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Abstract

In this thesis we will compare three numerical methods that are used for function approxi-
mation based on sampled input points, within the context of three-dimensional modelling,
namely the Least Squares, Weighted Least Squares and Moving Least Squares methods.
Firstly, we shall explain the workings of the three methods, find the algorithmic complexity
of each method and show that finding a bound for the theoretical stability of the methods is
difficult, but that we can numerically compute one. Next, we will examine how the methods
are used in practice for three-dimensional modelling, by looking at their role in point cloud
and polygon soup reconstruction. Finally, we will implement the methods and perform nu-
merical experiments. These show how the accuracy, stability and speed of each method hold
up in practice. We also implement the point cloud reconstruction algorithm discussed earlier,
which shows us how the methods compare in a three-dimensional modelling situation. We
conclude that the methods have different benefits in specific situations, but that further re-
search is needed to definitively state which method is the best for certain applications within
the field of three-dimensional modelling.
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Chapter 1

Introduction

In three-dimensional modelling, a recurring problem is approximating objects within three-
dimensional space. This problem can occur during the reconstruction of an object in real
life, but it can also appear in less obvious situations, for example when interpolating an
existing mesh or when constructing a new mesh by deforming some initial mesh. Many of
these problems can be solved if we know the solution to the following numerical problem:
If we have an unknown function f : Ω → R with Ω ⊆ R3 and a set of N sampled points
{xi}Ni=1 together with their respective scalar values {yi}Ni=1, so that for each i ∈ {1, ..., N}
we have f(xi) = yi, can we then find an approximation f̃ for f? Solving this problem using
a fast and accurate method is essential for all of the tasks mentioned earlier.

Example 1.1. If we look in a single dimension on the domain [−1, 1] and take the function
f(x) = x2, we can take xi = −1+ 2

5(i−1) and yi = f(xi) = x2
i for i ∈ {1, ..., 5} as equidistant

input points and their respective scalar values. Figure 1 then shows the points that need to
be interpolated and the result of a successful Least Squares interpolation.

The Least Squares (LS) method and its successors, the global Weighted Least Squares (WLS)
and the Moving Least Squares (MLS) methods, are methods which have been developed to
solve these problems. These methods have all been applied within the three-dimensional
modelling field and it is generally known that the Weighted and Moving variants are more
accurate than the original Least Squares method. We know this from earlier reasearch, as
WLS was built on the theory of LS and MLS was built on the theory of WLS [7]. The
accuracy of Moving Least Squares is also why it is used the most in practical situations.
However, as the accuracy increases, the algorithmic complexity of these methods seems to

Figure 1.1: A set of equidistant points on the domain [−1, 1] sampled from the function
f(x) = x2 is shown in the left figure. The right figure shows a Least Squares interpolation
of order 2 of these input points.
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increase as well. As WLS and MLS are originally local methods, they are never implemented
naively within global implementations, seeing as this seems to greatly increase the needed
computing time. It seems necessary to explore how the increased accuracy weighs off against
the decrease in speed, which has not explicitly been done before.

In this thesis, we will examine and compare all three methods. We first check the quality
of the approximation given by each method. Seeing as the error of the different approx-
imations can be very dependent on the given set of sampled points, we will focus on the
stability of each approximation method rather than on the actual error. Then we shall look
at the algorithmic complexity of each method. Through this, a proper comparison of the
accuracy versus the speed of each method can then be made. Through several numerical
experiments, we will then establish if the theoretical values we have found for the complexity
and accuracy of each method hold in practice. Finally, we shall test all three methods on a
three-dimensional problem, to see how they compare in speed and accuracy when used on a
common real-world scenario.
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Chapter 2

Least Squares Methods and their
Properties

In this chapter we will introduce the Least Squares, Weighted Least Squares and Moving
Least Squares methods. For each method we will first see how a function is approximated
from the input by explaining how the method works, using an explanation based on [10]. We
then look at its stability by figuring out in which way the approximation changes when the
input is shifted slightly. Finally, we will look at the algorithmic complexity of each method
to see how fast it can produce an approximation, given the size of the input and values of
certain parameters.

