
Investigating The Generalization Ability Of Convolutional Neural Networks For
Interpreted Languages

Daniel Luurt Bezema
Bachelor Artificial Intelligence, Utrecht University

(7.5 ECTS)

Thesis Supervisor: Dr. Denis Paperno
Second Reader: Dr. Gerard A. W. Vreeswijk

(Dated: July 20, 2019)

CONTENTS

I. Introduction 1

II. Related Work 2

III. Computational Approach 4
A. Model Architecture 4
B. Learning Mechanism 5

IV. Experimental setup 5
A. Data 6

1. The Personal Relations Vocabulary 6
2. The Arithmetic Vocabulary 7

B. Encoding 7
C. Parameters 7
D. Evaluation 8

V. Results 8

VI. Conclusion 10

VII. Conclusion 10

References 11

Abstract: In this study the generalization capac-
ity of Convolutional Neural Networks (CNNs) for
interpreted languages is investigated. Two CNN
models, one of which included a curriculum, are
trained on two interpreted languages of different
complexity. The results show that a CNN, contrary
to previous findings for Long-Short-Term-Memory
Networks, does not benefit from a curriculum dur-
ing training. Performance of models on the more
complex interpreted language shows adequate gen-
eralization ability, while performance on the less
complex language shows no generalization ability
at all. This suggests that a CNN prefers complex
training data over less complex training data, for it
forces the model to capture more generally applica-
ble features from which it benefits during testing.
Overall the reported results of this study show that
CNNs possess a generalization capacity for inter-
preted languages that is competitive with Recur-
rent and Recursive models from the literature.

I. INTRODUCTION

In his 1950 iconic paper ’computing machinery and in-
telligence’ Alan Turing introduced the imitation game, a
test for assessing the intelligent behaviour of machines.
He argued that if a machine would be able to deceive
a human through conversation that it was a human, it
would deserve to be called intelligent. At the time, the
idea of a machine that would be able to produce language
at a human level seemed something out of fiction. A lot
of time has passed, however, and many advances in Natu-
ral Language Processing (NLP) have been made. Today,
most of us are interacting with one or more NLP systems
daily and with some of these interactions it’s getting more
and more difficult to distinguish between human and ma-
chine capabilities. Are these systems, thus, approaching
human intelligence? Most of us will say no.

One of the reasons for not ascribing intelligence to
these NLP machines lies in their ability to generalize.
Or rather: inability to generalize. State of the art NLP
models and deep learning models in general have become
increasingly capable of distilling relevant patterns from
data, enabling them to achieve amazing performance in
all kinds of tasks. In conventional machine learning terms
these models are said to generalize well. ’Generaliza-
tion’, however, is a somewhat misleading term, for it im-
plies the formulation of general concepts from specific
instances by abstracting common properties, which can
then be used to reason about new instances. In prac-
tice, the concepts or rules that a model formulates are
very much restricted to examples it has seen during train-
ing. These will then enable the model to, for example,
correctly classify unseen instances, but only if these in-
stances are very similar to the ones it has seen. It is
usually the case that the model has learned to exploit
data specific patterns instead of learning more general
rules that apply to a task.

Great performance on a benchmark dataset does not
constitute great performance on a task. This is especially
true for neural models that are being applied in NLP.
Because, in order for language models to achieve gen-
eralization capacity approaching human capability, they
need not only be able to learn to reliably map certain
inputs to outputs, but through this process also be able
to capture facts that hold true regardless of the input.
Being able to capture facts that hold regardless of the

2

input enables a language model to reason about novel
situations.

Given a natural language model, such facts can be
about two things: it can be about the world, or the lan-
guage that describes it. Take, for example, two input
sentences of same kind: ’Ann’s child’ and ’Bill’s friend’.
These refer to some individuals, let’s say Bill and George,
respectively. A model should not merely learn to config-
ure its weights such that it maps these sentences to the
desired individual. The weight configurations should in
some way represent the fact about the world that Bill
is the child of Ann and that the friend of Bill is George.
They should, furthermore, in some way represent the fact
about the English language that noun phrases can be re-
cursively concatenated by the grammatical element ’s.
Putting these facts together, the model would be able to
deductively infer (i.e. generalize) that a sentence of the
kind ’Ann ’s child’s friend’ refers to Bill.

A neural model’s ability for this type of generalization
can be tested trough the use of interpreted languages.
These are simplified versions of natural language that
specify pairs of expressions and meanings. The inter-
preted language comes with corresponding grammar that
specifies the syntactic rules by which expressions may be
composed. Expressions are sequences of strings of which
we know the meaning (like the examples in the previous
paragraph). The meaning of such expressions adheres to
the principle of compositionality: it is a function of the
meanings of its parts and the syntactic rule by which it
has been composed. [12]

Such an interpreted language does away with all in-
tricacies of natural language (such as ambiguity), while
retaining the core properties of it (such as composition-
ality). This makes it a very useful idealization for study-
ing the compositional skills and generalization capacity
of neural models. Additionally, once a model’s under-
standing of these core properties has been assessed, the
constraints of the interpreted language can be relaxed
relatively easily to account for real life scenarios.

