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Abstract 

 

Solutions to difficult real-world problems, like logistics planning and timetable scheduling, are 

often bound by certain constraints that need to be satisfied. As such, solutions to these problems 

can be found by modeling and solving the problems as Constraint Satisfaction Problems (CSP). 

In this thesis, we will research algorithms for solving a distributed version of CSP, DisCSP, where 

the problem is divided amongst multiple agents. In order to solve these problems, agents must 

find a solution to their individually assigned subproblem, and communicate with other agents to 

ensure their local solutions do not interfere with each other. We will look at two algorithms, one 

having agents generate all possible local solutions before communicating with other agents, so 

called static generation, the other having agents generate local solutions only after certain 

agents have communicated theirs, so called dynamic generation. We will test these algorithms 

by using them to solve Calcudoku, a logic puzzle with a great parallel to planning problems, on 

which we will expand first. We compare the algorithms based on the computational effort and 

the amount of communication they require to solve Calcudokus of different sizes. Our results 

show that when solving Calcudokus of the chosen dimensions, the algorithm using static 

generation outperforms the algorithm using dynamic generation in terms of both computational 

effort and amount of communication. However, our results suggest that if the DisCSP to be 

solved gets more complex, dynamic generation of local solutions might be preferred.  
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1. Introduction 

Many modern problems, like planning problems for example, prove to be very difficult to solve 

by hand or by brute force, if not impossible. A great deal of research is being done in the field of 

artificial intelligence, developing and comparing ways to model and solve these kinds of 

problems efficiently. A common way to do this is by describing these problems as Constraint 

Satisfaction Problems. However, it is sometimes more practical to divide these problems into 

subproblems and distribute those amongst different entities that interact with each other. Take, 

for example, an organization where multiple planners of different departments are responsible 

for their own planning problem, in addition to having to cooperate with each other in order to 

create a non-conflicting schedule. It might also be desirable to divide and distribute a problem 

when privacy is of importance, in order to limit the amount of knowledge a solver has. Because 

of this, Distributed Constraint Satisfaction Problems [1] have gradually become a more common 

research topic in AI.  

 

(Distributed) Constraint Satisfaction Problems 

Constraint Satisfaction Problems (CSPs) are defined by a set of variables, a set of domains (one 

for each variable), and a set of binary constraints. These constraints consist of relations between 

variables, such as 𝑣1  >  𝑣2 or 𝑣1  ≠  𝑣2. A solution to a CSP is an assignment of values to the 

variables, so that each variable has a value contained in its domain and all constraints are 

satisfied. Because a lot of problems can be modeled like this, methods of finding solutions to 

these CSPs are widely researched [2] [3]. Generally, these methods make use of a single central 

solver that has complete knowledge of the problem and solves it globally. In a Distributed CSP 

(DisCSP), the variables are distributed amongst multiple agents. Each agent is responsible for 

finding a solution to its local problem, and has to communicate this with other agents in order to 

make sure constraints between variables belonging to different agents are satisfied as well.  

 

Both CSPs and DisCSPs are commonly solved by algorithms using backtracking. In the case of 

CSPs, the variables are assigned a value one by one. If a variable has no value in its domain that 

is consistent with its constraints and the value assignments of other variables, backtracking 

occurs, and the algorithm will try to find a new value for the previously assigned variable. In the 

case of DisCSPs [4], each agent is assigned a priority, and agents will try to find a local solution 

consistent with assignments of higher priority agents, informing lower priority agents when 

such an assignment is found. If no consistent local solution can be found, a backtrack message is 

sent to the agent previous in order, which in turn will try to find a new local solution.  

