
Faculty of Science

Pruning of alternating-path trees for bipartite
graph matching

Bachelor Thesis

J. Heuseveldt

Mathematics

x0

y0

x1

x2

y1

x3

x4

y2

x5

x6

y3

x7

x8

Supervisor:

Prof. dr. R.H. Bisseling

June 11, 2019

1

Abstract

To compute a maximum matching in a bipartite graph we can use algorithms based on augmenting
paths. If a search for an augmenting path is unsuccessful, the information gained by the search is often
discarded. However, it is possible to use this information to speed up future searches. In this thesis we
will formally prove that it is possible to prune exhausted parts of the graph, for both single-source (SS)
and multi-source (MS) breadth-first-search (BFS) algorithms. Our implementation gives a speedup for
the SS-BFS algorithm. Due to additional overhead, the MS-BFS algorithm is more often slowed down by
the pruning rather than sped up.

LIST OF ALGORITHMS 2

Contents

1 Introduction 3

2 Finding maximum matchings 4

3 Single-source alternating-path trees 5

4 Multi-source alternating-path trees 7

5 Experimental results 9

6 Conclusion 10

List of Algorithms

1 Maximum matching algorithm based on augmenting paths . 4
2 SS algorithm for finding maximum matchings in bipartite graphs 5

1 INTRODUCTION 3

1 Introduction

Before being able to understand what matching algorithms do, we need to understand the problem that it
solves and the terminology used to describe it.

A bipartite graph G = (V,E) is a set of vertices V and a set of edges E. Each edge connects two vertices
and two edges are connected if they share a vertex. The set of vertices V is split into two sets of vertices
L and R, such that L ∪ R = V,L ∩ R = ∅ and each edge e can be written as {v1, v2} such that v1 ∈ L and
v2 ∈ R. The degree of a vertex is defined as the number of edges that have that vertex as one of their
endpoints.

For such graphs, we define a matching to be a set M ⊂ E such that no two edges are connected. A maximal
matching is a matching such that for each edge e ∈ E \M , there exists an m ∈ M such that e and m
are connected. It is therefore impossible to find a matching that strictly contains a maximal matching. A
maximum matching is a (maximal) matching such that no (maximal) matching with greater cardinality
exists. We call a vertex matched or unmatched if it is the endpoint of respectively any or no edge in M .
Similarly, an edge is called (un)matched if it is (not) in M . Flipping an edge e means taking it out of M if
e ∈M , and adding it to M otherwise.

In a graph, we can make paths. A path is a sequence of edges e1, . . . , en such that each edge is connected
to the next one, and vertex-disjoint elsewhere. A path can also be represented by a sequence of vertices
x1, . . . , xn+1 such that ei = {xi, xi+1} for all i ∈ {1, . . . , n}. A cycle is a path of at least 3 edges where also
the first and last edge are connected. Note that in bipartite graphs, cycles are always of even length. An
M-alternating path is a path where every other edge is matched, with respect to a matching M . Similarly,
we define an M-alternating cycle to be a cycle where every other edge is matched, with respect to M .
An M-augmenting path is an M -alternating path of odd length, starting and ending in an unmatched
vertex. An augmenting path thus consists of more unmatched than matched edges, so flipping all edges of
an augmenting path results in a new matching of strictly higher cardinality. According to Berge’s theorem
[2], a matching is maximum if no augmenting path exists. I will show a proof of Berge’s theorem in the next
section.

x0

x1

x2

x3

x4

x5

x6

L

R

Figure 1: A bipartite graph

x0

x1

x2

x3

x4

x5

x6

Figure 2: A maximal matching
and an augmenting path

x0

x1

x2

x3

x4

x5

x6

Figure 3: A maximum match-
ing obtained by flipping the aug-
menting path in figure 2

2 FINDING MAXIMUM MATCHINGS 4

2 Finding maximum matchings

There are multiple algorithms for finding maximum matchings in bipartite graphs. They can roughly be
divided into several classes, with the main classes being based on augmenting paths, auctions or push-
relabel. In this thesis, we will only look at algorithms based on augmenting paths. These algorithms usually
try to find an augmenting path, add it to the matching and repeat.