Various studies (as will be shown in the ’related work’
section) have used interpreted languages for investigating
the generalization capacity of different types of neural
network architectures. The type of architectures used in
these studies were ones that subsequently have proven to
be very effective in the field of NLP. Although these ar-
chitectures have shown amazing performance in all kinds
of NLP tasks they, as of yet, have not been able to ac-
quire the compositional skill necessary to rival human
level generalization capabilities. Because of this, NLP
research has seen an increasing focus on the use of novel
deep learning methods. [16]

One of these methods is the application of Convo-
lutional Neural Networks (CNNs) to language-related
tasks. A CNN applies convolution by sliding contextual
windows over the input, thereby producing a number of
feature maps. Through repeatedly applying convolutions
to feature maps, the model extracts increasingly abstract
features about the input. By this logic, a Convolutional

Neural architecture should be effective in mining seman-
tic as well as syntactic concepts, which may help them
towards zero-shot generalization.

This study will contribute to the knowledge of the gen-
eralization capacity of neural architectures by investigat-
ing the CNN’s ability to generalize about composition-
ality through interpreted languages. The main research
question it tries to answer is whether or not the CNN
architecture is able to correctly classify compositional
structures of complexities higher than those it has seen in
training. Additionally, this will add to the understanding
and recent exploration of how the Convolutional Neural
architecture can be applied to language tasks in general.

II. RELATED WORK

Studies that are closely related to the work in this pa-
per are those by Paperno [15] and Hupkes et al. [10].
Both of these papers have investigated the generaliza-
tion capacity of neural models by evaluating their per-
formance in working with interpreted languages.

In Paperno’s work, the generalization capacity of a
vanilla RNN [7] and of a LSTM [9] were investigated
trough their performance with an interpreted language
that contained both left- and right-branching composi-
tional structures. The results of this work show that
the RNN does not learn to do compositional interpreta-
tion, but that the LSTM does, albeit only in the most
favorable learning settings. The best scenario for LSTM
includes extensive training data, left-branching (but no
right-branching) compositions and a well-paced curricu-
lum. With this curriculum, examples of higher complex-
ity were added gradually in the process of training.

The study by Hukpes et al. [10] reports the ability of
Recursive Neural Networks to generalize (TreeRNN), as
well as of two different types of RNNs: a simple RNN
[6] and a Gated Recurrent Unit (GRU) [2]. Again, the
generalization capacity was established trough their per-
formance in working with an interpreted language that
contained both left- and right-branching compositional
structures. They report their findings for each model as
follows.

The simple RNN was not able to show a convincing
ability to generalize. Performance of the GRU was ad-
equate, but highly influenced by the type of composi-
tional structure; the models that were trained on left-
branching expressions showed great performance, while
those trained on right-branching expressions showed very
poor performance. Those trained on expressions of both
branching types scored somewhere in between.

Of all different types of models the TreeRNN showed
the best performance, with near-perfect accuracy. Inter-
estingly, there is no real difference in performance to be
found between the different types of branching, except
when both branching types are present during training.
In that case the model performs better than when it is
tasked with either left- or right-branching.

3

Because of the similarity between research questions
and findings, the experimental setup of the studies by
Paperno [15] and Hupkes et al. [10] have been taken as a
starting point for the one that is being presented in this
paper. These comparable experimental setups will make
it easier to compare results between the different studies
and therefore make it easier to asses their value. The
details of these experimental setups will be discussed in
a later section.

Another study that uses a simplified, unambiguous lan-
guage model to study systematic generalization to novel
examples is the important study by Baroni et al. [1] In
this study a range of recurrent neural network models
(simple RNN’s [6], LSTM’s [9], and GRU’s [2]) is tested
using various tasks. Because networks with attention
mechanism have become increasingly popular, each of the
networks was additionally tested with an implemented
attention mechanism. This resulted in a very systematic
evaluation of popular recurrent neural network models
from the literature in terms of their compositional abili-
ties.

The type of generalization they set out to achieve was
zero-shot. Zero-shot generalization, in this context, refers
to the process by which a model learns to correctly in-
terpret sequences without there having been explicit la-
beled instances present during training to assist in such
an interpretation. The task they used for this endeavor
was a simplified version of the CommAI Navigation Taks
(CAN) [14], that they call SCAN. This task involves the
linking of commands to action sequences, e.g. ’jump left’
to ’LTURN JUMP’. Each command was unambiguously
associated to a single action sequences.

Their models were tested on three different variations
of the task that were of ascending complexity. The first
task entailed generalization to a random subset of com-
mands. The second task entailed generalization to com-
mands that involved longer action sequences. The last
task involved generalizing composition across different
commands.

They found that, on the one hand, all models (exclud-
ing the simple RNN) were capable of zero-shot general-
ization in the least complex task where parts of test se-
quences were extensively present as training sequences.
On the other hand, the same models fail miserably when
the task gets more complex and the link between train-
ing and testing data is dependent on the ability to ex-
tract systematic rules. From these findings they conclude
that the fundamental component that current models are
missing is the ability to extract systematic rules from the
training data.

This leads us to the trend that has been observed by
Young et al. [16]: the increasing focus on alternative
methods in NLP such as CNNs. As such, several studies
can be found that have applied Convolutional models to
NLP tasks. One such study is the work by Dauphin et al.
[4]. Although the specific task is different from the ones
in the preceding studies, they show that application of
CNNs on language-related tasks can be a very promising

endeavor.

In their study they present a Convolutional Neural
Network with a novel gating mechanism that they call
Gated Linear Unit (GLU). They subsequently test the
performance of their model on two benchmark datasets
and compare them with strong RNN models from the
literature. Using the Google Billion Words benchmark,
they reported results that are competitive with tradi-
tional methods, while using significantly fewer resources.
As for the WikiText-103 benchmark, they reported re-
sults that, at the time, were state-of-the-art (perplexity
of 37.2). This method reigned supreme for more than a
year until Dayan et al. [5] surpassed it using traditional
methods (perplexity of 36.4).

