown in Figure 3.1) which
allows us to read and process student data in a meaningful way. This processing step is
two-fold: for use of the strategy-based check and for use of the new algorithm UM. The
latter will require us to make a complete translation from Ask-Elle’s abstract syntax trees
(which we shall call modules from now on) to the λ-term used by the unification algorithm.
This will involve adding cases for abstract syntax constructs such as pattern matching.
We describe how we compare each student solution to the corresponding model solutions
and how we output the results.

4.1 Reading the Files

To compare student solutions to model solutions, we first need to set up a system to read
the files from a specified directory and compile the solutions to modules using Helium.
A module is an abstract representation of a program. Helium is a compiler for Haskell.
Compiling the solutions ensures they are type correct. This way, we can automatically
exclude faulty ’solutions’. Type signatures are an explicit way of describing the input and
output type of a function. In most cases, Haskell does not need such an explicit descrip-
tion, because it uses type inference. Although including type signatures for functions is
considered good practice, in our case it will result in compiler errors. As such, type signa-
tures should be excluded from all models and submissions. For this reason, we filter every
solution to ignore included type signatures before compiling.

To run an exercise through the pipeline, the user conveniently supplies the system
with an exercise number via the command line. All solutions in both the model and
student solution directory corresponding to the exercise number are then read and com-
piled. To successfully compile the solutions and generate a strategy tree from the model
solutions, we need to supply the compiler with a custom set of imports. An import is a
tuple, consisting of a function or data type and its corresponding type signature. This
set of imports should contain anything that occurs in the solutions and is not included in
Haskell’s standard library Prelude. An example of such an import is the function isDigit,
which is used to indicate whether a given character is a digit:

("isDigit", "Char -> Bool")

Some of the exercises in the data set also make use of custom data types and func-
tions. We need to include these in the set of additional imports. Without these imports,
compilation would result in errors and automatic strategy generation would incorrectly as-
sume the custom data types and function names to be variable, resulting in false positives
when checking against a strategy.

4.2 Strategy-based Check

After compiling the model solutions of an exercise to modules using Helium, we would
like to generate the corresponding strategy tree. In order to do this, we need to convert

13
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the module into Ask-Elle’s Exercise Module. This will generate the strategy tree using
the specified model solutions. To check a student solution against a strategy, we need to
implement a way to traverse the strategy tree and compare the solution with each node.
To traverse the tree, we have implemented depth-first search. Breadth-first search would
be more efficient when using incomplete student programs, but implementing it in Haskell
would be much more involved and beyond the scope of this research. In order to compare
the student solution to one of the nodes, we apply some normalisation. If we find the
student solution on our way down, we return the path up until that point. If we complete
traversing the tree without finding a match, we return that no path can be found.

4.3 Module to λ-term

To use Algorithm UM, we first need to make a translation from module to λ-term. This
will require some technical gymnastics, because making a suitable translation for some
abstract syntax constructs is less than straight forward. Haskell is an expressive language
and λ-syntax is limited, even after extending it with a rule for let, as introduced in
subsection 2.4.1. We will cover the key aspects of making the translation.

A function’s arguments are explicitly stated. As a result, modules are of the form:
function x y = ... To abide by λ-term syntax, we need to rewrite function ar-
guments into λ-abstractions inside the function and ultimately introduce a top-level let.
The final result should look something like this:

let function = \x y -> .. in function

We start by pre-processing all modules. This includes rewriting function bindings to a
pattern binding with a case, as shown in Figure 4.1. A case is a way of introducing
alternatives, based on the value of an expression. We will see how this is a relevant
step when we discuss pattern matching. After pre-processing we can start translating the
module to a λ-term.

-- Before pre-processing -- After pre-processing

f x = g f = \y -> case y of

f (x:xs) = h x -> g

(x:xs) -> h

Figure 4.1: Rewriting function bindings to a pattern binding with a case.

Figure 4.2 shows two ways of defining a local function in Haskell. One way is to use let,
which defines a local function prior to it’s use. Converting a local let-binding using our
new λ-syntax let-rule is straightforward.