 

The order in which the variables are assigned values can have a great impact on the number of 

backtracks required to find a global solution. If a variable is assigned a value that is not 

consistent with any global solution in an early stage of solving a (Dis)CSP, a lot of backtracking 

can occur between the other variables before eventually backtracking to the source of the 
problem. In CSPs, ordering the variables based on the Most Constrained Variable (MCV) 

heuristic has proven to be a very effective way of reducing the number of backtracks needed to 

find a solution [5]. The MCV heuristic orders the variables in a CSP based on increasing domain 

size, because a variable with a small domain is generally less likely to assign an inconsistent 

value than a variable with a large domain, and is therefore placed higher in order.  
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However, when solving DisCSPs, we do not know the number of possible local solutions each 

agent has beforehand. Thus, in order to make use of an MCV heuristic, or in this case a “Most 

Constrained Agent” heuristic, the agents will have to generate the solutions to their local 

problems in advance [6]. As these local problems are often complex problems themselves, 

generating all possible solutions can require a lot of computing time and space.  

 

Research question 

In this thesis, we will research the effectiveness of this MCA heuristic by comparing two 

algorithms for solving DisCSPs. One algorithm will have agents generate the solutions to their 

local problem beforehand, and assign them a priority based on the number of generated 

solutions. Then, the agents will try to solve the problem by using this list of generated local 
solutions. The other algorithm will assign the agents a priority based on an estimate of the 

number of possible local solutions, and will only generate a solution when necessary. We are 

interested in how these algorithms compare in terms of efficiency, specifically computing time 

and amount of communication. We will research this by answering the following question: 

How does dynamic generation of local solutions compare to static generation of local solutions 

regarding computational effort and amount of communication? 

 

Structure 

We will try to answer the research question by looking at the DisCSPs of choice first, Calcudokus. 

We will explain what a Calcudoku is and why we have chosen this problem. After that, we will go 

into detail about the algorithms we will be implementing, expanding on the difference between 

them, the way efficiency and communication are measured, and the size and number of the 

Calcudokus we will be testing on. Next, we will present the results of our experiment, after 

which we will analyze and discuss these results, and how they compare to our hypothesis. Then, 

we will answer our research question and state our conclusion. Finally, we will look at possible 

future works.  
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2. Calcudokus 

We have decided to test the two solving algorithms on Calcudokus modelled as DisCSPs, in order 

to gather the information needed to answer our research question. This chapter will explain 

what a Calcudoku is, how a Calcudoku can be modelled as a DisCSPs, how the algorithms solve 

the given DisCSPs, and in what way the algorithms differ from each other. 

 

What is a Calcudoku? 

A Calcudoku [7] is a puzzle which consists of a 𝑛 by 𝑛 grid, where 𝑛 is the dimension of the 

Calcudoku, divided into cages of varying shape and size. Written within each cage is an 

arithmetic operator (+, −, ×, ÷) and a value. The goal of the puzzle is to fill the cells of the grid 

with numbers 1 to 𝑛, such that each row and each column contains only one occurrence of each 

number, and all of the cages’ arithmetic clues are satisfied. We will explain the arithmetic clues 

using the Calcudoku in figures 1 and 2 below: 

• A + clue means that the numbers in the cage must add up to the given value. For 

example, the numbers in the cage with 13 + as clue must sum to 13. 

• Similarly, a × clue means that the product of the numbers in the cage must be equal to 

the given value.  

• A – clue means that the largest number in the cage minus the other numbers in the cage 

must equal the given value. In the Calcudoku below, the 0 − cage has numbers 1, 2 and 3, 

which is valid because 3 − 2 − 1 = 0. 

• Similarly, a ÷ clue means that the largest number divided by the other numbers must be 

equal to the given value. We see that in the top left cage, the numbers 2 and 6 satisfy the 

3 ÷ clue, because 6 ÷ 2 = 3.  

If a cage consists of only one cell, the cage has no operator and the number in that cell must 

be the given value. Note that a cage may contain the same number more than once, given the 

numbers don’t share a row or column, as seen in the 108 × cage below. 

 

 

 

 

 

 

 

 

 

 

 

 Figure 3. An unsolved Calcudoku Figure 1. An unsolved 6x6 Calcudoku. Figure 2. The solution to the Calcudoku in figure 1. 



7 
 

Calcudoku as Distributed Constraint Satisfaction Problems 

For the algorithms to solve these Calcudokus, the Calcudokus will have to be modelled as 

DisCSPs. A DisCSP can be formally defined as a tuple (𝜒, 𝐷, 𝐶, 𝐴, 𝜙) [8], where: 

• 𝜒 = {𝑥1, … , 𝑥𝑛}, the set of variables. 

