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Abstract

C.P. (Tamara) Florijn

How to Find the One
Secretary Problem Extended with Uncertain Observations

Making a good decision is often a challenge. How to choose your ideal house? How
to find your true love? These problems resemble the mathematical puzzle called the
secretary problem.

In the classic secretary problem, administrators want to hire the best secretary
from n applicants. The secretaries present themselves one by one. Each decision,
rejecting or accepting, needs to be immediate, is permanent, but can only be based
on the ranking of seen applicants. Who should they hire?

The optimal strategy is a cut-off strategy, where the number of applicants one
needs to wait is n

e , with n is the number of applicants, which is approximately 37
with n = 100. After 37%, the administrators should hire the first who is better than
all they have seen before.

In this study, the effect of uncertain observations on the chance of success of cut-
off strategies has been evaluated by the use of computer simulations. Computer
simulations were used to simulate versions of the secretary problem with intervals,
normal distributions and pareto distributions. The trend showed that the larger the
uncertainty, the lower the cutoffpoint from the optimal strategy. The reserved advice
is: if you are not sure, choose sooner!

Keywords: Secretary problem, Googol problem, best choice, uncertainty, computer
simulations, optimization
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Chapter 1

Introduction

Making a decision is both difficult, challenging and important. Choosing is part
of our daily life. How to find that one perfect house when accepting and refuting
an offer is permanent? How to find your true love? How to find the one and only?
These examples have a few characteristics in common. For example, the possibilities
to choose from appear sequentially, refuting and accepting an offer is permanent,
and there is no information available about coming options. These situations can be
modelled as a mathematical puzzle called the secretary problem.

In the classic secretary problem, administrators want to hire the best secretary of n
applicants (note, second best is regarded as a failure). After each job interview, they
can decide whether they will hire the applicant or not. Once rejected, there is no
way of returning. During the interviews, they are able to make a ranking of the seen
applicants without ties, but are unaware of the quality of unseen applicants. The
decision needs to be made immediately. Who should they hire?

The optimal strategy for the original secretary problem has been proven elegantly
by Gilbert and Mosteller (1966), which will be shown in the chapter 2. After 37 %
of the applicants, the administrators should hire the first who is better than all seen
before. The optimal strategy is a cutoff strategy, where the number of applicants one
needs to wait is n

e , with n is the number of applicants, which is approximately 37
with n = 100.

The secretary problem was first published in a column by Martin Gardner (1966)
in the Scientific American, introduced as “the Game of Googol”. In this game, one
person may write down any number on slips of paper. The other person may turn
the slips one by one, and aims to stop at the highest number. Lindley (1961) was the
first to publish the solution, and he extended it to an arbitrary utility. In 1966, Gilbert
and Mosteller published a paper with the optimum values and their probabilities of
winning for a range of values of n, and discussed, among other, the variation of
being allowed to try and choose more than once. In reaction to this paper, a lot of
articles and journals have been published. Many variations have been discussed,
including an infinite number of applicants (Gianini and Samuels, 1976) or finding
the second best applicant (Vanderbei, 1983). Others reviewed versions with more
information, for example where secretaries where chosen from a normal distribution
with an unknown mean (DeGroot, 1968). Every one of the six assumptions has been
altered to solve a different form of the original secretary problem.

In addition to these, Freeman (1983) published a clear and elaborate overview of
extensions that had been researched up to that time, including a version with an un-
known number of items, an uncertain employment, and an unknown recall. A few
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years later, Ferguson (1989) answered the question “Who solved the secretary prob-
lem?” by providing an overview of the history, and constructing the proof himself.
Gnedin (1994) investigated the problem with absolute values (game of Googol) in
comparison to the problem with a ranking , and proved that the optimal solution is
a rule only based on relative ranks for n > 2. Seale and Raport (1997) conducted an
experiment to research human behaviour in this setting. They used computer simu-
lations to evaluate the found strategies and compared them to the optimal strategy.

“All human knowledge is uncertain, inexact, and partial,” Bertrand Russsel once
said. In real life, making a choice involving uncertainty is an everyday task. Uncer-
tainty did not gain much importance in the original secretary problem, other than
not knowing anything about who will come next and with what quality. The certain
knowledge about the absolute ranking could be considered as unrealistic. Some of
the articles published offered formulations to come closer to a realistic setting, such
as cooping with an unknown number of applicants (Seale and Rapoport, 2000), or
modelling human heuristics (Seale and Rapoport, 1997).

This study will not attempt to model human behaviour. Instead, we will create a sit-
uation that might come a step closer to reality by involving uncertainty, and research
the optimal strategy in that scenario. This uncertainty and decision making connects
with challenges the field of artificial intelligence, such as the design of autonomous
decisive agents. Uncertainty, chaos and noise in observations will be crucial to deal
with in order to operate safely and effectively in the real world. To bridge the gap
between ideal mathematical models and the chaotic real world remains a challenge.

The aim of this paper is to investigate the influence of the amount of uncertainty in
the observations of the secretary problem to evaluate the effect on the cutoffpoint
of the strategy using computer simulations. Whereas the original secretary problem
used absolute values to grade the secretaries, we will let uncertainty have an influ-
ence. The uncertainty will be reflected in the observations of the secretaries in the
form of intervals, normal distribution and pareto distribution, where the values of
the secretaries will be chosen from randomly. Intuitively, we expected that the explo-
ration phase (before the cutoffpoint) would now require more time, to gather enough
information about the population. This suggested that the cutoffpoint would have
increased when more uncertainty was added.

This study will begin with theoretical background, where we provide the proof for
the optimal strategy of the classic secretary problem and lay the mathematical foun-
dations for the concepts used in the methodology and results. After that, we will
elaborate on the design of the computer simulations in chapter 3, methodology. In
chapter 4, we will present the results of the computer simulations and give an inter-
pretation of the observations we made. Chapter 5 will conclude the study, where we
answer the research question and discuss the applications of the results.
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Chapter 2

Theoretical background

In this chapter, several mathematical concepts will be introduced, as concise as pos-
sible while remaining correct and sufficiently elaborated. At first, we will enlist
terminology that will be used in the rest of this study. At second, we will explain the
proof of the optimal strategy for the classic secretary problem, step by step. At third,
we will briefly introduce mathematical concepts concerning the implementation of
uncertainty, namely intervals, the normal distribution and the pareto distribution.
This will lay the theoretical basis necessary to gain insight in the choices made in the
methodology, and the interpretation of the results.

2.1 Terminology

This section will give a short overview of the meaning of abbreviations and terms
that will be used.

