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1 Introduction

Cluster algebras, [...] are constructively defined commutative rings equipped with
a distinguished set of generators (cluster variables) grouped into overlapping sub-
sets (clusters) of the same finite cardinality (the rank of an algebra in question).
[...] both generators and algebraic relations among them are not given from the
outset but are produced by an iterative process of seed mutations.

This is how Zelevinsky starts his article [1], explaining what cluster algebras
are. After explaining how these seed mutations work, he writes the following:

One of its main consequences - and one of the main reasons for introducing
it - is the Laurent phenomenon: every cluster variable, which a priori is just a
rational function in the elements of a given cluster, is in fact a Laurent poly-
nomial with integer coefficients. [...] The cluster algebra machinery provides a
unified explanation of several previously known phenomena of this kind. One
example is the Somos-5 sequence discovered some years ago by M. Somos: its
first five terms are equal to 1, and the rest are given by the recurrence relation
amam−5 = am−1am−4 +am−2am−3. The fact that all terms of this sequence are
integers can be deduced from the Laurent phenomenon for cluster algebras.

Reading this gave more than enough incentive to study these cluster algebras
by writing a thesis on this subject. To write this thesis, we set out to find an
answer for the following question:

Can we find a proof for the Laurent phenomenon?

To present our findings, we first look at a specific case of cluster algebras of
rank 2. After which we look at the general definition of cluster algebras, for this
we first define an ambient field for our setting, then we introduce the definitions
needed to come to a general definition of a cluster algebra, which we also clarify
with examples, and finally we conclude the thesis with a proof of the Laurent
phenomenon.
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2 Cluster algebras of rank two

In this section, we will look at cluster algebras of rank two. In a cluster algebra
of rank two, we are dealing with clusters containing two cluster variables. Since
these clusters must be overlapping subsets, it follows that we have a chain of
cluster variables . . . , ym−1, ym, ym+1, . . . , for m ∈ Z, such that every consecutive
pair of cluster variables in this chain forms a cluster. These cluster variables are
connected via algebraic relations, which we can see in the following definition
of a specific case of cluster algebras of rank two: (This definition follows the
definition Zelevinsky gives in [1])

Definition 2.1: Given a pair of positive integers (b, c), we will denote by A(b, c)
a cluster algebra of rank two, for which the cluster variables satisfy the following
algebraic relation:

ym−1ym+1 =

{
ybm + 1, if m is even,

ycm + 1, if m is odd.
(2.1)

Note that, when we iterate these exchange relations, we find that we can ex-
press each cluster variable in A(b, c) as a rational function of any two consecutive
cluster variables ym and ym+1. Therefore, in particular, A(b, c) is the subring
of the field of rational functions Q[y1, y2], generated by all cluster variables ym.

We will now illustrate this definition with a few examples.

Example 2.1: First of all, lets have a look at the cluster variables of A(1, 1).
We start with cluster variables y1 and y2, iterating the exchange relations in
equation 2.1, we get:

y1y3 = y2 + 1 → y3 =
y2 + 1

y1
,

y2y4 = y3 + 1

=
y2 + 1

y1
+ 1

=
y1 + y2 + 1

y1

→ y4 =
y1 + y2 + 1

y1y2
,

y3y5 = y4 + 1

=
y1 + y2 + 1

y1y2
+ 1

=
y1 + y2 + y1y2 + 1

y1y2

=
y2 + 1

y1
· y1 + 1

y2

→ y5 =
y1 + 1

y2
,
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y4y6 = y5 + 1

=
y1 + 1

y2
+ 1

=
y1 + y2 + 1

y2

→ y6 = y1,

y5y7 = y6 + 1

= y1 + 1
→ y7 = y2.

Clearly the chain of cluster variables forms in this case a loop, hence A(1, 1)
contains a finite number of different cluster variables. In this example you can
already notice the Laurent phenomenon: All cluster variables can be expressed
as Laurent polynomials in y1 and y2.

Example 2.2: Next, we look at the cluster variables of A(2, 2). Again we
start with the cluster variables y1 and y2, and now, after iterating the exchange
relations in equation 2.1 a two times, we get:

y1y3 = y22 + 1 → y3 =
y22 + 1

y1
,

y2y4 = y23 + 1

=
(y2 + 1)2

y21
+ 1

=
y42 + 2y22 + y21 + 1

y21

→ y4 =
y42 + 2y22 + y21 + 1

y21y2
.

Iterating a third time, we already get a quite complicated polynomial:

y3y5 = y24 + 1

=

(
y42 + 2y22 + y21 + 1

y21y2

)2

+ 1

=
y82 + 4y62 + 2y21y

4
2 + 6y42 + y41y

2
2 + 4y21y

2
2 + 4y22 + y41 + 2y21 + 1

y41y
2
2

=
y22 + 1

y1
· y

6
2 + 3y42 + 2y21y

2
2 + 3y22 + y41 + 2y21 + 1

y31y
2
2

.

However y5 is still a Laurent polynomial in y1 and y2 since the first fraction in
the equation above is equal to y3, so we have:

y5 =
y62 + 3y42 + 2y21y

2
2 + 3y22 + y41 + 2y21 + 1

y31y
2
2

.

The following two iterations result in even larger polynomials:

y6 =
y82 + 4y62 + 3y21y

4
2 + 6y42 + 2y41y

2
2 + 6y21y

2
2 + 4y22 + y61 + 3y41 + 3y21 + 1

y41y
3
2

,
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y7 =
1

y51y
4
2

(
y102 + 5y82 + 4y21y

6
2 + 10y62 + 3y41y

4
2 + 12y21y

4
2 + 10y42+

2y61y
2
2 + 9y41y

2
2 + 12y21y

2
2 + 5y22 + y81 + 4y61 + 6y41 + 4y21 + 1

)
.

And in the following iterations the rational polynomial on the left hand side
of the exchange relation ym−1ym+1 = y2m + 1 is always of a higher degree then
the divisor ym−1. Hence, its reasonable to assume we have an infinite chain of
cluster variables. To prove this however, we need to prove that the coefficients
of the cluster variables are positive, which is far from trivial and outside the
scope of this thesis.