• 𝐷 = {𝐷(𝑥1), … , 𝐷(𝑥𝑛)}, the set of domains, where 𝐷(𝑥𝑖) is the non-empty finite domain 

of variable 𝑥𝑖. 

• 𝐶 = {𝑐 𝑖,…,𝑗  | 𝑥𝑖, … , 𝑥𝑗 ∈  𝜒 }, the set of constraints between variables, where 𝑐 𝑖,…,𝑗  is a 

relationship between variables 𝑥𝑖,…,𝑥𝑗. 

• 𝐴 = {𝑎1, … , 𝑎𝑚}, the set of agents. 

• 𝜙 = 𝜒 → 𝐴, a function that maps each variable to an agent. 

 

In our DisCSP model of Calcudokus, each cell in the Calcudoku’s 𝑛 by 𝑛 grid is a variable and the 

domains of these variables will be the numbers 1 to 𝑛. Cells in the same row or column have a       

“not equal” constraint between them, meaning that if 𝑥𝑖 and 𝑥𝑗 are in the same row or column, 

they cannot be given the same number. Each cage will be represented by an agent, which is 

tasked with assigning numbers to the variables in that cage, so that the numbers satisfy the 

cage’s arithmetic clue and no constrains between the variables are violated. If two agents have 

variables that have constraints between each other, these agents are neighbours. In order to 

solve the Calcudoku, agents will have to calculate solutions to their own arithmetic clue, and 

communicate these solutions to their neighbours, to make sure their assignments are consistent 

with each other. By modelling Calcudokus like this, where each cage is represented and solved 

by a different agent, we have a great parallel to complicated planning problems. Therefore, by 

researching efficient ways to solve Calcudokus, we can get a better understanding of how to 

efficiently solve complex distributed problems. 

 

Solving Algorithm 

One of the algorithms used to solve DisCSPs is the Asynchronous Forward Checking (AFC) 

algorithm [9]. In this algorithm, the agents are ordered, and there is always one “assigning 

agent”. This agent assigns values to its variables, and in order to make sure these values are 
consistent, the agent sends forward checking messages to the lower ordered agents, which in 

turn check if they can still find consistent values. If they can, the agent next in order will become 

the assigning agent, until the lowest order agent has been reached. The agents receiving forward 

checking messages can check for consistency concurrently, hence the name Asynchronous 

Forward Checking. 

 

To make sure the comparison is fair, the two algorithms we will be looking at both make use of a 

slight variation on AFC, which works as follows:  

Each agent has an AgentView that consist of the solutions of neighboring agents, which is empty 

initially. At the start of the algorithm, each agent calculates a priority value, and shares this 

priority with the other agents. The agent with the highest priority is the first “assigning agent”, 

and tries to find a solution to its arithmetic clue. When it does, it will send this assignment to its 

lower priority neighbours. These agents update their AgentView with the received assignment, 

and check if there still is a local solution consistent with their AgentView. If the AgentViews of all 

lower priority neighbours are consistent, the assigning agent will inform the agent next in order, 
which in turn becomes the assigning agent. When the lowest agent in order is the assigning 
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agent and finds a consistent assignment, all of the agents’ assignments are consistent, thus a 

solution has been found and the algorithm terminates. In order to communicate, agents send 

other messages. These messages can be of the following types: 

 

o ForwardCheck-message 
 

If the assigning agent has found an assignment consistent with its higher priority 

neighbours, it will send ForwardCheck-messages to its lower priority neighbours, 

containing this assignment.  
 

o OK- and NotOK-messages: 
 

When an agent receives a ForwardCheck-message, it will update its AgentView and try to 

find a consistent assignment. If it succeeds to do so, it will send an OK message to the 

sender of the ForwardCheck-message. If not, it will send a NotOK-message instead. If the 

assigning agent receives a NotOK message, it will try to find a new consistent 

assignment. 
 

