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Chapter 1

Introduction

Our thesis concerns the consistent estimation of the transition probabilities of
non-Markov multi-state models with right censoring. We will first explain what this
means and why this is useful without diving into the mathematical details. Thereafter,
we shall summarize this thesis’ contents.

We begin by explaining what a multi-state model is. Suppose that an individual (not
necessarily an organism) can be in several states. Not only that, but it can, over time,
transition between those states. A multi-state model is a mathematical model of such a
system. How about a concrete example?

Consider a fragile clockwork that can be in the following two states: working and
broken. When I bought it, it was working. However, fragile as it is, it soon broke. I
got it repaired, so now it is working again, but, with how fragile it is, it is only a matter
of time before it breaks again. Unfortunately, the cycle of breaking and repairing does
not last forever; every time the clockwork breaks, it becomes harder to repair, and, at
some point, it will be broken beyond repair.

Although the clockwork can only be in two states, the situation is already quite
complicated. The more it breaks, the more fragile it becomes, making it harder to
repair. Consequently, the probability of transitioning from broken to working
dwindles, until it eventually reaches 0. Important to note is that the transition
probability depends on its past (how many times it was dropped).

If the transition probabilities are not dependent on the past (and thus solely dependent
on the present), we call the multi-state model Markov. As this thesis will illustrate,
Markov models are much easier to work with than their non-Markov brethren.
However, a lot of practical situations cannot be adequately modelled by Markov
models, because many things depend on their past (as illustrated by the clockwork
example).
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But this is not where the clockwork’s story ends. I actually bought it as a birthday
present for my friend. In spite of that, it is still just as fragile as before. That is to say,
the clockwork will continue to break and get repaired unchangingly after the birthday
party. The thing is, after the birthday party, I will no longer be able observe what state
it is in; I gave it to my friend after all.

If, after some point in time, the state of an individual can no longer be observed, then
we say that right censoring has occurred. The individual might still transition between
states afterward, it is just that we will never know. In the clockwork example, right
censoring occured the moment I gave my clockwork to my friend.

Admittedly, our introduction of right censoring in the clockwork’s example was
somewhat artificial. Examples where right censoring not only occurs naturally, but
that are actually practically relevant, are, among others, clinical trials. Patients in
clinical trials can be modelled as individuals in a multi-state model with states
describing the efficacy or safety of the treatment. Examples of states might be
“treatment is (not) working” and “(no) side effects”. Since no clinical trial lasts
forever, but some patients could still start showing side effects after the trial ends
(transition from “no side effects” to “side effects”), right censoring naturally occurs.

While one could consider left and interval censoring as well, we shall not do so,
because right censoring is the most common in practice [see 1, section III.2’s
epigraph].

Let us repeat that our thesis concerns the consistent estimation of the transition
probabilities of non-Markov multi-state models with right censoring. We want
consistent estimators, because consistency guarantees that, if we have enough
individuals, our estimators will be close to the actual value they are trying to estimate.

Now that we have explained what the problem is, let us address how we will tackle this
problem.

In Chapter 2, we will introduce conventions that will be used in the remainder of the
thesis.

In Chapter 3, we will give a brief overview of measure theoretic probability. We shall
introduce only those concepts that we need in the remainder of the thesis.

Chapter 4 introduces and explores the so-called product integral. The product integral
will be used extensively to define estimators. After defining the product integral, we
shall show its relation to the Volterra equation (which is the reason why it is so useful,
as will become clear in Chapter 6).
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Chapter 5 finally formally introduces the multi-state model. After an argosy of
definitions, including those of the so-called cumulative transition hazard, which will
play a key role in estimating the transition probabilities, and the transition probability,
we will touch upon right censoring as well. We will show that, without right
censoring, estimating the transition probabilities consistently would be very easy. We
shall also formulate the “independent censoring assumption”, whose importance will
become apparent in the next chapter.

But what do we do when we do have right censoring?

In Chapter 6, we will estimate transition probabilities in the Markov case (the easier
case). First, using the independent censoring assumption, we can derive a consistent
estimator for the cumulative transition hazard, namely the Nelson-Aalen estimator.
Thereafter, we shall show that the product integral of the Nelson-Aalen estimator,
which is dubbed the Aalen-Johansen estimator, is a consistent estimator of the
transition probabilities. We can get a consistent estimator of the transition probability
by taking the product integral of a consistent estimator for the cumulative transition
hazard because the transition probability and the transition hazard are related by a
Volterra equation.

Unfortunately, in the non-Markov case, the Aalen-Johansen estimator is no longer
consistent. As such, in Chapter 7, we will explore a modification of the Aalen-
Johansen estimator, which does turn out to be consistent in the non-Markov case. The
resulting estimator is called the landmark Aalen-Johansen estimator. It will be the
product integral of a modification of the Nelson-Aalen estimator. This chapter’s
conclusion and the main result of this thesis is, as promised by the title, a proof of the
consistency of the landmark Aalen-Johansen estimator.

Then there iss the final chapter, Chapter 8, which gives a glimpse of directions of
further research.

Finally, there are five appendices that prove certain results that are used throughout the
thesis. We recommend to at least check out Appendix E, in which a novel proof of the
important Duhamel’s equation (one of the the main ingredient in the proof of
consistency of the Aalen-Johansen estimator) is given.
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Chapter 2

Conventions

Throughout the thesis, the following conventions will be adhered.

• All matrices will be real square matrices.

• Calligraphic letters will denote ã-algebras, matrix-valued functions or
partitions.

• “integrable” means

– “P-integrable” for random variables
– “Lebesgue integrable” for functions defined on a subset of R

• Square brackets may denote the Iverson bracket.

Definition 2.0.1. Let p be a logical proposition. Then the Iverson bracketIverson bracketIverson bracketIverson bracketIverson bracketIverson bracketIverson bracketIverson bracketIverson bracketIverson bracketIverson bracketIverson bracketIverson bracketIverson bracketIverson bracketIverson bracketIverson bracket

[p] =

{
1 if p is true
0 if p is false

• “�” denotes the restriction of a function.

• “(an)” denotes a sequence.

• “limn” means “limn→∞”.

• “≡” means “by definition equal to”.

• “℘(A)” denotes the power set of the set A.

• Bold letters will denote matrices or matrix-valued functions.

• If A is a matrix, then

[A]ij = Aij

is the ij-th entry of A (this convention also holds for letters other than “A”).
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• “I” denotes the identity matrix. If we want to specify that we are talking about
the K× K identity matrix, we write IK.

• A “!” atop a binary relation symbol will mean that an explanation of the binary
relation has been given precedingly or will be given shortly.

• “#A” denotes the cardinality of the set A.

• “.” means “less than and approximately equal to”.

• “⊕” denotes the direct sum of matrices. That is,

A⊕ B =

{
A 0
0 B

}
where 0 denotes the zero matrix. One can easily verify that ⊕ distributes over
regular matrix addition and matrix multiplication.

• “ae” atop a binary relation symbol will mean that the binary relation holds
almost everywhere.

• And finally,

diag(a1, . . . , an) =


a1 · · · 0
...

. . .
...

0 · · · an
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Chapter 3

Measure theoretic probability

In this chapter, we will introduce parts of probability theory from a measure theoretic
point of view. The aim of this chapter is to curtly cover the mathematical background
needed for later chapters. First, we will introduce basic probabilistic concepts such as
random variables and their expectation and variance. Secondly, we will talk about
convergence in probability. Thirdly, and finally, we introduce stochastic processes and
filtrations.

Throughout this chapter and the rest of the thesis, we assume basic familiarity with
measure theory. More concretely, we assume that the reader is familiar with the results
in Chapter 1 and 2, section 4.1 and 4.2, and Chapter 5 of [2].

The following definitions are mostly taken from Chapter 10 of [2].

A probability spaceprobability spaceprobability spaceprobability spaceprobability spaceprobability spaceprobability spaceprobability spaceprobability spaceprobability spaceprobability spaceprobability spaceprobability spaceprobability spaceprobability spaceprobability spaceprobability space (Ω,A,P) is a measure space such that P(Ω) = 1. If A ∈ A, then
P(A) is the probability of the event A. For B ∈ A, the conditional probabilityconditional probabilityconditional probabilityconditional probabilityconditional probabilityconditional probabilityconditional probabilityconditional probabilityconditional probabilityconditional probabilityconditional probabilityconditional probabilityconditional probabilityconditional probabilityconditional probabilityconditional probabilityconditional probability of A
given B is defined by

P(A | B) =
P(A ∩ B)

P(B)

provided P(B) 6= 0.

A real-valued random variablereal-valued random variablereal-valued random variablereal-valued random variablereal-valued random variablereal-valued random variablereal-valued random variablereal-valued random variablereal-valued random variablereal-valued random variablereal-valued random variablereal-valued random variablereal-valued random variablereal-valued random variablereal-valued random variablereal-valued random variablereal-valued random variable on (Ω,A,P) is a measurable function from (Ω,A,P) to
R. Let (S,ℬ) be a measurable space. An (S,ℬ)-valued random variablerandom variablerandom variablerandom variablerandom variablerandom variablerandom variablerandom variablerandom variablerandom variablerandom variablerandom variablerandom variablerandom variablerandom variablerandom variablerandom variable is a
measurable function from (Ω,A,P) to (S,ℬ).

Henceforth the underlying probability space of a random variable will always tacitly
be assumed to be (Ω,A,P).
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If a real-valued random variable X is integrable, then its expected valueexpected valueexpected valueexpected valueexpected valueexpected valueexpected valueexpected valueexpected valueexpected valueexpected valueexpected valueexpected valueexpected valueexpected valueexpected valueexpected value

E(X) =

∫
X dP

exists and is finite. We call E(X2) the second momentsecond momentsecond momentsecond momentsecond momentsecond momentsecond momentsecond momentsecond momentsecond momentsecond momentsecond momentsecond momentsecond momentsecond momentsecond momentsecond moment of X. If X has finite second
moment, then it has finite expectation because |X| ≤ X2 + 1. In this case, we define
the variancevariancevariancevariancevariancevariancevariancevariancevariancevariancevariancevariancevariancevariancevariancevariancevariance of X by

var(X) = E((X− E(X))2) = E(X2)− (E(X))2

which clearly exists and is finite as well.