Another study that tries to address shortcomings of
current models is the one by Le et al. [13] They note that
current recursive approaches to computing the meaning
of sentences run into some practical problems. These
problems include: adaptiveness of composition function,
dealing with different branching factors and with uncer-
tainty about correct parse. They propose a combina-
tion of convolutional approaches (using both recurrent
and chart techniques), which they term Forest Convolu-
tional Network (FCN) and find that it indeed resolves
the aforementioned challenges. Subsequently, they com-
pare the performance of this FCN using public datasets
with models from extant literature. Using the Stanford
Sentiment Treebank (SST) sentiment analysis dataset,
they reported, at the time, the highest accuracies on
both the fine-grained (5 classes) and binary classifica-
tion tasks. Using the Text Retrieval Conference (TREC)
dataset, they performed a question-classification task and
reported the second-highest reported accuracy. Still,
this is a very promising result considering that the best-
performing model (SVMS [3]) was trained using heavily
engineered (60 handwritten rules) resources, while the
FCN used unsupervised pre-trained word-embeddings.

These studies provide a clear overview of the ability
of Neural Network architectures to generalize using in-
terpreted languages and show that conventional archi-
tectures have a hard time acquiring sufficient composi-
tional skill. At the same time, new methods are being
tested using various NLP tasks. These trials, though not
having been executed using the same type of generaliza-
tion tasks, show very promising results. It is therefore
a logical next step to asses if and how these efforts can
be applied to remedy the flaws of traditional methods.
Consequently, this study will asses a Conventional Neu-
ral architecture’s ability to provide the type of generaliza-
tion for interpreted languages that has been introduced
in these last two sections. To the best of my knowledge,
this is the first time such a neural architecture has been
applied to this specific task.

4

III. COMPUTATIONAL APPROACH

The CNN architecture that has been used in this study
on investigating the generalization capacity of CNNs is
fairly elementary by modern standards. It consists of
only eight layers, each having a relatively low number of
neurons. The first part of the network consists of a convo-
lutional block, where multiple convolution- , ReLU- and
pooling operations are consecutively applied to produce
feature maps from a given input sequence. By repeat-
ing this process, the features represented by the feature
maps become increasingly abstract. In this network’s
architecture the process of convolution is repeated two
times. The first time with 16 feature-extracting filters,
the second time with six filters.

The last part of the network consist of a classification
block that uses the features that are provided by the
convolutional block to make predictions about the input.
Predictions are produced by two fully connected layers
of 120 and 84 neurons, respectively. Before any data is
fed to the fully connected layers, however, it is first fed
through a dropout and flattened layer. The dropout layer
randomly disables some elements in the feature maps and
the flattened layer concatenates all feature maps in such
a way that the features are represented as a vector of
features. A more mathematically refined description of
the architecture and the flow of data through it can be
found in the subsections below.

A. Model Architecture

During the forward pass of the network, a one-hot en-
coded sentence is passed as input to a convolutional layer.
Here, six filters (size = 3 ∗ 3 ∗ Cin, where Cin is the
amount of input channels, corresponding to the length of
the one-hot-encodings) each apply a 2-dimensional con-
volution to the input (padding = 2 and stride = 1). The
2-dimensional convolution is defined by Equation (1).

out(Ni, Coutj) = bias(Coutj)

+

Cin−1∑
k=0

weight(Coutj , k)

⊗ input(Ni, k)

(1)

where N is the batch-size and C is the amount of
channels. ⊗ is the matrix multiplication operator.

After this convolution operation a Rectified Linear
Unit (ReLU) (Equation (2)) is used as activation func-
tion to eliminate all negative values in the output, which
provides the model with non-linearity.

ReLU(x) = max(0, x) (2)

where x is an element of the previous layer’s out-
put. The ReLU function is applied element-wise to the
entire output of the previous layer.

This output is then passed to a pooling layer where a
2-dimensional max pooling (size = 2 ∗ 2, stride = 1) op-
eration is applied. The output of this pooling operation
can be precisely described by Equation (3).

out(Ni, Cj , h, w) = max
m=0,...,kH−1

max
n=0,...,kW−1

input(Ni, Cj , stride[0]× h + m

, stride[1]× w + n)

(3)

where, again, N is the batch-size and C represents the
amount of channels. kH and KW are the height and
width dimensions of the kernel respectively.

The output is then fed trough another convolution
layer, a ReLU and a pooling layer. This time, however,
16 filters apply a 2-dimensional convolution operation, in-
stead of six filters. Furthermore, the channel dimension
of the filter has been reduced to one, because of the con-
volution operation in the first layer (see Equation (1).).
Padding, stride, width and height of the filter remain the
same.

After the input has been passed through these feature-
searching layers there is a dropout layer. During training
of the model this drop-out layer randomly selects ele-
ments (selection with p = 0.5) from its given input to be
deactivated (i.e. element values are set to 0). This ’drop-
ping out’ of neurons has been shown by Hinton et al.[8]
to be an effective countermeasure against overfitting, as
it prevents the co-adaptation of neurons. During eval-
uation the dropout layer computes an identity function,
effectively leaving the input unchanged.