o Assign-message: 
 

If the assigning agent has found a consistent assignment, and has received OK-messages 

from all its lower priority neighbours, it will send an Assign-message to the agent next in 

order, informing him it’s his turn to try to find an assignment.  
 

o Backtrack-message: 
 

If the assigning agent cannot find an assignment because it received NotOK-messages on 

all its local solutions, it will send a Backtrack-message to the agent previous in order, 

informing it that its current assignment is not consistent. The agent receiving the 

Backtrack-message will become the assigning agent again, and will try to find a new 

assignment. When the agent highest in order tries to send a Backtrack-message, the 

problem does not have a solution and the algorithm terminates. 
 

 

Calculating local solutions and ordering the agents 

The difference between the two algorithms we will be testing lies in the moment the agents 

generate solutions to their local problems and the way agents calculate their priorities. The first 
algorithm (henceforth referred to as “Algorithm 1”) will have agents generate all their local 

solutions beforehand, using numbers 1 to 𝑛 for their variables. The other algorithm (henceforth 

referred to as “Algorithm 2”) will have agents generate solutions only when necessary, that is 

when receiving a ForwardCheck-message or when the agent is the assigning agent. This way, the 

agent only uses non-constrained numbers, resulting in a smaller search space. 

 

In both algorithms, the agents will calculate their priorities based on the number of solutions to 

their local problem, giving higher priority to agents with fewer local solutions. In Algorithm 1, 

this is easy, because the agents generate all their local solutions beforehand. However, in 

Algorithm 2, the agents will not generate any solutions before they need to. Because of this, we 

will have the agents estimate the number of possible solutions to their problem, and calculate 

their priority based on that approximation. 
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In the case of a + clue, you could compare the variables in a cage of size 𝑠 with 𝑠 𝑛-sided dice. 

The number of possible solutions to this cage’s problem is equal to the number of ways you can 

throw the cage’s value with 𝑠 𝑛-sided dice. As dice rolls are independent random variables, we 

can apply the central limit theorem, which states that when independent random variables are 

added, their sum tends toward a normal distribution. This means that the sum of 𝑠 dice rolls 

approaches a normal distribution 𝑁(𝑠 ∙ 𝜇, 𝑠 ∙ 𝜎2), where: 

𝜇 =
1

𝑛
 ∙ ∑ 𝑖

𝑛

𝑖=1

 

is the mean of the roll of a single 𝑛-sided die, and 

𝜎2 =  
1

𝑛
 ∙ ∑(𝑖 −  𝜇)2

𝑛

𝑖=1

 

is the associated variance. The probability density function of a variable with a normal 

distribution 𝑁(𝑠 ∙ 𝜇, 𝑠 ∙ 𝜎2) is equal to: 

𝑝𝑑𝑓𝑁𝑜𝑟𝑚𝑎𝑙(𝑥) =
1

√2𝜋 ∙ 𝑠 ∙ 𝜎2
∙ 𝑒

− 
(𝑥−𝑠∙𝜇)2

2 ∙ 𝑠∙𝜎2  

Thus, the number of possible solutions to a + cage with value 𝑣 and size 𝑠 in a Calcudoku with 

dimension 𝑛 can be approximated by multiplying the approximated probability of that value 

with the total number of possible ways to fill that cage, in other words: 

 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 𝑡𝑜 𝑎 + 𝑐𝑎𝑔𝑒 = 

𝐴𝑑𝑑(𝑣, 𝑠, 𝑛) ~ 𝑝𝑑𝑓
𝑁𝑜𝑟𝑚𝑎𝑙

(𝑣) ∙ 𝑛𝑠 

 

This is applicable for − cages as well. For example, take a 2 − cage with three variables in a 5 by 

5 Calcudoku. The solutions to this cage are either of the form of a 5 and two numbers that sum to 

3, as 5 − 3 = 2, or a 4 and two numbers that sum to 2, as 4 − 2 = 2. The cage has to include a 5 

or 4, because if 3 was the highest number in the cage, we could not fill in the other two variables 

as the result would always be less than 2, because 3 − 1 − 1 = 1. This means that the cage 

always has to have a value of 𝑣 + 𝑠 − 1 or higher. Also, we have to consider the possible ways to 

place the 5 and 4, thus the total number of solutions is equal to: 

