
A Solver and Tutoring Tool for
Logical Proofs in Natural

Deduction

Christiaan van der Vlist

Bachelor of Artificial Intelligence

Examinors:

Tomas Klos

Benjamin Rin

Utrecht University

The Netherlands

4th of April, 2019

7.5 ECTS

Abstract

This paper introduces LEGEND, an interactive tutoring system
which provides formal proofs in natural deduction and allows users to
construct their own proofs. I describe the way LEGEND can be used,
and I explain the algorithm it utilizes to construct proofs or create
graphs of paths from premises to a conclusion.

1

Contents

1 Introduction 3
1.1 Intelligent Tutoring Systems 3
1.2 Similar Tools and Systems . 4
1.3 This Paper’s Tool . 6

2 Natural Deduction 6

3 LEGEND 10

4 The Algorithm 12
4.1 Derivations, Goals and Subgoals 12
4.2 Procedure . 13

5 Discussion 15
5.1 Future work . 17

6 Bibliography 19

2

1 Introduction

Formal logic is of considerable importance within several subfields of artificial
intelligence. It is used for knowledge representation, as a tool for analyzing
techniques, and sometimes as a tool for solving problems (Thomason, 2018).
It makes sense, then, that logic is frequently considered an important part of
education in AI. Part of this logic education focuses on constructing formal
proofs. An analysis has shown that a large number of people taking a logic
course drop out when the construction of formal proofs is introduced (Lodder
et al., 2016). To construct formal, syntactic proofs, three systems are com-
monly taught: Hilbert calculus, sequential calculus, and natural deduction.
Of these three, natural deduction may be the most popularly used. It is for
this reason that I have set out to make an intelligent tutoring system, called
LEGEND (Logic Education Guide for E-learning Natural Deduction) which,
first and foremost, uses Fitch’s natural deduction rules to generate a proof of
a given conclusion from given set of premises. Furthermore, LEGEND allows
the user to make a proof themselves, and can suggest hints when prompted
by the user.

The rest of this introduction will 1) give an explanation of what intelligent
tutoring systems are and why they are important, 2) give an overview of
other intelligent tutoring systems that focus on formal proofs and algorithmic
systems capable of providing proofs in using natural deduction, 3) and finally
give a short introduction of LEGEND.

1.1 Intelligent Tutoring Systems

The aim is for LEGEND to be an intelligent tutoring system (ITS) for ed-
ucation in constructing formal proofs in proposition logic with natural de-
duction. ITS are defined by Steenbergen-Hu & Cooper (2013) as interactive
computer-assisted learning environments which often incorporate cognitive
learning theories. Meta-analyses show that ITS are as effective as, or slightly
less effective than, human tutors but more effective than traditional class-
room education (VanLehn, 2011, Steenbergen-Hu & Cooper, 2013, Ma et al.,
2014). These analyses also found that integrating ITS into existing curricula
boosts the effectiveness of the education. Additionally, while ITS may be less
effective than human tutors, the fact that they are software means that they
can be used at any time, wherever there is a computer available, regardless
of whether a human tutor can be present or not.

3

More specific to the topic of constructing logical proofs is the research of
Mostafavi and Barnes (2016). They found that the performance of students
doing formal proof problems improves considerably when they receive indi-
vidual instruction, even when this instruction is given by a computer system.
They further show that the performance increases and the time it takes stu-
dents to complete problems decreases when these problems are tailored to
the individual abilities of the students. These effects are further augmented
with the addition of on-demand hints.

Although the current iteration of LEGEND was not built with the idea
of suggesting problems to students in mind, I think that an intelligent tu-
toring system which can provide hints may already be of value, especially
considering the recent rise in popularity of artificial intelligence.

1.2 Similar Tools and Systems

The works that played the largest role in building LEGEND have been those
of Lodder et al. (2016) and Bolotov et al. (2005). However, these are far from
the only works that relate to the subject of electronic logic education tools.
I mention a few others in this section to provide a scope of what is out there,
but the list is by no means meant to be exhaustive.