The next layer takes all elements of its input and con-
catenates them all into a single vector. This is the flat-
tened layer, since it flattens all dimensions of the different
filters into a one-dimensional feature vector. This feature
vector is then passed to two fully connected layers which
take these features that were collected by the previous
layers and use it make predictions about what was be-
ing denoted by the input for the very first layer of the
network. The highest value after having applied the Soft-
max function (Equation (4)) will be taken as the model’s
verdict.

softmax(y)j =
exp(yi)∑K−1

j=0 exp(yj)
(4)

where y is a vector of model predictions.

5

The complete network architecture is illustrated in Fig-
ure 1. Dimensions of output on each layer are omitted,
since they are dependent on the type of task the model
is performing.

FIG. 1. Schematic illustrating the layers of the CNN archi-
tecture

B. Learning Mechanism

Once the model has made its verdict from a range of
predictions, the whole range of predictions needs to be
evaluated and the weights of all relevant filters and neu-
rons need to be adjusted accordingly in order for the
model to be able to improve its predictions. The loss
function used for measuring the difference between the
models verdict and the correct prediction is termed cross
entropy loss. This loss function is defined by Equation
(5).

loss(x, y) = −
K−1∑
i=0

yilog(xi) (5)

where x is a vector of softmaxed model predictions, y
is a vector containing the true predictions and K is the
length of these vectors.

Because we know that all but one values in y are 0 and
that one value is equal to 1, the formula can be simplified
to the one in Equation (6).

loss(x) = −log(xi) (6)

where i is the index of the highest value in true predic-
tion vector.

The method used for optimizing the weights of the
model is the Adam optimizer algorithm as proposed by
Kingma et al. [11] The entire system was implemented
using Pytorch.

IV. EXPERIMENTAL SETUP

Evaluating the CNN’s ability to generalize interpreted
languages is done by testing whether or not it is capable
of combining knowledge gained from learning composi-
tional structures of a certain complexity into knowledge
about compositional structures of higher complexity. In
this study, compositional structures of two different inter-
preted languages have been used for assessing this ability.
One of these interpreted languages is constructed after a
language used in very similar study by Paperno [15] on
the generalization capacity of recurrent models. This in-
terpreted language will be referred to as ’the personal
relations vocabulary’. The other interpreted language is
constructed after a language used in a study by Hupkes
et al. [10] on the processing of hierarchical structures
by recurrent and recursive models. This language will
be referred to as ’the arithmetic vocabulary’. The con-
volutional model instances presented in this paper are
trained on these vocabularies, so that they are more eas-
ily compared to the performance of the models from the
aforementioned studies.

Independent of the vocabulary being used, the setup of
the experiments is the same. A particular instance of the
Convolutional Neural Network architecture as defined in
the ’Computational Approach’ section will be trained on,
and evaluated by, a set of expressions from a vocabulary,
where expressions are compositional structures of a cer-
tain complexity. During training, the model’s weights
and filters get updated by expressions of complexities 1,
2, 4, 5 and 7 only. When the model is tested, however,
expressions of all complexities are used. The maximum
complexity is 9.

Test-expressions of complexities 3, 6, 8 and 9 therefore
always consist of unseen examples. For the examples of
other complexities, however, this cannot be ensured. Be-
cause there are only so many different unique expressions
that can be generated per complexity (e.g. only 4 for ex-
pressions of complexity 1 from the Personal Relations
vocabulary), there is bound to be some overlap between
expressions in the train- and test partitions.

This overlap is by no means a real problem, because,
although performance on all complexities will be evalu-
ated, testing the model’s ability to generalize during this
task comes down to its performance with expressions of
complexities 3, 6, 8 and 9 - which are all unseen examples.

Given the discrepancy between complexities present in
train- and test data allows for not only a full assessment

6

of a Convolutional model’s ability to generalize from low
complexity compositional structures to higher complex-
ity compositional structures, but also in the other direc-
tion.

Preliminary results from Paperno’s [15] paper sug-
gest that recurrent networks generalize to compositional
structures, but only if a model’s training includes a cur-
riculum. A curriculum consists of slowly increasing the
complexity of expressions during the model’s training
process. This curriculum is different from a conventional
setup where all training examples are available to a model
at any time during training. In order to affirm this find-
ing the presence of a curriculum has been added as ex-
perimental parameter to the experiments presented in
this study. The curriculum added expressions of a higher
complexity to the training process every ten epochs.

Details of the experiments and the exact composition
of different vocabularies can be found in the subsections
below.

A. Data

1. The Personal Relations Vocabulary

This vocabulary consists of 4 constituents which are
interpreted as individual identifiers (names), 4 function
denoting nouns which are interpreted as relations {friend,
enemy, parent, child} and 1 grammatical element {’s}.
The compositional structures generated from this vocab-
ulary are expressions denoting some individual. Expres-
sions are generated by randomly choosing a constituent
from the available individual identifiers, appending a
grammatical element and then appending a random re-
lation. This process is repeated up to a given complexity
value.

If the desired complexity of the expression is 1, then the
expression will consist only of a single name. If the de-
sired complexity of the expression is greater than 1, then
the first constituent of the expression will be an expres-
sion of lower complexity (which might be a single name
or a more complex expression). Examples of expressions
that can be generated from the personal relations vocab-
ulary can be found in Table I.

Complexity Example Expression
1 Ann
2 Ann ’s Child
3 Ann ’s Child ’s Friend
4 Ann ’s Child ’s Friend ’s Enemy

TABLE I. Examples of expressions that can be extracted from
the Personal Relations Vocabulary. Expressions up to c = 4
are shown.