Algorithm 1 Maximum matching algorithm based on augmenting paths

1: M ← ∅
2: p← any augmenting path
3: while p exists do
4: flip all edges in p
5: p← any augmenting path

Although it is easy to see that this leads to a maximal matching, we still need to prove that this indeed leads
to a maximum matching.

Lemma 2.1. Flipping all edges of an alternating path or cycle strictly increases the size of a matching if
and only if it is an augmenting path.

Proof. Suppose we have a graph G, a matching M and an M -augmenting path P . We need to prove that
the new matching M ′ = M ⊕ P = (M \ P) ∪ (P \M) = (M ∪ P) \ (M ∩ P) is a valid matching of strictly
greater cardinality than M .

Since P is an M -augmenting path, we know that it is an alternating path starting and ending in an unmatched
vertex. Suppose we have a vertex x. If x /∈ P , x is still matched at most once, like it was with respect to M .
If x is an endpoint of P , then x was unmatched in M , and is matched exactly once in M ′. Otherwise, x lies
somewhere in the middle of P , which means that it was matched in M , and is matched to another vertex in
M ′. In all cases, x is matched at most once with respect to M ′, which means M ′ is a valid matching.

As P is an M -augmenting path, P consists of 2n + 1 edges, with n ∈ Z≥0. Of these 2n + 1 edges, n are
matched in M and the other n + 1 are matched in M ′, hence |M ′| = |M |+ 1.

Now suppose we have an M -alternating path or cycle P , such that M ′ = M ⊕ P is a valid matching and
|M ′| > |M |. For the cardinality of M to increase by flipping P , P must contain more unmatched edges than
matched edges. Because P is an alternating path or cycle, this can only be the case if |P \M | = |P ∩M |+ 1.
Therefore |P | is odd and P can not be an alternating cycle. It follows that P must be a path and both the
first and last edge must be unmatched with respect to M . For M ′ to be a valid matching, the first and last
vertex of P must also be unmatched with respect to M . It follows that P is an M -augmenting path.

Lemma 2.2. The symmetric difference between two matchings only consists of alternating paths and cycles
with respect to either of those matchings.

Proof. Suppose we have matchings M1 and M2. Denote the symmetric difference, M1 ⊕M2 = (M1 ∪M2) \
(M2 ∩M1), by P. Since M1 and M2 are both valid matchings, the degree of each vertex is at most 1 in M1

and M2. It follows that the degree of a vertex in P is at most 2. Therefore, P only consists of paths and
cycles.

Suppose we have a vertex x that is contained in a path or cycle, but is not an endpoint of a path. Each
vertex is incident to at most one edge in a matching. It follows that x must be the endpoint of one edge in
M1 and one edge in M2. Therefore all paths and cycles in P are alternating paths and cycles in a graph with
either M1 or M2.

Theorem 2.3 (Berge’s Theorem [2]). Algorithm 1 results in a maximum matching.

3 SINGLE-SOURCE ALTERNATING-PATH TREES 5

Proof. Suppose we have a matching M1 generated by algorithm 1 that is not a maximum matching. This
means there are no augmenting paths and there is a maximum matching Mm such that |Mm| > |M1|.

Let P be the symmetric difference Mm ⊕M1 = (Mm \M1) ∪ (M1 \Mm). By flipping all edges in P, we
can take M1 to Mm. By lemma 2.2, P consists of only alternating paths and cycles. For the cardinality to
increase by flipping all paths and cycles (and thus all edges) in P, there must be at least one path that is an
augmenting path (lemma 2.1), contradicting that M1 has no augmenting path. We conclude that M1 must
be a maximum matching.

