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Abstract

When an incident is reported at ProRail, many decisions have to be made. All those
decisions influence the function recovery time (FHT), which is the time span between
the moment an incident is reported and the moment everything is restored. When the
FHT can be accurately predicted, better decisions will be made with regard to incident
handling, and delayed train passengers can be accurately informed. The aim of this
research is to build a supervised machine learning model to predict the FHT. Currently,
a Decision Tree is implemented at ProRail to produce an initial prognosis. Ideally, our
model will be suitable for both generating an initial prognosis, and updating this prognosis
during the recovery process. Historical incident data of ProRail will be used to train the
model on. This data is extended by adding a few other data sets, to increase the number
of relevant variables. The resulting data set is divided by incident type, because the
variables that correlate with the FHT are very different between incident types. For each
type, a different set of features is selected, and a different model is trained. The models
have to meet three requirements. First, all of our variables are or can be discrete, so the
model should be able to work with categorical data. Second, when the initial prognosis is
made, usually the values of only a few variables are known, so the model should be able
to handle this, and also be able to make a better prediction based on more values later
in the process. Third, the model will be used to support humans in making choices, so
the output of the model should be easily interpretable for a human. As a result, Bayesian
Networks and the k-Nearest-Neighbors algorithm are chosen to be implemented. These
algorithms are tested on data sets for rolling stock incidents, section TOBS incidents
and collision/hindrance incidents. The mean distance between the predicted FHTs and
the actual FHTs is similar for both algorithms; between 45 minutes and one hour for
all three data sets. This performance is compared with the predictions of the currently
implemented Decision Tree, using a small test set. On this set, our models do perform
similarly or better.
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1 Introduction

On an average working day, more than a million people in the Netherlands travel by
train [26]. In the media, ProRail even claims that the number of train passengers will
increase by 40% in the next ten years [44]. The occurrence of an incident on the rail
tracks can cause a lot of annoyance among passengers. A customer survey showed that
passengers already experience heavy nuisance from a 15 minute delay [32]. ProRail, the
infrastructure managing company of the Dutch railways, and the train companies of the
Netherlands (e.g. NS and Arriva) are always working on both the prevention of incidents
and the improvement of incident handling. The latter can be seen as consisting of two
parts: reducing passenger hindrance by minimizing delays, and accurately informing the
delayed passengers so they can keep control over their own journey.

The moment an incident is reported at the Railway Alarm Room (MKS), a decision
has to be made when to start the process of recovery. This can either be done imme-
diately, at a later time that day (after rush hour) or at night. This choice can have a
huge impact on the delays that are caused by the incident, and is therefore an important
factor in minimizing delays. Among other things, this choice depends on the diagnosis
(what needs to be fixed), priority (how urgently does it need to be fixed), time of day (is
it during rush hour) and the prognosis (estimate of the time needed for recovery) [3].

Before and during the recovery process of an incident, a lot of trains have to be
rescheduled. Some will be cancelled, others will be re-routed, and others might still use
the same tracks while riding very slowly. When the problem is solved and the train ta-
ble can get back to normal, the train traffic controller (TRDL), who is responsible for a
specific part of the rail infrastructure, has to notify the involved train company. At that
point, the train company has to arrange the needed rolling stock and train personnel,
and reschedule the train table. Doing this in such a way that hindrance is the lowest,
takes at least 30 minutes [3]. This means that, if the train company gets a notification
at the moment the incident is already recovered, about 30 minutes of unnecessary delays
are caused. Therefore, if the TRDL can use the prognosis to notify the train company at
least 30 minutes before the moment of recovery, this contributes a lot to the minimization
of delays.

Customer experience is not only influenced by minimizing passenger delays, but also
by the accuracy of information that is communicated to the delayed passengers. This
is why ProRail is concerned with the improvement of information provision for delayed
passengers, as is mentioned in the management plans of ProRail for the years 2016 and
2018 [32, 33]. For both minimizing delays and accurately informing delayed passengers,
it is necessary to make an accurate prediction of the function recovery time (FHT). As is
shown in figure 1.1, this is the time span between the moment an incident is reported, and
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function recovery, the moment everything is restored. These moments differ from ‘start
incident’ and ‘end incident’, in that the former is the moment the incident actually takes
place, before it is reported to the MKS, and the latter is the moment that the train table
is back to normal, which takes time after this is theoretically possible. The FHT can be
split up into latency time and repair time, which are respectively the time span between
the moment an incident is reported and the arrival of the contractor, and between arrival
of the contractor and the function recovery moment.

Figure 1.1: Function recovery time

Humans seem quite capable of making predictions, based on their experience with past
incidents. However, in the case of decisions from experience, people tend to rely on small
samples of the information and tend to overweight recently sampled information [16]. Be-
sides, our ability to reflect on how we perform is very bad [5], so the risk of unknowingly
being influenced by irrelevant factors is very high. To prevent this from happening, the
assistance of artificial predictive models comes into play, to make predictions more stable
and based on years of equally weighted experience. This model will, at least in the near
future, not be able to make decisions based on these predictions, so this will remain a
human’s job. Therefore, the output of the predictive model should be easy to interpret
by the human, to be of effective support.

At this moment, a Decision Tree is used for this purpose. This model is designed by
the consultancy company CQM [9]. For each type of incident (e.g. train defect, signal
failures, person on the rail tracks, . . . ), a different Decision Tree is applied. In each
node of the Decision Tree, a choice is made between two or more categories, e.g. ‘during
rush hour’ and ‘not during rush hour’. This choice causes an alteration of the progno-
sis, based on the new information. Finally, in the leaves of the tree, this results in the
initial prognosis. This model is currently applied just once: at the moment a disruption
is reported to the MKS. During the recovery, an AL (General Leader) is present at the
location of the incident, so when more information becomes available (e.g. failure cause),
the AL communicates this to ICB (Incident Control), where the prognosis is updated.
The Decision Tree of CQM is not suited for adding new information, because its nodes
are fixed. When the value of a node is not known, the decision between the children of
that node can not be made, so only the few nodes of which the value is known during
the initial prognosis are included in the model. Therefore, the prognosis update, based
on the information that is gained later in the recovery process, can not be done by the
algorithm. It is done manually, using human experience and expertise.
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Generating an accurate initial prognosis is very useful for deciding when to start re-
covery and for giving passengers a first indication of delays. However, it is very difficult
to make an initial prognosis that is sufficiently accurate to communicate to train traffic
controllers, to accordingly reschedule trains and minimize unnecessary delays. This is
simply because some very relevant information, such as failure cause, is not yet known
when the incident is reported to the MKS. This means that, in most cases, only updated
prognoses can be accurate enough to be fundamental to train rescheduling. Considering
that the Decision Tree is static due to its fixed nodes, a more dynamic model is needed
to solve this problem.

This problem leads us to the main question of this thesis: How can we accurately
predict the recovery time for various types of railway incidents, using a dynamic model
that updates with newly gained information? This question can be divided into two sub-
questions. First, what information is needed to make accurate predictions of recovery
time for various railway incidents? Second, how can we create a dynamic model that is
able to update its prediction based on new information?

Machine learning models can be classified in three categories: supervised learning,
reinforcement learning and unsupervised learning [1]. Supervised learning can be applied
when the training data contains explicit examples of what the correct output should be
for given inputs. In reinforcement learning, a training example does not contain a target
output, but instead contains some possible output together with a measure of how good
that output is. In contrast to supervised learning, where the training examples are of
the form [input, correct output], the examples in reinforcement learning are of the form
[input, some output, grade for this output]. In the unsupervised setting, the training data
does not contain any output information at all. We can get similar clusters to those in
supervised learning, but without the labels.

Our data does contain examples of what the correct output should be, the FHT. I
therefore aim to build a supervised learning model, which will generate a predicted FHT
based in relations between the FHT and other information (features) that we have on
incidents. The setup of this research is inspired by the process of supervised machine
learning, proposed by Kotsiantis et al. [22]. This process consists of seven steps, where
steps 2-4 contribute to answering the first subquestion, and steps 5-7 to answering the
second subquestion.

1. Defining the problem.

2. Identification of the required data. This is necessary because not all data that is
owned by ProRail is relevant for our problem, and most probably not all information
that is relevant is directly available.

3. Data pre-processing, which includes cleaning the data from missing values.

4. Defining the training set. It is very important to divide the data into a training set
and a test set, to prevent the model from overfitting.

5. Algorithm selection, because there are various algorithms that all have their specific
strengths and weaknesses.
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6. Training the model, using the previously chosen training set.

7. Evaluating the algorithm, using the previously chosen test set.

Step 1, problem definition, is mostly discussed in this chapter, but will be further
explained in chapter 2. Chapter 3 contains some information about the resources I have
used, which is not included in the process of supervised learning, but seemed reasonable
to mention somewhere. Step 2 is introduced in chapter 2 and fully discussed in chapter 4.
Step 3 is spread out over chapters 5 and 6, where the first chapter is about reshaping the
data to make it usable, and the second is about selecting the relevant features for our
problem. Step 4 is also included in chapter 5. Chapter 7 is dedicated to step 5. In this
chapter, six commonly used algorithms are discussed, and compared by their suitability
for our data and our problem. Chapter 8 contains both step 6 and 7, because testing and
evaluating the model goes hand in hand with the training procedure, which is continuously
adjusted based on testing results. Chapter 9, the conclusion of this thesis, summarizes
the algorithms and features found to perform best. In chapter 10, I discuss what I could
have done differently and why, so future research can build on this.
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2 Background and previous re-
search

Figure 2.1: Switches [44]

2.1 About ProRail

ProRail is responsible for the Dutch railway network, which includes construction, main-
tenance, traffic management and safety. ProRail distributes the capacity of the tracks,
manages all train traffic, and builds and manages stations, rail tracks, switches, signals
and crossings. The operational maintenance of the rail tracks is not done by ProRail
itself. For the execution of maintenance activities, ProRail has contracted companies
like BAM Rail, Strukton Rail and Volker Rail. All contractors take care of the main-
tenance of a certain part of the railways. Train companies, like NS and Arriva “buy”
railway capacity from ProRail to transport people and goods. Then passengers can in
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turn pay the train company for using their trains as transport. ProRail B.V. is a pri-
vate company, of which the Dutch government is 100% shareholder via Railinfratrust B.V.

ProRail has about 4300 employees (2017) [31]. The company manages 7021 km of
rail tracks, 2589 crossings, 7071 switches, 12036 signals and 404 stations. The railways
are connected by 725 viaducts, 455 bridges, 56 movable bridges and 15 tunnels. The
management is done by 13 traffic control posts. The head office of ProRail is located in
Utrecht and there are 4 regional offices, located in Amsterdam, Eindhoven, Rotterdam
en Zwolle [30].

ProRail consists of many departments and hires people for many different functions.
Because some of these department and function terms will be casually used throughout
this thesis, the most important ones are shortly explained in Appendix A. Besides, the
jargon at ProRail does not only consist of words one does not understand by common
sense, but of many abbreviations as well. Both in the conversations people have, and in
the data sets I will use for FHT prediction, those abbreviations are abundantly used. In
this thesis, I hold on to the Dutch abbreviations, since they also occur in the variable
names of our data sets. In Appendix A, I have also listed some useful ones with both
their Dutch and English meaning.

2.1.1 Data on incidents

Considering the objective of this research, the main thing we are interested in is ProRail’s
database on incidents. At ProRail, incidents are recorded in various ways. The systems
that contain the most relevant information for this research are Spoorweb, SAP and ISVL.

ISVL ISVL is a data set containing information that was recorded during the handling
of incidents. It has a relatively free form, focusing on transferring useful information about
the incident between concerned parties, rather than recording the incidents for future
use. The ISVL data set that I used contains recordings of incidents from 2013/05/08 to
2017/06/25. In total, this captures 50,574 incidents and 41 variables.

Spoorweb Spoorweb is the newer version of ISVL. It is also used for exchanging infor-
mation between parties, during the handling of an incident. It has improved relative to
ISVL in that its variables are more structured. Besides, tasks are assigned more specifi-
cally to people, and it is possible to record who has done which task. The Spoorweb data
set I used contains recordings of incidents from 2017/06/18 to 2018/12/12. In total, this
captures 28,018 incidents and 153 variables.

SAP SAP is the recordings database of Asset Management (AM). This database is
created and maintained with the purpose of creating historical data for later use, as
opposed to the real-time use of ISVL and Spoorweb. The SAP data set contains recordings
of incidents from 2006/01/01 to 2018/12/03. In total, this captures 95,761 incidents and
150 variables.
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SAPX This database did not have a clear name, but its variable labels are much like
those in SAP, as is part of its content. Therefore, I chose to name this data set SAPX. It
contains recordings of incidents from 2005/01/01 to 2018/06/21. In total, this captures
124,363 incidents and 123 variables.

2.2 Previous research on feature recovery time

ProRail has currently outsourced the research on prediction of FHT (Function Recovery
Time, figure 1.1) to the consultancy company CQM [9]. The model they created, and
which they are still improving, is used to assist the MKS (Railway Alarm Room) at
establishing an initial prognosis. The fact that CQM is still improving its model seems
to conflict with the purpose of this research. However, the improvements of their model
concern researching new features and adding them to the model. The use and shape
of the model will stay the same, meaning that it will stay a static model which is not
suitable for generating an updated prognosis, while this research focuses on being able to
update prognoses whenever new information becomes available. In the past, a few other
parties have also researched FHT prediction at ProRail. De Wit [46] and Bergsma [3]
have written their master theses on this topic, respectively in 2016 and 2018. In 2017,
Zilko [50] has written his doctoral thesis, also on the same topic.

2.2.1 Used data

Both De Wit, Zilko and Bergsma have chosen to use only one of the available data sets
with incident recordings. Bergsma uses the recordings of Spoorweb, while De Wit and
Zilko preferred to use SAP. CQM was the first to merge ISVL and SAP to expand the
set of usable features. Moreover, all of these researchers made some distinction between
failure types and created a different model per type. CQM is the only one of these parties
that is able to return a prognosis for all types of failures. De Wit only includes technical
disruptions in his research, so for example, incidents caused by obstruction are excluded.
Zilko specifically focuses on incidents concerning switch and track circuit failures, and
Bergsma stays with incidents related to switches.

Bergsma does not explain why he only focuses on switch failures. He does mention
that his model is a proof of concept, in which he explores the use of a multi-agent system
(MAS) for predicting FHT. He seems to imply that, if the MAS shows useful for predict-
ing FHT for switch failures, it might as well be useful for predicting other kinds of failures.

Both De Wit and Zilko make a distinction between technical and non-technical prob-
lems, and choose only to include technical problems in the scope of their research. Zilko
argues that incidents caused by suicide (non-technical) generally have a more or less cer-
tain disruption length of 120 minutes, which is why he has chosen not to construct a
disruption-length model on such incidents. The other non-technical incidents, like hin-
drance by animals, are excluded because there is too little available data about them.
Moreover, Zilko chooses to only create models for switch and track circuit failures. He
argues that models for other technical incidents can be constructed in a similar fashion,
by following the presented model construction procedure. De Wit decided not to include
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catenary failures (“bovenleiding”). According to him, these failures are usually repaired
at night, since they take a lot of time to repair.

2.2.2 Prediction methods

In Appendix B, visualizations are shown of the predictive models that the four previous
researchers have used. Bergsma uses a multi-agent system to predict FHT. This model is
dynamic, in the sense that extensions (e.g. switch type and weather) are added during the
process of creating a prognosis. This means that new information about an incident can
be added to the model when it comes available, to update the prognosis. The model of
Zilko is also suitable for adding information later in the process, because it is a Bayesian
Network. This model takes dependencies between variables into account, which implies
that values that are not known initially can be inferred from known values, and added
later when the real value is known.

The models of CQM, De Wit and Zilko are a bit alike: they are all based on probability
distributions, and selecting a certain part of that distribution to be the prognosis. The
models of CQM and De Wit are not as suitable for adding information as those of Bergsma
and Zilko. Both are very static and made for a one time use (the initial prognosis), other
than being updated with new information. The Decision Tree of CQM could be adjusted
to do be suitable for this, by recording the number of elements in the training set that
go down each branch and use the most popular branch if a value is missing [47]. This
solution is, however, not implemented by CQM.

2.2.3 Conclusions from previous research

It can be concluded that none of the four models fully satisfies the current needs of
ProRail, concerning FHT prediction. In the ideal situation, not only the initial prognosis
could be generated by a model, also updates of the prognosis could be made by the model
by adding newly obtained information. To do this, the model used for prognoses should
not be as static as the currently used Decision Tree. Of the other three existing models,
two already are dynamic. However, of all four models, only CQM covers all types of
incidents. Both the models of De Wit and Zilko could presumably be extended to cover
all technical incidents, but the problem remains that it will be difficult to extend them to
non-technical incidents. This is because the relevant variables for non-technical problems
are different and their parameters are unknown. Thus, the three theses are not fully
applicable for predicting FHT for all incidents. It can be concluded that a new model
should be created, which implements the dynamic form and takes all kinds of incidents
into account.
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3 Resources

3.1 Specifications

The laptop that I used to conduct this research is property of ProRail. Its specifications
are the following:

Laptop: HP EliteBook 850 G3

Processor: Intel(R) Core(TM) i5-6300U

RAM: 8GB

Edition: Windows 10 Pro

3.2 Methods

The code that I have written during the process, was either in the language Python or in
R. During the first, exploratory phase, I made use of Python Jupyter Notebooks to write
my code. In this phase, mainly the Python packages Pandas and sci-kit learn were very
useful. The first makes it possible to work with large amounts of data, and the second
contains various machine learning techniques to explore the way that different algorithms
react to the data.

During the second phase, the implementation of machine learning algorithms, I switched
to using the language R with the program RStudio. In R, there are many available pack-
ages for machine learning algorithms. I used bnlearn for implementing Bayesian Networks,
and class for the k-Nearest-Neighbors algorithm.
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4 Data selection

In this chapter, I discuss the second step of the process of supervised machine learning
by Kotsiantis et al. [22]. This step holds identification of the required data. I will discuss
both ProRail’s data on incidents, and other data sets that may be used to increase the
number of features.

4.1 Used incident data

In section 2.1.1, the data sets of ProRail that contain incident recordings were presented.
At first, we tried to merge all four data sets, to combine as much information as possi-
ble. This turned out to be very difficult, due to differences between the incidents that
are recorded in each database, what incident id they are given and what time stamp is
assigned. Besides, there is a large part of each data set that does not overlap with the
other data sets. Eventually, only SAP and SAPX could be merged. This means I had to
make a choice which data set to use for which model.

The merge of SAP and SAPX contains by far the most variables, as well as the most
relevant variables. Moreover, it is much more suitable to merge with most of the additional
data sets mentioned in section 4.2 than Spoorweb and ISVL are. The only disadvantage
of this data set is that it does not contain rolling stock failures: incidents caused by
failure of a train. As will be clarified in section 4.4, I will treat rolling stock failure apart
from other kinds of incidents anyway. Therefore, I chose to use the SAP/SAPX merge
(from now on referred to as just SAP) for all models except for the rolling stock failures.
Recordings of the latter are present in both the ISVL and Spoorweb databases. I chose
ISVL to use for rolling stock failures, because this data set is much more suitable to merge
with the data set discussed in section 4.2.1.

Underlying the decision to use SAP, and not ISVL, for all other types of incidents,
are two assumptions. The first is that SAP does contain at least as many data points
than ISVL, so we would not lose a lot of information by using SAP. I use the selection of
switch failures to check whether this is the case. To do this, I first cut off part of both
data sets, because the time span of incidents recorded in both sets is not equal. This
results in the test shown in code 4.1, from which it can be concluded that SAP contains
more than twice as many data points on switch failures than ISVL does.

