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Abstract

Increasing tidal range in the Elbe estuary constitutes a problem for shipping and the
ecosystem. The increase in tidal range over the last century has been suggested to be
caused by deepening activities. Besides, rising mean sea level leads to changed tidal
characteristics in the North Sea, and is thus also expected to influence tidal range in the
estuary. In this thesis, the effects of both deepening and sea level rise on tidal range
in the Elbe estuary were investigated and compared. Tidal range was simulated using
an analytical model with solutions to the width-averaged shallow water equations, and
tidal forcing including the principal semi-diurnal lunar tide and its first overtide. This
was done for three different depth configurations. The model was found to reasonably
represent current tidal range in the estuary. The results suggest that deepening of the
estuary up to Hamburg will result in a further increase of tidal range, especially in
the region around Hamburg. Global sea level rise, as estimated by the IPCC for 2100,
was found to lead to an increase in M2 and M4 amplitudes at Cuxhaven, resulting in
an along-estuary increase in tidal range. The maximum increase of tidal range due to
deepening and expected sea level rise was comparable in size. The research shows that the
combined long-term effects of both deepening and sea level rise should be studied before
new dredging activities are carried out in the Elbe estuary. Lastly, possible improvements
to the model are discussed.
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Populair-wetenschappelijke samenvatting

De Elbe is een estuarium in Duitsland, dat uitmondt in de Noordzee. De waterdynamica
wordt hier in grote mate bepaald door het getij: het effect van eb en vloed is merkbaar
tot zo’n 140 km landinwaarts, waar een dam de getijgolven tegenhoudt. De afgelopen
eeuw is er een sterke toename geweest in het getijdenverschil in de Elbe; waterstanden
bij vloed werden steeds hoger, en bij eb juist steeds lager. Dit heeft nadelige gevolgen
voor de scheepvaart en voor het ecosysteem. Bij lage waterstanden kunnen grote schepen
niet passeren en gaat de zuurstofconcentratie in het water omlaag, wat schadelijk kan
zijn voor planten en dieren.

Figuur: De Elbe van bovenaf gezien. Het getij komt bij Cuxhaven het estuarium
binnen vanuit de Noordzee, en zorgt voor een duidelijk merkbaar getijdenverschil tot

140 km landinwaarts, waar de dam in Geesthacht de getijgolf tegenhoudt.

Een mogelijke oorzaak voor de toename in getijdenverschil is de steeds verdere verdieping
van het kanaal, die in de afgelopen eeuw uitgevoerd werd om de haven van Hamburg
bereikbaar te houden voor vrachtschepen. Hoe komt dat nu precies?

Het getij kan beschreven worden als een golf, met een golflengte van enkele honderden
kilometers en een periode van iets meer dan 12 uur. Een getijgolf die het estuarium
binnenkomt, wordt gereflecteerd tegen de dam. De inkomende en gereflecteerde golf in-
terfereren met elkaar, waardoor een staande golf kan ontstaan. Dit verschijnsel wordt
ook wel resonantie genoemd. Of resonantie optreedt is afhankelijk van de breedte, de
lengte en de diepte van het estuarium. De situatie is vergelijkbaar met resonantie van
een geluidsgolf in een orgelpijp, met één gesloten uiteinde. Hoe dichter een estuarium
bij resonantie is, hoe hoger het getijdenverschil zal zijn. Daarnaast is het Elbe estuar-
ium bovendien convergent: de breedte neemt af naarmate je verder landinwaarts gaat.
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Ook dit zorgt voor een verhoging van het getijdenverschil landinwaarts, omdat dezelfde
hoeveelheid water door een steeds smaller kanaal gestuwd wordt.

Behalve door resonantie en convergentie, zal het getij in de toekomst waarschijnlijk
beïnvloed worden door zeespiegelstijging. Als de zeespiegel in de Noordzee stijgt, heeft
dit gevolgen voor de karakteristieken van de getijgolf die vanuit de Noordzee de Elbe
ingaat, en hier het getijdenverschil veroorzaakt. Volgens de IPCC zal de zeespiegel over
de hele wereld in 2100 waarschijnlijk een halve meter gestegen zijn, en in het ergste geval
zelfs één meter.

In dit onderzoek worden de effecten van zowel verdieping als zeespiegelstijging op het
getijdenverschil in de Elbe onderzocht en vergeleken. Hiervoor wordt een stelsel van
vergelijkingen, de ondiep water vergelijkingen genaamd, opgelost en gesimuleerd in een
analytisch model.

Uit de resultaten van de simulatie blijkt dat zowel zeespiegelstijging als verdieping in
de Elbe zullen leiden tot een verdere toename van het getijdenverschil. Het onderzoek
maakt duidelijk dat het belangrijk is om de lange termijn effecten van zowel verdieping
als zeespiegelstijging goed te onderzoeken, voordat verdere plannen voor verdieping van
de Elbe ten uitvoer gebracht worden.

Aantal woorden: 579
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1 | Introduction

The Elbe estuary is situated in Germany and connected to the North Sea, where tides

play a prominent role in the water dynamics. The estuary is of great ecological value,

with over 30 nature protection areas along its shores and vast shallow water areas that

are important for fish and bird populations (Deltares, 2011). With the transport hub

of Hamburg 100 km inland from the sea, the Elbe estuary also serves as an important

transport channel for large vessels on their way to the port of Hamburg.

In the past century, the shape of the estuary has been heavily modified by human inter-

ventions. In 1960, a weir was built at Geesthacht, 140 km up-estuary, and in the 1980s

large dyke constructions were built along the shores. Since the beginning of the twentieth

century, the estuary has been deepened several times to ensure a navigable channel for

ships of growing size (Kerner, 2014; Kappenberg and Fanger, 2007; Winterwerp et al.,

2013). At the same time, an increase in tidal range has been observed over the last

decades (Winterwerp et al., 2013; HPA and MOW, 2013). The increased tidal range

constitutes danger of flooding and is a potential problem for shipping. If water levels are

too low, ships cannot proceed to and from the habrour of Hamburg. Furthermore, the

strong variations in water level can pose a threat to fragile ecosystems along the estuary

(Deltares, 2011).

Winterwerp et al. (2013) suggested that the increase in tidal range is caused by tidal

resonance due to reflections of tidal waves at the weir. This reflection causes standing

wave-behavior, which can have a significant effect on tidal range and velocity (Winterwerp

and Wang, 2013). Resonance characteristics depend largely upon estuary geometry,

and are therefore influenced by human modifications to estuary depth, width or length

(De Jonge et al., 2014)

This research focuses on the underlying physical mechanisms of resonance characteristics

in the Elbe estuary. As described above, estuary geometry plays an important role. A

second mechanism affecting tidal characteristics is sea level rise. Mudersbach et al. (2013)

use long-term tidal gauge data and sea-level records to show that there is a significant

correlation between sea level rise and increasing tidal range at the moth of the Elbe

estuary. Pickering et al. (2012) reach the same conclusion for the impact of future sea-

level rise, based om model simulations of the European shelf tides.