The secretary problem will be abbreviated as SP. This will refer to the mathematical
puzzle as has been explained in the introduction. DM is short for the Decision Maker.
The DM is the metaphorical person who decides which secretary is chosen. The
secretaries are presented to the DM one by one. The number of the secretary will
refer to the order in which this occurs. The first secretary has number 1, the second
number 2, till the last one with number n, the total number of secretaries. The aim
of the SP is to find the best secretary, which means that each secretary better than
all the secretaries the DM has seen before, might be the one he is looking for. These
secretaries are called a candidates. The DM chooses according to a cutoff strategy.
After a certain number of applicants, the cutoffpoint, the DM will choose the first
candidate, so the first secretary who is better than all seen before.

2.2 Proof optimal strategy

As has been said in the introduction, the optimal strategy for the classic secretary
problem is a strategy with a cutoffpoint of 37% of the applicants. This problem has
a surprisingly simple and elegant solution. The here provided proof is extended
from the proof in the article from Ferguson, 1989. We will use n as the number of
applicants, i as the number of the selected secretary and r− 1 is the cutoffpoint (the
decisionmaker (DM) chooses the first one better than the first r− 1 applicants). We
construct the probability of selecting the best of n applicants, and will derive the
cutoffpoint that optimizes the chance of success.
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Probability of selecting the best of n

=
n

∑
i=1

P(i selected∩ i is the best)

=
n

∑
i=1

P(i selected | i is the best) · P(i is the best) [P(A ∩ B) = P(A|B) · P(B)]

(Conditionalprobability)

=
r−1

∑
i=1

0 +
n

∑
i=r

P(i selected | i is the best) · 1
n

[P(is the best) =
1
n
]

=
n

∑
i=r

P(the best of i−1 is in r−1 | i is the best) · 1
n

The number of the best of the first i−1 secretaries should be lower than r−1 (before
the cutoffpoint). This secretary may be the first (chance 1

i−1 ), the second (chance 1
i−1 ),

till i−1. If we add up all the chances, we obtain
1

i− 1
+

1
i− 1

+ · · ·+ 1
i− 1︸ ︷︷ ︸

r-1 times

=
r− 1
i− 1

.

=

[
n

∑
i=r

r− 1
i− 1

]
· 1

n

=

[
n

∑
i=r

r− 1
(i− 1) · n

]

=
r− 1

n
·
[

n

∑
i=r

1
i− 1

]

Letting n tend to infinity, we will write x as the limit of r−1
n , use t as i−1

n and dt as 1
n .

1
i−1 = n

i−1 ·
1
n = 1

t · dt. Thus, the sum now can be approximated using the integral

x
∫ 1

x

1
t

dt

The boundaries from x to 1 can be explained by rewriting t. Because x is the limit of
r−1

n and t = i−1
n , one can derive i = r from t = x, which corresponds with the sum we

approximate. The upper boundary of the integral is 1. With n→ ∞, it follows from
t = 1 that i−1

n = i
n −

1
n ≈

i
n . Given i

n =1, it follows that i = n, which corresponds with
the sum we approximate.

x
∫ 1

x

1
t

dt

= x · (ln(1)− ln(x))
= x · (0− ln(x))
= −x · ln(x)
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We want to maximize the chance of success, by taking the derivative with respect to
x, and setting it to 0. The derivative of −x · ln(x) is:

− (1 · ln(x) + x · 1
x
)

= − ln(x)− 1
= 0
⇒ ln(x) = −1

⇒ x =
1
e

x was the limit of
r− 1

n
, thus

r− 1
n

=
1
e

. It follows that the cutoffpoint r− 1 should

be
n
e

.

2.3 Mathematical background

Discrete uniform distribution (intervals)

A discrete uniform distribution is characterised by a lower boundary lb, an upper
boundary ub, and an interval size ivs = ub − lb. All the discrete values in the interval
are equally likely to be selected. The expected value is the middle of the interval,
E(X) = lb +

1
2 · ivs.

The larger the interval, the less information one has about the value that will be
chosen, because there are more values possible. The interval size therefore defines
the amount of uncertainty.

Normal distribution

The top of the normal distribution is given by the mean and the amount of dispersion
is indicated by the standard deviation σ (sigma).

FIGURE 2.1: Normal distribution (made by W. Toews, 2007).

As can be seen in figure 2.1, 68.2 % falls into the interval [mean − σ, mean + σ]. The
smaller the standard deviation, the more the data points tend to be close the mean.
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The standard deviation therefore defines the amount uncertainty, while the mean
defines the shift of the figures, in other words the location of the top. The expected
value is the mean, for the distribution is symmetric.

Pareto distribution

The parameters of the pareto distribution are xm and α (alpha). In figure 2.2, one can
see that the chance of the value that is generated from the distribution is large when
it is close to xm, and small when it is further away. How large and how small, is
defined by α. The larger α, the higher the starting point of the graph, so the bigger
the chance is that the generated value is close to xm. In other words, the larger the
alpha, the smaller the uncertainty (note, this is the other way around in comparison
to the other two distributions). The mean of a pareto distribution is given by α·xm

α−1 for
α > 1.

FIGURE 2.2: Pareto distribution (made by Danvildanvil, 2014).

An example will illustrate the role of α. The probability density function of the pareto

distribution is
α · xα

m
xα

m
. This can provide an relative likelihood that the value (x) is

randomly chosen. Suppose, xm = 400.

When α = 10, f (x) =
10 · 40010

40011 =
10

400
=

1
40

.

When α = 50, f (x) =
50 · 40050

40051 =
50

400
=

1
8

.

When α = 100, f (x) =
100 · 400100

400101 =
100
400

=
1
4

.

Thus, the chance that the generated value is close to xm, increases when α increases.
The larger α, the smaller the uncertainty about the generated value.
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Chapter 3

Methodology

We conducted computer simulations to research the influence of uncertainty on the
optimal strategy of SP. Analytical mathematical methods have been used to proof the
optimal solution for the original SP. Including uncertainty limited the use of analytic
proving methods. The events occur probabilistic, and therefore cannot be described
with differential equations directly. By involving uncertainty in the observations,
the values of the secretaries can not be determined exactly, but the values can be
generated randomly. Each strategy can be evaluated and approximated to find the
optimal solution. In this chapter, we will make clear how the computer simulations
are developed, and elaborate on the choices we made to create it.

