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Introduction

In this thesis we will treat the rectilinear crossing number, a specialization
of the concept of the crossing number of a graph. In their paper “Bounds
for Rectilinear Crossing Numbers” [1] published 1993, Daniel Bienstock and
Nathiel Dean proved a number of interesting results. They characterise the
behaviour of the rectilinear crossing number by the normal crossing number.
We will showcase two of their results and undertake the effort to make the
proofs of these results both more rigorous and readable. Both discussed results
are presented in chapters 2 and 3, respectively.

If you have a basic introduction into graph theory including the crossing
number, this will greatly ease your reading. For a more extended introduction
on graph theory its advised to read the Chapters 1, 2, 3 and 10 of the book
Graph Theory by Bondy and Murty . Especially the paragraphs 1 trough 4 of
chapter 10, on the subject of planar graphs, are essential in understanding this
thesis.

However, we concisely introduce all used theory. Throughout the thesis
figures are added to visualize the proofs in the hope the thesis gains clarity for
the reader.
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Chapter 1

Basics of Graph Theory

A graph G is in its most basic form an set of vertices V (G) that are connected
by so called edges e = {v1, v2}. All these edges together form the edge set of
G , E(G). The graph is formally defined by only these two sets, i.e. G =
{V (G), E(G)}. By the edges or vertices of a graph G we will mean its edge or
vertex set.

A subgraph of a graph is a subset of its vertex and edge sets such that every
edge in the edge subset is incident with two vertices in the vertex subset.

We will call a graph G a subdivision of another graph H when G can be
obtained from H by repeatedly adding vertices in the middle of an edge. That
is by replacing a path v1ev2 by v1e1v3e2v2.

A graph is simple if every edge connects two distinct vertices (i.e. is not a
loop) and every pair of vertices is connected by at most one edge. In this thesis
we will only concern ourselves with simple graphs.

By a path we will mean a sequence of edges and vertices, e.g. v1e1v2e2v3e3v4,
since we’re dealing with a simple graph this can be simplified without ambiguity
to v1v2v3v4. If the begin and end vertices of such a path coincide, i.e. v1 = v4,
the we will call such a path closed. A cycle is a closed path in which every
vertex is visited at most one time, it hence contains no crossings.

Connectedness We call a graph connected if there is a path between every
pair of vertices. A graph is 2-connected if this is still the case after the removal
of one arbitrary vertex. Generally a graph is k-connected if the graph is still
connected after we remove an arbitrary set of k − 1 vertices.

A vertex cutset, or in this thesis also simply cutset1 is a set S of vertices
such that after their removal from G the remaining graph G\S is not connected.
By a k-cutset we mean a cutset containing k vertices. A k-connected graph by
definition has no (k − 1)-cutsets.

1Please be aware that cutset can also refer to an edge cutset, which is the same concept
but then for edges.
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5

A connected component of a graph is an maximal but still connected sub-
graph of this graph.

In Figure 1.1 we see a connected graph G. This graph however is not 2-
connected, removing u disconnects v from the rest of the graph. If we remove s
and t we obtain a nonconnected graph G\{s, t} with 2 connected components,
one on the left and the other on the right of the line s− t.

s

t

c

b

a

x

y

u v

Figure 1.1: (A drawing of) a connected graph G

Drawing a graph We can represent graphs graphically in the plane (hence
their name). If we do this we will say we have made a drawing of said graph.
We do this by assigning a location to every vertex and subsequently connecting
these with a curve if two vertices occur as endpoints for an edge of this graph.
There is an endless amount of different drawings for the same graph. When
confusion is not possible we will identify a graph with it’s drawing.

The crossing number When two edges in a drawing occupy the same point
in the plane (except if it’s the endpoint of both vertices) we will say that these
edges have a crossing in that drawing. The crossing number of a graph G,
denoted by cr(G) is the minimal number of crossings for any drawing of that
graph. In other words

cr(G) = min
D drawing of G

{number of crossings in D} .

If three edges cross in one point we will count this as three crossings, one crossing
for every pair of edges that crosses. We will say that a graph is maximal with
respect to the crossing number when it not possible to add an edge to this graph
without increasing the crossing number.

We can now define the main subject of this thesis. The rectilinear crossing
number, denoted by cr1(G), is obtained by imposing the extra condition on
D that all edges of G are drawn as straight lines. It is easy to see that cr1(G)
should be greater then cr(G), after all each straight-line drawing is also a normal
drawing.
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A rule on drawings Since for the purpose of the crossing number we are
looking at drawings with a number of crossings that is as low as possible we can
impose the following rule on the drawings we consider: We do not allow edges
to cross twice.

This is because for such graphs there always is a drawing with two fewer
crossings. This drawing is obtained by redrawing every pair of edges that crosses
twice, we let the edges follow each others path from the first crossing to the
second crossing.

1.1 Planar embeddings

We will call a drawing D of a graph G without any crossings a planar embedding
or planar drawing. The crossing number of G in this case clearly equals 0, since
there is a drawing of G without crossings. We will call such graphs G with
cr(G) = 0 planar.

We can define some interesting extra structure on planar embeddings. A
embedding of such a planar graph G partitions the plane into a number of
pathconnected open sets. We will call these sets the faces of G or D. Each face
has a boundary consisting of all edges and vertices surrounding this face. We
denote the boundary of a face F by ∂F . If a cycle is the boundary of a face we
will call this a facial cycle. We define the outer face to be the one unbounded
face, intuitively this is the face on the outside of the embedding.

Two planar embeddings will be considered equivalent when their face bound-
aries (as edge sets) are the same.

Convex embedding A convex embedding is a rectilinear, planar drawing
where each face is bounded by a convex polygon whose corners are the vertices
of that face.

Rotations In this paragraph we will assume that G is a 2-connected graph.
By Theorem 10.72 in [2, p. 251] we know that such a graph has faces that have
a cycle as boundary (unless G is K1 or K2, but we we will ignore these cases).

The rotation at a vertex v is the clockwise order in which other vertices
occur as neighbours of v. For example the rotation of s in Figure 1.1 is cby, byc
or ycb.

It is a result by Hefter [3] for the type of graphs that we treat in this para-
graph that rotations at all the vertices determine the embedding, and v.v. that
the embedding determines the rotation. Intuitively this result is easy to accept.

1.2 Whitney unique embedding theorem

As is said before, two embeddings of a graph G are equivalent if the face bound-
aries (as edge sets) are identical. We have the following theorem, as is stated in

2Being nonseprable is equivalent to being 2-connected
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[2, p. 266].

Theorem 1 (Whitney Unique Embedding Theorem). Every simple 3-connected
planar graph has a unique plane embedding.

We shall not proof this theorem here. Note also that by first using a stere-
ographic projection (see [2, p. 247]) we can map this embedding to the sphere,
by then rotating the sphere and applying the stereographic projection back to
the plane we can let every face be the outer face.

Remark 1.1. Every face in the can be the outer face of the above unique em-
bedding.

1.3 Tutte Spring Theorem

Tutte’s Spring Theorem is a stronger result then Withney’s unique embedding
theorem. It probably is the most used theorem in this thesis. Originally due to
Tutte [5], a shorter proof has now been given in [4]. We will reword (9.2) from
[5].

Theorem 2 (Tutte Spring Theorem). Let G be 3-connected, simple and planar.
Let J be a facial cycle containing n nodes. Let Q be an n-sided convex polygon in
the Euclidean plane. Then there is a unique barycentric representation of G on
Q mapping the nodes of J on the vertices of Q in any arbitrary way preserving
their cyclic order.

An barycentric representation is a straight-line representation where every
vertex (except those on the outer facial cycle) has an position that is the average
of it’s neighbours. Clearly such an representation is convex. After all, suppose
one angle at a vertex v is larger then 180 degrees, then all the neighbours of v
lie on one side of v and the position of v can never be their average.

1.4 Jordan Curve Theorem

The Jordan Curve theorem is primarily an topological theory about curves in
the plane. It states that every simple closed curve divides the plane into an
into the inside and outside of this curve. Here a simple curve is a curve that
doesn’t cross itself and a closed curve is one that’s starts and ends at the same
point. A simple closed curve is homeomorphic to the circle. By it’s relation to
this theorem we will sometimes call such a curve a Jordan curve.