 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑎𝑦𝑠 𝑡𝑜 𝑝𝑙𝑎𝑐𝑒 𝑎 5 ∙ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑎𝑦𝑠 𝑡𝑜 𝑠𝑢𝑚 𝑡𝑜 3 𝑤𝑖𝑡ℎ 𝑡𝑤𝑜 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 + 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑎𝑦𝑠 𝑡𝑜 𝑝𝑙𝑎𝑐𝑒 𝑎 4 ∙ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑎𝑦𝑠 𝑡𝑜 𝑠𝑢𝑚 𝑡𝑜 2 𝑤𝑖𝑡ℎ 𝑡𝑤𝑜 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠  

 

The number of ways to place the 5 or the 4 is equal to the number of variables a cage has, and as 

seen above, we can approximate the number of ways to sum to a certain value with a given 

number of variables. We can generalize this by saying: 

 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 𝑡𝑜 𝑎 − 𝑐𝑎𝑔𝑒 = 

𝑆𝑢𝑏𝑡𝑟𝑎𝑐𝑡(𝑣, 𝑠, 𝑛) ~ 𝑠 ∙ ∑ 𝐴𝑑𝑑(𝑖 − 𝑣, 𝑠 − 1, 𝑛)

𝑛

𝑖=𝑣+𝑠−1

 



10 
 

For the × and ÷ cages, we can apply this principle as well. The product of multiple independent 

random variables approaches a Log-normal distribution, as ln(𝑎) + ln(𝑏) = ln (𝑎 ∙ 𝑏). This means 

that we approximate the number of solutions to a × with a Log-normal distribution 𝐿𝑜𝑔‐ 𝑁(𝑠 ∙

𝜇, 𝑠 ∙ 𝜎2), where: 

𝜇 =
1

𝑛
 ∙ ∑ ln (𝑖)

𝑛

𝑖=1

 

is the mean of the roll of the natural logarithm of a single 𝑛-sided die, and 

𝜎2 =  
1

𝑛
 ∙ ∑(ln (𝑖) −  𝜇)2

𝑛

𝑖=1

 

is the associated variance. The probability density function of a variable with a Log-normal 

distribution 𝐿𝑜𝑔‐ 𝑁(𝑠 ∙ 𝜇, 𝑠 ∙ 𝜎2) is equal to: 

𝑝𝑑𝑓𝐿𝑜𝑔‐𝑁𝑜𝑟𝑚𝑎𝑙(𝑥) =
1

𝑥 ∙ √2𝜋 ∙ 𝑠 ∙ 𝜎2
∙ 𝑒

− 
(ln (𝑥)−𝑠∙𝜇)2

2 ∙ 𝑠∙𝜎2  

Thus, like in the case of + cages, the number of possible solutions to a × cage with value 𝑣 and 

size 𝑠 in a Calcudoku with dimension 𝑛 can be approximated by: 

 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 𝑡𝑜 𝑎 × 𝑐𝑎𝑔𝑒 = 

𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑦(𝑣, 𝑠, 𝑛) ~ 𝑝𝑑𝑓
𝐿𝑜𝑔‐𝑁𝑜𝑟𝑚𝑎𝑙

(𝑣) ∙ 𝑛𝑠 

 

Again, like in the case of + and − cages, this can be extended to ÷ cages as well. For example, the 

number of possible ways to fill a 2÷ cage with three variables in a 6 by 6 Calcudoku is of the 

form of a 6 and two numbers which product is 3, a 4 and two numbers which product is 2, or a 2 

and two numbers which product is 1. We can generalize this by saying: 

 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 𝑡𝑜 𝑎 ÷ 𝑐𝑎𝑔𝑒 = 

𝐷𝑖𝑣𝑖𝑑𝑒(𝑣, 𝑠, 𝑛) ~ 𝑠 ∙ ∑ 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑦(𝑖, 𝑠 − 1, 𝑛)
⌊
𝑛
𝑣

⌋

𝑖=1
 

 

These are still just approximations, and they will not be as accurate as the priorities calculated in 

Algorithm 1. However, as per the law of large numbers, these approximations become more 

precise as the size of the cages grow larger, and calculating all possible solutions will take longer, 

making these estimates more useful when solving large Calcudokus. 
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3. Experiment 

In our introduction, we presented the following research question: 

How does dynamic generation of local solutions compare to static generation of local solutions 

regarding computational effort and amount of communication? 