3.1 Design

Computer simulations were conducted to assess the effectiveness of the cutoff strate-
gies in the SP. The code of the C# implementation is included in appendix C, and we
will here summarize its design. In a simulated secretary problem, the DM receives
the number of secretaries (n) that will be presented. The set of applicants is con-
structed using a random generator. One by one the value and the number of the
secretary at that moment is presented, along with the last seen candidate. The DM
is given a strategy in the form of a cutoffpoint, 1 to n. Once an applicant is seen who
is a candidate and has a number higher than the cutoffpoint, the applicant is chosen.
If the DM has chosen, the rest of the secretaries are generated. The highest value of
all applicants is compared to the chosen value of the DM. If these are the same, the
round is saved as a win; if that is not the case, it will be saved as a loss. Aside from
that, there is another case where the DM has not been able to find anyone after the
cutoffpoint. Then, the best was already presented before the cutoffpoint and no one
was chosen by the DM. That is gathered under the name of losses, but can be split
when counting the amount of selections, whether a selection has been made or not.

In the adapted SP version, we applied uncertainty to the observation. The DM re-
ceives the same sort of information as before, now called the apparent value, while
the actual value is generated “behind the scenes” with a certain distribution, namely
intervals, normal distribution or pareto distribution. The actual values are gener-
ated as following. A random value is generated between 0 and a boundary, that
value is for example 800. In the case of intervals, when the DM encounters the
value 800 for a secretary, the actual value is randomly chosen from the interval
[800,1000], [800,1200], or some other, dependent on the size of the interval. In the
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case of a normal distribution, the value is randomly chosen from a normal distribu-
tion with 800 as mean, and a given standard deviation such as 10 or 20. In the case
of pareto distribution, the value is chosen from a pareto distribution with 800 as xm,
and a specific α, such as 8 or 12. For all the distributions applies: the larger the uncer-
tainty, the larger the chance that the actual value deviates from the apparent value.
The DM still chooses in the same manner as before, namely that he will choose the
first candidate after the cutoffpoint, but he will only base this decision on apparent
values. In the end, the actual value is used to evaluate who is the best, and whether
the round will be saved as a win or a loss.

3.2 Choices made

Distributions

To model uncertain observations, we have evaluated three distributions. At first,
a specified interval under a discrete uniform distribution is a quite standard way
of representing deviation. When asked: "What grade do you expect to receive for
your test?", one might answer: "Well, between 8 and 9." Intervals will be used to
reflect this sort of uncertainty in the observations. At second, normal distributions
are often used to approximate quantities we find in nature, such as people’s heights
and examination grades (Lyon, 2013). We might have a reasonably good idea of the
quality of a job applicant, but it is possible that the applicant is much better or much
worse, although the chance is small. This is reflected when using a normal distribu-
tion. At third, pareto distributions could be known from the 80–20 rule. For example
it has been said that 80 % of the wealth is owned by the richest 20% of the people
(M. Levy and H. Levy, 2003). Though this 80–20 rule is only shown with a specific
alpha (log4 5≈ 1.16), the intuition that more people will show a lower capability, and
only a few belong to the top, is reflected over the variety of values of α in the pareto
distribution. In short, the combination of these three distributions provide a variety
of interpretations of what uncertainty in the observation of a secretary entails.

Number of applicants

The number of applicants we choose has been based on the numbers used in Seale
and Rapoport, 1997. n = 40 and n = 80 will be used throughout the rest of this
study. To support the decision of using these two as values for n, we compared sev-
eral numbers of applicants, and plotted them scaled to 100 % shown in figure A.1
in the appendix. Most of the graphs show almost exact similarity. The difference
one can notice is small enough to attribute it to stochastic irregularities. The graph
of n = 20 shows the largest deviation. This is due to the fact that 20 is a small num-
ber. The optimal strategy n

e is an approximation for small numbers, as explained
in chapter 2. The optimal cutoffpoint is n

e when n approaches infinity, and deviates
from that point for smaller numbers. For n = 20, the optimal cutoffpoint is 8, and
optimal probability of winning is 0.384 (Gilbert and Mosteller, 1966), which explains
the deviation in the graph. In short, the number of applicants used will be n = 40
and n = 80, which should have minimal effect on the results.
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Number of rounds

We ran the simulation 100,000 times for each cutoffpoint, and varied the cutoffpoint
between 1 and n. This is ten times as much as similar SP simulations (Seale and
Rapoport, 1997). This number of rounds shows more or less stable graphs, with
a smooth line, which suggests that the results approximate the actual value. If the
number of rounds is large enough, we may assume that the value is converged. Still,
it will remain an approximation, but should not have a large effect on the results.

Boundary

The boundary of the value of the secretary should be chosen in such a way that it
does not affect the results. It should not be too small, because then there will be
too many duplicates in the generation of random values. As an extreme example,
suppose the boundary is 1, then the first one is best, but the second as well, and
the third, and so on. When the boundary is large enough, then the chance of the
values being the same will be minimised enough to not influence the results signif-
icantly. The smoothness, stability and the similarities between the graphs in figure
A.2 in the appendix indicate that the choice of the boundary is justified. We tested
the boundaries for the SP with uncertainties in figures A.3 to A.5. To evaluate the
boundaries correctly, we adapted the associated parameter accordingly. When the
boundary is multiplied by 10, so the random value r, then the expected value should
also be multiplied by 10.

For intervals, with r the random generated lower border and ivs the interval size,
the expected value is E(x) = r + 1

2 · ivs. Let r′ = 10 · r.

E(x′) = 10 · E(x)

= 10 · (r + 1
2
· ivs)

= 10 · r + 1
2
· 10 · ivs

= r′ + ivs’
⇒ ivs’ = 10 · ivs

This can be seen in figure A.3 in the appendix.

For a normal distribution, the expected value is the mean, which is the random gen-
erated value r. To keep the dispersion in ratio to the enlarged mean, we also keep
the standard deviation in ratio. When the boundary is multiplied by 10, also the
standard deviation is multiplied by 10. To show that these will have similar distri-
butions, the results for different variations are visually depicted in figure A.4.

For a pareto distribution, the parameter α should remain constant, regardless of the
value of the boundary. The expected value of a pareto distribution is given by α·xm

α−1
for α > 1. xm is the random generated value. When xm is multiplied by 10, the
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expected value should also be multiplied by 10. Let x′m = xm · 10.

E(x′) = 10 · E(x)

= 10 · (α · xm

α− 1
)

=
α · 10 · xm

α− 1

=
α · x′m
α− 1

⇒ α′ = α

This can be seen in figure A.5 in the appendix.
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Chapter 4

Results

In this chapter, we will show the results of the computer simulations. We varied the
cutoffpoint, and studied the differences in the number of correct selections and the
number of selections. We will evaluate the classic secretary problem, the secretary
problem influenced by uncertainty, and provide an interpretation of the observations
made.

4.1 Results original SP

The cutoff decision rule has been evaluated for the standard SP with n = 40 and n =
80. Each possible variant of the cutoff strategy (1 to n) was simulated 100,000 rounds.
The black line depicts the number of correct selections, that has been counted per
cutoffpoint. The red line depicts the probability of selection, the chance that the
DM has found a candidate after the cutoffpoint, also measured per version of the
strategy.