We will now give the formal statement of the theory due to [2].

Theorem 3 (Jordan Curve Theorem). Any simple closed curve C in the plane
partitions the rest of the plane into two disjoint path-connected open sets.

We will call the bounded open the interior of C and the other open the
exterior of C. Since the interior and exterior are disjoint any path connecting
them has at least a point in R2\ int(C) ∪ ext(C) = C.
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Remark 1.2. Every topological path connecting a point in int(C) with one in
ext(C) must intersect the curve C.

While a curve is in principle an topological construct and can lie anywhere
in the plane, the most useful application of the theorem in graph theory is often
given by considering a closed path as the closed curve. Suppose for example
that we have a closed path v1v2v3, this closed path is then also a closed curve
and hence by the Jordan curve theorem we know that any other vertex vi must
either lie inside or outside the path v1v2v3 (but not both).

The Jordan curve theorem is often used in disproving the planarity of graphs.
An example of this can be seen in Theorem 10.2 of Graph Theory [2, p. 245].

Separating curves An use of the Jordan curve theorem is in the notion of
separating curves. A separating curve between two mathematical objects (e.g.
points, connected components) a and b is a simple closed curve (i.e. a Jordan
curve) that has a in it’s interior and b in it’s exterior or vice versa. If there is a
separating curve J between a and b any path connecting a and b must cross J
by the above remark.



Chapter 2

Unboundedness of cr1()
w.r.t. cr()

In this chapter we will show that for an arbitrary graph G with cr(G) ≥ 4
it’s impossible to bound its rectilinear crossing number cr1(G) by the ordinary
crossing number cr(G). In other words, there is no constant C ∈ R+ such that
for all graphs G the following holds

cr1(G) ≤ C cr(G).

Theorem 4 (Bienstock-Dean Theorem 1). For every m > k ≥ 4 there exists a
graph G with cr(G) = k but cr1(G) ≥ m.

To prove this statement we will first construct a graph Gm with cr(Gm) = 4
and cr1(Gm) ≥ m and later generalize to the cases were cr(G) = k > 4. We will
see this generalization is not difficult.

2.1 The construction of Gm

In this section we will construct Gm, the graph used in this proof.

The graph J See also figure 2.1, we start this construction by taking the
8-cycle C8 and numbering the vertices 1 trough 8 in a clockwise direction. We
then add the edge {3, 7}, which we will call the chord of the cycle. The points
that are the farthest away from the chord are called the extremes. We connect
both the extremes with the neighbours of the other extreme (adding the edges
{1, 4}, {1, 6}, {5, 2} and {5, 7}). These edges we will refer to as arcs since they
connect vertices over a significant distance and they recollect arcs in Figure 2.1.
The graph we have now constructed will be referred to as J .

Lemma 1. The (ordinary) crossing number of J is 2.

9
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1

2

3

4

5

6

7

8

Figure 2.1: Graph J

Proof. There clearly is a drawing of J with only two crossings, one is given in
Figure 2.1. Hence cr(J) ≤ 2.

We will now proof this lemma by showing the crossing number can neither
be 0 nor 1. We start with proving cr(J) 6= 1 this is the hardest case.

Suppose the crossing number of J is 1 then there must be a drawing D of
J such that D has only one crossing. The removal of a single crossing edge
ec of D must yield an planar graph J\{ec}. The drawing D however has two
crossing edges , and J must therefore have two edges such that their removal
yields a planar graph. However, we will show that the chord {3, 7} is the only
edge with this property.1 If we prove this fact we get a contradiction and we
obtain cr(J) 6= 1.

We will give a proof using the Jordan curve theorem that J\{ec} is nonplanar
(except, of course, for ec = {3, 7}). Every case will follow a roughly similar
setup. We will assume without loss of generality that the edge ec that we are
removing from J is one of {1, 8}, {8, 7}, {7, 6}, {6, 5} (which we will call cycle
edges) or {1, 6}, {5, 4} (arcs). I.e. the missing edge is on the left side in the
drawing of Figure 2.1. This can be done without loss of generality for the other
edges we can switch the vertex numbers of 2 and 7, 3 and 7, and 4 and 6 and
this will give us one of the cases we are about to threat.

In all cases we start by drawing the four-cycle given by 1−2−5−4. We will
call this cycle C, this cycle can be drawn as a closed simple curve. See Figure
2.2a. Subsequently we add the vertex 3 to the drawing. This vertex will, of
course, lie on either the exterior or interior of C. We will assume without loss of
generality that 3 is drawn on the interior of C. The exact same steps will lead
to a contradiction in the case that 3 is in Ext(C). This addition of the vertex 3
splits the interior of C into two faces F1 and F5, named after the unique vertex
in their face boundaries. We now have the situation in Figure 2.2b.

When we now add 7 to the drawing it must be added in a face bordering 3

1It’s easy to see J\{3, 7} is planar, you can draw the arcs incident with 1 in the interior of
the cycle and the ones incident with 5 in the exterior.
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(i.e. F1 or F5) to let the edge {3, 7} be noncrossing. The choice that is made
here is of no importance since there are paths from 7 to both 1 and 5 and one
of these will offend the Jordan curve theorem. In our figures we will have made
the choice that 7 is in F1. In the case that the deleted edge ec is {1, 8}, {8, 7} or
{5, 8} we add the vertex 6 to our drawing and else (if ec ∈ {{6, 7}, {6, 5}, {1, 6}})
we add 8. Whatever the choice was, either vertex must lie in the same face as
7, since they are connected to it by an edge. We now get the situation in 2.2c.

1 2

54

C

(a)

1 2

54

3

F1

F5

(b)

1 2

54

3

F5

7

6/8

(c)

Figure 2.2: Various steps in the proof that cr(J) = 2

If we added 6 to the drawing in the previous step, the vertex 6 is adjacent
to both 1 and 5. One of these edges will have a crossing by the Jordan curve
theorem ({6, 5} if 6 ∈ F1 and {6, 1} if 6 ∈ F5). For example, in our drawing
in Figure 2.2c the edge to {6, 5} would cross. The same statements hold for
8 instead of 6 if we added 8 instead of 6 in the previous step. Hence J\ec
is nonplanar for every ec 6= {3, 7} therefore cr(J) 6= 1 as we presumed in the
beginning of this proof.

The crossing number of J can’t be zero, for then every subgraph of J should
be planar. And we have just shown that, for example, J\{1, 5} is not so.

We hence conclude that cr(J) must be 2.

The graph K We now create the graph K by glueing two copies of J at their
extremes. That is, we take two edge-disjoint copies of J and let them meet at
the extremes. We now completely color this graph by painting the cycles and
the chords blue and the arcs red. See figure 2.3.

The graph Gm The final step in creating Gm is replacing all blue-coloured
edges by an bundle of m pairwise internally disjoint paths. That is to say
that every blue edge e = {u, v} of K is replaced by an set P (e) of m pairwise
internally disjoint paths of length 2 with end-vertices u and v.

It is clear that cr(Gm) ≤ 4, since graph K can be drawn with 4 crossings
as is seen in Figure 2.3 and the bundle replacement doesn’t add any crossings.
Since cr(J) = 2 by Lemma 1 and Gm contains two edge disjoint copies of J we
obtain that cr(Gm) ≥ 4. By combining these inequalities we get cr(Gm) = 4.
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Figure 2.3: Graph K

2.2 Proof that cr1(Gm) ≥ m

In this section we proof the following Lemma

Lemma 2. The graph Gm has cr1(Gm) ≥ m

2.2.1 Proof outline

We will proof lemma 2 by contradiction. We will suppose there is a rectilinear
drawing D of Gm with less then m crossings. We will then construct a drawing
D′ of K (i.e. one in which every blue edge isn’t yet replaced by a bundle of edges)
that is not necessary rectilinear. In this drawing blue edges won’t cross and red
edges will be straight. We will then proof a claim about the rotations at vertices
1 and 5 in the version of H drawn in D′ whose 8-cycle is the boundary of the
outer face. Subsequently we proof a claim on the positions of some vertices and
finally deduce a contradiction. Leading us to the conclusion that the original
drawing D must have been illegal.