>>> isvl["start_incident"].min()

2015-01-01 14:47:00

>>> sap["start_incident"].min()

2015-01-01 10:05:09

13



>>> isvl["start_incident"].max()

2017-06-24 14:59:00

>>> sap["start_incident"].max()

2017-06-24 07:56:00

>>> isvl["incident_type"].isin(["wissel"]).shape

(2159, 41)

>>> sap["incident_type"].isin(["wissel"]).shape

(5051, 62)

Code 4.1: Python code to check whether the SAP data base contains more or equally as
many data points as ISVL on switch data. The first four lines of output show that the time
span of the two data sets is made equal. The last two lines return the shapes of the two data
sets, where the first number represents the number of data points and the second number
represents the number of variables.

The second assumption is that the time stamps of the incidents that are in both
databases are more or less the same. This is important because the data points in ISVL
are of the real-time format that will eventually be used to make prognoses. The box
below resulted from testing a sample of incidents that were recorded in both SAP and
ISVL. In this comparison, the variables on the left (SAP) are similar to the variables on
their right (ISVL).

SAP
begin incident dt
dt aangemaakt
dt functieherstel

≈
≈
≈

ISVL
T voorval
T aangemaakt
T afsluiten

4.2 Other used data

Besides the general incident data sets discussed in section 2.1.1, there is a variety of other
data sets available to add extra features to the data. In this section, I present the data
sets that I merged with the incident data, together with their relevant variables. Only a
short description and the name of the variables is given. A full description can be found
in appendix C. A more detailed description of the files and the location that they can be
found is omitted, since all files except for KNMI 20181219.txt are confidential property
of ProRail.

4.2.1 Rolling stock defects

File name: DefectMaterieel.csv
This file contains records of rolling stock defects. Its variables are relevant for the rolling
stock data set. The variable Datum, the date of the incident, is used to merge the data set
with ISVL. The relevant features are rolling stock type (Mat), the driving characteristic
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(Rijk), the involved train company (Vervoerder), whether the train table point (“dien-
stregelpunt”) that the train is registered at is also a shunting point (RangeerDrp), and
what the activity of the train was at this timetable point (Act).

4.2.2 Animals

File name: dieren.csv
This file contains incident recordings of incidents that involve animals. This can be
a collision with an animal that was standing on or crossing the tracks, or hindrance
by an animal being too close to the tracks to let the train drive at its usual speed.
The information in this data set could be relevant for the collision/hindrance model.
The variable inc prorail incident id, the incident id number, is used to merge this
data set with SAP. Currently, none of its features are actually implemented. Features
that may be relevant are whether the animal was already dead, if it’s hit or almost hit
(Melding), the animal species (Soort) and the animal category this species belongs to
(Categorie bepaald).

4.2.3 Contract type

File name: dim am locatie.csv
This file contains a couple of location variables that also appear in the SAP data, of which
I used aml contractgebied nr, the contract area, to merge the two data sets. The reason
to use this data set are two variables. The first is aml contractgebied contractsoort,
which I renamed to contract soort for practical purposes. This variable represents the
contract type, which is either PGO or OPC. This variable can be used for all technical
incident groups. The second is aml onderhoudsregio naam, which is a location variable
that divides the Netherlands in four regions and represents each one as a value.

4.2.4 Technical section information

File name: equipments post21.csv
This file contains information about sections, the parts that the Dutch railway network
is divided in, and is therefore useful for the section TOBS data set. The main relevant
variables of this data set are the date of placement (Plaatsingsdatum) and the planned
date of replacement (Theoretisch vervangingsjaar) of each section.

4.2.5 TOBS data

File name: train 201805.csv
This file contains analysis data of all sections, to possibly add to the section TOBS model.
The two variables sectie and datum, respectively representing the section number and
the date, can be used to merge with the incident data. The relevant variables it contains
are the number of TOBSs that day (n tobs), the number of TOBSs of today and yesterday
combined (n tobs 2d), the number of TOBSs today of less and of more than 1 minute
(technisch falen 0s) and (technisch falen 60s), the difference between the number
of TOBSs of yesterday and today (n tobs delta), and the difference between the number
of TOBSs of today and the day before yesterday (n tobs 2d delta). These features were
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not implemented yet, because their use is very complex. This is because the variables are
not very informative on their own, but they could make it possible to let the algorithm use
information from other data points. TOBS incidents namely tend to repeat themselves
short after a first incident has happened.

4.2.6 Weather

File name: KNMI 20181219.txt
This file is obtained from the KNMI, the Dutch institute for meteorology [21]. This in-
stitute provides daily data covering many aspects of the weather. Some aspects of the
weather may influence FHT, for multiple types of incidents. A few weather variables that
are potentially relevant (all of them covering one day) are the maximum temperature
(temp max), the amount of precipitation measured in millimeters (neersl mm), the max-
imum distance of sight (zicht max), the wind speed (wind speed), the direction of the
wind in degrees (wind dir), and the duration of sunshine (sun dur).

4.3 Irrelevant data

When reported, all incidents get a priority code, which can be either 1, 2, 4, 5, 8 or 9.
These codes are grouped in categories UO (’Urgente Onregelmatigheid”: urgent irregu-
larity), DOT (“Dringende Onregelmatigheid met Tijdsafspraak”: urgent irregularity with
time appointment) and NUO (”Niet-Urgente Onregelmatigheid”: non-urgent irregularity)
[46].

UO This category contains priority 1 and 2. Priority code 1 almost never occurs, and is
assigned when an incident is a major disaster and needs to be solved as soon as possible.
Priority 2 is the most often occurring code. It means that the incident is classified as
urgent, and needs to be repaired immediately instead of postponing the recovery to the
night.

DOT This category contains priority 5. These are urgent incidents that need to be
recovered, but it does not have to happen immediately. Depending on the nature of the
incident and the current time, the contractor can start recovery when rush hour is over,
or recovery is postponed to nighttime. The latter often means that time stamps of the
recovery are not accurately recorded, because as long as recovery happens between 2 and
6 o’clock, it does not affect any trains.

NUO This category contains priority 4 and 9. Priority 4 is similar to priority 5, only
it always implies postponing recovery to nighttime. Priority 9 is an administrative no-
tification, which can be anything worth notifying. Most of the time, these are not even
communicated to the contractor.

Priority 8 is a preventive notification. It means that the contractor should take a
look at the concerned part at night, to verify that it works correctly. Incidents classified
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as priority 1 or 2 are the only incidents that an accurate FHT prognosis is relevant for.
Besides, these incidents are the only ones that are convenient to train a model on, since
all other classified incidents have a higher risk of not being recorded accurately, because
of being postponed to the night. For this reason, I chose to discard all incidents with
a priority code (prioriteit code) that is not 1 or 2 from SAP. ISVL does not have a
documentation of priority codes, so I will leave this data set as it is.

4.4 Partitioning data per incident type

The next chapter will be about selecting features from the data set, to use for training
and testing our model. In section 2.2, we saw that all previous studies on the topic of pre-
dicting FHT for railway incidents have split up the data by incident type. This is a very
reasonable choice, because for example, factors influencing the FHT of a collision with a
person are completely different from those influencing the FHT of a switch that is not con-
trollable. Therefore, I also decided to partition the data in such a way that it is possible
to make a selection of relevant features, specifically focused on a certain incident category.

Apart from incident type, it also seems reasonable to split up the data by incident
cause. The resulting groups would also require different variables, which would presum-
ably contribute to a better model. However, when the first prognosis of the FHT is made
for a certain incident, the exact cause is usually not yet known. The incident type usually
is. For training a model, this difference is not of any influence, but for the eventual imple-
mentation, it will be. For this reason, I chose to categorize by incident type. The resulting
categories are shown in figure 4.1, including the number of data points per group.

Figure 4.1: Number of data points per incident type
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5 Data pre-processing

Now the data sets have been chosen, a little preparation should be done. This corre-
sponding to the third step in the process of supervised learning of Kotsiantis et al. [22],
discussed in chapter 1. The main reason for pre-processing the data is that models tend
to perform very badly when working with raw data. This is because data usually contains
a lot of missing values, or because the model prefers to work with other classes of data,
so the variables have to be transformed. In this chapter, I will make the data as easy to
work with as possible for our future models.

5.1 Missing values

5.1.1 Missing target values

The first thing we need to be present in the data is the function recovery time. After all,
if we want to apply supervised learning, the target values should be available [1]. The
variables on the left in the box below are present in SAP. On the right is their explanation.

timestamps
dt aangemaakt
aanntpl ddt
dt functieherstel

durations
reactie duur
arbeid
functiehersteld duur

date and time incident reported
date and time contractor arrives
date and time function recovery

latency time
repair time
function recovery time

Of these variables, functiehersteld duur, the FHT, is our main target variable. The
variables reactie duur and arbeid, latency time and repair time, are optional target
variables. Knowing their values may contribute to making our prediction more accurate
and specific. In SAP all of these six variables are partly filled with values, and partly
empty. However, if a certain data point contains some of these values but not all, the
missing values can often be calculated from the known ones, which is what I did for as
many data points as possible. After that, there were a still lot of cases left where the FHT
was present, but the latency time and repair time were not. Considering the exploratory
nature of this research, I prefer not throwing away lots of data over the exactness of the
repair and latency time, as long as the FHT is correct. I chose to fill in these cases using
the median ratio of the two, and taking these parts of the FHT as latency and repair
time. The ratio between the two appears to be 1.42, meaning that the latency time is
usually 1.42 times longer than the repair time.
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5.1.2 Few occurrences target values

Apart from values that are not recorded at all, it can also be tricky to work with values
that almost never occur. When a model is trained on few examples of certain cases, it
can become very biased by the few data points it has seen, and it will even be hard to
tell whether a data point is an outlier1. Figure 5.1 shows how many data points have
a certain FHT. This graph contains only the data of SAP, but the graph resulting from
ISVL looks similar. The FHTs are divided in bins of 0.5 hours. From the figure can be
concluded that there is quite some data on incidents with an FHT of less than about 6
hours, but incidents that take longer than that are quite rare. Note that there is a peak
at 24 hours. This is caused by putting all incidents with an FHT that is 24 hours or more
in the 24 hour bin, so the dot represents the total number of data points with an FHT of
24 hours or more.

Figure 5.1: Frequencies of FHT (SAP)

Besides the fact that there are only few data points with an FHT of more than 6
hours, the duration of incidents with a large FHT is likely to be influenced by other
factors than recorded in the data. This can be, for example, a decision to wait with
the recovery process until nighttime, or a realization that the needed materials are not
present, so extra time is needed to get those. Taking both the scarcity and the presumed
abnormality of the incidents into account, I discarded the data points with an incident
duration longer than 6 hours. Together with discarding data where the FHT is 0 or
missing, this leaves 58,937 data points in SAP and 40,045 in ISVL.

1An outlier is an observation that deviates so much from other observations as to arouse suspicions
that it was generated by a different mechanism [13].
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5.1.3 Other missing values

When a variable contains missing values, there are two ways to handle this: deleting the
variable or using imputation to fill in the missing values. Imputation techniques are based
on the idea that any subject in a study sample can be replaced by a new randomly chosen
subject from the same source population. Imputation of missing data on a variable, is
replacing that missing value by a value that is drawn from an estimate of the distribution
of this variable [11].

Features with many missing values were directly deleted in the beginning of the pro-
cess. This is because when many values are missing, it is very likely that a lot of them
will be filled in wrongly when using imputation, since there are relatively few known val-
ues to base their imputation on. There are methods that are able to work with missing
values, like Bayesian Networks, but they also need to see a lot of examples from known
values before they can predict what a value will be. Therefore, features with relatively
few known values were deleted from the data set immediately.

For variables that contained only a few missing values, I did use imputation. Missing
values for a variable xi are missing completely at random if the probability of missing a
value for xi is unrelated to the values of xi itself or to any other variables in the data set.
If data are not missing at random, but as a function of some other variable, a complete
treatment of missing data would have to include a model that accounts for missing data
[29]. Unfortunately, for most of our variables, it is hard to tell whether there is a consis-
tent reason for data not being recorded, or if values are randomly missing.

For this research, I assumed that all missing values are missing at random, because
to me this seemed like a better solution than possibly assuming wrong dependencies as a
basis for the rest of the process. Based on this assumption, I used three different ways of
imputation. If a variable already contained a frequently appearing value like ‘none’ ore
‘other’, I chose to assign the missing values to this category too. For binary values, where
1 represents the presence of some attribute and 0 represents the absence, I did something
similar by filling the missing values with 0s. The remaining variables were filled with
their median or mode, depending on whether the variable is numerical or categorical.

5.2 Variable discretization

Besides the many originally discrete variables, the data set contains a few continuous
variables. Models usually prefer to work with either discrete or continuous variables, not
with both. The few variables that are continuous, and relevant enough to possibly use in
the model, are weather variables. Since I want to have the possibility of choosing a model
that prefers to work with discrete variables, I discretized these variables. The option
remains to use the continuous versions, when deciding to implement a model that prefers
numerical variables. All weather variables presented in section 4.2.6 have a certain, more
or less strict, threshold of severeness. I chose to use these thresholds as a boundary
to make them binary, except for the wind direction, which I discretized to contain four
values:
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• warm: 1 if temp max > 25, 0 otherwise

• veel neerslag: 1 if neersl mm > 8, 0 otherwise

• weinig zicht: 1 if zicht max < 70, 0 otherwise

• harde wind: 1 if wind speed > 20, 0 otherwise

• wind compass: 0/90/180/270, for all 4 compass points in wind dir

The preferred class of our target variable FHT depends on the model. Since the op-
timal model for our problem is not completely clear, I will now discuss how to discretize
FHT, which is originally a continuous variable containing time in minutes. If a final
model has been chosen, the decision can be made to use either the continuous or discrete
version of the FHT variable.

It should be noted that discretization of continuous data can be problematic because
information is lost, power is reduced and relationships may be obscured or changed [28].
This means that a considerate choice should be made where to place the boundaries of
each category. According to Altman [2], there is no generally accepted method for doing
this. Using groups of equal size is a reasonable approach, which means either an equal
distance between the boundaries of each group, or an equal number of data points in each
group. These strategies are not dependent on examination of the data. Sigurdsson et al.
prefer another approach: ”For optimal categorization of continuous covariates, univariate
comparison was performed with chi-square values, with various cutoff levels” [41]. They
compare the prognostic value of different covariates and adopted a p-value of 0.15 as the
limit for the inclusion of a covariate. This led to a critical response of Altman. He states
that it should not be the objective of the discretization to maximize the fit of the sample
data, but that the whole point of analyzing a sample of data is to make inferences about
all current and future data points. Thus, the method of analysis will overestimate the
relevance of certain variables and invalidate the p-values obtained, which raises the risk
of detecting a significant effect of a variable that is in reality not prognostic [2].

I was convinced by the argument of Altman, that although some way of discretizing
FHT may result in a better fit on the training data, this does not mean that this it is the
best way to represent its behavior in the real world. For this reason, I decided to stay
with the proposal of Altman for discretization, using groups of equal size. Now, a choice
still has to be made whether to make groups of equal space between group boundaries,
or groups of an equal number of data points. I chose to do this based on the prediction
errors produced by both methods. Although this seems to conflict with the argument of
Altman, I would argue that his argument does not hold for this choice, since both options
are very general divisions, that are not based on the meaning of FHT or its relation to
other variables.

In table 5.1, a comparison is made between the root mean square error (RMSE) of FHT
predictions on the section TOBS (left) and collision/hindrance (right) data sets. These
predictions were made using a Naive Bayes Classifier. As explained in section 7.1.6, this
method is very simple, assumes independence of all features, and is remarkably successful
in practice. I chose to use this method for the test because of its simplicity, which reduces
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the chance of some unknown influence interfering with the test. In both data sets, the
FHT was discretized, but in different ways. The data sets used for the top part of the
table contain an FHT that was discretized by creating bins with an equal number of
minutes. The FHTs of the bottom part consists of bins with an equal number of data
points. The results in the table suggest that dividing FHT in equally sized bins with
respect to the time span results in a smaller error than putting an equal number of data
points in each bin. Therefore, I chose to discretize FHT by making groups with an equal
time span.

equal number of minutes in each group
# groups section TOBS collision/hindrance

6 96.67648 67.39478
12 95.0261 71.08472
18 94.71225 74.82672
24 94.07444 57.43896

equal number of data points in each group
# groups section TOBS collision/hindrance

6 133.933 153.4553
12 116.9134 129.6132
18 108.9696 98.61567
24 110.8834 106.4399

Table 5.1: Root mean square error between actual FHT and predicted FHT, predicted
using a Naive Bayes Classifier. This overview compares the scores with the use of different
FHT bins, either containing an equal number of minutes or containing an equal number of
data points.

5.3 Overfitting

The principle of parsimony calls for using models and procedures that contain all that is
necessary for the modeling but nothing more. Overfitting is the use of models or proce-
dures that violate parsimony, that is, that include more terms than are necessary or use
more complicated approaches than necessary. Adding predictors to a model that perform
no useful function not only wastes resources, it can also make predictions worse, because
the coefficients fitted to them add random variation to the subsequent predictions [14].

Overfitting usually happens when the data that a model is trained on has some prop-
erty that does not exist ‘in the real world’. In other words, the model is fitted too
specifically on the training data and therefore not extendable to the data points it has to
classify. The out-of-sample error Eout measures how well a trained model can be gener-
alized to data that it has not seen before. Intuitively, if we want to estimate the value of
Eout using a sample of data points, these points must be ‘fresh’ test points that have not
been used for training [1]. Consequently, it is necessary to divide the data in two parts:
a training set and a test set. According to Cassio de Campos, a professor at Utrecht Uni-
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versity, it is important to divide the data in such a way that the target variable is equally
distributed over the two sets. This means that the density of our FHT variable should be
equal in both sets. This is achievable by using the createDataPartition function from
the caret package in R. I chose to take 90% of the data as training data, and save 10% for
testing the model. The code for this division is shown in code 5.1.

target_var = "fht"

train_ind <- createDataPartition(data[,target_var], p = .9)

data_train <- data[train_ind,]

data_test <- data[-train_ind,]

x_cols = colnames(data)[colnames(data) != target_var]

y_cols = c(target_var)

xTrain = data_train[,x_cols]

yTrain = data_train[,y_cols]

xTest = data_test[,x_cols]

yTest = data_test[,y_cols]

Code 5.1: Dividing the data in a training set and a test set, with an equal distribution of
FHT in both sets, using the caret package in R [23].
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6 Feature selection

The pre-processing of data, step three in the supervised learning process of Kotsiantis
et al. [22], is not only about formatting the data in a way that a model will be able to
work with it. It is also important to select the right features to give to the model as
input. I will do this per incident type, as discussed in section 4.4. The available data
sets contain a large number of features, many of which are not useful for our predictive
model at all. Therefore, it is necessary to make a selection of features that are relevant
for predicting incident duration.

6.1 Purpose of feature selection

Feature selection is about selecting a subset of features that are in some way relevant
to the prediction target. Making this selection reduces the dimensionality of the feature
space [15], and sometimes improves prediction accuracy [20]. Mainly reducing dimen-
sionality is of importance for our data set, because we have a large number of possible
features compared to a relatively small number of data points. This comes with the risk
of a model complexity that is much too high.

According to Chandrashekar and Sahin, an important part of removing redundant
features is eliminating dependent variables: those that are correlated with other variables
[7]. However, this may be the case for e.g. linear models, because adding an extra dimen-
sion to the feature space that is almost the same as another dimension most likely does
not contribute to the performance of the model. To Bayesian Networks, on the contrary,
correlations can be very useful, since these models often deal with missing information.
The correlations can then be used to compensate for the absence of information. In my
opinion, this difference makes it difficult to bluntly say that deleting variables with a
strong correlation contributes to the model’s performance. Therefore, I will base the se-
lection of features mainly on testing to what extent a feature correlates with the target
variable FHT, and thus likely contributes to its accurate prediction.