Another way to define a local function is using where. The where-construct can be
used to define a local function after it’s use. When we define a local function using let,
declarations are made before the expression in which they are used. In a local function
using where, the expression is first used and the corresponding declarations are made
afterwards. We can translate a local function using where to let by compensating for
the order of declarations and expression. As such, extending the λ-syntax to include a
syntactic rule for where is unnecessary.
Pattern matching is at the core of Haskell. As a result, there are many different ways
to match on a pattern. To process real student data, we need to deal with pattern
matching. To translate pattern matching of any shape and form to a λ-term, we need to
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-- Defining a local function f using let -- Abstract form

let f = concatMap (replicate 2) let declarations

in dupli = f in expression

-- Defining a local function f using where -- Abstract form

dupli = f expression

where f = concatMap (replicate 2) where declarations

Figure 4.2: In Haskell, local functions can be defined using let and where. We convert
one into the other by compensating for the order of declarations and the expression in
which they are used

improvise. The easiest way to deal with pattern matching is to assume there are some
’magic functions’ which perform the pattern matching. These ’magic functions’ are folds
of the corresponding data types. A fold is a higher-order function used to process a data
structure in some systematic way and return a value.

A clever way to ensure we apply the right fold, is by generating it from the underlying
pattern. We obtain a fake name from the names of the patterns in a pattern match and
introduce as many arguments as branches. In each branch we introduce as many λ-
abstractions as variables bound in the corresponding pattern. This way we can translate
a pattern match to a function application of the generated fold to the corresponding
arguments. We don’t need to define the functionality of the folds. As long as the way of
obtaining the fake fold name is consistent, we can compare their results. This same idea
applies for tuples. A similar idea is applied to create folds for other constructs such as
if-then-else and guards. Figure 4.3 shows some examples of how we obtain a fake fold
name from the names of the patterns in a pattern match and apply it to the corresponding
arguments. The figure also shows why pre-processing the modules was a good idea.

-- Pattern match on a list -- Generated fold application

case e of [] -> f case-[]-(:) (e f, \x xs -> g)

(x:xs) -> g

-- Pattern match on a tuple -- Generated fold application

case (x,y) of case-t-[]-(:) (x, y,

([],ys) -> f \ys -> f,

(xs,ys) -> g \xs ys -> g)

-- Pattern match on if -- Generated fold application

if e then f if (e f g)

else g

-- Pattern match on guards -- Generated fold application

... | e = g guards (g-if (e g),

| otherwise = h g-if (otherwise h))

Figure 4.3: This figure shows examples of how we obtain a fake fold name from the
names of a pattern in a pattern match and apply it to the corresponding arguments.
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As mentioned earlier, every program is ultimately translated to a top-level let. As
a final step to the translation, we post-process the newly created λ-term by finding all of
it’s free variables (variables that are not bound by λ-abstraction) and substituting them
with constants of the same name. This ensures that all operators and functions, including
our generated folds, are constant, which is necessary for the unification process.

4.4 Comparison and Output

Processing a student solution is done in two steps. First we check the student solution
against the automatically generated strategy tree as explained in section 4.2. If the student
solution matches one of the nodes, we return the corresponding path. If we have traversed
the whole tree without finding a match, we return no path was found.

We then translate the student solution and corresponding model solutions to λ-
terms. We use algorithm UM on these λ-terms and attempt to unify the student solution
with any of the available model solutions. We do not need a student solution to unify with
every available model solution. If a unification is found between a student solution and at
least one of the corresponding model solutions, unification was a success. We return the
unification rule(s) that resulted in successful unification. If no unification can be found
between a student solution and a model solution, we return the λ-terms and the unification
error. All output per student solution is written to both the command line interface and
exercise-specific output files. We can use the latter to store the results and inspect them
at a later time.