Constructing D′ Suppose there exists a drawing D of Gm with less then m
crossings. Before we create the drawing D′ let us remark that not all edges in a
bundle P (e) can be crossed by an edge not in the bundle. After all, if this were
the case the drawing D would at least contain m crossings.
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We then obtain D′ by choosing from each bundle P (e) a path p(e) that is
not externally crossed (i.e by an edge not in P (e)) and drawing it for the side
e in K. We maintain the drawing of the red edges in D and use those in D′.
Since D was a rectilinear drawing red edges will be drawn straight in D′.

From the way we constructed D′ we can see that blue edges can’t cross or,
differently put, all crossings are between red edges. Hence the drawing of KB ,
the blue subgraph of K, is without crossings in D′.

2.2.2 Configurations of the blue edges of K

Let us remark the following

Lemma 3. There exist only two planar embeddings of the blue subgraph of K
that admit no crossing. (We don’t restrict ourselves to the rectilinear case)

We remember from section 1.1 that the embedding of a graph is completely
determined by the rotations at every vertex.

e

a b c d

f

Figure 2.4: The graph D

Proof. To proof this we first consider that the blue subgraph of K is a subdivi-
sion of the graph D which is displayed in figure 2.4. The rotation at e determines
the rotation at a, b, c and d by planarity. This in turn also determine the rotation
in f .

We will now look at the different possible rotations at e. A rotation is about
the order of occurrence of all, adjacent edges, hence we can without loss of
generality suppose that a is the first vertex in the rotation at e. We can also
without loss of generality assume that c comes before d in our rotation. After
all suppose d is before c in the rotation at e in some drawing of D, then we can
exchange the vertices c and d to get a drawing D′. The drawing D′ is equivalent
to D after we rename c with d and vice versa. The abstract structure of these
drawings is the same.

We therefore only have to consider the following rotations at e: (a, b, c, d), (a, c, b, d), (a, c, d, b).
We will show the middle one is impossible, leaving only two different configura-
tions. If you draw these, you will immediately see these are different. They are
two embeddings can be seen in 2.5.

To see that the rotation (a, c, b, d) is impossible consider that e− a− f − d in
this case forms a closed curve with c in the interior and d in the exterior (by the
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rotation at e). By the Jordan curve theorem it’s impossible to draw a crossing-
free edge from c to d, which is required. Hence this rotation is impossible.

e

a b c d

f

e

a bc d

f

Figure 2.5: Configurations of KB

We let JB denote the blue subgraph of J .

Remark 2.1. In both configurations is at least one copy of JB configured in
such a way that the eight-cycle C8 is the boundary of JB’s outer face. In Figure
2.5 we’ve drawn the 8-cycles we’re considering with a thicker line.

We will denote the drawing of a instance of J which has the eight-cycle as
boundary of the outer face by D1 and the drawing of the other instance of J
(which may or may not have the 8-cycle as boundary of it’s outer face ) by D2.

At this point we will also assume the vertices of the eight-cycle in D1 are
numbered in a clockwise order. We can make this assumption because we can
send every drawing of K with the eight-cycle of D1 numbered in the counter-
clockwise direction to one where the eight-cycle of D1 is numbered clockwise.
We do this by mirroring the plane D′ is drawn on in the line 1 − 5. We now
obtain a drawing D′′ of K with the eightcycle numbered clockwise. If this
drawing is leads to a contradiction the original drawing D′ also would lead to
a contradiction, hence we can without loss of generality assume the vertices of
the eightcycle are numbered clockwise.

2.2.3 Rotations at 1 and 5

Although Gm is nonplanar we can determine the rotations at 1 and 5. That is,
we can prove an certain ordering in the occurrence of incident edges at these
vertices.
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Claim 2.1. The clockwise ordering of edges of D1 incident with 1 is
({1, 4}, {1, 2}, {1, 8}, {1, 6}). While that of 5 is ({5, 8}, {5, 6}, {5, 4}, {5, 2}).

Intuitively this claim states that the red edges go outside the graph H. The
proof of this claim is clarified by Figure 2.6.

1

2

3

46

7

8

to 5

Figure 2.6: The situation in Claim 2.1

Proof. The edge {1, 2} precedes {1, 8} in a clockwise ordering of the eightcycle,
which we just assumed for D1. The edges {1, 4} and {1, 6} can’t follow {1, 2}
but precede {1, 8} by Jordan’s theorem since they would then cross the closed
curve (1 − 2 − 3 − 7 − 8 − 1) (the bold path in Figure 2.6). This however is
impossible since this curve is blue and therefore by construction crossing-free.

There also is a blue path in D2 from 1 to 5, we can convince ourselves of this
by looking at the embeddings of KB in Figure 2.5. Both {1, 4} and {1, 6} must
lie on a certain side of this path since they cannot cross it, the edge {1, 6} must
precede this path while {1, 4} must follow it. Hence starting at the blue path
and going clockwise we get the desired ordering ({1, 4}, {1, 2}, {1, 8}, {1, 6})

The proof of the statement for 5 is analogous. This can be seen by renum-
bering 1 to 5, 2 to 6, 3 to 7, 7 to 3 and 8 to 4 in the above proof.

2.2.4 The line L

We now draw a straight line L from 5 to 1. That is to say we let L go through
5 and 1 and we orient it from 5 to 1. By giving this orientation ‘left of L’ in the
following claim is a sensible statement. We make the following claim about the
positions of vertices 2,4,6 and 8.

Claim 2.2. Vertices 2 and 4 are drawn strictly to the left of L while vertices 6
and 8 are drawn strictly to the right of it.

Proof. The first thing to note is that the edges {1, 4} and {5, 2} cross at a point
P . If we look at the blue cycle given by the path 1-2-3-4-5 and the blue path
from 5 to 1 in D2 , the other subgraph in Gm. Then we know that since only
red edges can cross that {1, 4} and {5, 2} must lie completely in the inside of
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this cycle by the ‘rotations’ established in Claim 2.1,and hence must cross each
other.

Since {1, 4} and {2, 5} are crossing straight segments we know that 2 will be
drawn on the same side of L as 4. They can’t be drawn on L since that would
give a incidence of the edge {1, 4} and the vertex 2 and hence a illegal drawing.
A drawing of this situation is given in Figure 2.7

1

2

3

4

5

↑ L

P

Figure 2.7: The way D must be drawn, with 2 and 4 left of L

We will now proof the Claim for vertices 2 and 4 by contradiction, let us
assume they are drawn to the right of L. We now obtain a closed curve X that
starts at 1 goes to P along {1, 4}, then to 2 along {5, 2} and back to 1 by the
edge {1, 2}. By claim 2.1, the vertices 6 and 8 must lie in the interior of X. But
now the blue path 6-5 will have a crossing with X (after all 5 is in the exterior
of X). This gives us a contradiction, hence 2 and 4 must be drawn strictly to
the left of L. In Figure 2.8 the curve X is drawn with a thicker line.

The rest of the statement follows by symmetry (This symmetry is given by
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1

2

3

4

5

to 6

↑ L

P

Figure 2.8: The way D can’t be drawn

a renumbering in which we switch 8 and 2, 7 and 3, and 6 and 4).

We now have a contradiction with the numbering of the cycle being clockwise
and this in principle concludes the proof. After all 2 is drawn left of 1 which is
drawn left of 8.

If this is not yet convincing to the reader we can also finish the proof in
what might be a more satisfying manner. We can denote the crossing point of
{1, 6} and {5, 8} by P ′ (and recall that that of {1, 4} and {5, 2} is called P ) and
consider the quadrilateral Q given by segments of edges (1 − P − 5 − P ′ − 1).
The edge {3, 7} is clearly in the exterior of Q and hence the exterior of Q is
partitioned in a number of regions such that 1 and 5 lie in a different region,
this for example by the path (P − 2− 3− 7− 8− P ′).

We henceforth know that the drawing D2 of the other instance of J must
lie inside Q with the blue edges of course not crossing anything. There is after
all a blue path from 1 to 5 in D2. The 8-cycle must be drawn as the outer face
otherwise the blue chord {3, 7} of D2 would cross Q.

But if we now repeat the steps we have done so far we get that D2 has a
quadrilateral inside of which must lie D1. This is a contradiction and concludes
the proof of Lemma 2.
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2.3 Proving the theorem

We know from the previous sections that cr(Gm) = 4 and cr1(Gm) ≥ m. We
can now proof Theorem 4.

