
“The Karatsuba Algorithm for Integer

Multiplication:

a Parallel Implementation Using BSP”

Laurens Willenborg
Student registration number 3020274

Thesis for the Master Program
Science Education and Communication

Utrecht University

Supervisors: prof. dr. R.H. Bisseling and prof. dr. F. Beukers

April 25, 2014

1

Abstract

In the last decades of the 20th century, algorithms for multiplying large
integers have been improved considerably. Today’s state-of-the-art algo-
rithms are based on the Fermat Number Transform and the Fast Fourier
Transform, originally developed by Schönhage-Strassen in the 1970’s.
These convolution-based algorithms are of order O(n logn log logn).

Another algorithm for multiplying integers is the Karatsuba method,
an algorithm of order O(nlog2 3). Although less efficient, it still outper-
forms the transform-based algorithms for numbers of size n < 100, 000
decimal digits.

In this thesis, a BSP-based parallel implementation of the Karatsuba
algorithm is presented. In the literature there were some doubts about
the possibility to design an efficient parallel implementation, due to high
communication costs. This implementation therefore focused on reducing
communication as much as possible.

The parallel BSP-program was run at the Cartesius parallel computer
at the SurfSARA computer center in Amsterdam. Numbers up to a size
of n = 1 × 109 words (≈ 1010 decimal digits) were multiplied, with nice
results for parallel speedup and parallel efficiency (Ep > 0.8).

By combining this parallel implementation of the Karatsuba algorithm
with a sequential convolution-based algorithm for integer multiplication, a
parallel implementation for convolution-based algorithms can be achieved,
which makes multiplying ultra long integers in parallel mode possible.
Unfortunately satisfactory parallel speedups in this case can theoretically
only be achieved for a small number of processors p ≤ 27.

Although the Karatsuba algorithm is not fit for the multiplication
of ultra long integers, a cost-efficient parallel implementation has been
designed successfully and can be useful for the multiplication of mid-range
sized integers 104 ≤ nw ≤ 107 words, ≈ 105 ≤ nd ≤ 108 decimal digits.

2

Contents

1 Introduction 4
1.1 History and literature . 4
1.2 Theoretical background . 5

1.2.1 Description of the algorithm 5
1.2.2 Complexity of the algorithm 6

1.3 Sequential implementation of the algorithm 7

2 Parallel implementation 10
2.1 Introductory remarks . 10
2.2 Data distributions . 11
2.3 Description of the parallel implementation 12
2.4 Communication costs . 24

3 Results 26
3.1 Verification tests . 26
3.2 Tuning parameters . 26
3.3 Test results . 28

3.3.1 Run times . 28
3.3.2 Parallel speedup . 28
3.3.3 Parallel efficiency . 30
3.3.4 Comparison with results from the literature 30

3.4 Analysis of the stages in the algorithm 31
3.4.1 Parallel stages . 31
3.4.2 Parallel accumulated versus sequential 33

3.5 Analysis of the communication costs 35
3.6 Test Ultra Long Integers . 36
3.7 Comparison thin and fat nodes 38

4 Discussion and Conclusion 40
4.1 Performance of the implementation 40
4.2 Parallelizing convolution based algorithms 40
4.3 Suggestions for improvement . 40
4.4 Practical applicability . 41

5 References 42

3

1 Introduction

1.1 History and literature

In 1962 A. Karatsuba and Y. Ofman described a method9 to multiply large inte-
gers more efficiently when compared to methods typically learned in elementary
school (often referred to as classical multiplication). The Karatsuba algorithm
was the first attempt to find faster algorithms for multiplying large integers,
and multiplication methods have improved further in the last couple of decades
of the 20th century.

Today’s state-of-the-art algorithms for multiplying ultra long integers, the
Schönhage-Strassen methods13, are based on the Fourier Transform, the Number
Theoretic Transform and the Fermat Number Transform. They all make use of
the Convolution Theorem, known from Fourier Theory, and are therefore also
called convolution-based methods; detailed descriptions of these methods can
be found in Nussbaumer12. They are so efficient thanks to the development
of the Fast Fourier Transform, an algorithm that makes computing a Fourier
Transform possible in time O(n log n).

Although the Karatsuba algorithm cannot compete with these state-of-the-
art algorithms when it comes to multiplying ultra long integers, it still is an
efficient algorithm for numbers of considerable size. In articles published in
1993 and 1994, Zuras claimed the Karatsuba algorithm and similar methods to
be more efficient compared to the Schönhage-Strassen methods for numbers up
to at least 3 million bits (1993)14 or even 37 million bits (1994)15, the integers
stored as arrays of unsigned 32-bit words. Thresholds used for convolution-based
multiplication today are in the order of 10.000 32-bit words7, about 100.000
decimal digits, depending on the configuration used.

This makes it interesting to develop an efficient and scalable parallel im-
plementation of the Karatsuba algorithm. Some have done so in the past, e.g.
Cesari & Maeder3 and Jebelean8, others claim the Karatsuba algorithm to be
unsuitable for parallelization, for different reasons. For instance, Chen and
Schaumont4, when developing a parallel implementation of the Montgomery al-
gorithm, do not wish to consider parallelizing the Karatsuba method. They
argue, that Karatsuba optimization ‘leads to a subquadratic increase of the
amount of multiplications’ but ‘also has a superquadratic increase in the num-
ber of accumulations’ and conclude ‘In parallel software, where the cost of an
addition and a multiplication is similar, Karatsuba optimization therefore does
not lead to an obvious advantage.’. Fagin6 considers the Karatsuba algorithm
unsuitable for parallel implementation due to high communication costs, caused
by the ‘divide and conquer approach, applying the same technique to smaller
and smaller pieces of the input and then reassembling the results’ and con-
cludes ‘This reassembly requires significant interprocessor communication time
on a multiprocessor and suggests an examination of other algorithms.’.

Jebelean’s approach8 is process-driven; parts of the algorithm are processed
sequentially before distributing tasks among other processors. The implemen-
tation is tested with relatively small numbers (n ≤ 500, with n the number of
29 bit-words), for p a multiple of 3, p ≤ 18.

Cesari & Maeder3 have a similar approach, but they designed different al-
gorithms for p a power of 2 and for p a power of 3. For the algorithm with p a
power of 2, parallel speedups are poor, and the parallel efficiency drops quickly:

4

theoretically, for p ≥ 9, Epar < 0.4 (see section 3.3 for definitions of parallel
speedup and parallel efficiency). For algorithms designed for p a power of 3,
results are reported for p = 9, p = 27, and p = 81, with 210 ≤ n ≤ 220, n a
power of 2 (the word length is not mentioned). In section 3.3.4 these results
will be referenced for comparison.

The goal in this research is to develop a fully scalable and efficient parallel
implementation of the Karatsuba algorithm. The focus will be on reducing
communication costs, in order to obtain good parallel speedups, also with a
large number of processors.

1.2 Theoretical background

1.2.1 Description of the algorithm

Let x and y be n-digit integers in base (radix) r: x =
∑n−1
i=0 air

i, y =
∑n−1
j=0 bjr

j

(0 ≤ ai, bj < r). Split x and y into two parts: x = x0 + x1r
m, y = y0 + y1r

m

(m < n). Using the Karatsuba algorithm for multiplying x and y, the product
x y is written as

x y = (x0 + x1 r
m)(y0 + y1 r

m)

= x0 y0 + (x0 y1 + x1 y0) rm + x1 y1 r
2m

= x0 y0 +
(
(x0 + x1)(y0 + y1)− x0 y0 − x1 y1

)
rm + x1 y1 r

2m (1)

= x0 y0 −
(
(x0 − x1)(y0 − y1)− x0 y0 − x1 y1

)
rm + x1 y1 r

2m (2)

In both alternatives the number of multiplications is reduced from 4 to 3,
at the cost of 3 extra additions/subtractions. This procedure then is repeatedly
applied (in each step taking mi+1 ≈ mi

2), until at some point the multiplication
is computed using the classical algorithm. A numerical example will be given
in section 1.3.

In the second alternative, x0 − x1 and y0 − y1 are computed, opposed to
x0+x1 and y0+y1 in the first. For reasons discussed later, the second alternative
will be used for implementation of the sequential, recursive algorithm (applied
in the local computation of products), while the first alternative is used for
implementation of the parallel part of the algorithm.

Using (2) and assuming n is even and x and y are split into parts of size n/2
each, recombining the intermediate results

(
x2 y2 ≡ |x0 − x1||y0 − y1|

)
into the

final outcome x y can be schematically represented in array format as

x0 y0 + x1 y1 r
n x0 y0 (n) x1 y1 (n)

+ x0 y0 r
n/2 x0 y0 (n)

+ x1 y1 r
n/2 x1 y1 (n)

± x2 y2 r
n/2 x2 y2 (n)

where the first entries of the 3 lower n-sized arrays coincide with the (2n
4)th

entry of the first 2n-sized array, i.e. addition/subtraction of the 3 bottom arrays
starts at entry n

2 of the top array.

5

1.2.2 Complexity of the algorithm

Consider two numbers x and y of size n = 2d digits. To compute the product
x y, both numbers x and y are split into two equally sized parts x0, x1 and y0, y1
respectively. Applying the just described split in the Karatsuba algorithm once,
one needs 3 (classical) multiplications of size n/2 and 6 additions/subtractions
of size n in order to compute the product x y. Actually there are 3 additions
of size n and 2 subtractions, x0 − x1 and y0 − y1, of size n/2, equivalent to 4
additions/subtractions of size n in total, but a few extra additions/subtractions
are needed to handle carries and borrows (on average 1.5 in total); to compensate
for some overhead, e.g. the generation of the partial output x0 y0 +x1 y1r

n, the
total is rounded up to 6 additions/subtractions of size n (note that the +-sign
in x0 y0 + x1 y1r

n does not really result in an addition; the expression merely
represents the filling of a 2n-sized array).

Applying the split recursively, each multiplication results in 3 new multipli-
cations and 6 extra additions/subtractions, the size being half the size of the
previous split. In split 1, there are 6 additions/subtractions of size n, so the
total number of operations to process these additions/subtractions is equal to
OKar(n, 1) = 30 ∗ 6 ∗ (n/20) = 6n. In split 2, OKar(n, 2) = 31 ∗ 6 ∗ (n/21), and
in split k, OKar(n, k) = 3k−1 ∗ 6 ∗ (n/2k−1) = (3k/2k−2) ∗ n = 4 ∗ (3/2)k ∗ n.

Assuming after split k the multiplication proceeds using the classical algo-
rithm, there are 3k multiplications of size n/2k to compute. Since one single
multiplication of size m takes 3m2 operations (m2 multiplications and 2m2 ad-
ditions, the handling of carries included) using the classical algorithm, it takes
in total OClass(n, k) = 3k ∗ 3(n/2k)2 operations to compute all multiplications
that remain after split k, using the classical multiplication algorithm throughout
after split k.

To estimate the total number of operations (all multiplications, additions and
subtractions) O(n, k) in order to process the (up to split k recursively applied)
Karatsuba algorithm, one totals (i) all operations to compute the additions
and subtractions up to split k and (ii) all operations to compute the classical
multiplications after split k:

O(n, k) =

k∑
i=1

(
OKar(n, i)

)
+OClass(n, k)

=

k∑
i=1

(
4 ∗
(3

2

)i
∗ n
)

+ 3k ∗ 3
(n

2k

)2
= 4

3
2 − (3

2)k+1

1− 3
2

n+
3k+1

22k
n2

= 8

((3

2

)k+1

− 3

2

)
n+ 3

(3

4

)k
n2 (3)

Now assume the recursive calls are continued until multiplications of size 1
are left: k = log2 n. The number of multiplications to compute will be equal to
3k = 3log2 n = (2log2 3)log2 n = (2log2 n)log2 3 = nlog2 3 ≈ n1.58

Using (3
2)log2 n = nlog2 3−1 = nlog2 3∗n−1 and similarly (3

4)log2 n = nlog2 3∗n−2
one obtains the total number of operations O(n, log2 n) = 15nlog2 3 − 12n. This
makes the recursively applied Karatsuba algorithm an O(nlog2 3) algorithm.