We now know for every student solution whether a match was found using the
strategy-based check and whether a unification was found using algorithm UM. Finally,
we count the number of successful matches using the strategy-based check and the number
of successful unifications for each exercise. We write these results and the total amount of
submissions and available model solutions to the command line interface and the output
files. This allows us to compare the results.
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5. Analysis

In this chapter we present the results of running student data through the pipeline. We
compare the results to Ask-Elle’s normalisation [8]. We discuss and analyse unexpected
observations. We analyse the student data to compose new unification rules to enhance
algorithm UM. We measure the effect of the new rules by running the pipeline on the
student data using an extended set of unification rules.

5.1 Results

Table 5.1 shows the results of running the student data through the pipeline using the
current version of algorithm UM compared to Ask-Elle’s normalisation. The number of
successful unifications was expected to be similar to the results of naive normalisation.
For some exercises this number is much lower than expected. Upon inspection of the
attempted unifications, we made some unexpected observations that could explain this
discrepancy.

Exercise Models Submissions Unification Normalisation

1 1 110 75 73

2 6 111 12 36

3 3 103 14 52

4 4 108 58 62

5 1 109 10 22

6 2 101 2 4

7 6 99 8 14

8 5 100 2 23

Table 5.1: The results of running the student data through the pipeline using algorithm
UM compared to Ask-Elle’s normalisation.

5.2 Unexpected Observations

In this section we will address some unexpected issues with (recursive) let and our
strategy-based check. These issues limit our results in multiple ways.

5.2.1 (Recursive) Let

Figure 5.1 shows a surprising result. Remember that a local function using where is
converted to a let. The difference between the model solution and the student solution
then lies in inlining the local function parseRow. As explained in subsection 2.4.2, we
should be able to unify a student solution using a local function with a model solution
without said local function. The unification error could be due to an oversight in our
translation from module to λ-term.

When attempting to unify two recursive (complete) solutions that are equal, a uni-
fication can be found. However, when attempting to unify recursive (complete) solutions
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-- Model solution -- Student solution

parseTable = map words parseTable = map parseRow

where parseRow = words

> Unification not found.

Figure 5.1: No unification can be found between a student solution which refers to a
local binding and a model solution which does not.

that are not exactly equal, no unification can be found. Figure 5.2 shows that no unifica-
tion can be found even though the solutions are equivalent (the unification rule applied to
rewrite the function replicate is discussed in section 5.3). However, when we remove the
recursive call, a unification can be found. This indicates an issue with recursive let. This
unification error could be due to an oversight in the translation from module to λ-term.
It could also be due to an oversight in the implementation of recursive let in algorithm
UM. This issue has an unfortunate impact on recursive solutions.

Using recursion and defining local functions using where is common practice in
Haskell. As such, the observed unification errors could account for an unexpected low
number of successful unifications.

-- Model solution

printLine [] = "+"

printLine (x:xs) = "+" ++ replicate x ’-’ ++ printLine xs

-- Student solution

printLine [] = "+"

printLine (x:xs) = "+" ++ take x (cycle "-") ++ printLine xs

> Unification not found.

-- Replacing the variable argument ’xs’ with a constant list

’[1,2,3]’ in the recursive call of printLine for both solutions:

[...]

[...] ++ printLine [1,2,3]

> Unification not found.

-- Replacing the recursive call of printLine with a constant

string ’test’ for both solutions:

[...]

[...] ++ "test"

> Unification found: replicate n xs -> take n (cycle xs)

Figure 5.2: When two recursive and complete solutions using recursive let are not exactly
equal, no unification can be found.
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5.2.2 Incomplete Programs

This research helped discover a minor issue with Ask-Elle’s strategy diagnosis. For any
two (exactly) equal programs, no path would be returned. This would suggest that the
student solution did not match any of the nodes in the strategy tree. However, we know
the student solution should match one of the model solutions and a path of some sort
should be available. This issue has since been resolved and equal programs now return a
path.

