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Abstract

In this article I will develop a model to predict the scores of indi-
vidual football matches in the Dutch Eredivisie. By using data from
over 1500 recent football matches from the Dutch competition I will
determine the attacking and defensive strengths of each of the teams
in the competition. I will also implement the fact that the home play-
ing team has some kind of home advantage and therefore the attacking
and defensive strengths for all teams will be different when playing at
home then when playing away. Finally, I will use my model to predict
the outcomes of the matches of previous season to see whether my
model is a good fit of reality.

1 Introduction

Since the start of the football competitions in Europe, people have been try-
ing to build models to predict the scores of football matches. In 1982 M.J.
Maher published an article in which he used the fact that the number of
goals scored by a team can be seen as a Poisson variable. In my model for
the Dutch competition I will also assume that the number of goals scored by
a team is Poisson distributed.
But why can we assume that the number of goals scored by a team is Poisson
distributed? The number of goals scored in a match is given by an integer, as
you can not score half a goal. Because of that fact we know that the variable
that describes the number of goals scored in a match should be discretely
distributed. Next to that, in football it is all about possession: if you do not
have the ball you cannot score a goal as Johan Cruijff once said. Each time
a team possesses the ball it has the opportunity to attack and this attack
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could result in a goal with probability p, where p is small.
Now, if p is constant and the attacks are independent which we can assume
is the case in football, then the number of goals scored will be binomial dis-
tributed. In this case we are dealing with a Bernouilli trial with a probability
of p that an attack is resulting in a success, in this situation thus a goal. The
probability mass density function of a Binomial distributed variable X is:

P (X = k) =

(
n

k

)
pk(1− p)n−k

In the case of the number of goals in a match we may take a look at the
Binomial distribution with n trials (in this context: attacks) and a probability
of λ

n
that such an attack results in a goal, where λ is the average number

of goals scored in a match. In a match you can start an attack in every
splitsecond, therefore we can see n as very large and this makes λ

n
very small,

as desired. When we now fill in p = λ
n

in the probability density function of
the Binomial distribution and let n go to infinity we get:

P (Xn = k) =

(
n

k

)
· (λ
n

)k · (1− λ

n
)n−k

=
n!

(n− k)!k!
· λ

k

nk
· (1− λ

n
)n(1− λ

n
)−k

=
n!

(n− k)!nk
· λ

k

k!
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n
)n(1− λ

n
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As n→∞ we get (1− λ

n
)−k → 1 and

n!

(n− k)!nk
=

1

nk
n!

(n− k)!
=

1

nk
(n · (n− 1) · · · (n− k + 1)

= 1 · (1− 1

n
) · · · (1− k − 1

n
)→ 1

There is one term left, which is the term (1− λ
n
)n.

The limit limx→∞(1 + 1
x
)x = e1 is well-known. By using substitution we get

the desired limit: limx→∞(1− λ
x
)x = e−λ.

So, eventually, we get:

P (Xn = k)→ λk

k!
e−λ

as n → ∞. And this is exactly the probability mass density function of a
Poisson distributed random variable X:

P (X = k) =
λke−λ

k!
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with k the number of goals scored and λ the expected number of goals scored
in the given time interval.

In these two histograms the number of home goals respectively away goals
by the teams over the five seasons show a clear Poisson distribution:

homeall.png
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awayall.png

2 The model

As explained in the previous section we can assume that the number of goals
scored in a match is Poisson distributed. When we now look at the match
in which team i is playing team j, where team i is the home team and thus
team j is playing away, we have two stochastic variables to be observed:
the number of goals scored by team i and the number of goals scored by
team j. The observed score is denoted by (xij, yij) and we call the two
stochastic variables Xij and Yij, for the number of goals scored by home
team i, respectively, the number of goals scored by away team j. Now we
assume that these two stochastic variables are independent and both Poisson
distributed, where Xij is Poisson distributed with mean αiβj and Yij Poisson
distributed with mean γiδj. αi represents the strength of team i’s attack
when playing at home, βj represents the weakness of team j’s defence when
playing away, γi represents the weakness of team i’s defence when playing at
home and δj represents the attacking strength of team j when playing away.
As I am building a model for the Dutch Eredivisie, there are 18 teams for
which these parameters need to be estimated. There are four parameters to
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be estimated for each team, so this makes a total of 72 parameters to be
estimated. To estimate these parameters I need data from previous matches
played by the teams. To estimate these parameters I need to find a way to
determine the attacking and defensive strength’s of the teams in the Dutch
Eredivisie.