Let C be a sub-ã-algebra of A. If X is an integrable real-valued random variable, then
the conditional expectationconditional expectationconditional expectationconditional expectationconditional expectationconditional expectationconditional expectationconditional expectationconditional expectationconditional expectationconditional expectationconditional expectationconditional expectationconditional expectationconditional expectationconditional expectationconditional expectation of X given C is defined by the following Radon-Nikodym
derivative.

E(X | C) =
dÞ

d(P � C)

with

Þ : C 3 C 7→
∫
C
X dP ∈ R

Let us verify that the Radon-Nikodym derivative above is well defined. That entails
verifying that

• P � C is a ã-finite positive measure on (Ω,C)

• Þ is a finite signed measure on (Ω,C)

• Þ is absolutely continuous with respect to P � C.

Clearly P � C is a (ã-)finite positive measure on (Ω,C) because P is finite positive
measure on (Ω,A). By the linearity of the integral and Lebesgue’s dominated
convergence theorem, Þ is a signed measure on (Ω,C). Since X is integrable, Þ is
finite.

Let C ∈ C. If (P � C)(C) = 0, then P(C) = 0,
so X[· ∈ C] vanishes P-almost everywhere and hence Þ(C) = 0.

That is, Þ is absolutely continuous with respect to P � C. As such, the Radon-
Nikodym derivative of Þ with respect to P � C is well defined.

We can now define conditional probabilities over sub-ã-algebras as follows: the
conditional probabilityconditional probabilityconditional probabilityconditional probabilityconditional probabilityconditional probabilityconditional probabilityconditional probabilityconditional probabilityconditional probabilityconditional probabilityconditional probabilityconditional probabilityconditional probabilityconditional probabilityconditional probabilityconditional probability of A given C is given by

P(A | C) = E(X | C)

with X(é) = [é ∈ A].
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The expected value and variance defined in this way satisfy all their usual properties
that you might be used to from an introductory probability course.

Let us now focus our attention on convergence in probability.

Definition 3.0.1. Let (S, ‖·‖) be a normed space and X, (Xn) be S-valued random
variables. Here ℬ (the ã-algebra on S) is the ã-algebra generated by the topology
induced by the metric induced by ‖·‖. Then Xn converges in probabilityconverges in probabilityconverges in probabilityconverges in probabilityconverges in probabilityconverges in probabilityconverges in probabilityconverges in probabilityconverges in probabilityconverges in probabilityconverges in probabilityconverges in probabilityconverges in probabilityconverges in probabilityconverges in probabilityconverges in probabilityconverges in probability to X if

lim
n

P
(
‖Xn − X‖ > ×

)
= lim

n
P({é ∈ Ω : ‖Xn(é)− X(é)‖ > ×}) = 0

holds for all × ≥ 0. We write Xn
p→ X.

Remark 3.0.2. The definition above only makes sense if

A ≡ {é ∈ Ω : ‖Xn(é)− X(é)‖ > ×}

is measurable. By the reverse triangle inequality, ‖·‖ is continuous and hence Borel
measurable. Since the difference of measurable functions is measurable,

f(·) ≡ ‖(Xn − X)(·)‖

is measurable as the composition of measurable functions, so

A = {é ∈ Ω : ‖Xn(é)− X(é)‖ > ×} = {é ∈ Ω : f(é) > ×} ∈ A

and hence P(A) is defined.

Definition 3.0.3. Let Ó ∈ S and X be the random variable defined by

X(é) = Ó for all é ∈ Ω.

We say that Xn is a consistent estimatorconsistent estimatorconsistent estimatorconsistent estimatorconsistent estimatorconsistent estimatorconsistent estimatorconsistent estimatorconsistent estimatorconsistent estimatorconsistent estimatorconsistent estimatorconsistent estimatorconsistent estimatorconsistent estimatorconsistent estimatorconsistent estimator of Ó if Xn
p→ X.We write Xn

p→ Ó.

Definition 3.0.4. We say that Xn converges in probability to∞converges in probability to∞converges in probability to∞converges in probability to∞converges in probability to∞converges in probability to∞converges in probability to∞converges in probability to∞converges in probability to∞converges in probability to∞converges in probability to∞converges in probability to∞converges in probability to∞converges in probability to∞converges in probability to∞converges in probability to∞converges in probability to∞ if

lim
n

P
(
‖Xn‖ > K

)
= lim

n
P({é ∈ Ω : ‖Xn(é)‖ > K}) = 1

holds for all K ≥ 0.We write Xn
p→∞.

Remark 3.0.5. Since f ≡ ‖·‖ ◦ Xn is measurable as the composition of measurable
functions,

A ≡ {é ∈ Ω : ‖Xn(é)‖ > K} = {é ∈ Ω : f(é) > K} ∈ A

so P(A) is defined.
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Having introduced convergence in probability, let us talk about stochastic processes
and filtrations.

Definition 3.0.6. A stochastic processstochastic processstochastic processstochastic processstochastic processstochastic processstochastic processstochastic processstochastic processstochastic processstochastic processstochastic processstochastic processstochastic processstochastic processstochastic processstochastic process is a function

X : T 3 t 7→ X(t)

such that the X(t)’s are random variables with the same domain and codomain. Say,

X(t) : (Ω,A,P)→ (S,ℬ)

for all t ∈ T.

In practice, T is typically a set of integers (discrete time) or an interval of real numbers
(continuous time). The set S is called the state spacestate spacestate spacestate spacestate spacestate spacestate spacestate spacestate spacestate spacestate spacestate spacestate spacestate spacestate spacestate spacestate space and, for é ∈ Ω, the function

X(·)(é) : T→ S

is called a sample pathsample pathsample pathsample pathsample pathsample pathsample pathsample pathsample pathsample pathsample pathsample pathsample pathsample pathsample pathsample pathsample path.

Example 3.0.7. Imagine flipping a fair coin thrice. This can be interpreted as a
discrete stochastic process

X : {1, 2, 3} 3 ` 7→ X(`)

where X(`) represents the `-th coin flip. As such, X(`) takes values in {H,T} (the
state space) and

P(X(`) = H) = P(X(`) = T) = 1/2

for all `. An example of a sample path is

1 7→ T, 2 7→ T, 3 7→ T

(I got tails thrice in a row when I flipped a coin for this example...)

Definition 3.0.8. Let (Ω,A) be measurable space and T be a set of integers (discrete
time) or an interval of real numbers (continuous time). A filtrationfiltrationfiltrationfiltrationfiltrationfiltrationfiltrationfiltrationfiltrationfiltrationfiltrationfiltrationfiltrationfiltrationfiltrationfiltrationfiltration on (Ω,A) is a
function

ℱ : T 3 t 7→ ℱt

where the ℱt’s are sub-ã-algebras of A that are increasing:

if s ≤ t, then ℱs ⊆ ℱt.
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We typically considers filtrations in conjunction with stochastic processes. If we have
a stochastic process X on T, then we consider filtrations ℱ on T. The idea is that ℱt
contains information on X up to and including time t.

Example 3.0.9. Let us construct a filtration ℱ on

(Ω = {H,T}3,A = ℘(Ω))

containing information on the stochastic process X from Example 3.0.7.

Let us start with ℱ1. Up to and including the first flip, we only know whether the first
flip resulted in heads or tails. If heads, then the final tally lies in

AH ≡ {HTT,HTH,HHT,HHH}

If tails, then the final tally lies in AT ≡ Ω \ AH. Since ℱ1 has to be a sub-ã-algebra of
A, let us define

ℱ1 = ã{AH,AT} = {∅,AH,AT,Ω}

Up to and including the second flip, the possible tallies are HH, HT, TH and TT, so we
know in which one of the following sets the final tally lies.

AHH ≡ {HHT,HHH}
AHT ≡ {HTT,HTH}
ATH ≡ {THT,THH}
ATT ≡ {TTT,TTH}

As such, let us define

ℱ2 = ã{AHH,AHT,ATH,ATT} = {∅,AH,AT,AHH,AHT,ATH,ATT,Ω}

And finally, up to and including the third flip, we know exactly what the final tally is, so

ℱ3 ≡ ã{{é} : é ∈ Ω} = ℘(Ω) = A

Now, ℱ is indeed a filtration, because ℱ1 ⊆ ℱ2 ⊆ ℱ3.

The previous examples were inspired by [3, Example 2.2.1].
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Chapter 4

Product integral

In this chapter, we will introduce the concept of the product integral, which will appear
prominently throughout the later chapters. First, we will define the product integral
only for absolutely continuous functions. Secondly, we will show that it is related to a
certain Volterra equation. Thirdly, we shall give a more general and more intuitive
definition of the product integral, although we will not prove that it is well defined.

For brevity’s sake, we will omit proofs of measurability of functions in this chapter.
Nor shall we mention the use of such integral properties as monotonicity and the
triangle inequality.

The author pieced together this section by consulting [4], [5], [6] and [1].

4.1 Definition
Before we can define the product integral, we need to give some auxiliary definitions.

Definition 4.1.1. A matrix-valued function F on [a, b] is called absolutely continuousabsolutely continuousabsolutely continuousabsolutely continuousabsolutely continuousabsolutely continuousabsolutely continuousabsolutely continuousabsolutely continuousabsolutely continuousabsolutely continuousabsolutely continuousabsolutely continuousabsolutely continuousabsolutely continuousabsolutely continuousabsolutely continuous
if there exists an integrable function f on [a, b] such that

F(x) = F(a) +

∫ x

a
f(t) dt

for all x ∈ [a, b]. One can easily verify that f is unique almost everywhere.
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Let F be as in Definition 4.1.1 and define

ℐ0(a, x;F) = I

ℐn+1(a, x;F) =

∫ x

a
ℐn(a, t;F)f(t) dt

In other words, for n ≥ 1,

ℐn(a, x;F) =

∫ x

a

∫ x1

a
· · ·
∫ xn−1

a
f(xn) · · · f(x1) dxn · · · dx1

Since f is unique almost everywhere, ℐn is well defined.

We are now ready to define the product integral.

Definition 4.1.2. Define the product integralproduct integralproduct integralproduct integralproduct integralproduct integralproduct integralproduct integralproduct integralproduct integralproduct integralproduct integralproduct integralproduct integralproduct integralproduct integralproduct integral as

P(a, x;F) =

∞∑
n=0

ℐn(a, x;F)

To finish up this section, we will show that the series above is absolutely convergent
and hence well defined. To do that, we introduce a specific matrix norm.