FIGURE 4.1: Graphs original SP with n = 40 and n = 80.

For n = 40, the optimal strategy is to reject the first 15 applicants, and then hire the
first who is better. This strategy results in 0.376 chance of correct selection (Gilbert
and Mosteller, 1966). Our results for the standard SP for n = 40 (left graph in fig.
4.1) resemble the theoretical predictions. In our simulation, the top is reached with
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cutoffpoint 14, with 0.377 chance of correct selection. This is in line with the simu-
lation results from the article of Seale and Rapoport, 1997. This deviation of 1 could
be explained by the random nature of the experiment. The line of the graphs are flat
at the top. This suggests that the strategy is quite insensitive to minor changes. A
chance of success within 90 % of the optimal strategy (so more than approximately
33,300 correct selections) is reached in the broad interval [9,21]. The probability of
success shows a declining linear trend.

For n = 80, the optimal strategy is to reject the first 29 applicants, and then hire the
first who is better. This strategy results in 0.372 chance of correct selection (Gilbert
and Mosteller, 1966). Our results for the standard SP for n = 80 (right graph of fig.
4.1) again resemble the theoretical predictions. In our simulation, the top is reached
with cutoffpoint 31, with 0.369 chance of correct selection. The line of the graph has
a similar shape to the graph previous discussed. Once more, this suggests that the
strategy is insensitive to small variations. A chance of success within 90 % of the
optimal strategy is reached in the interval [17,42].

4.2 Results SP with uncertainty

Intervals

In figure 4.2, uncertainty is applied to the observations in the form of intervals. Each
SP round, a random number is generated between 0 and the boundary, in this case
10,000. The actual value is randomly chosen from an interval. The interval size
varies from 500 to 8000. The black line depicts the original SP graph, the other lines
are simulations with associated interval sizes.

FIGURE 4.2: Graph intervals n=40 and n=80, the boundary is 10,000.

For n = 40, the left graph above is evaluated. Naturally, the number of correct selec-
tions decreases when the uncertainty increases. More surprisingly, the cutoffpoint
seems to decline when the interval size increases, from cutoffpoint 13 with interval
size 500, cutoffpoint 11 with interval size 2000 to cutoffpoint 8 with interval size 8000.
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The graphs does seem to become flatter when the interval size is larger. However,
this observation is not applicable if one keeps the same measures, relative success, as
has been done before. As can be seen, the top of the graph with interval size 8000 is
much lower, which means that the 90 % interval is smaller (10 % of 12,000 is approx-
imately 1,000). The cutoffpoint interval of the best 90 % does not show an increase
with this measure, with an interval [8,19] with 90 % effectiveness for interval size
500 to [5,14] for interval size 8000.

For n = 80, again the same trend is visible: the cutoffpoint decreases when the inter-
val size gets larger. The cutoffpoint decreases from 26, to 21 to 15, with the interval
size respectively 500, 2000 and 8000. This is a optimal cutoffpoint of less than 20 %
of 80. Also the relative flatness of the graphs is, in line with the previous graph, does
not show a clear increase or decrease. It differs from [14,28] (interval size is 500) to
[8,26] (interval size is 8000). Still, the insensitivity of the strategy is clearly visible
in the large intervals observed. In figure B.2 and B.3, the cutoffpoint of the top is
plotted against the interval size, and the error bars represent the cutoffpoint interval
with 90 % effectiveness.

Normal distribution

In figure 4.3, the observations are uncertain in the form of a normal distribution.
The boundary is set at 1000, so each round a number is generated between 0 and
1000. That number is the mean of a normal distribution, with a specified standard
deviation, where the value of the secretary is chosen from. The standard deviation
varies from 5 to 80.

FIGURE 4.3: Graph normal distribution n=40 and n=80, the boundary
is 1000.

For n = 40, the left graph shows the results of the influence of a standard distribu-
tion. Notice the similarities with the graphs for intervals. The same trend is shown
that the cutoffpoint decreases when more uncertainty is added, in this case a larger
standard deviation. The optimal cutoffpoint is 13 when the standard deviation is
5 (35.0 % chance of success), and lowers to 10 when the standard deviation is 80
(18.7% chance of success). Still, the sensitivity of the strategy is low. Whether the
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DM chooses 6 or 17 as cutoffpoint, it will still achieve 90% effectiveness in compari-
son to the optimum when the standard deviation is 80.

For n = 80, the observations made are demonstrated in figure B.5. In this graph, it
is clearly visible that the line declines, though it is not monotone. The line shows
irregularities, at some points showing a higher cutoffpoint with more uncertainty.
Even so, the decreasing trend manifests, both in the cutoffpoint of the top and in the
90 % intervals.

Pareto distribution

In figure 4.4, the results of the SP with a pareto distribution are presented. The
boundary used is 10,000. The value is chosen from a pareto distribution with the
parameter α varying from 80 to 10. As has been explained in chapter 2, the pareto
distribution expresses more uncertainty when the parameter α is smaller.

FIGURE 4.4: Graph pareto distribution n=40 and n=80, the boundary
is 10,000.

For n = 40, the simulation results are depicted in the left graph. When α decreases,
the number of selections decreases as well. Even though the top of graphs lay at
cutoffpoint 13 for α = 80,60 and 40, the shift towards the left is visible when α is
lowered to 20 and 10, with optimal cutoffpoints respectively 12 and 9. Note that the
number of selections for the first three variations are close, just around 2,000 apart
from each other. This could give a reason for the identical optimal cutoffpoints.
The 90 % intervals show the same relative insensitivity as indicated for the previous
distributions.

For n = 80, the change of the top of the graphs is clearly evident. The optimal cut-
offpoint starts at 25 (α = 80), declines to 22 (α = 40) and finally 14 (α = 10). Also the
pattern of rather insensitivity shows again. The size of the 90 % intervals could rise
to 24 ([15,39] with α = 80). Furthermore, the heights of the graph for n− 40 fall re-
markably in comparison to the graph for n = 40, from 32481 to 27602. These results
are visually depicted in appendix B.6 and B.7.
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4.3 Analysis results

Selection chance

The selection chance has shown exact same patterns in all the versions, demon-
strated in figure B.1 in the appendix. The apparent problem is not different from
the original problem. Only the chance of success is different with the uncertainty
component. The selection chance (whether a secretary is chosen), should begin with
n−1

n and end with 1
n , because n−1

n is the chance that the best one will not be the first,

and
1
n

is the chance the best one is the last one, which corresponds with the selection
chance.