3 The parameters

To estimate the parameters of the model explained earlier, I make use of the
maximum likelihood estimation method. Maximum likelihood estimation is
a method in which you choose that value of the estimate that makes the
observed outcome most probable, you maximize the likelihood. For each
match.. To estimate the maximum likelihood estimates I make use of the
likelihood function. Since both the stochastic variables are independent in
the estimation of the α and β we will only need to use the x, and on the
other hand the estimation of the γ and δ will only depend on the y. So, if
we look at the home team’s scores, the likelihood function is:

L(α, β) =
∏
i

∏
j 6=i

(
e−αiβj)(αiβj)

xij

xij!
)

To find the maximum of this function we need to take the derivative with
respect to αi and the derivative with respect to βj and set them equal to
zero. But it is quite difficult to take the derivatives of this function, so to
make it ourselves a lot easier we take a look at the log-likelihood function.
This function will give the same maximum as the likelihood function as the
logarithmic function is continuous and increasing on R>0. This gives:

log(L(α, β)) =
∏
i

∏
j 6=i

log(
e−αiβj(αiβj)

xij

xij!
)

=
∑
i

∑
j 6=i

(log(e−αiβj) + log (αiβj)
x
ij − log xij!)

=
∑
i

∑
j 6=i

(−αiβj + xij logαiβj − log xij!)

Now, the derivative with respect to αi is:

∂ logL

∂αi
=
∑
j 6=i

(−βj +
xij
αiβj

· βj) =
∑
j 6=i

(−βj +
xij
αi

)
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Setting this equal to zero gives:

−
∑
j 6=i

βj +

∑
j 6=i xij

α̂i
= 0

∑
j 6=i xij

α̂i
=
∑
j 6=i

βj

α̂i =

∑
j 6=i xij∑
j 6=i βj

And in the same way we get β̂j =

∑
i 6= jxij∑
i 6=j αi

. And by using yij we get

similar expressions for γ̂i and δ̂j.

If we now calculate the second derivative of the loglikelihood function with
respect to αi we can determine whether we are dealing with a maximum or
a minimum. This gives:

∂2 logL

∂α2
i

= −
∑

j 6=i xij

α2
i

Because
∑
j 6= ixij and α2

i are always positive, the second derivative is always
negative and therefore we are dealing with a maximum and that is exactly
what we want. If we now impose the two following constraints:∑

i

αi =
∑
i

βi

∑
i

γi =
∑
i

δi

and use the earlier found expressions for α̂, β̂, δ̂ and γ̂ we get the following
estimates:

α̂i =

∑
j 6=i xij√∑
i

∑
j 6=i xij

, β̂j =

∑
i 6=j xij√∑
i

∑
j 6=i xij

, γ̂i =

∑
j 6=i yij√∑
i

∑
j 6=i yij

, δ̂j =

∑
i 6=j yij√∑
i

∑
j 6=i yij

In words, the attacking strength of team i when playing at home is the
total number of home goals scored by team i in the season divided by the
squareroot of the total number of home goals scored by all teams in the
Dutch competition that season. On the other hand, the weakness of team i’s
defence is the total number of away goals scored by the opponents of team i
while team i was playing at home, divided by the total number of away goals
scored by all teams during the entire season.
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4 Data