2.1 Least Squares

2.1.1 Method

The Least Squares Method seeks to minimise the error at each sampled point xi in the
least-squares sense, meaning that for a global approximation function f̃(x), the sum of each
squared error at an input point should be the smallest for f̃ compared to all functions within
some chosen space of functions.

Definition 2.1. The space of polynomial functions of degree m in the pth dimension is
written as Πp

m.

We will take f̃ from the space of polynomials of degree m in three dimensions, so f̃ ∈ Π3
m.

This is the most commonly used space for least-squares methods [10]. This results in the
following definition:

Definition 2.2. The approximation f̃ produced by the Least Squares method is the f̃ ∈ Π3
m

so that the error ELS(f̃) =
∑

0<i≤N ||f̃(xi) − yi||2 is lesser or equal than ELS(h) for any

other function h ∈ Π3
m.

The approximation f̃ is therefore found by minimising the error function, which leads to the
following equation:

f̃ = argmin
h∈Π3

m

∑
0<i≤N

||h(xi)− yi||2. (2.1)

Notice that this minimum exists, as Π3
m is not empty. We will later show that the minimum

is unique as long as N is greater than or equal to the amount of coefficients of h and all input
points are distinct. We can now define each function h ∈ Π3

m as a dot product of a basis
vector of the polynomial space Π3

m, written as π3
m(x) and a vector of unknown coefficients

c. Because π3
m(x) is a known vector and h(x) = π3

m(x) · c, finding the cmin ∈ Rk for which
2.1 holds is enough to calculate f̃ . (The number k is the number of elements in π3

m(x).)
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Definition 2.3. The number of elements in π3
m(x) is given by 1

6

3∏
i=1

(m+ i). More generally,

the vector πkm(x) contains 1
k!

k∏
i=1

(m+ i) elements [5].

Example 2.4. For m = 1, we have π3
1(x) = [1, x, y, z]T . If m = 2, we have π3

2(x) =
[1, x, y, z, x2, xy, xz, y2, yz, z2]T (if x = [x, y, z]T ).

We can now take the partial derivatives of the error functional ELS , with respect to the
unknown coefficients c1, . . . , ck, i.e. ∇ELS(c), where ∇ = [∂/∂c1, . . . , ∂/∂ck]. For the coef-
ficients cmin of the function f̃ , the error functional should be minimal, which means that
∇ELS(cmin) = 0. This allows us to compute cmin as follows: We know for each 0 < j ≤ k
that

δELS(cmin)/δcj =
∑
i

2π3
m(xi)j [π

3
m(xi)

Tcmin − yi] = 0. (2.2)

This leads to the following in matrix-vector notation:∑
i

2π3
m(xi)[π

3
m(xi)

Tcmin − yi] = 2
∑
i

π3
m(xi)π

3
m(xi)

Tcmin − π3
m(xi)yi = 0, (2.3)

which can then be rewritten as∑
i

π3
m(xi)π

3
m(xi)

Tcmin =
∑
i

π3
m(xi)yi. (2.4)

From this equation, cmin can be computed:

cmin = [
∑
i

π3
m(xi)π

3
m(xi)

T ]−1
∑
i

π3
m(xi)yi. (2.5)

Assuming that
∑

i π
3
m(xi)π

3
m(xi)

T is nonsingular, this method provides us with a definition
for cmin (and therefore a definition for f̃) that can easily be calculated using numerical
methods by performing the inversion and multiplications in equation 2.5.

We can simplify these equations by introducing the matrix A and the vector y, where

A =

π
3
m(x1)T

...
π3
m(xN )T

 and y =

 y1
...
yN

 .