A non-interactive system which can algorithmically provide natural de-
duction proofs in first-order logic is described by Bolotov et al. (2005). The
proof searching approach of this algorithm is goal-directed in that it keeps a
list of derived formulae (the proof list) and a list of goals (the goal list), which
can be either be a single formula or a pair of contradictory formulae. The
first items in the list of derived formulae are the premises, and the first goal
is the desired conclusion. When a derivation is made, it is checked against
the current goal (which is the latest goal to be added to the list). If the goal
has been reached, the appropriate introduction rule is applied. The algo-
rithm then terminates if the current goal was the initial goal, and otherwise
continues searching for new derivations. If no new derivations can be made,
the algorithm searches for new goals, and checks if they can be reached. If
no more new goals can be found, the algorithm terminates having found no
proof. The way in which the algorithm searches for derivations and goals is
determined by the current goal and the type of formulae in the proof list.
Finally, this algorithm is correct and terminates for any decidable input.

Another system is LOGAX, which is a tool with a similar aim to that
of LEGEND’s. LOGAX was made by Lodder et al. (2016), and is an inter-

4

active tutoring tool which can provide hints and feedback to students who
are constructing a proof in Hilbert-style. LOGAX uses an edited version
of the algorithm made by Bolotov et al. (2005) to build labeled directed
acyclic multi graphs (DAM) which represent the proofs. One DAM can rep-
resent multiple ways a given conclusion can be proven from the same set of
premises. While a student is making a proof and asks for hints, LOGAX uses
the respective DAM to see which route toward the conclusion the student is
farthest along at, and suggests the next step on that route.

Bop, a system introduced by Verwer et al., (2005), is a web-based proof
editor for Fitch-style natural deduction. It allows students to construct their
own proofs for a given problem similar to how LEGEND does this. Unlike
an ITS, however, it is unable to provide hints when a student gets stuck.

Perkins (2007) introduces three dynamic strategy proof tutors for con-
structing proofs with natural deduction: the Explanation Tutor, the Walk-
through Tutor, and the Completion Tutor. These tutors are based on the
Carnegie Proof Lab, a computer-based proof construction environment.

The Explanation Tutor shows students who are constructing a proof the
four possible strategies they can follow to reach a certain goal formula with
hyperlinks that can be clicked for further information. This information
contains an explanation of how the strategy is employed and whether it is
applicable or not, and if following it will lead to a proof.

The Walkthrough Tutor guides a student along the path of this proof in
a step by step manner, along with examples and extra explanation for the
more complex steps should the student ask for them. The downside of the
Walkthrough Tutor is that it only allows for one path to be followed. If the
student wishes to deviate from this, the Tutor can no longer offer assistance.

The Completion Tutor is most like LOGAX in that it can suggest a step
to a student who is stuck based on the partial proof that they have already
constructed. If there is no partial proof, the Completion Tutor will suggest
the first step that the Walkthrough Tutor would have suggested.

The last tutoring system I introduce here is Deep Thought, created by
Mostafavi and Barnes (2016). What sets Deep Thought apart from the other
tutoring systems I have discussed is that it offers problems to students instead
of allowing them to enter their own. Another major difference is that it uses
data to reach its goal rather than relying on an algorithm which constructs
proofs. This means that Deep Thought is not bound to the limitations of
an algorithm and that it can learn new solutions to old problems, as well
as new problems altogether. Another feature of Deep Thought is that it is

5

able to search its database for problems suitable to the abilities of individual
students after an evaluation period. On the other hand, Deep Thought can
only tutor students in problems that it has in its database, and only in ways
that it has seen before.