To estimate these estimates I will use all the results from the seasons 2008-
2009 until 2012-2013. This data contain the scores of the 1530 matches played
in these seasons. After I have estimated the parameters, I will fit my model
on the previous season (season 2013-2014) to see whether it is a good fit of
reality and whether I can find a strategy to defeat the bookmakers.
I ran into a big problem when I took a good look at the data of these seasons.
It was the problem of promotion and relegation. To estimate the strength’s
of the teams, the teams need to have played the same amount of matches
against each team, as you can see in the estimates that I derived in the
previous section. However, for example, Go Ahead Eagles promoted to the
Eredivisie in the 2012-2013 season and played in the Eredivisie for the first
time in several years. Because of this, it was impossible to estimate the
parameters of Go Ahead Eagles as there was no data for me to work with.
A way to solve this problem was to also include the teams of the Jupiler
League, the second division in the Netherlands, in my model. In this way I
could also depend the strengths of the teams in the Jupiler League and in that
way solve the problem. However, the problem with that solution is that when
teams promote, or relegate, their strength’s change as well. This is due to the
fact that when a team for example relegates it’s budget decreases with a big
amount. Therefore, the club needs to sell its best players and this will have
a big influence on the team’s strength in the next season. Next to that, also
the number of supporters when playing at home will decrease, as supporters
always want to see their team in the best competition and playing against
attractive opponents, this will have an influence on the home advantage of
the club. On the other hand, when a team promotes, the budget goes up with
a considerable amount, the club will attract better players and the number
of supporters supporting the club will increase. Again the strength of the
team makes a big change. Therefore, I chose not to solve the problem by
including the teams playing in the Jupiler League.
To solve the problem I created four ”promotion teams” and named them P1,
P2, P3 and P4. I started in the season 2008-2009 and gave the four teams
that would regelate each one of the names. Then every season I named the
promoted clubs again. The team that was champion in the Jupiler League
got the name of the ’best’ relegator, in the sense of the relegator with the
highest place in the ranking. And then the second best in the Jupiler League
was named after the second best relegator in the Eredivisie, etc... In this
way the problem of promotion and relegation is being solved, and also each
club plays the same amount of matches against any other club. This makes
it possible to also estimate the parameters of these four ”promotion teams”.
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5 Application to the Dutch Eredivisie in the

2013-2014 season

The data of the five seasons 2008-2009 until 2012-2013 of all the results of the
matches in the Dutch competition of the 18 clubs, including the four ”promo-
tion teams”, is enough to calculate the estimates of the 72 parameters that
have to be found. I chose to use the data of five seasons because I wanted
my dataset to be large enough, to reduce the probability of big errors. On
the other hand, I chose not to add any more seasons as the strength of the
teams nowadays is mostly comparable with previous results, and in average
players don’t stay at a club for more than four/five years.
The estimates that were derived, are only to be calculated for one season only
as the formulas for the estimates include the total number of home/away goals
scored in a season by all teams, and by team i. Therefore, I calculated the
parameters for all of the five seasons per team. This resulted in the following
tables for the moe parameters:

Table 1: Home attack parameters
- 2008-2009 2009-2010 2010-2011 2011-2012 2012-2013
Ajax 1,791093316 2,785242495 1,557848117 2,025900665 1,721325932
AZ Alkmaar 1,660037708 1,436140662 1,516852114 1,571106638 1,2479613
Den Haag 0,917389259 0,913907694 1,475856111 0,909588054 1,075828707
Feyenoord 1,485296896 1,392621248 1,475856111 1,61245155 1,807392228
Groningen 1,397926491 1,08798535 1,516852114 1,199002434 0,860662966
Heerenveen 1,791093316 1,08798535 1,434860108 1,529761727 1,2479613
Heracles 0,961074462 1,566698904 1,59884412 1,240347346 1,635259635
NAC Breda 0,917389259 1,131504764 1,106892083 1,116312611 1,075828707
Nijmegen 1,092130071 0,87038828 1,229880093 1,0749677 0,817629818
P1 1,135815274 0,783349452 0,901912068 0,785553319 0,989762411
P2 0,961074462 1,000946522 1,147888086 0,992277877 1,032795559
P3 0,742648448 1,30558242 0,819920062 1,199002434 0,946729262
P4 1,179500476 0,783349452 1,147888086 0,620173673 0,989762411
PSV
Eindhoven