As one can see, the cluster variables displayed in the previous two examples
are indeed Laurent polynomials. In the following lemma we will prove that for
any pair of positive integers b and c, the Laurent phenomenon holds for the
cluster algebra A(b, c).

Lemma 2.1: Given a pair of positive integers (b, c), any cluster variable in the
cluster algebra A(b, c) can be expressed as a Laurent polynomial in the cluster
variables ym−1 and ym, for any m ∈ Z.

Proof. To prove this lemma, we first show that any cluster variable can be
written as a polynomial in the previous or next four cluster variables. We show
this for yk, where k ∈ Z is odd (the other case is symmetric up to exchanging b
and c):

yk =
yck−1 + 1

yk−2
=

(ybk−2 + 1)c + yck−3
yk−2yck−3

=
(yck−3 + 1)(ybk−2 + 1)c − yck−3((ybk−2 + 1)c − 1)

yk−2yck−3

=
(yck−3 + 1)

yk−2
·

(ybk−2 + 1)c

yck−3
− 1

yk−2

(
c∏

i=1

(
c

i

)
ybik−2

)
.

Which gives us

yk = yk−4y
c
k−1 −

c∏
i=1

(
c

i

)
ybi−1k−2 .

So we can indeed express yk as a polynomial in the previous four cluster
variables. In the same way we find that yk is also expressible as a polynomial
in the next four cluster variables:

yk = yk+4y
b
k+1 −

b∏
i=1

(
b

i

)
yci−1k+2 .

This means that we can express any cluster variable in A(b, c) as a polynomial
in any four consecutive cluster variables in A(b, c). Combining this with the fact
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that any four consecutive cluster variables in A(b, c) can be written as Laurent
polynomials of the two center cluster variables, which follows directly from the
exchange relation (2.1), we can deduce that all cluster variables in A(b, c) as
Laurent polynomials in any two consecutive cluster variables.
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3 Cluster algebras of rank n

Now that we have seen a specific case of cluster algebras of rank two, we are
ready to give a general definition of a cluster algebra. In this section we will
introduce a definition for cluster algebras of rank n, where n is a positive integer.
To do this, we will start by defining an ambient field for our setting, then we
will introduce some definitions, which we will clarify with some examples, to
come to our definition of cluster algebra of rank n, and finally we will discuss
and prove the Laurent phenomenon for such an cluster algebra.

3.1 Ambient field

To define the ambient field for our setting we repeat some crucial definitions
and lemmas from the field of Abstract Algebra, just in case the reader needs to
be reminded of them. If this is not the case, the reader may wish to skip to the
final paragraph of this subsection.

We will be following the discussion in [2], Chapters 3 and 4, only discussing
the definitions, lemmas and theorems which are used in this thesis. The proofs
given in this subsection are directly adopted from [2].

Definition 3.1 ([2], 3.1.2 (4)): First of all, we start with the definition of an
integral domain. A ring 〈A,+, ·〉, with identity 0 for ’+’, is called an integral
domain if:

1. A contains an identity 1 6= 0, for ’·’,

2. ’·’ is commutative,

3. If the product of two non-zero elements of A cannot be equal to zero.

Let A be an integral domain. We now wish to construct a field containing A,
which is as small as possible. This construction will generalize the relationship
between Z and Q.

Every rational number can be expressed as any one of infinitely many frac-
tions, for example, the rational number 1

2 can also be expressed as 2
4 ,

3
6 ,

4
8 ,

35
70 , . . . .

The fraction 1
2 is merely a way of denoting an ordered pair, in this case, (2, 3).

We therefore observe that each rational number is part of an infinite class of
ordered pairs (a, b), a ∈ Z, b 6= 0 in Z, which all represent the same rational
number. Two ordered pairs (a, b) and (c, d) represent the same rational number
if and only if ad = bc.

Theorem 3.1 ([2], 3.8.1):

(1) Let A be an integral domain, and let X be the set of all ordered pairs (a, b),
a ∈ A, b 6= 0 in A. (Thus, X = A × (A \ {0}.) On X, define a binary
relation ∼ by:

(a, b) ∼ (c, d) if ad = cb ((a, b), (c, d) ∈ X).

Then ∼ is an equivalence relation on X.
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(2) Denote by a
b the equivalence class of (a, b) ((a, b) ∈ X), and let F =

{ab | a ∈ A, b 6= 0 in A}. On F , define ’+’, ’·’ by:

a

b
+
c

d
=
ad+ cb

bd
,

a

b
· c
d

=
ac

bd
(a, c ∈ A, b 6= 0, d 6= 0 in A).

Then 〈F,+, ·〉 is a field, which we will call field of quotients of A.

(3) Define φ : A → F by: φ(a) = a
1 . Then φ is a ring monomorphism (φ is

1-1).

(4) If E is a field containing A as a subring, then E contains an isomorphic
copy of F .

Proof. The proof of this theorem is precisely the same as given in [2], except
for point 2 where we also show that 〈F,+, ·〉 is a commutative ring with multi-
plicative identity 1

1 , different from the 0-element 0
1 .

(1) ∼ is an equivalence relation on X, for: clearly, (a, b) ∼ (a, b), since ab = ab
(for each a ∈ A, b 6= 0 in A).

If (a, b) ∼ (c, d), then ad = cb; hence cb = ad, and so (c, d) ∼ (a, b) (for
each a, c ∈ A, b 6= 0, d 6= 0 in A).

If (a, b) ∼ (c, d) and (c, d) ∼ (e, f) (a, c, e ∈ A, b 6= 0, d 6= 0, f 6= 0 in A),
then from ad = cb and cf = ed, we have (ad)f = (cb)f = (cf)b = (ed)b;
hence, (af)d = (eb)d, and so af = eb. But then (a, b) ∼ (e, f).

Hence ∼ is reflexive, symmetric and transitive, and is thus an equivalence
relation on X.

(2) Denote by a
b the equivalence class of (a, b) ((a, b) ∈ X), and let F =

{ab | a ∈ A, b 6= 0 in A}. We need to show that the proposed binary
operations ’+’, ’·’ are well-defined, i.e., every pair of elements of F has a
unique sum and a unique product in F .