In this chapter, we will formulate a hypothesis regarding our research question. We will explain 

how this hypothesis could be tested, and what the experiments will look like. 

 

Hypothesis 

We think that Algorithm 1 will use less communication overall, as the ordering heuristic that this 

algorithm uses is more precise. We believe this will result in fewer backtracks, and therefore less 

communication. When solving lower dimension Calcudokus, we think that Algorithm 1 will 

require slightly less computational effort than Algorithm 2, because we expect the cages to be 

relatively small. Thus, generating all possible local solutions should not take up as much 

resources, but does give the advantage of a more precise ordering heuristic. However, as the 

dimension increases, we expect the cages to grow larger, and thus that the number of possible 

ways to fill those cages will grow exponentially. We expect that, when solving higher dimension 

Calcudokus, using a more precise ordering heuristic does not compensate for the computational 

effort needed to generate all possible local solutions, and therefore that Algorithm 2 will 

perform better in terms of computational effort on higher dimension Calcudokus. 

 

Design of the experiment 

To test our hypothesis, we will be running both algorithms on 200 Calcudokus of various 

dimensions. In order to measure the amount of communication, we will be tracking the number 

of messages between agents, including backtracks. To measure computational effort, we will be 

tracking the total number of solutions generated, the total running time of the algorithms, the 

number of backtracks, and the number of Non-Concurrent Constraint Checks (NCCCs) [10]. 

NCCCs are constraint checks that do not happen simultaneously with other constraint checks, 

effectively making the other agents “wait” for the agent that is still checking constraints to finish. 

For example, after a ForwardCheck-message, all agents receiving that message will check if there 

is still a consistent solution for their local problem. They do this by either generating new 

solutions, or checking already generated solutions, which both require checking constraints. The 

agents act concurrently, so it’s not that interesting to look at the sum of individual number of 

constraint checks, but rather to look at the agent with the highest number of constraint checks 

needed, and add that number to the count. This way, we get a better picture of how the 

algorithms compare.  

 

Calcudokus to be tested 

As the dimension of the Calcudokus grows, we expect the cage sizes to grow as well, which 

means that the number of ways to fill these cages grows exponentially. Because of this, we think 

it is more interesting to focus on higher dimension Calcudokus than smaller dimension. 

Therefore, we will be testing the algorithms on 50 Calcudokus of dimension 4, 50 Calcudokus of 

dimension 6, 50 Calcudokus of dimension 8 and 50 Calcudokus of dimension 9. These 

Calcudokus will be generated using the “Keen” puzzle in Simon Tatham's Portable Puzzle 

Collection [11], which is an online implementation of Calcudoku. 
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4. Results 

In this chapter, we will present the results of our experiment and give an analysis of these 

results. 

 

Results 

The table below shows the results of the experiment. Each column is headed by the dimension of 

the tested Calcudokus along with the average number of variables in a cage, under which the 

average number of messages, backtracks, generated solutions, NCCCs and runtime in 

milliseconds per tested Calcudoku is stated, for Algorithms 1 and 2. Beneath that, the ratio of the 

results of Algorithm 1 and 2 is displayed. Because the runtimes for the Calcudokus of dimension 

4 were too low to accurately record, they are not included in this table. 