Within the class of augmenting path-based algorithms, we can distinguish two kinds of algorithms: single-
source (SS) algorithms and multi-source (MS) algorithms. SS algorithms search for an augmenting path
from a single unmatched vertex. Most MS algorithms search from all unmatched vertices at one side of the
graph instead and usually find multiple augmenting paths in the same round. This makes it easier to run
MS algorithms in parallel, but it is often harder to prove useful properties about MS algorithms.

3 Single-source alternating-path trees

What remains is how to efficiently find augmenting paths. Before jumping to MS algorithms, I will first prove
a useful theorem for SS algorithms.

Algorithm 2 SS algorithm for finding maximum matchings in bipartite graphs

1: function SS-match(V = L ∪R,E)
2: M ← ∅
3: for all y ∈ V do visited[y] ← false

4: for all x ∈ L do
5: if x unmatched then
6: P ← SS-search(V,E, x,M)
7: for all y ∈ V visited in the last search do visited[y] ← false

8: M ←M ⊕ P

9: function SS-search(V,E, x0,M)
10: Build an M -alternating-path tree T (x0) using breadth first search (BFS) rooted at x0, ignoring

vertices y for which visited[y] is true. For every traversed vertex y, visited[y] is set to true. Return once
an augmenting path has been found. Otherwise return ∅.

Theorem 3.1 ([1]). If, in algorithm 2, we find no augmenting path in line 6, we can prune the entire searched
tree, ignoring all of its vertices in all future searches, and skip line 7.

The SS-search function in algorithm 2 builds an M -alternating-path tree, given a matching M . Let x0 be
the root of the M -alternating-path tree generated in SS-search and T (x) the subtree of T (x0) rooted at x.
We divide T (x0) in layers. A layer n contains all vertices with distance n to x0 in T (x0), as can be seen in
figure 5. We denote the layer of a vertex x by Lx. Since the tree consists of alternating paths increasing in
layer number and the root is unmatched, for i ∈ Z≥0, all edges between layer 2i and 2i + 1 are unmatched
and all edges between layer 2i+ 1 and 2i+ 2 are matched. Because we have a bipartite graph, all vertices at
even levels belong to L and all vertices at odd levels belong to R.

Lemma 3.2. Let P be an augmenting path. If no augmenting path is found during the construction of T (x0),
then P and T (x0) are vertex disjoint.

Proof. Since x0 is unmatched, any augmenting path that contains x0 has x0 as one of the endpoints. Because
we did not find an augmenting path during the construction of T (x0), there exists no augmenting path
starting at x0. It follows that P has both endpoints, which must be unmatched, outside of T (x0).

3 SINGLE-SOURCE ALTERNATING-PATH TREES 6

x0

x1 x2

x3 x4

x5 x6

Figure 4: An alternating-path tree T (x0)
with two augmenting paths

x0

x1 x2

x3 x4

x5 x6

x7 x8

0

1

2

3

4

Figure 5: A layered alternating-path tree
without augmenting paths

Let u be the first vertex of P contained in T (x0) and v the last vertex of P in T (x0). By construction of
T (x0), both u and v are incident to a matched edge within T (x0). The edges in P preceding u and following
v must therefore be unmatched. Since there’s an odd number of edges in P between u and v, either u ∈ L
or v ∈ L.

Suppose u ∈ L, then Lu is even and the alternating path P2 from u to x0 through T (x0) starts with a
matched edge. Let P1 be the part of P until u, starting and ending with an unmatched edge. Consider the
path P ′ = P1 ∪ P2. It is an alternating path starting in the same vertex as P and ending in x0, which are
both unmatched. It follows that P ′ is an augmenting path with x0 as an endpoint, contradicting that there
is no augmenting path with x0 as an endpoint.

The case v ∈ L is analogous to the case u ∈ L, as can be seen by reversing P .

We conclude that P and T (x0) are vertex disjoint.