6.2 Features per incident type

In this section, I will discuss the relevant features for three incident types of the ones
distinguished in figure 4.1: rolling stock failures, section TOBS and collision/hindrance
incidents. These groups are visualized in figure 4.1. The reason that I have not applied
feature selection to the data for all incident types is that this was not achievable within
the time span of this project. I chose to focus on these three types specifically because I
think they best represent all types of incidents. Therefore, both feature selection and the
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model building that follows in chapter 7 will be easily extendable to all data points, to
make it possible to predict FHT for all kinds of incidents.

For each type, I will go over the most important steps that I took to select relevant
features. These steps mainly consist of considering features used in previous research
and adding new features that I found to contribute to accurately predicting FHT. To do
this, I have alternately used common sense, statistical tests and testing of arc strength by
the bnlearn package in R. At the end of the section for each type, the chosen features are
summed up in a box, together with their variable name in the data set. In appendix C, all
features included in those boxes are explained. Besides, in this section I will particularly
often refer to Bergsma [3], CQM [9], De Wit [46] and Zilko [50]. This is why I chose to
leave annotation for those papers out during this section, for the purpose of readability.

6.2.1 Rolling stock failure

An incident is classified as a rolling stock failure if the incident is caused by failure of a
train, because some part of the train is broken. CQM is the only one of the four previous
studies that built a model to predict the FHT of rolling stock failures. The features they
use are whether the incident takes place at the HSL/Betuweroute/other, whether it is
in the Randstad, the driving characteristic and rolling stock type of the failed
train, if it is a freight train, and if it is day or night. Other features that CQM has
considered, but which they did not use, are the type of section and time of day.

Whether the incident takes place at the HSL or Betuweroute can be extracted from
the variable Melder, by applying a regular expression. The result is saved in the vari-
able HSL betuwe. Whether the incident takes place in the Randstad is also recorded in
Melder in ISVL, but of the selected data points that represent rolling stock failures, only
one data point with the value Randstad remains. Therefore I will not use this feature in
the model. The driving characteristic and rolling stock type of the failed train
are represented by the variables Rijk and Mat. Because the Mat is quite chaotic, holding
information for all train units separately in each cell, I filtered its values to contain just
one value for each data point and renamed the variable to mat type. Whether the specific
failed train is a freight train is represented in the data as a value GO for ‘goederentrein’
in the variable Rijk. I will place this in a separate, binary variable goederentrein. If it
is day or night can be derived from the variable tijd, which represents the hour that
the incident is reported. The value of this variable night will be 1 if the time is between
0AM and 6AM, and 0 otherwise.

As a feature selection technique, I created a Bayesian Network for rolling stock inci-
dents using hill climbing, using the bnlearn package in R. When I calculated arc strengths,
the following features having strong arcs to either FHT or other important variables,
which led me to selecting them as features. The first is the TIS scenario, which is a
number that is assigned to an incident to indicate its severity. This feature is recorded in
ISVL as Scenario, but I renamed it to tis for clarity. Next, the variable vsm aangepast
is added to the model. Vsm is the abbreviation for ‘versperringsmaatregel’, which stands
for the adjustment of the train schedule due to the rail blockage at the incident loca-
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tion. This variable indicates whether the vsm is adjusted, which in turn presumably
indicates a complex incident scenario. The train company that is delivering the ride
is also included as a feature, named Vervoerder. RangeerDrp is a binary variable that
contains whether the involved service control point also acts as a shunting point. Last,
the train’s activity at the specified location is added, containing the values passing (D),
arriving (A) and departing (V), and represented as the variable Act.

feature variable
HSL/Betuwe HSL betuwe
driving characteristic Rijk
rolling stock type mat type
freight train goederentrein
day/night night
TIS tis
train table adjusted vsm aangepast
train company Vervoerder
shunting point RangeerDrp
activity Act

6.2.2 Section TOBS

TOBS stands for “Ten Onrechte Bezet Spoor”, which means ‘falsely occupied track’. The
network of rail tracks is divided in sections. Between the edges of two sections, an insulat-
ing weld is placed to separate them. When a train drives over this weld, it short circuits an
electricity loop, which is registered as an occupation of the concerning track. Sometimes,
a track occupation is registered, despite there being no train present, which is called a
‘section failure’ or ‘section TOBS’. To predict the FHT of a TOBS, CQM uses the fea-
tures whether the failure is at the HSL/Betuweroute/other, whether it is day or night,
whether it takes place in the Randstad and the type of section (vrijebaan/emplace-
ment). Zilko uses the features contract type, distance to the nearest level crossing,
distance to the nearest working station, whether it is ’warm’ outside, whether the inci-
dent takes place during contractual working hours, the presence of an overlapping incident
and whether it is rush hour to predict the FHT of a TOBS. De Wit implements the fea-
tures whether the incident is caused by a grinding train, which VL−post belongs to
the concerned area, the contract type and whether it is rush hour. When I went to
his office to talk about his research, he also mentioned that it is very important whether
the incident happens at/near a station or far from it.

Both whether the incident is during contractual working hours, whether it is dur-
ing day or night and whether it is during rush hour can be derived from the feature
time and placed in a binary variable. The first, named contr working hours, will be 1 if
the reporting time of the incident is between 7AM and 4PM, and 0 otherwise. The second,
named night, will be 1 if the time stamp is between 0AM and 6AM, and 0 otherwise. The
latter, named rush hour, is 1 if the time is between 6:30AM and 9AM or between 4PM
and 6:30PM. Whether the failure occurred in the Randstad is represented in SAP as a
value in aml contractgebied naam. I recorded this as a variable Randstad, with value 1
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when the incident occurs in the Randstad, and 0 otherwise. The feature contract type
is directly represented by the variable contract soort. Whether the weather is warm can
be derived from the temp max, as already mentioned in section 5.2. According to Zilko,
the optimal threshold for this feature is 25°C, meaning that if it is warmer than that, the
section systems have a much bigger chance to fail, which can affect the latency time due
to an increase of overlapping incidents of the same sort. I created, like Zilko, a binary
variable warm, which is 1 when the maximum temperature of that day is higher than 25°C,
and 0 otherwise. The feature that contains whether there is an overlapping incident
occurring is represented by the binary variable overlapping inc. Its value is determined
by checking whether there is another incident in the data set that happened in the same
contract area (contractgeb), within the last four hours before the current incident. All
of the features in this paragraph can be implemented, but the question remains whether
this is useful. Therefore, I applied a one-way ANOVA test using the aov function in R,
to test whether these variables correlate with FHT. From these tests, I concluded that
the variables contr working hours, rush hour, Randstad, contract soort, warm and
overlapping inc all correlate significantly with either latency time, repair time or both.
For the variable night, this is not the case, but this variable does significantly correlate
with oorzaak groep and overlapping inc, which can be of added value when imple-
menting a Bayesian Network.

I discarded the features grinding train and HSL/Betuweroute/other. Both were
binary variables, respectively representing whether a grinding train was the incident
cause and whether the incident occurred at the HSL, Betuweroute or somewhere else.
However, the former contained two occurrences, the latter contained only others, so
both features are not used in this model. Besides, the features type of section,
nearest level crossing, nearest working station and nearest station are not
added to the model, simply because they are very hard to find and to add to the data.
The feature VL−post is also not used, because its variable vl post is categorical with
many values. Models usually prefer either continuous variables or categorical variables
with few values, especially when the number of data points is low.

Besides considering the features that were implemented by previous researchers, I
added a few other features to the model, which I found to also correlate with FHT.
The theoretical year of replacement contains information about the maintenance
of the considered part of track. To convert this feature to a usable variable, I di-
vided the dates and years in three groups. This resulted in the categorical variable
Theoretisch vervangingsjaar. Next, a location variable standplaats was added,
containing a contractor-related location, with five possible values. I also added which
contractor is responsible for recovery of the incident, represented by the variable aannemer.
Furthermore, a feature is added which indicates whether the train table is expected to be
influenced by the incident. This is recorded in the variable tao ind, in which tao stands
for ‘trein aantastende onregelmatigheid’, or ‘train affecting irregularity’. The variable
ozi oorzaak code contains codes that stand for a specific cause of the incident. These
codes can be grouped to make the variable more compact, resulting in a categorical vari-
able oorzaak groep with nine possible values.
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Last, I tried adding three weather variables: wind direction, the amount of rainfall
and the distance of view, which can be limited by mist or heavy rain. By testing cor-
relations between those features and the other implemented variables, I concluded none
of them correlate (almost) significantly with FHT. The latter two also barely have cor-
relations with other variables. The direction of the wind, represented by the categorical
variable wind compass does significantly correlate with warm and Randstad. Because
such correlations may be helpful for the construction of Bayesian Networks, I only added
wind compass to the model.

feature variable
day/night night
contractual working hours contr working hours
Randstad Randstad
contract type contract soort
warm warm
overlapping incidents overlapping inc
rush hour rush hour
year of replacement Theoretisch vervangingsjaar
location of base standplaats
contractor aannemer
tao indicator tao ind
wind direction wind compass
cause oorzaak groep

6.2.3 Collision / hindrance

Sometimes, nothing is broken and nothing has to be repaired, but an incident is reported
because a train is (almost) involved in an accident. This can, for example, be because
there is hindrance of a sheep standing on the tracks, because of a suicide attempt, or be-
cause the train has (almost) collided with a vehicle that was driving on a crossing. CQM
and De Wit discuss this kind of incident. CQM uses the features whether the incident
takes place in the Randstad, if it takes place during working hours (7AM to 6PM), if
the involved train is a Sprinter and if it is day or night. De Wit uses the features
contract type and whether there have been recent maintenance activities.

The feature Randstad is similar to the variable aml onderhoudsregio naam. I changed
the variable to one named Randstad, being 1 when the value is Randstad Noord or
Randstad Zuid, and 0 otherwise. Both the features whether the incident is during
working hours, and whether it is during day or night can be abstracted from the
feature time. Both variables will be binary. The former, named working hours, will
be 1 if the reporting time of the incident is between 7AM and 6PM, and 0 otherwise.
The latter, named night, will be 1 if the time stamp is between 0AM and 6AM, and 0
otherwise. The feature whether the involved train is a Sprinter is seldomly recorded.
Because I think using this feature comes with a high risk of using wrongly imputed data,
I will leave this feature out. The feature contract type is recorded in the variable
contract soort, which can immediately be included in the data set. Whether there has
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been recent maintenance activities is, at the moment, hard to include in the data set,
because the processes and data sets related to incidents and those related to maintenance
are very different. It would take a lot of time to merge the information, and will probably
result in the loss of many data points, which is very unfortunate for the already small set
of 982 data points on collision/hindrance incidents.

As a feature selection technique, I created a Bayesian Network for collision/hindrance
incidents using hill climbing, using the bnlearn package in R. When I calculated the arc
strengths, this resulted in no arcs from or to contract soort other nodes (including
FHT) with a cogent strength. This does make a lot of sense, because for most incidents
in this category, no repairing work is needed. Although the type of contract does influence
the duration of a repair, this is not the case for a non-technical problem like hindrance
or a collision, since they require a completely different type of work.

Apart from using some features mentioned in previous research, I added some other
features to this model. First of all, it is both relevant and very easy to know soon af-
ter the incident has happened, what type of thing the train has collided with or
is hampered by. I divided this counterpart in four categories: animals (dier), per-
sons (persoon), vehicles (wegvoertuig) and objects (object). I also added an ‘other’
category (overig) for all data points that can not be placed into one of those cate-
gories. Next, I thought it would be important to make a distinction based on the
nature of the incident, between a collision and hindrance. The value for this fea-
ture is very easy to fill in during an actual incident, and for the training set it can be
abstracted from the cause codes (ozi oorzaak code). I called this variable type hinder.

Last, the location variable standplaats and the hindrance indicator tao ind are
added. The former indicates where the repair team has to come from when the incident
takes place during working hours. The abbreviation TAO stands for “Trein Aantastende
Onregelmatigheid”, which means ‘train affecting irregularity’. Thus, the latter variable
indicates whether the train table is influenced by the incident. An estimate of this variable
can also be an indication for the repair time.

feature variable
Randstad Randstad
working hours working hours
day/night night
thing train collided with counterpart
nature of the incident type hinder
location of base standplaats
train table affected tao ind
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7 Model selection

The fifth step of the supervised machine learning process of Kotsiantis et al., discussed
in chapter 1, is algorithm selection [22]. There exists a large variety of supervised learn-
ing algorithms, that all have their specific strengths and weaknesses. Because we will
use supervised learning, I will only discuss supervised learning algorithms in this chapter.
In the process of selecting a model to predict FHT, we should take a look at the data first.

Something very important to notice about the data, is that the historical data that we
will train our model on may be complete, with no missing values after the pre-processing,
but the real data that will be used in practice for predicting FHT will contain a lot of
missing values. This is due to the absence of (diagnostic) information about the incident
when the first prognosis is made. Thus, we have to choose a model that is able to make
predictions for data points that contain missing values. The second important property
of the data is the scale of its variables. As can be seen in appendix C, all features are
categorical (either nominal, dichotomous or ordinal). The scale of the target variable,
FHT, can be chosen dependent on our preferred output and predicting method. It could
be kept a ratio variable, as the duration in minutes originally is of ratio scale. The vari-
able can also be discretized in various ways, as explained in chapter 5.

Apart from the properties of our data, we also must take into account the way that
the model will be used. Maybe, in the very far future, a model will independently be able
to predict FHT, and decide what approach to handle the incident is best, based on this
prediction. However, at least in the near future, algorithms will only act as assistants,
intended to give humans more insight in the situation, to help them making decisions.
This means that a property of a good algorithm should be its interpretability. After
all, if a model outputs only a single number, e.g. predicted minutes FHT, the human
can barely do more than choosing to agree or to disagree with the prediction. On the
contrary, when this human has any idea what the prediction is based on, he or she
can decide what aspects might have influenced the decision. The interpretability of the
model could contribute to a better understanding of the situation and its influence on
FHT, which in turn might improve the humans decision making. In the next section,
several algorithms are discussed, paying attention to the handling of missing values, the
classes of our variables and the interpretability of the models.

7.1 Supervised learning techniques

There exists a large variety of supervised learning techniques, some of which are exten-
sions of others. I want to take enough, but not too many techniques into consideration.
Therefore, I chose to use four books about Machine Learning as a starting point, and
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to elaborate on the main techniques that are discussed in these books. These books
are “Learning from data” by Abu-Moustafa et al. [1], “Pattern recognition and machine
learning” by Bishop [4], “The elements of statistical learning” by Hastie et al. [12], and
“Data mining” by Witten et al. [47].

7.1.1 Linear models

When all variables, both the target variable and the features, are numeric, Linear Re-
gression (LR) is a natural technique to consider. The idea is to express the value of the
target variable as a linear combination of the attributes, with predetermined weights [47].
LR is based on minimizing the squared error between the predicted value h(x) and the
real value y of the target variable. Here x is a vector representing a data point, with
values (x0, . . . , xk) representing all its feature variables. h(x) takes the form of a linear
combination of the components of x, that is,

h(x) =

d∑
i=0

wixi = wTx,

where x0 = 1, and x ∈ {1} × Rd, and w ∈ Rd+1, where d is the dimensionality of the
input space [1].

A similar model to Linear Regression, is Linear Classification (LC), where h(x) takes
the form

h(x) = sign(wTx).

Figure 7.1 shows an example of a two-dimensional linear model, where the black line
represents h(x) = wTx from Linear Regression [12]. This line can be directly used to
predict a numeric value, or complemented by the sign function to predict a binary class
value. In the example of figure 7.1, these classes are orange and blue, either assigned to
one side of the h(x)-line.

Figure 7.1: Example of a two-dimensional linear model, with classes orange and blue.
Both axes represent a feature [12].
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A third variation of the linear model is Logistic Regression (LogR), which is something
between LC and LR, and can be applied when the target variable can not be approximated
accurately using a linear function. The output can be interpreted as a probability for a
binary event. The difference from Linear Classification is that in Logistic Regression,
the chosen class is allowed to be uncertain, with intermediate values between 0 and 1
reflecting this uncertainty. Instead of approximating the 0 and 1 values directly, LogR
replaces the original target h(x) by log(h(x)) and smoothly restricts the output to the
probability range [0,1]. Here, h(x) takes the form

h(x) = θ(wTx),

where θ is the so-called logistic function θ(s) = es

1+es whose output is between 0 and 1 [1].
An example of LogR is shown in figure 7.2.

Figure 7.2: A visual comparison of the outputs given by Linear Regression. Linear Clas-
sification and Logistic Regression. Here tanh is used for LogR instead of θ(s), which moves
the boundaries to −1 and 1 instead of 0 and 1. However, the relative shapes of the three
outputs stay the same. The output of LR (green) is a real value that is not bounded. LogR
(blue) is bounded like in LC (red), but also outputs real values [1].

Both LR and LC can only effectively work with numerical values, otherwise wTx can
not be computed. There is, however, done research on the topic of discrete linear classi-
fication, but finding a discrete linear function that minimizes the cumulative hinge loss1

of a data sample is NP-hard [8]. For LogR, however, it does not matter whether the used
variables are continuous or discrete.

Linear models are not able to directly deal with missing values. This can be illustrated
by the visualized model in figure 7.1. In this two-dimensional space, both axes represent
a feature. In case we want to predict the class for a new point, we have to know the value
of both features, otherwise it is not possible to position this data point in the model space.

7.1.2 Support Vector Machines

In figure 7.3, two classification problems are shown. Intuitively, a large margin between
the decision boundary and the closest data points contributes to the performance of a

1A loss function V (w, y) represents the price we pay by predicting h(x) in place of y. Examples of
loss functions are the square loss V (w, y) = (w − y)2 and the hinge loss V (w, y) = max{1− xy, 0} [36].
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linear classifier. This is because then, the classifier will still classify a data point correct
when new data points are a little bit shifted with respect to the training data, or if the
values of the training data contain some noise [37]. In Support Vector Machines, the
decision boundary is chosen to be the one for which the margin is maximized [4]. The
data points closest to the margin are called support vectors. There is always at least
one support vector for each class, and often there are more. The set of support vectors
uniquely defines the maximum margin hyperplane for the learning problem; all other
training instances can be deleted without changing the position and orientation of the
hyperplane [47].

Support vector machines can also be used for classification problems where the data
is not linearly separable. This can be done either by transforming the feature space using
a kernel (discussed later), or by allowing data points in the margin to a certain extent,
parameterized by ξ [37]. This case is shown in the right panel of figure 7.3.

Figure 7.3: Support vector classifiers. The left panel shows the case where the two classes
can be linearly separated, where the solid line represents the decision boundary, and the
dotted lines bound the maximal margin of width 2M = 2/‖β‖. The right panel shows the
non-separable case. The points labeled ξ∗j are on the wrong side of their margin by an
amount ξ∗j = Mξj ; points on the correct side have ξ∗j = 0. The margin is maximized subject
to a total budget ξi ≤ constant. Hence

∑
ξ∗j is the total distance of points on the wrong

side of their margin. [12].
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Finding the optimal separating hyperplane is an optimization problem. For the case
where the data is linearly separable, this problem is defined as [37]:

minimize
b,w

1

2
wTw

subject to yn(wTxn + b) ≥ 1 for n = 1, . . . , N

where b represents the bias, which was denoted as w0 for the linear models. For the
case where the data is not linearly separable, like in the right panel of figure 7.3, the
optimization problem is defined as:

minimize
b,w,ξ

1

2
wTw + C

N∑
n=1

ξn

subject to yn(wTxn + b) ≥ 1− ξn
ξn ≥ 0 for n = 1, . . . , N

where ξn is the ‘soft’ error on (xn, yn), and C is a regularization parameter. If C is small,
the margin has to be big, even at the expense of the in-sample error. If C is big, the
in-sample error is minimized despite of creating a small margin [37]. Unfortunately, this
parameter must be chosen by the user, and the best setting can only be determined by
experimentation [47].