Shift cutoffpoint

FIGURE 4.5: Multiple distributions, n = 40, cutoffpoint top against
percentage selections.
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FIGURE 4.6: Multiple distributions, n = 80, cutoffpoint top against
percentage selections.

In figure 4.5 and 4.6 where the cutoffpoint of the top is plotted against the amount of
uncertainty as the percentage selections, the results of all the distribution are com-
bined. Why is it effective to have a smaller cutoffpoint, when there is more uncer-
tainty? The apparent selection process stays the same. The DM chooses as if the
apparent values are the real values, but now the actual values determine the out-
come of the choice of DM. If the intervals are disjoint, the DM could maintain the
same strategy. However, if the intervals overlap, a difference might occur between
the apparent and the actual value. We will illustrate the influence of this mechanism
with a small-scale example.

Suppose you have the apparent values 10, 20, 30, 40 and 50. In the original problem,
50 would also be the actual best one. The optimal cutoffpoint would be 2, with a
chance of success of 0.43 (Gilbert and Mosteller, 1966). Then the chance of choosing
50 is the highest. The versions with uncertainty introduce a higher chance that the
actual best value is not 50, but for example 40. The larger the uncertainty, the larger
the chance that 50 is not the best, but 40, or even 30 or 20 is the actual best. This is
the case for all the sorts of distributions analysed.To evaluate when a strategy with a
smaller cutoffpoint achieves more than a larger cutoffpoint, we will discuss in what
cases the actual best is not chosen.

The first reason for not selecting the actual best, is when the best is at the start. The
cutoffpoint is always 1 or higher, so the first one will never be selected. The second
reason is that there has been an apparent higher value before the actual best, for
example, 50 is seen before 40. Even when 40 was actually better, it is then never
chosen with a cutoff strategy.
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We apply this to our example. When 20 is the best, the only permutations where 20
is chosen, is when 10 is the first applicant, and then 20. After 20, the rest may follow
in different orders, but it could not be the case that 30 is before 20, because it will
never result in choosing 20. That means that the cutoffpoint in this case should be
1, because after 10, the first one, 20 should be chosen. The same pattern can be seen
when 30 is the actual best. The only values before it can be 10 and 20, regardless of
the order of those two. The cutoffpoint, again, should be low.

Permutation: Cutoffpoint:
(10, 30, ..., ..., ...) 1
(20, 30, ..., ..., ...) 1
(20, 10, 30, ..., ...) 1 or 2
(10, 20, 30, ..., ...) 2

The cutoffpoint can not be 3 or higher, because then one of the two apparent larger
numbers will definitely be seen before 30.

This pattern will be seen in larger examples as well. The larger the cutoffpoint, the
larger the chance that an apparent larger value is seen before an apparent smaller
value that is actually better. That is why the larger the uncertainty, so the larger
the chance that not 50 but an apparent lower number is the actual best, the more
effective it is to have a lower cutoffpoint.

To illustrate this claim, we generated a version of the SP where there is the most
uncertainty possible. Two random values are generated, one the apparent value,
the other the actual value. As can be seen in figure B.8, the optimal cutoffpoint is
very low, around 1 or 2. Because the selection process is random (the DM has no
information about who is best), the theoretical chance of correct selection is 1 in n,
in this case 1

80 ≈ 0.013. This corresponds with the simulated probability of correct
selections (number of selections divided by the selections made), which is 0.12 or
0.13 with the different cutoff strategies. Strategies with lower cutoffpoints result
in a higher selection chances, which then result in a higher probability of correct
selection.
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Chapter 5

Conclusion

Choosing under uncertain circumstances has its price. To minimize the cost, we
have been looking for the best cutoff strategy. In the introduction, we have asked
ourselves what effect the amount of uncertainty in the SP problem. Now, we can
formulate an answer. Furthermore, we elaborate on the implications of the results
for the AI community, possibly even for our daily life, discuss the limitations, and
explore suggestions for further research.

We have evaluated the optimal cutoffpoint in the SP with uncertain observations. In
the classic SP, the optimal strategy has a cutoffpoint around 37% of the applicants.
We have observed in chapter 4 that the application of intervals, normal distribution
and pareto distribution has reduced the cutoffpoint to 25 % or even 20 % for both
n = 40 and n = 80 when the amount of uncertainty was increased, in the form of
interval size, standard deviation or α. The probability of selection appeared to be
similar for all versions, including the classic SP, and decreased linearly when the
cutoffpoint increased.

In the field of artificial intelligence, a challenge lies in finding a model that unites
mathematical theory with the real world. Humans are not rational agents, and will
possibly not always follow the mathematical optimal strategy. But intelligent sys-
tems could make more effective choices in the everyday world when following the
optimal strategy for a mathematical model that resembles the real world. For prob-
lems resembling the SP, the optimal strategy might involve making a faster decision
when the uncertainty gets larger.

In the introduction we mentioned our intuition that more uncertainty would require
a longer exploration phase, in other words that the cutoffpoint would increase when
the uncertainty increased, This intuition is countered. This could suggest that choos-
ing sooner would be a good idea. If there is a chance that the real estate agent is lying
about the house, the advice may be to not wait too long, and just pick a house. If it is
hard to evaluate which relationship was better than the other, do not wait too long
for the perfect partner to appear, because recognizing him or her as such might be
difficult. For the SP, this phenomenon has been illustrated in section 4.3.

However, the application of the results and the result itself should be put into per-
spective. We tried to minimize the influence of the choices made, such as the number
of applicants, the number of simulation rounds and the boundary used, as explained
in chapter 3. This does not take that influence away, and should be taken into ac-
count when interpreting the results. The random nature of the simulations have
caused us to be more reserved in stating the conclusion. Furthermore, the bridge
between this mathematical problem and real life decision making could not been
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made by solely adding uncertainty to the observations, but it could be considered
as a step in the good direction. When combined with other researched variations, it
might come even closer.

A further research could investigate a combination of a myriad of variations, to ap-
ply the SP to real world situations even more. The way of modelling uncertainty
could be varied further. Now, each strategy was only tested with a constant amount
of uncertainty involving one particular distribution. If the uncertainty would be
varied within one round, while sharing that information with the DM, the decision
could be influenced by the amount of uncertainty at that point. Moreover, the uncer-
tainty could influence other factors in the problem. What if the amount of applicants
is unknown (Freeman, 1983)? What if the pay-off is utility based (Lindley, 1961)? The
found solutions for these variations could be used to direct the search for the optimal
strategy. Would the cutoffpoint still show a decreasing trend?