6

The complexity can also be derived from the recurrence equation: let T (n)
be the time needed to compute the product x y, both x and y of size n, then
T (n) = 3T (n2) + 6n; using the Master Theorem for recursive algorithms5 this
implies an O(nlog2 3) algorithm, since clearly nlog2 3 dominates 6n.

However, considering the total number of operations during the recursive
Karatsuba algorithm, it is possibly more efficient to cut off the recursive calls at
an earlier stage: stop the recursive calls at split k, and compute the remaining
multiplications using the classical multiplication algorithm.

By solving the equation 6m+ 3 ∗ 3(m2)2 > 3m2 (for which m the number of
operations splitting up x and y is larger compared to the number of operations
using the classical multiplication algorithm), one obtains the point, where it is
more efficient to continue the computation using the classical algorithm. This
yields 6m+ (9

4 − 3)m2 > 0⇒ m(6− 3
4m) > 0⇒ m < 8.

The total number of operations stopping the recursive calls as soon as n ≤ 8
will be equal to O(n, log2 n− 3) = 8((3

2)log2 n−2− 3
2)n+ 3((3

4)log2 n−3)n2. Using
(3
2)log2 n = nlog2 3−1 = nlog2 3 ∗ n−1 and similarly (3

4)log2 n = nlog2 3 ∗ n−2 one
obtains O(n, log2 n − 3) = 8(nlog2 3n−1(2

3)2 − 3
2)n + 3(nlog2 3n−2(4

3)3)n2. This
yields O(n, log2 n− 3) = (8(2

3)2 + 3(4
3)3)nlog2 3 − 12n = 32

3 n
log2 3 − 12n, slightly

less when compared to O(n, log2 n) = 15nlog2 3− 12n above (when the recursive
calls are continued all the way to the end).

The threshold used in the algorithm will be determined experimentally and
can deviate from the theoretical value due to overhead caused by memory man-
agement and system resources needed while executing the recursive calls.

1.3 Sequential implementation of the algorithm

The algorithm is implemented assuming n (the number of digits of x and y)
contains enough powers of 2 to split the numbers up to the size n Cs at which
computation proceeds using the classical multiplication algorithm. This makes
subsequent splits most efficient (i.e. the gain compared to the classical algorithm
is maximized). If x and/or y do not contain the required powers of 2, trailing
zeroes are added (numbers are represented polynomially: more significant digits
are at the right, in the higher entries of the arrays).

As mentioned in section 1.2.1 on page 5, the second alternative for computing
x y is used for the sequential implementation of the Karatsuba algorithm. An
example of the algorithm (for r = 10, n = 4), applying the split once, is given
on page 9, showing also the difference between both alternatives. To avoid
confusion, numbers are given in the usual, ordinary format (most significant
digits on the left) as well as in array format (most significant digits on the right,
between brackets).

As becomes clear, computing x0 +x1 and y0 + y1 has a major disadvantage:
either intermediate results become larger than the radix, or extra table entries
have to be reserved to store a possible overflow-carry. Moreover, this problem
gets worse after consecutive recursive calls. Computing x0 − x1 and y0 − y1 in
the Karatsuba algorithm instead, the sign has to be stored.

Computations are in general more efficient if a radix as large as possible is
used for the representation of the numbers: (i) less memory is needed, which
leads to a more efficient use of cache, (ii) on many systems, computing the
product of 1-bit sized integers is just as costly as computing the product of 1
word-sized integers, at least on the machine this implementation is tested on (in

7

fact, the optimal choice is half the maximum size of the product x y the machine
can compute and store using the built-in operations), (iii) if conversion from or
to another base is desired, this is only an O(n) algorithm with n the size of the
number to be converted11.

In the Karatsuba algorithm, computing x0−x1 and y0−y1 makes it possible
to fully exploit the advantages of a radix as large as possible, the main reason to
choose this alternative above the one in which x0+x1 and y0+y1 are computed.
Determining and storing the sign of x0−x1 and y0−y1 hardly takes any resources
and is easy to implement as well.

An outline of the implementation of the algorithm is presented below.

The sequential recursive Karatsuba algorithm

1 // s t a r t s e quen t i a l Karatsuba algori thm
2 ∗∗
3 input : vec to r x [n] , n=2ˆs
4 vec tor y [n] , n=2ˆs
5 output : vec to r z [2 n]=x [n]∗ y [n]
6 funct ion−c a l l : Karatsuba (x , n , y , n , z , 2 n , n Cs , s z r)
7 s z r : determines the rad ix r=2ˆ s z r
8 n Cs : the s i z e for sw i tch ing to the c l a s s i c a l a lgor i thm
9 ∗∗

10 i f n<=n Cs then Mult ip ly (x , n , y , n , z , 2 n , s z r) ; return z [] ;
11 a l l o c a t e ve c to r s x0 [n /2] , x1 [n /2] , x2 [n / 2] ;
12 for i :=0 to n/2−1 step 1 do
13 x0 [i] :=x [i] ;
14 x1 [i] :=x [i+n / 2] ;
15 for i :=0 to n/2−1 step 1 do
16 // process ing of borrows not inc luded here
17 x2 [i] := | x0 [i]−x1 [i] | ;
18 a l l o c a t e ve c to r s y0 [n /2] , y1 [n /2] , y2 [n / 2] ;
19 for i :=0 to n/2−1 step 1 do
20 y0 [i] :=y [i] ;
21 y1 [i] :=y [i+n / 2] ;
22 for i :=0 to n/2−1 step 1 do
23 // process ing of borrows not inc luded here
24 y2 [i] := | y0 [i]−y1 [i] | ;
25 a l l o c a t e ve c to r s x0y0 [n] , x1y1 [n] , x2y2 [n] ;
26 // Recursive c a l l s
27 Karatsuba (x0 , n/2 , y0 , n/2 , x0y0 , n , n Cs , s z r) ;
28 Karatsuba (x1 , n/2 , y1 , n/2 , x1y1 , n , n Cs , s z r) ;
29 Karatsuba (x2 , n/2 , y2 , n/2 , x2y2 , n , n Cs , s z r) ;
30 // Recombine the r e s u l t s
31 for i :=0 to n−1 step 1 do
32 // z:=xoyo+x1y1∗rˆn
33 z [i] := x0y0 [i] ;
34 z [i+n] := x1y1 [i] ;
35 i f ‘ ‘ (x0−x1) and (y0−y1) have oppos i t e s i gn s ’ ’
36 then
37 for i :=0 to n−1 step 1 do
38 // z:=xoyo+(x0y0+x1y1+x2y2)∗r ˆ(n/2)+x1y1∗rˆn
39 // process ing of car r i e s not inc luded here
40 z [i+n/2] := z [i+n/2]+x0y0 [i]+x1y1 [i]+x2y2 [i] ;
41 else
42 for i :=0 to n−1 step 1 do
43 // z:=xoyo+(x0y0+x1y1−x2y2)∗r ˆ(n/2)+x1y1∗rˆn
44 // process ing of car r i e s /borrows not inc luded here
45 z [i+n/2] := z [i+n/2]+x0y0 [i]+x1y1 [i]−x2y2 [i] ;
46 return z [] ;
47 // end sequen t i a l Karatsuba algori thm

8

Worked example of the Karatsuba algorithm A full example of the
Karatsuba algorithm, also showing the difference between the 2 alternatives
(1) and (2) presented on page 5.

x = {2, 4, 6, 8} = 2 ∗ 100 + 4 ∗ 101 + 6 ∗ 102 + 8 ∗ 103 = 8642
y = {9, 7, 5, 3} = 9 ∗ 100 + 7 ∗ 101 + 5 ∗ 102 + 3 ∗ 103 = 3579
x y = 8642 ∗ 3579 = 30929718 = {8, 1, 7, 9, 2, 9, 0, 3}
x0 = {2, 4} = 42 x1 = {6, 8} = 86
y0 = {9, 7} = 79 y1 = {5, 3} = 35
x0 y0 = 42 ∗ 79 = 3318 = {8, 1, 3, 3}
x1 y1 = 86 ∗ 35 = 3010 = {0, 1, 0, 3}

Using the first alternative (1) on page 5, x0 + x1 and y0 + y1 are computed

x2 = x0 + x1 = 128 = {8, 12} = {8, 2, 1} y2 = y0 + y1 = 114 = {4, 11} = {4, 1, 1}
x2 y2 = 128 ∗ 114 = 14592 = {2, 9, 5, 14} = {2, 9, 5, 4, 1}

and recombining the above results into the final outcome
x y = x0 y0 + (−x0 y0 − x1 y1 + x2 y2) 102 + x1 y1 104 gives

8 1 3 3 0 1 0 3

- 8 1 3 3

- 0 1 0 3

+ 2 9 5 14 I

+ 2 9 5 4 1 II

8 1 7 9 2 9 0 3

Choosing I here implies a radix r sufficiently small to store the digit (in this
example 14) larger than r in a variable of type integer. Choosing II implies an
overflow digit (in this example 1) will occur, making the problem asymmetric.

Using the second alternative (2) on page 5, |x0 − x1| and |y0 − y1| are com-
puted

x2 = |x0 − x1| = 44 = {4, 4} y2 = |y0 − y1| = 44 = {4, 4}
x2 y2 = 44 ∗ 44 = 1936 = {6, 3, 9, 1}

Since x0−x1 < 0 and y0− y1 > 0 have opposite signs, x2 y2 must be added,
not subtracted, when recombining the above results into the final outcome:
x y = x0 y0 + (x0 y0 + x1 y1 + x2 y2) 102 + x1 y1 104 (note that carries should be
processed from left to right)

8 1 3 3 0 1 0 3

+ 8 1 3 3

+ 0 1 0 3

+ 6 3 9 1

8 1 7 9 2 9 0 3

9

2 Parallel implementation

2.1 Introductory remarks

In this parallel implementation, five steps are distinguished: (i) generate the
lower level multiplications of reduced size, (ii) distribute the generated multipli-
cations, (iii) compute these multiplications locally using the sequential recursive
algorithm, (iv) distribute the results from the previous step, and (v) assemble
the higher-level products until the final product is obtained.

Two observations can be made when considering how to parallelize the
Karatsuba algorithm: (i) at each split the arrays that are to be multiplied
are split into two parts and (ii) each split generates 3 new problems half the
size of the original problem.

From a process point of view, it seems reasonable to start assuming the num-
ber of processors is a power of 3: p = 3m. This gives an optimal computational
load balance for the lower level multiplications to be computed, of which there
are a power of 3 as well. However, if one wishes the parallel implementation
to be fully scalable and efficient for a large number of processors, it becomes
more and more important, that the computational load balance in the first step
(the execution of all additions/subtractions) is optimal, and the communication
needed for the process minimal. This asks for a data distribution that makes
this possible. As will become clear, this implies a correlation between the num-
ber of processors and the size of the numbers x and y that are to be multiplied:
it might be necessary to adjust the size of the input by adding trailing zeroes
(powers of 2 play a dominant role here). Although this increases the total com-
putation time of the algorithm, the overall negative effect is expected to be
rather small for larger numbers.