1,791093316 1,74077656 2,008804151 2,356659957 2,495922601

Roda JC 0,961074462 1,610218318 1,393864105 1,405726992 1,2479613
Twente 1,747408113 1,610218318 1,557848117 1,695141373 1,420093894
Utrecht 1,179500476 0,913907694 1,557848117 1,61245155 1,161895004
Vitesse 1,179500476 0,957427108 0,942908071 1,240347346 1,463127042
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Table 2: Home defence parameters
- 2008-2009 2009-2010 2010-2011 2011-2012 2012-2013
Ajax 0,483843 0,209657 0,454569 0,68973 0,485643
AZ Alkmaar 0,376322 0,838628 1,010153 0,492665 1,116979
Den Haag 0,967686 1,467599 1,262691 1,280928 1,3598
Feyenoord 1,128967 0,733799 0,808122 0,738997 0,582772
Groningen 0,752645 0,786214 1,010153 1,133129 1,214107
Heerenveen 1,182727 0,995871 1,161675 1,52726 1,456929
Heracles 0,913926 1,310356 0,85863 1,034596 1,554057
NAC Breda 1,182727 0,891042 1,06066 1,083862 1,311236
Nijmegen 1,021446 1,415185 0,959645 1,034596 1,456929
P1 1,021446 1,36277 1,111168 1,872126 1,408365
P2 1,720331 1,520013 2,424366 0,936063 0,922722
P3 1,505289 1,205528 1,767767 1,231662 2,0397
P4 1,451529 1,572427 1,515229 1,428727 1,69975
PSV Eindhoven 0,806405 0,681385 0,757614 0,985329 0,825593
Roda JC 1,344008 1,467599 0,808122 1,231662 0,874157
Twente 0,698884 0,524142 0,656599 1,034596 0,825593
Utrecht 1,021446 0,628971 1,06066 1,625793 0,582772
Vitesse 1,021446 1,467599 1,111168 0,936063 0,874157

There are several ways to determine the parameters for the 2013-2014 season.
The most simple way is to take the average of the parameters of the five
seasons, and apply those parameters on the 2013-2014 season. Let’s call the
model in which the parameters are determinde in this way model 1. The
parameters for model 1 can be found in the following table:

9



Club αi, homeattack γi, homedefence δj, awayattack βj, awaydefence
Ajax 1,976 0,465 1,990 0,954
AZ Alkmaar 1,486 0,767 1,326 0,958
Den Haag 1,059 1,268 1,057 1,506
Feyenoord 1,555 0,799 1,137 1,084
Groningen 1,212 0,979 1,023 1,288
Heerenveen 1,418 1,265 1,338 1,467
Heracles 1,400 1,134 1,002 1,518
NAC Breda 1,070 1,106 0,910 1,392
Nijmegen 1,017 1,178 1,002 1,274
P1 0,919 1,355 0,784 1,559
P2 1,027 1,505 0,670 1,492
P3 1,003 1,550 0,588 1,505
P4 0,944 1,534 0,641 1,821
PSV
Eindhoven

2,079 0,811 1,694 0,899

Roda JC 1,324 1,145 1,105 1,657
Twente 1,606 0,748 1,448 0,787
Utrecht 1,285 0,984 0,941 1,104
Vitesse 1,157 1,082 1,018 1,274

However, as the strength of the teams is likely to be most comparable to
the most recent results, a better way to determine the parameters may be to
give more recent results more weight. I chose to determine the parameters
in another way by using the following formula:

ˆθtotal =
θ̂0809 + 2θ̂0910 + 3θ̂1011 + 4θ̂1112 + 5θ̂1213

15

Where, θ is equal to α, β, γ, δ. In this way, the matches played in the season
2012-2013 have way more influence on the strength of the teams in season
2013-2014 than the matches played in the season 2008-2009. Let’s give this
model the name model 2. The parameters for the 2013-2014 season for model
2 can be found in the following table:
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Club αi, home attack γi, home defence δj, away attack βj, away defence
Ajax 1,916 0,497 2,029392 0,902
AZ Alkmaar 1,440 0,843 1,277 1,065
Den Haag 1,079 1,308 1,062 1,496
Feyenoord 1,612 0,726 1,161 1,099
Groningen 1,148 1,064 0,936 1,333
Heerenveen 1,375 1,337 1,367 1,399
Heracles 1,469 1,201 1,048 1,575
NAC Breda 1,090 1,136 0,845 1,367
Nijmegen 0,994 1,210 1,050 1,331
P1 0,900 1,441 0,777 1,418
P2 1,036 1,359 0,681 1,470
P3 1,023 1,623 0,606 1,492
P4 0,908 1,557 0,628 1,808
PSV
Eindhoven