We evaluated the results, discussed the limitations, provided a view on the applica-
tions of this study, and touched upon possible future research. You may take from it
as a reserved advice: if you are not sure, choose sooner!
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Appendix A

Justification design choices

FIGURE A.1: Graph original SP, n = 20, 40, 60, 80, ,120, 500. The x-axis
shows the ratio of the cutoffpoint.
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FIGURE A.2: Original SP with different boundaries.

FIGURE A.3: Interval distribution with boundaries 1,000-200, 10,000-
2,000, 100,000-20,000.
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FIGURE A.4: Normal distribution with boundaries 1,000-20, 10,000-
200, 100,000-2,000.

FIGURE A.5: Pareto distribution with different boundaries and α,
100,000-500, 10,000-500, 100,000-50, 10,000-50
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Appendix B

Additional graphs

FIGURE B.1: Graph probability of selection, for the original SP, inter-
vals, normal distribution and pareto distribution.
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FIGURE B.2: Graph interval distribution, n = 40, cutoffpoint top
against interval size.

FIGURE B.3: Graph interval distribution, n = 80, cutoffpoint top
against interval size.
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FIGURE B.4: Graph normal distribution, n = 40, cutoffpoint top
against standard deviation.

FIGURE B.5: Graph normal distribution, n = 80, cutoffpoint top
against standard deviation.
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FIGURE B.6: Graph pareto distribution, n = 40, cutoffpoint top against
alpha.

FIGURE B.7: Graph pareto distribution, n = 80, cutoffpoint top against
alpha.
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FIGURE B.8: Two random values generated as apparent and actual
value.
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Appendix C

C# implementation

us i ng System ;
us i ng System . C o l l e c t i o n s . Gene r i c ;
us i ng System . L inq ;
us i ng System . Text ;
us i ng System . Thread ing . Tasks ;
us i ng System . IO ;
us i ng Accord . S t a t i s t i c s . D i s t r i b u t i o n s . U n i v a r i a t e ;

namespace SPs imu l a t i o n s
{

p ub l i c p a r t i a l c l a s s Program
{

// pa ramete r s
s t a t i c s t r i n g v e r s i o n ; // o r i g i n a l , normal d i s t r i b u t i o n ,
// pa r e t o d i s t r i b u t i o n or f i x e d i n t e r v a l s
s t a t i c i n t n ;
s t a t i c i n t rounds ;
s t a t i c i n t boundary ;
s t a t i c i n t param ; // va l u e o f parameter , such as a lpha .

s t a t i c Obse r va t i on o b s e r v a t i o n ;
s t a t i c de c i s i o nmake r DM;
s t a t i c i n t [ ] waarden = new i n t [ 1 ] ;

s t a t i c s t r i n g be s t ; // Used f o r i n t e r v a l s :

// dependent v a r i a b l e s
s t a t i c i n t wins ;
s t a t i c i n t l o s s e s ;
s t a t i c i n t nochoose ;

// o th e r g l o b a l v a r i a b l e s
s t a t i c boo l p r i n t = f a l s e ; // p r i n t i n t e rm ed i a t e r e s u l t s on c on s o l e
s t a t i c boo l t x t = t r ue ; // Output to t x t f i l e

s t a t i c StreamWri te r w r i t e r ;
s t a t i c TextWr i t e r o ldOut ;
s t a t i c Random r ;
s t a t i c StreamReader s r ;
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s t a t i c vo i d Main ( s t r i n g [ ] a r g s )
{

s r = F i l e . OpenText ( $" . / r e a d f i l e s / i n pu t . t x t " ) ;
boo l e n d o f f i l e = f a l s e ;
wh i l e ( ! e n d o f f i l e )
{

e n d o f f i l e = ReadInput ( ) ;
DoS imulat ion ( ) ;

}
Conso l e . Wr i t eL i n e ( "Done ! " ) ;
Conso l e . ReadLine ( ) ;

}

// Mu l t i p l e rounds o f one s p e c i f i c ( i n pu t g i v en ) v e r s i o n o f SP .
p r i v a t e s t a t i c vo i d DoSimulat ion ( )
{

i n t n r o f p a r ame t e r s = 1 ;
f o r ( i n t k = 0 ; k < n ro f p a r ame t e r s ; k++)
{

// i n i t i a l i z e the v a l u e s f o r the o b s e r v a t i o n
i f ( v e r s i o n == " o r i g i n a l " )
{

o b s e r v a t i o n = new Obse r va t i on ( v e r s i o n , boundary ) ;
}
e l s e
{

param = waarden [ k ] ;
n r o f p a r ame t e r s = waarden . Length ;
o b s e r v a t i o n = new Obse r va t i on ( v e r s i o n , param , boundary ) ;

}

i f ( t x t )
OutputToTxt ( ) ;

r = new Random ( ) ;
// t i t l e o f the t x t f i l e :
Conso l e . Wr i t eL i n e ( $" Cu to f f p o i n t , ␣ s e l e c t i o n s , ␣ c o r r e c t " ) ;

// v a r i a t i o n o f c u t o f f p o i n t
f o r ( i n t j = 1 ; j <= n ; j++)
{

// r e s e t v a l u e s
wins = 0 ;
l o s s e s = 0 ;
DM = new de c i s i o nmake r ( j , best , v e r s i o n ) ;

f o r ( i n t i = 0 ; i < rounds ; i++)
{

s o l v eS e c r e t a r yP r ob l em ( ) ;

}
Conso l e . Wr i t eL i n e ( $"{ j } ,{( wins ␣+␣ l o s s e s )} ,{ wins }" ) ;

}

i f ( t x t )
C l o s e t x t ( ) ;

}
}
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p r i v a t e s t a t i c vo i d C l o s e t x t ( )
{

Conso l e . SetOut ( oldOut ) ;
Conso l e . Wr i t eL i n e ( " S imu l a t i o n ␣ round ␣ f i n i s h e d . " ) ;
w r i t e r . C l o s e ( ) ;

}

// Name the t x t f i l e a c c o r d i n g to the v e r s i o n o f SP
p r i v a t e s t a t i c vo i d OutputToTxt ( )
{

F i l eS t r e am output s t r eam ;
oldOut = Conso l e . Out ;
s t r i n g path ;
sw i t ch ( v e r s i o n )
{

case " normal ␣ d i s t r i b u t i o n " :
path =
$" . / t x t f i l e s /{n}_{ rounds }_{ v e r s i o n }_stddev−{param}_b−{boundary } . t x t " ;
break ;

case " f i x e d ␣ i n t e r v a l s " :
path =
$" . / t x t f i l e s /{n}_{ rounds }_{ v e r s i o n }_ivs−{param}_b−{boundary } . t x t " ;
break ;

case " pa r e t o ␣ d i s t r i b u t i o n " :
path =
$" . / t x t f i l e s /{n}_{ rounds }_{ v e r s i o n }_alpha−{param}_b−{boundary } . t x t " ;
break ;

d e f a u l t : // o r i g i n a l
path = $" . / t x t f i l e s /{n}_{ rounds }_{ v e r s i o n }_b−{boundary } . t x t " ;
break ;