It is also assumed x and y have equal size; if not, their size is made equal by
adding trailing zeroes to the smallest number. The goal is to show a scalable
and efficient parallel implementation is possible, and if it is for equally large
numbers, it can be made efficient for numbers of unequal size as well. Besides,
if one of the numbers is small in size, there is no point in using the Karatsuba
algorithm (only a few recursive steps, i.e. a very limited number of split-ups, is
possible); one might just as well use the classical multiplication instead.

Another important issue is, which alternative of the Karatsuba algorithm to
use. As pointed out in section 1 on page 5, there are two alternatives: com-
puting the sum of the lower and upper part (first alternative) or computing
their absolute difference (second alternative). For reasons explained before, the
second alternative is used in the implementation of the sequential algorithm.
For implementation of the parallel part however, the first alternative is used.
The rationale for this choice is, that it turns out to be possible to compute all
additions while postponing the processing of carries. Provided a suitable data
distribution is chosen, the first step of the algorithm can be fully executed with
only one (on average) communication step at the end, in order to perform (the
slightly adapted) processing of carries. A similar approach is not possible when
adopting the second alternative, because the largest of two intermediate results
has to be determined before computing the absolute differences, a process that
cannot be delayed and also requires the immediate processing of borrows. Ap-
plying the second alternative therefore implies two (on average) communication
steps at each level. On the other hand, the additions might result in an overflow

10

carry, increasing the size of the numbers to be multiplied by one digit, making
it odd. This causes the subsequent sequential Karatsuba’s to be less efficient,
although the effect for large numbers is on average rather small.

If the number of processors is not a power of 3, a solution must be found to
prevent a possibly unbalanced computational load in the second step: at the
lowest level L = l (i.e. after splitting the data l times), there are 3l multipli-
cations to be computed using the sequential, recursive Karatsuba algorithm,
and p processors are available to do the job. A solution for this will be provided.

Notational issues: the product to be computed is z = x y. This is the
top level of the tree: level L = 0. At level L = 1, both x and y are split into a
lower and an upper part; using superscripts these will be denoted by x0, y0 for
the lower half (i.e. the lower entries of the array, the least significant digits)
and x1, y1 for the upper half of x and y respectively. The sums are defined
as x2 = x0 + x1 and y2 = y0 + y1. After the next split, a second index is
used to denote the data at level L = 2: x00, x01 and x02 for the lower and
upper half of x0 and their sum; x1 splits into x10, x11 and x12; x2 into x20,
x21 and x22. The same structure is used to describe the y-variables at this
level. Finally, at level L = l, both x and y are split into 3l parts and their
sums, denoted as xi1i2...il and yi1i2...il respectively, ij = 0, 1, 2. Referring to the
array-representation on page 5, the product z is split into 3 parts: the lower
part zl contains the first 1

4 array entries of the product z, the middle part zm
contains the middle 1

2 array entries, and the upper part zu the last 1
4 entries.

Using the same superscripts to refer to the level of these products, one gets
zi1i2... for the product xi1i2... ∗ yi1i2... and zi1i2...l , zi1i2...m , and zi1i2...u for the
lower, middle, and upper parts of the product zi1i2... at the specified level.

2.2 Data distributions

Common data distributions applied in parallel software are the cyclic, the block
and the block-cyclic distribution2. The processor numbering in the definitions
below is arbitrary, i.e. the numbering can be randomly permuted without af-
fecting the performance on the assumed hardware.
Cyclic distribution: let x be a vector of size n and p the number of processors
available in the parallel process. The cyclic distribution assigns the vector ele-
ment xi to processor i mod p (0 ≤ i < n).
Block distribution: let x be a vector of size n and p the number of available
processors. Define the block-size α = dnp e. The block distribution assigns the

vector element xi to processor i divα (0 ≤ i < n).
1D Block-cyclic distribution: the 1-dimensional block-cyclic distribution assigns
blocks instead of individual vector elements to a processor. Let x be a vector
of size n and p the number of available processors. The 1-dimensional block-
cyclic distribution with block-size α assigns the vector element xi to processor
(i divα) mod p (0 ≤ i < n).
2D Block-cyclic distribution: commonly used in matrix calculations, this distri-
bution assigns rectangular submatrices instead of individual matrix elements to
a processor. Let A be an n × n-matrix and let p = M × N be the number of
available processors. The 2-dimensional M × N block-cyclic distribution with
block-size α0 × α1 assigns the matrix element Aij to processor P (s, t), where
s = (i divα0) mod M , t = j divα1 mod N (0 ≤ i, j < n). Here the pair (s, t)

11

merely serves as a set of processor identifiers and stems from the idea of num-
bering the processors in matrix calculations by a row-identifier s and a column
identifier t; if two index pairs (i1, j1) and (i2, j2) are mapped to the same pair of
identifiers (s, t), the corresponding matrix elements Ai1j1 and Ai2j2 are assigned
to the same processor P (s, t). The 2D 1×N block-cyclic distribution for a 1×N
matrix is equivalent with the 1D block-cyclic distribution for a row vector of
length n.

Choice of data distribution The numbers x, y and z = x ∗ y in this im-
plementation are stored in 1-dimensional arrays. The exact structure of these
arrays will be described later; the focus now is on the best choice for distributing
the input x and y over the available processors.

It turns out that the 1D block-cyclic distribution makes it possible to perform
all additions in the first step of the parallel implementation without communi-
cation (apart from the processing of carries).

x0 x1

x00 x01 x10 x11

0 1 2 0 1 2 0 1 2 0 1 2

block-cyclic distribution

In this figure, blocks of size α are cyclicly assigned to 3 processors numbered
0, 1 and 2. Denote the 12 blocks in this picture α0, α1, . . . , α11. To accomplish
the first level addition x0 + x1, αi + αi+6 (0 ≤ i < 6) must be computed
locally. As is clear from the picture, these additions can be completed without
communication; each processor owns the terms that must be added. At the
second level, x00 + x01 and x10 + x11 must be computed, this means adding
αi + αi+3 and αi+6 + αi+9 (0 ≤ i < 3) locally. Again all processors own the
terms needed for the calculations.

2.3 Description of the parallel implementation

Step 1.1: determination of parameters
To determine the block size α, the number of times the data is split (or the
lowest level) must be determined first. The lowest level L = l is related to
the number of available processors (p), the number of multiplications to be
computed at this level (3l) and the required efficiency for computing the
sequential Karatsuba’s.

Computational load balancing : let p be the number of available proces-
sors and l the level at which the sequential recursive Karatsuba’s are (locally)
computed. Assume in each computation cycle p processors are used simultane-

ously. The number of cycles to complete 3l Karatsuba’s is Cl = d 3
l

p e, since 3l is
the total number of Karatsuba’s to be computed. The efficiency is defined as

El = 3l

Cl p
. The best possible efficiency El = 1 is reached with p a power of 3,

or else as l goes to infinity. This definition thus reflects how well (indeed how
efficient) the available processor capacity is used.

The lowest level L = l is computed using this efficiency definition. Input
for this calculation are two (stored) parameters: Emin ≤ 1, the desired minimal

12

efficiency, and le, used to determine the lowest level allowed, i.e. the maximum
number of splits: llow = blog3 pc + le (the parameter le prevents splitting up
the data to a very low level, only to gain a small fraction in efficiency). A
few more conditions are used in the actual calculation, amongst others a limit
that prevents splitting up the data to a level where the multiplicands become
smaller than the size n Cs, the limit size for applying the Classical sequential
multiplication algorithm.

The efficiency Ei is computed for i = 1, 2, . . ., until Ei ≥ Emin or i > llow. If
Ei ≥ Emin, l = i, else l is the smallest i corresponding to the highest calculated
efficiency (the latter implies the lowest level allowed is insufficient to reach the
desired efficiency). Note that l always takes the minimum value to meet the
required efficiency; if El+1 = El, the extra level would increase the required
memory for the additions in step 1.3 as well as communication costs in step 2.1
by a factor 3

2 , without gaining computational efficiency in step 2.2.
Take as an example p = 64. Then E3 = 27

1∗64 ≈ 0.422, E4 = 81
2∗64 ≈ 0.633,

E5 = 243
4∗64 ≈ 0.949, E6 = E5 = 729

12∗64 ≈ 0.949, E7 = 2187
35∗64 ≈ 0.976. Had we

chosen Emin = 0.95, then L = 7, provided at least 4 extra levels are allowed
(le ≥ 4 ⇒ llow ≥ blog3 pc + le = 3 + 4 = 7). Had we chosen Emin = 0.95 and
only 3 extra levels are allowed,(le = 3⇒ llow = blog3 pc+ le = 3 + 3 = 6), then
L = 5, the level corresponding to the maximum efficiency possible with the
given restrictions (although E5 = E6, the obvious choice here is L = 5, since
there is nothing to gain splitting the data one level more).

Block size α of the block cyclic distribution: let p be the number of available
processors and l the level up to which the data is split. Let n be the size of the
numbers x and y that are to be multiplied. The block size applied is equal to
α = d n

2lp
e. If n is not a multiple of 2lp, trailing zeroes are added to make x and

y of size n′ = d n
2lp
e ∗ 2lp. This n′ is denoted the size n of the input x and y in

the remainder of this section.
Note that this block size α is the maximum possible size for which no com-

munication is needed in the first step of the algorithm. Smaller block sizes
are possible, but lead to more carry communication and, more importantly, to
larger computational overhead.

Step 1.2: data distribution
Blocks of size α are cyclicly assigned to processors 0, . . . , p− 1.

Conversion between global and local indices: the digits of the numbers x
and y are indexed x0, x1, . . . xn−1 and y0, y1, . . . yn−1 respectively. Denote
the global index by j and the local index by i. The digit globally indexed
by j is assigned to processor s = (j divα) mod p. The conversion formulas
are (i) global → local: i = (j divαp)α + j mod α and (ii) local → global:
j = (i divα)αp + αs + i mod α. Similarly there are conversion formulas for
blocks: the blocks of the numbers x and y are indexed x0, . . . x(n/α)−1 and
y0, . . . y(n/α)−1. Substituting α = 1 in the former formulas gives the equivalent
block conversion formulas for the block-cyclic distribution: the block globally
indexed by j is assigned to processor s = j mod p. The conversion formulas are
then (iii) global → local: i = j div p and (iv) local → global j = ip + s. Af-
ter distributing the data, each processor owns n

αp blocks of size α of both x and y.

13

Data storage: the numbers x and y are stored in two local arrays Xl
and Y l, containing only the lowest level blocks of size α, in the same
order as when reading the lowest level in the tree from left to right:
x00...0, x00...1, x00...2, x00...10, . . . , x22...0, x22...1, x22...2 (the upper indices in
xi0i1...il run from 0 to 2 cyclicly starting with il (the index referring to the
lowest level l, i.e. the right most index in the above notation), and adding one
to the previous index at the completion of the right neighbor cycle).

The carries generated when computing the additions, are stored in arrays
CX and CY having a similar structure. For each block in Xl and Y l these
arrays have one digit reserved to store the carry that has to be processed by the
right next processor.

The arrays Xl and Y l contain all information needed to do the computations,
and in fact is the minimal memory needed to perform these. The required space
for storing the results of the additions is reserved beforehand in Xl and Y l (in
fact all elements containing one or more 2’s in the upper index). For the sake
of simplicity, CX and CY have space reserved to store carries for all blocks,
although carries can only refer to blocks where the result of an addition is stored
(i.e. blocks with a 2 in the upper index); this way there is a direct link between
the carry and the block it applies to. For larger numbers it only implies a small,
negligible redundance in storing capacity.

To determine the blocks that make up a number at a certain level, a set of
Master Indices MI is created. This array reflects the local data structure and
is used for distributing x and y and in the algorithm to compute the additions.