Proof of theorem 3.1. Let M0 be the initial matching and for k ∈ N, define Mk to be the matching before
constructing T (x0) for the kth time. Since M0 hasn’t changed before constructing T (x0) for the first time,
M1 = M0. We proceed with induction on k.

Suppose T (x0) is still the same after constructing it with Mk, then, by lemma 3.2, any Mk-augmenting path
is vertex disjoint with T (x0). Flipping all edges in a Mk-augmenting path to create Mk+1 thus doesn’t change
any edge incident to a vertex in T (x0), which means the Mk+1-alternating-path tree T (x0) is the same as
the Mk-alternating-path tree T (x0). By induction, there will never be an augmenting path passing through
any vertex in T (x0), so we can ignore it for the rest of the algorithm.

4 MULTI-SOURCE ALTERNATING-PATH TREES 7

4 Multi-source alternating-path trees

The algorithm for MS-BFS is very similar to SS-BFS. The main difference is that an alternating-path tree
is built from all unmatched vertices in L rather than one at a time. Any tree that finds an augmenting path
will flip that path and stop growing, while other trees keep growing to search for augmenting paths. The
resulting alternating-path trees therefore lack one property that was crucial in the proof of lemma 3.2: there
may exist an augmenting path starting at the root of a tree, even if we did not find one. This is illustrated
in figure 6.

Still, it is possible to prune entire trees when using a MS algorithm, but we have to be more careful.

Definition 4.1. A tree T (x) depends on T (y) if T (x), during the construction, tried to search an edge to a
vertex that T (y) discovered earlier.

Remark 4.2. A tree T (x) depends on T (y) if and only if T (x) would have grown bigger if T (y) did not
exist.

x0 x1

x2 x3 x4

x5 x6 x7

x8 x9

0

1

2

3

Figure 6: The augmenting path (x0, x2, x5, x8) is
found this phase, but (x1, x4, x7, x3, x6, x9) is not

x0 x3

x1 x4

x2 x5

Figure 7: Due to the highlighted edge, T (x0) de-
pends on T (x3)

Theorem 4.3. If, for an alternating-path subforest TI =
⋃

i∈I T (xi) generated by a MS algorithm, no tree
in TI depends on a tree outside TI and no augmenting path was found during the construction of TI , then TI

can be pruned.

Proof. Given a bipartite graph G = (L ∪R,E) and an M -alternating-path forest TI =
⋃

i∈I T (xi). Suppose
no tree in TI depends on a tree outside TI . We will construct a new graph and prove that we can prune TI

using theorem 3.1. We add a vertex s and for each i ∈ I, we add a vertex yi. Define G+ = (L+ ∪ R+, E+)
with L+ = L∪{s}, R+ = R∪

⋃
i∈I{yi} and E+ = E∪

⋃
i∈I {{xi, yi}, {yi, s}}. Let M+ = M ∪

⋃
i∈I{{xi, yi}}.

The construction of this new graph is illustrated in figure 8.

We construct a new M+-alternating-path tree T+(s) using the SS-search function in algorithm 2. Suppose
we find an M+-augmenting path P starting at s during the construction of T+(s). By construction of G+,
this path intersects TI . Let x be the last vertex of P that intersects TI and let i ∈ I such that x ∈ T (xi).

If x is unmatched (with respect to M+), we would have found an M -augmenting path during the construction
of TI , which contradicts that this was not the case.

Assume x is matched, and let y be the next vertex of P , which is outside of TI . If {x, y} is matched, y
would have been searched during the construction of TI , which is not the case. The edge {x, y} is therefore
unmatched.

4 MULTI-SOURCE ALTERNATING-PATH TREES 8

x0 x1 x2 x3

x4 x5

x0 x1 x2 x3

x4 x5

s

y0 y2

Figure 8: Construction of G+ with I = {0, 2}.

x0 x2 x3

x4 x5

x1

x0 x2 x3

x4

x1

x5

s

y0 y2

Figure 9: The alternating-path forests of G (left) and G+ (right) from figure 8. Note that T (x3) and T (x2)
depend on T (x0), but T (x0) and T (x2) do not depend on T (x3).