As part of the pipeline, we wrote a strategy-based check using Ask-Elle’s strategy
diagnosis. This strategy-based check would allow us to compare algorithm UM to (some
form of) normalisation for both incomplete and complete solutions. We search the strategy
tree using depth-first search. The strategy-based check implements some normalisation to
find a matching node, as discussed in section 2.2. However, when running the pipeline on
student data, the search has a tendency to run indefinitely. This suggests that the search
space is too extensive or our search gets stuck in an infinite loop. The problem only occurs
when a strategy is generated using more than one model solution. A loop could be caused
by potential cycles in the strategy tree. It could also be that the same part of the tree is
processed over and over, because of the normalisation applied to the nodes while traversing
the tree. In an attempt to fix the problem, we limited the depth of search. This showed
some result, but did not get rid of the problem entirely. We also checked if the current
node had already been processed before adding their children to the search. This should
prevent repetition. Unfortunately, this did not change performance. Further effort to fix
the strategy-based check did not fit within the scope of our research. As such, we can not
currently use the strategy-based check to compare results for incomplete programs. This
means our second research question as mentioned in section 1.4 will remain unanswered.

5.3 Extending the Rule Set

In this section we analyse the student data and unification results to compose new unifi-
cation rules to enhance algorithm UM. We will use these rules to extend the unification
rule set. We can then use the extended rule set and run the pipeline on the student data,
the results of which are covered in the next section.

5.3.1 Eta-Expansion

When a function takes multiple arguments, these arguments need to be explicitly stated
in the function definition. When a function takes a single argument, Haskell allows this
argument to be implicit. For instance, we can define our example function dupli in one
of two ways:

1. dupli = concatMap (replicate 2)

2. dupli xs = concatMap (replicate 2) xs

Remember from Chapter 1 that the type signature of dupli is [a] -> [a]. The expected
argument is a list of type a. This argument is made explicit in version 2 by writing a
variable xs. The lack of explicit argument in version 1 was already covered by one of the
unification rules in algorithm UM. This rule applied eta-expansion. Using eta-expansion,
we introduce a λ-abstraction on a fresh variable, rewriting a function f into λx.f x.

Preprocessing a module sometimes leads to an unnecessary extra layer that uses a
fresh variable abstraction and a corresponding case construct for a single alternative. We
can see how this looks if we ignore the second argument in Figure 4.1. This redundant
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case limits the use of the original eta-expansion rule. To compensate for a redundant case,
we implemented a new version of the eta-expansion rule. Another way to solve this issue
is to adjust the module to λ-term translation to get rid of the redundant case. Ideally, we
adjust pre-processing to prevent introducing a redundant case in the first place.

5.3.2 Miscellaneous

Based on the unification results and the student data, we identified a number of unification
rules. Most of these rules are implementing Haskell syntactical or functional equivalence.
We can use these rules in an attempt to rewrite a model solution into a student solution.
By doing so, we assume the model solution to be the better solution. Table 5.2 shows
the unification rules that we found. These rules are combined with the default unification
rules to form an extended rule set. This set is by no means exhaustive, but should suffice
to show some improvement in the number of successful unifications.

Rewrite Into

f λy.((case-t y) (λx.f x))

intercalate f xs concat (intersperse f xs)

map (f . g) map f . map g

flip f a b f b a

replicate n xs take n (cycle xs)

list a "a"

foldr (++) [] concat

case-t-[]-(:) (a, b, c) case-t-(:)-[] (a, c, b)

Table 5.2: An extension of the unification rule set. The listed rules were found by
analysing the unification results and the student data.

5.4 Using the Extended Rule Set

We run the pipeline on the student data using the extended unification rule set for algo-
rithm UM. Table 5.3 shows that extending the unification rule set increased the effective-
ness of algorithm UM for exercise 1 and 2. The results for unification on exercise 1 are
now convincingly superior to normalisation.