It is important to note that the grammatical element
in this vocabulary only allows for the generation of left-
branching structures. This is different from Paperno’s

research [15], where both left- and right-branching struc-
tures were used.

Once some amount of expressions is generated for each
complexity, the meaning of each expression is deter-
mined. The meaning of an expression is the individual
that is denoted by the expression according to predefined
relations between individuals. This relation model is ran-
domly defined for a generated set of expressions. How-
ever, mechanisms are in place to ensure that relations
adhere to certain rules. For example, a friend relation
cannot be established such that an individual is friend
as well as enemy of another individual at the same time,
and vice versa. Friend and enemy relations, thus, are
mutually exclusive. The same applies for the parent and
child relation. Additionally, if individual A is child of B,
then B is parent of A. The Parent-Child relation is, thus,
bi-directional. The same applies to the friend and enemy
relation. The relation model allows for one and only one
meaning per unique expression. The meaning of expres-
sions, thus, is unambiguous. A particular instance of a
relation model is given in Table II.

The rules for the relation model were implemented to
ensure that there are set rules governing the data. These
rules are there for the neural model to pick up, helping it
to understand what specific relations encompass, thereby
hopefully assisting it in evolving the ability to use these
rules in novel ways.

Ann Bill Cathy Danny
friend Cathy Danny Ann Bill
enemy Danny Cathy Bill Ann
parent Cathy Ann Danny Bill
child Bill Danny Ann Cathy

TABLE II. An example of a specific relation model on the
Personal Relations Vocabulary. e.g. ’Ann’s parent is Cathy’,
’Danny’s enemy is Ann’.

Even though labels are determined only after expres-
sions have been randomly generated, a mechanism is im-
plemented that ensures every individual is represented
the same number of times in total by the expressions.
This ensures that classes in the resulting data are bal-
anced.

To summarize, the resulting data from this vocabulary
is a set of expressions of recursively embedded relations
corresponding to a set of individuals who are being de-
noted by those relations. The task of the CNN model,
when being trained on examples from this vocabulary, is
thus to correctly assign an individual to a complex em-
bedding of relationships. In short, given the language
interpretation in Table II, having memorized that ’Ann
’s friend is Dick’ and that ’Dick ’s enemy is Bill’ an ideal
model would be able to generalize that ’Ann ’s friend ’s
enemy is Bill’.

7

2. The Arithmetic Vocabulary

This vocabulary consists of a set of numeral words in
the range of [-10,10], 2 mathematical operators +,- and
2 grammatical elements {),(}. The compositional struc-
tures generated from this vocabulary are mathematical
expressions denoting some integer. Expressions are gen-
erated by randomly choosing a numeral word, appending
a randomly chosen operator, again randomly choosing a
numeral word and putting this string between the gram-
matical elements (putting the mathematical expression
between brackets).

The grammatical elements of this vocabulary allow for
the ability to generate both left- and right-branching
compositional structures. However, only left-branching
expressions have been used in this experiment. This is
contrary to Hupkes et al. [10] who used both kinds of
branching structures in their experiments.

Analogous to the personal relation vocabulary, if the
complexity of the expression is 1, then the expressions
will consist of only a numeral. If the complexity of the
expression is greater than 1, then the first constituent of
the expression will be an expression of lower complex-
ity instead of a numeral. Examples of expressions that
can be generated from the arithmetic vocabulary can be
found in Table III.

Complexity Example Expression
1 ONE
2 (TWO PLUS -ONE)
3 ((-TWO PLUS ONE) MINUS ONE)

TABLE III. Examples of expressions that can be extracted
from a model in the arithmetic vocabulary with numerals in
the range of [-2, 2] and the operators {+,-}. Expressions up
to c=3 are shown.

Once a set of expressions is generated for each com-
plexity, the solution to each mathematical expression is
computed as the label to the expression. Because each
sub-expression is put between brackets, there is one and
only one solution to each mathematical expression. The
meaning of each expression is, thus, unambiguous.

The mechanism that was implemented for the personal
relation vocabulary to ensure that distinct labels were
evenly distributed is not applied for the arithmetic vo-
cabulary. The reason for this being that Hupkes et al.
[10] seemed to generate expressions in the same way. This
means that the classes are not uniformly distributed and
that, thus, the classes in the resulting data are unbal-
anced.

To summarize, the resulting data from this vocabulary
is a set of expressions of recursively embedded mathe-
matical expressions corresponding to a set of solutions
to those mathematical expressions. The task of the CNN
model when being trained on examples from this vocabu-
lary is, thus, to correctly compute the solution to a com-
plex embedding of mathematical expressions.

B. Encoding

Each expression has been one-hot-encoded. To ensure
that all encodings have the same dimensions, expressions
shorter than the largest expression in the full set of ex-
pressions have been padded during encoding. Padding is
done in three different ways: 1. adding padding on the
left of the expression, 2. adding padding to the right of
the expression, 3. wrapping the expression in padding.
The reason for padding expressions is two-fold. Firstly,
encoding expressions in three different kinds of padding
effectively results in tripling the amount of data. Sec-
ondly, it aids the system in generalizing between different
positions of the input.