Another way to use SVMs to classify non-linearly separable data, is by transforming
the feature space, using a kernel function. Kernel functions represent a dot product in the
feature space created by Φ, which is a function that maps an instance into a (potentially
high-dimensional) feature space [47]. In fact, we do not have to specify the transformation
h(x) at all, but require only knowledge of the kernel function K(x, x′) = 〈h(x), h(x′)〉 that
computes dot products in the transformed space [12].

SVMs can also be extended to multi-class problems, although essentially by solving
many two-class problems. A classifier is built for each pair of classes, and the final classifier
is the one that dominates the most [12]. They can also be developed for prediction of
numeric variables, despite the fact that the maximum margin hyperplane only applies
to classification [47]. Support Vector Machines are only able to work with numerical
features. There are ways to work with discrete variables, but only by transforming them
in some way to numerical variables, otherwise it will not be possible to compute wTxn.

7.1.3 Neural Networks

The central idea of Neural Networks is to extract linear combinations of the inputs as
derived features, and then model the target as a nonlinear function of these features [12].
The most prominent type of a Neural Network (NN) is the multilayer perceptron [47],
which in fact is a misnomer, because the model comprises multiple layers of Logistic Re-
gression models rather than multiple perceptrons [4].
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Figure 7.4: A fully connected multilayer perceptron, where the left layer is the input x,
the middle two layers are the hidden layers 1 ≤ ` < L, and the right layer is the output
layer ` = L [10].

Figure 7.5: One layer ` of a Neural Network [10].

Figure 7.4 shows an example of a Neural Network. In each ‘neuron’ in layers 1 ≤ ` ≤ L,
a non-linear function θ is applied to the input s before passing it to the output x, as is
illustrated in figure 7.5:

x
(`)
j = θ(s

(`)
j ) = θ(

d(`−1)∑
i=0

w
(`)
ij x

(`−1)
i ).

Each layer ` ∈ {1, . . . , L} has a matrix of weights W (`). The (i, j)th entry in W (`)

is w
(`)
ij , going from node i in the previous layer to node j in layer `. w = w

(`)
ij . After

we fix the weights in all layers, we have a Neural Network hypothesis h(x;w) [10]. The
generic approach to minimizing the prediction error is by gradient descent, called back-
propagation in this setting. This can be computed by a forward and backward sweep
over the network. In the forward pass, the current weights are fixed and the predicted
values are computed. In the backward pass, the errors are computed, which are used to
compute the gradients for the updates [12].

A serious disadvantage of multilayer perceptrons is that they contain hidden units,
which makes them opaque. It is also unclear whether they offer any advantages over
standard rule learners that induce rule sets directly from data, especially considering
that this can generally be done much more quickly than learning a multilayer perceptron
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[47]. Besides, Neural Networks require complete records to do their work [22]. The
variable classes that the model is able to work with are usually the same as for LogR,
since the network is a combination of multiple layers of LogR models. This means that the
algorithm is able to work with both discrete and continuous variables, but its output is a
classification. It is also possible to predict a numerical variable using a Neural Network,
by replacing the LogR functions in its neurons by LR functions [42].

7.1.4 K-Nearest-Neighbors

K-Nearest-Neighbors (kNN) classifiers are memory-based classifiers, they do not require
a model to be fit. Given a query point x0, we find the k training points x1, . . . ,xk closest
in distance to x0. The predicted value of x0 is then determined by taking the majority
vote among the values of these neighbors [12]. This can also be written as:

h(x0) =
1

k

∑
xi∈Nk(x0)

yi,

where Nk(x0) is the neighborhood of x0 defined by the k closest points xi in the training
sample. An example of the kNN algorithm is shown in figure 7.6.

Figure 7.6: Example of a 15-Nearest-Neighbors algorithm in a two-dimensional feature
space, used to assign the data points to three classes [12].

Closeness implies a metric, a measure of how close a data point is. Although there are
other possible choices, most instance-based learners use Euclidean distance [47]. The Eu-

clidean distance between an instance x(1) with values x
(1)
1 , x

(1)
2 , . . . , x

(1)
k , and an instance

x(2) with values x
(2)
1 , x

(2)
2 , . . . , x

(2)
k is defined as√

(x
(1)
1 − x

(2)
1 )2 + (x

(1)
2 − x

(2)
2 )2 + . . .+ (x

(1)
k − x

(2)
k )2.
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To use this distance measure, all variables first have to be normalized, so variables
with large numbers as values will not influence the prediction more than variables with
small values. Besides, this distance measure can only be used for data points with ex-
clusively numerical variables. A similar measure for categorical variables has not been
defined yet. Generally, when the kNN algorithm is used on data with categorical vari-
ables, these are converted to a number of binary ‘dummy’ variables. Buttery proposes
another way to handle categorical variables, by replacing each category by a real number
in an ‘optimal’ way [6], but this still implies the need for making the data numerical,
because the kNN-algorithm is not able to work directly with categorical data.

The k-Nearest-Neighbors algorithm is mostly successful in problems where the deci-
sion boundaries are very irregular [12], so the data points are far from linearly separable.
However, it is best when the feature space is not too high-dimensional. When the algo-
rithm is carried out in a feature space that is too complex, the nearest neighbors of a
point can easily be very far away, causing bias and degrading the performance of the rule
[12].

The algorithm is very bad at handling missing values of points in the data set, because
this means the data point can not adequately be placed in the feature space. When the
data point that has to be classified is incomplete, however, it could be a possibility to
shrink the feature space to include only the features that the data point does contain val-
ues for. This would make it possible to find its nearest neighbors, and make a prediction,
based on only a small amount of available information.

7.1.5 Decision Trees

Decision Trees are graphs that classify instances by sorting them based on feature values.
Each node in a Decision Tree (DT) represents a feature in an instance to be classified,
each branch represents a value that the node can adopt, and each leaf is a class name of
the respective instance. In order to classify an object, we start at the root of the tree and
take the branch with the appropriate value. This is repeated at every encountered node,
until a leaf is reached, and the object is classified as the class named by the leaf [22, 34].
Figure 7.7 shows an example of a DT. This tree represents the choice whether to play
tennis or not, based on the weather; it classifies objects (days) either as class P (suitable
to play tennis) or N (not suitable to play tennis), based on three discrete variables.

When it comes to predicting numeric quantities, the same kind of tree can be used,
but each leaf would contain a numeric value, acquired by taking a specific part of the dis-
tribution of all the training set values to which the leaf applies. This means that for both
the discretized version of our target variable, and for the numerical version, a Decision
Tree can be used. If one of the features is numeric, the node usually determines whether
its value is greater or less than a predetermined constant, giving a two-way split [47].

It should be noted that Decision Trees suffer from the fragmentation problem: after
multiple splits based on the node-tests, there can be very little data on which to base
decisions [19]. Besides, missing values pose a problem, because it is not clear which
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Figure 7.7: Example of a simple Decision Tree [34]

branch should be taken when a node tests a variable whose value is missing. Sometimes,
a missing value can be treated as an attribute value in its own right. If this is not the
case, a simple solution is to record the number of elements in the training set that go
down each branch and to use the most popular branch if the value for a test instance is
missing [47].

7.1.6 Bayesian Network

As Scutari explains it [38, 39], a Bayesian Network (BN) is a graphical model, where
nodes represent variables and arrows represent the probabilistic dependencies between
them. The graphical structure G = (V, A) of a BN is a directed acyclic graph (DAG),
in which each node vi ∈ V corresponds to a random variable xi. The global probability
distribution P (x), with parameters Θ, can be factorized into smaller local probability
distributions according to the arcs aij ∈ A. The form of the factorization is given by
the Markov property of Bayesian Networks, which states that every random variable
xi directly depends only on its parents Πxi

. If a node has no parents, the probability
distribution is unconditional [45]. The main role of the network structure is to express
the conditional independence relationships among the variables in the model [38]:

P (x) =

N∏
i=1

P (xi | Πxi
; Θxi

) for discrete variables

f(x) =

N∏
i=1

f(xi | Πxi
; Θxi

) for continuous variables

The Markov Blanket of a node xi, denoted by MB(xi), consists of its parents, its chil-
dren, and its children’s parents [43], as is shown in figure 7.8. This is the minimal set of
attributes conditioned on which all other attributes are probabilistically independent of
the target xi. Knowing the values of the MB(xi) is enough to determine the probability
distribution of xi [48].
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Figure 7.8: Example of a Bayesian Network, where the grey nodes represent the Markov
Blanket of node X6 [43].

Since a Bayesian Network is focused on modeling the (in)dependencies between all
variables, there is no difference between the target variable and the other variables, from
the perspective of the network. The values of its variables can be either known or un-
known, and if a value is unknown, it is predicted by the network using the values of the
variables it is dependent on. This means that these algorithms can deal very well with
issues of uncertainty and noise [18], and missing values are not a problem for the model.

The classes of the variables are a limitation of Bayesian Networks. The algorithm is
able to work with discrete, continuous or both types of variables. However, all continu-
ous variables must have conditional linear Gaussian (or ‘normal’) distributions. Various
ways have been proposed to transform other distributions to a Gaussian, to make them
usable for BNs. When the parents of a node are discrete, the value of their child node
is calculated using a probability table. When the number of possible values of a discrete
variable is large, the resulting probability table will also become very large, which reduces
the prediction accuracy. This makes it important for the discrete variables not to have
too many possible values. Besides, a limitation of the model is that discrete nodes can
not have continuous parents [40].

Unfortunately, it has been proved that learning an optimal Bayesian Network is NP-
hard [17]. Learning a BN is this complex because there may be many random variables
in a network, and each variable may take many values. Also a single random variable
can have many parents, and finding the conditional distribution conditioned on all those
parents increases the complexity [27]. In order to avoid this complexity for learning
Bayesian Networks, Naive Bayes has attracted much attention from researchers [17].

Naive Bayes

The Naive Bayes Classifier (NBC) is the simplest form of a Bayesian Network. The
method goes by this name because it naively assumes independence of all attributes,
based on the Naive Bayes assumption [25]:

P (x|y = C) =

D∏
i=1

P (xi|y = C);
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it is only valid to multiply probabilities when the events are independent [47]. Despite this
unrealistic assumption, the resulting classifier is remarkably successful in practice, often
competing with much more sophisticated techniques [35]. Figure 7.9 shows an example
of an NBC.

Figure 7.9: Example of a Naive Bayes Classifier, in which the predictive attributes
(A1, . . . , A4) are conditionally independent given the class attribute (C) [17].

Naive Bayes is especially appropriate when the dimension of the feature space is
high [12]. This method is also naturally robust to missing values since these are simply
ignored in computing probabilities, and hence have no impact on the final decision [22].
However, Naive Bayes fails at predicting the target variable for a data point if the specific
combination of its feature values does not occur in the training set [47].

Tree-Augmented Naive Bayes

The NB-assumption that all attributes of an instance are independent of each other,
given the class of that instance, is very simple, but unrealistic [27]. Tree-Augmented
Naive Bayes (TAN) improves on the Naive Bayes model by adding one more level of
interaction among attributes of the system [27]. It relaxes the Naive Bayes attribute
independence assumption by employing a tree structure, in which each attribute only
depends on the class variable and one other attribute [49], as is shown in figure 7.10. The
TAN can therefore be seen as a hybrid of a Decision Tree and a Naive Bayes Classifier.
Designed to allow accuracy to scale up with increasingly large training datasets, the TAN
model is a DT of nodes and branches with NBCs on the leaf nodes [45].

7.2 Model selection

In this section, I evaluate the models discussed in the previous section, with regard to our
data set. Our data set has two main properties to take into account. First, all features
are or can be discrete, and the target variable can be both discrete (ordinal) or contin-
uous (ratio). Second, when the first prediction is made, usually the values of only a few
variables are known, so the model should be able to handle this, and also be able to make
a better prediction based on more values later in the process. Besides the properties of
the data, the use of the model is also important for selecting a model. The model will be
used to support humans in making choices, so the output of the model should be easily
interpretable for a human.
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Figure 7.10: Example of an Tree-Augmented Naive Bayes Classifier, in which (A1, . . . , A4)
are the predictive attributes and C is the class attribute [17]. Each attribute only depends
on the class and at most one other attribute.

7.2.1 Variable classes

For Linear Regression (LR), Linear Classification (LC), Support Vector Machines (SVM)
and k-Nearest-Neighbors (kNN), all feature variables have to be numeric. They all have
ways of dealing with discrete variables, but this is only by making them numerical. The
feature values of Logistic Regression (LogR), Neural Networks (NN), Decision Trees (DT)
and Bayesian Networks (BN) can be both discrete and continuous. DTs and BNs do have
a preference for few-valued discrete or normally distributed continuous variables. Con-
cerning the discrete nature of our feature values, using LogR, NN, a DTs or BNs would
be preferred.

For LR, the target variable has to be numerical. For SVMs, NNs, kNN, DTs and BNs,
the target variable can be either discrete or continuous. An SVM is at it’s best, however,
when predicting a dichotomous variable. DTs and BNs prefer not to deal wit a not-
normally distributed continuous target variable. For LogR and LC, the target variable
has to be discrete, preferably dichotomous. Although the output of LogR is continuous,
it is still a classification, presented as a continuous probability for such a class. Based
on the target variable, we thus have the possibility to use all of the discussed techniques,
but using LR, NNs or kNN would best fit our target variable FHT.

7.2.2 Missing values

LR, LC, LogR, SVMs and NNs are not able to work with missing values. Of course, it is a
possibility for all of these techniques to use an imputation method before using the model,
but this is not an optimal solution. The kNN algorithm is also not directly able to handle
missing values, but the variables of which the value is missing could be simply left out of
the feature space. DTs also don’t have a natural way of predicting the value for a data
point with missing values, but there are ways to work around this limitation, for example
by taking the branch with the highest probability when the value of a certain node is
missing. BNs are easily able to work with missing values, since they are equally as much
built for predicting the values of feature variables as well as of the target variable. The
main problem remaining is that Naive Bayes Classifiers fail when a particular attribute
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value does not occur in the training set in conjunction with every class value. We can
conclude that, with respect to the problem of missing values, it would be best to use a
kNN algorithm, a Decision Tree or a Bayesian Network.

7.2.3 Interpretability

The model that is by far the least interpretable is a Neural Network. This model usually
has hidden layers, which makes the algorithm by nature opaque. Linear models, in our
selection those are LR, LC, LogR and SVMs, are conceptually very easy to understand.
When put into practice, however, the models are hard to visualize when having more than
three dimensions, which is equal to the number of features. Then, only a mathematical
equation remains, which for most people is interpretable to some extent, but only with
quite some effort. The kNN algorithm suffers from the same difficulty to visualize the
feature space when dealing with more than three features, but for this method there is
another way to make it more interpretable. This algorithm bases its decision on other
data points: the k points closest to the one that is predicted. If the algorithm is pro-
grammed to not only show the human the predicted duration, but also what k data points
that the decision is based on, this would contain a lot of useful information. Now only
DTs and BNs remain. Both are inherently very interpretable, since they are by nature
visualizations of the influence that certain features have on the target variable. There are
still mathematical calculations behind the nodes and their branches, yet even these could
be visualized by, for example, making the lines for strong connections or frequently taken
paths thicker.

7.2.4 Overview

Table 7.1 contains a summary of the qualities and limitations of the discussed algorithms,
with respect to our data set and problem. It may be concluded from this table that
Decision Trees and Bayesian Networks are most suitable, and k-Nearest-Neighbors fol-
lows close behind. The Decision Tree algorithm is already implemented, and still being
researched, by CQM, as is discussed in section 2.2. Therefore, I will not examine DTs in
the next chapter.

Based on the table, it would seem reasonable to continue by only training and testing
Bayesian Networks. However, it is hard to tell whether a BN or a kNN algorithm will
perform better in practice, based only on this theoretical comparison, because their the-
oretical performance is very similar. It is a possibility that I did not take some factors
into account that, without my knowledge, are of importance. It is also very probable that
new features will become available in the future, which may be of another shape than our
current features. I will therefore continue discussing the kNN and BN algorithms in the
next chapter.
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LR LC LogR SVM NN kNN DT BN
Discrete features − − + − + − + +
Target variable class + ± ± − + + ± ±
Missing values − − − − − ± ± +
Interpretability ± ± ± ± − + + +

Table 7.1: An overview of model properties with respect to our data set and problem.
Compared algorithms: Linear Regression (LR), Linear Classification (LC), Logistic Regres-
sion (LogR), Support Vector Machine (SVM), Neural Network (NN), k-Nearest-Neighbors
(kNN), Decision Tree (DT) and Bayesian Network (BN).
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8 Results

This chapter contains both the implementation of our models and the evaluation of their
outcome, respectively corresponding to step six and seven in the supervised learning
process of Kotsiantis et al. [22].

8.1 Model implementation

In this section, I discuss what was needed to implement the BN and kNN algorithms. This
is complemented by the R-code that I used to implement the algorithms. The original
code also contains lines for e.g. loading the data and transforming the variables, which I
did not find relevant to show in this thesis.

8.1.1 Bayesian Network

As described in section 7.1.6, a BN is a graphical model, where nodes represent variables
and arrows represent the probabilistic dependencies between them. If the algorithm
works with continuous variables, they have to be normally distributed for the BN to
work optimally. Because our target variable FHT is not normally distributed, I chose
to use the discretized version of it. All other variables are kept discrete as they were.
Discrete variables should not contain too many values, because this will make the resulting
probability tables enormous. For this reason I chose to implement the Tree-Augmented
Naive Bayes (TAN), one of the variations of BNs, because this implementation is more
suitable to work with the large number of possible FHT-values. Code 8.1 shows the lines
that are used to build a TAN, and use this to predict FHT for the selected test set.
Figures 8.1 and 8.2 show respectively a BN and a TAN of the collision/hindrance data
set, generated by the graphviz.plot function in the code.

# create, show and fit a BN

bn = tree.bayes(data_train, "fht")

graphviz.plot(x=bn, layout='dot')

fitted = bn.fit(bn, data_train, method='bayes')

# use the fitted BN to predict FHT for test data

data_test$pred = predict(object=fitted, data=data_test, node="fht")

Code 8.1: Code for the Tree-Augmented Naive Bayes model to predict FHT. The package
that is needed for these functions is bnlearn. The train and test objects are generated by
code 5.1.
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Figure 8.1: The Bayesian Network for collision/hindrance incidents, learned with hill-
climbing.

Figure 8.2: The Tree-Augmented Naive Bayes Classifier for collision/hindrance incidents.

8.1.2 k-Nearest-Neighbors

As discussed in section 7.1.4, the kNN algorithm is only able to work with numerical fea-
tures. Unfortunately, most of our features are categorical. They can of course be treated
as numerical values. The binary variables working hours and night are discretized
versions of the continuous variable tijd begin, the time that the incident is reported.

45



Therefore this original time variable is used instead of the edited binary variables. The
FHT variable has to be the discretized version, since kNN prefers to do classification.
Code 8.2 shows the one line of code that is needed to build a kNN model in R.

# use kNN algorithm to predict FHT for test data

data_test$pred = knn(xTrain, xTest, yTrain, k=10, l=1)

Code 8.2: Tiny code for creating a kNN model to predict FHT. The package that is needed
for this function is class. The train and test objects are generated by code 5.1.

In section 7.2.3, I have argued that the kNN algorithm scores quite highly on inter-
pretability, because showing the set of nearest neighbors that the prediction is based on
could give a human more insight in the reason for the predicted number. Code 8.3 shows a
way of implementing this, applied to the collision/hindrance data set. The output shows
the 10 data points of the training set that are closest to a given point in the test set,
which have been used for the majority vote for the FHT of this test element.