Let (a, b), (c, d) ∈ X. Then (ad + cb, bd) and (ac, bd) are elements of X
since bd 6= 0 if b 6= 0 and d 6= 0 in the integral domain A. Thus, for each
a
b ,

c
d ∈ F we have

ad+ cb

bd
and

ac

bd

in F . Now suppose
a

b
=
a′

b′
,
c

d
=
c′

d′

(a, c, a′, c′ ∈ A, b, b′, d, d′ non-zero elements of A). Then

ab′ = a′b and cd′ = c′d.
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Hence, (ac)(b′d′) = ab′cd′ = a′bc′d = (a′c′)bd, and so

ac

bd
=
a′c′

b′d′
.

Thus, the proposed operation ’·’ is a (well-defined) binary operation on F .
Furthermore, we have

(ad+ cb)b′d′ = adb′d′ + cbb′d′

= a′bdd′ + c′dbb′ = (a′d′ + c′b′)bd,

and so the proposed operation’+’ ia a (well-defined) binary operation on
F .

Next we verify that the ’·’ operation is commutative in F . Given any
a, c ∈ A, b 6= 0, d 6= 0 in A, we have that for each e ∈ A, f 6= 0 in A holds:
If (ac, bd) ∼ (e, f), then acf = ebd, which means caf = edb, since ’·’ is
commutative in A. Therefore (ca, db) ∼ (e, f), so

a

b
· c
d

=
c

d
· a
b
.

This means that indeed the ’·’ operation is commutative in F .

The 0-element from F must be 0
1 , since

0

1
+
a

b
=

0 · b+ a · 1
1 · b

=
a

b
(a, c ∈ A, b 6= 0, d 6= 0 in A).

That multiplicative identity for F must be equal to 1
1 follows clearly from

the fact that 1 is the multiplicative identity for A:

1

1
· a
b

=
1 · a
1 · b

=
a

b
(a, c ∈ A, b 6= 0, d 6= 0 in A).

Finally, since 0 6= 1 in A, it follows that (0, 1) ∼ (1, 1) does not hold,
which means that 0

1 6=
1
1 . We can conclude that 〈F,+, ·〉 is a commutative

ring with multiplicative identity 1
1 , different from the 0-element 0

1 . Since
for any non-zero element a

b in F we have a
b 6=

0
1 , it follows that a 6= 0 and

therefore b
a ∈ F , and therefore F is indeed a field.

(3) Define φ : A→ F by

φ(a) =
a

1

for each a ∈ A. Since, for a, b ∈ A, φ(a+ b) = a+b
1 = a

1 + b
1 = φ(a) + φ(b),

and φ(a·b) = a·b
1 = a

1 ·
b
1 = φ(a)·φ(b), it follows φ is a ring homomorphism.

But φ(a) = 0
1 ⇔

a
1 = 0

1 ⇔ a = 0; hence φ is a monomorphism.

(4) Let E be a field containing A as a subring, and let F̄ = {ab−1 | a ∈ A, b 6=
0 in A}. Define ψ : F → E by: ψ(a

b ) = ab−1 for each a ∈ A, b 6= 0 in
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A. ψ is well-defined, for: if a
b = a′

b′ (a, a′ ∈ A, b, b′ non-zero in A), then
ab′ = a′b; hence ab−1 = a′(b′)−1. ψ is a homomorphism, for: if a, c ∈ A,
b, d non-zero in A, then

ψ
(a
b

+
c

d

)
= ψ

(
ad+ cb

bd

)
= (ad+ cb)(bd)−1 = (ad+ cb)b−1d−1

= ab−1 + cd−1 = ψ
(a
b

)
+ ψ

( c
d

)
,

and

ψ
(a
b
· c
d

)
= ψ

(ac
bd

)
= ac(bd)−1 = acb−1d−1 = (ab−1)(cd−1) = ψ

(a
b

)
· ψ
( c
d

)
.

Finally, ψ is a monomorphism, for: if ψ(a
b ) = ab−1 = 0, then a = 0b = 0;

hence a
b = 0

b = 0
1 . Thus Imψ = F̄ is a field isomorphic to F .

We now will now look at some definitions and lemmas concerning fields in
general and introduce the notions of algebraicity and transcendence. If a subset,
E, of a field F is a field with respect to the operations of F restricted to E,
then E is a subfield of F and F is an extension field (or simply an extension)
of E.

Every subset S of a field F generates a subring and a subfield of F in the
sense of the following definition:

Definition 3.2 ([2], 4.1.1): Let F be a field and let S be a subset of F . Then
the subring of F generated by S is the intersection of all subrings of F which
contain S; and the subfield of F generated by S is the intersection of all subfields
of F which contain S.

The subring and subfield from the definition above have, in some cases, an
interesting relation to one and other, which we display in the following lemma:

Lemma 3.2 ([2], p. 238): Let F be a field, S a subset of F , which contains
the multiplicative identity 1F of F . If A is the subring of F generated by S,
and K is the subfield of F generated by S, then A is an integral domain and K
is the field of quotients of A in F .

Proof. Since fields are rings, the intersection of all subrings of F , containing S,
is a subset of the intersection of all subfields of F , containing S. Thus, A ⊂ K.
Since 1F ∈ S, we have 1F ∈ A; hence A is an integral domain. Let

K̄ = {ab−1 | a, b 6= 0 in A},

the field of quotients of A in F . Since A ⊂ K, clearly K̄ ⊂ K. But K̄ is
a subfield of F , containing S; hence K̄ contains the intersection of all such
subfields of F , i.e., K̄ ⊃ K. It follows that K̄ = K, and so K is the field of
quotients of A in F .
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Consider now a field K, a subfield F and a subset Y of K. From the lemma
above we can deduce that the subfield of K generated by F ∪ Y is the field of
quotients, in K, of the subring of K generated by F ∪ Y .

Notation ([2], p. 242): We denote by ’F [Y ]’ the subring of K generated by
F ∪ Y , and by ’F (Y )’ the subfield of K generated by F ∪ Y . In the special
case where Y = {α} (α ∈ K), we write ’F [α]’ and ’F (α)’ respectively, for the
subring and subfield of K generated by F ∪ {α}.
F [α] and F (α) are called the subring and the subfield of K, obtained by

adjoining α to F .