C. Parameters

The CNN model that was tasked with the personal
relations vocabulary was trained for 100 epochs with a
learning rate of 0.0001. 320 examples of each complex-
ity were generated. 75% of these examples were used as
training data. Given that training only uses expressions
of 5 different complexities (1, 2, 4, 5 and 7) and that
expressions are duplicated 3 times during encoding, this
means that train data consisted of 3,600 examples. The
data was fed into the network in batches of size 64. One
experiment was performed that included a curriculum,
as well as one that did not include a curriculum.

The values of the parameters were chosen based on a
parameter search where the influence of all combinations
of epochs (50, 100 and 200), amount of examples per com-
plexity (40, 80, 160 and 320) and batch-size (20%, 50%
and 100% of the amount of examples per complexity) on
the model’s performance were tested.

The CNN model that was tasked with the arithmetic
vocabulary was trained for 100 epochs with a learning
rate of 0.0001 and 3,000 examples of each complexity
were generated. Using the same equation as for the per-
sonal relation vocabulary we derive that train data con-
sisted of 33,750 examples. The data was fed into the
network in batches of size 750. Again, one experiment
was performed that included a curriculum and one ex-
periment that did not include a curriculum.

Values for parameters on the arithmetic vocabulary ex-
periments were chosen based on the proportions between
the parameter values of the personal relation vocabulary
experiments. The amount of expressions per complexity
is the same as in the study by Hupkes et al. [10]

To summarize, four experiments have been done in to-
tal with the Convolutional Neural architecture that has
been introduced in ’Computational approach’ section.
One experiment on the personal relation vocabulary with
curriculum and one without it. And one experiment on
the arithmetic vocabulary with curriculum and one with-
out it.

8

D. Evaluation

Performance of the model on the personal relations
vocabulary is measured in accuracy, because this makes
the results more easily comparable to the aforementioned
study by Paperno [15], who utilize(s) the same metric.

Performance of the model on the arithmetic vocabu-
lary is measured using the Mean Squared Error (MSE)
instead of accuracy. This is chiefly because the nature of
data generated from the arithmetic vocabulary doesn’t
allow for evaluation in terms of accuracy. Classes are
not uniformly distributed throughout the data, so there
is no way of knowing whether or not a certain percent-
age of correct predictions is above chance level. Further-
more, MSE was used in the previously mentioned study
by Hupkes et al. [10]. Therefore, MSE is used for these
evaluations.

V. RESULTS

The previously defined CNN architecture has been
tested for its generalization capacity using the Personal
Relations as well as the Arithmetic vocabulary. For both
of these vocabularies, the influence of a curriculum during
training has furthermore been explored. Each of these
four experiments were repeated 20 times to make sure
that noise created by the random generation of data is
leveled out. In this section the results of these experi-
ments will be reported.

Performance on the Arithmetic vocabulary is illus-
trated by the graph in Figure 2. It showcases the average
as well as the best (i.e. lowest) MSE of the models that
included a curriculum during training and of those that
did not (from this point on abbreviated as CNN-c and
CNN, respectively). First, the average performance of
the models is discussed.

FIG. 2. Mean Squared Error of a CNN on expressions gen-
erated from the Arithmetic vocabulary. Average and best
performance of models with and without training curriculum
are showcased. Expressions of complexity 3, 6, 8, and 9 were
unseen during training

A primary observation is that the average error rate is
far higher for the CNN-c than it is for the CNN. This is

radically different from the findings of Paperno [15] who
found that a well-paced curriculum was essential for a
LSTM to generalize to unseen compositional examples.

When the average performance of individual models is
plotted (Figure 3) it becomes even more apparent how
much better the default CNN performs in comparison to
the CNN-c. In fact, the CNN achieves a performance
characterized by an MSE of less than 10 in 11 out of the
20 experiments. For the CNN-c this level of performance
is only attained in 5 out of the 20 experiments.

Additionally, it can be inferred that on average the er-
ror rate of the models rises as the expression complexity
increases. This is not surprising, considering the fact that
training examples become decreasingly representative of
the entire expression space as complexity goes up. Specif-
ically, the expression space expands with a factor of 42
with each new level of complexity, that is, the number of
numerals multiplied by the grammatical elements in the
vocabulary. What is surprising, however, is that the er-
ror rate increases approximately linearly to the increase
in complexity.

One would either suspect a far more exponential re-
lation between increasing complexity and error rate due
to the exponentially growing space of expressions, as is
reinforced by the results from Hupkes et al. [10] Alter-
natively, varying error levels between expressions of seen
and unseen complexities are also to be expected. Here-
after, the results of single experiments (as displayed in
Figure 3) are examined to further discuss this discrep-
ancy.

FIG. 3. Performance of a random selection of models (both
CNN and CNN-c) plotted per complexity. Individual Experi-
ments 1 shows overall relatively low errors, Individual Exper-
iments 2 shows overall relatively high errors

9

When the results of individual experiments are plotted
it can be observed that the aforementioned suspicion of
alternating error levels between expressions was justified.
Notice that the increase in error rate when the complex-
ity increases a single level is greater for unseen examples
than for seen examples in almost all experiments. In
other words, the model has a harder time generalizing
to expressions of unseen complexity. This is not unex-
pected.

As expected, the error rate increases when moving
from one seen complexity to the next unseen complex-
ity. However, at this stage, it will barely change when
moving on to a yet higher, though seen, complexity. For
example, the error rate increases between complexities 2
and 3, but hardly differs between 3 and 4. This suggests
that the models learn to adequately generalize to unseen
examples when it has seen examples of complexities that
are one above and one below the complexity level of the
unseen examples.