}
t r y
{

output s t r eam =
new F i l eS t r e am ( path , F i leMode . CreateNew , F i l e A c c e s s . Wr i te ) ;
w r i t e r = new StreamWri te r ( output s t r eam ) ;
Conso l e . SetOut ( w r i t e r ) ;

}
catch
{

// When f i l e e x i s t s a l r e ady , the r e s u l t s a r e p r i n t e d to the c on s o l e .
Conso l e . Wr i t eL i n e ( "Caut ion , ␣ t x t ␣ f i l e ␣ e x i s t s ␣ a l r e a d y . ␣Path␣ i s : " + path ) ;

}
}

p r i v a t e s t a t i c vo i d s o l v e S e c r e t a r yP r ob l em ( )
{

Obse r va t i on max = new Obse r va t i on ( v e r s i o n ) ;

doub le c u r r e n t S e c r e t a r y = 0 ;
DM. r e s e t ( ) ;

// n s e c r e t a r i e s a r e p r e s e n t e d one by one .
f o r ( i n t i = 1 ; i <= n ; i++)
{

// the o b s e r v a t i o n i s g ene r a t ed a c co r d i n g to the v e r s i o n .
o b s e r v a t i o n . g e n e r a t eOb s e r v a t i o n I n f o ( r , i ) ;
c u r r e n t S e c r e t a r y = ob s e r v a t i o n . Value ;

i f ( p r i n t )
Conso l e . Wr i t eL i n e ( c u r r e n t S e c r e t a r y ) ;
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// The a c t u a l b e s t s e c r e t a r y i s saved .
i f ( c u r r e n t S e c r e t a r y > max . Value )
{

max . Value = c u r r e n t S e c r e t a r y ;
max . Number = i ;

}

// As l ong as the DM has not chosen , s e c r e t a r i e s w i l l be p r e s e n t e d .
i f ( !DM. Chosen )
{

DM. s t r a t e g y ( o b s e r v a t i o n ) ;
}

}

// The r e s u l t s a r e ga the r ed and p r i n t e d .
//No choose :
i f ( !DM. Chosen )
{

i f ( p r i n t )
Conso l e . Wr i t eL i n e ( "No␣ s e c r e t a r y ␣was␣ chosen . ␣ Lose . " ) ;

nochoose++;
}

// Loss , maximum i s compared to s e c r e t a r y h i r e d by the DM:
e l s e i f (max . Number != DM. h i redSP . Number )

{
i f ( p r i n t )

Conso l e . Wr i t eL i n e ( "The␣ be s t ␣ s e c r e t a r y ␣was␣number␣" +
max . Number + "␣wi th ␣ v a l u e ␣" + max . Value +
" . \nDM␣ chose ␣number␣" + DM. h i redSP . Number +
"wi th ␣ v a l u e ␣" + DM. h i redSP . Value + " . " ) ;

l o s s e s++;
}

e l s e // Win :
{

i f ( p r i n t )
Conso l e . Wr i t eL i n e ( "Congrats , ␣you ’ ve ␣ p i c k ed ␣ the ␣ be s t ␣one , ␣number␣"
+ DM. h i redSP . Number + "␣wi th ␣ v a l u e ␣" + DM. h i redSP . Value ) ;

w ins++;
}

}
}

}
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us i ng System ;
us i ng System . Windows . Forms . D a t aV i s u a l i z a t i o n . Cha r t i ng ;
us i ng Accord . S t a t i s t i c s . D i s t r i b u t i o n s . U n i v a r i a t e ;

namespace SPs imu l a t i o n s
{

i n t e r n a l c l a s s Obse r va t i on
{

p r i v a t e s t r i n g v e r s i o n ;
p r i v a t e i n t boundary ;
p r i v a t e i n t i n t e r v a l s i z e ;
p r i v a t e i n t stdDev ;
p r i v a t e doub le a lpha ;

p r i v a t e doub le v a l u e ; // a c t u a l
p r i v a t e i n t number ;
p ub l i c i n t Lowerborder ; // appa ren t :
p ub l i c i n t Mean ;

p ub l i c Obse r va t i on ( s t r i n g v ) // f o r the maximum
{

v e r s i o n = v ;
}

p ub l i c Obse r va t i on ( s t r i n g v , i n t b ) // o r i g i n a l
{

v e r s i o n = v ;
boundary = b ;

}

p ub l i c Obse r va t i on ( s t r i n g v , i n t param , i n t b )
{

v e r s i o n = v ;
boundary = b ;
sw i t ch ( v e r s i o n )
{

case " f i x e d ␣ i n t e r v a l s " :
i n t e r v a l s i z e = param ;
break ;

case " normal ␣ d i s t r i b u t i o n " :
stdDev = param ;
break ;

d e f a u l t : // v e r s i o n i s " pa r e t o d i s t r i b u t i o n "
a lpha = param ;
break ;

}
}
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// the appa ren t and a c t u a l v a l u e o f the s e c r e t a r y i s g ene r a t ed .
p ub l i c vo i d g e n e r a t eOb s e r v a t i o n I n f o (Random r , i n t i )
{

number = i ;

sw i t ch ( v e r s i o n )
{

case " o r i g i n a l " :
v a l u e = r . Next ( boundary ) ;
break ;

case " f i x e d ␣ i n t e r v a l s " :
Lowerborder = r . Next ( boundary ) ;
v a l u e = r . Next ( Lowerborder , Lowerborder + i n t e r v a l s i z e ) ;
break ;

case " normal ␣ d i s t r i b u t i o n " :
Mean = r . Next ( boundary ) ;
No rma lD i s t r i b u t i o n nd = new No rma lD i s t r i b u t i o n (Mean , stdDev ) ;
v a l u e = nd . Gene ra te ( r ) ;
break ;

d e f a u l t : // " pa r e t o d i s t r i b u t i o n " :
Lowerborder = r . Next (1 , boundary ) ;
P a r e t oD i s t r i b u t i o n pd = new Pa r e t oD i s t r i b u t i o n ( Lowerborder , a l pha ) ;
v a l u e = pd . Gene ra te ( r ) ;
Mean = ( i n t ) pd .Mean ;
break ;

}
}

p ub l i c Obse r va t i on ( Obse r va t i on o ) // copy o b s e r v a t i o n
{

v e r s i o n = o . v e r s i o n ;
v a l u e = o . v a l u e ;
i n t e r v a l s i z e = o . i n t e r v a l s i z e ;
Lowerborder = o . Lowerborder ;
number = o . number ;
stdDev = o . stdDev ;
Mean = o .Mean ;