Generation of Master Indices MI: start with the number 0, and com-
pute the first offset d = 30. Then copy what you already have, adding this
offset d: 0, 1. Compute the next offset d = 31 and again copy what you already
have, now adding the newly computed offset: 0, 1, 3, 4. Proceed until the last
offset 3l−1. The size of this array is 2l. If l = 4, the array MI contains the
numbers: 0, 1, 3, 4, 9, 10, 12, 13, 27, 28, 30, 31, 36, 37, 39, 40. These numbers
refer to the array-blocks in which the input numbers x and y are stored; the
‘holes’ between the numbers are the exact spots to store the results of the
additions in Xl and Y l and possible carries in CX and CY (and refer to all
blocks containing one or more 2’s in their upper index).

The algorithm for generating the array MI is given below.
Input
l: lowest level, i.e. the number of times the input x and y is split
f = 1: factor to determine the length of the starting block
Output
MI[]: array of Master Indices; determines the local data structure
Algorithm
1 For i = 0 to f − 1 do
2 MI[i] := i; (first level: k = 0)
3 For k = 1 to l do
4 i := f ∗ 2k−1; (first free entry in MI)
5 d := f ∗ 3k−1; (offset for level k)
6 For j = 0 to i− 1 do (copy from previous indices)
7 MI[i+ j] := MI[j] + d;

14

Step 1.3: local computation of all level additions
To compute the level-1 primary addition x2 = x0 + x1, a number of level-l
block-additions must be executed, because only the lowest level l is stored in
array Xl. For instance, if the lowest level l = 3, computing x2 requires a
total of 4 level-3 block-additions: x200 = x000 + x100, x201 = x001 + x101,
x210 = x010+x110, and x211 = x011+x111. At level 2, the 3 primary additions to
compute are x02 = x00+x01, x12 = x10+x11, and x22 = x20+x21. Each of them
requires 2 level-3 block-additions: computing x02 implies x020 = x000 +x010 and
x021 = x001 +x011; x12 is obtained by x120 = x100 +x110 and x121 = x101 +x111;
x22 requires the block-additions x220 = x200 + x210 and x221 = x201 + x211.
Finally, level 3 has 9 primary additions, each of them requiring 1 block-addition:
x002 = x000 + x001; . . . ; x222 = x220 + x221.

The primary additions are processed level by level, starting with the level-
1 additions, up to the lowest level l. Referring to the above example l = 3,
the relation between the primary additions for a specific level and the required
block-additions is shown: for each sum the level of computation is given.

x0 x0

x00 x01 x02

x000 x001 x002 x010 x011 x012 x020 x021 x022

input input l = 3 input input l = 3 l = 2 l = 2 l = 3

x1 x1

x10 x11 x12

x100 x101 x102 x110 x111 x112 x120 x121 x122

input input l = 3 input input l = 3 l = 2 l = 2 l = 3

x2 x2

x20 x21 x22

x200 x201 x202 x210 x211 x212 x220 x221 x222

l = 1 l = 1 l = 3 l = 1 l = 1 l = 3 l = 2 l = 2 l = 3

addition process for l = 3

In general, the number of primary additions at level k is 3k−1, each primary
addition requiring 2l−k block-additions. The following algorithm executes the
level-1 to level-l additions according to the description above.

15

Input
Xl[] and Y l[]=arrays containing the lowest level numbers (of size α)
CX[] and CY []=arrays containing the carries; initially set to zero
MI[]=array of Master Indices
Output
Xl[] and Y l[]=updated array of lowest level numbers
CX[] and CY []=updated array of carries
Algorithm
01 For k = 1 to l do
02 npa := 3k−1; (number of primary additions at level k)
03 nba := 2l−k; (number of block additions per primary at level k)
04 For i = 0 to npa− 1 do
05 d := i ∗ 3l−k+1;
06 For j = 0 to nba− 1 do
07 i0 = MI[j] + d;
08 i1 = MI[j] + 3l−k + d;
09 i2 = MI[j] + 2 ∗ 3l−k + d;
10 Xl[i2] := Xl[i0]⊕Xl[i1];
11 CX[i2] := CX[i0] + CX[i1] + carry;
12 Y l[i2] := Y l[i0]⊕ Y l[i1];
13 CY [i2] := CY [i0] + CY [i1] + carry;
Note 1: the indices i0, i1 and i2 are block-indices: they refer to blocks
Note 2: the ⊕ in lines 10 and 12 is a block-addition
Note 3: the carry in lines 11 and 13 results from the previous block-addition

Step 1.4: carry handling
As mentioned before, processing of carries is delayed until the last, lowest-
level additions are executed. This asks for a careful handling of these carries,
especially because only the lowest level l is stored in Xl and Y l. It turns out
to be possible to store the carries in arrays with a similar structure, and have
these carries refer to only the lowest level additions.

When computing the first level addition x2 = x0 + x1, the (lowest-level)
block-additions generate carries that need to be stored, since processing of all
carries is postponed. These carries must be taken into account, when computing
the second level addition x22 = x20+x21, where the lower (x20) and upper (x21)
part of x2 are added: carries generated at the higher level, accumulate to lower
levels. The following example illustrates this accumulation of carries.

x000 x001 x002 x010 x011 x012 x020 x021 x022

input input c10 input input c11 c4 c5 c4,5,12

x100 x101 x102 x110 x111 x112 x120 x121 x122

input input c13 input input c14 c6 c7 c6,7,15

x200 x201 x202 x210 x211 x212 x220 x221 x222

c0 c1 c0,1,16 c2 c3 c2,3,17 c0,2,8 c1,3,9 c0,1,2,3,8,9,18

accumulation of carries; compare with addition process on page 15

16

It is assumed the order in which the additions is executed is the same, and
at level l = k the number of (possible) carries generated is equal to 3k−1 ∗ 2l−k.
The carries are numbered c0, . . . , c18: 1 ∗ 4 = 4 carries (c0, . . . , c3) are generated
during execution of the primary level-1 addition x2 = x0 + x1, 3 ∗ 2 = 6 carries
(c4, . . . , c9) emerge from the 3 level-2 primary additions, and 9 ∗ 1 = 9 carries
(c10 . . . , c18) result from the 9 level-3 primary additions. Multiple indices are
used to denote accumulation of carries: c4,5,12 denotes accumulation of carries
c4, c5, and c12.

The size of a carry is equal to 1 digit, but its value can be larger than 1 due to
this accumulation of carries; its maximum value is equal to

∑l
i=1 2i−1 = 2l − 1.

For practical purposes, 1 digit is sufficient to contain this maximum, provided
the chosen radix is large enough (≥ 216 is more than sufficient).

Once these carries are stored properly, the processing of these carries is
rather straightforward: processor s sends the local carry-arrays CX and CY
to processor t = (s + 1) mod p. Most of the carries in CX and CY are likely
to have a value unequal 0, so there is not much, if anything at all, to gain by
communicating only the non-zero entries, since this needs communicating the
indices as well. The carries are processed by processor t in a first cycle C0,
possibly (but unlikely) resulting in new carries that need processing in a next
cycle of communication and computation. Since new carries are rare, only the
newly generated carries are communicated, instead of arrays CX and CY . This
process repeats until there are no more carries to communicate and process;
this is controlled by means of an array, that indicates if any new carries are
generated by any processor (note that it is possible that a processor t has no
carries to process in some cycle Ci, but receives carries in a next cycle Cj .

If the last processor s = p − 1 generates a carry, this is an overflow carry
that will increase the size of the global block by 1 digit. All carries generated by
the last processor are sent to processor t = 0, whose only role it is to save and
accumulate the received carries (since processor 0 cannot receive carries that
need further processing, it serves as the keeper of these overflow carries, thus
saving memory).

One important issue remains to be solved: in a sequential implementation,
carries are (naturally) propagated all the way to the most significant digit at all
levels, whereas in this parallel implementation carries are only propagated to
the most significant digit of the level-l global blocks (of size αp). The question
is: is the partial propagation of carries in this parallel implementation sufficient
to make it a valid one? The answer is yes, simplifying things noticeably.

Let x = x0 +x1r
m and y = y0 + y1r

m be two global variables at level k with
m < 2l−kαp; underscores are used here to denote the lower and upper parts of
x and y, the first k indices are left out (e.g. for k = 1 two of these variables
are actually x2 = x20 + x21r

m and y2 = y20 + y21r
m). Their product z = x y is

obtained using z0 = x0 y0, z1 = x1 y1 and z2 = x2 y2 = (x0 + x1)(y0 + y1), the
products at level k + 1 (e.g. for k = 1 the product z2 = x2 y2 is obtained using
the level-2 products z20 = x20 y20, z21 = x21 y21 and z22 = x22 y22). Assume
full propagation of carries is applied for these level-k variables when executing
the additions at this level (e.g. for k = 1, these additions are x2 = x0 + x1 and
y2 = y0 + y1). Let x′ = x′0 + x′1r

m and y′ = y′0 + y′1r
m be the same variables

at level k and assume partial propagation of carries is applied for the primed
level-k variables when executing the additions at this level. The lower and upper
parts x0, x1, y0, y1 and their primed counterparts are the global variables at

17

level k + 1, possible overflow carries included.
Now write x′0 = x0+a rm, x′1 = x1−a and y′0 = y0+b rm, y′1 = y1−b, carries a

and b not having been transferred from x′0 and y′0 to their neighboring blocks x′1
and y′1 respectively due to the partial carry propagation for the primed variables.
Applying the Karatsuba algorithm (see section 1.2 on page 5) to combine the
products at level k + 1 into the product x′ y′ at level k now yields

x′ y′ = x′0 y
′
0 +

(
(x′0 + x′1)(y′0 + y′1)− x′0 y′0 − x′1 y′1

)
rm + x′1 y

′
1 r

2m

= (x0 + a rm)(y0 + b rm)

+ (x0 + a rm + x1 − a)(y0 + b rm + y1 − b) rm

− (x0 + a rm)(y0 + b rm) rm

− (x1 − a)(y1 − b) rm

+ (x1 − a)(y1 − b) r2m

= x0 y0 + (x0 y1 + x1 y0) rm + x1 y1 r
2m = x y

the last equation following in a straightforward way, since writing out the mul-
tiplications reveals that all other terms cancel.

The above shows, that assembling the product x′ y′ at level k from the
products at level k + 1 gives the correct result x y if partial propagation of
carries is applied for variables at level k. Note however, that the lower level
products z′0 = x′0 y

′
0, z′1 = x′1 y

′
1 and z′2 = x′2 y

′
2 = (x′0 + x′1)(y′0 + y′1) may, and

often will, have different values when compared to their unprimed counterparts
(for which full propagation of carries is applied).

This proves partial propagation makes the implementation as described
valid. The final result, the product at the highest level L = 0, is correct,
irrespective of the method of carry propagation, full or partial: although the
assembled products at levels L = i, 1 < i ≤ l, are likely to have different values
when comparing full and partial propagation of carries, the final result z = x y
at the top level L = 0 is always the same.

Step 2: redistribution for the local sequential Karatsuba’s
After all level-l blocks are generated through the above addition process, a
redistribution of data is needed to have processors compute all level-l products
zi1i2...il = xi1i2...il ∗ yi1i2...il applying sequential, recursive Karatsuba’s. This
implies constructing global blocks of size αp + 1 (an extra digit for a possible
overflow carry included), destined for a single processor, from the local blocks
of size α, each of them owned by a different processor (the overflow carry being
positioned on processor 0).

There are several options for this redistribution. One option is to distribute
the (global) blocks cyclicly over the available processors. The picture on the
next page illustrates this for the redistribution of 9 level-2 blocks over 4 proces-
sors. A “c” denotes a possible carry, only 1 digit in size, usually much smaller
than the neighboring blocks in this picture, αp digits in size. Applying the
cyclic distribution is straightforward and maximal computational load balance
is guaranteed.