2,214 0,834 1,757 0,972

Roda JC 1,348 1,067 1,135 1,788
Twente 1,568 0,799 1,509 0,805
Utrecht 1,329 0,992 1,011 1,132
Vitesse 1,213 1,027 1,141 1,210

To determine the estimate of the standard errors of the maximum likelihood
estimators I make use of the Fisher information. If we take a look at the
maximum likelihood estimator α̂, the Fisher information is denoted as:

I(αi) = E((
∂ logL

∂αi
)2 | αi).

You can see the likelihood function as a random curve. The observed log like-
lihood function which is found by using the data is slightly different from the
”true” likelihood E(logL(θ)). Now, as the sample size increases the observed
likelihood converges to the true likelihood. Next to that, the derivative of the
log likelihood function with respect to θ, also called the score function, con-
verges to the derivative of the true likelihood function with respect to θ. So,
the fisher information indicates the steepness of the observed log likelihood
curve around the maximum likelihood estimator. The Fisher information
can also be written as:

I(αi) = −E(
∂2 logL

∂α2
i

| αi)

, because

−E(
∂2 logL

∂α2
i

| αi) = −E(
∂

∂αi

∂
∂αi
L(αi)

L(αi)
) = −E(

∂2

∂α2
i
L(αi)

L(αi)
−

( ∂
αi
L(αi))

2

(L(αi))2
),

11



due to the quotient rule, and thus:

−E(
∂2 logL

∂α2
i

| αi) =
∂2

∂α2
i

(1) + E((
∂ logL

∂αi
)2 | αi) = I(αi).

Now, we can fill in the formula. As earlier determined, the second derivative
of the loglikelihood function with respect to αi is equal to

∂2 logL

∂α2
i

= −
∑

j 6=i xij

α2
i

.

This gives:

I(αi) = E(

∑
j 6=i xij

α2
i

).

Now that we have determined the Fisher informations, we can find the stan-
dard errors of the estimates by making use of the Cramer-Rao bound. The
Cramer-Rao bound states that:

var(θ̂) ≥ 1

I(θ)

As the maximum likelihood estimator αi is both unbiased(its expectation
equals αi) and efficient we can use the Cramer-Rao bound to determine the
standard errors of the estimates:

SE(α̂i) =
1

I(αi)
=

α̂i
2∑

j 6=i xij

For more information about the Fisher information and the use of the Cramer-
Rao bound take a look at chapter 8.5 of the bookMathematical statistics and
by John A. Rice. I have calculated all standard errors for both models and
they are all smaller than 0.04. This is a small value and therefore we can use
the estimates and apply them on the 2013-2014 season.

The maximum likelihood estimates from both models now can be used to
estimate the means of Xij and Yij, for a match between team i and team j.
Since Xij ∼ Poisson(αiβj) and Yij ∼ Poisson(γiδj) and since both random
variable are assumed to be independent, the probabilities that Xij = x and
Yij = y may be calculated using the probability density function:

P (X = k) =
λke−λ

k!
.
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The expected score distributions can now be found by calculating these prob-
abilities for each match, thus for each pair i and j, and then summing these
probabilities. These expected score distributions then can be compared with
the observed score distributions. In the following table this is done for model
1:

Home Away
Number of goals obs. exp. obs. exp.
0 38 63,66 79 103,66
1 103 92,08 107 101,72
2 78 73,19 80 58,96
3 55 42,73 25 26,43
4 16 20,56 8 10,14
5 or more 16 13,78 7 5,09

In the following table again the expected score distributions are deter-
mined, this time for model 2:

Home Away
Number of goals obs. exp. obs. exp.
0 38 62,69 79 100,29
1 103 91,63 107 101,04
2 78 73,40 80 60,15
3 55 43,12 25 27,76
4 16 20,89 8 10,99
5 or more 16 14,27 7 5,09