Let ‖·‖ be the following matrix norm.

‖A‖ = max
i

∑
j
|Aij|

One easily verifies that it is submultiplicative.

Let f be a matrix-valued fucntion. If f is integrable, then so is ‖f‖ and

‖
∫

f‖ ≤
∫
‖f‖

Indeed, f being integrable means that the fij’s are integrable, so the |fij|’s are
integrable as well. Consequently,

‖f‖ = max
i

∑
j
|fij|

is integrable as the maximum of sums of integrable functions.
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Furthermore,

‖
∫

f‖ = max
i

∑
j
|
∫

fij|

≤ max
i

∑
j

∫
|fij| =

∫
max
i

∑
j
|fij| =

∫
‖f‖

which will be used extensively.

Let us return to our original goal of proving absolute convergence. They key argument
is the following.

Lemma 4.1.3. Let

J =

∫ x

a
‖f(t)‖ dt

(note that J <∞ because f is integrable). Then

‖ℐn(a, x,F)‖ ≤ Jn/n!

if we agree that 00 = 1.

Proof. Clearly

‖ℐ0(a, x,F)‖ = ‖I‖ = 1 = J0/0!

If n ≥ 1, then

‖ℐn(a, x;F)‖ =

∥∥∥∥∫ x

a

∫ x1

a
· · ·
∫ xn−1

a
f(xn) · · · f(x1) dxn · · · dx1

∥∥∥∥
≤
∫ x

a

∫ x1

a
· · ·
∫ xn−1

a
‖f(x1) · · · f(xn)‖ dxn · · · dx1

!
≤
∫ x

a

∫ x1

a
· · ·
∫ xn−1

a
‖f(x1)‖ · · · ‖f(xn)‖ dxn · · · dx1

because ‖·‖ is submultiplicative.
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If we let Sn denote the symmetric group on {1, . . . , n}, then

n!

∫ x

a

∫ x1

a
· · ·
∫ xn−1

a
‖f(x1)‖ · · · ‖f(xn)‖ dxn · · · dx1

!
=∑

ã∈Sn

∫ x

a

∫ xã(1)

a
· · ·
∫ xã(n−1)

a
‖f(xã(1))‖ · · · ‖f(xã(n))‖ dxã(n) · · · dxã(1) =

∫ x

a

∫ x

a
· · ·
∫ x

a
‖f(x1)‖ · · · ‖f(xn)‖ dxn · · · dx1 =(∫ x

a
‖f(t)‖ dt

)n

because the ‖f(xi)‖’s commute. The result now readily follows.

By the lemma above,

‖P(a, x;F)‖ ≤
∞∑
n=0
‖ℐn(a, x;F)‖ =

∞∑
n=0

Jn

n!
= eJ <∞

establishing the absolute convergence of P(a, x;F).

4.2 Volterra equation
We will now show that the product integral P(a, x;F) is, in a sense, the unique
solution to the Volterra equation

Z(x) = I +

∫ x

a
Z(t)f(t) dt

for all x ∈ [a, b]. Before we can give the precise statement, we need the following
definition.

Definition 4.2.1. Let I ⊆ R be an interval. A function f : I→ R is said to have lefthave lefthave lefthave lefthave lefthave lefthave lefthave lefthave lefthave lefthave lefthave lefthave lefthave lefthave lefthave lefthave left
limitslimitslimitslimitslimitslimitslimitslimitslimitslimitslimitslimitslimitslimitslimitslimitslimits if

f(x−) = lim
y↑x

f(y)

exists for all x ∈ I such that there exists a y ∈ I such that y < x.

Similarly, f has right limitshas right limitshas right limitshas right limitshas right limitshas right limitshas right limitshas right limitshas right limitshas right limitshas right limitshas right limitshas right limitshas right limitshas right limitshas right limitshas right limits if

f(x+) = lim
y↓x

f(y)

exists for all x ∈ I such that there exists a y ∈ I such that x < y.
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A matrix-valued valued function is said to have left (right) limits if each of its
components has left (right) limits.

Theorem 4.2.2. Not only is Z(x) = P(a, x;F) a solution of

Z(x) = I +

∫ x

a
Z(t)f(t) dt

for all x ∈ [a, b], but, if we require that Z has left and right limits, then Z(x) =
P(a, x;F) is the only solution.

Proof. First, we show that P(a, x;F) is a solution. That is,

P(a, x;F)− I =

∫ x

a
P(a, t;F)f(t) dt

Indeed, by Fubini’s theorem,

P(a, x;F)− I =

∞∑
n=1

ℐn(a, x;F) =

∞∑
n=0

∫ x

a
ℐn(a, t;F)f(t) dt

!
=

∫ x

a

∞∑
n=0

ℐn(a, t;F)f(t) dt =

∫ x

a
P(a, t;F)f(t) dt

We may use Fubini’s theorem because, by Lemma 4.1.3,∥∥∥∥ ∞∑
n=0

∫ x

a
ℐn(a, t;F)f(t) dt

∥∥∥∥ ≤ ∞∑
n=0

∫ x

a
‖ℐn(a, t;F)‖ · ‖f(t)‖ dt

!
≤
∞∑
n=0

∫ x

a

1
n!

(∫ t

a
‖f(u)‖ du

)n
· ‖f(t)‖ dt

=

∞∑
n=0

∫ J

0

vn

n!
dv =

∞∑
n=0

Jn+1

(n + 1)!
= eJ − 1 <∞

with

v =

∫ t

a
‖f(u)‖ du

Second, we show unicity. If Z has both left and right limits and satisfies

Z(x)− I =

∫ x

a
Z(t)f(t) dt

for all x ∈ [a, b], then Z(x) = P(a, x;F).
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Indeed, if we define

P(n)(a, x;F) =

n∑
k=0

ℐk(t)

then

P(n+1)(a, x;F) = I +

∫ x

a
P(n)(a, t;F)f(t) dt

If we subtract the equation above from the Volterra equation with Z, then we see that

Z(x)−P(n+1)(a, x;F) =

∫ x

a
(Z(t)−P(n)(a, t;F))f(t) dt

Since Z has both left and right limits, by Theorem A.0.1, it is bounded on [a, b]. As
such,

M ≡ sup
t∈[a,b]

‖Z(t)‖ <∞

and hence

‖Z(x)− I‖ ≤
∫ x

a
‖Z(t)‖ · ‖f(t)‖ dt ≤ M

∫ x

a
‖f(t)‖ dt = M · J

By induction on n, we will show that

‖Z(x)−P(n)(a, x;F)‖ ≤ M
Jn+1

(n + 1)!
= M

1
(n + 1)!

(∫ x

a
‖f(t)‖ dt

)n+1

We have just shown that it holds for n = 0. If it holds for n, then

‖Z(x)−P(n+1)(a, x;F)‖ ≤
∫ x

a
‖Z(t)−P(n)(a, t;F)‖ · ‖f(t)‖ dt

≤ M
∫ x

a

1
(n + 1)!

(∫ t

a
‖f(u)‖ du

)n+1
· ‖f(t)‖ dt

= M
Jn+2

(n + 2)!

so it holds for n + 1. As such, if n→∞, then

Z(x) = lim
n

P(n)(a, x;F) = P(a, x;F)

proving unicity.
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4.3 General case
We will first give an alternative definition of the product integral and then we will
generalize the alternative definition to a broader class of functions. As such, just like
before, let F be a matrix-valued function on [a, b] that is absolutely continuous.

Let T = {ti : i = 0, . . . , n} be a partition of [a, b] (that is, a = t0 < t1 < · · · < tn = b)
and |T | = maxi(ti − ti−1). If we then define

b

R
a

(I + dF) = lim
|T |→0

∏
T

(I + ∆F)

= lim
|T |→0

n∏
i=1

(I + F(ti)− F(ti−1))

(with the empty product equaling the identity matrix), then [by 1, Theorem II.6.4]

b

R
a

(I + dF) = P(a, b;F) (4.1)

For absolutely continuous F, the limit above exists (because the product integral
exists).

It was clearly the previous definition that inspired both the name and the notation of
the product integral. To see this, we urge the reader to compare the definition above
with the definition of the Riemann-Stieltjes integral.

The key observation to generalizing the product integral is that the limit above exists
for more than just absolutely continuous F’s. But, before we can formulate the
definition of the generalized product integral, we need introduce the terms “cadlag”
and “locally bounded variation”.

Definition 4.3.1. A cadlagcadlagcadlagcadlagcadlagcadlagcadlagcadlagcadlagcadlagcadlagcadlagcadlagcadlagcadlagcadlagcadlag function is a right continuous function with left limits.

Remark 4.3.2. Cadlag is a french initialism of “continue à droite, limite à gauche”
meaning “right continuous, left limits”.

Definition 4.3.3. Let T be a partition of [a, b]. A matrix-valued function F on [0,∞)
is said to be of locally bounded variationof locally bounded variationof locally bounded variationof locally bounded variationof locally bounded variationof locally bounded variationof locally bounded variationof locally bounded variationof locally bounded variationof locally bounded variationof locally bounded variationof locally bounded variationof locally bounded variationof locally bounded variationof locally bounded variationof locally bounded variationof locally bounded variation if

sup
T

∑
T

‖∆F‖ = sup
T

n∑
i=1
‖F(ti)− F(ti−1)‖ <∞

for any [a, b] ⊆ [0,∞).
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Theorem 4.3.4. Let T be a partition of [a, b]. If F is a matrix-valued function on
[0,∞) that is cadlag and of locally bounded variation, then

lim
|T |→0

∏
T

(I + ∆F)

exists for any [a, b] ⊆ [0,∞).

The aforementioned theorem is basically a rewording of [1, Definition II.6.1].

Definition 4.3.5. Let T be a partition of [a, b].We define the generalized productgeneralized productgeneralized productgeneralized productgeneralized productgeneralized productgeneralized productgeneralized productgeneralized productgeneralized productgeneralized productgeneralized productgeneralized productgeneralized productgeneralized productgeneralized productgeneralized product
integralintegralintegralintegralintegralintegralintegralintegralintegralintegralintegralintegralintegralintegralintegralintegralintegral as

b

R
a

(I + dF) = lim
|T |→0

∏
T

(I + ∆F)

for F as in Theorem 4.3.4.