A second option for this redistribution is to apply a block-size of 3(αp+ 1),
i.e. 3 global blocks. Although processor 3 is idle during the execution of the
local sequential Karatsuba’s, the computational efficiency is the same for both
distributions: 3 cycles are needed to complete the 9 multiplications.

18

x00 c x01 c x02 c x10 c x11 c x12 c x20 c x21 c x22 c

0 1 2 3 0 0 1 2 3 0 0 1 2 3 0 0 1 2 3 0 0 1 2 3 0 0 1 2 3 0 0 1 2 3 0 0 1 2 3 0 0 1 2 3 0

↓ ↓
x00 x01 x02 x10 x11 x12 x20 x21 x22

0 1 2 3 0 1 2 3 0

cyclic distribution

x00 c x01 c x02 c x10 c x11 c x12 c x20 c x21 c x22 c

0 1 2 3 0 0 1 2 3 0 0 1 2 3 0 0 1 2 3 0 0 1 2 3 0 0 1 2 3 0 0 1 2 3 0 0 1 2 3 0 0 1 2 3 0

↓ ↓
x00 x01 x02 x10 x11 x12 x20 x21 x22

0 0 0 1 1 1 2 2 2

distribution in blocks

After completing the local sequential Karatsuba’s, the lower level products
must be combined into higher level products. Since assembling a product at
level k − 1 needs 3 level-k neighboring products, applying the cyclic distribu-
tion requires an immediate redistribution of data after the execution of the
local sequential Karatsuba’s, while applying the block distribution or the block
cyclic distribution with a proper block-size makes it possible to postpone this
redistribution: the assembling of the products can partly be performed locally.

Delaying the redistribution makes it possible to apply a larger block size β
in the final step of the parallel algorithm, assembling the higher level products
by parallel execution of additions and subtractions (see page 20). But applying
carry-handling in the last step in a similar way as described before, a larger
block size is hardly more efficient, if at all: on average only 1 (accumulated)
carry per block is processed. Of more importance is the amount of data to be
communicated and consequently the memory needed for the final step, if part
of the product assembling can be performed locally. For each level that the
redistribution of data can be postponed, this amount reduces by a factor of 3

2 ,
since instead of distributing 3 level-k products of size nk, only 1 product at level
k − 1 of size nk−1 = 2nk needs to be distributed.

It seems to make sense to try and find the optimal distribution here. But for
determining the lowest level (l), and consequently the number of multiplications
at this stage (3l), the parameter Emin (the minimal required computational
efficiency for the local sequential Karatsuba’s) is used, as described on page
12. The algorithm used is such, that l is always the lowest value to meet the
required efficiency. This means, that distributing the multiplications in blocks
of size 3k always leads to a lower computational load balance in the next step.
If one wishes to allow that, the parameter Emin can simply be set to a lower
value, thus reducing the memory needed in the previous step and communication
costs in the current step by a factor (3

2)k, as well as reducing the number of
multiplications by a factor of 3k (which makes local assembling of products no
longer relevant, since there are not enough products to distribute). There is no
need to search for another than the cyclic distribution, and the parameter Emin
is all that is needed to exchange computational efficiency in the next step for

19

memory efficiency in the previous and communication costs in the current step,
while at the same time optimizing memory and communication costs in the next
step becomes irrelevant, the number of products to distribute being too small.

Referring to the example given: the computational efficiency for computing
the sequential Karatsuba’s in the next step is equal to E2 = 9

3∗4 = 0.75. But
if E2 meets the required efficiency Emin, then so would E1 = 3

1∗4 = 0.75.
In other words, the lowest level l would have been 1, not 2, the number of
multiplications to distribute 3 instead of 9: the given example would not occur
and a distribution in blocks is no longer relevant.

As a consequence, the cyclic distribution will always be applied.

Step 3: execution of the local sequential Karatsuba’s
As discussed in section 1, a parameter n Cs is used to determine when to switch
from the sequential Karatsuba to the sequential classical algorithm. To make
sure the global blocks that serve as input for the local sequential Karatsuba’s
can be repeatedly split into half until this limit size n Cs is reached, the size
of these blocks is adjusted to make them contain the required powers of 2. Let
p be the number of available processors, α the block-size, c = 1 if overflow
carries occurred, c = 0 if not, and n Cs the limit size for switching to the
classical algorithm. Then the adjusted size of the global blocks is equal to
n Ks = dαp+c

2h
e ∗ 2h with h = dlog2

αp+c
n Cs e the required powers of 2.

The level-l products zi1i2...il = xi1i2...il ∗ yi1i2...il are computed using the
sequential recursive Karatsuba algorithm as described in section 1.3 on page 7.
The size of each of the products is equal to 2(αp + 1), filled up with zeroes up
to size 2n Ks.

Step 4: redistribution for the parallel assembling
After the execution of the local sequential Karatsuba’s, 3l products zi1i2...il are
waiting to be redistributed for the assembling of the higher level products by
parallel execution of additions and subtractions.

z

0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2

− 0 1 2 0 1 2 0 1 2 0 1 2

− 0 1 2 0 1 2 0 1 2 0 1 2

+ 0 1 2 0 1 2 0 1 2 0 1 2

z0 z1 z2

0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2

− 0 1 2 0 1 2 − 0 1 2 0 1 2 − 0 1 2 0 1 2

− 0 1 2 0 1 2 − 0 1 2 0 1 2 − 0 1 2 0 1 2

+ 0 1 2 0 1 2 + 0 1 2 0 1 2 + 0 1 2 0 1 2

distribution with p = 3

The structure of the assembling process for l = 2 is illustrated above, again
applying the block-cyclic distribution in order to avoid communication in be-

20

tween the levels (see also section 2.2 on page 12). The numbers denote the
processors, here p = 3.

As is clear from this example, all processors are owners of the correct
blocks, and the assembling can be done up to the top level L = 0 without
communication. To make the above structure possible and to guarantee a
correct execution of additions and subtractions in the next step, one must
realize that the problem has become asymmetric due to the overflow carries that
have emerged in the first step of the algorithms (the additions ‘downwards’).
The products computed in the previous step have gained two extra digits due
to these overflow carries, and in order to guarantee the correct multiplication
factors rm and r2m (see section 1.2.1) are applied, the following procedure
holds for determining the block size β and the content of each of the blocks.

1 Split all level-l products (of size 2αp+ 2) into a lower part of size αp and an
upper part of size αp+ 2
2 Make the size of one global block a multiple of p: n Kp = dαp+2

p e ∗ p
3 Compute the block size: β = n Kp

p

4 Fill the odd global blocks (of size βp) with the first αp digits (digit 0 through
αp− 1) of the products; add zeroes to fill up
5 Fill the even global blocks (of size βp) with digits αp through 2αp+ 1 of the
products; add zeroes to fill up

The blocks are redistributed applying the block-cyclic distribution with block
size β. The last 2 digits (and possible trailing zeroes) of the even global blocks
are denoted overflow-blocks and are processed in the final stage of the algo-
rithm: generating the output from the local arrays (see the last step 5.2 of the
algorithm).

The used data structure for storing the products in the last step is
similar to the one applied in the first step: a local array Zl is used, and an
array CZ to store the carries. Again a set of Master Indices (MI) is used
to determine which blocks make up a product at a certain level. Because
each number (product) is now made up of twice as many blocks, this ar-
ray MI must be generated again, using an algorithm analogous to the one
given before (in the first step of the algorithm), only the input factor f = 2 here.

Generation of Master Indices MI: start with the number 0 and 1, and
compute the first offset d = 2 ∗ 30. Then copy what you already have, adding
this offset d: 0, 1, 2, 3. Compute the next offset d = 2 ∗ 31 and again copy what
you already have, now adding the newly computed offset: 0, 1, 3, 4, 6, 7, 8, 9.
Proceed until the last offset 2 ∗ 3l−1. The size of this array is 2l+1. If l = 4, the
array MI contains the numbers: 0, 1, 3, 4, 6, 7, 8, 9, 18, 19, 20, 21, 24, 25,
26, 27, 54, 55, 56, 57, 60, 61, 62, 63, 72, 73, 74, 75, 78, 79, 80, 81. They refer
to the blocks that make up a product generated at level k. The ‘holes’ in this
array are the exact spots of the products that become irrelevant in the process
(and refer to all blocks containing one or more 2’s in their upper index).

Step 5.1: parallel assembling of the higher level products
To explain the procedure, take as example l = 3. Denote the lower, middle, and
upper part of a product z (of size 4nz) zl (size nz), zm (size 2nz), and zu (size
nz) respectively.

21

To assemble the product z00 at level 2, z00m = z00m −z000−z001 +z002 must be
computed, each of these terms containing two blocks; beforehand z000 is equiv-
alent with z00l and z001 with z00u ; after this computation the original products
z000 and z001 are destroyed, whereas the product z002 has become irrelevant for
further calculations. The product z00 is now made up of the blocks z00l , z00m ,
and z00u . In a similar way the products z01, . . . , z22 are assembled, 9 products in
total at level 2, so there are 9 primary additions/subtractions to be calculated,
each of them consisting of 2 block-additions.

To compute the level-1 product z0, z0m = z0m − z00 − z01 + z02 must be
computed; the product z0 is then made up of the blocks z0l , z0m, and z0u. The
products z1 and z2 are produced likewise, 3 products in total for this level, or
3 primary additions/subtractions each consisting of 4 block-additions.

The final result is obtained by zm = zm− z0− z1 + z2: 1 primary addition/-
subtraction consisting of 8 block-additions.

The addition/subtraction process is illustrated here. The logical view (for
l = 2) is shown first, the data structure of array Zl is given on the next page
(for l = 3).

z

z0l z0u z1l z1u
− z0l z0u
− z1l z1u
+ z2l z2u

z0 z1 z2

z00l z00u z01l z01u z10l z10u z11l z11u z20l z20u z21l z21u
− z00l z00u − z10l z10u − z20l z20u
− z01l z01u − z11l z11u − z21l z21u
+ z02l z02u + z12l z12u + z22l z22u

product generation for l = 2

In general, there are 3k primary additions/subtractions for assembling prod-
ucts at level k, each of them requiring 2l−k block additions. Each level up, the
first 1

4 of the final product that is generated, becomes a factor 2 larger. This
means, the addition/subtractions start at block 2l−k−1 plus some offset d, to
account for the products containing a 2 in their index, that become obsolete in
the procedure of assembling higher level products.

Processing of carries is postponed until the final product is produced. The
procedure is the same as described before in the first step of the algorithm on
page 16, the only difference being that a (accumulated) carry can be negative
here (in fact a borrow).

The following algorithm executes the assembling of products, starting at
level L = l − 1 up to the top level L = 0.