1.3 This Paper’s Tool

The algorithm LEGEND uses is a form of bidirectional search. One direction
goes from the premises down, making derivations using only elimination rules.
This is similar to the algorithm of Bolotov et al. The other direction is
goal-driven and works from the conclusion up. The conclusion is considered
the initial goal, which can then be divided up into subgoals that prove the
conclusion when they themselves are proven. Those subgoals can then be
further divided up, and so on. The idea of searching for a proof using goals is
inspired by both Bolotov et al. and Velleman (2006). When these derivations
and goals meet, a possible path to a proof is found.

Of the tutoring systems mentioned in section 1.2, LEGEND resembles
LOGAX the most. Both use variations of the algorithm of Bolotov et al.
to construct proofs. The underlying idea for finding suitable hints, i.e. con-
structing a graph to represent the ways the conclusion can be reached, is
also the same. Yet, there are also several differences. First and foremost, it
does not use the same method of constructing proofs; LOGAX uses Hilbert
calculus while LEGEND uses natural deduction.

The rest of this paper is organized as follows: Section 2 contains a short
explanation on natural deduction. Section 3 explains the interface of LEG-
END and how to use it, both for generating proofs and practicing with proofs,
and section 4 takes a detailed look at the algorithm behind LEGEND and
explains it in depth. Finally, section 5 discusses the strengths and weaknesses
of LEGEND, as well as improvements and changes that can be made.

2 Natural Deduction

LEGEND uses Fitch-style natural deduction to construct and represent proofs,
and user-made proofs also have to be in this style. In this section I give a
short introduction of Fitch-style natural deduction and an explanation of
how it works.

Natural deduction as a system was developed independently by Gentzen

6

and Jaśkowski in the 1930s as a replacement for Hilbert calculus. It is both
sound and complete (Bolotov et al., 2005). The rules of natural deduc-
tion are frequently said to be more intuitive than those of Hilbert calculus
and sequential calculus, and therefore easier to learn. For LEGEND, I used
Fitch-style natural deduction, which is a refinement of the style of natural
deduction introduced by Jaśkowski. Fitch-style natural deduction was in-
vented by Frederic Brenton Fitch and first introduced in his book Symbolic
Logic: An Introduction (1952).

In practice, natural deduction is both a set of syntactic inference rules
and a framework in which these rules can be applied to reach a desired
conclusion. The rule set contains an introduction and elimination rule for
the logical connectives (¬, ∧, ∨, →, ↔), as well as the REITERATE rule.
Introduction rules can be used to derive new propositions by introducing a
connective to one proposition or in between two propositions, depending on
the rule. Elimination rules, on the other hand, derive a new proposition
by removing one or two connectives, again depending on the rule. Finally,
REITERATE allows one to restate a proposition that is already known. Each
introduction and elimination rule also has certain preconditions that must
be met before they can be applied (see figure 2).

The framework consists of a column of numbered lines. Each line itself
further consists of a proposition and an annotation explaining which rule
and which preconditions were used to derive this proposition. Furthermore,
the framework is divided into hypothesis intervals with headers containing a
proposition which is assumed to be true in the respective hypothesis interval.
The premises make up the header of the first hypothesis interval, while the
conclusion is always at the bottom of the framework. The following is an
example of a natural deduction proof for modus tollens. The premise is
(P → Q) ∧ ¬Q, and the conclusion is ¬P .

7

1 (P → Q) ∧ ¬Q Hypothesis, 1

2 P Hypothesis, 2

3 (P → Q) ∧ ¬Q R, 1

4 P → Q ∧E, 3

5 Q ⇒E, 2, 4

6 ¬Q ∧E, 3

7 ¬P ¬I, 2, 5, 7

Figure 1: Annotations are on the right. R stands for REITERATE, E for
elimination, and I for introduction.

8

Figure 2: The introduction and elimination rules for each connective, as well
as REITERATE, in Fitch-style natural deduction (Figure taken from Tonino,
2002).

9

3 LEGEND

For potential users, the interface of LEGEND is as important as the mech-
anisms behind it. Therefore, I have attempted to make the interface as
straightforward as possible. I elaborate on how it works in this section.

Figure 3: LEGEND immediately after running it.