Remark 4.3.6. Because the non-generalized product integral coincides with the
generalized product integral, we will simply call them both just “product integral”.

One can easily verify that if F is absolutely continuous, then it is (right) continuous and

∑
T

‖∆F‖ ≤
∫ b

a
‖f(t)‖ dt <∞

(because f is integrable) so it is of locally bounded variation.

Section 6.2 and 7.1 offer examples of the generalized product integral in action.

In case the reader is wondering why we did not give a proof of equation (4.1) or
Theorem 4.3.4, it is because, in order to do so, we would have to do Lebesgue-
Stieltjes integration, which is beyond the scope of this thesis.
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Chapter 5

Multi-state models

In this chapter, we will give the formal definition of a multi-state model and other
relevant definitions pertaining to multi-state models such as the (cumulative) transition
hazard, the transition probability and the state occupation probability. We shall also
touch base with right censoring and the independent censoring assumption.

5.1 Definitions
We will roughly follow [7, section 2].

Definition 5.1.1. A multi-state processmulti-state processmulti-state processmulti-state processmulti-state processmulti-state processmulti-state processmulti-state processmulti-state processmulti-state processmulti-state processmulti-state processmulti-state processmulti-state processmulti-state processmulti-state processmulti-state process is a continuous time stochastic process X on
[0,∞) with a finite state space and cadlag sample paths.

We will typically, but not always (see the proof of Theorem 7.1.3), take the finite state
space to be {1, . . . ,K}.

Remark 5.1.2. Fix é. Since X(·)(é) is cadlag, it has left and right limits. By Theorem
A.0.2, any function with left and right limits has but countably many discontinuities.
Ergo, X(·)(é) is continuous almost everywhere.

What’s more, X has only finitely many discontinuities (also called jumps) in finite
time. Indeed, from the proof of Theorem A.0.2 we see that

{t ∈ [0, n] : |X(t+)(é)− X(t−)(é)| > 1/2}

is finite for all n ∈ N. Now, since X takes values in {1, . . . ,K}, any discontinuity will
be of size bigger than 1/2, so X has only finitely many jumps in finite time.

Suppose we have n individuals, which we label with 1, . . . , n. We ascribe to each
individual i a multi-state process X∼i . That is what we call a multi-state modelmulti-state modelmulti-state modelmulti-state modelmulti-state modelmulti-state modelmulti-state modelmulti-state modelmulti-state modelmulti-state modelmulti-state modelmulti-state modelmulti-state modelmulti-state modelmulti-state modelmulti-state modelmulti-state model.
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Henceforth we assume that the X∼i ’s are independent and identically distributed. Note
that this assumption is a homogeneity assumption, in the sense that we are modelling a
homogeneous population of identically distributed components. Furthermore, let X∼
be identically distributed to the X∼i ’s.

Definition 5.1.3. If X is a matrix-valued function on [0,∞) that has left limits, then

dX(s) = X(s)− X(s−)

Let i ∈ {1, . . . , n} and j 6= k ∈ {1, . . . ,K} 3 `,m. Consider

• the counting processcounting processcounting processcounting processcounting processcounting processcounting processcounting processcounting processcounting processcounting processcounting processcounting processcounting processcounting processcounting processcounting process

N∼ijk(t) = #{u ≤ t : X∼i (u−) = j,X∼i (u) = k}

which counts the number of direct transitions of subject i from state j to state k
up to and including time t. By Remark 5.1.4, N∼ijk(t) is finite and hence well
defined.

Clearly

N∼ijk(t−) = #{u < t : X∼i (u−) = j,X∼i (u) = k}

so N∼ijk has left limits. As such,

dN∼ijk(t) = N∼ijk(t)− N∼ijk(t−)

= [X∼i (t−) = j,X∼i (t) = k] ∈ {0, 1}

tells us whether individual i jumped from state j to state k at time t.

• the at-risk processat-risk processat-risk processat-risk processat-risk processat-risk processat-risk processat-risk processat-risk processat-risk processat-risk processat-risk processat-risk processat-risk processat-risk processat-risk processat-risk process

Y∼ij (t) = [X∼i (t−) = j]

which indicates whether individual i is in state j right before time t.

• the filtration

ℱ∼t = ã{(N∼ijk(u),Y∼ij (u)) : u ≤ t, i ∈ {1, . . . , n}, j 6= k ∈ {1, . . . ,K}}
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• the transition hazardtransition hazardtransition hazardtransition hazardtransition hazardtransition hazardtransition hazardtransition hazardtransition hazardtransition hazardtransition hazardtransition hazardtransition hazardtransition hazardtransition hazardtransition hazardtransition hazard

Ójk(t) = lim
h↓0

P(X∼((t + h)−) = k | X∼(t−) = j)
h

= lim
h↓0

P(X∼(t + h) = k | X∼(t−) = j)
h

which we assume exists. We can then not-so-rigorously write

Ójk(t) dt = P(dN∼ijk(t) = 1 | X∼i (t−) = j)

= E(dN∼ijk(t) | X∼i (t−) = j)

because X∼ be identically distributed to the X∼i ’s. Let us finally define the
K× K matrix Ó(t) by

[Ó(t)]jk = Ójk(t)

[Ó(t)]jj = −
∑
k 6=j

Ójk(t)

• the cumulative transition hazardcumulative transition hazardcumulative transition hazardcumulative transition hazardcumulative transition hazardcumulative transition hazardcumulative transition hazardcumulative transition hazardcumulative transition hazardcumulative transition hazardcumulative transition hazardcumulative transition hazardcumulative transition hazardcumulative transition hazardcumulative transition hazardcumulative transition hazardcumulative transition hazard

Ajk(t) =

∫ t

0
Ójk(u) du

In order for this to make sense, we assume that the Ójk’s are integrable over
[0, t]. Also, define the K× K matrix A(t) analogously to Ó(t).

• the transition probabilitytransition probabilitytransition probabilitytransition probabilitytransition probabilitytransition probabilitytransition probabilitytransition probabilitytransition probabilitytransition probabilitytransition probabilitytransition probabilitytransition probabilitytransition probabilitytransition probabilitytransition probabilitytransition probability

P`m(s, t) = P(X∼(t) = m | X∼(s) = `)

We define the K× K matrix P(s, t) by

[P(s, t)]`m = P`m(s, t)

Since
∑

m P`m(s, t) = 1, it follows componentwise that

Ó(t) = lim
h↓0

P(t−, t + h)− I
h
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• the state occupation probabilitystate occupation probabilitystate occupation probabilitystate occupation probabilitystate occupation probabilitystate occupation probabilitystate occupation probabilitystate occupation probabilitystate occupation probabilitystate occupation probabilitystate occupation probabilitystate occupation probabilitystate occupation probabilitystate occupation probabilitystate occupation probabilitystate occupation probabilitystate occupation probability

Pm(t) = P(X∼(t) = m)

Define the 1× K matrix (row vector) P(t) by

[P(t)]1m = Pm(t)

From the law of total probability, one can infer that

P(t) = á(0)P(0, t)

with á(0) a 1× K matrix with

[á(0)]1k = P(X∼(0) = k)

Finally, we call a multi-state model MarkovMarkovMarkovMarkovMarkovMarkovMarkovMarkovMarkovMarkovMarkovMarkovMarkovMarkovMarkovMarkovMarkov if

P(X∼(t) = m | X∼(s) = `,ℱ∼s−) = P(X∼(t) = m | X∼(s) = `)

If we consider time s to be the present, then the Markov property is intuitively saying
that the probability that any individual, that is in state ` right now, will be in state m in
the future does not dependent on where that individual was previously or how long
they were there.

5.2 Right censoring
Let us begin by explaining what it means for a multi-state model to have right
censoring.

Definition 5.2.1. A right-censoring timeright-censoring timeright-censoring timeright-censoring timeright-censoring timeright-censoring timeright-censoring timeright-censoring timeright-censoring timeright-censoring timeright-censoring timeright-censoring timeright-censoring timeright-censoring timeright-censoring timeright-censoring timeright-censoring time is a random variable C : Ω→ [0,∞].

We say that a multi-state model has right censoring if, to every individual i, we have
an associated right-censoring time Ci.

Suppose that the X∼i ’s and Ci’s are independent and identically distributed. Let

Xi(t) = X∼i (t ∧ Ci)

Nijk(t) = #{u ≤ t : Xi(u−) = j,Xi(u) = k,Ci ≥ u}
Yij(t) = [Xi(t−) = j,Ci ≥ t]

which we call the censored multi-state, counting and at-risk processes. Intuitively, we
can no longer observe what state individual i is in after time Ci.
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Since

Nijk(t) ≤ N∼ijk(t)

it is finite and hence well defined. Clearly it has left limits as well. As such,

dNijk(t) = Nijk(t)− Nijk(t−)

= [Xi(t−) = j,Xi(t) = k,Ci ≥ t] ∈ {0, 1}

tells us whether we observed that individual i jumped from state j to state k at time t.

We also want to highlight that Yij is “predictable” in a sense.

Theorem 5.2.2. Yij(t) = Yij(t−). That is,

Yij(t) = 1⇔ Yij(t−) = 1, or equivalently, Yij(u) = 1 for all u . t.

Proof. We’ll first show “⇒”. Then we will show “⇐” by contraposition.

If Yij(t) = 1, then Xi(t−) = j and Ci ≥ t.

• If Xi(t−) = j, then Xi((t−)−) = Xi(t−) = j as well.

• If Ci ≥ t, then clearly Ci ≥ u for all u < t.

Thus, if Yij(t) = 1, then Yij(t−) = 1, or equivalently, Yij(u) = 1 for all u . t.

As for “⇐”, suppose that Yij(t) = 0. Then Xi(t−) 6= j or Ci < t.

• If Xi(t−) 6= j, then Xi((t−)−) = Xi(t−) 6= j as well.

• If Ci < t, then Ci = v for some v < t, so Ci < u for all v < u < t.

Either case clearly establishes the contraposition.