Since {x, y} is unmatched and P starts at s with Ls = 0, Lx must be even. For y not to be in TI , y must have
been searched by another another tree T outside TI . Therefore T (xi) depends on T , which contradicts that
no tree in TI depends on a tree outside TI . We conclude that there exists no M+-augmenting path starting
from s.

If there is an i ∈ I for which there exists an M -augmenting path starting at xi, we can construct an M+-
augmenting path starting from s by adding yi and s to the xi-side of the path. Therefore there exists no
M -augmenting path starting from xi, for any i ∈ I. By using theorem 3.1 |I| times, we conclude that TI

may be pruned from the search space.

An alternative approach to prevent information leaking away between searches is tree-grafting, proposed by
Azad et al[1]. Instead of trying to discard a tree T from an unsuccessful search, tree-grafting remembers the
dependencies of T . Once a tree that T depends on yields an augmenting path, the search from T is continued.

5 EXPERIMENTAL RESULTS 9

5 Experimental results

To test whether pruning makes a differece, I have implemented both SS-BFS and MS-BFS without pruning
and their respective variants with pruning. To speed up the computations, I initialized the matching with
a maximal matching using a greedy algorithm. As a reference, I also tested the built-in Hopcroft-Karp
algorithm of the networkx python package[3]. For each of these algorithms, I computed the average time over
5 consecutive runs.

For this test, I prepared 3 random bipartite graphs, each consisting of 10007 vertices in L and 10007 vertices
in R, and some graphs built from matrices of the SuiteSparse Matrix Collection[4]. The results are in table
1.

Graph
type or
name

Number of
vertices (in
L and R)

Number of
edges

Cardinality
of maximum

matching
SS-BFS MS-BFS built-in

nopoly 10774 70842 10774
0.403 0.334

0.0930.381 0.334
0.334

Random 1 10007 10097 5456
0.844 0.322

0.1590.825 0.309
0.350

qpband 20000 45000 20000
1.363 11.456

0.2031.347 11.444
11.503

cyl6 13681 714241 13681
2.884 2.566

0.3842.853 2.559
2.531

Random 2 10007 76005 10001
4.147 1.906

0.3843.747 2.347
2.341

Random 3 10007 1001751 10007
5.500 4.206

0.4565.425 4.484
4.431

Table 1: Speed comparison of different algorithms. For each algorithm, the first value is without pruning,
the second with pruning (in bold), and the third value (if available) is the algorithm without pruning, but
with all calculations to make pruning possible in place.

For SS-BFS, the speedup gained by pruning is small, but consistent. Even if the pruning does not help, the
algorithm is not slowed down. Where the pruning does help greatly, it gives an improvement of about 10%.

For MS-BFS, it should be impossible for the third value to be lower than any of the other two. However,
this is the case for multiple test cases. This is most likely caused by variance during measurement. We
will consider those values to be equal in these cases. There are only two tested graphs where MS-BFS with
pruning is faster than MS-BFS without pruning, with a maximal speedup of 4%. On the other tested graphs,
the speed is roughly equal or up to 23% slower.

One result that stands out is MS-BFS on the graph built from the ’qpband’ matrix. The algorithm spends
most of the time in the phase where all augmenting paths are found, but we do not yet know what causes
this slowdown.

6 CONCLUSION 10

6 Conclusion

For single-source algorithms, pruning exhausted search trees is quite easy and gives a speedup of up to 10%
on the tested graphs. The multi-source case however, requires much more overhead for the pruning to work,
and only gives a relatively small speedup. If the pruning can be implemented much more efficiently, it may
be worth it. As far as we know, pruning for MS algorithms (theorem 4.3) is a new contribution.

The tree-grafting technique proposed by Azad et al.[1] also addresses the problem of information leaking
away between searches. In contrast to pruning, grafting does make the algorithm run an order of magnitude
faster than the standard MS-BFS algorithm.