This allows us to write equation 2.5 in matrix-vector notation, which results in the equation

cmin = [ATA]−1ATy. (2.6)

Notice that we are solving the system of linear equations Acmin = y. From this we see that
our earlier claim that the minimum described in 2.1 is only unique if N ≥ k is true (given
that all the input points are distinct), as there have to be more than k independent rows in
A to find a unique solution to this system. Because of this, ATA will be singular if N < k,
which means that the method cannot produce a result if there are too little input points for
the given order of the polynomial space.

Example 2.5. Let us work out a one-dimensional example to demonstrate the Least Squares
method. The function that is being approximated is f(x) = x2 on the domain [−1, 1]. We
sample this function at three points: x1 = −1, x2 = 0, x3 = 1 and N = 3. This implies that
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y1 = y3 = 1 and y2 = 0. As f is a second-order function, we will approximate using a second-
order polynomial space, so m = 2, meaning that our polynomial basis is π1

2 = [1, x, x2]. From
this we can calculate that

A =

1 x1 x2
1

1 x2 x2
2

1 x3 x2
3

 =

1 −1 1
1 0 0
1 1 1

 , ATA =

3 0 2
0 2 0
2 0 2

 and [ATA]−1 =

 1 0 −1
0 1

2 0
−1 0 3

2

 .

Using equation 2.5 gives us that

cmin = [ATA]−1ATy =

 0 1 0
−1

2 0 1
2

1
2 −1 1

2

1
0
1

 =

0
0
1

 .

Finally, we know that f̃(x) = π1
2 ·cmin = 0+0x+1x2 = x2. Our approximation is successful

and equal to the original function.

2.1.2 Stability

In this section we will show the behaviour of the Least Squares approximation if the scalar
values are slightly adjusted. We will show that the error is linear with respect to the adjusted
input of the scalar values and we will examine the stability of the approximation by looking
at the relative error of the coefficients.

We assume that applying the Least Squares method on a set of N sampled points {xi}
and their scalar values {yi} produces a certain approximation f̃ . We now examine the result
of using the Least Squares method on the same set of N sampled points {xi} and slightly
adjusted scalar values {yi + δi}Ni=1, where each δi is a scalar value so that at least for one i
we have |δi| > 0. With this, we can explore the effect of errors within the scalar values on
the resulting approximation. If the new errors are incorporated into the calculation, we get
a new coefficient vector c∗min:

c∗min = [
∑
i

π3
m(xi)π

3
m(xi)

T ]−1
∑
i

π3
m(xi)(yi + δi)

or in the matrix-vector notation we have

c∗min = [ATA]−1AT (y + δ)

where

δ =

 δ1
...
δN

 .

We can rewrite this as

c∗min = ([ATA]−1ATy) + ([ATA]−1ATδ) = cmin + ([ATA]−1ATδ). (2.7)

This results in the following for the new approximation f̃∗:

f̃∗(x) = π3
m(x) · c∗min

= π3
m(x) · (cmin + ([ATA]−1ATδ))

= π3
m(x) · cmin + π3

m(x) · ([ATA]−1ATδ)

= f̃(x) + π3
m(x) · ([ATA]−1ATδ).

(2.8)
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From this we can see that the difference between the original approximation f̃ and the new
approximation f̃∗ is given by |f̃ − f̃∗| = |π3

m(x) · ([ATA]−1
∑

iAδ)|. This is exactly the
absolute value of a Least Squares approximation function of the original input points and
{δi}Ni=1 as the given scalar values.

To get an idea of the stability of the approximation as a whole we can observe the sta-
bility of the coefficients. We do this by calculating the relative error of the coefficient vector:

||cmin − c∗min||
||cmin||

=
||[ATA]−1ATδ||
||cmin||

. (2.9)

From equation 2.1 we know that

cmin = argmin
c∈Rk

||Ac− y||2.