At this juncture, we would like to show you that right censoring makes the situation
considerably more difficult. Indeed, without it (Ci =∞ for all i), it follows readily
from the weak law of large numbers (see Theorem B.0.1) that

1
n

n∑
i=1

[Xi(t) = m] =
1
n

n∑
i=1

[X∼i (t) = m]
p→ Pm(t)

because the [X∼i (t) = m]’s are Bernoulli distributed with parameter

P(X∼i (t) = m) = P(X∼(t) = m) = Pm(t)
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Don’t forget that the weak law of large numbers requires that the [X∼i (t) = m]’s be
independent and identically distributed, which readily follows from the fact that the
the X∼i ’s are. So, without right censoring, estimating state occupation probabilities
consistently is very easy.

In a similar way, one can show that without right censoring

1
n

n∑
i=1

[Xi(t) = m,Xi(s) = `]
p→ P(X∼(t) = m,X∼(s) = `)

so, by the continuous mapping theorem (Example D.0.3),∑n
i=1 [Xi(t) = m,Xi(s) = `]∑n

i=1 [Xi(s) = `]

p→ P(X∼(t) = m,X∼(s) = `)

P(X∼(s) = `)

= P(X∼(t) = m | X∼(s) = `) = P`m(s, t)

if P(X∼(s) = `) > 0. As such, without right censoring, the transition probabilities can
be very easily consistently estimated as well.

Now, even with right censoring, the estimators above would clearly still be consistent
if you disregard the censored individuals. That is, sum only over those i’s such that
Ci =∞. However, we do not want to do that. Throwing away information reduces
accuracy and we want to have as much accuracy as possible, even if it means having to
do more (complicated) work.

Finally, we reveal the independent censoring assumptionindependent censoring assumptionindependent censoring assumptionindependent censoring assumptionindependent censoring assumptionindependent censoring assumptionindependent censoring assumptionindependent censoring assumptionindependent censoring assumptionindependent censoring assumptionindependent censoring assumptionindependent censoring assumptionindependent censoring assumptionindependent censoring assumptionindependent censoring assumptionindependent censoring assumptionindependent censoring assumption

P(dNijk(t) = 1 | Yij(t) = 1,ℱt−) = P(dN∼ijk(t) = 1 | Y∼ij (t) = 1,ℱ∼t−)

with

ℱt = ã{(Nijk(u),Yij(u)) : u ≤ t, i ∈ {1, . . . , n}, j 6= k ∈ {1, . . . ,K}}

Intuitively, the independent censoring assumption enforces that it should be just as
probable to register a jump with right censoring as it would be without right censoring.

Henceforth we shall assume that the independent censoring assumption is in effect.
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Chapter 6

Markov case

We have seen that, without right censoring, estimating probabilities consistently is
very easy. Since we don’t want to throw away any data, we are going to have to do
something more complicated in the case of right censoring.

In this chapter, we will have a look at the Markov case. The next chapter shall deal
with the even more difficult non-Markov case.

First, we will derive that the transition probability can be written as the product
integral of the cumulative transition hazard via a Volterra integral representation,
which we will in turn derive from the so-called Chapman-Kolmogorov equations.
Next, we will heuristically derive the Nelson-Aalen estimator from the independent
censoring assumption. And finally, we shall touch upon the Aalen-Johansen estimator.
Both the Nelson-Aalen and the Aalen-Johansen estimator turn out to be consistent.

6.1 Product integral representation
In order to derive the product integral representation we are after, we will first derive
the so-called Chapman-Kolmogorov equations.

Theorem 6.1.1. If our multi-state model is Markov and s ≤ u ≤ t, then

P(s, t) = P(s, u)P(u, t)

Proof. Because our multi-state model is Markov,
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Phj(s, t) = P(X∼(t) = j | X∼(s) = h)

=

K∑
`=1

P(X∼(t) = j,X∼(u) = ` | X∼(s) = h)

=

K∑
`=1

P(X∼(t) = j | X∼(u) = `,X∼(s) = h)P(X∼(u) = ` | X∼(s) = h)

!
=

K∑
`=1

P(X∼(t) = j | X∼(u) = `)P(X∼(u) = ` | X∼(s) = h)

=

K∑
`=1

P`j(u, t)Ph`(s, u) =

K∑
`=1

Ph`(s, u)P`j(u, t)

The matrix equation now follows componentwise.

In Appendix C, we present a proof of the following fact.

Theorem 6.1.2. If s ≤ t, then

P(s, t) = I +

∫ t

s
P(s, u)Ó(u) du

Since X∼ is cadlag, so is

t 7→ [P(s, t)]`m = P`m(s, t) = P(X∼(t) = m | X∼(s) = `)

As such, t 7→ P(s, t) is cadlag and hence has left and right limits. Moreover, since

A(t) =

∫ t

0
Ó(u) du

it follows that A is absolutely continuous on any [s, t] ⊆ [0,∞). As such, by Theorem
4.2.2, the following product integral representation now follows.

Corollary 6.1.3. If s ≤ t, then

P(s, t) = P(s, t;A) =
t

R
s

(I + dA)
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6.2 Nelson-Aalen estimator
In this section, we will heuristically show you where the Nelson-Aalen estimator
comes from. The following argument is loosely based on [8, section 1.4 and 3.1.5]
and [1, section II.1 and IV.1.1].

Note that

E(dNijk(t) | ℱt−) = P(dNijk(t) = 1 | ℱt−)

= P(dNijk(t) = 1,Yij(t) = 1 | ℱt−)

because

dNijk(t) = 1⇒ Xi(t−) = j,Ci ≥ t⇔ Yij(t) = 1

(if we witness that individual i jumps from state j to state k at time t, then we must
have known that they were at state j right before time t and that right censoring hasn’t
yet kicked in), so

E(dNijk(t) | ℱt−) =

P(dNijk(t) = 1,Yij(t) = 1 | ℱt−) =

P(Yij(t) = 1 | ℱt−) · P(dNijk(t) = 1 | Yij(t) = 1,ℱt−) =

P(Yij(t−) = 1 | ℱt−) · P(dN∼ijk(t) = 1 | Y∼ij (t) = 1,ℱ∼t−) =

Yij(t−) · P(dN∼ijk(t) = 1 | X∼i (t−) = j) dt =

Yij(t) · Ójk(t) dt

because

• conditional probability (second equality)

• Yij(t) = Yij(t−) (third and fifth equality)

• independent censoring assumption (third equality)

• our multi-state model is Markov (fourth equality)

Now define (for j 6= k)

Njk(t) =

n∑
i=1

Nijk(t)

Yj(t) =

n∑
i=1

Yij(t)

and the matrix N(t) similarly to Ó(t) and

YD(t) = diag(Y1(t), . . . ,Yn(t))
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Then, by summing over i, we see that

E(dNjk(t) | ℱt−) = Yj(t)Ójk(t) dt

Although the differentials are already not so rigorous, now we are going to do
something even more crude. Clearly E(dNijk(t) | ℱt−) is impossible to obtain in
practice, but, and here is the crux, dNijk(t) is not. If we assume that the actual thing is
close enough to its average (which sounds reasonable enough), then we get that

dNjk(t) ≈ Yj(t)Ójk(t) dt

At this juncture, we wish to divide by Yj(t), which requires that Yj(t) > 0. As such,
we first multiply by

Jj(t) ≡
[
Yj(t) > 0

]
which yields that

Jj(t)
Yj(t)

dNjk(t) ≈ Jj(t)Ójk(t) dt

if we agree that 0/0 = 0. So,

if it is very likely that Yj(u) > 0 for almost every u ∈ [0, t],

then

A∧jk(t) ≡ “

∫ t

0

Jj(u)

Yj(u)
dNjk(u)” ≈

∫ t

0
Jj(u)Ójk(u) du ≈

∫ t

0
Ójk(u) du = Ajk(t)

where we have put quotation marks around the integral because we have not defined
what it means to integrate with respect to dNjk(u). In order to properly do this, we
would have to introduce stochastic integration, which is beyond the scope of this thesis.

Define A∧(t) similarly to A(t) and that is the Nelson-Aalen estimator (we will give a
different definition shortly).

Let (t`) be the increasing sequence of jump times of any individual from any state to
any other state. Then t` is the `-th jump time.

Let us justify that

A∧jk(t) = “

∫ t

0

Jj(u)

Yj(u)
dNjk(u)” =

∑
`:t`≤t

dNjk(t`)
Yj(t`)
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Since

dNjk(u) =

n∑
i=1

dNijk(u)

it is equal to 0 if u 6= t` for some ` and dNjk(t`) is the number of individuals that
jumps from state j to state k at the `-th jump time. Since there are only finitely many
t` ≤ t, we are effectively integrating over a finite set and integrals over finite sets are
finite sums.

Note that if Yj(t`) = 0, then no individual was in state j right before the `-th jump
time, so dNjk(t`) = 0 and hence

dNjk(t`)
Yj(t`)

=
0
0

= 0

is well defined. As such, the Nelson-Aalen estimator is well defined.

Our definition of the Nelson-Aalen estimator will be the matrix form of the sum above.

Definition 6.2.1. The Nelson-Aalen estimatorNelson-Aalen estimatorNelson-Aalen estimatorNelson-Aalen estimatorNelson-Aalen estimatorNelson-Aalen estimatorNelson-Aalen estimatorNelson-Aalen estimatorNelson-Aalen estimatorNelson-Aalen estimatorNelson-Aalen estimatorNelson-Aalen estimatorNelson-Aalen estimatorNelson-Aalen estimatorNelson-Aalen estimatorNelson-Aalen estimatorNelson-Aalen estimator is given by

A∧(t) =
∑
`:t`≤t

(
YD(t`)

)−1
dN(t`)

where we agree that 0/0 = 0.

And finally, as we have said earlier, the Nelson-Aalen estimator is consistent. A proof
of the following theorem can be found in [1, section IV.1.2]. It is based on the
so-called Lenglart’s inequality [see 1, section II.5.2.1].

Theorem 6.2.2. Let t ∈ [0,∞). If

Y(n)
j (u)

p→∞ for all j

for almost every u ∈ [0, t], then

sup
u∈[0,t]

‖A∧n (u)− A(u)‖ p→ 0

where we write Y(n)
j & A∧n instead of Yj & A∧ to remind you that they are dependent

on the total number of individuals.
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Upon further inspection, the assumption is plausible enough. Intuitively, it asserts
that, if there are enough individuals, it is very likely that any state can have any
number of individuals right before time u (for almost every u ≤ t).