# For every data point in xTest, kNN contains the indices of the

# 10 nearest points in xTrain.

> kNN = get.knnx(data=xTrain, query=xTest, k=10)

# Of only the first test element, find the data points in data_train

# that correspond to the indices in kNN.

> x_test = kNN[["nn.index"]][1,]

> data_train[x_test,]

index counterpart working_hours night Randstad standplaats tao_ind bijna_aanrijding fht

312 1 1 0 1 2 0 0 15

22 1 1 0 1 2 1 0 135

121 1 1 0 0 2 0 0 60

975 1 1 0 0 2 0 0 30

364 1 1 0 0 2 0 0 180

859 1 1 0 0 2 0 0 60

470 1 1 0 0 2 0 0 60

796 1 1 0 0 2 0 0 60

448 1 1 0 0 2 0 0 30

616 1 1 0 0 2 0 0 45

# The corresponding test element, to which the above 10 points are the nearest.

> data_test[1,]

index counterpart working_hours night Randstad standplaats tao_ind bijna_aanrijding fht pred

2 1 1 0 1 2 0 0 30 60

Code 8.3: This R-code outputs the first element of the collision/hindrance test data, and
the 10 data points of the training data that are nearest to this test element, according to
the kNN algorithm. This example shows that the predicted FHT for the test element is 60,
because this is the result of a majority vote between the 10 nearest training elements.
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8.2 Model evaluation

8.2.1 Prediction errors

As explained in section 5.3, I have divided the data in a training set and a test set. This
is done for the purpose of estimating performance of the prediction models. In this sec-
tion, both the predictions of the TAN and the kNN algorithm are compared to the real
FHT-values of the test set. The table function was used to output a prediction table,
where the rows represent the predicted values and the columns represent real values of
all elements in the test set. As an error measure, I chose to calculate both the root mean
square error (RMSE) and the mean distance between the predicted and real values. The
RMSE is a very popular error measure in literature, so I chose to calculate this for con-
sistency. The mean distance, however, is much easier to understand, since it represents a
time span. Because both error measures have a very different advantage over the other,
I chose to use both. The RMSE is calculated by using rmse from the Metrics package in
R. The mean distance is calculated by taking the absolute value of the difference between
the predicted and real value, for each data point in the test set, and taking the mean of
all differences.

The complete outputs of these tests are shown in appendix D. It should be noted that
every time that the code is run, the output differs a little, because the data is divided
in a different training set and test set. The outputs that I chose to show are the ones I
found most representative, with a result that is more or less the average of multiple runs.
Thus, this should be seen as an demonstrative example, not as the only true output of the
model. For all tests, first the output is shown for prediction using all feature variables as
evidence. Then the output is shown for the prediction made with only the variables that
are most probably known when the initial prognosis is made, because in case the model
would be implemented, it should be able to output both the initial and updated prognosis.

Table 8.1 shows an overview of the prediction errors, produced by both the TAN and
kNN algorithms, on the test sets of our three incident type models. The performance of the
TAN and kNN algorithm are similar for all data sets, as is the accuracy of predictions using
all variables as evidence or only the initially known. The main difference in performance
can be observed between incident types. It is shown that all mean distances are between 45
minutes and more or less one hour, which means that the difference between a generated
prediction and the actual value for that data point will be on average 45 to 60 minutes.

8.2.2 Comparison to current prognosis

In the Spoorweb data set, the column PrognoseINIduur contains the initial prognosis
generated by the model of CQM. For both section TOBS incidents and collision/hin-
drance incidents, I randomly selected 10 data points occurring in both Spoorweb and my
SAP-based data set. Appendix D.4 contains the prediction tables and error rates for these
20 data points, using both the TAN and kNN algorithm. The predictions of CQM for
the same data points are also known, and presented in the same appendix. This way it is
possible to compare the performance of my algorithms with those currently implemented
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All variables Initial variables
RMSE mean dist. RMSE mean dist.

Rolling stock
TAN 67.39 48.83 70.17 50.08
kNN 65.62 49.36 71.43 53.22

Section TOBS
TAN 87.36 63.35 89.05 60.95
kNN 87.99 61.57 86.39 61.49

Collision/hindrance
TAN 63.68 47.19 63.20 45.63
kNN 62.28 47.03 62.99 47.66

Table 8.1: An overview of error measures, of the results produced by the Tree-Augmented
Naive Bayes (TAN) algorithm and the k-Nearest-Neighbors (kNN) algorithm. The root
mean square error (RMSE) and the mean distance are both used as an error measure. The
complete outputs are shown in appendix D.

at ProRail, although we have to keep in mind that this is a very small and maybe not
completely representative sample.

Since the CQM model is only used for the initial prognosis, when not all possible
information is yet available, it is not fair to compare its prognosis with my models us-
ing variables that are not initially known. Therefore, I applied every algorithm to the
data twice: once with all selected features, and once with only the features that are
known when the initial prognosis is made. For the section TOBS data, this meant delet-
ing contract soort, overlapping inc, Theoretisch vervangingsjaar, standplaats,
tao ind, wind compass, and oorzaak groep. For the collision/hindrance data, only
tao ind and counterpart were removed.

To make a final note, the CQM model has only been implemented since February
2018. All 20 data points that I selected are therefore from past this implementation.
This is also the reason why I was not able to do this comparison for rolling stock failures.
Spoorweb and ISVL do have a little time of overlapping data points, but this was before
the CQM model was implemented, so there are no CQM predictions for the data that my
model for rolling stock failures is able to classify.

Table 8.2 shows an overview of the prediction errors, produced by the TAN and kNN
algorithms, and by the Decision Tree of CQM.

8.2.3 Optimistic and pessimistic prediction

In appendix B.2, an example of a Decision Tree built by CQM is shown. Each node of
the tree contains a probability distribution of FHT. When a leaf is reached, the 65th
percentile of this distribution is taken as the prognosis. Taking the median or mode of
the distribution seems like a more sensible choice to reduce the prediction error. How-
ever, the reason for using the 65th percentile is that a pessimistic prognosis is much more
practical than a prognosis that is too optimistic. If ProRail communicates to the train
companies that the incident will be resolved at 2PM, but this happens to be at 2:30PM
(optimistic prognosis), there is half an hour of time where the train companies already
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All variables Initial variables
RMSE mean dist. RMSE mean dist.

Comparison set TOBS
TAN 106.70 78.00 106.91 78.00
kNN 104.14 81.00 99.84 73.5
CQM - - 84.72 66.90

Comparison set col./hindr.
TAN 58.48 45.00 36.43 25.50
kNN 67.92 55.50 58.67 43.50
CQM - - 196.83 143.30

Table 8.2: An overview of error measures, of the results produced by both my algorithms
and the one of CQM, which is currently implemented at ProRail. These predictions are
made for 10 randomly selected data points of the section TOBS data set, and 10 points of
the collision/hindrance data set. The root mean square error (RMSE) and the mean distance
are both used as an error measure. The complete outputs are shown in appendix D.5.4.

have their trains ready to drive while this is not actually possible. They may have even
informed passengers about specific trains that will start driving again, which will lead
to a disappointment. However, when ProRail communicates to the train companies that
the incident will be resolved at 2:30PM, but this is actually already the case at 2PM
(pessimistic prognosis), the only effect is that the train table could have gotten back to
normal half an hour earlier, than it would based on the prognosis. This is a much better
outcome for all parties involved. Therefore, a pessimistic prediction is, for this problem,
better than an optimistic prognosis.

Figure 8.3 shows ratios of over-estimation (pessimistic), under-estimation (optimistic)
and correct predictions. These are all means taken over multiple predictions. The CQM
bar represents the predictions of CQM on the two small test sets of 10 data points. A
note should be made that the CQM-bar shows that 0% of the test data was correctly
classified, while the other bars show a higher percentage in the ’correct’ section. This is
because the CQM model outputs the FHT in minutes, while my models work with bins
of 15 minutes. Thus, in this comparison, the CQM model is much less likely to correctly
classify data points than the other models. In figure 8.3, the pred bar stands for the
overall predictions of both the TAN and kNN algorithms, applied to the data sets for our
three incident types, presented in appendices D.1, D.2, and D.3. The test bar stands for
the TAN and kNN predictions on the two small test sets of 10 data points. The results
for these tests are presented in appendix D.4.

For both cases, there is also a +30 bar added to the figure. These represent the same
sets, but with all FHT predictions increased by 30 minutes. The reason for increasing the
FHT by 30 minutes is to test the effect of predicting a higher FHT on both the under-
estimation and the performance of the models. Both this approach and the amount of
time are arbitrarily chosen, only to get an impression of what the effect would be of in-
creasing the FHT. A more sophisticated approach would be to alter the models in such
a way that a higher FHT is given as output, instead of modifying the output afterwards.
The outputs of my provisional approach are shown in appendix D.5. Subsequently, fig-
ure 8.3 shows that increasing the FHT positively influences the ratio of over-estimated
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and under-estimated FHTs.

Figure 8.3: Ratio of over-estimation, under-estimation, and correct predictions for all
predicted sets. Here pred stands for our three data sets for rolling stock incidents, section
TOBSs and collision/hindrance incidents, test for both comparison selections of 10 data
points, and CQM for the prognoses of CQM. For the sets with +30 put behind the name,
30 minutes are added to each predicted FHT, to decrease under-estimation.

Increasing the predicted FHT by 30 minutes positively influences the ratio of under-
estimations, but this comes with the question whether this does not have a huge negative
impact on the prediction errors, which would make it less of an effective approach. Ta-
ble 8.3 shows the prediction errors of all predictions where the FHT is increased with 30
minutes. If we compare these errors with the errors shown in tables 8.1 and 8.2, we can
conclude the following. The error rates of predictions on the three incident-type models
stay more or less the same when predicting with all variables as evidence. When using only
the initially known variables as evidence, the error for rolling stock failures and section
TOBSs even decreases, and increases only by a very small amount for collision/hindrance
incidents. The errors for the comparison test set of 10 data points of the section TOBS
set also decrease, and even become lower than the errors of CQM for the prognosis us-
ing only initially known variables. For the comparison set of 10 collision/hindrance data
points, the error increases with about 20 minutes of mean distance, but stays far below
the error of CQM. Thus, generally, increasing the predicted FHT by 30 minutes barely
affects the prediction errors, but it does positively influence the ratio of over-estimated
and under-estimated FHTs.
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All variables Initial variables
RMSE mean dist. RMSE mean dist.

Rolling stock
TAN 69.58 52.20 64.70 49.20
kNN 65.34 52.31 70.12 54.89

Section TOBS
TAN 61.16 66.78 75.92 54.88
kNN 77.36 58.02 78.52 59.13

Collision/hindrance
TAN 65.54 51.91 62.80 47.06
kNN 62.69 49.66 64.46 50.68

Comparison set TOBS
TAN 92.95 75.00 90.50 69.00
kNN 105.53 85.50 71.78 55.50
CQM - - 84.72 66.90

Comparison set col./hindr.
TAN 77.07 69.00 49.97 46.5
kNN 89.75 72.00 68.41 54.00
CQM - - 196.83 143.30

Table 8.3: An overview of error measures of the prognosis made by both my algorithms
and the one of CQM, which is currently implemented at ProRail. In this table, both the
general predictions on test sets of all three incident types are shown, as well as predictions
on the 20 randomly selected data points of the section TOBS and collision/hindrance sets.
For all predictions that these errors apply to, the FHT was increased by 30 minutes, in an
attempt to decrease under-estimation. The root mean square error (RMSE) and the mean
distance are both used as an error measure.
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9 Conclusion

The main question of this thesis, as posed in chapter 1, was: How can we accurately
predict the recovery time for various types of railway incidents, using a dynamic model
that updates with newly gained information? This question was divided into two sub-
questions. First: what information is needed to make accurate predictions of recovery
time for various railway incidents? And second: how can we create a dynamic model that
is able to update its prediction based on new information?

The first subquestion is mainly discussed in chapters 4, 5, and 6. The first aspect of
the information that is needed for making predictions is the used data set. I have used
the ISVL data as a basis for rolling stock failures, and the merge of SAP and SAPX for all
other incident types. I can conclude that this was a good choice for exploratory research
purposes, but it has to be noted that Spoorweb is used for the incident recordings during
the incident. Thus, the variables in Spoorweb are the ones available to use when the
model is brought into practice.

There are some relevant features that are only in SAP or ISVL, and not in Spoor-
web, or in another data set that is only possible to merge with SAP/ISVL and not with
Spoorweb. For these variables, I would advise to look for a replacement when the model
would be implemented. These features are: Randstad, contract type, contractor,
Theoretisch vervangingsjaar, standplaats, Mat, Rijk, Vervoerder, Drp, RangeerDrp,
Act, and goederentrein. However, there are also a few features that are only con-
tained by Spoorweb, and not by SAP or ISVL, which may be relevant for prediction.
These are ProRailBedieningGebiedSoort (type of section), SchadeIndicatie (whether
there is damage), LogistiekebeperkingType (degree of train traffic restriction) and
Infrabeperkingstatus (degree of infra restriction). These are features that could be
used when working with Spoorweb, but which I have not tested. In addition, I would
advise to keep looking for more potentially relevant data.

The answer to the second subquestion can be found in chapters 7 and 8. I can conclude
that it is important that the model that is used is suitable for discrete feature variables,
is able to handle missing values when the first prognosis is made, and is interpretable for
a human. The conclusion that emerged from my comparison is that there are three suit-
able algorithms for our problem and data set: k-Nearest-Neighbors, Bayesian Networks
and Decision Trees. Since DTs are already implemented by CQM, I continued by only
further researching kNN and BNs, but I did not find a significant difference in perfor-
mance between the two. Both algorithms are, as far as I can conclude, equally suitable
to accurately predict FHT.
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I chose to apply both the section TOBS model and the collision/hindrance model to
10 randomly selected data points, and compared the results to the prognoses of CQM
for the same data points. For the 10 section TOBS predictions, the predictions of CQM
had a lower error rate than mine, but for the 10 collision/hindrance predictions, the error
rate of CQM was much higher than mine. However, in both cases this was only a sample
of 10 data points, so the main thing to conclude here is that both models are not very
accurate yet and quite unstable in their predictions. To sufficiently compare the models,
it would be better to use a bigger data set for this. For me this was complicated, since
there is very little overlap between the SAP data I used and the Spoorweb data that the
CQM model is based on. For future research, this could be done by applying both models
to their own data set and comparing their accuracy for different predictions, but first a
couple of tests should be done to check whether it is valid to compare these results, which
I have not done due to a limitation of time.

One important thing that the predictions by CQM do stand out in, is that they are
usually over-estimating FHT instead of under-estimating, while this ratio is about 50/50
for the predictions generated by my models. Over-estimating is much more beneficial for
ProRail and involved train companies than the under-estimating, which is why I increased
all predicted FHTs by 30 minutes. This appeared to barely affect prediction errors, or
even decrease them a little, while having a very positive influence on the ratio of over-
estimated and under-estimated FHTs. From this, I would conclude that it may not be
unreasonable to make prognoses by first using the models proposed in this thesis, and
then increasing the predicted FHT by a certain amount to decrease the probability of
under-estimating.

In my opinion, this thesis reflects a property of the current status of AI in society.
In chapter 7, I stated interpretability as one of three important aspects of the models to
choose from. The reason that this is important, is that when the model is implemented, it
will operate as an assistant for humans, to help them make the final decisions. Pessimists
tend to worry that AI machines will become smarter than us, and that they will make all
our decisions for us. They are also concerned with social discontent as the amount of work
available for people will diminish [24]. Although many jobs may be suitable to be executed
by an AI, other tasks within these same jobs do not fit the criteria well [5]. As I believe
it, and as ‘doubters’ state it according to Makridakis, it is wrong to believe that once
computers have been provided with sufficiently advanced algorithms, they will be able to
improve and then replicate the way our mind works. According to them, computers will
not be able to achieve the human ability of being creative, as doing so requires breaking
the rules and being anti-algorithmic. This would mean that all tasks requiring creativity,
including innovative breakthroughs, strategic thinking, entrepreneurship, risk taking and
similar ones could never, or at least not in the foreseeable future, be done algorithmically.
Maybe, in a far future, a model will independently be able to accurately predict FHT,
and consequently decide what approach is best to handle the incident. But there is no
plausible way that this could happen in the near future, just as it does not seem very
plausible that AI will soon be able to make all decisions for us and take all our jobs.
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10 Discussion

In this chapter, I conclude my thesis by discussing the things I would advise to do differ-
ent in future research. By this, I hope that future researchers will be able to efficiently
build on the process of this thesis.

The first thing that could be improved is the imputation of missing values, discussed
in chapter 5. Because I found it very difficult to tell whether there is a consistent reason
for data not being recorded, I assumed that all missing values were missing completely
at random. If this is not the case, if some of them are missing as a function of some
other variable, this should be taken into account when imputing values. I would advise
to future researchers to take this in consideration.

The next possible improvement lies in the choice to use either a discretized or nu-
merical FHT. Bayesian Networks prefer working with either a discrete or a normally
distributed numerical target variable. Since the numerical version of FHT, in minutes, is
not normally distributed, I chose to use the discretized version for this algorithm. As Zilko
demonstrates, it is also possible to use copulas, to transform the real FHT-distribution
to a normal one, and make it suitable to work with for a BN or other models with a sim-
ilar preference. For the purpose of loosing as little information as possible by applying
transformations like discretization, working with copulas may be a proper approach to
investigate more.

Moreover, I am convinced that I have made a valid choice by using SAP as a basis
for the models of most incident types. For the collision/hindrance data set on the other
hand, I should have used Spoorweb instead of SAP. This is because, as I discovered too
late, Spoorweb contains more than three times as many data points on this type of inci-
dents as SAP does, over a time span that is about three times as short. SAP appears to
be focused mainly on technical incidents, while Spoorweb seems to leave those types of
incidents out more often and holds more records on non-technical incidents.

Something else that should be taken into account when in the future using the algo-
rithm for prediction, is the difference between the historical data that the model is trained
on, and the current situation when the predictions are made. While we are working on al-
gorithms to predict FHT, other departments at ProRail (or other companies) are working
at improving procedures to decrease FHT. Therefore, in the time between the recordings
of the historical data and the time the prediction is made, ProRail has possibly decreased
the time that is needed to resolve incidents. These changes presumably take a lot of time,
so the impact will also take a lot of time to be noticeable, but it might as well be kept in
mind.
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As a last notice, I would like to propose a complementary research. One of the reasons
that FHT prediction is relevant is to determine the optimal recovery moment. Another
important factor that has to be estimated before this can be done is passenger hindrance:
the degree to which train passengers are delayed as a consequence of an occurred incident.
Thus, researching ways to accurately estimate passenger hindrance would contribute to
choosing the optimal recovery moment, and thereby to the relevance of research on FHT
prediction.
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A Abbreviations and concepts

A.1 Abbreviations

departments & people

AL: “Algemeen Leider” (General Leader)

AM: “Asset Management”

ICB: “Incidentenbestrijding” (Incident Control)

MKS: “Meldkamer Spoor” (Railway Alarm Room)

TRDL: “Treindienstleider” (Train Traffic Controller)

VL: “Verkeersleiding” (Traffic Control)

failures

UO: “Urgente Onregelmatigheid” (Urgent Irregularity, priority level 1 or 2)

DOT: “Dringende Onregelmatigheid met Tijdsafspraak” (Urgent Irregularity with
Time Appointment, priority level 5)

NUO: “Niet Urgente Onregelmatigheid” (Not Urgent Irregularity, priority level 4
or 9)

NIC: “Niet In Controle” (Not In Control)

TAO: “Trein Aantastende Onregelmatigheid” (Train Affecting Irregularity)

TIS: “Trein Incident Scenario” (Train Incident Scenario)

TOBS: “Ten Onrechte Bezet Spoor” (Falsely Occupied Tracks)

FHT: “Functiehersteltijd” (Function Recovery Time)

GOB: “Gestoord Object” (Disturbed Object)

TVA: “Te Verklaren treinAfwijkingen” (Explainable Train Deficiencies)

other

DET: “Detectie” (Detection)

MON: “Monitoring”

PPLG: “Projectleidingsgebied” (Project Managing Area)
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A.2 Concepts

departments & people

AL / General Leader: Supervisor who is present at the location of an incident.