}

p ub l i c doub le Value
{

get
{

r e t u r n v a l u e ;
}
s e t
{

t h i s . v a l u e = va l u e ;
}

}
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p ub l i c i n t Upperborde r
{

ge t
{

r e t u r n Lowerborder + i n t e r v a l s i z e ;
}

}

p ub l i c s t r i n g Ve r s i on
{

get
{

r e t u r n v e r s i o n ;
}

}

p ub l i c o v e r r i d e s t r i n g ToSt r ing ( )
{

r e t u r n " S e c r e t a r y ␣" + number + "␣wi th ␣ v a l u e ␣" + va l u e ;
}

p ub l i c i n t Number
{

get
{

r e t u r n number ;
}
s e t
{

t h i s . number = va l u e ;
}

}
}

}
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us i ng System ;

namespace SPs imu l a t i o n s
{

i n t e r n a l c l a s s de c i s i o nmake r
{

p r i v a t e s t r i n g be s t ;
p r i v a t e s t r i n g v e r s i o n ;

p r i v a t e i n t c u t o f f ;
p r i v a t e boo l chosen ;
p r i v a t e i n t seen ; // the number o f seen a p p l i c a n t s
p ub l i c Obse r va t i on h i redSP ;
p r i v a t e Obse r va t i on max ;
Func<Obse rva t i on , bool> bes tSoFar ;

p ub l i c de c i s i o nmake r ( i n t co f f , s t r i n g b , s t r i n g v )
{

c u t o f f = c o f f ;
b e s t = b ;
v e r s i o n = v ;
h i r edSP = new Obse r va t i on ( v e r s i o n ) ;
max = new Obse r va t i on ( v e r s i o n ) ;
d e f i n eB e s t ( ) ;

}

// a c co r d i n g to the v e r s i o n , the f u n c t i o n o f who i s b e s t i s d e f i n e d .
p r i v a t e vo id d e f i n eB e s t ( )
{

sw i t ch ( v e r s i o n )
{

case " pa r e t o ␣ d i s t r i b u t i o n " :
be s tSoFar = ob s e r v a t i o n => ob s e r v a t i o n . Lowerborder > max . Lowerborder ;
break ;

case " normal ␣ d i s t r i b u t i o n " :
be s tSoFar = ob s e r v a t i o n => ob s e r v a t i o n .Mean > max .Mean ;
break ;

case " f i x e d ␣ i n t e r v a l s " :
sw i t ch ( b e s t )
{

case " o p t i m i s t i c " :
be s tSoFar = ob s e r v a t i o n
=> ob s e r v a t i o n . Upperborder > max . Lowerborder ;
break ;

case " p e s s i m i s t i c " :
be s tSoFar = ob s e r v a t i o n
=> ob s e r v a t i o n . Lowerborder > max . Upperborder ;
break ;

d e f a u l t : // l owe r bo rde r
bes tSoFar = ob s e r v a t i o n
=> ob s e r v a t i o n . Lowerborder > max . Lowerborder ;
break ;

}
break ;

d e f a u l t : // o r i g i n a l /
bes tSoFar = ob s e r v a t i o n => ob s e r v a t i o n . Value > max . Value ;
break ; } }
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p ub l i c boo l Chosen
{

get
{

r e t u r n chosen ;
}

}

p ub l i c vo i d s t r a t e g y ( Obse r va t i on o b s e r v a t i o n )
{

seen++;
i f ( bes tSoFar ( o b s e r v a t i o n ) )
{

max = new Obse r va t i on ( o b s e r v a t i o n ) ;
i f ( seen > c u t o f f ) // c u r r e n t s e c r e t a r y i s chosen .
{

h i redSP = new Obse r va t i on ( o b s e r v a t i o n ) ;
chosen = t r ue ;

}
}

}

p ub l i c vo i d r e s e t ( )
{

chosen = f a l s e ;
h i r edSP = new Obse r va t i on ( v e r s i o n ) ;
s een = 0 ;
max = new Obse r va t i on ( v e r s i o n ) ;

}
}

}
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us i ng System ;
us i ng System . IO ;

namespace SPs imu l a t i o n s
{

p ub l i c p a r t i a l c l a s s Program
{

// This r e ad s the i n pu t from a t e x t f i l e i n the format o f the f o l l o w i n g example :
/∗ n=40

rounds =100000
v e r s i o n=normal d i s t r i b u t i o n
be s t=mean
boundary=10000
waarden paramete r=5 10 20 40 80

∗/
p ub l i c s t a t i c boo l ReadInput ( )
{

s t r i n g [ ] v a l u e s ;
s t r i n g l n ;

wh i l e ( ( l n = s r . ReadLine ( ) ) != n u l l )
{

t r y
{

v a l u e s = l n . S p l i t ( ’= ’ ) ;
// s epa r a t e d by empty l i n e or " [ ] " f o r mu l t i p l e i n p u t s i n one f i l e :
i f ( ! ( l n . S ta r t sWi th ( " [ " ) | | l n . Length == 0))

a s s i g n v a l u e ( v a l u e s [ 0 ] , v a l u e s [ 1 ] ) ;
e l s e

r e t u r n f a l s e ;
}
catch
{

throw new Excep t i on ( " I npu t ␣ i s ␣ not ␣ i n ␣ r i g h t ␣ format . ␣ P l e a s e ␣ adapt ␣ i t . " ) ;
}

}
r e t u r n t r ue ;

}
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p ub l i c s t a t i c vo i d a s s i g n v a l u e ( s t r i n g param , s t r i n g v a l )
{

s t r i n g [ ] v a l u e s ; i n t nr ;
sw i t ch ( param ) // pa ramete r s a r e a s s i g n e d .
{

case "n" :
n = i n t . Parse ( v a l ) ;
break ;

case " rounds " :
rounds = i n t . Parse ( v a l ) ; ;
break ;

case " v e r s i o n " :
v e r s i o n = v a l ;
break ;

case " be s t " :
b e s t = v a l ;
break ;

case " boundary " :
boundary = i n t . Parse ( v a l ) ;
break ;

d e f a u l t : //"waarden paramete r " :
nr = v a l . S p l i t ( ) . Length ;
v a l u e s = new s t r i n g [ n r ] ;
waarden = new i n t [ n r ] ;
v a l u e s = v a l . S p l i t ( ) ;
f o r ( i n t i = 0 ; i < nr ; i++)

waarden [ i ] = i n t . Parse ( v a l u e s [ i ] ) ;
break ;

}
}

}
}
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