In particular, from Definition 3.0.4, one finds that

lim
n

P
(
Y(n)
j (u) > 0

)
= 1

for almost every u ∈ [0, t], so, if there are enough individuals, then “it is very likely
that Yj(u) > 0 for almost every u ∈ [0, t]”.

Corollary 6.2.3. Let t ∈ [0,∞). Under the same condition as in Theorem 6.2.2,

A∧n (t)
p→ A(t)

6.3 Aalen-Johansen estimator
Since P(s, t) = Pt

s(I + dA), let

P∧(s, t) =
t

R
s

(I + dA∧)

We call P∧(s, t) the Aalen-Johansen estimatorAalen-Johansen estimatorAalen-Johansen estimatorAalen-Johansen estimatorAalen-Johansen estimatorAalen-Johansen estimatorAalen-Johansen estimatorAalen-Johansen estimatorAalen-Johansen estimatorAalen-Johansen estimatorAalen-Johansen estimatorAalen-Johansen estimatorAalen-Johansen estimatorAalen-Johansen estimatorAalen-Johansen estimatorAalen-Johansen estimatorAalen-Johansen estimator.

Let us justify that A∧ is in fact product integrable. Clearly it is cadlag and

∑
T

‖∆A∧‖ ≤
∑

`:t`∈[s,t]

∥∥∥∥(YD(t`)
)−1

dN(t`)
∥∥∥∥ <∞

for any partition T of [s, t] (because it is a finite sum), so A∧ is of locally bounded
variation as well.

From Definition 4.3.5, we can derive that

P∧(s, t) =
t

R
s

(I + dA∧) = lim
|T |→0

∏
T

(I + ∆A∧) =
∏

`:t`∈[s,t]
(I + dA(t`))

with T a partition of [s, t]. Note that the Aalen-Johansen estimator is thus a finite
product. This observation is going to be important in the next chapter.

31



Just like the Nelson-Aalen estimator, the Aalen-Johansen estimator is consistent as
well. A proof of the following theorem can be found in [1, section IV.4.2]. It is once
again based on Lenglart’s inequality, but this time the proof also uses the so-called
Duhamel’s equation.

In Appendix E, we lay out a novel proof of Duhamel’s equation for the non-
generalized product integral. It is (in our humble opinion) a very nice proof and, as
such, we strongly encourage the reader to check it out.

Theorem 6.3.1. Let s < v. If

Y(n)
j (u)

p→∞ for all j

for almost every u ∈ [s, v], then

sup
t∈[s,v]

‖P∧n (s, t)− P(s, t)‖ p→ 0

where we write Y(n)
j & P∧n instead of Yj & P∧ to remind you that they are dependent

on the total number of individuals.

One way to prove the above theorem is to transfer the convergence in probability
(consistency) of the Nelson-Aalen estimator,

A∧ p→ A

to the Aalen-Johansen estimator

P∧ = R(I + dA∧)
p→R(I + dA) = P

This works because the the product integral is continuous and the continuous mapping
theorem (Example D.0.2). Again, the details can be found in [1].

Corollary 6.3.2. Let s ≤ t. Then, under the same condition as in Theorem 6.3.1,

P∧n (s, t)
p→ P(s, t)
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Chapter 7

Non-Markov case

The Aalen-Johansen estimator is no longer consistent in the non-Markov case because
we used the Markov assumption to derive the Chapman-Kolmogorov equations, which
were used to derive a Volterra equation, from which we deduced that

P = R(I + dA)

As such, we must turn elsewhere. We introduce (as a product integral) and prove the
consistency of the so-called landmark Aalen-Johansen estimator.

In order to define the landmark Aalen-Johansen estimator (henceforth simply called
the LMAJ estimator), we first define

N(LM)
jk (t) =

n∑
i=1

Nijk(t)[Xi(s) = `]

Y(LM)
j (t) =

n∑
i=1

Yij(t)[Xi(s) = `]

Define the matrices N(LM) & Y(LM)
D in the same way as N & YD. If we let

A∧(t) =
∑
`:t`≤t

(
Y(LM)
D (t`)

)−1
dN(LM)

(t`)

then the LMAJ estimatorLMAJ estimatorLMAJ estimatorLMAJ estimatorLMAJ estimatorLMAJ estimatorLMAJ estimatorLMAJ estimatorLMAJ estimatorLMAJ estimatorLMAJ estimatorLMAJ estimatorLMAJ estimatorLMAJ estimatorLMAJ estimatorLMAJ estimatorLMAJ estimator is given by

PLMAJ
`m (s, t) =

[ t

R
s

(I + dA∧(LM))

]
`m

Note that the LMAJ estimator is basically the Aalen-Johansen estimator, but we only
consider those individuals that were at state ` at time s.
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7.1 Consistency proof
Before we dive into the consistency proof of the LMAJ estimator, we give two
definitions and a lemma.

Define the 1× K matrix á∧(0) by

[á∧(0)]1k =
1
n

n∑
i=1

[Xi(0) = k]

and define P∧(t) = á∧(0)P∧(0, t).

Lemma 7.1.1. Let t ∈ [0,∞). Under certain conditions [see 9, Theorem 5.3.1],

sup
u∈[0,t]

‖P∧n (u)− P(u)‖ p→ 0

where we write P∧n instead of P∧ to remind you that it is dependent on the total
number of individuals.

Corollary 7.1.2. Let t ∈ [0,∞). Under the same conditions as Lemma 7.1.1,

P∧n (t)
p→ P(t)

With Corollary 7.1.2 under our belt, it is finally time for the consistency proof.

Theorem 7.1.3. Let us fix ` and s. Under the same conditions as Lemma 7.1.1 and the
condition that P(X∼(s) = `) > 0,

PLMAJ
`m (s, t)

p→ P`m(s, t)

for all s ≤ t.

Proof. The following proof is strongly based on [7, Appendix I].

Let us fix ` and s. Next, we define the multi-state process X?∼(t) with state space
{±1, . . . ,±K} by

• X?∼(t) = +X∼(t) for t < s and for t ≥ s if X∼(s) = `

• X?∼(t) = −X∼(t) for t ≥ s if X∼(s) 6= `
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Note that we are, just like in the definition of the LMAJ estimator, conditioning on
whether the process is in state ` at time s.

Note that, since X?∼(t) depends on the past through X?∼(s) for all t > s, the process
X?∼ is not Markov even if X∼ is.

Since the state m ≥ 1 can only be reached if X∼(s) = `, it follows that, for t ≥ s and
m ≥ 1,

P?m(t) ≡ P(X?∼(t) = m) = P(X∼(t) = m,X∼(s) = `)

so

P`m(s, t) = P(X∼(t) = m | X∼(s) = `) =
P(X∼(t) = m,X∼(s) = `)

P(X∼(s) = `)
=

P?m(t)
P?` (s)

because P?` (s) = P(X∼(s) = `,X∼(s) = `) = P(X∼(s) = `).

By Corollary 7.1.2, the estimators P?∧m (t) & P?∧` (s) of P?m(t) & P?` (s) are consistent,
so, by the continuous mapping theorem (Example D.0.3), their quotient consistently
estimates P`m(s, t) if P?` (s) = P(X∼(s) = `) > 0, which we assumed to be true.

Now, define á?∧(0) & A?∧ by plugging in X? (instead of X) into the definition of
á∧(0) & A∧. Then

P?∧m (t) =

[
á?∧(0)

t

R
0

(I + dA?∧)

]
1m

!
=

[
á?∧(0)

s

R
0

(I + dA?∧)
t

R
s

(I + dA?∧)

]
1m

=
∑
j

[
á?∧(0)

s

R
0

(I + dA?∧)

]
1j

[ t

R
s

(I + dA?∧)

]
jm

P?∧` (s) =

[
á?∧(0)

s

R
0

(I + dA?∧)

]
1m

because the product integral is finite product (see page 31).

If j 6= `, then [ t

R
s

(I + dA?∧)

]
jm

= 0

because, just before the first jump time after s, every individual is either at state ` or has
been redirected to a negative state, from which the state m ≥ 1 can never be reached.
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Consequently,

P?∧m (t)
P?∧` (s)

=
[á?∧(0) Ps

0(I + dA?∧)]1`[Pt
s(I + dA?∧)]`m

[á?∧(0) Ps
0(I + dA?∧)]1`

=

[ t

R
s

(I + dA?∧)

]
`m

which looks delightfully similar to the LMAJ estimator; the only difference being
A?∧ versus A∧(LM).

If t ≥ s, then X?∼ only takes values in either the positive or the negative states,
depending on whether X∼(s) = ` or X∼(s) 6= `, so there can be no jumps between
states with different signs. As such, for t ≥ s, the 2K× 2K matrix A?∧(t) is a block
diagonal matrix, consisting of two K× K blocks representing the positive states and
the negative states:

A?∧(t) = A?∧
+ (t)⊕ A?∧

− (t)

Since ⊕ distributes over regular matrix addition and multiplication, I2K = IK ⊕ IK
and the product integral of A?∧ is a finite product,

t

R
s

(I + dA?∧) =
t

R
s

(I + dA?∧
+ )⊕

t

R
s

(I + dA?∧
− )

Since `,m ≥ 1, we hence find that[ t

R
s

(I + dA?∧)

]
`m

=

[ t

R
s

(I + dA?∧
+ )

]
`m
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Let j, k ≥ 1 and j 6= k. If t ≥ s, then dN?
ijk (with N?

ijk the censored counting process)
and the censored at-risk process and Y?

ij used in

A?∧
jk (t) =

∑
`:t`≤t

dNjk(t`)
Yj(t`)

are given by

dN?
ijk(t) = dNijk(t) · [Xi(s) = `]

Y?
ij(t) = Yij(t) · [Xi(s) = `]

because, if Xi(s) 6= `, then X?
i (t) < 0 for t ≥ s. For t ≥ s, we hence find that

dN?
jk(t) = dN(LM)

jk (t)

Y?
j (t) = Y(LM)

j (t)

so A?∧
+ (t) = A∧(LM)(t), which finally yields that

P?∧m (t)
P?∧` (s)

=

[ t

R
s

(I + dA?∧)

]
`m

=

[ t

R
s

(I + dA?∧
+ )

]
`m

=

[ t

R
s

(I + dA∧(LM))

]
`m

= PLMAJ
`m (s, t)

is a consistent estimator for P`m(s, t).
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Chapter 8

Further research

Let us address the elephant in the room first. In light of the scope of the thesis, we
have chosen not to include proofs of many key results (in their full generality).
Notwithstanding, their inclusion would have been nice. In further research we could
flesh out those proofs, which would make our thesis more self-contained.