In this research, the effect of both deepening and sea level rise on tidal range in the Elbe

estuary is investigated. To assess the impact of both deepening and sea level rise, tidal

response of the estuary is simulated using an analytical model containing solutions of the

1
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linearised shallow water equations. The model is applied to three different configurations

of the longitudinal bottom profile. Firstly, the modelled tidal range for each configuration

will be compared to measurements, to determine which aspects are well reproduced by

the model. Next, the effect of deepening on tidal range will be investigated for all three

configurations. Lastly, the effect of sea level rise on tidal range will be investigated for

the same three configurations, using estimates for sea level rise in 2100 from the last

IPCC assessment report in Church et al. (2013). Since sea level rise will most likely have

a significant impact on the tidal forcing of the Elbe estuary, modelled changes in external

tidal forcing will also be included. The effects of deepening and sea level rise will then

be compared to each other.

In the next section, a theoretical framework for this research will be described, including

the model equations that were used. This is followed by a description of the research

method in section 3. In section 4, simulation results for the three bottom configurations

will be compared to measured values, and the results of both the influence of deepening

and sea level rise will be quantified and compared to each other. The thesis ends with a

discussion of these results and concluding remarks.



2 | Theory

This section provides a theoretical framework for the conducted research. Firstly, the the-

ory behind the generation of tides and different tidal constituents is explained. Next, the

shallow water equations will be introduced to describe what happens when the generated

tidal wave enters the estuary at the open boundary. The dominant factors determining

tidal response of the estuary will be discussed, and eventually, a solution to the linearised

shallow water equations will be given.

2.1 Generation of tides

2.1.1 Equilibrium tides

The principal generation of the tide arises from the dynamics of the moon-earth system,

rotating about a common centre of mass (Open-University, 2001). This causes a cen-

trifugal force that is equal in each point on the earth’s surface and points away from the

moon. The vector sum of the centrifugal and gravitational force acting on the earth in

this system is the tide-producing force, that is different depending on the location on

the earth’s surface. Since the moon rotates about the common centre of mass every 27.3

days in the same direction as the earth rotates about its own axis, the period of the

earth’s rotation with respect to the moon is 24 hours and 50 minutes. This period is

called the lunar day.

Figure 2.1: Generation of tidal bulges in the
moon-earth system (tidal bulges are exagger-
ated). A point on the surface of the earth ex-
periences two high tides (1 & 3) and two low
tides (2 & 4) during each complete earth rota-

tion with respect to the moon.
Source: Garrison (2007)

In figure 2.1, the generation of the lunar

tide is illustrated. The tidal bulge clos-

est to the moon is caused mainly by grav-

itational attraction; the tidal bulge fur-

thest from the moon by centrifugal accel-

eration. During a complete earth rotation,

one point on the surface of the earth ex-

periences two high tides, indicated with 1

and 3, and two low tides, indicated with

2 and 4. This is called the semi-diurnal

lunar tide and is also referred to as the

M2-tide (Open-University, 2001).

A similar force balance exists for the sun-earth system, causing the principal solar or S2-

tide. In the North Sea, however, S2 amplitudes are small compared to M2 amplitudes.

This research therefore focuses on the lunar tide only. The theory of the interacting

3
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system of lunar and solar tides is also called the equilibrium tide theory (Open-University,

2001). However, equilibrium tides do not occur on earth for several reasons, as will be

explained in the next section.

2.1.2 Dynamic tides and overtides

Due to the constraints of land masses and the non-uniform depth of oceans, tides on

earth will deviate from equilibrium tides. When associated non-linear processes are

included, the ocean dynamics are described by the dynamic theory of tides. The speed

of a travelling tidal wave is controlled by water depth; a wave travelling over continental

shelf regions and in shallower coastal waters will be slowed down. Since the top part of

the wave effectively experiences a greater water depth, it will travel faster than the lower

part of the wave. Thus, inertia will cause the tidal wave to deviate from the harmonic

tidal wave, as is described in detail in the review by Friedrichs (2004). A Fourier time

series of the principal tide will arise, with terms representing overtides with frequencies

that are multiples of the principal frequency. The lunar overtides are known as the M4-

tide, M6-tide, etcetera. The M4-tide, for example, is the first harmonic overtide of the

M2-tide, and thus has a frequency that is twice the M2 frequency. Overtides originate

from non-linear dynamics in shallow water. The process of advection, for example, is the

source of even overtides such as M4.

This research focuses on the Northwest European shelf, where the tide is dominated by

the M2-tide. Therefore, only the M2-tide and it’s first harmonic overtide, the M4-tide,

were included in this research.

2.1.3 Amphidromic systems

As stated before, the restriction of tidal waves by land masses on earth results in complex

ocean dynamics. A second factor determining ocean dynamics is the Coriolis force. The

Coriolis force arises from the application of Newton’s laws of motion to a rotating frame

of reference. As is shown in e.g. Marshall and Plumb (2008), the Coriolis acceleration

~ac is given by

~ac = −2~Ω× ~u, (2.1)

where ~u is the velocity of the moving object in the rotating frame, and ~Ω is the angular

velocity vector. The Coriolis force is in fact a fictitious force; it does no work, but merely

acts to change the direction of flow.

Since the earth rotates around its axis only once per day, the Coriolis acceleration due to

earth rotation is relatively small, and is only noticeable for motions occurring over large

distances and timescales longer than a day (Marshall and Plumb, 2008). The Coriolis

effect plays a significant role in the deflection of tidal waves. For anti-clockwise rotation,
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Figure 2.2: Manifestation of an amphidromic point. The tidal crest enters a basin
and, on the northern hemisphere, is deflected anti-clockwise due to the Coriolis effect.

A resulting node or amphidromic point in the middle of the basin develops.
Source: Garrison (2007)

like the earth’s rotation, ~Ω is positive. A fluid parcel of the tidal wave moving in a

plane perpendicular to the earth’s surface is thus deflected to the right on the northern

hemisphere. On the southern hemisphere, the fluid parcel is deflected to the left.

Figure 2.3: Amphidromic points in
the North Sea. Co-tidal lines are
shown in red, with numbers indicat-
ing the time of high water (in hours)
after the moon has passed the Green-
wich meridian. Blue lines represent co-
range lines, with tidal range in meters.

Source: Open-University (2001)

Together with the constraint of land masses, the

Coriolis effect results in the development of am-

phidromic points in oceans and coastal waters

(Open-University, 2001). This process is illustrated

in figure 2.2. If a tidal wave enters a basin, the

Coriolis effect deflects the wave to the right on the

northern hemisphere. The reflected wave also tends

to the right, and thus, the water spins around the

basin; anti-clockwise on the northern hemisphere,

and clockwise on the southern hemisphere. The re-

sulting node in the middle of the basin experiences

no tidal range, and is called an amphidromic point

(Garrison, 2007). Tidal range thus increases with

distance from an amphidromic point.

Tidal waves in amphidromic systems are classified

as Kelvin waves, for which the amplitude is great-

est near coasts Open-University (2001). This can
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also be seen from figure 2.2. Kelvin waves occur at the equator and at coasts, where the

deflection by the Coriolis force is zero or constrained, respectively. In figure 2.3, the am-

phidromic system of the North Sea is shown as an example. Marshall and Plumb (2008)

describe that amphidromic points only appear in basins with a width much smaller than

the Rossby deformation radius,
√
gh/Ω. This means that in the North Sea, amphidromic

points can be observed, whereas in the Elbe, they only manifest themselves as nodal lines.