Figure 3 visualizes what the interface looks like when LEGEND is ran.
In the top left is the text box in which the premises, separated by commas,
should be filled in. Directly below it is another text box for the conclusion.
In order to aid in adding logical symbols to the formulae, the five buttons to
the left of the interface can be used. Finally, in the top right, there are two
buttons. The first one is “Prove”, which, when pressed, prompts LEGEND
to attempt to prove the conclusion from the premises and display the proof
in the large box in the center of the interface (see fig. 4). The second button
is “Let me prove”. When this is pressed, the interface expands to allow the
user to make their own proof (see fig. 5). In either case, a SAT solver is
first ran to see whether the conclusion actually follows from the premises

10

by determining if the the negation of the conclusion and the premises are
unsatisfiable. This SAT solver was originally written by Julian Veltman for
the bachelor AI course Modelleren en Programmeren, and modified by me to
work with implications and bi-implications.

Note that LEGEND allows a user to construct their own proof even when
it cannot find a proof itself. In such a case, however, no hints will be given.

Figure 4: The proof is displayed in the box in the middle.

Using this expanded interface (see figure 5), the user can add formulae
to the proof using the rules of natural deduction. A rule must be given
each time a formula is added, and the lines which contain the formulae that
justify the application of this rule must be specified as well (except when
adding assumptions). When this is done, pressing the “Add” button adds
the formula to the proof. If this formula is the conclusion, LEGEND notifies
the user and stops asking for input. Otherwise, the user can continue adding
new formulae to the proof in the same way. Furthermore, the “Hint” button
on the right prompts LEGEND to generate a hint based on the proof that has
been constructed thus far. However, since LEGEND is currently incapable
of providing hints, this button is disabled. The “Cancel last” button below it
removes the last formula added (but premises cannot be removed). Finally,
the “n intervals to close” can be used to close a specified number of hypothesis
intervals if so desired. Note that applying implication introduction, negation
introduction, or disjunction elimination causes hypothesis intervals to be
closed on their own if necessary. At any time, this process can be stopped by

11

either pressing the “Stop proving” button, which has replaced the “Let me
prove” button, or pressing the “Prove” button, which prompts LEGEND to
write its own proof to the box.

Figure 5: The expanded interface after pressing “let me prove”.

4 The Algorithm

Whether LEGEND is trying to prove a desired conclusion from given premises
or attempting to construct a graph depicting all the ways the same conclusion
can be proved from those premises, the algorithm used is the same except
for the stop condition. This algorithm is a form of bi-directional search.
One direction consists of inferring formulae from the premises down with
breadth-first search. The other direction comprises dividing the conclusion
into subgoals, those subgoals into further subgoals, and so on, with iterative
deepening search. Important to this algorithm are the terms of derivations,
goals and subgoals, which I will explain first. After that, I will talk about
the algorithm in depth.

4.1 Derivations, Goals and Subgoals

Derivations, like those in the algorithm of Bolotov et al. (2005), are propo-
sitions that are either a premise, or that have been inferred by applying an
elimination rule on another derivation. Derivations also have a history de-
tailing their parent derivations, which need to be done prior to the current
one, and which rule was applied to derive it. Premises and assumptions
have no parents. Furthermore, derivations have a length that is equal to the

12

sum of the lengths of its parents plus one. Premises have a length of zero,
while assumptions have a length equal to one plus the number of hypothesis
intervals that are between theirs and the initial hypothesis interval.

LEGEND’s algorithm also keeps a tree structure of goals. Goals are
propositions that you want to know, because they will either prove the con-
clusion or part of it. The conclusion itself is the initial goal and serves as the
root of the tree. A goal is proven when it matches a derivation.

Goals can be expanded into subgoals which are goals themselves that,
when known, either fully or partly prove the parent goal. All goals have one
“modus ponens” subgoal (MP subgoal) and a contradiction subgoal. Further
possible subgoals depend on the main connective of the parent goal. See
figure 6 for all subgoals. There are two additions to the subgoals introduced
by Bolotov et al., inspired by the proof strategies of Velleman (2006). The
first is that a disjunction goal A ∨ B has the subgoals A,¬B and B,¬A in
addition to A and B. The second is the addition of MP goals.