Secondly, throughout the thesis we assumed that X∼i ’s are independent and identically
distributed, which implies a homogeneous population. This is not the most realistic
scenario. For example, you might be sicklier than your neighbor, meaning that the
X∼i ’s would not be identically distributed. As such, investigating whether there is a
consistent estimator of transition probabilities under weaker assumptions on the X∼i ’s
would be a good direction for further research as well. If we could modify the
consistency proof of the LMAJ estimator, that would be ideal.

Thirdly, up until now we have only considered non-Markov multi state models with
right censoring, but, as mentioned priorly, there are more ways to censor, such as left
and interval censoring. Having a consistent estimator for transition probabilities in
non-Markov multi-state models with more general censoring would of course be nice.
As such, investigating whether there is a consistent estimator of transition probabilities
under more general censoring would also be a good direction for further research.
Again, if we could modify the consistency proof of the LMAJ estimator, that would be
ideal.

Finally, and most importantly, we have been estimating

P`m(s, t) = P(X∼(t) = m | X∼(s) = `)

but really we want an estimator for

P`m(s, t | ℱs−) = P(X∼(t) = m | X∼(s) = `,ℱs−)

because, in a sense, P`m(s, t) averages over all possible ℱs−’s. Of course,
P`m(s, t | ℱs−) is much harder to estimate than P`m(s, t). Nevertheless, that does not
mean we should not try. The final direction for further research we suggest is
therefore: investigating whether P`m(s, t | ℱs−) can be estimated consistently as well.
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Appendix A

Left and right limits

Below you will find two results on functions with left and right limits that we have
opted to leave out of the main text and instead showcase together here.

Theorem A.0.1. If Z is a matrix-valued function on [a, b] that has left and right limits,
then it is bounded.

Proof. We will prove this statement by contraposition.

Suppose that Z is unbounded. Then there exists (xn) such that xn → x ∈ [a, b] and
‖Z(xn)‖ → ∞ (use Bolzano-Weierstraß if necessary). Since xn → x, it must have an
increasing or decreasing subsequence (yn). Either way, ‖Z(yn)‖ → ∞. If yn ↑ x, then
‖Z(x−)‖ =∞, so the left limit Z(x−) does not exist. If yn ↓ x, then the right limit
Z(x+) does not exist.

The proof above is basically an adaptation of [10].

Theorem A.0.2. If f : [0,∞)→ R has left and right limits, then it has only countably
many discontinuities.

Proof. See [11]. The author feels very little for nearly verbatim copying the proof.
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Appendix B

Weak law of large numbers

Below we will present a proof of the weak law of large numbers, albeit not the most
general one; we will assume finite variance even though it can be proved without that
assumption.

The following proof has been adapted from [2, Theorem 10.2.1].

Theorem B.0.1. Let (Xn) be a sequence of independent and identically distributed
real-valued random variables with finite second moment. Let

E(X1) = Þ

var(X1) = ã2

which are both finite. Define

Xn =
X1 + · · ·+ Xn

n

Then Xn
p→ Þ.

Proof. Because the Xi’s are independent and identically distributed,

E(Xn) =
E(X1 + · · ·+ Xn)

n
=

E(X1) + · · ·+ E(Xn)

n
= Þ

var(Xn) =
var(X1 + · · ·+ Xn)

n2
=

var(X1) + · · ·+ var(Xn)

n2
=

ã2

n

Let × > 0. Then

P
(
|Xn − Þ| > ×

)
= P

(
|Xn − Þ|2 > ×2

)
= P({é ∈ Ω : f(é) > ×2})

with

f(·) = |Xn(·)− Þ|2 = (Xn(·)− Þ)2
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Clearly Xn(·)− Þ is measurable. Since R 3 x 7→ x2 ∈ R is continuous and hence
Borel measurable, f is measurable as the composition of measurable functions, so

P
(
|Xn − Þ| > ×

)
= P({é ∈ Ω : f(é) > ×2}) ≤ 1

×2

∫
f dP

=
E(f)
×2

=
E
(

(Xn − Þ)2
)

×2
=

E
((

Xn − E(Xn)
)2)

×2

=
var(Xn)

×2
=

1
×2

ã2

n

It follows that

lim
n

P
(
|Xn − Þ| > ×

)
= 0

That is, Xn
p→ Þ.
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Appendix C

Volterra equation for P

In this appendix, we will prove Theorem 6.2.1. That is to say, we will show that

P(s, t) = I +

∫ t

s
P(s, u)Ó(u) du

for s ≤ t. However, first we state (and prove) a preparatory lemma.

Lemma C.0.1. If s ≤ t, then

lim
Ö↓0

1
Ö

∫ t+Ö

t
P(s, u) du = P(s, t)

Proof. Since u 7→ P(s, u) is cadlag, it is right continuous, so

if × > 0, then ∃Ö > 0 such that
if t < u < t + Ö, then ‖P(s, u)− P(s, t)‖ < ×.

As such, ∥∥∥∥1Ö
∫ t+Ö

t
P(s, u) du− P(s, t)

∥∥∥∥ =

∥∥∥∥1Ö
∫ t+Ö

t

(
P(s, u)− P(s, t)

)
du
∥∥∥∥

≤ 1
Ö

∫ t+Ö

t
‖P(s, u)− P(s, t)‖ du

≤ 1
Ö

∫ t+Ö

t
× du = ×

The desired result now follows from the definition of the right-sided limit.
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Proof of Theorem 6.2.1. By Lebesgue’s dominated convergence theorem,

P(s, t)− I = P(s, t)− P(s, s)

= lim
h↓0

1
h

∫ t+h

t
P(s, u) du− lim

h↓0

1
h

∫ s+h

s
P(s, u) du

= lim
h↓0

1
h

(∫ t+h

t
P(s, u) du−

∫ s+h

s
P(s, u) du

)
= lim

h↓0

1
h

(∫ t+h

s+h
P(s, u) du−

∫ t

s
P(s, u) du

)
= lim

h↓0

1
h

(∫ t

s
P(s, u + h) du−

∫ t

s
P(s, u) du

)
= lim

h↓0

∫ t

s

P(s, u + h)− P(s, u)

h
du

= lim
h↓0

∫ t

s
P(s, u)

P(u, u + h)− I
h

du

!
=

∫ t

s
P(s, u)Ó(u) du

To justify the use of the dominated convergence theorem, we need to show that

P(s, u)
P(u, u + h)− I

h
=

P(s, u + h)− P(s, u)

h
is measurable (C.1)

lim
h↓0

P(s, u)
P(u, u + h)− I

h
ae
= P(s, u)Ó(u) (C.2)∣∣∣∣[P(s, u)

P(u, u + h)− I
h

]
jk

∣∣∣∣ ae≤ g(u) (C.3)

for u ∈ [s, t] and some [0,∞]-valued integrable function g. We can then use
dominated convergence componentwise.

Since we are done once we have shown those three equations hold, let us finish up the
proof by doing so.

1. Since x 7→ P(s, x) is cadlag, it has left and right limits, so it is bounded on [s, t]
and continuous almost everywhere (see Appendix A). As such, by [2, Theorem
2.5.4], it’s Riemann integrable and hence Lebesgue integrable (and thus
measurable).

2. Clearly

lim
h↓0

P(s, u)
P(u, u + h)− I

h
= P(s, u) lim

h↓0

P(u, u + h)− I
h
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Since X∼ is cadlag, so is

u 7→ [P(u, x)]`m = P`m(u, x) = P(X∼(x) = m | X∼(u) = `)

As such, u 7→ P(u, x) is cadlag and hence has left and right limits. By Theorem
A.0.2, it is continuous almost everywhere, so

P(u, u + h)− I
h

ae
=

P(u−, u + h)− I
h

⇒

lim
h↓0

P(u, u + h)− I
h

ae
= lim

h↓0

P(u−, u + h)− I
h

= Ó(u)

Equation (C.2) now follows.

3. As for the third one, since∣∣∣∣[P(s, u)
P(u, u + h)− I

h

]
jk

∣∣∣∣ ≤ ∥∥∥∥P(s, u)
P(u, u + h)− I

h

∥∥∥∥
we need only find a [0,∞]-valued integrable function g such that∥∥∥∥P(s, u)

P(u, u + h)− I
h

∥∥∥∥ ae
≤ g(u)

Since P(s, u) is row stochastic,∥∥∥∥P(s, u)
P(u, u + h)− I

h

∥∥∥∥ ≤ ‖P(s, u)‖ ·
∥∥∥∥P(u, u + h)− I

h

∥∥∥∥
=

∥∥∥∥P(u, u + h)− I
h

∥∥∥∥
ae
=

∥∥∥∥P(u−, u + h)− I
h

∥∥∥∥
!
≤ ‖Ó(u)‖+ 1 = g(u)

because, by right continuity, ∃Ö > 0 such that if h < Ö, then∥∥∥∥P(u−, u + h)− I
h

∥∥∥∥− ‖Ó(u)‖ ≤
∥∥∥∥P(u−, u + h)− I

h
− Ó(u)

∥∥∥∥ < 1

(reverse triangle inequality). Clearly g ≥ 0. Since Ó is integrable on [s, t], so is
‖Ó‖ and hence g(·) = ‖Ó(·)‖+ 1 (because [s, t] is bounded).

We have shown that (C.1), (C.2) and (C.3) hold, which concludes the proof.
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Appendix D

Continuous mapping theorem

The following proof was greatly inspired by [12].

Theorem D.0.1. Let (S, ‖·‖) be normed spaces and (Xn),X be S-valued random
variables. Suppose that g : S→ S′ (where (S′, ‖·‖′) is another normed space) is a
function whose set of discontinuities Dg satisfies P(X ∈ Dg) = 0.