Exercise Models Submissions Default Extended

1 1 110 75 88

2 6 111 12 14

3 3 103 14 14

4 4 108 58 58

5 1 109 10 10

6 2 101 2 2

7 6 99 8 8

8 5 100 2 2

Table 5.3: The results of running the student data through the pipeline using the
extended rule set for algorithm UM.
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Figure 5.3 shows the overall results of running the student data through the pipeline.
Extending the rule set shows an increase in effectiveness for algorithm UM, but is in
general not sufficient to effectively close the gap on normalisation. The difference between
normalisation and unification is presumably due to the flaws mentioned in section 5.2.
If we can fix these issues, we can expect to see an overall increase in effectiveness for
unification.

Figure 5.3: The overall results of running the student data through the pipeline using
unification with the default rule set and unification with the extended rule set. These
results are compared to Ask-Elle’s normalisation.
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6. Conclusion

As mentioned in section 1.4, the aim of our research was to extend algorithm UM to work
on real student data in Ask-Elle. We used a set of student data, consisting of student
solutions to programming exercises in Haskell. We set up a pipeline to read and process
student data in a meaningful way. This processing step was two-fold; for use of a strategy-
based check and for use of algorithm UM.

We used algorithm UM and analysed situations in which it could not completely
process student data and extended the algorithm accordingly. This involved adding cases
for abstract syntax constructs such as pattern matching. We constructed a dynamic and
consistent way of generating folds for the relevant abstract syntax constructs. We wrote a
complete translation from module to λ-term. We discovered a minor issue with Ask-Elle’s
strategy diagnosis which has since been fixed.

We ran the pipeline on the student data and encountered an issue with the imple-
mentation of the strategy-based check which we could not resolve within the scope of this
research. This meant we could only compare results for complete programs, leaving our
second research question of how algorithm UM compares against earlier approaches to uni-
fying incomplete programs unanswered. The unification results were lower than expected
when compared to Ask-Elle’s naive normalisation. We analysed the unification errors and
student data and made some unexpected observations. These observations included flaws
we think originate from either our translation from module to λ-term or algorithm UM
itself.

We analysed the student data and identified a number of unification rules. We com-
bined these rules with the default rules of algorithm UM to create an extended unification
rule set. We ran the pipeline on the student data using said extended rule set. We mea-
sured an increased number of successful unifications when using the extended rule set for
algorithm UM.

6.1 Future Research

As mentioned above, there are still some kinks in the pipeline. It would be beneficial
to pinpoint and resolve the observed unification issues involving (recursive) let. These
issues most likely originate from our translation from module to λ-term or possibly from
the inner workings of algorithm UM itself. Resolving these unexpected unification errors
should result in an increase in overall effectiveness of algorithm UM. A next step is then
to analyse the unification results and student data to find new unification rules to further
extend algorithm UM.

Ask-Elle’s feedback system can potentially be improved by using algorithm UM to
compare incomplete student solutions to (complete) model solutions. To research this
possibility, a strategy-based check was implemented into the pipeline. As explained in
section 2.5, this strategy-based check is similar to the unification-based approach and can
be used to compare results for incomplete student solutions. Alas, the strategy-based check
could not be made fully functional within the scope of this research. This meant there
were no results for earlier approaches to unifying incomplete programs to compare with.
As such, the second research question in section 1.4 remains unanswered. Future research
should resolve the current issue in the implementation of the strategy-based check. A
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functional strategy-based check would unlock the full potential of the pipeline: to compare
the results of algorithm UM to the strategy-based check on both incomplete and complete
solutions. If algorithm UM can be extended to handle a wider range of both incomplete
and complete programs than, respectively, the strategy-based approach and Ask-Elle’s
naive normalisation, it could prove a fruitful new method indeed.

23



Bibliography

[1] Alonzo Church. The calculi of lambda-conversion. Princeton University Press, 1941.

[2] Koen Claessen and John Hughes. Quickcheck: a lightweight tool for random testing
of haskell programs. Acm sigplan notices, 46(4):53–64, 2011.

[3] Alex Gerdes, Bastiaan Heeren, Johan Jeuring, and L Thomas van Binsbergen. Ask-
elle: an adaptable programming tutor for haskell giving automated feedback. Inter-
national Journal of Artificial Intelligence in Education, 27(1):65–100, 2017.