To fulfil the requirement cr(G) = k for all k ≥ 4, instead of only the case
k = 4 we have currently proved. We simply add k − 4 fully disjoint copies of
K5

2 to Gm. This completes the proof of Theorem 4.

2The crossing number of K5 is 1. This proof is found in most basic books on graph theory,
see for example [2, p. 245]



Chapter 3

Equality of crossing
numbers

After the previous result, that characterises the behaviour cr1(G) with respect
to cr(G) if cr(G) ≥ 4 we will now look to smaller values of cr(G). Bienstock
and Dean state in [1, Theorem 2] that the equality cr(G) = cr1(G) holds if
cr(G) ≤ 3. Sadly they do not given the proof for the case cr(G) = 3. We will
prove the following result.

Theorem 5. If cr(G) ≤ 2 then cr1(G) = cr(G)

3.1 Proof Outline

Central in our proof will be the correspondence between G, the graph under
consideration, and GD, the crossing-free version of this graph under a (minimal-
crossing) drawing D. We formally define GD as the graph that is obtained from
G if all edges that cross in a drawing D, the D-crossing edges, are removed from
it. We will constantly try to induce information about G, cr(G) and cr1(G) from
GD. This will be done by making extensive use of case analysis. Most cases
end with explicitly drawing GD in a certain rectilinear manner that allows us
to add the D-crossing edges back in without increasing the number of crossings.

3.1.1 Case structure

We have the following claims

Claim. GD is 2-connected

Claim. If GD is 3-connected Theorem 5 holds.

The interesting case is now when GD is 2-connected but not 3-connected, in
that case there must be at least one 2-cutset. In the following is s, t an arbitrary

19



20 CHAPTER 3. EQUALITY OF CROSSING NUMBERS

2-cutset. We will proof several claims about this cutset. The final and most
important one being.

Claim. (a) Either there is a face F with s, t in its boundary that contains more
then one crossing, or (b) there is an additional crossing face with e = {s, t}
being in the boundary of one of those faces.

After that we show that the theorem holds in the second case by proving it’s
crossing faces are in a 3-connected part (a fragment at {s, t}) of the graph, and
showing that hence the whole graph can be rectilinearly drawn. In the other
case we analyse how the single crossing face must look in a topological manner
and use a projection to create a rectilinear drawing.

3.2 Notions used in the proof

These notions are put here for two purposes; to be read now and after that to
be used as a reference when you’re reading the proof. The first remark will be
a note on the style of our figures.

Note on figures During this proof we will make extensive use of figures. We
will use some standard conventions that we will clarify below.

We shall with a thick line denote the edges that are important for the struc-
ture of our graph. This can for example be the boundary of a crossing face.
Most of the times, if an graph has a low number of edges, all of them will be
thick. The thin edges on the other hand will denote edges that must be drawn
to make an example graph maximal, i.e. these edges are not important for
the structure of the graph. Furthermore, we let dashed lines denote were the
D−crossing edges of G are/were in a drawing. And if an area is shaded we mean
it to be taken as a connected component. See Figure 3.9 as a prime example of
this drawing style.

The crossing-free plane graph GD Given an arbitrary graph G and mini-
mal drawing D (i.e. a drawing with the minimal number of crossings). We then
denote by GD the crossing-free plane graph of G and D. This is the drawing
D with all its crossing edges removed, in this thesis we will frequently iden-
tify this drawing with its graph. For example, when we say in Claim 3.1 that
GD is 2-connected we mean to say that the graph of which GD is a drawing is
2-connected.

The faces of GD in which a crossing occurred before the deletion of edges are
called the crossing faces of GD, the other faces will be known as noncrossing
faces. We refer to the crossing edges of drawing D as the D-crossing edges. And
the crossing edges in a particular face F of GD are the (D,F )-crossing edges.

For example, take G = K5 and the drawing D of K5 as given in Figure3.1a.
GD is then the graph drawn in Figure 3.1b. In this case the outer face F in
Figure 3.1b is a crossing face and the red edges in figure 3.1a are the (D,F )-
crossing edges (and in this case also all the crossing edges).
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(a) A drawing D of K5 (b) The graph K5
D

A fragment at {s, t} Let G be a 2-connected graph and {s, t} be an ar-
bitrary cutset of this graph. The removal of {s, t} from this graph gives us a
graph G\{s, t} that has multiple connected components Hi. One such connected
component together with the {s, t} and the edges with one end in {s, t} and de
other end Hi form a fragment of G at {s, t}.

In Figure 3.1 an example of a 2-connected graph with an cutset {s, t} is
given. Underneath we see the three fragments of this graph at {s, t}.

Figure 3.1: The fragments of a graph at {s, t}

Flipping a fragment If we let H be a fragment of a graph G in {s, t}. The
edges of H are subsequent in the rotation of every vertex v ∈ G. We will
by flipping this fragment mean the following operation giving us a new planar
drawing of a graph: For every vertex v of G we obtain the new rotation in v by
taking the old rotation and reversing the order of the edges of H.

For example, suppose the rotation in s is g1g2h1h2h3 where hi are vertices
belonging to the fragment H and gi are vertices not belonging to it. After
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flipping H the rotation in s will be g1g2h3h2h1.
Intuitively this operation physically “flips” H around an imaginary axis

through s and t .

A λ-dilatation with respect to r We let r be a straight line in the plane.
The λ-dilation w.r.t. r is a function that maps every point x to the point y on
the same halfplane as x w.r.t. r that is located on the line trough x orthogonal
to r and that satisfies d(y, r) = λd(x, r). In which d is the distance function. A
λ-dilatation makes a graph narrower (if λ < 1) or wider (if λ > 1) around the
line r.

3.3 Proof

In the whole proof we will assume that G is a maximal graph with respect to the
crossing number of G. That is, we can’t add an edge to G without increasing
the crossing number. This maximality will be very helpful during the proof.

We can assume G is maximal without loss of generality. Suppose that we
have a graph G that is not maximal, in that case we can take an arbitrary
maximization (i.e. a maximal graph w.r.t. the crossing number obtained by
adding edges to G) Gmax and assuming that Theorem 5 holds for Gmax we get
cr(G) = cr(Gmax) = cr1(Gmax) ≥ cr1(G), the last inequality holding because
edge removals can only decrease the crossing number. But because we on the
other hand know cr1(G) ≥ cr(G) , for every rectilinear embedding is also a plane
embedding, we obtain cr(G) = cr1(G) for all graphs by proving it for maximal
ones.

Furthermore we fix D and let it be a drawing of G with the minimum number
of crossings.

3.3.1 When cr(G) = 0

An maximal graph G with zero crossings is an triangulation (for an comprehen-
sive explanation see Remark 3.1) by maximality. Hence it is 3-connected. We
can now apply Tutte’s Spring Theorem to obtain a convex embedding of G, and
hence cr1(G) = 0.

3.3.2 Connectedness of GD

We first show that GD is 2-connected and that Theorem 5 holds in the case of 3-
connectedness, leaving us only the case that GD is two- but not three-connected.

Claim 3.1. GD is 2-connected

Proof. We will prove this by showing GD can’t be disconnected or 1-connected
and that hence GD must be 2-connected. Suppose that GD is disconnected.
Then it must consist of at least two components, which we will refer to as A
and B, bordering on the same (outer) face.
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To get some insight in the current situation, let us first remark that due to its
maximality G must be connected. For if it was not connected you could easily
add an edge between the connected components without crossings. This is in
contradiction with G being maximal. This implies that all edges that connected
A and B in the drawing D are not part of GD and are hence D−crossing edges.

Proving that GD is not disconnected We can derive an even stronger
condition on D from G’s maximality, there must exist an closed simple curve
γ consisting of crossing-edge segments that separates A and B. For if this
curve wouldn’t exist you could draw at least one additional edge e from A to
B trough the “hole” in the encircling curve. That is to say, since A and B
are not separated there must be a path connecting both topologically, this path
can be extend to a graph theoretic path by following the boundary of A and B
and connecting to the first vertex encountered. This ‘following of the boundary’
can’t be prevented since graph theoretic paths can only start at vertices and we
follow the boundary only so long as we do not encounter a vertex. Since e can
be added to a crossing-minimal drawing D of G, G is not maximal. This is an
contradiction and hence the separating curve γ must exist.