22

zl zl

z0l z0u
z00l z00u z01l z01u z02l z02u

z000l z000u z001l z001u z002l z002u z010l z010u z011l z011u z012l z012u z020l z020u z021l z021u z022l z022u

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

zu zu

z1l z1u
z10l z10u z11l z11u z12l z12u

z100l z100u z101l z101u z102l z102u z110l z110u z111l z111u z112l z112u z120l z120u z121l z121u z122l z122u

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

z2l z2u
z20l z20u z21l z21u z22l z22u

z200l z200u z201l z201u z202l z202u z210l z210u z211l z211u z212l z212u z220l z220u z221l z221u z222l z222u

36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53

array Zl for l = 3

Input
Zl[]=array containing the lowest level product blocks (of size β)
CZ[]=array containing the carries; initially set to zero, can be positive and negative
MI[]=array of Master Indices
Output
Zl[]=updated array of products
CZ[]=updated array of carries
Algorithm
01 For k = l − 1 to 0 do
02 Zlsav[·] = Zl[·]; (make a copy of array Zl level k)
03 CZsav[·] = CZ[·]; (make a copy of array CZ level k)
04 npa := 3k; (number of primary additions at level k)
05 nba := 2l−k; (number of block additions per primary at level k)
06 For i = 0 to npa− 1 do
07 d := i ∗ 2 ∗ 3l−k;
08 For j = 0 to nba− 1 do
09 i0 = MI[2l−k−1 + j] + d;
10 i1 = MI[j] + d;
11 i2 = MI[j] + 2 ∗ 3l−k−1 + d;
12 i3 = MI[j] + 2 ∗ 2 ∗ 3l−k−1 + d;
13 Zl[i0] := Zlsav[i0]	 Zlsav[i1]	 Zlsav[i2]⊕ Zlsav[i3];
14 CZ[i0] := CZsav[i0]− CZsav[i1]− CZsav[i2] + CZsav[i3] + carry;
Note 1: in the process, Zl and CZ are destroyed, hence the copy in lines 02 and 03
Note 2: the indices i0, i1, i2 and i3 are block-indices: they refer to blocks
Note 3: the 	 and ⊕ in line 13 refer to a block
Note 4: the carry in line 14 results from the block-operations in line 13

23

Step 5.2: write the final result to output
In the final step of the algorithm, the result z = x y is produced and written
to output. The product is constructed from 2l+1 blocks in each of the local
arrays Zl; the block numbers are determined by the Master Indices in MI. All
blocks that make up the final result are sent to processor 0, and before writing
the global blocks to output, some postprocessing is needed with respect to the
overflow-blocks (see step 3.1 of the algorithm) and a possible carry from the
previous (global) block. The carries originate from processor p − 1 and are
already owned by processor 0 (see the carry handling on page 16).

This postprocessing proceeds as follows: an auxiliary array is filled with
digits αp through βp−1 from a global block of size βp. This block then contains
the 2 overflow-digits generated in the first part of the algorithm, possibly a few
additional zeroes (if an odd block is processed, it only contains zeroes). This
overflow block is added to the next block. Possible carries are processed in the
same procedure. After this procedure, the global block is written to output.

2.4 Communication costs

There are 4 major communication steps, 2 in the sequential part of the algo-
rithm and 2 in the parallel part. The two communication steps in the sequential
part are: (i) distributing the input over the available processors and (ii) writing
the final result to output. The ones in the parallel part are: (i) redistributing
the result of the parallel additions as preparation for execution of the local
sequential Karatsuba’s and (ii) redistributing the locally calculated products as
preparation for the parallel assembling of the higher level products. There are 2
minor communication steps for processing the carries at the end of steps 1 and 5.

Sequential parts of the algorithm: since all data words come from or go
to the same processor 0, the number of words this processor sends in the
first sequential part and receives in the second sequential part is equal to 2n
(assuming each digit is one word): n words for distributing x and the same
amount for distributing y, about 2n words for distributing z = x y (in fact
slightly more than 2n due to some extra trailing zeroes added in the process of
the algorithm). The first sequential part requires one synchronization, in the
last sequential part synchronization takes place 2l+1p times (at level k = l − 1
the product is made up of 2l−k+1 = 4 global blocks of size βp, at the top level
L = 0 the product z = x y is made up of 2l+1 blocks of size βp). To estimate
the lowest level l, assume the number of products at level l is about equal to 3p
to reach sufficient computational efficiency for the local sequential Karatsuba’s.
Then l = dlog3 pe + 1. The communication costs for the sequential parts of
the algorithm total Tc,seq = 4ng + (2dlog3 pe+2p + 1)lsync, where g determines
the communication cost per data word, and lsync the global synchronization
cost, both machine-dependent parameters2. Ignoring the ceiling-function, one
gets Tc,seq > 4ng + (22plog32p + 1)lsync ≈ 4ng + (4p1.63 + 1)lsync. For large p,
synchronization costs during output can therefore be high.

Parallel parts of the algorithm: in the first major redistribution each processor
sends and receives 2 ∗ 3l blocks of size α = n

2lp
, in total 2 ∗ 3l ∗ n

2lp
= 2n

p (3
2)l

words. In the second redistribution each processor sends and receives 2 ∗ 3l

24

blocks of size β ≈ α: another 2n
p (3

2)l words. Both redistributions require one
synchronization. For handling carries, the amount of data communicated is
equal to 2n

αp (3
2)l (negligible if α � 1), synchronization takes place 2 ∗ 2 = 4

times on average. Assuming α � 1 and estimating l = dlog3 pe + 1, one
obtains for the total communication costs for the parallel parts of the algorithm
Tc,par = 4n

p (3
2)dlog3 pe+1g+ 6lsync <

4n
p (3

2)2(3
2)log3 pg+ 6lsync = 9n

plog3 2 g+ 6lsync.

These communication costs are therefore essentially linear in n.

25

3 Results

3.1 Verification tests

In order to show the correctness of the implementation, the produced result
z = x ∗ y has been checked for several values of the input size n (1 ≤ n ≤ 106),
and the number of processors p used (1 ≤ p ≤ 244).

For this purpose, x, y, and z were imported in Mathematica and the results
have been verified using only standard Mathematica-functions.

For al other tests (tuning parameters and determining parallel speedup), the
correctness of the implementation is assumed without further verification. The
radix is set to r = 232, the largest possible value for using the built-in C -product
function (the implementation is found to work correctly for other values of r as
well, but smaller radices are less efficient).

3.2 Tuning parameters

The critical value to switch to the classical multiplication In section
1.2.2 the theoretical value for switching to the classical multiplication algorithm
is found to be nCs = 8: as soon as the size n′ of x and y after consecutive
splits becomes smaller than or equal to this value (n′ ≤ nCs), the product is
computed using the classical algorithm.

A sample of 40 different values for n, 100000 ≤ n < 200000 is used to
determine the optimal value for nCs. The results are shown in figure 1.

Figure 1: Test results (dashed lines) and theoretical values (dotted green line)

The figure shows a flat behavior in the range 25-35. This can be explained
by the fact that theoretical values (the dotted green line) show the same flat
behavior. The theoretical values do not refer to run times, but are based on
the total number of operations, as derived in section 1.2.2. The only purpose
here is to show the shape of the function. It is scaled such, that test values and
theoretical values can easily be compared.

Based on these results, nCs = 30 is picked as the critical value for switching
to the classical multiplication.

26

The computational efficiency in the sequential Karatsuba’s The ef-
ficiency reached when executing the local sequential Karatsuba’s is the main
factor for the total efficiency, and thus for the parallel speedup. It is therefore
important to tune the parameters that determine this efficiency accurately.

As outlined in section 2.3 (page 12), two parameters play a role here: Emin
is the minimal required efficiency, le is the maximum number of extra splits that
are allowed to reach this efficiency. In the test we set no limit to the number of
extra splits allowed, so the required minimal efficiency was always reached. The
test is performed using a sample of 3 values of n (1× 107, 2× 107, and 3× 107)
for p = 24, p = 64, and p = 240.

Figure 2: Test results for different values of Emin and p

Efficiencies E for Emin = 0.95

p E (le = 3) E (le = 4)
1 1 1
4 0.964 0.964

10 0.972 0.972
24 0.920 0.980
27 1 1
32 0.990 0.990
48 0.949 0.990
64 0.949 0.976
81 1 1
96 0.990 0.990

240 0.911 0.976
243 1 1
320 0.976 0.976
480 0.976 0.976
960 0.976 0.976

Mean 0.972 0.984

For each split, the amount of memory
allocated grows by a factor 3

2 . It is there-
fore possible, that a larger minimal efficiency
indeed leads to a better load balance when
performing the local sequential Karatsuba’s,
but gives equal or worse results on the over-
all performance. This may be caused by
increased memory access time, or increased
communication costs. If the number of pro-
cessors is relatively small, and the size n of
x and y relatively large, too many splits may
even cause an abort due to insufficient mem-
ory. From the figure above, an efficiency be-
tween 0.95 and 0.98 seems optimal.

To better judge the best values for the
parameters Emin and le, the efficiencies that
will be actually reached, are computed and
given in the table on the right, assuming
Emin = 0.95. The efficiencies are calculated
for le = 3 and le = 4, for values of p that
are relevant for subsequent tests to deter-
mine the parallel speedup.

27

Based on both test results and computed efficiencies, the parameters that
determine the efficiency for the execution of the local sequential Karatsuba’s
are set to Emin = 0.95 and le = 4. This guarantees almost optimal efficiencies
at a minimum number of splits.

3.3 Test results

For running programs on the Cartesius parallel computer at the SurfSARA
computer center in Amsterdam, two types of batch nodes are available: the
so-called thin nodes and fat nodes. The thin nodes have 24 cores and 64GB
of memory (per node), whereas the fat nodes have 32 cores and 256 GB of
memory (per node). The program is mainly tested on thin nodes (for test
results on fat nodes: see section 3.7), for values of p that can be found in the
table on page 27. These values are selected such, that a whole number of nodes
is reserved. There are two reasons for this approach: (i) Cartesius always gives
a job exclusive access to the allocated nodes, so actually using only part of a
node is very cost-inefficient (the job is charged for its run time, i.e. wall-clock
time, times the number of processors in the node, irrespective of the number
of cores actually used), and (ii) using a whole number of nodes might give a
better overall performance. Exceptions are p = 27, p = 81, and p = 243, which
are selected because they yield a computational efficiency E = 1 in the local
sequential Karatsuba’s. Other exceptions are p = 4 and p = 10, which are
added to have two tests with a small number of processors. One test run for
p = 1 is required for determining the parallel speedup for the chosen p.

The numbers x and y to be multiplied are randomly generated in all tests.

3.3.1 Run times

Figure 3 shows the run times log10 T (T in milliseconds) for values 1 ≤ p ≤ 240,
105 ≤ n ≤ 107. For each p, 10 different problem sizes n are shown. It gives an
impression of the processor time this parallel implementation of the Karatsuba
algorithm needs to multiply numbers of this size, represented in radix r = 232.

3.3.2 Parallel speedup

Let Tp be the total executing time using p processors and Tseq and Tpar be the
sequential and parallel execution time respectively: T = Tseq + Tpar. Suppose
that r1 is the relative sequential execution time (the sequential fraction) and
r2 = 1− r1 the relative parallel execution time (the parallel fraction). The total
execution time Tp using p processors now becomes (T1 is the overall execution
time using one processor):

Tp = Tseq + Tpar = r1T1 +
1− r1
p

T1 =
r1(p− 1) + 1

p
T1

By Amdahl’s law1, the parallel speedup Sp is then defined as:

Sp =
T1
Tp

=
p

r1(p− 1) + 1

28

Figure 3: Run times for different p and n

The two sequential communication steps (for distributing the input x and y
and collecting the output z) are not taken into account in the calculations for
the parallel speedup. For an analysis of this communication, see section 3.5.

In figure 4, the parallel speedups are given for the different n used in the
test. In general the speedups reached are satisfactory, provided the number
of processors p matches the size of the numbers n. The 3 smallest numbers
n = 1 × 105, n = 2 × 105, and n = 3 × 105 (represented in light–red, dark–
red and light–brown respectively) are too small to obtain good parallel speedup
when p = 96; compared to p = 48, the parallel speedup is even less, implying
that using twice as much resources slows down the process instead of speeding

29

Figure 4: Increasing N: light/dark Red, –Brown, –Orange, –Green, –Blue

it up! For n = 1 × 105, doubling the resources from p = 24 to p = 48 hardly
affects the run time.

For 106 ≤ n ≤ 107 reasonable to good parallel speedups are reached for all
p, with one exception: for n = 1 × 106, the process is slowed down by about a
factor 2 when resources are more than doubled, from p = 96 to p = 240.