2.2 Tides in estuaries

2.2.1 Shallow water equations

In estuaries, water depth, or the vertical length scale, is typically much smaller than

horizontal length scales, such as basin length or tidal wavelengths. This justifies the use

of the shallow water equations as described by e.g. Marshall and Plumb (2008). The

shallow water equations are a set of partial differential equations derived from depth-

integrating the Navier-Stokes equations. They express the time rate of change of both the

free surface elevation η and the width-averaged tidal velocity u in two different equations:

the mass balance and the momentum balance (Marshall and Plumb, 2008).

Since this research focuses on the underlying physical processes of the water motion, the

shallow water equations were linearised to make them analytically solvable. Linearisation

is possible here because tidal amplitudes are small compared to water depth, allowing

for the application of perturbation theory (Friedrichs, 2004). In the following section,

the equations for η and u are already linearised; the details of this linearisation process

are explained in appendix A.

Figure 2.4: Mass conservation as
stated in equation 2.2. Changes in sur-
face elevation η result in a change in
the perpendicular surface; this results
in a change in the total volume trans-

port Q = b
∫ 0

−hu dz.

In this research, the variation of η and u in the

along-channel x-direction is investigated. The ver-

tical velocity profile, or velocity variation in z-

direction, is also taken into account. The linearised

mass balance or continuity equation then reads

∂(bη)

∂t
+

∂

∂x

(
b

∫ 0

−h
u dz

)
= 0, (2.2)

where b is the width of the estuary. This equation

has the form of a general conservation equation;

the total change in the cross-sectional area must

equal the divergence of the total volume transport

(Marshall and Plumb, 2008). The conservation of

mass that formula 2.2 expresses, is illustrated in

figure 2.4.
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The second equation is the momentum balance, which expresses the time rate of change

of the tidal velocity in terms of the relevant physical processes. As described by Friedrichs

(2004), the linearised, cross-sectionally averaged momentum equation reads

∂u

∂t
= −g ∂η

∂x
+

∂

∂z

(
Av

∂u

∂z

)
, (2.3)

where g is the gravitational acceleration and Av the vertical eddy viscosity. The terms on

the right-hand side of equation 2.3 represent, from left to right, along-channel pressure

gradient and internal friction. Internal friction is usually expressed using the shear

stress or force per unit area τxz, which is a measure for the transport of x-momentum

in the z-direction, when different ’slabs’ of water slide over one another (Marshall and

Plumb, 2008). The force per unit area per unit mass depends on the velocity profile in

z-direction. For higher vertical variations of u, the shear stress, divided by the density

ρ, will be bigger. Therefore, τxzρ is parametrised in equation 2.3 as Av ∂u∂z , with the eddy

viscosity Av as proportionality constant, which for now will be assumed constant over

the whole estuary.

From the mass and momentum balance, all relevant physical effects can be derived. To

solve the equations, boundary conditions need to be specified, which will be done in

section 2.2.4. But firstly, two processes that are dominant in determining the estuary

tidal response will be examined: resonance and width convergence.

2.2.2 Resonance

An important factor determining tidal elevation and velocity in an estuary is resonance.

A tidal wave entering the estuary at the open boundary can be reflected against a barrier

up-estuary, such as a weir, and cause standing wave behavior (Open-University, 2001).

For certain wavelengths, resonance can occur, resulting in maximum amplification and

(a) Top view (b) Side view

Figure 2.5: View from top and side of an estuary or bay showing the occurrence of
resonance. When a tidal wave propagates through the estuary, resonance can occur
due to reflection at a closed boundary and a standing wave can form. Figure (B) shows

resonance for an estuary length that is 3
4 of the tidal wavelength.
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damping of the tidal wave as illustrated in figure 2.5. The physical situation is comparable

to the propagation of a sound wave through an organ pipe with one open end. In appendix

B, the resonance condition for a straight, frictionless estuary is derived from the shallow

water equations given in equation 2.2 and 2.3, resulting in

ωLc√
gh

= (n− 1

2
π), for n = 1, 2, ..., (2.4)

where ω is the angular frequency of the tidal wave, Lc is the estuary length, g the grav-

itational acceleration and h the depth of the estuary. This result shows that resonance

characteristics are also influenced by depth. Using that the wave period T is equal to
2π
ω , and that the wave speed of a shallow water wave is

√
gh as given by Open-University

(2001), equation 2.4 can be rewritten as

Lc =

(
n

2
− 1

4

)√
gh T =

(
n

2
− 1

4

)
Lt, (2.5)

Figure 2.6: Ratio of water level η at the end and at
beginning of the estuary

( |ηx=L|
|ηx=0|

)
plotted against Lc

4Lt
,

for a frictionless, straight estuary. The occurrence of
resonance for Lc =

(
n
2 −

1
4

)
Lt can be seen.

where Lt is the tidal wavelength. In

figure 2.6, the ratio of water level η at

the end and at the beginning of the

estuary is plotted against Lc
4Lt

. Res-

onance occurs for Lc
4Lt

= 2n − 1 =

1, 3, 5, .... In the case of no friction, as

shown in the figure, the amplification

of the water level is infinitely high. If

friction is present, the peaks become

finite, and for successive peaks, rep-

resenting higher harmonics, η will be

damped more strongly.

2.2.3 Width convergence

A second important factor influencing tidal elevation and velocity in an estuary is width

convergence. Most estuaries are funnel-shaped, meaning their width converges when

travelling up-estuary, as shown in figure 2.7. For an exponentially converging estuary,

the width b is given by

b = b0 · e
−x
Lb , (2.6)

where b0 the width of the estuary at the open boundary and Lb is the e-folding conver-

gence length. This is the length over which the estuary width decreases by a factor e. In

case of no reflection, the effect of convergence is to increase tidal range up-estuary, since

the same volume of water must travel through a smaller passageway.
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Figure 2.7: Schematic representation of a
converging estuary with estuary length Lc and
width b0 at x = 0. Also shown is the e-folding
convergence length Lb, which is the length over
which the estuary width decreases by a factor e.

As described by Friedrichs (2004), con-

vergence in combination with resonance

causes dynamics that are less easily pre-

dicted. The incoming wave is amplified

due to the narrowing channel. The re-

flected wave experiences a widening chan-

nel as it propagates back through the es-

tuary, and is thus dampened. The incom-

ing and reflected wave interfere, and there

exists an optimal value of Lb for which

tidal amplification is maximal. Conver-

gence combined with resonance can thus

result in both dampening and amplification. In addition, both the incoming and re-

flected wave will be dampened if friction effects are also included.

2.2.4 Solutions of the shallow water equations in a tidal estuary

In the former two sections, a closer look was taken at two of the relevant physical processes

in the tidal response of the estuary. Combining these two effects in equation 2.2 and 2.3,

the total response can be determined, using four different boundary conditions.