We finally introduce the notions of algebraicity and transcendence in the
following definition:

Definition 3.3 ([2], 4.2.1, 4.4.1, 4.14.1 and 4.15.2):
Let F be a subfield of a field K.

• Given α ∈ K, we call α algebraic over F if there is some non-zero poly-
nomial f ∈ F [x], such that f(α) = 0; we call α transcendental over F if
there is no non-zero polynomial f ∈ F [x] such that f(α) = 0.

• We say K is an algebraic extension of F if every element of K is algebraic
over F . Otherwise, we call K an transcendental extension of F . (In what
follows we will write K/F is algebraic or transcendental)

• For n ≥ 1, let {α1, . . . , αn} be a subset of K. Then {α1, . . . , αn} is alge-
braically dependent over F if, for some non-zero polynomial f ∈ F [x1, . . . , xn],
we have f(α1, . . . , αn) = 0. If f(α1, . . . , αn) 6= 0 for all non-zero polynomi-
als f ∈ F [x1, . . . , xn], then {α1, . . . , αn} is algebraically independent over
F . In this case, {α1, . . . , αn} forms a transcendence set over F .

• Given a subset S of K. If S is a transcendence set over F , such that
K/F (S) is algebraic, then S is a transcendence basis for K/F .

Now we are ready to define our ambient field. Let P be a torsion-free multi-
plicative abelian group of a finite rank m, with generators g1, . . . , gm. (Torsion-
free meaning that the multiplicative identity of P is the only element in P with
finite order.) An ambient field of our setting is the field F of rational functions
in n independent variables, which coefficients lie in Z(P), the field of quotients
of the ring ZP = Z[P]. However, since P, which we also will call the coefficient
group, is torsion-free, we have that Z(P) is isomorphic to the field of rational
functions in m independent variables with rational coefficients. So, if we take
the n independent variables of F to be a transcendence basis over Z(P), we can
think of F as the field of rational functions in n+m independent variables with
rational coefficients.
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3.2 Definitions and examples

After defining an ambient field for our setting, we now continue with the def-
initions needed to come to the general definition of a cluster algebra of rank
n.

Before we continue, some bibliographical notes are in order. In this subsection
we follow the discussion in [3], Chapter 3, Section 1. Anything adopted from
this discussion will be paired with a citation. (Some notations may differ from
the notations used in [3].)

As we saw in the introduction, cluster algebras depend on an iterative process
of seed mutations. A seed consists of a cluster and a matrix. The matrix is
needed to define the iterative process of seed mutation and must satisfy some
conditions. We therefore will start by introducing some properties of a square
integer matrix.

Definition 3.4 ([3], 3.1): Let B be an n×n integer matrix. We say that B is
skew-symmetric if bij = −bji for any i, j ∈ [1..n] (here and in what follows,

we denote with [k..l], for integers k and l, the integer interval between k and l,
including both k and l),

skew-symmetrizable if there exists a positive integer diagonal matrix D such
that DB is skew-symmetric, in this case D is called the skew-symmetrizer of B,
and B is called D-skew-symmetrizable.

sign-skew-symmetric if ∀i, j ∈ [1..n] holds bijbji < 0 or bij = bji = 0.

To see what these properties look like, we look at a simple example.

Example 3.1: Lets look at the following matrices:

A =

 0 6 −10
−6 0 −12
10 12 0

 , B =

 0 6 −10
−1 0 −2
5 6 0

 and C =

 0 6 −10
−1 0 −2
10 2 0


Clearly matrix A is skew-symmetric. If we multiply matrix B with the matrix

D =

 1 0 0
0 6 0
0 0 2

 ,

we get A, so that means B is skew-symmetrizable. Finally, C is sign-skew-
symmetric, since, for any pair i, j ∈ [1..3] holds either cijcji < 0 or cij = cji = 0.

Remark 3.3: Looking at the matrices in the previous example, we can see that
A is not only skew-symmetric but also skew-symmetrizable (using the identity
matrix as skew-symmetrizer) and sign-skew-symmetric. Furthermore, we can
see that B is also sign-skew-symmetric in addition to being skew-symmetrizable.
In general holds that every skew-symmetric matrix is skew-symmetrizable, and
that every skew-symmetrizable matrix is sign-skew-symmetric.
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Definition 3.5 ([3], 3.2): A seed in F is a pair Σ = (x, B̃), where x =
{x1, . . . , xn} is a transcendence basis of F over Z(P) (here P is the coefficient

group defined at the end of Section 3.1), and B̃ is an n×(n+m) integer matrix,
whose principal part B (that is, the n × n submatrix formed by the columns
1, . . . , n) is a sign-skew-symmetric matrix.

Here x is the cluster, and its elements x1, . . . , xn are the cluster variables.
We say that x̃ = {x1, . . . , xn+m} is an extended cluster, where xn+i = gi, for
i ∈ [1,m] (remember, g1, . . . , gm are the generators of P), which we will call
stable variables since they will not be mutated like the cluster variables. The
matrix B will be called the exchange matrix, and B̃, the extended exchange
matrix. We will denote the entries of B̃ by bij , for (i, j) ∈ [1..n] × [1..n + m].

Furthermore, we will say that B̃ is skew-symmetric (skew-symmetrizable, sign-
skew-symmetric) whenever B possesses this property.

Now that we have a definition for a seed in F , we are going to define a way
to mutate a seed. We will do this in three steps, first we will define a way to
mutate a cluster, and after that we will define a way to mutate a matrix, to
conclude with the definition for a seed mutation.

Definition 3.6 ([3], 3.3): Given a seed as defined above, the adjacent cluster
to x in direction k ∈ [1..n] (we will also call this the cluster achieved from
mutating x in direction k) is defined by

x(k) = (x \ {xk}) ∪ {x(k)k },

where the new cluster variable x
(k)
k is defined by the exchange relation

xkx
(k)
k =

∏
1≤i≤n+m

bki>0

xbki
i +

∏
1≤i≤n+m

bki<0

x−bki
i , (3.1)

here the product over the empty set is, as usual, assumed to be equal to 1.