[4] Alex Gerdes, Johan T. Jeuring, and Bastiaan J. Heeren. Using strategies for assess-
ment of programming exercises. In Proceedings of the 41st ACM Technical Symposium
on Computer Science Education, SIGCSE ’10, pages 441–445, New York, NY, USA,
2010. ACM.

[5] Ruud Koot. Functional programming 2017/2018, assignment 1: Lists. Available at
http://www.staff.science.uu.nl/~f100183/fp/practicals/Assignment1.pdf.
Accessed 1 June 2019.

[6] Dale Miller. A logic programming language with lambda-abstraction, function vari-
ables, and simple unification. Journal of logic and computation, 1(4):497–536, 1991.

[7] Tobias Nipkow. Functional unification of higher-order patterns. In [1993] Proceedings
Eighth Annual IEEE Symposium on Logic in Computer Science, pages 64–74. IEEE,
1993.

[8] Adolfo J. Ochagav́ıa Hubner. Improved normalization for ask-elle through semantics-
preserving transformations. Master’s thesis, 2018.

[9] Alejandro Serrano Mena and Johan Jeuring. Pragmatic unification of λ-terms with
recursive let (unpublished).

[10] Wayne Snyder. Higher Order Unification, pages 123–153. Birkhäuser Boston, Boston,
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APPENDIX A. ASSIGNMENT I

A. Assignment I

This thesis makes use of a data set consisting of student submissions to Assignment I, as
described in section 3.1. The assignment document [5] is included as an appendix and can
be viewed on the following pages.
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Functional Programming 2017/2018
Assignment 1: Lists

Ruud Koot

In this exercise we will read in a database, perform a simple query on it and present the
results to the user in an aesthetically pleasing form. Most exercises can be completed by
combing functions from the Prelude and the libraries Data.Char, Data.List and Data.Maybe
and contain a hint on which functions you could use from these libraries; often a completely
different solution, not using these functions, is also possible. A starting framework and the
sample database can be found on the Assignments page on the course website.

1 Parsing

A plain text database consists of a number of lines (each line is called a row), with on each line a fixed
number of fieds separated by a single space. The first row a database table is called the header and
contains the names of the columns in the table. An example of such a database would be:

first last gender salary

Alice Allen female 82000

Bob Baker male 70000

Carol Clarke female 50000

Dan Davies male 45000

Eve Evans female 275000

One way of modeling such databases in Haskell would be using the following types:

type Field = String
type Row = [Field ]
type Table = [Row ]

A field is always modeled as a string (even though the database may contain strings that look very
much like numbers), a row is a list of fields and a table a list of rows. The head of this list corresponds
to the header of the table. (A valid table always has a header and always has at least one column.)

There are several “problems” with this model: for example, it does not enforce that each of the rows
in the table must have the same number of fields. However, for the purposes of this first assignment it
will suffice. You may assume that all the databases that are presented to program will be well-formed,
that is to say, they will always have the same number of fields on each line.

The form in which data is stored inside a file, printed or written on paper, or entered from the
keyboard is called its concrete syntax. The form in which data is manipulated inside a program is
called its abstract syntax. The process of transforming some object represented in its concrete syntax
into its representation in abstract syntax is called parsing.

Exercise 1. Write a function parseTable :: [String ] → Table that parses a table represented in its concrete
syntax as a list of strings (each corresponding to a single line in the input) into its abstract syntax. (Hint: use
the function words from the Prelude.)

2 Pretty printing

In the previous exercise we have seen how we can turn concrete syntax into abstract syntax. The reverse
operation—turning abstract syntax into concrete syntax—is often called pretty printing or compilation.