An MP subgoal consist of three parts, rather than just one as with all
other goal types. The first is formula of the form B → A, where A is the
parent goal and B a meta-formula. All known implications that match this
form comprise the second part. Lastly, the third part is made up of all the
antecedents of the implications of the second part. These antecedent are the
formulae which are actually considered during the search for a proof; the
other two parts are disregarded.

The reason that A ∨ B has the additional subgoals of A,¬B and B,¬A
is that A and B might not be provable by themselves, while A ∨ B is. For
example, consider ¬A → B ` A ∨ B. Neither A nor B are provable, but it
is true that either A is true, or ¬A is true and therefore B is true. In either
case A ∨B is also true.

MP goals were added because problems of the form A∧B → P,A,B ` P
and A ↔ B → P,A → B,B → A ` P could only be proven by an indirect
proof otherwise, while a direct proof is just as viable a route to take.

4.2 Procedure

There are two objectives that LEGEND can use its algorithm for. The first
is simply finding a proof from the premises to the conclusion. This is the
objective when the ”Prove” button is pressed (see Section 3). The second
objective is finding all possible proofs without redundant steps from the
premises to the conclusion and saving them as a graph, which can then be

13

A → B A ∧B

A ↔ B

A ∨B

A,BA B A,¬B B,¬A A B

A → B B → A

A

⊥,¬A

A

B → A

C → A

C

Figure 6: All subgoals. From right to left, top to bottom: 1) Contradiction
goal, 2) MP goal, 3) Bi-implication subgoal, 4) Disjunction subgoal, 5) Im-
plication subgoal, 6) Conjunction subgoal. Note that A,B means A under
the assumption that B is true.

used to provide hints when the user is making their own proof.
In either case, the algorithm starts by making all possible derivations from

the premises by applying elimination rules in a breadth-first search manner.
In case a derivation can be made in more than one way, the one with the
lowest length is kept.

Next, the goal tree is created from the initial goal (i.e. the conclusion) by
adding subgoals and then adding subgoals to those subgoals, etc. This tree
is then searched with iterative deepening search. Assumptions are added
whenever necessary, along with all derivations that can be made from the
new assumption and the derivations that were already known. If the goal
that is currently under consideration matches a derivation, it is considered
proved. The derivation is then linked to the goal and the tree is checked
backwards, starting from the current goal, to see which ancestors are now
also proved. Neither proven goals nor their subgoals are checked in further
iterations. On the other hand, if the current goal has no subgoals and cannot
be proven, it and all its ancestors that require the current goal for their own
proof are removed from the tree.

Contradiction goals are different from other goal types in that they cannot

14

be directly matched to a derivation; they require that a contradiction be
found instead. To do this, for all known negations ¬A, A is set as a subgoal
for the contradiction goal and is treated similarly to other subgoals with the
exception that neither this subgoal nor its descendants can have contradiction
goals as subgoals of their own.

Stop conditions of the algorithm depend on the objective. If the objective
was to find a proof and the conclusion has been proved after some iteration,
the algorithm stops. On the other hand, if the objective was to find all
possible paths from the premises to the conclusion, the algorithm stops if the
initial goal has only completed subgoals. Finally, regardless of the current
objective, the algorithm stops if the initial goal has no subgoals left. Whether
the algorithm was successful is determined by checking if the initial goal is
proven or not; it was successful if and only if it is.

5 Discussion

I have introduced and explained the algorithm that LEGEND uses to make
proofs and construct proof graphs for providing hints. LEGEND is able to
constructs proofs for a large number of problems, but there are places for
improvement.