3.3.3 Parallel efficiency

To better compare the efficiency of the use of the available resources, the parallel
efficiency (relative parallel speedup), defined as Epar =

Sp

p , is shown in the
charts in figure 5. An optimal use of resources is obtained when Epar = 1.
For some of the smaller values for n, the poor use of resources for p = 96 and
p = 240 becomes apparent immediately.

Figure 5: Parallel efficiency

3.3.4 Comparison with results from the literature

In 1996 Cesari and Maeder tested several Karatsuba parallel implementations3,
the method depending on the number of processors p used. For p a power of 2,
the results were very poor (the parallel efficiency Epar < 0.4 in all tests). Their
best performing algorithm, with p a power of 3, is used here to compare the
results; test results were reported for numbers of size 210 ≤ n ≤ 220, with n a
power of 2. It is worth noting, that the implementation as described in section
2.3 principally has no restrictions with respect to p and n; it is therefore more
generally applicable.

30

In tables 1 and 2 the results Cesari and Maeder published, are compared
with the results reported in sections 3.3.1 and 3.3.3. Cesari and Maeder tested
their implementation on an Intel Paragon with 96 processors, type 50MHz Intel
860. Of course absolute run times cannot be compared with Cartesius’ 2.4GHz
Intel Xeon processors, but it is interesting to compare the parallel efficiencies
for the different values for p and n. These values do not exactly match, but
comparison is meaningful for p and n about the same values.

Absolute run time T in seconds Parallel efficiency Epar
n p = 1 p = 9 p = 27 p = 81 p = 9 p = 27 p = 81

65536 100 11.4 4.04 1.61 0.975 0.917 0.767
131072 300 33.9 11.8 4.49 0.983 0.942 0.825
262144 906 101 35.1 12.9 0.997 0.956 0.867
524288 2702 304 105 38.5 0.988 0.953 0.866

1048576 8106 916 322 114 0.983 0.932 0.878

Table 1: Cesari & Maeder 1996, Intel Paragon 96 processors (50MHz Intel 860)

Absolute run time T in seconds Parallel efficiency Epar
n p = 1 p = 10 p = 24 p = 96 p = 10 p = 24 p = 96

100000 1.345 0.145 0.066 0.137 0.926 0.855 0.102
200000 4.015 0.428 0.189 0.184 0.937 0.883 0.227
300000 7.619 0.810 0.352 0.219 0.940 0.903 0.363
500000 16.929 1.876 0.796 0.285 0.902 0.887 0.619

1000000 50.471 5.595 2.352 0.734 0.902 0.894 0.716

Table 2: 2014, Cartesius 12960 cores (2.4GHz Intel Xeon)

In general, Cesari & Maeder reach parallel efficiencies that are slightly better.
For n ≤ 3×105 however, Cesari & Maeder obtain much better parallel efficiencies
for p = 81 compared to p = 96. The poor results for p = 96 will be analyzed in
more detail in the next section.

3.4 Analysis of the stages in the algorithm

3.4.1 Parallel stages

To explain the behavior found in the previous section, an analysis is made of the
parallel stages in the implementation. Six different stages are distinguished in
this analysis: (i) processing additions and carries ‘downwards’ (to generate the
input for the local sequential Karatsuba’s), (ii) the first parallel redistribution of
data, (iii) the execution of the local sequential Karatsuba’s, (iv) the second par-
allel redistribution of data, (v) processing additions and subtractions ‘upwards’
to generate the higher-level products, and (vi) general overhead throughout all
stages, mainly (de-)registering variables and (de-)allocating memory. In figure
6, the results are shown as percentages with respect to the total parallel time
for selected values for p.

For 105 ≤ n ≤ 106, p ≤ 24, and for 106 ≤ n ≤ 107, p ≤ 96 the available
resources are almost exclusively used for executing the local sequential Karat-
suba’s. Since the computational efficiency reached in this stage is highly tuned

31

Figure 6: The parallel stages in the algorithm
Stages i through vi are shown from bottom to top in the colors light green,

light red, blue, dark red, dark green, and brown

(E ≥ 0.95), the parallel speedup is excellent as well. Note that the total pro-
cessor time used for these local sequential Karatsuba’s hardly depends on the
number of processors used, or to put it differently: the number of times the data
is split in the first step of the algorithm (the cut-off level l). In each split the

32

number of multiplications grows by a factor of 3, but the size of each of them
halves, which yields a processing time of 1

3 for each of the 3 smaller sized multi-
plications (the latter following from the complexity of the algorithm: O(nlog2 3),
see section 1.2.2).

For 105 ≤ n ≤ 106 and p = 96 relatively much time is consumed on over-
head tasks (the brown colored region), especially for the smaller n. This partly
explains the poor parallel efficiency. Relatively much time is spent on the first
stage of the algorithm as well, processing additions and carries ‘downwards’ (the
light green colored region). The level l only depends on p, not on n, so for larger
n there should be more work to do. Looking into the data more closely reveals,
that this is indeed the case for p ≤ 48, but the run times are quite irregular
for p = 96. It also reveals, that for p = 96 over 90% of the time in this stage
is spent on the additions, and only 10% on processing carries. Communication
costs therefore can not explain this peculiar behavior. Remarkable is also, that
the observed effect is much less in the fifth stage of the algorithm, processing ad-
ditions and carries ‘upwards’ (the dark green colored region). This means that
the small block-size cannot provide an explanation as well, since these block-
sizes are about equally small in the first and fifth stage (for the three smallest
n, α equals 9, 17 and 25 respectively; for β these values are 10, 18 and 26). An
explanation for the observed effect can not be found in the data.

For n = 1 × 106 and p = 240 the time spent on overhead tasks is quite
remarkable. For larger n it becomes smaller, which may be explained by cache-
effects. However, compared to n = 1×106 and p = 96, the difference is extreme:
overhead costs grow by more than a factor 23: from Tov = 0.052 to Tov = 1.203
seconds. A reason for this inefficiency is not found.

In all cases the communication costs are the same for the first and the second
redistribution, as expected.

In any case, the conclusion is justified, that it is important to accurately
tune the number size n and the number of processors p allocated for the job:
the size of the problem must match p.

3.4.2 Parallel accumulated versus sequential

The overall execution time of the implementation can be split into the execution
time for the two sequential (distribution) steps and the execution time for the
parallel part (accumulated run times for the 6 parallel stages). In the end, this
determines the total number of computing hours that are charged. The results
are shown in figure 7.

As a reminder: the first sequential distribution step concerns the distribution
of the input over the processors (the input can be from disk or be randomly
generated), the second sequential distribution concerns collecting the output
and write the result to disk (although the actual writing is not done, only the
collection of the output is performed).

In these sequential communication steps, all data is communicated from (first
distribution) and to (second distribution) processor 0, making them extremely
inefficient. However, these communication steps can be avoided, if applications
using this implementation deliver the data in block-cyclic format, and if the
output is delivered according to specifications set by these applications. For
the latter, the program must be adapted (especially with respect to the final
processing of overflow blocks, see section 2.3, page 24).

33

Figure 7: The sequential distributions and the parallel stages accumulated
The sequential distributions in light and dark red, the parallel part in blue

For larger p the communication costs in the sequential distributions can grow
excessively. It is not clear, why for some p the first sequential communication
step (colored light red) is extremely costly, whereas for other p the second se-
quential communication step (in dark red) may take extremely much time (the
amount of data to be communicated is the same, since the output z has twice

34

the size of the input x and y). In collecting the output, synchronization takes
place after each (global) block received, whereas in distributing the input syn-
chronization only takes place once, so one might expect the second distribution
to be more expensive, but clearly in general this is not the case.

The random number generator, a rather expensive function, cannot explain
the increase in the first sequential communication step, since there is no signifi-
cant increase in the first sequential communication for smaller p; moreover, the
same number of digits must be generated independent of p.

3.5 Analysis of the communication costs

In figure 8 the communication costs for 105 ≤ n ≤ 107 are plotted against
theoretical values, obtained by using results from the benchmark.

Figure 8: Communication costs test (blue) versus theoretical (green) values

The real communication costs are generally lower compared to theoretical
values based on the benchmark. This is due to differences in the way data
is communicated in this implementation and in the benchmark used: in the
benchmark small chunks (8 bytes) of data are put to determine the value for
g, while in this implementation much larger amounts of data are put before
synchronization takes place. This apparently positively influences (i.e. lowers)
the communication costs considerably. However, of more importance is the
linearity the figure shows: for each p the costs are more or less linear in n. This
is in accordance with the costs theoretically predicted in section 2.3.

There is a remarkable growth in theoretical costs for p > 24. This is caused
by an extreme increase in the benchmark values for g and lsync for larger p: for
p = 24 the benchmark returned g = 415.4 and lsync = 277229.3, for p = 48
these values jumped to g = 5056.9 and lsync = 2025071.8. The reason for this
sudden increase probably is the use of more than 1 node (a thin node has 24
cores).

35

3.6 Test Ultra Long Integers

To test the scalability of the implementation, an additional test is done for
108 ≤ n ≤ 109, p = 240. To avoid too much data is traveling through the
system at one time (and thus an insufficient memory condition), the program
is adapted by splitting up the communication into smaller chunks of data (for
smaller n this program change has no consequences, so the test results discussed
before also hold for the new version).

Figure 9: Run times versus theoretical values; N = 108 ⇒ Ttheory ≡ Ttest

In figure 9 the run times are compared with theoretical values, calculated
from the complexity of the algorithm (O(nlog2 3)). Test values almost perfectly
match theoretical values; the parallel efficiency can therefore be compared with
values observed in section 3.7 for n = 108 and p = 240 (thin nodes), which were
highly satisfactory.

In order to boost the performance, it is worth considering to replace the
local sequential Karatsuba’s by a (for long integers) faster convolution-based
algorithm. Run times can be estimated by making an assumption for the break-
even point (or threshold): n ≈ 104 is the value at which convolution-based
algorithms become more efficient compared to Karatsuba-like methods7.

In this test the local multiplications have size 390720 (n = 1×108), 1171920
(n = 3 × 108), 2343840 (n = 6 × 108), and 3906480 (n = 1 × 109) respec-
tively. Applying the complexity for the Karatsuba method (O(nlog2 3)) and
convolution-based algorithms (O(n log n log log n)), one obtains boost factors
5.40 (n = 1×108), 9.21 (n = 3×108), 12.95 (n = 6×108), and 16.69 (n = 1×109).

These factors are used to correct the run times for the third stage in the
algorithm; figure 10 shows the result after this correction. On the left the real
relative run times of the different stages, on the right the estimated relative
run times, assuming a convolution-based algorithm in the third stage of the
algorithm. As can be concluded from this figure, communication costs remain
relatively small.

The above observations raise the question: is it possible to parallelize
convolution-based algorithms efficiently this way? For generating lower level,
smaller-sized multiplications and recombining higher level multiplications from

36

Figure 10: Stage analysis (estimated times) using a convolution-based algorithm
On the left the Karatsuba, on the right a convolution-based algorithm

the lower level results, the Karatsuba method is applied, while the lower level
multiplications are locally computed using a convolution-based method.

Maximum parallel efficiencies

Epar Epar Epar
p (n = 109) (n = 1012) (n = 1015)
3 0.697 0.689 0.684
9 0.486 0.475 0.468

27 0.340 0.327 0.320
81 0.238 0.226 0.219

243 0.167 0.156 0.150
729 0.118 0.108 0.103

Combining both algorithms
as proposed above, affects the
parallel efficiency in the sense
that it becomes bounded. The
table on the right reveals, that
an efficient parallelization is
possible for small p only. It
shows the maximum possible
parallel efficiency quickly drops
when more processors are used
to do the job. This drop in par-
allel efficiency can be explained
as follows. Each split generates 3 new multiplications of half the size. For algo-
rithms faster than the Karatsuba algorithm this is adverse: each of the smaller
sized multiplications takes more than 1

3T , where T is the time to compute the
higher level product. The total computation time for the 3 lower level products
is therefore larger than the computation time for the higher level product. Each
subsequent split reduces the parallel efficiency further. In the table only powers
of 3 are used for p, in order to reduce the number of splits as much as possible
(for p a power of three the computational efficiency in the third stage is 1, as
explained in section 2.3 on page 12).