 

 

Algorithm  4 by 4 6 by 6 8 by 8 9 by 9 
 Average cage size 2,18 2,19 2,21 2,23 

1 Messages 130 1404 25054 422993 

 Backtracks 1 31 585 8042 

 Generated solutions 35 121 292 557 

 NCCCs 162 1161 18097 411060 

 Runtime (ms) - 0,04 1,48 24,34 

       
2 Messages 153 1587 28156 447351 

 Backtracks 2 36 620 8732 

 Generated solutions 17 60 135 214 

 NCCCs 191 1654 25344 445339 

 Runtime (ms) - 0,08 2,75 43,24 

      

Ratio 1 2⁄  Messages 0,85 0,88 0,89 0,95 

 Backtracks 0,5 0,86 0,94 0,92 

 Generated solutions 2,06 2,02 2,16 2,6 

 NCCCs 0,85 0,7 0,71 0,92 

 Runtime (ms) - 0,5 0,54 0,56 

 

 

Analysis 

We can see that, unsurprisingly, Algorithm 2 generated fewer solutions on average, for all the 

given dimensions. This is however the only category were Algorithm 2 outperforms Algorithm 1, 

as Algorithm 1 uses fewer messages, backtracks, NCCCs and computing time when solving the 

tested Calcudokus, regardless of dimension. This implies that for Calcudokus of the tested 

dimensions, the advantages of dynamic generation of local solutions do not outweigh the 

advantages of static generation of local solutions.  
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When we look at the relative differences, we can see that the ratio of the results of Algorithm 1 

and 2 in terms of number of messages and backtracks gets closer to 1 as the dimension grows. 

This indicates that the difference in orderings in Algorithm 1 and 2 becomes smaller, and thus 

that the approximation of the total number of solutions a cage has, gets more accurate as the 

number of cages and the size of those cages increase. The ratio of the runtime of the algorithms 

also gets closer to 1, though not as rapidly as the number of messages and backtracks. After 

initially dropping going from dimension 4 to dimension 6, the ratio between the average number 

of NCCCs of Algorithm 1 and the average NCCCs of Algorithm 2 shows a rising trend towards 1 as 

well. The ratio of the number of generated solutions also increases as the dimension grows, 

meaning that in that regard, Algorithm 2 will outperform Algorithm 1 to an even greater degree 

as the Calcudokus get bigger.  

 

These results indicate that while Algorithm 1 clearly outperforms Algorithm 2 when solving 

Calcudokus of the tested dimensions, the performance of Algorithm 2 gets closer to the 

performance of Algorithm 1 as the Calcudokus grow in size, regarding all test-parameters except 

for the number of generated local solutions. It is likely that given a high enough dimension, 

Algorithm 2 performs on par with, or even better than Algorithm 1. 
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5. Discussion and Conclusion  

We will begin this chapter by discussing how the results of our experiment compare to our 

hypothesis, after which we will reflect on possible limitation of our experiment. Next, we present 

a conclusion to this thesis, by answering our research question and discussing how these results 

might apply to problems similar to Calcudoku. Lastly, we will consider in what ways our 

experiment could incite future works. 

 

Discussion 

As stated in our hypothesis, we expected Algorithm 1 to use less communication overall, which 

was the case. We also expected Algorithm 2 to outperform Algorithm 1 in terms of 

computational effort on Calcudokus of the higher dimensions, which did not prove true. Though 

there was a rising trend in the ratio of the results of Algorithm 1 and 2, this ratio never became 

greater than or equal to 1. There could be multiple reasons for our hypothesis differs from the 

results that we found.  

 

One reason could be that we simply did not test the algorithms on Calcudokus of high enough 

dimension. While the average size of the cages did increase as the Calcudokus got bigger, it did 

so at a much lower rate than we expected. This meant that the local problems in Calcudokus of 

dimension 8 and 9 were less complex than we initially presumed, thus generating solutions to 

these problems required less computational effort than we imagined. Because the generated 

Calcudokus are intended to be solved by humans, it is possible that the growth rate of the cage 

sizes is purposely kept low, to ensure that higher dimension Calcudokus are not too difficult for 

humans to solve. Had we tested the algorithms on Calcudokus of dimension higher than 9, it is 

possible that due to the increase in complexity of the local problems, Algorithm 2 would perform 

better than Algorithm 1 in terms of computational effort. 