Example 3.2: Before we continue, let us look at a simple example to visualize
the cluster mutation. Given a seed Σ = (x, B̃) with

B̃ =

(
0 2 −2 2 −2 2 2
−2 0 −1 −1 1 −3 −2

)
and x̃ = (x1, . . . , x7), we have

x
(1)
1 =

x23x
2
5 + x22x

2
4x

2
6x

2
7

x1
and x

(2)
2 =

x21x3x4x
2
7x

3
6 + x5

x2
,

Which are respectively the mutated cluster variables in the clusters x(1) and
x(2).
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With the cluster mutation now out of the way, we can continue with the
definition of the matrix mutation.

Definition 3.7 ([3], 3.5): Let B̃ and B̃′ be two n× (n+m) integer matrices.

We say that B̃′ is obtained from B̃ by a matrix mutation in direction k ∈ [1..n]

and write B̃′ = B̃(k) if

b′ij =

{
−bij , if i = k or j = k,

bij +
|bik|bkj+bik|bkj |

2 , otherwise.

If we look at B̃(k,k) (which denotes the matrix B̃ mutated twice in direction

k), we find that b
(k,k)
ij is equal to −b(k)ij = bij if i = k or j = k, otherwise we

have:

b
(k,k)
ij = b

(k)
ij +

|b(k)ik |b
(k)
kj + b

(k)
ik |b

(k)
kj |

2

= bij +
|bik|bkj + bik|bkj |

2
+
| − bik|(−bkj) + (−bik)| − bkj |

2
= bij .

So we can conclude that B̃(k,k) = B̃.
We say that two matrices B̃ and B̃′ are mutation equivalent, and write B '

B′, if each of them can be obtained from the other by a sequence of matrix
mutations. That the property of a matrix to be sign-skew-symmetric is not
necessarily preserved under matrix mutation equivalence can be seen from the
following example: The matrices 0 −1 5

1 0 −1
−2 4 0

 and

 0 1 −5
−1 0 4
2 2 0


are connected by a mutation in direction 1. However, where the first matrix is
sign-skew-symmetric, the second is not. This leads to the following definition: a
matrix is said to be totally sign-skew-symmetric if any matrix that is mutation
equivalent to it is sign-skew-symmetric.

An important class of totally sign-skew-symmetric matrices is expressed by
the following proposition.

Proposition 3.4 ([3], 3.6): Skew-symmetrizable matrices are totally sign-
skew-symmetric.

Proof. Given a skew-symmetrizable n × n matrix B, by Definition 3.4, we can
find a positive n × n integer diagonal matrix D such that A = DB is skew-
symmetric. Let k ∈ [1..n], then, for (i, j) ∈ [1..n]× [1..n],

b
(k)
ij =

{
aij

di
, if i = k or j = k,

aij

di
+
|aik|akj+aik|akj |

2didk
, otherwise .
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To verify that B(k) is sign-skew-symmetric, we have to show that, either b
(k)
ij

and b
(k)
ji are both equal to 0, or b

(k)
ij and b

(k)
ji have different signs.

If i = k or j = k, it is evident that b
(k)
ij = −b(k)ji . For all other cases we have

b
(k)
ij =

aij
di

+
|aik|akj + aik|akj |

2didk
, and b

(k)
ji =

aji
dj

+
|ajk|aki + ajk|aki|

2djdk
.

Since A is skew-symmetric, we can write

b
(k)
ji =

−aij
dj

+
| − akj |(−aik) + (−akj)| − aik|

2djdk

=
1

dj
·
(
−aij −

|akj |aik + akj |aik|
2dk

)
=
di
dj
·
(
−b(k)ij

)
.

From this we can conclude that, either b
(k)
ij and b

(k)
ji are both equal to 0, or b

(k)
ij

and b
(k)
ji have different signs. Hence, B(k) is sign-skew-symmetric.

Notation: For a given seed Σ = (x, B̃) in our setting, we will write the right
hand side of the exchange relation (3.1) sometimes as Pk or p+k + p−k . In the
latter case, p+k denotes the first and p−k the second product in (3.1).

Furthermore, for l ∈ [1..n], we write this for the seed Σ′ = (x(l), B̃(l)) as:

P
(l)
k = (p+k )(l) + (p−k )(l) =

∏
1≤i≤n+m

b
(l)
ki >0

(x
(l)
i )b

(l)
ki +

∏
1≤i≤n+m

b
(l)
ki <0

(x
(l)
i )−b

(l)
ki ,

where x
(l)
i denotes the i-th variable in the cluster adjacent to x in direction l,

which means that x
(l)
i is equal to xi, if i is not equal to l.

Remark 3.5: Now that we have a simplified notation for the right half of
exchange relation (3.1), we can now observe that this half has some interesting
properties. Given a seed as defined in Definition 3.5, we have for some k, l ∈
[1..n] that

(p+l )(k) + (p−l )(k) = p−l + p+l ,

if k is equal to l. If this is not the case, we have

(p+l )(k) + (p−l )(k) =



p+l + p−l , if blk = 0,

p+l (p+k )blk + (p+k + p−k )blkp−l
pl,kx

blk
k

, if blk > 0,

(p+k + p−k )−blkp+l + p−l (p−k )−blk

pl,kx
−blk
k

, otherwise.

14



Where

pl,k =


n+m∏
i=1

x
min[[−bli]+,[blkbki]

+]
i , if blk ≥ 0,

n+m∏
i=1

x
min[[bli]

+,[blkbki]
+]

i , otherwise.

(Here we use [a]+, for a ∈ Z, to denote max[0, a].)
The first case is obvious since row l of B remains the same if we mutate in

direction k when blk = −b(k)lk = 0. The last two cases are symmetric, so we only
consider the second case. In this case we have blk > 0, which means that for
j ∈ [1, n+m] we have

blj =


−blj , if j = k,

blj , if j 6= k and bkj < 0,

blj + blkbkj , otherwise.