This notion is supported by the fact that performance
on unseen complexities that do not have known complex-
ities above them, i.e. 8 and 9, have a greater increase in
error and subsequently have a higher overall error.

FIG. 4. Mean Squared Error of a CNN on expressions gener-
ated from the Arithmetic vocabulary. Only the best perform-
ing models are presented. Expressions of complexity 3, 6, 8,
and 9 were unseen during training

In order to reliably extract certain assertions about the
overall performance of the CNN architecture on the arith-
metic vocabulary it is pitted against the performance of
the models from Hupkes et al. [10] The models are com-
pared using their best, i.e. lowest, and average error rate
with expressions of the highest complexity. Side-by-side
evaluation of the metrics is provided by Table IV. Be-
cause the paper by Hupkes et al. [10] did not present
exact metrics, those numbers represent best estimations
inferred from the corresponding graph.

The comparison in Table IV show that the models pre-
sented in this paper perform better than the SRN used
in the study by Hupkes et al. Although the average per-
formance of the CNN and CNN-c is worse, their best
performance level is better than for the GRU and com-
petitive with the TreeRNN.

As for the performance of the CNN and CNN-c with

GRU SRN TreeRNN CNN CNN-c
average < 30 >100 - 93 162
best < 15 < 40 < 5 7.33 7.87

TABLE IV. A comparison between models from this study
and the study by Hupkes et al. [10] with an Arithmetic vo-
cabulary. ’Best’ and ’Average’ performance in this context is
Mean Squared Error on expressions of complexity 9.

the Personal Relations vocabulary; the average and best
accuracy of the models that were trained on this vocabu-
lary are illustrated by the graph in Figure 5. The perfor-
mance level of the models for expressions of complexities
1 and 2 are omitted, as they do not test generalization
capacity. The models have seen such extensive training
data on these complexities that it has learned to memo-
rize them. As such, all models achieved a perfect accu-
racy for these complexities.

It must be noted at this point that the previous obser-
vation that the CNN architecture does not benefit from
a curriculum during training is reinforced by the results
in Figure 5. The average performances of the CNN and
CNN-c are almost identical.

FIG. 5. Test accuracy of a CNN on expressions generated
from the Personal Relation vocabulary per expression com-
plexity. Random baseline is 0.25. Expressions of complexities
3, 6, 8 and 9 were all unseen during training.

Although the best performing models show some gen-
eralization capacity, the models fail, on average, to cap-
ture any structural knowledge that enables them to gen-
eralize. This is reflected by all scores fluctuating around
the random baseline of 0.25. One might have expected
the models to be unable to generalize to expressions of
unseen complexity, but the observation that they do not
generalize to expressions of complexity for which they
have seen extensive training data, is remarkable.

It is especially surprising since the results on the Arith-
metic vocabulary show that the same models are, in prin-
ciple, capable of generalization, both to seen and unseen
complexities. Furthermore, because the data generated
from the Personal Relations vocabulary is less complex
than those from the Arithmetic vocabulary, one might
even be inclined to think that generalization performance
on the Personal Relations vocabulary would be better.

10

As such, the question remains what caused this model to
fail so spectacularly.

The tasks that comprise the Arithmetic and Personal
Relations vocabulary are essentially the same. The dis-
crepancy between performances must thus be caused by
the composition and nature of the data. The difference in
composition between data from the vocabularies is sum-
marized by Table V.

Arithmetic Personal Relations
numerals/names 21 4

relations 2 4
gr. elements 2 1

classes 113 4
stdev. 291 0

TABLE V. A summary of the composition of data gener-
ated from the Arithmetic and Personal Relations vocabular-
ies. Numerals/names, e.g. Two or Ann. Relations, e.g. +
or friend. Gr. elements, e.g. (or ’s. Classes is the average
amount of unique labels that are present in the total data set.
Stdev. is the standard deviation of the amount of examples
that are present for each label

It can be deduced from this summary, as was men-
tioned in the section introducing the vocabularies, that
the classes in the data generated by the Personal Rela-
tions vocabulary are evenly distributed, while those in
the arithmetic vocabulary are not. This is shown by the
values for classes and stdev., displaying, respectively, the
total number of labels and the variation of those labels
being represented by the data .

On the one hand, given that the data from the Arith-
metic vocabulary is heavily imbalanced and complex
while the models from this vocabulary achieve adequate
performance, this suggests that the class imbalance and
complexity of the data forces the model to capture more
general features in order to be able to correctly classify
examples during training.

On the other hand, given the fact that the data from
the Personal Relations vocabulary is perfectly balanced
and relatively simple while the models from this vocab-
ulary fail spectacularly, suggests that the model has not
learned to capture general features and thus heavily over-
fits the data.

In other words, more complex training data forces a
CNN to extract more intricate and generally applicable
features from which it benefits during evaluation, while
simplicity of training data does not.

VI. CONCLUSION

It can be deduced from this summary, as was men-
tioned in the section introducing the vocabularies, that
the classes in the data generated by the Personal Rela-
tions vocabulary are evenly distributed, while those in
the arithmetic vocabulary are not. This is shown by the
values for classes and stdev., displaying, respectively, the

total number of labels and the variation in those labels
being represented by the data .

On the one hand, given that the data from the Arith-
metic vocabulary is heavily imbalanced and complex
while the models from this vocabulary achieve adequate
performance, this suggests that the class imbalance and
complexity of the data forces the model to capture more
general features in order to be able to correctly classify
examples during training.