 

Another reason could be the nature of the problem. The arithmetic problems the agents must 

solve are relatively simple and solving them does not require much computational effort, so it is 

possible that generating solutions to these problems beforehand does not have a large enough 

impact on computational effort to favor Algorithm 2. Also, checking if there is a previously 

generated solution that is consistent with an agent’s AgentView requires almost the same 

number of constraint checks as generating a new solution, so despite Algorithm 1 generating at 

least twice as many local solutions as Algorithm 2, solving Calcudokus using Algorithm 2 still 

required more NCCCs and runtime on average. This might not be the case for DisCSPs where 

generating local solutions is much harder than checking solutions, where the number of NCCCs 

and runtime needed to find a global solution could depend more heavily on the number of 

generated local solutions. 

 

Also, the fact that our algorithms did not run as a truly concurrent system of agents could 

possibly have had an effect on the results, and could therefore be a reason why our results did 

not entirely match our expectations. In Algorithm 1, instead of having the agents generate their 

local solutions at the same time, we had the agents do it one by one and counted the highest 

number of constraint checks and the longest runtime. We used this technique when an agent 

sent out ForwardCheck-messages as well, in both algorithms, counting the highest number of 
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constraint checks and longest runtime if all ForwardChecks were successful. If a ForwardCheck 

was unsuccessful, we counted the lowest number of constraint checks and shortest runtime, 

considering only the agents that sent a NotOK-message. This means that, along with the fact that 

the Stopwatch class in C# does not measure runtime very accurately, our recorded number of 

NCCCs and in particular our recorded runtime may not represent the number of NCCCs and 

runtime used by the tested algorithms entirely accurate. 

 

Conclusion 

When solving the tested Calcudokus, Algorithm 1 outperformed Algorithm 2 on all the test-

parameters, except for the number of generated solutions. This indicates that algorithms that 

use static generation of local solutions perform better than algorithms that use dynamic 

generation of local solutions in terms of computational effort and amount of communication. 

 

However, the difference in results between the two algorithms gets smaller as the size of the 

Calcudokus grew larger, with Algorithm 2 performing almost as well as Algorithm 1 on 

Calcudokus of dimension 9 regarding all test-parameters, except runtime. This might indicate 

that in order to solve Calcudokus of a large enough size, algorithms that use dynamic generation 

of local solutions could require as little, if not less, computational effort and communication as 

algorithms that use static generation of local solutions. 

 

Our research suggests that in terms of computational effort and amount of communication, 

generating solutions only when necessary does not outweigh the advantage of having a more 

precise ordering heuristic when solving simple DisCSPs. Though, as the complexity of the 

DisCSPs and its local problems grow, the difference between static and dynamic generation of 

local solutions regarding computational effort and amount of communication, gets smaller. It 

seems that when a DisCSP is complex enough, the impact of a more precise ordering heuristic on 

the computational effort needed to find a global solution, does not make up for the resources 

required to generate all possible local solutions beforehand. To expand on this, we will conclude 

this thesis with some suggestions for possible future works. 

 

Future works 

For future research, it would be interesting to test algorithms on Calcudokus having higher 

average cage sizes or with dimensions greater than 9, to find out if the performance of Algorithm 

2 will eventually match or even surpass that of Algorithm 1, with regard to computational effort 

and amount of communication. Likewise, testing the algorithms on DisCSPs where local 

problems are more complex than the arithmetic problems in Calcudoku, or where the 

complexity of the local problems scales faster, could prove interesting future research as well. It 

is possible that when solving these problems, the difference between the number of local 

solutions generated by Algorithm 1 and the number of local solutions generated by Algorithm 2 

has a greater impact on the required computational effort than when solving Calcudokus. 

Researching the difference between the two orderings as the Calcudokus grow could give a 

better insight on the effectiveness of the MRA heuristic, and an idea of how precise the 

approximated ordering heuristic must be to favor Algorithm 2. Anyhow, it would be advised to 

use a truly concurrent system of agents in future works, to ensure the measure of NCCCs and 

runtime is as accurate as possible.   
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