AM / Asset Management: ProRail department responsible for managing all infras-
tructure assets.

ICB / Incident Control: ProRail department responsible for handling the practical
aspects of incident recovery.

MKS / Railway Alarm Room: ProRail department that receives reports of incidents
and coordinates the handling of the incident.

TRDL / Train Traffic Controller: Person who has his/her own area of the rail
infrastructure to work in. This person determines where trains should and shouldn’t
drive, (s)he is capable of controlling switches and signs, and responsible for arranging
a safe work place for people that have to enter the rail track.

VL / Traffic Control: ProRail department responsible for traffic control, deciding
where trains are allowed to ride.

failures

ISVL: A data set containing information that was recorded during the handling of
an incident. It has a relatively free form, focusing on transferring useful information
about the incident between concerned parties, rather than recording the incidents
for future use.

SpoorWeb: The newer version of ISVL. It is also used for exchanging information
between parties, during the handling of an incident. It has improved relative to
ISVL in that its variables are more structured. Besides, tasks are assigned more
specifically to people, and it is possible to record who has done which task.

SAP: The recordings database of Asset Management. This database is created and
maintained with the purpose of creating historical data for later use, opposed to
the real-time use of ISVL and Spoorweb.

TIS / Train Incident Scenario: A number corresponding to certain characteristics
of an incident, that is assigned to the incident to indicate its severity.

TOBS / Falsely Occupied Tracks: TOBS stands for “Ten Onrechte Bezet Spoor”,
which means ‘falsely occupied tracks’. The network of rail tracks is divided in
sections. Between the edges of two sections, an insulating weld is placed to separate
them. When a train drives over this weld, it short circuits an electricity loop,
which is registered as an occupation of the concerning track. Sometimes, a track
occupation is registered despite there is no train present, which is called a ‘section
failure’ or ‘section TOBS’.

FHT / Function Recovery Time: The time span between the moment an incident
is reported and the moment everything is restored, so the train table can get back
to normal.
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B Previous research: models for
FHT prediction

B.1 Extended multi-agent system

This extended MAS (Multi-Agent System) approach for predicting FHT is designed by
Bergsma [3]. In figure B.1, an example is shown of the prediction of FHT for a specific
switch failure. The low blue dots represent the best performing extended MAS, measured
by RMSE. The black dots represent extended prognosis. The green line is the optimal
line. The orange crosses are the original prognosis. The numbers correspond to the
extensions that influenced the adjustment of the prognosis. 1: Initial prognosis. 2:
Bayesian Network. 3: Switch type. 4: Extended RVO. 5: No extension, just prognosis 1
confirmed. 6: extended tasks GL. 7: Weather. 8: Predicted failure cause. 9: Prognosis
2. 10: Prognosis 3.

Figure B.1: Visualization of the multi-agent system approach for predicting FHT of a
specific switch failure by Bergsma

B.2 Decision tree with probability distributions

This approach is designed by CQM [9], and is a combination of a Decision Tree and
probability distributions that change in each node. In the leaves of the tree, the 65th
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percentile of the FHT-distribution is taken as the prognosis. In figure B.2, the Decision
Tree for rolling stock incidents is shown as an example.

Figure B.2: Visualisation of the Decision Tree approach for predicting FHT for rolling
stock incidents, created by CQM.

B.3 Probability distributions

This approach is designed by De Wit [46], and is based on probability distributions for
each type of incident, influenced by a couple of variables. In figure B.3, prognoses are
shown for five incident cases, taken as an example.

Figure B.3: Visualisation of prognoses generated by the probability distribution approach
for predicting FHT by De Wit
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B.4 Mixed discrete-continuous Bayesian Network with
copulas

This approach is designed by Zilko [50], and has the shape of a mixed discrete-continuous
Bayesian Network. This model takes dependencies between variables into account, us-
ing copulas. In figure B.4, the model for Track Circuit (section) disruptions is shown,
including marginal distributions for all variables, based on all disruptions in the database.

Figure B.4: Visualisation of the mixed discrete-continuous Bayesian Network with copulas
for Track Circuit disruptions, by Zilko
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C Feature explanation

C.1 Nominal variables

Nominal variables are a classification of groups that can not be placed in a specific order.
An example of this is the categorization of biological species. Many of our relevant
variables are nominal variables.

Contractor As explained in section 2.1, ProRail outsources track maintenance activi-
ties to contractors. Each contractor has its own way of working and is located somewhere
else, which can cause differences in both latency time and repair time. The variable
aannemer contains which contractor was responsible for recovery.

Contract type A couple of years ago, ProRail has introduced PGO-contracts (”prestatie-
gericht onderhoud”), which holds that the contractor gets paid based on the quality and
efficiency of the performed work. Before this type of contract was introduced, all con-
tracts were OPC (”output-procescontract”), which holds getting paid for the performed
activities. The average FHT has proven to be lower with PGO-contracts than with OPC-
contracts [50]. ProRail is slowly converting all contracts to PGO, but there are still many
contractors with an OPC-contract. The variable contract soort contains values PGO
and OPC or Overig (other).

HSL or Betuwe route The HSL (high speed line) and the Betuwe route are two
special parts of the railway system. The variable HSL betuwe holds whether the incident
occurs at the HSL, at the Betuwe route or somewhere else (Overig).

Location of base The variable standplaats holds information about the locations of
the contractor’s bases, represented by four numerical values.

Wind direction This feature stems from the imported weather data from KNMI [21].
Originally, the variable contains continuous, numerical values, representing the compass
degree for the direction that the wind is coming from. I discretized the variable by
assigning each number to the closest compass point, and using these four points as values
for the variable wind compass.

Driving characteristic The driving characteristic of a train is the way it is used in
the infrastructure. Examples of this are the Intercity (IC), Sprinter (SPR) or international
trains (INT). There are seven driving characteristics represented as values in the variable,
and one OVERIG (other). The variable is named Rijk, for “Rijkarakteristiek”.
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Rolling stock type The rolling stock type, mat type for ‘materieeltype’, represents
inherent characteristics of a train or part of a train. The rolling stock failure can, for
example, concern a FLIRT, which is a specific type of train that is mostly used as a
Sprinter, for which the most occurring incident is that its doors refuse to close. There
are eight different rolling stock types contained in the variable, and one OVERIG (other).

Train company While ProRail is responsible for the railway network, the trains that
drive on it are property of other companies, like NS and Arriva. The variable Vervoerder
contains separate values for the three largest companies, one value for all freight train
companies and one for all others.

Activity All over the railway network, timetable control points are assigned to specific
points on the tracks. These points are used to locate trains, by monitoring their movement
from one timetable control point to another. Some of these points are train stations or
shunting points, where a train is likely to arrive or depart. The variable Act contains the
action of the concerned train at the timetable control point that it was last registered at,
which can be either passing (D), arriving (A), or departing (V).

Cause group The variable oorzaak groep contains the cause of the incident, catego-
rized in nine groups. Weather and maintenance activities are examples of these groups.
This cause is usually not known yet when the initial prognosis is made, but only after a
diagnosis period.

Thing that the train collided with For the incidents belonging to the collision/hin-
drance incident type, there is usually some specific thing that the train has collided with
or is hindered by. Whether this is an animal, person, object, vehicle or something else is
recorded in the variable counterpart.

C.2 Dichotomous variables

Dichotomous variables are also, like nominal variables, a classification of groups, only
they contain exactly two values. This class is equivalent to binary variables.

Time The starting time of an incident could be used as a value on it’s own, but more
information may be captured by creating other meaningful variables from this feature. I
inferred the following binary features:

night: Whether the incident occurs at night, being 1 when the time is between
0AM and 6AM, and 0 otherwise.

working hours: Whether the incident occurs during common working hours, being
1 when the time is between 7AM and 6PM, and 0 otherwise.

contr working hours: Whether the incident occurs during contractual working
hours of the ProRail repair teams, being 1 when the time is between 7AM and
4PM, and 0 otherwise.
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rush hour: Whether the incident occurs during rush hour, being 1 when the time
is between 6:30AM and 9AM, or between 4PM and 6:30PM, and 0 otherwise.

Randstad The ‘randstad’ is an area of the Netherlands that consists of Amsterdam,
Rotterdam, Den Haag and Utrecht and the smaller cities between them. This variable
holds whether the incident takes place in the randstad (1) or not (0).

Nature of the incident For collision/hindrance incidents, there is a great difference
between a train being hindered by something, or actually colliding with it. For example,
the consequences of running into a vehicle are very different from those of tree branches
hanging too low and possibly causing damage to equipment. The variable type hinder
is either Aanrijding when the train has collided with something, or Hinder otherwise.

Shunting point All over the railway network, timetable control points are assigned to
specific points on the tracks. These points are used to locate trains, by monitoring their
movement from one timetable control point to another. Some of those points are also
shunting points, which is a place where trains can be stored and picked up, when they
are scheduled into or out of the timetable. Whether the timetable control point (Drp)
that the concerned train is located at is also a shunting point, is recorded in the binary
variable RangeerDrp.

Presence of overlapping incident Because there is a limited number of mechan-
ics available in each contracted area, the presence of an overlapping incident in this
area does affect the latency time. This feature is represented by the binary variable
overlapping inc. It’s value is 1 when there is another incident in the data set that
happened in the same contract area (contractgeb), within the last four hours before the
current incident, and 0 otherwise.

Weather A lot of information about the weather can be obtained from KNMI. A couple
of relevant features are selected and made binary by splitting the value at a critical point.
I created the following binary features:

warm: Zilko found that high temperatures can trigger track sections to fail more or
less simultaneously, which increases the probability of an overlapping incident [50].
The variable warm is 1 if temp max > 25, and 0 otherwise.

veel neerslag: This variable holds whether there is a lot of rainfall at the specific
day. Its value is 1 if neersl mm > 8 (more than 8 millimeters of rainfall), and 0
otherwise.

weinig zicht: This variable is 1 if zicht max < 70, which means that the distance
of sight is limited to less than 70 meters, and 0 otherwise.

harde wind: This variable is 1 if the wind speed is more than 20 kilometers per
hour (wind speed > 20), and 0 otherwise.
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Freight train The type of train influences both the type of failures that occur and the
impact that such a failure has. A type of train that is very different from most other
types is the freight train, which transports goods instead of people. Whether the involved
train is a freight train is contained in the binary variable goederentrein.

Train table adjusted When an incident occurs, it often happens that the part of the
rail tracks where the incident took place has to be blocked, to be able to repair or clean
something. When this happens, a ‘versperringsmaatregel’ (vsm) is applied, which means
that other trains are temporarily not allowed to ride on a specific part of tracks. The
variable vsm aangepast indicates whether the vsm is adjusted, which in turn presumably
indicates a complex incident scenario.

TAO indicator TAO stands for ‘trein aantastende onregelmatigheid’, or ‘train affect-
ing irregularity’. The variable tao ind holds whether the train table is expected to be
influenced by the incident.

C.3 Ordinal variables

Ordinal variables contain groups that can be placed in a specific order, but without
a specified degree of difference between them. An example of this is judgment about
something, where ‘good’ is higher than ‘bad’, but it is not possible to express the exact
difference between them.

TIS Some incidents are assigned a TIS-scenario, which is a number ranging from 1 to
5. This number indicates the severity of the situation, of which a 1 means not severe (e.g.
some trains have to be rescheduled) and a 5 means very severe (e.g. gas leak in a tunnel).
This feature corresponds to the variable tis, with values varying from 1.1 to 5.3.

C.4 Interval variables

The elements of interval variables are in a specific order, and there exists a degree of
difference between them. It is nevertheless not possible to say that one element is ‘two
times bigger’ then the other, e.g. there is no ratio between them. An example of this is
temperature.

Year of replacement For the section TOBS incidents, our data set contains the vari-
able Theoretisch vervangingsjaar, which represents the expected year that the con-
cerned section will be replaced. Originally, this variable is of the interval class, represent-
ing a year. For using it as input for the Bayesian Networks, I categorized these years in
three groups, which makes it an ordinal variable.
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C.5 Ratio variables

Ratio variables do allow for a ratio between the ranked elements. They also posses
a meaningful and non-arbitrary zero value. In our original data there are some ratio
variables, like the length of a certain section, but none of the selected features are of the
ratio class.
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D Results

D.1 Rolling stock failure

Both the TAN and kNN algorithm are applied to the rolling stock failure data twice:
once with all features presented in section 6.2.1, and once with only the features that are
known when the initial prognosis is made. For the second case, this meant deleting tis,
vsm aangepast, RangeerDrp, and Act.

Tree-Augmented Naive Bayes

# All variables used as evidence

> table(data_test$pred, data_test$fht)

15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 240 255 270 285 300 315 330 345

15 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

30 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

45 0 0 2 0 1 3 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0

60 5 3 5 8 11 9 4 5 2 3 2 1 0 1 0 0 0 0 1 0 0 1 0

75 1 8 12 16 15 12 12 7 12 7 2 3 3 1 0 0 1 1 0 0 0 0 0

90 0 2 4 7 13 11 5 5 3 3 5 2 1 1 3 0 2 0 0 0 0 0 0

105 1 1 2 4 5 9 6 4 2 1 3 2 0 1 0 1 0 0 0 0 0 0 0

120 0 0 4 4 0 2 4 5 2 0 2 1 3 2 2 3 0 0 2 1 1 0 0

135 0 0 0 2 0 0 2 1 0 0 1 2 0 1 0 0 0 0 0 0 0 0 0

150 0 0 0 0 1 0 2 0 2 0 1 1 0 1 0 0 0 0 0 0 0 0 0

165 0 0 0 2 3 0 2 2 2 5 1 1 2 0 0 1 1 1 0 1 0 0 0

180 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0

195 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

210 0 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0

225 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

240 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

255 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

270 0 0 0 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

285 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1

300 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

315 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

330 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

> rmse(data_test$pred, data_test$fht)

[1] 67.39048

> data_test$pred_error = abs(data_test$pred - data_test$fht)

> mean(data_test$pred_error)

[1] 48.82576
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# Only initially known variables used as evidence

> table(data_test$pred, data_test$fht)

15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 240 255 270 285 300 315 330 345

15 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

60 1 1 9 7 7 9 5 4 3 2 1 0 1 1 1 0 0 1 0 1 0 0 0

75 3 7 12 21 18 23 18 16 13 15 4 4 6 4 1 3 3 1 1 1 0 0 0

90 1 5 5 10 16 10 9 7 5 1 6 6 0 1 2 1 1 0 2 0 1 0 1

105 0 0 1 4 3 3 0 0 2 0 1 0 0 1 0 0 0 0 0 0 0 0 0

120 1 0 2 0 2 1 1 3 1 0 0 0 2 0 0 0 0 0 0 0 0 0 0

135 1 0 0 1 1 1 4 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0

150 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0

165 0 1 0 2 2 0 2 1 2 3 3 3 1 1 0 0 0 0 0 0 0 1 0

180 0 0 1 0 1 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0

240 0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0

255 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

285 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0

330 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

345 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

> data_test$pred_error = abs(data_test$pred - data_test$fht)

> rmse(data_test$pred, data_test$fht)

[1] 70.17025

> mean(data_test$pred_error)

[1] 50.07576

Code D.1: Output of the Tree-Augmented Naive Bayes algorithm applied to the rolling
stock failure data set, predicted with FHT bins of 15 minutes.

k-Nearest-Neighbors

Of the features mentioned in section 6.2.1, the time-variable night is replaced by a
continuous time-variable tijd begin, representing the reporting time of the incident.

# All variables used as evidence

> table(data_test$pred, data_test$fht)

15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 240 255 270 285 300 315 330 345

15 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

30 0 0 1 0 2 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

45 0 3 4 5 4 2 3 2 3 1 1 1 0 0 0 0 0 0 0 0 0 0 0

60 1 0 6 10 5 6 3 1 3 0 3 1 0 0 0 0 0 0 0 0 0 0 0

75 1 7 9 13 15 9 3 11 7 4 5 1 1 0 1 0 2 0 1 0 0 0 1

90 1 2 1 6 10 3 8 4 8 6 0 3 4 3 1 0 0 0 0 1 0 0 0

105 1 0 3 3 1 8 5 4 1 4 0 0 1 0 1 0 0 0 0 1 1 0 0

120 0 0 3 1 4 5 4 2 0 2 1 3 0 0 0 1 0 0 0 0 0 0 0

135 1 0 0 3 4 5 1 1 3 2 5 1 0 3 0 2 0 1 1 0 0 0 0

150 0 1 0 2 2 2 2 1 1 2 0 2 2 1 1 1 0 1 0 0 0 0 0

165 1 0 0 0 4 2 3 3 0 0 3 2 0 0 0 0 1 1 0 0 0 0 0

180 1 1 1 1 0 1 2 1 0 1 0 0 1 1 0 1 0 0 0 0 0 0 0

195 0 0 2 0 1 4 0 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0

210 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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225 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

240 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0

255 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

270 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

330 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

> rmse(data_test$pred, data_test$fht)

[1] 65.62202

> data_test$pred_error = abs(data_test$pred - data_test$fht)

> mean(data_test$pred_error)

[1] 49.35606

# Only initially known variables used as evidence

> table(data_test$pred, data_test$fht)

15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 240 255 270 285 300 315 330 345

15 0 1 1 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

30 0 0 0 1 1 1 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0

45 1 0 4 7 7 2 2 2 1 2 1 0 1 1 0 0 0 0 0 0 0 0 0

60 3 2 5 5 9 9 8 4 4 0 1 2 2 2 1 1 0 0 0 1 0 0 0

75 1 6 3 12 8 11 7 5 7 7 2 3 2 2 1 0 3 1 1 0 0 0 1

90 1 2 9 7 7 6 12 9 3 5 2 1 1 1 2 1 0 0 1 1 0 0 0

105 0 1 3 3 8 8 1 4 6 1 3 2 0 0 0 0 0 0 0 0 1 1 0

120 1 0 1 3 3 1 6 0 1 2 2 2 1 1 0 1 1 0 0 0 0 0 0

135 0 0 0 6 5 2 0 2 3 1 2 3 1 0 1 1 0 0 1 0 0 0 0

150 0 0 1 0 2 2 1 1 1 0 2 1 0 1 1 0 0 0 0 0 0 0 0

165 0 1 1 0 1 2 1 1 1 1 2 0 1 0 0 1 0 1 0 0 0 0 0

180 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

195 0 1 1 0 0 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

210 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

225 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0

240 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

255 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

> rmse(data_test$pred, data_test$fht)

[1] 71.42622

> data_test$pred_error = abs(data_test$pred - data_test$fht)

> mean(data_test$pred_error)

[1] 53.2197

Code D.2: Output of the kNN algorithm applied to the rolling stock data set. Predicted
with FHT bins of 15 minutes, k = 10, and l = 0.