The curve γ can’t exist of crossing-edge segments from only 1 or 2 edges.
The first would require an edge to cross itself, the second two edges to cross
twice. Both of which constitute illegal drawings. Hence γ consists of segment
from at least three edges. Since changing from the segment of one edge to the
segment of another edge can only take place at a crossing there must also be
three crossings. This is in contradiction with the assumption in Theorem 5.
Hence the curve γ can’t exist and GD therefore can’t be disconnected.

Proving that GD is not 1-connected The graph of GD also can’t be 1-
connected due to a similar argument using properties of an hypothetical sep-
arating curve. Suppose that GD is 1-connected, then it must posses at least
one cutvertex u. And if u is removed from the graph then we obtain a graph
GD\{u} that has at least two components A and B. We now posit that there
must be a curve γ of crossing-edge segments that separates A from B, then we
show that such a curve leads to a contradiction.

Suppose in the meantime, however, that this curve γ does exist. Then it has
to pass trough the vertex u, see also Figure 3.2 for a simplified view of GD. To
see that γ has to go trough u recall that the edges of GD are the noncrossing
edges in D. A noncrossing edge can’t be crossed (for we chose an path that was
not crossed) and hence γ can’t cross the edges of GD, if it still needs to separate
A and B it therefore has to go trough u.

The curve γ can’t consist of one crossing-edge segment, since this segment
would be an edge form u to u, which is in contradiction with G being simple.
The curve γ also can’t consist of two crossing-edge segments, since then both
these segments would be part of an edge e1, e2 starting in u and terminating
at the boundary of the same component1, we take without loss of generality

1Otherwise they don’t have to cross



24 CHAPTER 3. EQUALITY OF CROSSING NUMBERS

A B

u

γ

Figure 3.2: The graph GD and the curve γ consisting of crossing-edge segments
of D

component A, and let ei terminate in ai. Now we can draw the edges e1, e2
without crossing and hence D was not a minimal-crossing drawing, this is an
contradiction. Therefore γ must consist of three segments. If it does then γ
contains all the crossings by the assumption cr(G) ≤ 2.

Now we can make a drawing D′ of G in which we can add an edge, showing
that G is not maximal. The drawing D′ is also depicted in Figure 3.3. We
obtain D′ by taking the component B in D that is only connected to the rest
of the graph in u, we now rotate this component inside the curve γ. If we now
let a be a neighbour of u in A and b be a neighbour in B both of them in the
boundary of the outer face. We can now add, without increasing the number of
crossings, the edge {a, b}. This is the green edge in Figure 3.3. Hence G is not
maximal if GD is 1-connected, thus GD is at least 2-connected.

Claim 3.2. If GD is 3-connected then Theorem 5 is satisfied

Proof. We first note that Theorem 5 clearly holds for a graph G with 4 or less
vertices. This can be checked by showing the result for every such graph. K4,
for example can be drawn rectilinearly as a triangle with the fourth vertex in
the center2.

In the other case GD, which has the same amount of vertices as G, has at
least 5 vertices. We will prove that GD has at least 3 faces.

2K4 is the complete graph on 4 vertices, it contains 4 vertices all connected to each other
by edges.
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A

B

uγ

b

a

Figure 3.3: Schematic representation of the drawing D′ of G.

Suppose GD has 1 face, then it can’t have any cycles. But because there are
more then 2 vertices. This means GD has a cutvertex. This is in contradiction
with the assumed 3-connectedness of GD.

Suppose that GD has two faces. One of these is the outer face and the other
has a cycle as boundary. This is the only cycle of GD, otherwise there would be
a third face. This cycle must be a cycle containing all vertices, if a vertex would
not be contained in this cycle, it can only be connected to one vertex v in the
cycle, otherwise an additional face would be created. But now v is a cut vertex.
In this cycle of more then 4 vertices we can however find a 2-cutset. And this
again contradicts the 3-connectedness of GD.

Since we have at least three faces and only at most two crossings, GD must
have a noncrossing face.

We now consider a convex drawing in which this (or any other) noncrossing
face is the outer face, this drawing exist by Tutte’s Spring Theorem. To this
drawing we can add the D−crossing edges to the convex faces in a rectilinear
manner without increasing the crossing number of G. This is because all the
interior faces are convex.

The only thing that remains for us to do is hence to proof the Theorem
in the case that GD is 2- ,but not 3-, connected. Hence GD has at least one
two-cutset. Choose an arbitrary one of these cutsets and call this cutset {s, t}.
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3.3.3 Properties of GD

We will now start to take a closer look on the structure of GD. The following
remark will give the reader a better image of the situation at hand.

Remark 3.1. A noncrossing face of GD is triangular. We take triangular to
mean that the face has 3 edges and vertices in its boundary.

Proof. We can easily see the remark is true since a face has at least three edges
while a bigger face contradicts the maximality of G. Suppose we have a face F
with n ≥ 4 vertices, ∂F = v1v2 . . . vn. We can then draw an edge ec (c for cut)
dividing the face, we can for example connect v1 and v3. Such an edge dividing a
face F in a drawing D might be impossible if this edge already exist and is drawn
in the exterior of F . If we would want to prevent an edge ec dividing the face F ,
the drawing D needs to draw the edges {vi, vi+2}, {vi, vi+3}, . . . , {vi, vi+n−2}(
mod n) for every vertex vi in ∂F in the exterior of F . This is bound to give
crossings if n ≥ 4. If we look for example at the case that n = 4 we see that
{v1, v3}, {v2, v4} need to be drawn outside F by D, but this will force a crossing,
making D an invalid drawing since it should contain the minimum number of
crossings.

Now we will continue the main proof, at this point the proof given in [1]
makes another funny jump, we will try to rectify this by the following claim.
Furthermore, Claim 3.3 in [1] is amalgamation of a lot of statements, here
represented by Remark 3.2 and Claim 3.4 and 3.5. We will also use Remark 3.1
to simplify a number of proofs.

Claim 3.3. There is at least one noncrossing face F of GD such that s, t ∈ ∂F

Proof. If we look at GD\{s, t} we see this graph consists of a number n ≥ 2 of
connected components A1, . . . , An, laying in a outer face F̃ . We number these
components in the order they occur in the rotation of s in GD.

When we add back the cutset {s, t} this face F̃ is partitioned into several
other faces. Some of these faces possibly between s or t and a component Ai,
denoted by Ḟi, F̈i, etc. , but also for every connected component exactly one
face with in it’s boundary s, t, Ai and Ai+1, to be denoted by Fi. In the case
that i = n we take, instead of the nonexistent component An+1, A1 as second
component for the face Fn. See also figure 3.4.

We now differentiate into two cases. Suppose there are three or more
connected components A1, . . . , An, then there are the same number of faces
F1, . . . , Fn containing {s, t} in their boundary. Since only two faces can be a
crossing face, by cr(G) ≤ 2, there must be a noncrossing face satisfying the
claim.

Assume now there are only two connected components A1 and A2. If {s, t}
is an edge it will ‘divide’ one of the faces F1, F2 and there will be three faces
and since only two of these can be a crossing face by cr(G) ≤ 2 we are finished
in this case. We now assume that {s, t} is not an edge. Then by the maximality
of G there must be a separating curve between s and t in D. See Figure 3.5a.
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s

t

A1 A2 A3F1 F2 F3

Ḟ2

Figure 3.4: The faces of GD

But also, since we assumed two connected components in GD, there can’t
be a noncrossing edge between them in G. By G’s maximality we now that
there must be a separating curve between A1 and A2. Because the edges form
s and t to A1 and A2 are noncrossing (since they are in GD) this separating
curve has to go trough s and t. We also know each of the faces F1 and F2 can
contain only one crossing, hence the configuration in Figure 3.5b is the only one
possible. However we see that {s, t} is twice an edge in G (once in F1 and once
in F2), this is of course illegal.

We have now obtained that in all cases there is a noncrossing face F of GD

such that s, t ∈ ∂F

s

t

A1 A2

F1

F2

(a)

s

t

A1 A2

F1

F2

(b)

Figure 3.5: The case where there are 2 connected components

We now have seen that there always is a noncrossing face F such that s, t ∈
∂F . Since a noncrossing face is triangular by Remark 3.1 such a face needs to
contain e ∈ ∂F else it will get a number of vertices that is too large, we can
therefore make the following remark.
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Remark 3.2. The edge e = {s, t} is in GD and is therefore not a D−crossing
edge.