Clarification: for simplicity assume an algorithm with complexity linear in
n is used (instead of n log n log log n). Suppose the higher level (before the

37

split) takes T1 = t seconds. Then the lower level, using p processors, takes
Tp = 3

2p t seconds at best (so Tp > 3
2p t seconds). The parallel speedup is

Sp = T1

Tp
= t

3
2p t

= 2p
3 at best (so Sp <

2p
3). The parallel efficiency can not

exceed Epar =
Sp

p = 2
3 . Since a convolution based algorithm is a little bit

worse than linear, the disadvantage of splitting is a little less as well, hence the
value Epar ≈ 0.69 in the table. In general: let C(n) be the complexity of the
(convolution-based) algorithm replacing the Karatsuba algorithm in the third
stage of the algorithm. Let TC(n, l) be the time needed to compute the level-

l multiplications, TC(n, 0) = t. Then TC(n, l) = 3l
C(n

2l
)

C(n) t, and the maximum

parallel efficiency using p = 3l processors is Epar = TC(n,0)
TC(n,l) .

3.7 Comparison thin and fat nodes

To compare the performance and behavior of the thin nodes and the fat nodes
of the Cartesius system, tests were executed with n = 1 × 107, n = 3 × 107,
n = 6× 107, and n = 1× 108. Choosing larger values would consume too much
computing hours, since for determining the parallel speedup and efficiency, one
cost-inefficient job with p = 1 had to be run on both nodes (as noted before,
charged hours are based on the exclusive use of the whole node). The test is
executed for 11 values for p on the thin and 10 values for p on the fat nodes
(the configuration requesting 960 processors on fat nodes appeared not to be
available). The fat nodes might be needed for its larger memory when running
the program for large n; it is therefore useful to know the behavior of the fat
nodes when running this implementation.

Figure 11: Parallel efficiency thin (blue) and fat (red) nodes

38

The fat nodes consumed much more processor time for the same amount
of work, irrespective of the number of processors used. Apparently the larger
amount of memory available makes the fat nodes slower (not surprising because
accessing a larger memory takes more time), but the difference is quite large:
on average the fat nodes consumed about 28% more processor time for the same
amount of work.

In figure 11 the parallel efficiency is shown for the different configurations.
In general the results are quite satisfactory, with two exceptions: (i) for p = 81
and p = 243 there is a significant drop in the parallel efficiency (the drop is most
significant for the fat nodes), and (ii) for the smallest n = 1× 107, for p = 960
(thin nodes) and p = 480 (fat nodes) there is hardly an increase, or even a
decrease in parallel efficiency compared to the next lower p. The first exception
can be explained by the fact that p is not a multiple of the number of nodes
accessed, which apparently gives a significantly lower performance (in spite of
the fact that the computational efficiency in the local sequential Karatsuba’s
for these values of p is equal to 1). To explain the second exception, one can say
the number of processors used is too large for this relatively small n. A similar
behavior has been observed in section 3.3.

Figure 12: Communication costs thin nodes (blue) versus fat nodes (red)

The parallel efficiency (and thus the parallel speedup) is significantly less
for the fat nodes. This does not follow from their slower performance, since the
larger processor time used by the fat nodes also holds for p = 1. The lower
parallel efficiency is (partly) due to higher communication costs, as can be seen
in figure 12.

For larger p, communication costs for the fat nodes are generally higher; only
for p = 1 (irrelevant for determining the parallel efficiency) and p = 10 the thin
nodes turn out to be more expensive.

39

4 Discussion and Conclusion

4.1 Performance of the implementation

This parallel implementation of the Karatsuba multiplication algorithm has
shown nice results for parallel speedup, provided the problem size grows suf-
ficiently with the number of processors. From the stage analysis in the previous
section the conclusion is justified, that for 105 ≤ n ≤ 107 satisfactory parallel
speedups are obtained for all p satisfying n

p > 104.
How the algorithm behaves for smaller numbers and moderate values for p,

has not been part of the research: the main goal was to show the scalability and
efficiency of the implementation, also for large values for p (and as a consequence,
for larger n). However, it can be interesting to test the behavior for smaller val-
ues for p and n, since algorithms based on the Fast Fourier Transform (and their
parallel implementations) are more fit to deal with large number multiplication.
On the other hand, one may wonder if a data-distributed approach makes sense
for small(er)-sized problems: after splitting the input l times to generate the
lower level multiplications, the numbers to multiply become very small, and the
result comes closer to parallelizing the classical multiplication algorithm instead.
However, if one wishes to use the implementation for 104 ≤ n ≤ 105, p ≤ 24 is
likely to be a restriction to obtain good parallel speedup.

It turned out to be possible to set the minimal efficiency for the local se-
quential Karatsuba’s to a high level, and efficiencies larger than 0.95 were easily
reached. This is important, since a significant drop in performance showed up
for p a power of 3 (for these values for p the efficiency is always 1). The reason for
this drop is probably a consequence of the architecture of the Cartesius system
the implementation was tested on, and is not a consequence of the implementa-
tion itself. The high efficiencies reached in the local sequential Karatsuba’s was
the main factor for the satisfying parallel speedups in the tests.

Another factor that usually determines the parallel speedup, is the amount
of communication in the process. Overall communication costs in the parallel
part of the algorithm turned out to be very limited. The delayed processing of
carries certainly helped to limit communication as much as possible.

4.2 Parallelizing convolution based algorithms

This implementation can also be used to parallelize convolution based algo-
rithms, provided the number of processors is small. For p > 9 the maximum
parallel efficiency that can be reached drops quickly. This implies the scalability
of the implementation using convolution based algorithms is limited.

4.3 Suggestions for improvement

Two findings need further discussion: (i) communication problems that showed
up for n ≥ 3 × 108 (actually a scalability problem), and (ii) increasing costs
for the two sequential communication steps (distributing input and collecting
output).

Communication problems for large n When executing the multiplication
of numbers of size n ≈ 3 × 108 and larger, problems occurred in the com-

40

munication steps of the algorithm. In the first sequential and both parallel
communication steps, all data is distributed at one time, synchronizing only
once at the end of the step. This approach turned out to be a problem for large
numbers: apparently too much data traveled through the system in one time.

In fact this is a scalability issue, and the program is adapted in order to test
the multiplication of numbers up to n = 109: for large n the communication
is split into smaller chunks of data with synchronization after each block in
order to avoid memory problems. A parameter is used to make the splitting
up more flexible: the parameter determines the maximum amount of data that
is transmitted in each step. This splitting up increases communication costs
slightly, but only for large n (depending on the parameter).

However, a further improvement is probably needed if convolution based
algorithms are applied in the local multiplications (the third stage of the algo-
rithm). When applying these algorithms, the number of times the data is split
must be minimal in order to obtain a reasonable parallel efficiency: the number
of multiplications at the lowest level is equal to p (with p a power of 3), thus
each processor has exactly 1 multiplication to execute. The current splitting is
based on a larger number of multiplications to be executed by each processor,
so a different way of splitting the communication must be adapted: the β-sized
blocks must be split into smaller chunks (only for communication, the block-size
β need not be changed).

Communication costs for distributing input and collecting output
When the size n of the numbers x and y and the number of processors p be-
come large, costs for the sequential communication steps can grow to extreme
proportions. All data goes from and to one single processor (only processor 0
has access to the file system to read input and write output), which makes these
sequential communication steps very cost-inefficient.

Integrating this implementation with applications that use it can avoid these
expensive communication steps: the input should be delivered in the desired
block-cyclic distribution, the output should be delivered according to specifica-
tions set by the application. One might think of implementing a few standard
output distributions, e.g. the block, the cyclic, and the block-cyclic distribution.

To accomplish this, the post-processing of overflow blocks (as described in
section 2.3, page 24) must be integrated in a final redistribution step to deliver
the data as specified by the application. In the current implementation this
post-processing is part of the collection of all output.

4.4 Practical applicability

This implementation can be used for the multiplication of medium-sized inte-
gers (105 < n < 107). For the multiplication of ultra long integers (n ≥ 109), a
convolution based algorithm should be used for executing the local multiplica-
tions, but usage of this implementation only makes sense for small values for p
because of the limited parallel efficiency for larger p (consult the table in section
3.6). For the multiplication of shorter integers (n < 105) the implementation is
likely to be efficient for p ≤ 24 only. However, using numbers this size almost
comes down to parallelizing the classical multiplication.

41

5 References

1. G. M. Amdahl, “Validity of the single-processor approach to achieving
large-scale computing capability”, in Proceedings of AFIPS Conference,
Volume 30 (1967) pp. 483–485.

2. R. H. Bisseling, Parallel Scientific Computation, A structured approach
using BSP and MPI, Oxford University Press (2004).

3. G. Cesari and R. Maeder, “Performance Analysis of the Parallel Karatsuba
Multiplication Algorithm for Distributed Memory Architectures”, Journal
of Symbolic Computation, Volume 21, Issue 4-6 (1996) pp. 467–473.

4. Z. Chen and P. Schaumont, “A Parallel Implementation of Montgomery
Multiplication on Multicore Systems: Algorithm, Analysis, and Proto-
type”, IEEE Transactions on Computers, Volume 60, Issue 12 (2011) pp.
1692–1703.

5. T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to
algorithms, 3rd edition, The MIT Press (1998).

6. B. S. Fagin, “Large Integer Multiplication on Hypercubes“, Journal of
Parallel and Distributed Computing, Volume 14, Issue 4 (1994) pp. 426–
430.

7. gmplib.org, http://gmplib.org/devel/MUL FFT THRESHOLD.html.

8. T. Jebelean, “Using the Parallel Karatsuba Algorithm for Long Integer
Multiplication and Division“, Lecture Notes in Computer Science, Volume
1300 (1997) pp. 1169–1172.

9. A. Karatsuba and Y. Ofman, “Multiplication of Multiplace Numbers on
Automata”, Doklady Akad. Nauk SSSR, Volume 145, Issue 2 (1962) pp.
293–294. Translation in Soviet Physics-Doklady, Volume 7, Issue 7 (1963)
pp. 595–596.

10. A. Karatsuba, “The complexity of Computations”, Proceedings of the
Steklov Institute of Mathematics, Volume 211 (1995) pp. 169–183. Trans-
lated from Trudy Matematicheskogo Instituta imeni V. A. Steklova, Vol-
ume 211 (1995) pp. 186–202.

11. D. E. Knuth, The Art of Computer Programming: Seminumerical Algo-
rithms, Volume 2, 3rd edition, Addison-Wesley, Reading, Mass. (1997).

12. H. J. Nussbaumer, Fast Fourier Transform and Convolution Algorithms,
Springer-Verlag Berlin Heidelberg New York (1981).

13. A. Schönhage and V. Strassen, “Schnelle Multiplikation großer Zahlen”,
Computing, Volume 7, Issue 3/4 (1971) pp. 281–292.

14. D. Zuras, “On Squaring and Multiplying Large Integers”, in Proceedings
of the 11th Symposium on Computer Arithmetic, IEEE Computer Society
Press, Los Alamitos, California (1993) pp. 260–271.

15. D. Zuras, “More On Squaring and Multiplying Large Integers”, IEEE
Transactions on Computers, Volume 43, Issue 8 (1994) pp. 899–908.

42