At the open boundary, where x = 0, the water motion is driven by a forced tidal wave

of the form

η = ηM2 cos(ωt) + ηM4 cos(2ωt− φ), at x = 0. (2.7)

In appendix C, more details about the phase difference φ are given. It should be noted

that the forcing consists of different tidal constituents, as described in section 2.1.2. In

this research, only the M2 and M4 components were included. By the method of separa-

tion of variables it can be shown that the set of equations can be solved independently for

each tidal constituent. Therefore, only the derivation for the M2 tide will be shown here;

the derivation for M4 is analogous to this. For M2 separately, the boundary condition is

η = ηM2 cos(ωt), at x = 0. (2.8)

The second and third boundary conditions state that

u = 0,

{
at x = Lc,

at z = −h.
(2.9)

The first of these conditions sets the velocity at the closed boundary to zero, and the

second is a no-slip condition, meaning the velocity is also zero at the estuary bottom.
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The last boundary condition states that the shear stress τxz at the free surface vanishes:

Av
∂u

∂z
= 0, at z = 0. (2.10)

where the free surface is taken at z = 0 because of linearisation; for details, see appendix

A. The non-transient solution, after the system has had time to reach equilibrium, should

represent a wave of the form

η = ηc,M2(x) cos(ωM2t) + ηs,M2(x) sin(ωM2t)

= Re{η̂M2(x)e−iωM2t} (2.11)

u = uc,M2(x, z) cos(ωM2t) + us,M2(x, z) sin(ωM2t),

= Re{ûM2(x, z)e
−iωM2t}, (2.12)

where η̂ and û are complex and no longer depend on time. The total solution is a linear

combination of both the M2 and M4 solutions. Implementing the solutions for M2 into

equation 2.2 and 2.3, the resulting time-independent equations are

−iωbη̂ +
∂

∂x

(
b

∫ 0

−h
û dz

)
= 0, (2.13)

iωû+Av
∂2û

∂z2
= g

dη̂

dx
. (2.14)

Right now, a set of equations that can be solved analytically is finally obtained. The

second equation is a nonhmonegenous, linear differential equation, of which the general

solution is the sum of the homogenous and the particular solution (Kreyszig, 2006).

Introducing the constant γ as

γ =

√
−2iω

Av
, (2.15)

the particular and homogenous solution for û are given by

ûpart =
g

iω

dη̂

dx
, (2.16)

ûhom = Aeγz +Be−γz, (2.17)

where A and B are proportionality constants determined by the boundary conditions.

Taking a general solution of the form ûpart + ûhom and implementing the boundary

conditions from equation 2.9, the final solution reads

û =
g

iω

dη̂

dx
p(z), with p(z) = 1− cosh(γz)

cosh(γh)
. (2.18)
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Substitution of this solution in equation 2.13 yields an analytically solvable equation for

η that reads

− iωbη̂ +
∂

∂x

(
b
g

iω

dη̂

dx

∫ 0

−h
p(z) dz

)
= 0. (2.19)

The integral in this equation can be written as

Ph =

∫ 0

−h
p(z) dz =

h− tanh(γh)

γ
. (2.20)

Substituting this Ph and b = b0e
−x
Lb in equation 2.19, working out the derivative and

dividing by −iωb gives the final equation

κ2η̂ +
d2η̂

dx2
− µdη̂

dx
= 0, (2.21)

where the constants κ and µ are introduced as

κ2 =
ω2

gPh
, µ =

1

Lb
. (2.22)

Note that µ is real and that κ is a complex wave number; the equation for κ gives a

dispersion relation for the tidal wave. The boundary conditions for η̂ are

η̂

∣∣∣∣
x = 0

= η̂M2,
dη̂

dx

∣∣∣∣
x = Lc

= 0. (2.23)

The first of these conditions is derived from equation 2.8 and gives the amplitude of η̂

at the open boundary (shown here for the M2 tide). The second condition states that η̂,

just like η, must have a maximum at the closed boundary of the estuary, where x = Lc.

Implementing these boundary conditions and solving equation 2.21 for η̂ results in

η̂(x) =
η̂M2 e

−µx
2 [2α cos(α(Lc − x)) + µ sin(α(Lc − x))]

2α cos(αLc) + µ sin(αLc)
, (2.24)

where the constant α is introduced as

α =

√
κ2 − 1

4
µ2, (2.25)

representing the complex wave number in case of convergence. Although this result

looks cumbersome, it can be checked that this formula for η̂ exhibits the desired physical

behaviour. This is most easily done for a non-converging estuary, in the limit µ→ 0. In

this limit, α = κ and equation 2.24 simplifies to

η̂(x) = η̂M2 (eiκx + e−iκx) (2.26)
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Referring back to equation 2.11, the expression for the non-complex amplitude η is

η = Re{η̂(x)e−iωt} (2.27)

= Re{η̂M2 (ei(κx−ωt) + e−i(κx−ωt))} (2.28)

= ηM2(cos(κx− ωt) + cos(κx+ ωt)), (2.29)

where the first cosine represents a wave travelling in positive x-direction, and the second

cosine represents the reflected wave, travelling in the negative x-direction.

The solution for u can now be obtained by substituting the expression found for η̂ in

equation 2.18.

2.2.5 Formulation of eddy viscosity

In the derivation given above, eddy viscosity was assumed constant over the whole es-

tuary. In practice, however, vertical eddy viscosity has been observed to scale with the

velocity u and the depth hmax. As described by e.g. Friedrichs (2004), the linearised

eddy viscosity can therefore be parametrised as Av = cv · |u| · hmax, where the bottom

drag coefficient cv is a constant of the order 10−2 to 10−3, depending on bottom rough-

ness scale. Taking for |u| a velocity that is representative for the estuary, Av can now

be obtained globally in simulations. In this research, the representative velocity |u| was
taken at (x, z) = (0, 0); this is the surface velocity at the seaward boundary of the es-

tuary. Since this value of |u|0 is higher than the average velocity over the estuary, this

might lead to a slight overestimate of the effect of friction. Therefore, the drag coefficient

cv was modified to better match experimental data.

2.3 Tidal range

Figure 2.8: Total surface elevation (red line) due
to M2 and M4 as a function of time, at the seaward
boundary of the Elbe estuary (x = 0). The black

arrow indicates tidal range (TR).

As explained in appendix C, the total

water elevation is given by

ηtotal(x, t) = ηM2(x) cos(ωM2t) +

ηM4(x) cos(2ωM2t− φ)

(2.30)

Due to the phase difference φ, this

function is asymmetric, as can be seen

in figure 2.8. This figure shows the

surface elevation ηtotal for x = 0 in

the Elbe estuary. The tidal range is

defined as the difference between the
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maximum and minimum amplitudes of ηtotal. As the M2 and M4 wave travel up-estuary,

the amplitude and phase of both tidal waves will be altered as described by the shallow

water equations, resulting in different tidal range for each x-location.

2.4 Sea level rise

Figure 2.9: Past and future sea level rise as predicted
by Church et al. (2013). For the past, proxy data are
shown in light purple and tidal gauge data in blue. Future
predictions are shown in red for a very high emissions
scenario, and in blue for a very low emissions scenario.

Source: Church et al. (2013) fig. 13.27

For the last centuries, global

mean sea level (MSL) has been

rising steadily, as shown in figure

2.9, obtained from the fifth IPCC

assessment report by Church

et al. (2013). Due to carbon diox-

ide emissions and resulting global

warming, the IPCC predicts an

increase in yearly sea level rise for

the upcoming decades, differenti-

ating between five different emis-

sion scenarios. In the scenario

with lowest emissions, the pre-

dicted rise in MSL is 28-61 cm by

2100, with a best estimate of 44

cm. In this scenario, emissions

are strongly reduced in the next decades, resulting in zero emissions worldwide by 2070,

and successive active carbon dioxide removal from the atmosphere. For the scenario with

very high emissions, indicated by the red line in figure 2.9, a rise in MSL of 52-98 cm is

predicted, with a best estimate of 74 cm.