We will also prove that the number of these noncrossing faces is quite small.

Claim 3.4. There are one or two noncrossing faces F of GD such that s, t ∈ ∂F
and such faces contain e ∈ ∂F

Proof. We know that there must be at least one such face by Claim 3.3. Recall
that every noncrossing face is triangular, if they also must contain s, t ∈ ∂F
they need to contain e ∈ ∂F else they get a number of vertices that is too large.
Only two faces can have an edge in their boundary. Hence their can only be
two noncrossing faces containing s, t ∈ ∂F .

We can say even more about faces having {s, t} in their boundary.

Claim 3.5. There is a crossing face F ′ with s, t ∈ ∂F ′

Proof. Since {s, t} is a two cutset it is in the boundary of at least two faces
(in the case of 2 connected components), see Figure 3.4. Since e is an edge of
GD one of these faces will be split into two, therefore there must be at least
three faces with s, t in their boundary. By Claim 3.4 one of these faces will be
a crossing face.

From this proof of Claim 3.5 we can also deduce the following useful remark

Remark 3.3. There are three different faces F such that s, t ∈ ∂F

Now we have the necessary results to proof the following claim. Note that
the only requirement for the existence of the crossing face F ′ in Claim 3.5 is
that {s, t} is a 2-cutset. Since every 2-cutset forces a crossing face this on the
other hand means that every 2-cutset is in the boundary of a crossing face.

Now we will prove claim 3.4i from [1]. Bienstock and Dean do not account
for the case that e is in ∂F ′ for F ′ a crossing face. We will fix this.

Claim 3.6. Let F ′ be a crossing face with s, t ∈ ∂F ′, there are distinct crossing
edges starting in s and t which we will denote es and et respectively.

Proof. There is a noncrossing face F containing e = {s, t} in its boundary
(Claim 3.4) and e is not a crossing edge (Remark 3.2).

We now differentiate between two cases, s and t are neighbours in the bound-
ary of F ′ or they are not. In other words, e /∈ ∂F ′ or e ∈ ∂F ′

Suppose that e /∈ ∂F ′. Let us note that the neighbours of s in the boundary
of F ′ are not connected with an edge inside the face, for then s wouldn’t be
incident with the face. Suppose there is no crossing edge starting at s. Since G
is maximal the neighbours of s must be connected, such an edge however can’t
be drawn in the exterior of the face F ′, due to the edge e existing and being a
noncrossing edge. Therefore G is not maximal if no crossing edges start at s,
thus there must start an crossing edges es at s. The same argument holds for t.
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Now, for the other case suppose e ∈ ∂F ′ and there’s no crossing edge es
starting at s. Let v be the other neighbour of s (i.e. not t) in the boundary of
F ′. We will show that G is not maximal. We note that {t, v} = ev must exist by
maximality, it can be drawn in the face F ′ without obstruction. Furthermore
it can’t be drawn in in a way dividing the face F ′ since then this face wouldn’t
be a single face (a contradiction with the premise in the claim). Hence it is
drawn in the exterior of F ′ and it can’t be a crossing edge for then D wouldn’t
be a crossing-minimal drawing. We now have the situation in Figure 3.6, in
which we note that every edge is an noncrossing edge in D, because ev is one
and ∂F ′ is in GD. We will call the outer cycle C. Since {s, t} is a cutset of
GD\{s, t} must consist of at least two components, one of those is formed by the
circuit C (minus t) and vertices connected to it. Another connected component
can’t be in the exterior of C, for then it can’t be connected to s, and this
would make t a 1-cutset. A contradiction with Claim 3.1 (2-connectedness).
Another component also can’t be in the interior F ′, this would contradict with
our assumption that e ∈ ∂F ′. Hence there must be at least one additional
component J in the interior of C, but not in F ′.

v

s

t

F ′
C

Figure 3.6: The situation when s and t are incident in ∂F ′, the wiggled line is
the rest of the face boundary

This component can be seen drawn in figure 3.7, we will now show that F ′′

must be a crossing face. Recall that the cycle C and the component H belong
to different components of GD\{s, t}, hence v and H must not be connected in
GD. But then by the maximality of G there must be an arc of crossing-edge
segments connecting s and t (in a Jordan curve theorem sense), to prevent such
an edge from existing. The only way to make such an arc with only one crossing
is in the way depicted in Figure 3.7. We have now determined all the crossing
faces and crossings of the graph. By maximality only the vertices depicted in
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Figure 3.7, can be on the boundary of the depicted components3. But now we
can add the edge {y, s} to G by drawing ev in the interior of F ′. Hence G is
not maximal and we have obtained a contradiction.

y

w

x

v s

t

F ′

a

bJ
H

evF ′′

Figure 3.7

A very similar argument also works for t.
Since e = {s, t} is a noncrossing edge, the crossing edge starting at s can’t

terminate at t, therefore es 6= et.

Claim 3.7. Let F ′ be a crossing face with s, t ∈ ∂F ′ we then have either

a) F ′ contains more then one crossing, or

b) There is an additional crossing face F ′′ with e in F ′ or F ′′

Proof. We will assume a) doesn’t hold and will prove that in this case b) must
hold. The face F ′ only contains one crossing, and by Claim 3.6, this must be
the crossing between es and et. All the endpoints of the (D,F ′)−crossing edges

3These components could be empty except for edges {a, t}, {w, y} and {x, y}
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lie in ∂F ′ and thus in a fragment J at {s, t}, we will for our convenience also
include e = {s, t} in J . By Remark 3.3 there are at least three faces containing
s, t in their boundary. We will denote this third face with F ′′.

Either e ∈ ∂F ′ or e 6∈ ∂F ′. In the first case we only have to prove there is an
additional crossing face. We let F ′′ be an arbitrary third face containing {s, t}
in its boundary. Assume F ′′ is a noncrossing face, then it must have e ∈ ∂F ′′
by remark 3.4. But now F , F ′ and F ′′ all have e in their boundary. This is
impossible and hence F ′′ is a crossing face.

In the other case (e 6∈ ∂F ′) we note that the following argument is true
for any third face containing s, t ∈ ∂F ′′. This will therefore also hold for the
particular face that has e in its boundary and is not the noncrossing face F .
This face will then be the face F ′′ in the claim.

Now continuing the case that e is in the boundary of F ′′ we will, falsely,
assume that F ′′ is not a crossing face. It then by Claim 3.4 has to have e
in it’s boundary and we get the situation in following picture 3.8a, here the
shaded area’s indicate the connected components. The interior of the connected
components is not important. If we redraw e trough the crossing face F ′ we
get Figure 3.8b, we see that we can add an edge{v1, v2} (green in the Figure).
Hence G is not maximal if F ′′ is not a crossing face, and therefore any third
face containing s, t in its boundary must be a crossing face.

At this point Bienstock and Dean prove claim 3.6 in their paper. This,
however, is unnecessary since both cases of claim 3.7 imply a crossing number
of at least 2. We can hence conclude that if the crossing number of a nontrivial,
maximal graph cr(G) < 2 the graph GD must have been 3-connected and the
case resolved.

s

t

v1 v2 JH F F ′′ F ′

(a) The structure of GD drawn as G is by D

s

t

v1 v2 JH

(b) After redrawing e we can see that G was
not maximal

Figure 3.8: Clarification on the proof of Claim 3.7
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3.3.4 Finishing the proof in case b) of Claim 3.7

In the above proof we learned some things about the structure of GD in case b),
this will be summarised in the following remark. Remember that there can only
be at most two crossing faces, and that an edge can only be in the boundary of
two faces.

Remark 3.4 (Graph structure in case b)). In the case of b) in the above proof
we get the following structure. The edge e is bordered by a crossing face Ḟ and
a noncrossing face F , furthermore there is a second crossing face F̈ containing
s and t, but not e, in its boundary. These are all the crossing faces.

For an example of a graph with the structure in this remark you can look
ahead to Figure 3.9.

Claim 3.8. If case b) in Claim 3.7 holds Theorem 5 holds.