The time and space complexity of LEGEND’s algorithm have not been es-
tablished. As it stands, however, it is likely that this complexity is needlessly
increased by the serial manner in which the phases of derivation, expanding
the goal tree, and searching the goal tree are carried out (see section 4, Pro-
cedures). If the steps taken during these phases were to be interleaved, I
believe the complexity of the algorithm as a whole may decrease. The reason
I think this is that, during the goal tree search phase, the complexities of the
premises and conclusion do not matter beyond what is necessary to construct
a proof. This is similar to the algorithm of Bolotov et al. For example, if
some derivation A is needed to prove a conclusion, the depth of the goal tree
where the solution is found is the same whether A is merely a proposition
variable or a complex formula consisting of many variables and connectives.
However, during the derivation and goal tree expansion phase, the complexi-
ties of the premises and conclusion do matter. Therefore, if these phases are
carried out to completion first, unnecessary and avoidable steps are taken.

Furthermore, LEGEND’s algorithm is not complete. An example of a
proof that cannot be made is as follows: (p ∧ q) → (s ∧ t), p, q ` s. This

15

is a shortcoming of the way subgoals are made (see section 4 for reference).
The goal s only has a contradiction goal and an MP goal as subgoals. Both
of these can be used to construct a proof1, however, due to the way goals
are handled, LEGEND does not consider the steps that must be taken to
reach a proof from either of these goals. There are improvements that can
be made to ameliorate these problems. For example, MP goals can be made
better by checking if any of the possible derivations that can be made if the
consequent were true would prove the parent goal, rather than merely trying
to see if the parent goal and the consequent are the same.

A way that is certain to make LEGEND correct and complete is changing
the approach it takes to proof searching from one that relies on goals and
inference rules to one that relies on constructing a truth tree and translating
that tree to a natural deduction frame. An example of this method is shown
in Logica, chapter 7 (Tonino, 2002). The advantages of this approach are that
constructing a truth tree and translating it to a frame are far less complex
tasks, even when combined, than the approach LEGEND currently uses. The
truth tree approach has also already been proven to be correct and complete.
However, this approach has the drawback that it only finds one proof, and
thus only one path, that could be used for tutoring. If a student were to
deviate from this path, the proof would become useless and LEGEND would
no longer be able to provide any hints. Since LEGEND is meant to be an
ITS, I feel that this drawback outweighs the advantages of this approach.

Another possible point for improvement may be the iterative deepening
search algorithm employed by LEGEND. One of the advantages of iterative
deepening search is that it searches a space in the same way depth-first search
does, thus saving memory usage, while guaranteeing that the first solution
found is optimal. The disadvantage of iterative deepening search is that it
costs more time than breadth-first search, but this overhead is only marginal
if the branching factor is larger than one. At first glance this may seem
to be the case because the majority of goals that LEGEND uses to search
for a proof have multiple subgoals. When given a closer look, however, it
becomes clear that most of these subgoals are significantly less deep than
paths to actual solutions. Since unprovable goals are removed from the goal
tree, the average branching factor for each level for every iteration is likely

1Contradiction goal: ¬(s∧ t) can be proved after assuming ¬s. Next, ¬(p∧q) and p∧q
can be proved, which form a contradiction. MP goal: The only implication which can be
considered for this goal type is (p ∧ q) → (s ∧ t). s can be proved from s ∧ t, so p ∧ q is a
valid subgoal. This can easily be proved because both p and q are known.

16

less than two. This makes the overhead of iterative deepening search far
costlier relative to the time it takes to find a solution. It might therefore be
a better idea to instead use breadth-first search when the objective is to find
a proof since it finds an optimal solution, and to use depth-first search when
the objective is a graph of all paths from the premises to the conclusion, as
this costs less memory. The branching factor and the maximum depth are
guaranteed to be finite, so both algorithms are viable.

5.1 Future work

If LEGEND is to become an intelligent tutoring system, it needs to be able to
make helpful suggestions to users who get stuck on a proof. As of right now,
LEGEND and its algorithm are set up to create a graph of possible paths
from the premises to the conclusion. The next step is adding functionality
that allows it to provide sensible and helpful hints. In order to do this, it first
has to check, for each path it found, how far along a user is in constructing
a proof, and suggest taking the next step along one of those paths.