According to Church et al. (2013), strong local differences in sea level will occur for a

global sea level rise. This is due to changes in the amphidromic systems of seas and

oceans, since the ocean basin geometry will change if sea level rises. Mudersbach et al.

(2013) show that in the North Sea, there is a significant correlation between mean sea

level rise and increasing amplitudes of the M2 tidal constituent, based on Cuxhaven

tidal gauge data of the last 50 years. These results are supported by Pickering et al.

(2012), who performed simulations of tides in the North Sea with a numerical model and

concluded that for a rising MSL, the position of the M2 amphidrome in the southern

North Sea changes. According to their research, this would result in large increases in

the M2 amplitude along the coast; at Cuxhaven, they predicted a rise in M2 amplitude

of 0.35m for a rise in MSL of 2m. These results indicate that a rise in global MSL is

likely to induce changes in the tidal forcing at the open boundary of the Elbe estuary.
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This section will explain the method that was used to conduct this research. Tidal

response of the Elbe estuary was simulated using an analytical model, with 1D tidal

elevations and one longitudinal tidal velocity component, varying in vertical direction).

The characteristics and equations of the model were described in the theory section.

This model was used firstly to assess the effect of deepening on tidal characteristics in

the estuary. Three different scenarios for deepening were investigated. Secondly, the

effect of sea level rise on tidal characteristics was simulated, using two different scenarios

for sea level rise.

In this section, the modelled geometric characteristics of the Elbe estuary will be de-

scribed, followed by a description of the model and relevant model equations. Then, a

more detailed explanation of the experimental setup will be given.

Figure 3.1: Map of the Elbe estuary. Source: Deltares (2011)

3.1 Modelling the Elbe estuary

3.1.1 Estuary description

Figure 3.1 shows a map of the Elbe estuary. At the open boundary at Cuxhaven, a forced

tidal wave enters the estuary from the North Sea. Here, at km 727, the beginning of the

estuary was defined in this research. The tidal wave passes the port of Hamburg, around

100 km up-estuary, and is reflected at the weir at Geesthacht after 140 km. Therefore,

the model uses an estuary length Lc of 140 km. As can be seen in figure 3.2, the bottom

level is fairly constant with an average depth of 16.5m up to Hamburg. About 100 km

upriver, there is a discontinuity in bed level due to dredging strategies. Upstream of

Hamburg, the estuary has an average depth of 5m.

14
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Figure 3.2: Measurements of thalweg depth of the
Elbe estuary, showing along-estuary depth of the
deep channel, compared to low water at the mouth of
the estuary. Note that x-direction is reversed in the

figure, with the closed boundary at 0 km.
Source: Vandenbruwaene et al. (2013)

The width of the deep navigation

channel of the estuary is approxi-

mated using an e-folding convergence

length Lb, as explained in section

2.2.3. For the Elbe, Lb was estimated

at 50 km (Deltares, 2011).

3.1.2 Tidal forcing

As input for the model, the phase

and amplitude of the tidal forcing

at the open boundary are required.

These were determined from a har-

monic analysis of the incoming tidal

wave at Cuxhaven at km 727 on the

map in figure 3.1. Only the M2 and

M4 tidal constituents were included, since these are the dominant constituents present

in the tidal forcing (Winterwerp et al., 2013).

The investigated variable was along-estuary tidal range, which also depends on other

tidal constituents, such as the S2 tide (Open-University, 2001). A combination of only

the amplitudes of M2 and M4 will therefore not accurately represent tidal range. To

overcome this problem, both M2 and M4 amplitudes were multiplied by the same factor

χ to match the data for tidal range at the seaward boundary near Cuxhaven.

3.1.3 Model equations

To simulate the tidal response, an analytical solution to the linearised, width-averaged

shallow water equations was obtained, as described in chapter 2. To be able to determine

tidal range, the model was run for M2 and M4 separately. Results were then implemented

in formula C.3, and tidal range was determined by the method explained in section 2.3.

The vertical eddy viscosity was determined globally for the M2-tide, using the iterative

procedure described in section 2.2.5, and the drag coefficient cv was modified to better

match experimental data.

As will be described below, several bottom configurations were investigated. For one of

these configurations, a segmented model was used. To be able to simulate the discon-

tinuity in bed level as seen in figure 3.2, this model used two different segments with

different depths. For each segment, the shallow water equations were solved separately.

At the junction of the two segments, two extra constraints were specified: conservation

of sea level and conservation of mass. With these extra constraints, a complete solution

to the shallow water equations for both segments could be obtained.
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3.2 Experimental setup

3.2.1 Bottom level configurations

(a) Full reflection at Hamburg (100 km)

(b) Two depth segments

(c) Full reflection at Geesthacht (140 km)

Figure 3.3: Side view of the three bottom
configurations that were investigated.

Tidal range was investigated for three dif-

ferent bottom configurations, shown in fig-

ure 3.3. The first configuration consists of

a constant depth up until Hamburg, 100

km up-estuary. Here, full reflection of the

tidal wave is assumed. Previous research

has shown that the assumption of full reflec-

tion at Hamburg reasonably represents the

observed dynamics (Deltares, 2011; Winter-

werp et al., 2013). The second configura-

tion, shown in figure 3.3b, assumes a jump

in bed level at 100 km up-estuary, represent-

ing the observed discontinuity in bed level.

For this scenario, the segmented model de-

scribed above was applied. Part of the tidal

wave is reflected against the vertical bottom

wall at 100 km, but the rest of the wave travels further up-estuary and is reflected at the

weir at Geesthacht. The third and last configuration, shown in figure 3.3c, consists of a

constant estuary depth up to the weir at Geesthacht, at 140 km. This configuration does

not represent the current situation, but might be conceived as the result of a hypothetical

dredging strategy.

3.2.2 Simulations

Firstly, tidal range was computed for all three bottom configurations and compared to

tidal gauge data. Next, the effect of varying depth on along-estuary tidal range in each

configuration was investigated. For the first and second configuration, only estuary depth

up until Hamburg was varied, in agreement with current dredging strategies as described

by HPA and WSV (2012).

Lastly, the effect of a rise in global mean sea level on tidal range was investigated. As

shown in figure 2.9, maximum global sea level rise in 2100 is about 1m, while a more

probable scenario is a rise of about 0.5m (Church et al., 2013). Therefore, the effect of

both a rise in MSL of 0.5m and 1m on tidal range were investigated for each configuration.

Phase and amplitude of the changed tidal forcing (M2 & M4) were computed using the

southern North Sea (ZUNO) grid in the Delft 3D model. This is a numerical model that

simulates tidal dynamics on the Northwest European shelf.
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4.1 Tidal forcing
Constituent Ampl. η (m) Phase η (deg)

M2 1.3272 11.8

M4 0.048 267.1

Table 4.1: Harmonic constituents at Cuxhaven
that were included in the tidal forcing of the

model at the open boundary

The phase and amplitude of the M2 and

M4 tidal constituents were obtained from

a harmonic analysis of the tide at Cux-

haven. Results are given in table 4.1.