Proof. We will first make the structure of GD more clear. GD consists of two
fragments at {s, t}, any more fragments will translate to more connected com-
ponents of GD\{s, t}, but this is impossible because the face between two such
components in GD has to be a crossing face, else they will be connected to each
other by the maximality of G and we only have two crossing faces.

On the endpoints of (D,F )−crossing edges Both the crossing faces are
incident with {s, t} by Remark 3.4. Their crossing edges will all terminate in
the same fragment at {s, t} as we will soon prove. We will call this fragment J
and add the edge e to it (i.e. if we in the future refer to J we implicitly include
e). We will call the other fragment of GD at {s, t} H.

To see all crossing edges terminate in the same fragment we use the following
proof. The crossing edges of a face with one crossing, es and et, will have one
end in {s,t} and the other end in the same fragment. Suppose the edges of
the different crossing faces terminate in different fragments, we will call the
fragment in which (D, Ḟ )−crossing edges terminates J and that in which those
of F̈ terminate H. We get the the situation in Figure 3.9, in which the dashed
lines are crossing edges.

We now see that flipping J ∪ {e}, resulting in a physical flip around the
s − t-axis, allows us to make the edge {x, y}. This is a contradiction with the
maximality of G and hence such a configuration can’t exist. All endpoints of
crossing edges therefore must be in J .

On the shape of the crossing faces in J The are two crossing edges, es
and et, in every crossing face F . We will define the vertices u and v by these
edges, es = {s, v} and et = {t, u}. We will place dots over these vertex-names
in correspondence with the face-names. See Figure 3.10

The boundaries of the crossing faces Ḟ , F̈ in the fragment J are given by
s, t, u̇, v̇ and s, t, ü, v̈, as is imaged in Figure 3.10. This can be seen in the
following way, suppose there is an additional vertex j between t and v or v and
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Figure 3.9: Crossing edges terminating in different fragments.

u or s and u. Then the edge x connecting them must still exist by maximality,
there is after all no crossing edge in the face Ḟ or F̈ preventing this edge, for
an example of such a situation we can look at Figure 3.11. But if we now draw
j on the other side of this edge x it lies in a noncrossing face and it can hence
form an edge, in our example this would be the edge {j, u̇}.

Therefore if we have an additional vertex j in the boundary of the crossing
face it must be between s and t. This vertex, that is connected to s and t, can
however not be connected to any vertex in J\{s, t} by the crossing edges in both
crossing faces. Therefore this vertex is not in the fragment J and it therefore
doesn’t effect the boundaries of the crossing faces in J

Showing J is 3-connected Since GD is 2-connected (Claim 3.1) clearly J is
also 2-connected. Suppose that J is not 3-connected then it must have a cutset
{x, y} that by Claim 3.5 lies in the boundary of a crossing face. We take this
face, without loss of generality, to be Ḟ . The cutset will not be {s, t} since
J is a fragment at {s, t} and is thus connected if this is removed. Two other
neighbouring vertices (i.e. not s and t) can’t be a 2 cutset since the boundaries
of the crossing faces stay connected to each other and every vertex not in this
boundary is connected to boundaries of both crossing faces by a path, since
the cutset is in the boundary of only one crossing face these other vertices stay
connected.

A 2-cutset can’t be a diagonal from a crossing face (e.g. {t, u̇} or {s, v̈}),
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Figure 3.10: The fragment J and the crossing faces Ḟ , F̈ in this fragment

since a cutset of J is also a cutset of GD. This can be seen in the following way,
the other fragment H at {s, t} connects s and t. But if a cutset cuts J (that
includes e) it also cuts J ∪H = GD since the only thing H adds is a connection
from s to t. But this connection was already there in J thus this makes no
difference. The diagonals of the crossing faces are the crossing edges and these
cutsets would thus offend Remark 3.2. Hence there are no 2-cutsets and J is
3-connected.

Making a rectilinear drawing Since J is 3-connected,we can by Tutte’s
spring theorem, make a convex drawing D′ of J and force Ḟ and F̈ to be
internal faces, we can add the crossing edges rectilinearly to this drawing while
only adding two crossings. Since H ∪ {e} the other fragment at {s, t} is has
cr(H) = 0 we can make a rectilinear drawing D′′ of it (see Section 3.3.1). If we
make this drawing “thin” enough we can fit it into D′ without it crossing any of
the crossing edges that we added back in. For an example of what the result of
this procedure could look like see Figure 3.12, the small black vertices represent
the fragment H, while the large white vertices represent J . We can also see the
graph in this figure is maximal.

We have now produced a rectilinear drawing of G if case b) of Claim 3.7
holds.
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Figure 3.11: An extra vertex in the boundary of F̈ , j is between s and ü

3.3.5 Finishing the proof in case a) of Claim 3.7

Here we continue the proof in the case a) of Claim 3.7, this subsection is equiv-
alent to Claims 3.7-3.9 from [1].

Let us remark that F ′ is the only crossing face ofGD. By case a) of Claim 3.7,
this face must contain at least two crossings, while on the other hand cr(G) ≤ 2.
Hence all the crossings of G must lie in F ′. We will begin with two claims on
the structure of the crossing edges in the only crossing face F ′, note that ∂F ′

is the union of two internally disjoint paths from s to t in GD, p1 and p2.

Claim 3.9. There exists a topological path between s and t, contained in F ′,
and made up of sections of (D,F ′)-crossing edges only.

Claim 3.10. There exist a (D,F ′)-crossing edge ec (c for ‘crossing’) with one
end in V (p1)\{s, t} and the other in V (p2)\{s, t}.

Here V (pi) denotes the vertex set of the path, i.e. all the vertices the edges
of the path pi are incident with.

Proof Claim 3.9. Let us first remark that s and t are not neighbours in ∂F ′,
since that are three faces containing {s, t} in their boundary (Remark 3.3) and
only F ′ is a crossing face. The other faces must contain e in their boundary by
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Figure 3.12: An example of a drawing the could be produced by the procedure
that is given above.

Claim 3.4. Hence F ′ can’t have e in it’s boundary, and therefore s and t are not
neighbours in ∂F ′.

Suppose there is not such an topological path, in that case there we can add
an edge from a vertex x in V (p1)\{s, t} to a vertex y in V (p2)\{s, t} (both sets
are nonempty by the above consideration). Hence G is not maximal, this is a
contradiction and hence such a path must exist.

Proof Claim 3.10. We know e 6∈ ∂F ′ as is shown in the proof of claim 3.9.
We will first show there must be an topological path of edge segments be-

tween V (p1)\{s, t} and V (p2)\{s, t} contained in F ′ and made up of sections of
(D,F ′)-crossing edges. Suppose that there is not such a path, in that case we
can draw the edge e ‘in’ the face F ′. But now we have e ∈ ∂F ′ and e in the
boundary of one of the noncrossing faces. But now e can not be in the boundary
of the other noncrossing face. This is in contradiction with Claim 3.4.

Suppose that ec doesn’t exist, then every edge has both ends in V (p1) or
in V (p2), we can draw these two groups of edges without them ever crossing.
While not increasing the number of mutual crossings. of these groups By the
the crossing-minimality of D they will be drawn this way. It is now impossible
to connect V (p1)\{s, t} and V (p2)\{s, t} by an path of edge segments. This is
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in contradiction with the above. Hence ec must be an edge.

We know the following about the crossing edges in F ′. There are two distinct
crossing edges es and et starting at s or t and terminating in an arbitrary vertex
(Claim 3.6) and there is one additional crossing edge ec from V (p1)\{s, t} to
V (p2)\{s, t} (Claim 3.10). Hence there are, up to, refection symmetry in the
s − t-axis and exchanging s and t, two possible patterns of crossing edges (in
the sense of topological relations). These patterns are given in Figure 3.13.
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u1

u2

H1 H2

F ′

(a) case a)

s

t

u1

u2

u3

v1H1 H2F ′

(b) case b)

Figure 3.13: The two possible patterns of crossing edges in F ′

With a proof similar to the paragraph “On the shape of crossing faces in J”
we can see that the boundary must be as is pictured in Figure 3.13, and can’t
contain extra vertices. After all, suppose there is an additional vertex j between
vertices x, y that are neighbours in Figure 3.13. Then the edge exy connecting
them must still exist by maximality, for there is no crossing edge in the face F ′

preventing this edge. But if we now draw j on the other side of this edge exy
it lies in a noncrossing face and it can hence form an edge with another vertex.
Hence it must lie there by the maximality of G.