On the other hand, given the fact that the data from
the Personal Relations vocabulary is perfectly balanced
and relatively simple while the models from this vocab-
ulary fail spectacularly, suggests that the model has not
learned to capture general features and thus heavily over-
fits the data.

In other words, more complex training data forces a
CNN to extract more intricate and generally applicable
features from which it benefits during evaluation.

VII. CONCLUSION

This study has investigated the generalization capacity
of the Convolutional Neural Network architecture for two
different interpreted languages. Both interpreted lan-
guages consisted of left-branching compositional struc-
tures of varying complexity, but differed in their exact
composition. One model was tested that included a cur-
riculum during training and one was tested that did not.

For the models that were trained on the interpreted
language called ’Arithmetic vocabulary’ we find that the
performance bears witness to adequate generalization ca-
pacity. Additionally, the results show that generalization
to unseen complexities is more successful if the model
has seen examples during training of higher and lower
complexity than the unseen complexity.

This suggests that the model is able to both gener-
alize towards higher unseen complexities as well as to-
wards lower unseen complexities. To test whether or not
this pattern holds true, the gap between complexities of
seen and unseen compositional structures can be further
stretched and the maximum complexity of compositional
structures can be increased.

Conversely, the models that were trained on the inter-
preted language called ’Personal Relations vocabulary’
failed to show any generalization ability.

The influence of composition of data on performance of
models suggest that a CNN benefits from more complex
training data, for it forces the CNN to capture more ab-
stract and general features to be able to achieve adequate
performance during training. However, the influence of
training data composition on CNN model performance
has to be investigated further to adequately support this
finding.

Contrary to previous findings for LSTM networks, a
CNN does not benefit from a curriculum during train-
ing. In fact, for one of the vocabularies the presence of
a curriculum worsened performance. Whether this is to

11

be ascribed to mere presence of a curriculum itself or the
particular rate with which complexities are added dur-
ing training is, as of yet, unclear. Further research could
prove useful in ascertaining the effects of varying such a
slope.

Overall the experiments presented in this study show

that CNN’s possess a generalization capacity for inter-
preted languages that is competitive with Recurrent and
Recursive models from existing literature. To further test
this capacity additional research might experiment with
generalization capacity to both left- and right-branching
structures.

[1] Baroni, M. and Brenden Lake. Generalization without
systematicity: On the compositional skills of sequence-to-
sequence recurrent networks. In International Conference
on Machine Learning, pages 28792888. 2018

[2] Cho, K., Junyoung Chung, Caglar Gulcehre and Yoshua
Bengio Empirical evaluation of gated recurrent neural
networks on sequence modeling. CoRR, abs/1412.3555.
2014

[3] Coheur, L., Ana C. Mendes, Joao Silva, Andreas
Wichert. From symbolic to subsymbolic information in
question classification. In Artificial Intelligence Review,
35(2):7154. 2011.

[4] Dauphin, Y.N, Angela Fan, Michael Auli, David Grang-
ier Language modeling with gated convolutional networks.
In Proceedings of the International Conference on Ma-
chine Learning (ICML), 2017, pp. 933941

[5] Dayan, P., Chris Dyer, Timothy P. Lillicrap, Jack W.
Rae. Fast parametric learning with activationmemoriza-
tion. arXiv preprint arXiv:1803.10049, 2018.

[6] Elman, J. L. Finding Structure in Time. Cognitive Sci-
ence, 14 (2), 179211. 1990

[7] Elman, J.L. Distributed representations, simple recurrent
networks, and grammatical structure. In Machine learn-
ing, 7(2-3):195225. 1991.

[8] Hinton, Geoffrey E, Srivastava, Nitish, Krizhevsky, Alex,
Sutskever, Ilya, and Salakhutdinov, Ruslan R. Improving
neural networks by preventing co-adaptation of feature
detectors. arXivpreprint arXiv:1207.0580. 2012b.

[9] Hochreiter, S. and Jrgen Schmidhuber. Long short-term
memory. In Neural computation, 9(8):17351780. 1997

[10] Hupkes, D., Sara Veldhoen,and Willem Zuidema Visuali-
sation and diagnostic classifiers reveal how recurrent and
recursive neural networks process hierarchical structure.
arXivpreprint arXiv:1711.10203 [cs.CL]. 2017.

[11] Kingma, Diederik P and Ba, Jimmy Lei. Adam:
A method for stochastic optimization. arXivpreprint
arXiv:1412.6980. 2014.

[12] Kracht, Marcus. Interpreted Languages and Composition-
ality In volume 89 of Studies in Linguistics and Philoso-
phy. Springer, Berlin. 2011

[13] Le, P., and Zuidema, W. The Forest Convolutional Net-
work: Compositional Distributional Semantics with a
Neural Chart and without Binarization. In Proceedings
of the 2015 Conference on Empirical Methods in Natural
Language Processing, pp. 11551164. 2015.

[14] Mikolov, T., Joulin, A., and Baroni. M. A
Roadmap towards Machine Intelligence. arxivpreprint
arXiv:1511.08130 2016.

[15] Paperno, D. Limitations in learning an interpreted lan-
guage with recurrent models. In Proc. EMNLPBlack-
boxNLP. ACL. 2018.

[16] Young, T., Devamanyu Hazarika, Soujanya Po-
ria, and Erik Cambria. Recent trends in deeplearn-
ing based natural language processing. arXivpreprint
arXiv:1708.02709v8. 2018.