Furthermore, intelligent ways of deciding which step to suggest are nec-
essary. It makes sense to suggest steps on the path that will lead to the
conclusion the fastest. On the other hand, once a user has started progress-
ing along a certain path, suggestions should instead aim to advance the user
along that path, regardless of whether starting over from scratch might lead
to a faster solution. Further research into what pedagogical theories exist is
needed in order to be able to accurately determine which suggestion is the
most helpful in which situation.

One issue that I can foresee arising—but I fear cannot be easily resolved—
is what LEGEND should do when a student is following a path that will lead
to a proof but that it does not recognize. Whereas humans can base the
worth of steps that might or might not lead to a proof on a gut feeling,
LEGEND only has the paths it has constructed as a reference. Thus, when
students make steps that do not align with any path, LEGEND can only
deem them as redundant. Whether this is desirable or not is up for debate,
but I think that the way LEGEND currently handled unknown yet valid
paths has more merit. Making a system that can predict the value of steps
that do not align with any path would require a great amount of effort, and,
like humans, it could still be wrong. On top of that, the algorithm LEGEND
already has is already, in essence, such a system. The better solution is, I
think, updating the existing algorithm to allow for non-included paths when

17

they are discovered. This solves the problem just as well, and does not allow
for error.

Whatever the future solution for the above will be, the algorithm still
needs to be improved upon so that it can deliver proofs for problems that it
currently cannot, potentially to the point where it is proven to be complete
(though this will require a large amount of work still). Further work that
can be done in this area is proving that the algorithm is correct.

18

6 Bibliography

Bolotov, A., Bocharov, A., Gorchakov, A., & Shangin, V. (2005). Automated
first order natural deduction. Proceedings IICAI’05: the 2nd Indian Interna-
tional Conference on Artificial Intelligence, pages 1292–1311

Fitch, F. B. (1952). Symbolic Logic: An Introduction. Ronald Press Co.

Lodder, J., Heeren, B., & Jeuring, J. (December 2016). Generating hints and
feedback for Hilbert-style axiomatic proofs

Ma, W., Adesope, O., Nesbit, J.C., & Liu, Q. (2014). Intelligent tutoring
systems and learning outcomes: a meta-analysis. Journal of Educational
Psychology, 106(4), pages 901–918.

Mostafavi, B., & Barnes, T. (2016). Evolution of an intelligent deductive
logic tutor using data-driven elements. International Journal of Artificial In-
telligence in Education, pages 1–32.

Perkins, D. (2007). Strategic proof tutoring in logic. Master’s thesis, Carnegie
Mellon.

Steenbergen-Hu, S., & Cooper, H. (2014). A meta-analysis of the effective-
ness of intelligent tutoring systems on college students’ academic learning.
Journal of Educational Psychology, 106(2), pages 331-347.

Thomason, R. (Winter 2018). Logic and Artificial Intelligence. The Stanford
Encyclopedia of Philosophy (Winter 2018 Edition), Edward N. Zalta (ed.).

Tonino, J. F. M. (July 2002). Logica, Collegedictaat bij IN2 013 en IN2 310.

URL: https://plato.stanford.edu/archives/win2018/entries/logic-ai/. Accessed
on 12 March 2019.

VanLehn, K. (2011). The relative effectiveness of human tutoring, intelli-
gent tutoring systems, and other tutoring systems. Educational Psychologist,
46(4), pages 197–221.

19

Velleman, D. J. (2006). How To Prove It, A Structured Approach, 2nd Edi-
tion. Cambridge University Press.
Verwer, S., de Weerdt, M., & Zutt, J. (2005). A tutoring system to prac-
tice theorem proving in Fitch. 12th International Conference on Artificial
Intelligence in Education, AIED ’05, pages 33-37.

20