D.2 section TOBS

Both the TAN and kNN algorithm are applied to the section TOBS twice: once with all
features presented in section 6.2.2, and once with only the features that are known when
the initial prognosis is made. For the second case, this meant deleting contract soort,
overlapping inc, Theoretisch vervangingsjaar, standplaats, tao ind, wind compass,
and oorzaak groep.
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Tree-Augmented Naive Bayes

# All variables used as evidence

> table(data_test$pred, data_test$fht)

15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 240 255 270 285 300 315 330 345

15 2 4 6 1 1 0 3 4 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0

30 4 10 9 5 3 3 1 0 1 1 0 1 2 0 1 1 0 0 0 0 0 0 0

45 2 9 14 17 11 7 3 4 3 2 1 1 0 1 1 2 2 1 1 1 1 0 0

60 5 5 7 7 4 8 5 5 3 3 3 2 0 1 0 1 0 0 1 0 0 0 0

75 1 7 4 3 2 4 3 3 4 2 2 0 1 1 1 0 0 0 0 1 0 0 0

90 1 0 2 1 4 1 1 0 1 2 1 2 2 0 0 0 0 0 0 0 0 0 0

105 0 0 0 0 0 0 2 0 1 0 1 1 2 0 0 0 0 0 0 0 0 1 0

120 1 0 1 4 4 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

135 1 0 2 0 0 1 1 1 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0

150 2 2 1 1 4 2 1 0 0 1 1 0 0 1 0 0 0 2 1 0 1 0 0

165 0 0 0 1 0 1 0 0 0 0 0 2 0 1 0 0 1 0 0 0 1 0 0

180 1 1 1 0 0 0 2 1 1 0 2 0 0 1 1 0 0 0 0 0 0 0 0

195 0 0 0 1 1 2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

210 2 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

225 0 0 0 1 0 0 0 1 0 2 0 0 0 0 0 0 0 0 0 0 0 1 0

240 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

255 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

285 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

300 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

315 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

330 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0

> rmse(data_test$pred, data_test$fht)

[1] 87.36146

> data_test$pred_error = abs(data_test$pred - data_test$fht)

> mean(data_test$pred_error)

[1] 63.34711
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# Only initially known variables used as evidence

> table(data_test$pred, data_test$fht)

15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 240 255 270 285 300 315 330 345

15 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

30 5 5 8 7 5 3 2 3 2 1 1 3 2 2 1 0 0 2 0 1 0 0 0

45 14 25 18 24 19 17 13 10 9 7 6 6 6 4 4 2 2 1 3 1 3 2 0

60 3 7 15 11 9 8 6 7 3 5 2 0 0 1 0 1 1 1 0 1 0 0 0

75 0 1 4 1 1 1 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0

90 0 0 2 1 0 1 3 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0

105 1 0 1 1 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0

120 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

150 0 0 1 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0

> rmse(data_test$pred, data_test$fht)

[1] 89.048

> data_test$pred_error = abs(data_test$pred - data_test$fht)

> mean(data_test$pred_error)

[1] 60.95041

Code D.3: Output of the Tree-Augmented Naive Bayes algorithm applied to the section
TOBS set, predicted with FHT bins of 15 minutes.

k-Nearest-Neighbors

Of the features mentioned in section 6.2.2, the time-variables night, contr working hours
and rush hour are replaced by a continuous time-variable tijd begin, representing the
reporting time of the incident. The warm-variable is brought back to the continuous
temp max temperature-variable where it was originally discretized from. The variable
Theoretisch vervangingsjaar, that was discretized according to section 6.2.2, is taken
as a numerical variable representing years of (re)placement.

# All variables used as evidence

> table(data_test$pred, data_test$fht)

15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 240 255 270 285 300 315 330 345

15 1 0 1 3 1 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0

30 5 9 7 9 5 5 1 2 2 1 1 1 1 1 1 0 2 1 1 0 0 1 0

45 2 7 13 12 10 6 4 7 6 0 5 2 3 1 2 3 1 1 0 0 1 0 0

60 7 11 11 6 9 4 11 4 2 6 5 4 2 3 0 0 0 0 0 1 0 0 1

75 2 4 6 8 2 4 3 3 0 1 0 2 2 0 1 0 0 0 0 2 1 0 0

90 3 1 1 3 4 5 0 3 2 1 0 0 0 1 0 0 0 0 0 0 0 0 0

105 2 4 6 2 4 3 3 0 0 2 0 0 0 0 0 1 0 0 1 1 0 1 0

120 1 1 1 1 0 0 1 1 1 1 0 1 0 1 1 0 0 2 0 0 0 0 0

150 0 0 0 0 0 0 0 0 2 1 0 0 0 1 0 0 0 0 0 0 0 0 0

165 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

180 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

210 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0

270 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

285 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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> rmse(data_test$pred, data_test$fht)

[1] 87.98713

> data_test$pred_error = abs(data_test$pred - data_test$fht)

> mean(data_test$pred_error)

[1] 61.57025

# Only initially known variables used as evidence

> table(data_test$pred, data_test$fht)

15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 240 255 270 285 300 315 330 345

15 2 1 3 0 6 1 0 2 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

30 3 7 9 3 4 3 4 3 2 2 1 2 0 0 1 1 0 0 0 0 0 1 0

45 8 12 14 22 4 11 11 4 6 5 1 3 3 4 1 1 1 1 1 1 1 0 1

60 6 13 5 6 7 7 5 6 3 3 3 3 2 2 1 1 1 1 0 1 0 0 0

75 1 2 6 2 7 5 1 4 3 0 2 0 2 0 0 1 1 0 1 0 0 0 0

90 0 4 4 1 2 1 1 0 0 1 1 0 0 2 0 0 0 0 0 0 1 1 0

105 1 0 3 6 3 1 0 0 0 0 1 0 1 0 0 0 1 1 0 2 0 1 0

120 0 0 2 2 2 0 1 3 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0

135 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

150 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0

165 1 0 1 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0

180 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

210 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

255 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

285 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

> rmse(data_test$pred, data_test$fht)

[1] 86.38756

> data_test$pred_error = abs(data_test$pred - data_test$fht)

> mean(data_test$pred_error)

[1] 61.4876

Code D.4: Output of the kNN algorithm applied to the section TOBS data set. Predicted
with FHT bins of 15 minutes, k = 20, and l = 0.

D.3 Collision/hindrance incidents

Both the TAN and kNN algorithm are applied to the section TOBS twice: once with
all features presented in section 6.2.3, and once with only the features that are known
when the initial prognosis is made. For the second case, this meant deleting tao ind and
counterpart.
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Tree-Augmented Naive Bayes

# All variables used as evidence

> table(data_test$pred, data_test$fht)

15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 255

15 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0

30 2 2 0 3 1 1 1 1 0 0 1 0 0 0 0 0

45 0 0 2 2 1 1 1 1 0 0 0 0 0 0 0 0

60 3 4 3 6 4 2 2 2 1 2 0 0 2 1 0 0

75 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1

90 0 2 5 1 2 2 1 1 2 0 0 0 0 0 0 0

105 0 0 0 0 1 1 0 0 1 0 1 1 0 0 0 0

120 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

135 1 2 0 0 0 1 2 1 0 1 0 1 0 0 0 0

165 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0

210 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

240 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

> rmse(data_test$pred, data_test$fht)

[1] 63.67643

> data_test$pred_error = abs(data_test$pred - data_test$fht)

> mean(data_test$pred_error)

[1] 47.1875

# Only initially known variables used as evidence

> table(data_test$pred, data_test$fht)

15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 255

30 2 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0

45 1 6 4 4 4 2 2 1 2 1 1 2 0 0 1 0

60 3 4 7 9 4 7 3 4 2 1 2 0 2 1 0 0

90 0 0 1 1 1 0 1 0 0 1 0 0 0 0 0 1

120 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

195 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0

> rmse(data_test$pred, data_test$fht)

[1] 63.19612

> data_test$pred_error = abs(data_test$pred - data_test$fht)

> mean(data_test$pred_error)

[1] 45.625

Code D.5: Output of the Tree-Augmented Naive Bayes algorithm applied to the colli-
sion/hindrance data set, predicted with FHT bins of 15 minutes.
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k-Nearest-Neighbors

Of the features mentioned in section 6.2.3, the time-variables night and working hours
are replaced by a continuous time-variable tijd begin, representing the reporting time
of the incident.

# All variables used as evidence

> table(data_test$pred, data_test$fht)

15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 255

15 1 0 0 0 0 1 1 0 1 0 0 0 0 1 0 0

30 1 1 2 3 4 2 0 0 0 1 0 0 0 0 1 0

45 1 3 2 1 3 1 1 0 0 1 0 0 0 0 0 0

60 1 2 3 4 2 1 3 2 2 0 0 0 1 0 0 0

75 1 2 1 3 0 2 1 2 0 0 0 1 0 0 0 1

90 1 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0

105 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0

120 0 0 0 1 0 0 0 1 0 1 0 0 1 0 0 0

135 1 1 0 1 0 0 0 1 1 0 0 1 0 0 0 0

150 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0

165 0 0 0 0 1 2 1 0 0 0 1 0 0 0 0 0

180 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

> rmse(data_test$pred, data_test$fht)

[1] 62.28087

> data_test$pred_error = abs(data_test$pred - data_test$fht)

> mean(data_test$pred_error)

[1] 47.03125

# Only initially known variables used as evidence

> table(data_test$pred, data_test$fht)

15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 255

15 0 0 1 0 1 2 0 0 1 0 1 0 0 0 0 0

30 0 0 1 1 3 1 1 0 0 0 0 0 0 0 0 0

45 2 2 2 2 1 1 0 0 2 2 1 0 1 0 0 0

60 0 4 5 4 1 0 1 0 0 0 0 0 1 1 0 0

75 0 1 1 1 3 2 3 3 0 0 0 0 0 0 0 0

90 2 3 2 3 1 1 1 2 1 1 1 0 0 0 1 1

105 0 1 0 1 0 2 0 0 0 0 0 1 0 0 0 0

120 2 1 0 2 1 0 0 1 0 0 0 0 0 0 0 0

150 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0

180 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

> rmse(data_test$pred, data_test$fht)

[1] 62.99181

> data_test$pred_error = abs(data_test$pred - data_test$fht)

> mean(data_test$pred_error)

[1] 47.65625

Code D.6: Output of the kNN algorithm applied to the collision/hindrance data set.
Predicted with FHT bins of 15 minutes, k = 10, and l = 0.

78



D.4 Test sets for comparison

For both section TOBS incidents and collision/hindrance incidents, I randomly selected
10 data points occurring in both Spoorweb and my SAP-based data set. The outputs of
the code in this section contain error rates of my predictions of these 20 data points, using
both the TAN and kNN algorithm, and the predictions of CQM for the same incidents.

Tree-Augmented Naive Bayes

# Section TOBS data, all variables

> table(data_test$pred, data_test$fht)

30 45 60 105 120 165 195 300

30 1 0 0 0 0 1 0 0

45 0 0 0 1 0 0 0 1

60 0 1 0 0 0 0 1 0

75 1 0 0 0 1 0 0 0

120 0 0 1 0 0 0 0 0

135 0 0 0 1 0 0 0 0

> rmse(data_test$pred, data_test$fht)

[1] 106.7005

> data_test$pred_error = abs(data_test$pred - data_test$fht)

> mean(data_test$pred_error)

[1] 78

# Section TOBS data, only initially known variables

> table(data_test$pred, data_test$fht)

30 45 60 105 120 165 195 300

30 0 0 0 0 1 0 1 0

45 1 1 1 1 0 1 0 0

60 1 0 0 1 0 0 0 1

> rmse(data_test$pred, data_test$fht)

[1] 106.9112

> data_test$pred_error = abs(data_test$pred - data_test$fht)

> mean(data_test$pred_error)

[1] 78

# Collision/hindrance data, all variables

> table(data_test$pred, data_test$fht)

30 45 60 75 150

45 1 1 0 0 0

60 1 0 1 0 1

75 1 0 1 0 0

90 1 0 0 0 0

135 1 0 0 0 0

165 0 0 0 1 0

> rmse(data_test$pred, data_test$fht)

[1] 58.48077

> data_test$pred_error = abs(data_test$pred - data_test$fht)

> mean(data_test$pred_error)

[1] 45
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# Collision/hindrance data, only initially known variables

> table(data_test$pred, data_test$fht)

30 45 60 75 150

45 1 1 0 0 0

60 3 0 2 1 1

75 1 0 0 0 0

> rmse(data_test$pred, data_test$fht)

[1] 36.43487

> data_test$pred_error = abs(data_test$pred - data_test$fht)

> mean(data_test$pred_error)

[1] 25.5

Code D.7: Prognoses made by the Tree-Augmented Naive Bayes algorithm, for 10 data
points of the section TOBS data and 10 points of collision/hindrance data, to be compared
with the CQM prognoses.

k-Nearest-Neighbors

# Section TOBS data, all variables

> table(data_test$pred, data_test$fht)

30 45 60 105 120 165 195 300

15 0 0 0 0 1 0 0 0

30 0 0 0 0 0 0 1 0

45 0 1 0 1 0 1 0 0

75 1 0 1 0 0 0 0 0

90 0 0 0 1 0 0 0 1

105 1 0 0 0 0 0 0 0

> rmse(data_test$pred, data_test$fht)

[1] 104.1393

> data_test$pred_error = abs(data_test$pred - data_test$fht)

> mean(data_test$pred_error)

[1] 81

# Section TOBS data, only initially known variables

> table(data_test$pred, data_test$fht)

30 45 60 105 120 165 195 300

30 0 0 0 0 1 0 1 0

45 1 1 0 1 0 0 0 0

60 0 0 1 0 0 0 0 0

75 0 0 0 0 0 1 0 0

90 0 0 0 1 0 0 0 1

120 1 0 0 0 0 0 0 0

> rmse(data_test$pred, data_test$fht)

[1] 99.83737

> data_test$pred_error = abs(data_test$pred - data_test$fht)

> mean(data_test$pred_error)

[1] 73.5
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# Collision/hindrance data, all variables

> table(data_test$pred, data_test$fht)

30 45 60 75 150

30 0 1 0 0 0

45 1 0 0 0 0

60 0 0 0 1 1

75 1 0 1 0 0

105 2 0 0 0 0

135 0 0 1 0 0

165 1 0 0 0 0

> rmse(data_test$pred, data_test$fht)

[1] 67.91539

> data_test$pred_error = abs(data_test$pred - data_test$fht)

> mean(data_test$pred_error)

[1] 55.5

# Collision/hindrance data, only initially known variables

> table(data_test$pred, data_test$fht)

30 45 60 75 150

30 1 0 0 0 0

45 1 0 0 1 0

60 0 0 2 0 0

75 0 0 0 0 1

90 0 1 0 0 0

105 2 0 0 0 0

150 1 0 0 0 0

> rmse(data_test$pred, data_test$fht)

[1] 58.67282

> data_test$pred_error = abs(data_test$pred - data_test$fht)

> mean(data_test$pred_error)

[1] 43.5

Code D.8: Prognoses made by the k-Nearest-Neighbors algorithm, for 10 data points of
the section TOBS data and 10 points of collision/hindrance data, to be compared with the
CQM prognoses.

Prognosis CQM

# CQM prognosis for section TOBS data

> table(data_test$prog_cqm, data_test$fht)

30 45 60 105 120 165 195 300

124 1 0 0 1 1 0 0 0

132 0 1 1 1 0 1 0 1

168 1 0 0 0 0 0 1 0

> rmse(data_test$prog_cqm, data_test$fht)

[1] 84.72367

> data_test$cqm_error = abs(data_test$prog_cqm - data_test$fht)

> mean(data_test$cqm_error)

[1] 66.9
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# CQM prognosis for collision/hindrance data

> table(data_test$prog_cqm, data_test$fht)

30 45 60 75 150

49 1 0 0 0 0

134 1 0 0 1 0

174 1 0 0 0 1

177 2 0 0 0 0

186 0 1 1 0 0

582 0 0 1 0 0

> sqrt(mse(data_test$prog_cqm, data_test$fht))

[1] 196.8322

> data_test$cqm_error = abs(data_test$prog_cqm - data_test$fht)

> mean(data_test$cqm_error)

[1] 143.3

Code D.9: Prognoses made by the Decision Tree model of CQM, for 10 randomly selected
data points of the section TOBS data and 10 points of collision/hindrance data.

D.5 Pessimistic prediction

As explained in section 8.2.3, it is better to predict FHT pessimistically than optimisti-
cally. To the output shown in this section, 30 minutes is added to every prediction.
This barely increases the prediction errors, but it does decrease the number of under-
estimations.

D.5.1 Rolling stock failure

Both the TAN and kNN algorithm are applied to the rolling stock failure data twice:
once with all features presented in section 6.2.1, and once with only the features that
are known when the initial prognosis is made. For the second case, this meant deleting
tis, vsm aangepast, RangeerDrp, and Act. To decrease under-estimation, 30 minutes
are added to all predicted FHTs.

Tree-Augmented Naive Bayes

# All variables used as evidence

> table(data_test$pred, data_test$fht)

15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 240 255 270 285 300 315 330 345

45 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

60 0 0 1 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0

75 0 0 0 3 2 3 1 2 1 2 0 0 1 1 0 0 0 0 0 0 0 0 0

90 2 2 9 8 13 7 10 3 2 2 0 0 0 1 0 0 0 0 0 0 0 0 0

105 2 8 13 18 16 21 11 6 8 3 6 3 1 1 0 1 0 0 1 0 0 0 1

120 2 2 4 5 7 4 5 9 4 6 3 5 2 1 1 0 0 2 0 1 0 0 0

135 1 2 0 2 4 1 2 3 4 3 2 3 1 1 0 1 1 0 0 0 0 0 0

150 0 0 2 1 3 1 1 2 2 0 0 0 0 1 1 1 0 0 0 0 0 0 0
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165 0 0 0 4 0 0 2 2 1 1 0 2 2 1 0 1 0 0 0 0 1 0 0

180 0 0 0 0 1 3 1 1 1 0 1 0 1 0 0 0 1 0 0 0 0 1 0

195 0 0 1 0 3 6 4 1 2 4 3 1 1 0 2 1 0 0 1 1 0 0 0

210 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 1 0 0 0 0

225 0 0 0 1 0 1 0 1 0 0 1 0 0 1 2 0 2 1 0 0 0 0 0

240 0 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

255 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

270 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0

285 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

330 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

345 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

360 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

# over-estimation: 238, under-estimation: 122, correct: 36

> rmse(data_test$pred, data_test$fht)

[1] 69.57664

> data_test$pred_error = abs(data_test$pred - data_test$fht)

> mean(data_test$pred_error)

[1] 52.19697

# Only initially known variables used as evidence

> table(data_test$pred, data_test$fht)

15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 240 255 270 285 300 315 330 345

60 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0

75 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

90 0 2 3 4 5 3 4 1 0 0 0 1 1 0 1 0 0 0 0 0 1 0 1

105 4 6 17 34 29 30 22 18 16 11 8 6 6 6 3 3 1 1 1 1 0 0 0

120 0 4 8 6 14 9 9 5 4 9 4 2 2 2 2 0 1 0 0 0 0 0 0

135 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0

150 1 1 2 0 5 2 1 3 3 0 0 1 2 0 0 0 0 0 0 1 0 0 0

165 1 1 0 0 0 0 2 0 0 1 1 1 0 0 0 0 1 0 0 0 0 0 0

195 0 0 0 1 0 1 1 2 1 1 5 2 0 0 0 1 1 2 1 0 0 1 0

210 0 0 0 0 0 0 0 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

270 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

285 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

360 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

375 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

# over-estimation: 230, under-estimation: 135, correct: 31

> rmse(data_test$pred, data_test$fht)

[1] 64.69772

> data_test$pred_error = abs(data_test$pred - data_test$fht)

> mean(data_test$pred_error)

[1] 49.20455

Code D.10: Output of the Tree-Augmented Naive Bayes algorithm applied to the rolling
stock failure data set, predicted with FHT bins of 15 minutes. To all predicted FHTs, 30
minutes are added to decrease under-estimation.
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k-Nearest-Neighbors

Of the features mentioned in section 6.2.1, the time-variable night is replaced by a
continuous time-variable tijd begin, representing the reporting time of the incident.