We will define the ‘left’ path, p1 = (s− u1 − . . .− un − t) and we the other
path p2 = (s − v1 − . . . − vn − t). Since F ′ is the only crossing face there can
only be two fragments at {s, t}. We will denote these by H1 and H2, such that
V (pi)\{s, t} is contained in Hi see also Figure 3.13. We let R1 = H1 ∪ {e, es}
and R2 = H2 ∪ {e}.

General setup for Case a) of Figure 3.13

Claim 3.11. Either R2 is 3-connected or its only 2-cutset is {t, v2}

Proof. Since GD is 2-connected we know that R2 is also 2-connected. Suppose
that R2 has a 2-cutset {x, y} then it must also be a cutset of GD, after all, from
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the perspective of R2 the only thing H1 is in GD is a connection from s to t
and such a connection is already part of R2 in the form of the edge e. Hence
any 2-cutset of R2 must also be a 2-cutset of GD

Since {x, y} is a 2-cutset of GD it must satisfy Claim 3.5 and since F ′ is the
only crossing face we get {x, y} ⊂ V (p2). By Remark 3.3 (a cutset is in three
faces) and the fact that F ′ is the only crossing face, we know that {x, y} can’t
consist of two neighbours in F ′ because in that case one of the noncrossing faces
can’t have the edge {x, y} in its boundary. This offends Claim 3.4. The cutset
{x, y} of R2 course can’t equal {s, t} since H2 is a fragment in {s, t}.

Now the only remaining options for a 2-cutset are {s, v2} and {t, v1}. How-
ever, it can’t be {t, v1} since this is a crossing edge, hence this cutset would
offend Remark 3.2.

Now we will show that cr(G) = cr1(G) by explicitly drawing G rectilinearly
in both of the above cases.

We let D1 be a rectilinear drawing of R1 on a halfplane P1 in R3. By
cr(R1) = 0 we can make a rectilinear drawing of it. By using a stereographic
projection, rotating the sphere and again using a stereographic projection. We
let the triangle su2t be the boundary of the outer face of D1. And thus such
that es is part of the outer facial boundary. The lines tu2 and u2u1 cross in
u2 and determine two plane angles in P1, we let α be the plane angle on the
outside of D1. We let P2 be another halfplane in R3, we will eventually draw
R2 on this plane. Let those two planes cross in the line st drawn on P1 by D1.
Let p be a point in the plane angle α and let p′ be a point ‘above’ it, i.e. a point
perpendicular to P1 on the opposite side of P1 as P2 is. We let π : P2 7→ P1

be the projection of P2 towards p′ on P1. For an look at this configuration,
see 3.14. Let us also note here that projections conserve rectilinearity on these
halfplanes.

Case a) of Figure 3.13, {s, v2} is a 2-cutset In making a drawing in this
case we will need the following claim.

Claim 3.12. Suppose H is a 2-connected plane graph, containing an internal
face with as boundary abcd, such that {b, d} is the only 2-cutset of H and {b, d}
is an edge of H. Let qb and qd be arbitrary points in the plane. Then there exist
a point z on the segment [qb, qd] such that for every ε > 0 there is a rectilinear
plane drawing of H satisfying.

i) b and d are drawn at qb and qd,respectively

ii) The segment [a, c] does not cross any edges

iii) z is the projection of c onto the line-segment qbqd and the distance between
c and z is less then ε

Proof. We will employ Tutte’s theorem in this proof to obtain the desired result.
By Ha we will denote the union of the fragment of H at {b, d} containing a and
the edge {b, d}. Similarly, with Hc we will mean the union of the fragment
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Figure 3.14: The general setup in case a)

containing c and {b, d}. Note that Ha has an rectilinear drawing since cr(Ha) =
0 (see Section 3.3.1), by a transformation of the plane of this drawing we can
make b lie at qb and d lie at qd. Furthermore, Hc is 3-connected, for suppose
not, then there must be a cutset S of Hc with two vertices. However by the
structure of the graph Hc this must then also be a cutset of H. From the local
perspective of Hc, Ha functions as a connection from b to d but Hc already has
this connection by virtue of the edge {b, d}. Hence a cutset of Hc is a cutset H,
but now {b, d} is not the only cutset and this is a contradiction.

Now we apply Tutte’s Spring Theorem to Hc with as convex outer boundary
face contained within the half strip given by the two lines perpendicular to the
line qb − qd in qb and qd. Now the projection of every vertex, and in particular
c, lies in [qb, qd]. Let us denote by λDc the λ-dilation of Dc in the line qb−qd. If
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we make λ small enough Da and λDc will not cross, and if we make λ < ε
dDc (c,z)

then dλDc
(c, z) = λ · dDc

(c, z) < ε 4.
If we take the union D = Da ∪Dc this drawing satisfies all the requirements

of the lemma. An example of such a drawing is given in Figure 3.15. The shaded
areas denote the connected components.

b

d

ac

Ha

Hc

Figure 3.15: A drawing of H according to procedure in the proof of Claim 3.12.

We will now show the procedure Bienstock and Dean follow and show where
it might go wrong.

They now apply the claim with a = t, b = s, c = v1 and d = v2. To create a
rectilinear drawing of H2, we transform it by rotating and rescaling such that
s and t coincide with the s and t of drawing D1 of R1 on P1. However there
is no guarantee that all vertices will lie on the halfplane P2, there might be
vertices on the other side of the line S − t. They now let p′ lie so close to p
such that if we project by π we get that both π(v2) and π(z) lie in α. If we now
let ε go to zero, we see that π(v1) tends to π(z) and hence ∠π(v1)tπ(v2) tends
to zero. This implies that {u2, π(v2)} will not cross {t, π(v1)} . Next to that,

4In which dD denotes the distance function in a drawing D.
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since π(z) ∈ α we know that π(v1) will be in alpha for small enough epsilon.
This projection, however, will not work for points that are not in the halfplane
P2. Certain points might not even be projected onto P1 (if the line between
the point and p′ lies parallel to P1). I’ve unfortunately not been able to fix this
issue.

They now look at union D = D1 ∪ π(D2) and say that this is a rectilinear
drawing of GD ∪ es. They add the other crossing edges et, ec to this drawing to
get a rectilinear drawing of G with two crossings. See Figure 3.16
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t

u1 u2

πv1 πv2

H2

H1

α

Figure 3.16: The rectilinear drawing when {s, v2} is a 2-cutset

Case a) of Figure 3.13, R2 is 3-connected Since R2 is 3-connected it has
by Tutte’s theorem a convex drawing on P2 with sv1v2t as an internal face and
s and t matching the positions of s and t on P1. If p′ is close enough to p, the
projections π(v1) and π(v2) are inside α. If we now take D = D1 ∪ π(D2) we
have obtained a rectilinear drawing of GD ∪ es. If we add the missing crossing
edges et and ec back into this drawing we get a rectilinear drawing of G with
two crossings. See Figure 3.17

Case b) of Figure 3.13 Case b) isn’t treated in [1] by Bienstock and Dean.
But instead a remark is made on how similar methods can be used to proof the
existence of a rectilinear drawing in this case. This, however, is not entirely
true.

We can of course change the roles of H1 and H2 in the proof and draw the
triangle sv1t in the fragment H2 as outer face on P1. However, there is no guar-
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Figure 3.17: The rectilinear drawing when R2 is 3-connected

antee that H1 has only one cutset. A quick inspection allows {s, u2}, {u1, u3}
and {t, u1} by the same reasoning as in Claim 3.11.

Even if only one of these set can actually be a cutset of a graph that satisfies
all the assumptions in the proof (e.g. G being maximal, D being a minimal
crossing drawing) at the same time. Which I find likely, the approach of drawing
this graph can’t be copied directly from the paragraph “Case a) of Figure 3.13,
{s, v2} is a 2-cutset” above. Furthermore, the Claim 3.12 doesn’t apply easily
to these drawings.

For these reasons I have unfortunately decided that Case b) of Figure 3.13
is outside the scope of this thesis.
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