4.2 Comparison of model and data

Firstly, simulation results for tidal range for all three bottom configurations were com-

pared to tidal gauge data, as shown in figure 4.1. The amplitudes of both M2 and M4

were multiplied by a factor χ = 1.12 to represent tidal range at the open boundary, us-

ing tidal gauge data for Cuxhaven from Deltares (2011). The friction coefficient cv was

also determined by comparing simulation results to tidal gauge data, since the model

uses |u|x=0 in the linearisation of friction as described in section 2.2.5. For the first and

third bottom configuration, which assume full reflection at x = 100 and at x = 140 km

respectively, cv was estimated at 3.0 · 10−3. For the second configuration, that consists

of two segments with different depths, cv was estimated at 2.3 · 10−3.

Figure 4.1: Simulation results for along-estuary tidal range for the three different
bottom configurations. Shown in red for comparison are tidal gauge data, obtained

from Boehlich (2003).

17
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4.3 Deepening

Next, the result of deepening for each bottom configuration was investigated. Figure

4.2 shows the effect of varying depth on tidal range along the estuary, for each bottom

configuration (A)-(C). In all configurations, tidal range increases if further deepening is

carried out. For the first configuration, shown in figure 4.2a, the tide is damped for depths

lower than 13m. Maximum amplification occurs for a depth of approximately 25m; for

higher depths, amplification diminishes again. Hamburg, at 100 km, experiences the

highest tidal range for depths exceeding 13m. Results for the second configuration are

shown in figure 4.2b. In this configuration, only the depth of the first segment, up until

Hamburg, was varied. The depth of the second segment, from 100 to 140 km, was held

(a) (b)

(c)

Figure 4.2: Contour plots showing the effect of varying depth on along-estuary tidal
range for the three investigated bottom configurations (A) - (C), as shown in figure
3.3. Color intensity indicates tidal range; the black dotted line shows the current depth
of the deep segment, 16.5m. In figure (B), the solid black line indicates the transition

between the two depth segments.
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constant at 5m. Effects of deepening for the first segment in this configuration are very

similar to those of the first configuration. Maximum amplification of the tide occurs in

a region around Hamburg, at a depth of about 25m, and the tide is damped for depths

below 13m. In the secodn segment, from Hamburg to Geesthacht (100 to 140 km), an

increase in tidal range of approximately 1m occurs, if the first segment is deepened up

to 25m. If the depth of the first segment exceeds 25m, tidal range for both segments

decreases again. In the last configuration, shown in figure 4.2c, deepening resulted in a

maximum amplification of the tide around a depth of 30m. This maximum tidal range

occurs at the end of the estuary and is about 1m higher than in the first configuration.

The tidal wave is attenuated for depths below 15m. A notable difference between this

configuration and the former two is the tidal range at Hamburg. For depths between

15 and 20m, tidal range in the region around Hamburg is considerably lower in this

configuration. However, this decrease at Hamburg is at the expense of an increase in

tidal range in the region from Hamburg to Geesthacht.

4.4 Sea level rise

For each of the three configurations, the effect of a rise in mean sea level (MSL) in the

North Sea of 0.5m and 1.0m on tidal range in the Elbe was investigated. Results for the

changed tidal forcing for M2 and M4 as computed by the ZUNO grid in the Delft 3D

model can be seen in table 4.2.

Amplitude ηM2 (m) Amplitude ηM4 (m) Phase φM4 − 2φM2

No SLR 1.3272 0.1048 234.5
SLR of 0.5m 1.4215 0.1082 345.2
SLR of 1.0m 1.4961 0.1122 358.9

Table 4.2: Amplitudes and phase difference for the M2 and M4 tidal constituents at
Cuxhaven for a SLR of 0.5m and a SLR of 1.0m, as computed by the ZUNO grid in

the Delft 3D model.

Using this tidal forcing, tidal range along the estuary was simulated for each bottom

configuration for both SLR scenarios, of which results are shown in figure 4.3. The three

figures show tidal range for each of the three bottom configurations. It is clear that for

each case, sea level rise will lead to an increase in tidal range. Effects occurring for the

0.5m SLR scenario are similar but amplified in the 1.0m scenario.

For the bottom configurations with full reflection at x = 100 and x = 140 km, shown

in figure 4.3a and 4.3c, the minimum tidal range shifts slightly up-estuary for rising sea

level. Besides, tidal range increases equally along the estuary. Of all three configurations,

the last one shows lowest tidal range for each SLR scenario.
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In the bottom configuration with two different depth segments, shown in figure 4.3b, the

tidal curve is also shifted upward for rising mean sea level. In the second segment, from

x = 100 km to x = 140 km, the increase in tidal range is significantly larger than in the

first segment. The minimum of the tidal curve shifts slightly seaward for rising MSL.

(a) (b)

(c)

Figure 4.3: Effect of imposed sea level rise of 0.5m (blue) and 1.0m (red) on tidal range
for the three different bottom configurations (A)-(C), as explained in figure 3.3. For
comparison, the current situation (no SLR) is shown in black. Tidal forcing consisted
of M2 and M4 constituents, and changes in amplitude and phase of tidal forcing due to

SLR were also included.
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5.1 Comparison of model and data

The tidal gauge data were reasonably represented by the simulations, as shown in fig-

ure 4.1. The tidal curve was best represented by the configuration that assumed full

reflection at Hamburg. This configuration showed a slight decrease of tidal range after

Cuxhaven, followed by a stronger increase up to Hamburg. However, both the modelled

decrease after Cuxhaven and the computed maximum tidal range at Hamburg were lower

than the tidal gauge data indicate. This is probably due to an overestimate of the effect

of convergence in the outer estuary, and an underestimate of convergence in the region

around Hamburg. In the model, one convergence length was chosen for the entire es-

tuary, but data from Deltares (2011) indicate that the along-estuary convergence is not

homogenous. Winterwerp et al. (2013) also suggested that the increase in tidal range

around Hamburg might be due to a sharp change in convergence length. The many wa-

terways of Hamburg’s harbour, and the split-up of the Elbe here in two major branches,

might have a significant effect on the tidal range.

The same mechanism can explain the differences between computed and measured values

for tidal range up to Hamburg in the second configuration. Besides, this configuration

reasonably represents the strong decrease in tidal range after Hamburg. The model uses

a discontinuity in bed level at x = 100 km, where in reality, bed level increases more

gradually. A gradual increase in bed level, however, could not be simulated with the

assumptions in the linearised analytical model that was used.

Results for the third configuration show a strong decrease in tidal range around Hamburg,

compared to current gauge data. At the same time, however, tidal range up-estuary of

Hamburg increases. This configuration corresponds to a hypothetical dredging strategy,

with a constant depth up to Geesthacht. Currently, dredging activities only take place

up to Hamburg. Since high tidal range at Hamburg poses a problem, as stated by HPA

and WSV (2012), the results show that it would be interesting to investigate with a more

sophisticated model how deepening in the region up-estuary of Hamburg would influence

tidal range in the rest of the estuary.

5.2 Deepening versus sea level rise

Results for the effect of depth variation on tidal range are in agreement with data from

Winterwerp et al. (2013), who compared historical estuary depths and tidal gauge data.

The results indicate that in each configuration, further deepening would bring the estuary

21



Discussion 22

closer to resonance and thus leads to an increase in tidal range. The maximum increase

is about 1m in the region around Hamburg, for a depth increase to around 25m. Since

computed values for tidal range around Hamburg were low compared to gauge data, the

actual increase might be bigger than the computed value. Tidal range increases most at

the end of the estuary, due to the combined effect of reflection, convergence and friction.