REFERENCES 11

References

[1] Ariful Azad, Aydın Buluç, and Alex Pothen. “Computing maximum cardinality matchings in parallel
on bipartite graphs via tree-grafting”. In: IEEE Transactions on Parallel and Distributed Systems 28.1
(2017), pp. 44–59.

[2] Claude Berge. “Two theorems in graph theory”. In: Proceedings of the National Academy of Sciences of
the United States of America 43.9 (1957), p. 842.

[3] NetworkX Developers. Bipartite - NetworkX 2.3 documentation. url: https://networkxX.github.io/
documentation/stable/reference/algorithms/bipartite.html#module-networkx.algorithms.

bipartite.matching (visited on 05/28/2019).

[4] SuiteSparse Matrix Collection. url: https://sparse.tamu.edu/ (visited on 05/30/2019).

https://networkxX.github.io/documentation/stable/reference/algorithms/bipartite.html#module-networkx.algorithms.bipartite.matching
https://networkxX.github.io/documentation/stable/reference/algorithms/bipartite.html#module-networkx.algorithms.bipartite.matching
https://networkxX.github.io/documentation/stable/reference/algorithms/bipartite.html#module-networkx.algorithms.bipartite.matching
https://sparse.tamu.edu/

APPENDIX 12

Appendix: Code for SS-BFS with and without pruning

import networkx as nx

from matching import Matching

from collections import deque

The Matching superclass defines a function for flipping edges , as well as

the functions init_matching and greedy_match used below

class SsBfsPrune(Matching):

def __init__(self , graph: nx.Graph , prune: bool):

Matching.__init__(self , graph , None)

Indicates whether unsuccessful trees will be pruned

self.prune = prune

def algorithm(self):

Set all ’match’ (matched) and ’vis’ (visited) flags to False

self.init_matching ()

Greedily find a maximal matching

self.greedy_match ()

for i in self.G.nodes:

self.visited = [i]

Run a BFS from the new root node i

if self.bfs(i) or not self.prune:

If the search was successful or pruning is disabled ,

reset all visited flags of the last search

for j in self.visited:

self.G.nodes[j][’vis’] = False

Obtain all matched edges from the graph

return {a: b for (a, b, m) in self.G.edges.data(’match ’) if m}

def bfs(self , start):

Only run the BFS if the starting node is unmatched

if self.G.nodes[start][’match ’]:

return False

Initialise the queue with the start node and an artificial ’end

of layer indicator ’

q = deque([start , -1])

even_layer = True

self.G.nodes[start][’vis’] = True

prev = [None] * self.G.number_of_nodes ()

while len(q) > 1:

n = q.popleft ()

if n == -1:

End of current layer , initialise new layer

even_layer = not even_layer

q.append (-1)

continue

for n2 in self.G[n]:

Ignore nodes we have already visited

if self.G.nodes[n2][’vis’]:

APPENDIX 13

continue

Make sure the tree we build is an alternating -path tree , so

ignore matched edges when on an even layer , and unmatched

edges when on an odd layer

if self.G.edges[n, n2][’match ’] == even_layer:

continue

Mark n as the parent node of n2

prev[n2] = n

If the node is unmatched , we have found an augmenting path

if not self.G.nodes[n2][’match ’]:

last = n2

Flip the entire path from the current node to the root

node

while not last == start:

self.flip(last , prev[last])

last = prev[last]

Only mark the first and last node on the path as visited ,

the nodes in the middle of the path are already marked

as matched

self.G.nodes[n2][’match ’] = True

self.G.nodes[start][’match ’] = True

return True

Visiting node n2 only yielded an alternating path , so add it

to the search queue

q.append(n2)

self.G.nodes[n2][’vis’] = True

self.visited.append(n2)

return False

	Introduction
	Finding maximum matchings
	Single-source alternating-path trees
	Multi-source alternating-path trees
	Experimental results
	Conclusion