This is equivalent to dividing p+l by xblkk and multiplying it with (p+k )blk divided
by its greatest common divisor with p−l , and to multiplying p−l with (Pk/xk)blk

and dividing it by its greatest common divisor with (p+k )blk , which is expressed

by the expression (p+l (p+k )blk + (p+k + p−k )blkp−l )/pl,kx
blk
k .

Note that pl,k does not contain xk or xl. This follows directly from the
definition of pl,k, and from the fact that bll = 0 = bkk and bklblk < 0.

We are now ready to define a seed mutation.

Definition 3.8 ([3], p. 39): Given a seed Σ = (x, B̃), we say that, for k ∈
[1..n], Σ(k) = (x(k), B̃(k)) is adjacent to (or achieved from mutating) Σ in di-
rection k. Two seeds are mutation equivalent if they can be connected by a
sequence of pairwise adjacent seeds.

Remark 3.6: Given a seed Σ = (x, B̃), where B̃ is skew-symmetrizable, mu-
tating Σ in the same given direction k (k ∈ [1..n]) twice, gives us Σ again.

We already know that B̃(k,k) = B̃. And since (p+k )(k) + (p−k )(k) = p−k + p+k ,

we have x
(k,k)
k = (p−k + p+k )/x

(k)
k = xk. Hence Σ(k,k) = (x(k,k), B̃(k,k)) = Σ.

With that done, we are ready to give a definition for a cluster algebra.

Definition 3.9 ([3], 3.8): Let Σ = (x, B̃) be a seed with a n × (n + m)

skew-symmetrizable matrix B̃, A be a subring with unity in ZP containing all
coefficients in all products p±k for all seeds mutation equivalent to Σ. The cluster

algebra A = A(B̃) over A associated with Σ is the A-subalgebra of F generated
by all cluster variables in all seeds mutation equivalent to Σ. The number of
rows n in B̃ is said to be the rank of A. The ring A is said to be the ground
ring of A. If m = 0, we call A = A(B) a coefficient-free cluster algebra.

Let us now examine this definition by looking at some examples.
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Example 3.3 ([3], 3.9): We first look at a cluster algebra of rank 1. Given

a seed Σ = (x, B̃) in this cluster algebra, the matrix B̃ is actually a vector
(b1, . . . , bm+1) with b1 = 0. The cluster x contains just one cluster variable,

namely x1, with the corresponding exchange relation x1x
(1)
1 = p+1 + p−1 , here

p±1 are monomials in the stable variables x2, . . . , xm+1. Clearly there is only
one seed that is mutation equivalent to Σ, which is Σ(1). So the whole cluster
algebra is generated by the polynomials x1 and (p+1 +p−1 )/x1. Hence any cluster
algebra of rank 1 is generated by the cluster variables in the initial seed Σ and
the only mutation equivalent seed Σ(1). This concludes a general description of
cluster algebras of rank 1.

Next, we look at some examples of cluster algebras of rank 2.

Example 3.4: As one might remember, we gave an informal definition of a
specific case of cluster algebras of rank 2 in Section 2. We said A(b, c) to be
the cluster algebra of rank 2, associated with the pair of positive integers b and
c, for which the cluster variables (which, as we mentioned in Section 2, form a
chain . . . , ym−1, ym, ym+1, . . . , for m ∈ Z) satisfy the algebraic relation

ym−1ym+1 =

{
ybm + 1, if m is even,

ycm + 1, if m is odd.
(3.2)

If we try to express A(b, c) following our general definition of a cluster algebra,

we first need an initial seed Σ = (x, B̃). Since each cluster in this cluster
algebra contains only two cluster variables, we can take x to be equal to {y1, y2}.
Furthermore, as we can see in the relation above no stable variables are used
in the relations between consecutive cluster variables in A(b, c), hence A(b, c)
must be coefficient-free. This means we must find a 2 × 2 skew-symmetrizable
exchange matrix B for our initial seed Σ, such that A(B) is equal to A(b, c).
Take B to be the matrix (

0 b
−c 0

)
.

Mutating B in either direction 1 or 2 gives us −B, which again mutated in
either direction gives us B again. So any seed, which is mutation equivalent to
Σ has either B or −B as its exchange matrix. This means we can express the
exchange relation obtained from mutating a cluster {x1, x2} in direction 1 as

x1x
(1)
1 = xb2 + 1,

and for mutating in direction 2 we can express the resulting exchange relation
as

x2x
(2)
2 = xc1 + 1.

So, if we have a cluster x of the form {yk−1, yk}, for k ∈ 2Z, we get adjacent
clusters {yk+1, yk} and {yk−1, yk−2}, from mutating x in directions 1 and 2,
respectively. If we take x to be of the form {yk+1, yk}, for k ∈ 2Z, we get
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x(1) = {yk−1, yk} and x(2) = {yk+1, yk+2}. From this we can conclude that, if
we take our initial seed to be(

{y1, y2},
(

0 b
−c 0

))
,

we get the following chain of clusters from mutating in alternating directions
(for k ∈ Z):

. . .↔2 {yk−1, yk} ↔1 {yk+1, yk} ↔2 {yk+1, yk+2} ↔1 . . .

Here the arrow between clusters denote that the two clusters are connected
with a mutation in the direction of the number above the arrow. From this
chain of clusters we can deduce that the cluster variables in A(B) also form a
chain equal to . . . , ym−1, ym, ym+1, . . . (for m ∈ Z), and therefore, also satisfy
the algebraic relation (3.2). This means we can conclude that A(B) is equal to
A(b, c).

Now we look at some specific examples of cluster algebras of rank 2. Where
a cluster algebra of rank 1 is always generated by a finite number of cluster
variables (namely 2), this is not necessarily the case for a cluster algebra of
rank 2 (as we already conjectured in Section 2). This follows from the fact that
given an initial seed Σ, we can mutate infinitely in alternating directions without
necessarily ever returning to Σ. We will explore this further in the following
examples.