For rising sea level, the M2 and M4 amplitudes at Cuxhaven are expected to rise due to

shifts in location of the M2 amphidromic point in the North Sea (Pickering et al., 2012).

This leads to an overall increase in tidal range, next to the rise in mean water level that

is already induced by the SLR.

For the region around Hamburg, the 0.5m and 1.0m SLR scenarios yield the same tidal

range as a deepening to 20m and 25m, respectively. Because the M2 & M4 amplitudes

increase all along the estuary in the case of SLR, the increase in tidal range at the

start of the estuary is stronger for SLR than for deepening. The same applies to the

region beyond Hamburg. Because only the effect of deepening up to Hamburg was

investigated, deepening had relatively little influence on tidal range in the region up-

estuary of Hamburg. However, since the current depth in this segment is around 5m, a

SLR of 0.5 to 1.0m will result in a relatively strong variation of the effective depth. This

leads to a much stronger increase of tidal range in this segment when sea level rises.

The relative amplification of the tide due to SLR is not as strong as would be expected

from the deepening results. For increasing SLR, the relative increase in tidal range is

smaller than for increasing depth. This difference can be attributed to the value of the

drag coefficient cv. For increasing tidal range, cv becomes larger, resulting in a relatively

stronger internal friction.

5.3 Contribution of M4

Figure 5.1: Effect of deepening on along-estuary
amplitudes of M2 and M4 constituents, assuming
full reflection at Hamburg (estuary length of 100
km). Dotted lines show current depth of 16.5m.

Tidal range in this research was com-

puted using M2 and M4 tidal con-

stituents, but the M4 contribution was

relatively small. Figure 5.1 shows the

amplitudes for M2 and M4 separately

for the first configuration. As expected,

resonance characteristics are different for

the M4 tide; the M4 frequency is twice

as large as the M2, resulting in a differ-

ent tidal wavelength. Both constituents

show a maximum amplitude at the end
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of the estuary, although the corresponding depths differ. For the M4 tide, a second max-

imum appears around 30 km up-estuary at a depth of 20m. This maximum is caused by

reflection, and is less intense than the end-of-estuary maximum. This partly due to fric-

tion encountered by both the incoming and the reflected wave, and partly to convergence

effects; the reflected wave experiences a broadening estuary as it travels back.

5.4 Linearisation & model approximations

This research uses a linearised analytical model, with a number of idealisations, to be

able to identify the underlying physical principles of the estuary dynamics. An advanced

numerical model would better match the observed dynamics, but does not give a clear

insight in the underlying physics, and besides, has a much longer computation time. As

stated by Schuttelaars et al. (2013), an analytical model cannot give exact predictions

of tidal characteristics, but is useful to qualitatively determine the effect of proposed

changes in the estuary and can indicate a number of scenarios to be investigated with

advanced numerical models, such as Delft 3D.

One of the idealisations in the model is the global linearisation of vertical eddy viscosity,

using the surface velocity at the open boundary of the estuary. Because this might

lead to an overestimate of friction, the friction coefficient cv was modified to better

match experimental data. However, this resulted in a different friction coefficient for

the different bottom configurations. Besides, local friction contributions might differ

significantly due to changes in along-estuary velocity. The model could thus be improved

by doing a local, instead of global, determination of the vertical eddy viscosity.

Furthermore, the model makes an estimate for tidal range by multiplying both the am-

plitudes of the M2 and M4 tide with a factor 1.12. In reality, tidal range is determined

by the amplitude and phase of all different tidal constituents present in the tidal forcing.

Although the M2 component is dominant on the Northwest-European shelf, a better es-

timate of tidal range could be given if more tidal constituents, such as S2, were included.

Another improvement to the model would be to account for different cross-sectional

shapes. In this research, the cross-sectional shape of the estuary was rectangular, but

measurements by HPA and WSV (2012) show that the shape of the navigation channel of

the Elbe varies significantly along-estuary. Besides, the Elbe estuary has large intertidal

flats at the seaward boundary, that flood at high water (Deltares, 2011). This results in a

different estuary width during high and low water, and thus effects the water dynamics.

Further research could investigate this so-called hypsometry effect in the Elbe. Besides,

deepening has been shown by e.g. Burchard et al. (2004) and Kerner (2014) to influence

both the free surface elevation and the velocity field. Future research could therefore also

include the effect of deepening on water velocities and related implications for ecology.
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This research investigated the effect of deepening and sea level rise on tidal range in the

Elbe estuary for three different longitudinal bottom profiles, using an analytical model

derived from the width-averaged, linearised shallow water equations. In the tidal forcing

at Cuxhaven the semidiurnal lunar tide (M2) and its first overtide (M4) were included.

Results for present-day conditions were in reasonable agreement with observed tidal

range. All aspects of the tidal curve were qualitatively reproduced by the model. Dif-

ferences can be attributed to local variations in estuary convergence, since the model

uses one e-folding convergence length for the entire estuary. Differences could also be

due to the global determination of eddy viscosity, since friction may vary locally due to

along-estuary variations in velocity.

Deepening in the region up to Hamburg was found to lead to an increase in tidal range,

especially in the region around Hamburg. Because the longitudinal bottom profile for

the Elbe shows a discontinuity around Hamburg, the bottom configuration assuming full

reflection at Hamburg could quite well represent the tidal curve. The maximum tidal

range occurs at the end of the estuary, due to the combined effects of reflection and

convergence.

The results also indicate that deepening in the region after Hamburg has a significant

effect on the along-estuary tidal range. Since high tidal range at Hamburg currently poses

a problem, as described by HPA and WSV (2012), dredging in the region from Hamburg

to Geesthacht could be examined as a possible solution. However, the decrease in tidal

range at Hamburg is at the expense of an increase in tidal range further up-estuary, and

deepening here might have other side effects, such as changing velocity fields.

A rise in mean sea level will lead to changes in tidal characteristics in the North Sea,

which is expected to induce an increase of the M2 and M4 amplitudes in the tidal forcing

of the Elbe estuary (Pickering et al., 2012). This was shown to lead to an along-estuary

increase in tidal range. The effects of deepening and sea level rise on tidal range were

comparable for the region around Hamburg. For the region up-estuary of Hamburg, sea

level rise leads to a strong increase in tidal range, due to the relatively large increase

in effective depth. As Church et al. (2013) show, it is likely that mean sea level will

have risen by approximately 0.5m in 2100; this has the same effect on tidal range as a

deepening to around 20m, in the absence of sea level rise. The research shows that the

combined long-term effects of deepening and sea level rise should be studied before new

dredging activities are carried out in the Elbe estuary.
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A | Linearisation of shallow water

equations

Since this research focuses on the underlying physical processes of the water motion, the

equations were linearised to make them analytically solvable. Linearisation is possible

here because tidal amplitudes are small compared to water depth, allowing for the appli-

cation of perturbation theory as explained by Friedrichs (2004). The adjustments that

were made to the shallow water equations in order to linearise them, are discussed in

this appendix.

The full non-linearised mass equation reads

∂(bη)

∂t
= − ∂

∂x
b

(∫ η

−h
u dz

)
, (A.1)

The right-hand side of this equation represents the along-channel volume transport,

and the left-hand side represents the resulting time-rate of change in the wetted cross-

sectional area, as explained in section 2.2.1. In this research the assumption was made

that b does not vary with time. In most estuaries, however, the phenomenon of hypsom-

etry occurs. This means that the wetted surface depends on sea level, and will thus vary

over time. During high water, the width of the estuary is often bigger than during low

water.