(if g is continuous, then Dg = ∅, so vacuously P(X ∈ Dg) = 0 and hence the name
“continuous mapping theorem”)

If Xn
p→ X, then g(Xn)

p→ g(X).

Proof. Let us fix × > 0. Define for all Ö > 0,

BÖ = {x ∈ S : x /∈ Dg and ∃y ∈ S such that ‖x− y‖ < Ö and ‖g(x)− g(y)‖′ > ×}

Because g is continuous on BÖ,

lim
Ö↓0

BÖ ≡ {x ∈ S : lim
Ö↓0

[x ∈ BÖ] = 1} = ∅

Suppose that ‖g(Xn)− g(X)‖′ > ×. Then at least one of the following is true:

• either X ∈ BÖ

• or X ∈ Dg

• or ‖Xn − X‖ ≥ Ö.

In terms of probabilities,

P
(
‖g(Xn)− g(X)‖′ > ×

)
≤ P(X ∈ Dg) + P(X ∈ BÖ) + P

(
‖Xn − X‖ ≥ Ö

)
By assumption, P(X ∈ Dg) = 0.
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Let Ù > 0. Since limÖ↓0 BÖ = ∅, choose Ö such that P(X ∈ BÖ) < Ù/2.
Now, since Xn

p→ X, eventually

P
(
‖Xn − X‖ ≥ Ö

)
< Ù/2

That is, eventually

P
(
‖g(Xn)− g(X)‖′ > ×

)
< Ù

Therefore

lim
n

P
(
‖g(Xn)− g(X)‖′ > ×

)
= 0

so g(Xn)
p→ g(X).

Example D.0.2. Let Ó ∈ S and X be the random variable defined by

X(é) = Ó for all é ∈ Ω.

Then, by the continuous mapping theorem, if g is continuous, then Xn is a consistent
estimator of Ó, so g(Xn) is a consistent estimator of g(Ó). Indeed,

Xn
p→ Ó⇔ Xn

p→ X⇒ g(Xn)
p→ g(X)⇔ g(Xn)

p→ g(Ó)

Example D.0.3. Let Ó, Ô ∈ R and (Xn), (Yn) be real-valued random variables such
that Xn

p→ Ó and Yn
p→ Ô.We will show that if Ô 6= 0, then Xn/Yn

p→ Ó/Ô.

Note that (Xn,Yn)
p→ (Ó, Ô). Indeed,

P(‖(Xn,Yn)− (Ó, Ô)‖ > ×) = P(‖(Xn − Ó,Yn − Ô)‖ > ×)

≤ P(|Xn − Ó|+ |Yn − Ô| > ×)

≤ P(|Xn − Ó| > ×/2) + P(|Yn − Ô| > ×/2)

= 0 + 0 = 0

because ‖(x, y)‖ ≤ |x|+ |y| and

if x + y > 2, then at least one of the following is true: either x > 1 or y > 1.

Since g(x, y) = x/y is a continuous function for y 6= 0, by the continuous mapping
theorem, if Ô 6= 0, then Xn/Yn

p→ Ó/Ô.
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Appendix E

Duhamel’s equation

In this appendix, we present a novel proof of the so-called Duhamel’s equation.

Theorem E.0.1. Let F and G be matrix-valued functions on [a, b] that are absolutely
continuous. Then

P(a, b;F)−P(a, b;G) =

∫ b

a
P(a, x;F)h(x)P(x, b;G) dx

where h = f − g.

The following lemma lies at the heart of the proof.

Lemma E.0.2. Let n ≥ m ≥ 1 and

cmn(x) =

∫ x

a
ℐn−m(a, t;F)h(t)ℐm−1(t, x;G) dt

Then ∫ b

a
cmn(x1)g(x1) dx1 = c(m+1)(n+1)(b)

Proof. By Fubini’s theorem,
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∫ b

a
cmn(x1)g(x1) dx1 =∫ b

a

(∫ x1

a
ℐn−m(a, x2;F)h(x2)ℐm−1(x2, x1;G) dx2

)
g(x1) dx1 =∫ b

a

∫ x1

a
ℐn−m(a, x2;F)h(x2)ℐm−1(x2, x1;G)g(x1) dx2dx1

!
=∫ b

a

∫ b

x2
ℐn−m(a, x2;F)h(x2)ℐm−1(x2, x1;G)g(x1) dx1dx2 =∫ b

a
ℐn−m(a, x2;F)h(x2)

(∫ b

x2
ℐm−1(x2, x1;G)g(x1) dx1

)
dx2 =∫ b

a
ℐn−m(a, x2;F)h(x2)ℐm(x2, b;G) dx2 =

c(m+1)(n+1)(b)

because, by definition,

ℐm(x2, b;G) =

∫ b

x2
ℐm−1(x2, x1;G)g(x1) dx1

We still need to justify our use of Fubini’s theorem. By Lemma 4.1.3,

‖ℐn−m(a, x2;F)‖ ≤ 1
(n−m)!

(∫ x2

a
‖f(t)‖ dt

)n−m

≤ 1
(n−m)!

(∫ b

a
‖f(t)‖ dt

)n−m

= Jn−m/(n−m)!

with

J =

∫ b

a
‖f(t)‖ dt

Similarly,

‖ℐm−1(x2, x1;G)‖ ≤ Km−1/(m− 1)!

with

K =

∫ b

a
‖g(t)‖ dt

As such, we may use Fubini’s theorem because
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∥∥∥∥∫ b

a

∫ x1

a
ℐn−m(a, x2;F)h(x2)ℐm−1(x2, x1;G)g(x1) dx2dx1

∥∥∥∥ ≤∫ b

a

∫ x1

a
‖ℐn−m(a, x2;F)‖ · ‖h(x2)‖ · ‖ℐm−1(x2, x1;G)‖ · ‖g(x1)‖ dx2dx1 ≤∫ b

a

∫ x1

a

Jn−m

(n−m)!
· ‖h(x2)‖ · Km−1

(m− 1)!
· ‖g(x1)‖ dx2dx1 ≤

Jn−m

(n−m)!

Km−1

(m− 1)!

∫ b

a

∫ x1

a
‖h(x2)‖ · ‖g(x1)‖ dx2dx1 ≤

Jn−m

(n−m)!

Km−1

(m− 1)!

∫ b

a

∫ b

a
‖h(x2)‖ · ‖g(x1)‖ dx2dx1 =

Jn−m

(n−m)!

Km−1

(m− 1)!

∫ b

a
‖h(x2)‖ dx2

∫ b

a
‖g(x1)‖ dx1 <∞

because h (as the difference of integrable functions) and g are integrable.

Lemma E.0.3. If n ≥ 1, then

ℐn(a, b;F)− ℐn(a, b;G) =

n∑
m=1

cmn(b)

Proof. We proceed by induction on n. Clearly

ℐ1(a, b;F)− ℐ1(a, b;G) =

∫ b

a
f(x1) dx1 −

∫ b

a
g(x1) dx1

=

∫ b

a
h(x1) dx1 = c11(b)

establishing the base case. Suppose that

ℐn(a, b;F)− ℐn(a, b;G) =

n∑
m=1

cmn(b)

We will show that

ℐn+1(a, b;F)− ℐn+1(a, b;G) =

n+1∑
m=1

cm(n+1)(b)
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Since f = h + g,

ℐn+1(a, b;F)− ℐn+1(a, b,G) =∫ b

a

∫ x1

a
· · ·
∫ xn

a
f(xn+1) · · · f(x2)f(x1) dxn+1 · · · dx2dx1 −∫ b

a

∫ x1

a
· · ·
∫ xn

a
g(xn+1) · · · g(x2)g(x1) dxn+1 · · · dx2dx1 =∫ b

a

∫ x1

a
· · ·
∫ xn

a
f(xn+1) · · · f(x2)h(x1) dxn+1 · · · dx2dx1 +∫ b

a

∫ x1

a
· · ·
∫ xn

a
f(xn+1) · · · f(x2)g(x1) dxn+1 · · · dx2dx1 −∫ b

a

∫ x1

a
· · ·
∫ xn

a
g(xn+1) · · · g(x2)g(x1) dxn+1 · · · dx2dx1 =∫ b

a
ℐn(a, x1;F)h(x1) dx1 +

∫ b

a

(
ℐn(a, x1;F)− ℐn(a, x1;G)

)
g(x1) dx1

!
=

c1(n+1)(b) +

∫ b

a

( n∑
m=1

cmn(x1)

)
g(x1) dx1 =

c1(n+1)(b) +

n∑
m=1

∫ b

a
cmn(x1)g(x1) dx1

by the induction hypothesis. Applying Lemma E.0.2, the desired result readily
follows.

Proof of Theorem E.0.1. By Lemma E.0.3,

P(a, b;F)−P(a, b;G) =

∞∑
n=0

ℐn(a, b;F)−
∞∑
n=0

ℐn(a, b;G)

!
=

∞∑
n=1

(
ℐn(a, b;F)− ℐn(a, b;G)

)
=

∞∑
n=1

n∑
m=1

cmn(b)

because ℐ0(a, b;F) = ℐ0(a, b;G) = I. Using Fubini’s theorem three more times,
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P(a, b;F)− P(a, b;G) =

∞∑
n=1

n∑
m=1

cmn(b)
!
=

∞∑
m=1

∞∑
n=m

cmn(b)

=

∞∑
m=1

∞∑
n=m

∫ b

a
ℐn−m(a, x;F)h(x)ℐm−1(x, b;G) dx

!
=

∞∑
m=1

∫ b

a

∞∑
n=m

ℐn−m(a, x;F)h(x)ℐm−1(x, b;G) dx

=

∞∑
m=1

∫ b

a

( ∞∑
n=m

ℐn−m(a, x;F)

)
h(x)ℐm−1(x, b;G) dx

=

∞∑
m=1

∫ b

a
P(a, x;F)h(x)ℐm−1(x, b;G) dx

!
=

∫ b

a

∞∑
m=1

P(a, x;F)h(x)ℐm−1(x, b;G) dx

=

∫ b

a
P(a, x;F)h(x)

( ∞∑
m=1

ℐm−1(x, b;G)

)
dx

=

∫ b

a
P(a, x;F)h(x)P(x, b;G) dx

One can easily justify these three uses of Fubini’s theorem in a similar way as we have
done in Lemma E.0.2.
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