Example 3.5: Given initial seed Σ = (x, B̃) with

B̃ =

(
0 1 1 1 0 −1 −1
−1 0 1 0 −1 1 1

)
,

mutating Σ in alternating directions starting with direction 1, gives us the fol-
lowing clusters

x = {x1, x2} ,

x(1) =

{
x2x3x4 + x6x7

x1
, x2

}
,

x(1,2) =

{
x2x3x4 + x6x7

x1
,
x2x4x

2
3 + x6x7x3 + x1x5

x1x2

}
,

x(1,2,1) =

{
x1x5 + x3x6x7

x2
,
x2x4x

2
3 + x6x7x3 + x1x5

x1x2

}
,

x(1,2,1,2) =

{
x1x5 + x3x6x7

x2
, x1

}
,

x(1,2,1,2,1) = {x2, x1} ,

with corresponding extended matrices

B̃ =

(
0 1 1 1 0 −1 −1
−1 0 1 0 −1 1 1

)
,
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B̃(1) =

(
0 −1 −1 −1 0 1 1
1 0 1 0 −1 0 0

)
,

B̃(1,2) =

(
0 1 −1 −1 −1 1 1
−1 0 −1 0 1 0 0

)
,

B̃(1,2,1) =

(
0 −1 1 1 1 −1 −1
1 0 −2 −1 0 0 0

)
,

B̃(1,2,1,2) =

(
0 1 −1 0 1 −1 −1
−1 0 2 1 0 0 0

)
,

B̃(1,2,1,2,1) =

(
0 −1 1 0 −1 1 1
1 0 1 1 0 −1 −1

)
.

Notice that the the first and last cluster contain the same variables (although
they switched places), so these clusters are equivalent. Furthermore, notice that
the exchange relations formed by the matrices corresponding to these variables
also are the same, which means that the matrices are also equivalent. Therefore,
the first and last seed are equivalent, and hence the number of non-equivalent
seeds is in this case equal to 5.

Now that we have seen an example of a cluster algebra of rank 2 with a finite
number of non-equivalent seeds, we now will examine a case with an infinite
number of non-equivalent seeds.

Example 3.6: Let us start with the seed Σ = (x, B̃), where

B̃ =

(
0 2 −2
−2 0 0

)
.

If we mutate B̃ in alternating directions starting with direction 1 we get the
following matrices

B̃ =

(
0 2 −2
−2 0 0

)
, B̃(1) =

(
0 −2 2
2 0 −4

)
,

B̃(1,2) =

(
0 2 −6
−2 0 4

)
, B̃(1,2,1) =

(
0 −2 6
2 0 −8

)
,

B̃(1,2,1,2) =

(
0 2 −10
−2 0 8

)
, . . .

Which gives us a chain of matrices B̃0, B̃1, . . . , where B̃n, for n a non-negative
integer, denotes the matrix obtained from mutating B̃ in alternating directions,
starting with direction 1, for a total of n mutations. Note that if n is odd, the
last mutation was in direction 1 and if n is even, the last mutation, given n > 0,
was in direction 2, hence the number of times we mutated in direction 1 is given
by dn/2e and the number of times we mutated in direction 2 is given by bn/2c.
We now can deduce that B̃n satisfies the following relation:

B̃n = (−1)n
(

0 2 −2− 4 · bn/2c
−2 0 4 · dn/2e

)
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This can be easily proven using induction. Since B̃0 = B̃, the relation holds for
n = 0. Now we assume the relation holds for n = k, for k an positive integer. If
k is odd, it means that the next matrix in the chain is obtained from mutating
B̃k in direction 2, which gives us:

B̃
(2)
k =

(
0 −2 2 + 4 · bk/2c
2 0 −4 · dk/2e

)(2)

=

(
0 2 2 + 4 · bk/2c − 2 · 4 · dk/2e
−2 0 4 · dk/2e

)
.

Since k is odd, bk/2c = b(k+ 1)/2c − 1 and dk/2e = d(k+ 1)/2e = b(k+ 1)/2c.
This gives us:

B̃
(2)
k =

(
0 2 2 + 4 · (b(k + 1)/2c − 1)− 2 · 4 · b(k + 1)/2c
−2 0 4 · d(k + 1)/2e

)
=

(
0 2 −2− 4 · b(k + 1)/2c
−2 0 4 · d(k + 1)/2e

)
= B̃k+1.

In a similar way, we find for k is even, that the next matrix in the chain, which
is obtained from mutating B̃k in direction 1, is equal to B̃k+1. Therefore, the
relation holds, which means that this chain of matrix mutations will never reach
the same matrix twice. Since there are an infinite number of non-equivalent
matrices which are mutation equivalent to B̃, this means that there are also an
infinite number of non-equivalent seeds which are mutation equivalent to Σ.

It turns out that for cluster algebras with rank greater than 1, the number
of non-equivalent seeds is generally infinite, however, as we will prove in the
next section, every cluster algebra is generated by a finite number of cluster
variables.

3.3 Laurent phenomenon

In this subsection we will prove the Laurent phenomenon, to do this, we derived
this proof from the proof given in [3], Chapter 3, Section 1.

Theorem 3.7 ([3], 3.14): Given a cluster algebra A of rank n ≥ 1 with
m ≥ 0 stable variables, any cluster variable in A can be expressed via the
cluster variables from the initial (or any other) cluster as a Laurent polynomial
with coefficients in ZP = Z[P]. (Here P is the coefficient group defined at
the end of Section 3.1, which is the torsion-free multiplicative abelian group
generated by the stable variables xn+1, . . . , xxn+m.)

To prove this theorem we first introduce a number of lemmas. We will look
at a cluster algebra of rank n > 1. (The proof for a cluster algebra of rank 1
follows directly from our observations in Example 3.3.)
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Given a seed Σ = (x, B̃) in this cluster algebra, let us look at the ring of
Laurent polynomials in the variables x1, . . . , xn+m with coefficients in ZP. The
theorem claims that the whole cluster algebra is contained in the intersection
of such rings over all seeds mutation equivalent to Σ. We will prove that it is
already contained in the polynomial ring

U(x) = ZP[x±1] ∩ ZP[(x(1))±1] ∩ · · · ∩ ZP[(x(n))±1],

called the upper bound associated with the cluster x. (Here and in what follows,
we will denote by x±1 and x±1 the sets {x±11 , . . . x±1n } and {x, x−1}, respec-
tively.)