# All variables used as evidence

> table(data_test$pred, data_test$fht)

15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 240 255 270 285 300 315 330 345

45 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

60 0 0 0 3 2 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

75 0 1 3 3 6 2 3 1 0 1 3 0 1 1 0 0 0 1 0 0 0 0 0

90 0 6 5 11 12 7 9 8 2 2 2 2 2 0 1 0 0 0 0 0 0 0 0

105 4 2 9 7 10 15 4 3 7 4 1 3 2 2 1 1 0 0 0 0 1 0 0

120 1 2 6 7 6 9 1 4 5 4 2 3 2 0 2 1 2 1 0 0 0 0 0

135 0 2 2 5 5 6 9 3 2 1 5 2 1 0 0 2 1 0 0 0 0 0 0

150 0 1 1 2 3 3 4 1 2 3 0 1 0 3 0 1 0 0 1 0 0 1 0

165 1 0 3 3 5 1 2 3 4 1 3 0 0 0 0 0 0 0 0 0 0 0 0

180 1 0 1 2 1 2 5 2 1 3 0 0 3 1 1 0 1 0 0 1 0 0 1

195 0 0 0 1 1 1 1 1 1 0 0 1 0 1 0 0 0 1 1 1 0 0 0

210 0 0 0 0 0 0 0 1 3 1 0 1 0 0 1 0 0 0 1 0 0 0 0

225 0 0 0 0 0 1 1 2 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0

240 0 0 0 1 1 0 0 1 1 2 1 0 0 1 0 0 0 0 0 0 0 0 0

# over-estimation: 237, under-estimation: 136, correct: 32

> rmse(data_test$pred, data_test$fht)

[1] 65.34437

> data_test$pred_error = abs(data_test$pred - data_test$fht)

> mean(data_test$pred_error)

[1] 52.31061

# Only initially known variables used as evidence

> table(data_test$pred, data_test$fht)

15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 240 255 270 285 300 315 330 345

45 0 0 1 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

60 1 0 0 1 5 1 1 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0

75 0 0 2 5 6 2 2 2 3 2 1 1 2 2 1 0 0 0 0 0 0 0 0

90 1 5 4 4 14 6 7 9 4 1 0 3 2 2 0 0 1 0 0 0 1 0 0

105 1 3 11 8 10 11 6 4 7 5 8 1 2 1 0 2 0 0 0 1 0 0 0

120 1 1 4 8 7 9 6 4 6 4 0 3 0 1 1 1 0 2 1 0 0 0 0

135 1 1 2 6 3 3 3 4 3 2 3 0 0 0 1 1 1 0 0 0 0 0 0

150 2 1 0 6 1 3 3 4 2 1 3 0 0 0 1 0 0 0 0 0 0 1 0

165 0 1 3 2 4 4 1 1 0 1 0 3 1 1 1 0 0 0 1 0 0 0 1

180 0 1 1 1 1 1 3 0 1 0 1 2 2 1 0 0 1 0 0 0 0 0 0

195 0 1 1 3 0 4 4 0 1 4 0 1 0 0 0 1 0 1 1 1 0 0 0

210 0 0 0 1 1 1 2 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0

225 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0

240 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

255 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

270 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

300 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

315 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

# over-estimation: 227, under-estimation: 139, correct: 31
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> rmse(data_test$pred, data_test$fht)

[1] 70.1176

> data_test$pred_error = abs(data_test$pred - data_test$fht)

> mean(data_test$pred_error)

[1] 54.88636

Code D.11: Output of the kNN algorithm applied to the rolling stock data set. Predicted
with FHT bins of 15 minutes, k = 10, and l = 0. To all predicted FHTs, 30 minutes are
added to decrease under-estimation.

D.5.2 section TOBS

Both the TAN and kNN algorithm are applied to the section TOBS twice: once with all
features presented in section 6.2.2, and once with only the features that are known when
the initial prognosis is made. For the second case, this meant deleting contract soort,
overlapping inc, Theoretisch vervangingsjaar, standplaats, tao ind, wind compass,
and oorzaak groep. To decrease under-estimation, 30 minutes are added to all predicted
FHTs.

Tree-Augmented Naive Bayes

# All variables used as evidence

> table(data_test$pred, data_test$fht)

15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 240 255 270 285 300 315 330 345

45 0 3 2 2 1 1 1 1 0 1 0 0 0 1 0 0 1 0 0 0 0 0 1

60 3 6 8 7 6 1 4 3 2 1 0 1 0 0 1 0 0 0 0 0 1 0 0

75 7 11 9 15 5 8 5 4 2 0 3 0 2 1 0 1 0 0 0 1 1 1 0

90 2 9 12 7 10 5 5 4 4 4 1 2 2 2 2 1 0 2 0 1 0 1 0

105 1 3 6 7 4 2 3 3 1 2 2 0 0 0 0 1 0 0 1 0 0 0 0

120 1 0 4 1 0 1 3 1 1 2 0 0 1 0 1 0 1 1 1 1 0 0 0

135 0 1 0 1 2 1 0 0 1 0 0 3 1 2 0 0 0 0 0 0 0 1 0

150 0 1 1 1 2 0 0 1 1 0 3 0 1 0 0 1 0 0 0 1 0 0 0

165 0 1 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

180 4 0 1 1 0 3 1 0 0 2 0 0 0 1 0 0 0 0 1 0 1 0 0

195 2 1 1 1 2 2 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

210 0 2 0 1 1 0 1 1 1 0 0 1 1 1 0 0 1 0 0 0 0 0 0

225 0 0 1 0 0 2 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

240 3 0 1 0 1 1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0

255 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0

285 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

300 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

315 0 0 1 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

330 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

345 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

# over-estimation: 210, under-estimation: 127, correct: 26
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> rmse(data_test$pred, data_test$fht)

[1] 91.15648

> data_test$pred_error = abs(data_test$pred - data_test$fht)

> mean(data_test$pred_error)

[1] 66.77686

# Only initially known variables used as evidence

> table(data_test$pred, data_test$fht)

15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 240 255 270 285 300 315 330 345

45 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

60 1 2 4 9 3 5 2 1 1 0 1 1 2 0 0 0 1 0 1 0 0 0 0

75 16 24 25 19 17 13 15 12 8 6 7 2 4 3 3 2 0 1 0 2 2 3 0

90 5 6 14 8 12 6 4 6 2 3 2 1 0 0 2 1 1 3 1 2 0 0 0

105 0 3 1 6 2 4 2 2 2 1 1 3 1 3 0 0 2 0 0 0 1 0 1

120 0 2 1 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

135 1 2 2 0 0 0 0 1 1 1 0 2 1 2 0 0 0 0 0 0 0 0 0

150 0 0 0 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0

195 0 0 1 2 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

285 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

# over-estimation: 171, under-estimation: 155, correct: 37

> rmse(data_test$pred, data_test$fht)

[1] 75.92406

> data_test$pred_error = abs(data_test$pred - data_test$fht)

> mean(data_test$pred_error)

[1] 54.87603

Code D.12: Output of the Tree-Augmented Naive Bayes algorithm applied to the section
TOBS set, predicted with FHT bins of 15 minutes. To all predicted FHTs, 30 minutes are
added to decrease under-estimation.

k-Nearest-Neighbors

Of the features mentioned in section 6.2.2, the time-variables night, contr working hours
and rush hour are replaced by a continuous time-variable tijd begin, representing the
reporting time of the incident. The warm-variable is brought back to the continuous
temp max temperature-variable where it was originally discretized from. The variable
Theoretisch vervangingsjaar, that was discretized according to section 6.2.2, is taken
as a numerical variable representing years of (re)placement.

# All variables used as evidence

> table(data_test$pred, data_test$fht)

15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 240 255 270 285 300 315 330 345

45 3 1 3 1 1 0 0 1 2 1 1 0 0 0 0 0 0 0 0 1 1 0 0

60 3 8 8 6 6 6 5 3 2 2 3 1 1 0 0 0 0 0 0 0 1 0 0

75 4 9 10 15 7 7 8 3 2 3 1 3 0 2 1 1 1 0 2 0 0 0 0

90 5 8 12 12 12 4 5 6 6 2 3 3 1 4 0 1 0 2 0 0 1 2 0

105 2 3 4 5 3 5 4 5 0 2 2 0 2 0 0 0 1 1 0 0 0 1 0

120 3 4 6 2 3 1 1 2 0 0 0 1 1 2 1 1 0 0 0 1 0 0 0
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135 0 2 4 1 1 4 1 0 1 1 1 1 1 0 2 1 1 0 1 2 0 0 0

150 0 1 1 2 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 1

165 2 3 0 0 1 0 0 0 0 1 0 1 0 0 1 0 1 1 0 0 0 0 0

180 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

195 0 0 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

210 0 0 0 0 0 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

225 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

240 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

# over-estimation: 187, under-estimation: 148, correct: 28

> rmse(data_test$pred, data_test$fht)

[1] 77.35557

> data_test$pred_error = abs(data_test$pred - data_test$fht)

> mean(data_test$pred_error)

[1] 58.01653

# Only initially known variables used as evidence

> table(data_test$pred, data_test$fht)

15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 240 255 270 285 300 315 330 345

45 1 2 2 2 2 0 0 0 2 3 1 2 2 0 0 0 0 0 0 0 1 0 0

60 6 6 10 7 3 1 4 3 2 2 1 0 2 0 2 1 0 0 0 0 0 1 0

75 9 12 18 19 4 7 9 7 3 2 5 2 3 0 1 0 2 0 1 1 0 0 0

90 1 8 8 8 8 8 4 9 2 3 1 1 0 4 1 2 0 0 0 2 0 1 0

105 3 3 4 3 6 2 3 1 3 0 1 1 0 0 0 0 1 2 0 1 1 1 1

120 2 4 2 1 1 2 2 1 2 1 1 2 1 3 0 1 0 0 0 0 0 0 0

135 1 1 4 0 5 3 0 1 1 0 1 1 0 0 1 0 1 2 0 0 0 0 0

150 0 2 0 2 4 5 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0

165 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

180 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

195 0 0 0 1 2 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

210 0 1 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0

225 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

285 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

# over-estimation: 193, under-estimation: 146, correct: 26

> rmse(data_test$pred, data_test$fht)

[1] 78.52067

> data_test$pred_error = abs(data_test$pred - data_test$fht)

> mean(data_test$pred_error)

[1] 59.13223

Code D.13: Output of the kNN algorithm applied to the section TOBS data set. Predicted
with FHT bins of 15 minutes, k = 20, and l = 0. To all predicted FHTs, 30 minutes are
added to decrease under-estimation.

D.5.3 Collision/hindrance incidents

Both the TAN and kNN algorithm are applied to the section TOBS twice: once with
all features presented in section 6.2.3, and once with only the features that are known
when the initial prognosis is made. For the second case, this meant deleting tao ind
and counterpart. To decrease under-estimation, 30 minutes are added to all predicted
FHTs.
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Tree-Augmented Naive Bayes

# All variables used as evidence

> table(data_test$pred, data_test$fht)

15 30 45 60 75 90 105 120 135 150 165 180 195 210 225

45 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0

60 1 1 0 3 2 1 3 1 0 0 0 1 0 0 0

75 1 1 2 0 1 1 0 0 0 0 0 0 0 1 0

90 2 5 5 9 3 5 0 3 1 1 1 0 0 0 0

105 2 2 0 0 1 2 0 0 1 2 1 0 1 0 1

120 1 1 3 1 3 1 0 2 0 1 0 0 0 0 0

135 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0

150 0 1 1 0 0 0 1 0 0 0 1 1 0 0 0

165 0 1 1 2 0 0 0 1 0 1 0 0 0 0 0

225 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0

255 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

270 0 0 0 0 0 0 1 0 2 0 0 0 0 0 0

# over-estimation: 63, under-estimation: 28, correct: 12

> rmse(data_test$pred, data_test$fht)

[1] 65.53513

> data_test$pred_error = abs(data_test$pred - data_test$fht)

> mean(data_test$pred_error)

[1] 51.91176

# Only initially known variables used as evidence

> table(data_test$pred, data_test$fht)

15 30 45 60 75 90 105 120 135 150 165 180 195 210 225

45 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0

60 1 1 3 2 3 0 1 3 1 2 2 0 0 0 0

75 1 1 1 2 2 2 1 0 1 0 0 1 0 0 0

90 3 6 6 11 1 5 2 3 1 2 1 1 1 1 0

105 1 1 0 0 3 2 1 0 0 0 0 0 0 0 1

120 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0

135 1 1 2 1 2 2 0 0 0 1 0 0 0 0 0

150 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0

330 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

# over-estimation: 58, under-estimation: 33, correct: 11

> rmse(data_test$pred, data_test$fht)

[1] 62.80221

> data_test$pred_error = abs(data_test$pred - data_test$fht)

> mean(data_test$pred_error)

[1] 47.05882

Code D.14: Output of the Tree-Augmented Naive Bayes algorithm applied to the colli-
sion/hindrance data set, predicted with FHT bins of 15 minutes. To all predicted FHTs, 30
minutes are added to decrease under-estimation.
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k-Nearest-Neighbors

Of the features mentioned in section 6.2.3, the time-variables night and working hours
are replaced by a continuous time-variable tijd begin, representing the reporting time
of the incident.

# All variables used as evidence

> table(data_test$pred, data_test$fht)

15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 255

45 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

60 1 1 2 2 0 1 1 0 0 1 1 0 1 0 0 0

75 1 2 0 1 4 1 1 2 0 0 0 0 0 1 0 0

90 2 5 4 6 3 3 4 0 0 1 1 0 1 0 0 0

105 2 1 2 1 2 1 1 2 0 1 0 3 0 0 1 0

120 0 1 2 5 2 1 0 2 1 0 0 0 1 0 0 0

135 1 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0

150 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 1

165 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0

180 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

195 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

225 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0

# over-estimation: 61, under-estimation: 28, correct: 14

> rmse(data_test$pred, data_test$fht)

[1] 62.68855

> data_test$pred_error = abs(data_test$pred - data_test$fht)

> mean(data_test$pred_error)

[1] 49.66019

# Only initially known variables used as evidence

> table(data_test$pred, data_test$fht)

15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 255

45 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

60 0 3 0 2 2 0 2 1 0 1 0 0 0 0 0 0

75 1 2 3 1 1 3 1 0 0 0 1 0 1 0 0 1

90 2 1 7 7 2 5 4 3 1 1 0 1 0 1 0 0

105 2 4 2 0 2 1 0 1 2 2 1 1 1 0 0 0

120 0 1 0 2 2 0 0 0 0 0 0 0 1 0 1 0

135 1 0 0 0 2 1 0 0 0 0 1 1 0 0 0 0

150 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0

165 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

180 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

195 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

210 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

300 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

# over-estimation: 58, under-estimation: 37, correct: 8

> rmse(data_test$pred, data_test$fht)
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[1] 64.45816

> data_test$pred_error = abs(data_test$pred - data_test$fht)

> mean(data_test$pred_error)

[1] 50.67961

Code D.15: Output of the kNN algorithm applied to the collision/hindrance data set.
Predicted with FHT bins of 15 minutes, k = 10, and l = 0. To all predicted FHTs, 30
minutes are added to decrease under-estimation.

D.5.4 Test sets for comparison

For both section TOBS incidents and collision/hindrance incidents, I randomly selected
10 data points occurring in both Spoorweb and my SAP-based data set. The outputs of
the code in this section contain error rates of my predictions of these 20 data points, using
both the TAN and kNN algorithm, and the predictions of CQM for the same incidents.
To decrease under-estimation, 30 minutes are added to all predicted FHTs.

Tree-Augmented Naive Bayes

# Section TOBS data, all variables

> table(data_test$pred, data_test$fht)

30 45 60 105 120 165 195 300

60 1 0 0 0 0 1 0 0

75 0 1 0 1 0 0 0 0

90 0 0 0 0 0 0 1 1

105 1 0 0 0 1 0 0 0

150 0 0 1 0 0 0 0 0

165 0 0 0 1 0 0 0 0

# over-estimation: 5, under-estimation: 5, correct: 0

> rmse(data_test$pred, data_test$fht)

[1] 92.9516

> data_test$pred_error = abs(data_test$pred - data_test$fht)

> mean(data_test$pred_error)

[1] 75

# Section TOBS data, only initially known variables

> table(data_test$pred, data_test$fht)

30 45 60 105 120 165 195 300

60 0 0 0 0 1 0 1 0

75 1 1 1 1 0 1 0 0

90 1 0 0 1 0 0 0 1

# over-estimation: 4, under-estimation: 6, correct: 0

> rmse(data_test$pred, data_test$fht)

[1] 90.49862

> data_test$pred_error = abs(data_test$pred - data_test$fht)

> mean(data_test$pred_error)

[1] 69
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# Collision hindrance data, all variables

> table(data_test$pred, data_test$fht)

30 45 60 75 150

75 1 1 0 0 0

90 1 0 1 0 1

105 1 0 1 0 0

120 1 0 0 0 0

165 1 0 0 0 0

195 0 0 0 1 0

# over-estimation: 9, under-estimation: 1, correct: 0

> rmse(data_test$pred, data_test$fht)

[1] 77.0714

> data_test$pred_error = abs(data_test$pred - data_test$fht)

> mean(data_test$pred_error)

[1] 69

# Collision hindrance data, only initially known variables

> table(data_test$pred, data_test$fht)

30 45 60 75 150

75 1 1 0 0 0

90 3 0 2 1 1

105 1 0 0 0 0

# over-estimation: 9, under-estimation: 1, correct: 0

> rmse(data_test$pred, data_test$fht)

[1] 49.97499

> data_test$pred_error = abs(data_test$pred - data_test$fht)

> mean(data_test$pred_error)

[1] 46.5

Code D.16: Prognoses made by the Tree-Augmented Naive Bayes algorithm, for 10 data
points of the section TOBS data and 10 points of collision/hindrance data. To all predicted
FHTs, 30 minutes are added to decrease under-estimation.

k-Nearest-Neighbors

# Section TOBS data, all variables

> table(data_test$pred, data_test$fht)

30 45 60 105 120 165 195 300

75 1 1 0 1 0 1 0 0

90 1 0 0 0 0 0 0 0

105 0 0 0 0 1 0 1 0

120 0 0 0 0 0 0 0 1

165 0 0 1 0 0 0 0 0

315 0 0 0 1 0 0 0 0

# over-estimation: 5, under-estimation: 5, correct: 0
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> rmse(data_test$pred, data_test$fht)

[1] 105.5344

> data_test$pred_error = abs(data_test$pred - data_test$fht)

> mean(data_test$pred_error)

[1] 85.5

# Section TOBS data, only initially known variables

> table(data_test$pred, data_test$fht)

30 45 60 105 120 165 195 300

45 0 0 0 1 0 0 0 0

75 1 1 0 0 0 0 0 0

90 1 0 0 0 0 0 0 0

120 0 0 0 1 1 0 1 0

135 0 0 0 0 0 0 0 1

150 0 0 1 0 0 1 0 0

# over-estimation: 5, under-estimation: 4, correct: 1

> rmse(data_test$pred, data_test$fht)

[1] 71.78092

> data_test$pred_error = abs(data_test$pred - data_test$fht)

> mean(data_test$pred_error)

[1] 55.5

# Collision/hindrance data, all variables

> table(data_test$pred, data_test$fht)

30 45 60 75 150

45 0 1 1 0 0

75 1 0 0 0 0

90 0 0 1 0 0

105 1 0 0 0 0

135 1 0 0 0 0

165 1 0 0 0 0

180 0 0 0 0 1

195 1 0 0 1 0

# over-estimation: 8, under-estimation: 1, correct: 1

> rmse(data_test$pred, data_test$fht)

[1] 89.74965

> data_test$pred_error = abs(data_test$pred - data_test$fht)

> mean(data_test$pred_error)

[1] 72

# Collision/hindrance data, only initially known variables

> table(data_test$pred, data_test$fht)

30 45 60 75 150

60 1 0 0 0 0

75 1 1 0 1 0

90 0 0 2 0 0

135 2 0 0 0 0

165 1 0 0 0 0

180 0 0 0 0 1
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# over-estimation: 9, under-estimation: 0, correct: 1

> rmse(data_test$pred, data_test$fht)

[1] 68.41053

> data_test$pred_error = abs(data_test$pred - data_test$fht)

> mean(data_test$pred_error)

[1] 54

Code D.17: Prognoses made by the k-Nearest-Neighbors algorithm, for 10 data points of
the section TOBS data and 10 points of collision/hindrance data. To all predicted FHTs,
30 minutes are added to decrease under-estimation.
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