1
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In our case we do not want to convert our abstract syntax into the original concrete syntax, but into a
different concrete syntax that is easier to read for humans:

+-----+------+------+------+

|FIRST|LAST |GENDER|SALARY|

+-----+------+------+------+

|Alice|Allen |female| 82000|

|Bob |Baker |male | 70000|

|Carol|Clarke|female| 50000|

|Dan |Davies|male | 45000|

|Eve |Evans |female|275000|

+-----+------+------+------+

An apt name for this process might be “prettier printing”. Note that we have done several things to
make the result look nice:

1. We have made the width of each column exactly as wide as the widest field in this column
(including the name in the header).

2. We have added a very fancy looking border around the table, the header and columns.

3. We have typeset the names of the columns in the header in uppercase.

4. We have right-aligned fields that look like (whole) numbers.

Exercise 2. Write a function printLine :: [Int ]→ String that, given a list of widths of columns, returns a string
containing a horizontal line. For example, printLine [5, 6, 6, 6 ] should return the line "+-----+------+------+------+".
(Hint: use the function replicate.)

If you can write this function using foldr you will get more points for style.

Exercise 3. Write a function printField :: Int → String → String that, given a desired width for a field and
the contents of a fields, returns a formatted field by adding additional whitespace. If the field only consists of
numerical digits, the field should be right-aligned, otherwise it should be left-aligned. (Hint: use the functions
all, isDigit and replicate.)

The function printField should satisfy the property:

∀n s.n > length s⇒ length (printField n s) ≡ n

Later in the course we shall see how we can use these properties to test the correctness of a program,
or even proved that such properties must always hold for a given program.

Exercise 4. Write a function printRow :: [ (Int, String) ] → String that, given a list of pairs—the left element
giving the desired length of a field and the right element its contents—formats one row in the table. For example,

printRow [ (5, "Alice"), (6, "Allen"), (6, "female"), (6, "82000") ]

should return the formatted row

"|Alice|Allen |female| 82000|"

(Hint: use the functions intercalate, map and uncurry.)

Exercise 5. Write a function columnWidths :: Table→ [Int ] that, given a table, computes the necessary widths
of all the columns. (Hint: use the functions length, map, maximum and transpose.)

Exercise 6. Write a function printTable :: Table → [String ] that pretty prints the whole table. (Hint: use the
functions map, toUpper and zip.)

2
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3 Querying

Finally we will write a few simple query operations to extract data from the tables.

Exercise 7. Write a function select :: Field → Field → Table → Table that given a column name and a field
value, selects only those rows from the table that have the given field value in the given column. For example,
applying the query operation

select "gender" "male"

to the table

+-----+------+

|FIRST|GENDER|

+-----+------+

|Alice|female|

|Bob |male |

|Carol|female|

|Dan |male |

|Eve |female|

+-----+------+

should result in the table

+-----+------+

|FIRST|GENDER|

+-----+------+

|Bob |male |

|Dan |male |

+-----+------+

If the given column is not present in the table then the table should be returned unchanged. (Hint: use the
functions (!!), elemIndex, filter and maybe.)

Exercise 8. Write a function project :: [Field ]→ Table→ Table that projects several columns from a table. For
example, applying the query operation

project ["last", "first", "salary" ]

to the table

+-----+------+------+------+

|FIRST|LAST |GENDER|SALARY|

+-----+------+------+------+

|Alice|Allen |female| 82000|

|Carol|Clarke|female| 50000|

|Eve |Evans |female|275000|

+-----+------+------+------+

should result in the table

+------+-----+------+

|LAST |FIRST|SALARY|

+------+-----+------+

|Allen |Alice| 82000|

|Clarke|Carol| 50000|

|Evans |Eve |275000|

+------+-----+------+

If a given column is not present in the original table it should be omitted from the resulting table. (Hint: use the
functions (!!), elemIndex, map, mapMaybe, transpose.)
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4 Wrapping up

We can tie parsing, printing and two query operations together using:

exercise :: [String ]→ [String ]
exercise = printTable

◦ project ["last", "first", "salary" ]
◦ select "gender" "male"

◦ parseTable

and have the program reads and write from and to standard input and standard output using:

main :: IO ()
main = interact (unlines ◦ exercise ◦ lines)
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