To prove that the cluster algebra is contained in the polynomial ring U(x),
we just have to prove that U(x) = U(x(k)) for some k ∈ [1..n].

Lemma 3.8 ([3], 3.15): For some k ∈ [1..n], we have

Qk[x±1k ] ∩Qk[(x
(k)
k )±1] = Qk[xk, x

(k)
k ],

where Qk = ZP[x±1 \ {x±1k }].

Proof. We can rewrite the left-hand side of the equation as

(Qk[xk, x
−1
k ] ∩Qk[xk/(p

+
k + p−k )])[(p+k + p−k )/xk].

Since for any f ∈ Qk[xk/(p
+
k +p−k )] holds that f is either an element of Qk[xk] or

f can not be expressed as a Laurent polynomial in the variables x1, . . . , xn+m, it
follows that Qk[xk, x

−1
k ]∩Qk[xk/(p

+
k +p−k )] = Qk[xk]. We therefore can rewrite

the expression above as Qk[xk][(p+k + p−k )/xk], which is equal to Qk[xk, x
(k)
k ],

and that is exactly what we needed to prove.

In what follows, let Qk,l = ZP[x±1 \ {x±1k , x±1l }], for some k, l ∈ [1..n], with
k 6= l. We will now prove that the following holds:

Lemma 3.9: For some k, l ∈ [1, n], k 6= l, we have

ZP[x±1] ∩Qk,l[x
±1
k , (x

(l)
l )±1] ∩Qk,l[(x

(k)
k )±1, x±1l ] = Qk,l[xk, x

(k)
k , xl, x

(l)
l ].

Proof. Note that by using Lemma 3.8 we can rewrite the left-hand side of the
equation as:

Qk,l[x
±1
k , xl, x

(l)
l ] ∩Qk,l[xk, x

(k)
k , x±1l ],

which is equivalent to

(Qk,l[x
−1
k ] ∩Qk,l[x

−1
l ])[xk, x

(k)
k , xl, x

(l)
l ].

Since x−1k and x−1l are not elements of Qk,l, we can conclude that the ex-

pression above is equal to Qk,l[xk, x
(k)
k , xl, x

(l)
l ], which is what we needed to

prove.
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The last equality we need to prove before we can finish the proof of the
Laurent phenomenon, is the following:

Lemma 3.10 ([3], 3.17): For some k, l ∈ [1..n], k 6= l, we have

Qk,l[xk, x
(k)
k , xl, x

(l)
l ] = Qk,l[xk, x

(k)
k , xl, x

(k,l)
l ]

Proof. To prove this, it is enough to show that x
(k,l)
l ∈ Qk,l[xk, x

(k)
k , xl, x

(l)
l ].

First of all, let us look at the case that bkl = 0 = blk, then Pl = P
(k)
l by

Remark 3.5. This means that x
(k,l)
l = x

(l)
l , which implies that indeed x

(k,l)
l ∈

Qk,l[xk, x
(k)
k , xl, x

(l)
l ].

Now assume that bkl, blk 6= 0. Without loss of generality, we may assume
that blk > 0 (the other case is symmetric to this one). By Remark 3.5, we have

x
(k,l)
l =

p+l (p+k )blk + (p+k + p−k )blkp−l
pl,kx

blk
k xl

=

(
p+l + p−l

xl

(p+k + p−k )blk

xblkk

−
p+l ((p+k + p−k )blk − (p+k )blk)

xblkk xl

)
1

pl,k

=

(
x
(l)
l (x

(k)
k )blk −

p+l
xblkk

p−k
xl

blk∏
i=1

(
blk
i

)
(p+k )blk−i(p−k )i−1

)
1

pl,k
.

That this last expression belongs to Qk,l[xk, x
(k)
k , xl, x

(l)
l ], follows from the fact

that p+l contains xblkk , p−k contains x−blkl , and pk,l does not contain xk or xl

(by Remark 3.5). Therefore, x
(k,l)
l must be an element of Qk,l[xk, x

(k)
k , xl, x

(l)
l ],

which is exactly what we needed to prove.

Now we are ready to prove Theorem 3.7.

Proof. Consider the upper bound associated with cluster x:

U(x) = ZP[x±1] ∩ ZP[(x(1))±1] ∩ · · · ∩ ZP[(x(n))±1]

=

n⋂
i=1

(ZP[x±1] ∩ ZP[(x(i))±1]).

For some k ∈ [1..n] we can write this intersection as:

n⋂
i=1
i 6=k

(ZP[x±1] ∩ ZP[(x
(k)
k )±1,x±1 \ {x±1k }] ∩ ZP[(x

(i)
i )±1,x±1 \ {x±1i }]).

Applying Lemma 3.9 to this expression, gives us:

n⋂
i=1
i 6=k

ZP[xk, x
(k)
k , xi, x

(i)
i , (x \ {xk, xi})±1]
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With use of Lemma 3.10, we can now find:

n⋂
i=1
i6=k

ZP[xk, x
(k)
k , xi, x

(k,i)
i , (x \ {xk, xi})±1].

Since x \ {xk, xi} = x(k) \ {x(k)k , x
(k)
i }, and xk = x

(k,k)
k , we can write

n⋂
i=1
i 6=k

ZP[x
(k)
k , x

(k,k)
k , x

(k)
i , x

(k,i)
i , (x(k) \ {x(k)k , x

(k)
i })

±1].

Which can be rewritten, by reversing our steps from the point at which we
applied Lemma 3.9, to the following:

n⋂
i=1

(ZP[(x(k))±1] ∩ ZP[(x(k,i))±1]) = U(x(k)).

As we saw earlier in this section, this is precisely what we needed to prove.

So now we have proved that cluster variables can be expressed as Laurent
polynomials, is there more to say about the structure of these Laurent poly-
nomials? Can we for instance give a general expression for them? Sadly, no.
However, there are some conjectures that seem to be true, but which are not yet
proven. For instance the conjecture that the coefficients of these Laurent poly-
nomials are positive. This would explain how the cluster variables are structured
and shed more light on the concept of cluster algebras as a whole, however, as
I already mentioned, no one has of yet proven this conjecture.
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