The second assumption is that the free surface amplitude η is small compared to water

depth; ε = η
h ≈ 0. As a result, the linearised upper boundary of the integral in A.1

becomes 0 instead of η. The linearised mass equation then reads

b
∂η

∂t
+

∂

∂x
b

(∫ 0

−h
u dz

)
= 0, (A.2)

The second governing equation is the momentum balance, which expresses the time rate

of change of the velocity in terms of the relevant physical processes, and reads

∂u

∂t
= −u∂u

∂x
− g ∂η

∂x
+

1

ρ

∂τxz
∂z

, (A.3)

where the terms on the right-hand side represent, from left to right, advection, along-

channel pressure gradient and internal friction. By means of a dimensionless analysis,

the advection term can be shown to be negligible when linearising equation A.3, as is also

explained by Friedrichs (2004). Firstly, the advection term and the ∂u
∂t term are made

dimensionless; the former by dividing by the typical lengthscale Lt, the tidal wavelength,
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and the latter by dividing by the typical timescale T , the tidal period. The magnitude

of the relative contribution of advection is then given by[
u∂u∂x

]
[
∂u
∂t

] ∼
U U
Lt
U
T

=
U T

Lt
(A.4)

Using that Lt =
√
gh T , this can be rewritten as U√

gh
, which is also known as the Froude

number. According to Friedrichs (2004), in mildly nonlinear systems the Froude number

is usually much less than 1 and thus the contribution of advection is negligible.

The internal friction term also gives a non-linear contribution. The shear stress τxz is a

quadratic bottom stress, that scales with |u|u and generates the odd harmonics. To be

able to analytically solve the equations, τxz is also linearised.

[Stukje uit de theorie sectie 2.2.1 over parametrisatie van wrijving hierheen verplaatsen]

The resulting linearised momentum balance reads

∂u

∂t
= −g ∂η

∂x
+Av

∂2u

∂z2
, (A.5)

Lastly, the boundary condition for the shear stress at the free surface, introduced in

section 2.2.4, states that

Av
∂u

∂z
= 0, at z = η (A.6)

Taylor expanding the derivative gives

∂u

∂z

∣∣∣∣
z=η

=
∂u

∂z

∣∣∣∣
z=0

+ η
∂2u

∂z2

∣∣∣∣
z=0

+ ..., (A.7)

where only the first term on the right-hand side gives a linear contribution. Therefore,

the linearised boundary condition can be rewritten as

Av
∂u

∂z
= 0, at z = 0 (A.8)



B | Resonance lengths in

non-converging estuaries

In section 2.2.2, the phenomenon of resonance in an estuary is explained. In this ap-

pendix, the condition for resonance in a frictionless non-converging estuary will be de-

rived. The derivation will be given for the depth-averaged shallow water equations, which

implies that u is now only a function of x and t, not of z.

Figure B.1: Shape of estuary, indicating
how x-axis is chosen.

To simplfy the equations, x = 0 is now taken

at the end of the estuary, and x = L is taken

at the open boundary, as shown in figure B.1.

The two governing equations are the continu-

ity equation and momentum balance. In case

of no friction, the depth-averaged momentum

balance reads

∂u(x, t)

∂t
= −g∂η(x, t)

∂x
,with u

∣∣∣
x=0

= 0 (B.1)

where η represents the water level elevation, u the water velocity, g the gravitational

acceleration. The boundary conditon sets the velocity at the closed boundary of the

estuary to zero. The second equation is the depth-averaged continuity equation, which

reads
∂η(x, t)

∂t
+ h

∂u(x, t)

∂x
= 0, with η

∣∣∣
x=L

= cos(ωt)ẑ, (B.2)

where h is the estuary depth, L the length of the estuary and ω the frequency of the

forced tidal wave. The boundary condition at x = L sets the water level here equal to

that of the tidal forcing.

Taking the time derivative of equation B.2 and substituting ∂u
∂t from equation B.1, an

equation for η is obtained, which reads

∂2η

∂t2
− hg ∂

2η

∂x2
= 0, with

∂η

∂x

∣∣∣∣
x=0

= 0, (B.3)

A possible solution to equation B.3 is

η(x, t) = Z(x) cos(ωt), (B.4)
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where Z(x) is an arbitrary function of x. Rewriting boundary conditions and implement-

ing this solution into B.3 results in

∂2Z

∂x2
+
ω2

hg
Z = 0, with

∂Z

∂x

∣∣∣∣
x=0

= 0; Z
∣∣∣
x=L

= ẑ (B.5)

This is a second order ordinary differential equation with general solution

Z = A cos(kx) +B sin(kx), (B.6)

where the constants A and B and the wave number k are determined by the boundary

conditions; A = ẑ
cos(kL) , B = 0 and k = ω√

gh
. The total solution for η is therefore

η(x, t) = Z(x) cos(ωt) =
cos(kx) cos(ωt)ẑ

cos(kL)
(B.7)

The solution for u can be found by implementing B.7 into B.1 and integrating over t

subsequently, and reads

u(x, t) =
gẑ sin(kx) sinωt)√

gh cos(kL)
(B.8)

The found expressions for η and u represent the water level and velocity of the forced

tidal wave; they are unbounded for cos(kL) = 0 or kL = 1
2π + nπ. Recalling that

k = ω√
gh
, the resulting condition for resonance is

ωL√
gh

=

(
n− 1

2

)
π, n = 1, 2, ... (B.9)

Shallow water waves travel with a speed of
√
gh, so the tidal wavelength Lt can be

specified as

Lt =
√
gh T, with T =

2π

ω
, (B.10)

where T is the period of the tidal wave. Substitution into B.8 yields the final resonance

condition

L =
1

2

(
n− 1

2

)
Lt, n = 1, 2, ... (B.11)

This equation shows that in a non-converging estuary, maximum resonance occurs for

estuary lengths that are a quarter plus multiples of half the tidal wavelength.



C | Phase difference in tidal forcing

In this research, the M2 and M4 tidal constituents were included in the tidal forcing.

This appendix will explain how the amplitudes of these constituents were combined and

what the total phase difference in the tidal forcing is.

The water elevation due to the M2 tidal constituent is given by

ηM2(x, t) = ηM2(x) cos(ωM2t− φM2), (C.1)

where ηM2 and φM2 are, respectively, the amplitude and phase of the M2-tide as measured

at the open boundary, and ωM2 is the M2-frequency.

The total water elevation is the sum of the amplitudes of the different tidal constituents.

Taking into account only the M2 tide and its first harmonic overtide, the equation for

ηtotal reads:

ηtotal(x, t) = ηM2(x) cos(ωM2t− φM2) + ηM4 cos(ωM4t− φM4) (C.2)

By making a local coordinate transformation ωM2 · t′ → ωM2t− φM2 and using the fact

that ωM4 = 2ωM2, this formula can be rewritten as

ηtotal(x, t
′) = ηM2(x) cos(ωM2t

′) + ηM4 cos(2ωM2t
′ − (φM4 − 2φM2)) (C.3)

Equation C.3 shows that the phase difference between the M2 and M4 tidal constituents

is φM4 − 2φM2.
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