In those two tables, it can be clearly seen that the estimates used for model
2 are a better fit of reality than those used for model 1. This can also be
seen by calculating the value of the test statistic of a chi-squared test. This
chi-squared statistic is given by the following formula:

χ2 =
∑
k

(observedk − expectedk)2

expectedk

For model 1 this results in a test statistic of 16.84 for the home scores and
14.89 for the away scores. Both these chi-squared statistics are quite big and
this mainly is a direct result of the fact that in both home and away scores the
times that zero goals are scored are overestimated with a huge amount. The
test statistics for the distributions in model 2 are somewhat lower than those
of model 1, namely 16.04 for the home scores and 12.75 for the away scores.
We are dealing with a chi-squared statistic with 6−1 = 5 degrees of freedom,
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and this gives at a significance level of 1 percent a critical value of 13.39. So,
only the expected away score distribution when using the weighting-formula-
parameters is a good fit of reality when using this test. However, for all four
test statistics the fact that the zero goals matches were overestimated, had
a great influence on their value. Therefore, by slightly adjusting the model
this problem could easily be solved. Since the parameters used for the second
table clearly give a better fit of reality we will continue with these parameters.

For a match between team i and team j the probabilities of a home win,
a draw and a away win can be calculated. To calculate these probabilities we
need to make use of the probability mass function for the Skellam distribu-
tion. The Skellam distribution is the probability distribution of the difference
between two independent variables which are both Poisson distributed:

Skellam(λ1, λ2) = Poisson(λ1)− Poisson(λ2).

The probability mass function of a Skellam distributed variable is given by:

f(k;λ, µ) = e−(λ+µ) · (λ
µ

)k/2 · Ik(2
√
λµ),

where, k is the difference in scores; the number of home goals minus the
number of away goals. Next to that, λ is the mean of Xij, µ the mean of Yij
and Ik is the modified Bessel function of the first kind.
For the derivation of this formula I refer to the article ”The Frequency Distri-
bution of the Difference Between Two Poisson Variates Belonging to Different
Populations” by J.G. Skellam.

The probability of a home win is now the sum of the probability mass func-
tions over k = 1, 2, 3, ..., the probability of a draw is the value of the proba-
bility mass function for k = 0 and the probability of an away win is the sum
of the probability mass functions over k = −1,−2,−3, .... In the following
table these probabilities for some matches of the season 2013-2014 together
with their observed score.

Match Home win Draw Away win Observed score
Roda JC-Ajax 0.22 0.20 0.58 1-2
Heracles-Den Haag 0.54 0.20 0.26 1-0
PSV-Nijmegen 0.79 0.13 0.08 5-0
Utrecht-Groningen 0.57 0.23 0.21 1-0

Overall, the model can predict the winner of a match very well, whereas
it has difficulties with matches where one or both teams score no goals.
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6 Conclusion

This simple model is already a good fit of the reality, but this model could be
improved in many ways. The model I used is a static model and as you can
probably imagine teams are not constant over the year. By using the weight-
ing function I have taken care of the fact that previous results show more
about the strengths of teams nowadays than results from earlier matches.
However, there may be weighting function that work better and that can
also be used during the season.
Next to the fact that the model is static, there are also other factors other
than just the number of goals scored that affect the strengths of the teams.
Think of the budget of the club and recent transfers that have been made.
Also the sacking of the manager, injuries and suspensions of important play-
ers, and the strength of the team as a whole may influence the results.
The number of matches played besides the competition, such as European
matches and Cup matches, may influence the condition of the players which
can also influence the strength of the team. Also factors as the referee, the
number of supporters or even the weather may influence the result of the
match. Of course, it is impossible to include all these factors in the model
and as proved previously this simple model already works well.
The model also could be adjusted to the game status, as on average more
goals are scored later in the match and may play more attacking when they
are losing the match. Finally, as was seen in the tables, the model overesti-
mates the number of matches in which one or both teams score no goals. An
adjustment to the likelihood function could be made to solve this problem.
To conclude, the model is working well but a lot of things could be improved
as well.
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