This means that ATAcmin = ATy. From this we find that ||ATy|| = ||ATAcmin|| ≤
||ATA|| · ||cmin|| and that therefore

||cmin|| ≥
||ATy||
||ATA||

. (2.10)

If we now combine equation 2.9 with our new lower bound on ||cmin||, we can acquire an
upper bound on the relative error between cmin and c∗min, namely

||cmin − c∗min||
||cmin||

≤ ||A
TA|| · ||[ATA]−1ATδ||

||ATy||
≤ ||[A

TA]|| · ||[ATA]−1|| · ||AT || · ||δ||
||ATy||

=
||AT || · ||δ||
||ATy||

≤ ||(A
T )−1|| · ||AT || · ||δ||
||(AT )−1ATy||

= ||(AT )−1|| · ||AT || ||y − (y + δ)||
||y||

.

(2.11)

From this we see that the condition number of AT , written as κ(AT ) = κ(A) = ||(AT )−1|| ·
||AT ||, determines the stability of the coefficients. Notice that this is only true if AT is

nonsingular, which means that N = m. If N 6= m, we know that κ(AT ) = σmax(AT )
σmin(AT )

where

σmax(AT ) and σmin(AT ) are the maximal and minimal singular values of AT . (This holds
for the Euclidean norm.) In this case, we still find that

||AT || · ||δ||
||ATy||

≤ σmax(AT )||δ||
σmin(AT )||y||

= κ(A)
||y − (y + δ)||

||y||
. (2.12)

Example 2.6. If the problem is reduced to one dimension and we assume that N = k,
which can be realised in some situations where it is possible to choose the polynomial space
so that k is equal to the amount of sampled points, AT takes on the form of

AT =


1 . . . 1
x1 . . . xN
x2

1 . . . x1
N

...
...

...
xNN . . . xNN

 .

We see that this is a Vandermonde matrix V (x1, . . . , xN ) (or the transpose of a Vandermonde
matrix according to some authors). For these Vandermonde matrices, lower bounds for the
condition number κ(V (x1, . . . , xN )) exist in literature [6, 13]. Tyrtyshnikov [13] states that

κ(V (x1, . . . , xN )) ≥ 2N−2

N
1
2

for the Euclidean norm, for example. These lower bounds are

useful for finding the optimal stability of the approximation, but they are not upper bounds,
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meaning that we have no clue as to how bad the stability can get when faced with unfortunate
input points. An exception to this is the situation in which we have so little sample points
that N < k, which means that κ(A) will be infinite; in this situation we know that the
stability is as bad as can be. This is not very useful information, as the algorithm can not
produce a solution in this situation.

A problem is that when N 6= k or in higher dimensions, the matrix AT (or A) is not a
Vandermonde matrix, which makes calculating the same lower bound for the number κ(A)
impossible. However, it is possible to numerically approximate κ(A) to get an indication of
the stability of the approximation, even in three dimensions.

In the final calculation of f̃ , the coefficients are combined with the polynomial basis to
create the approximated function. The stability of the coefficients gives an indication of the
stability of the function, but it should be said that the general stability of polynomials might
also have a big influence on the stability of the final approximation.

2.1.3 Complexity

To determine the speed of the Least Squares method, we shall calculate its theoretical algo-
rithmic complexity. For this we will again examine equation 2.5. We know that naive matrix
multiplication of two matrices of unequal dimensions has a complexity of O(nmp), where n
is the height of the first matrix, m is the width of the first matrix and p is the width of the
second matrix. For square n×n matrices, this results in the complexity O(nω), where ω can
be between 2.376 and 3, depending on if the naive method or other improved algorithms are
used [1].

Theorem 2.7. The complexity of the Least Squares algorithm is O(Nk2) if N ≥ kω−2,
otherwise the complexity is O(kω).

Remember that there are N sampled points and that π3
m(xi) has a size of k, where k =

1
6

3∏
i=1

(m+ i) [5]. This means that multiplying π3
m(xi)π

3
m(xi)

T for any i has an algorithmic

complexity of O(k2) and multiplying π3
m(xi)yi has an algorithmic complexity of O(k). This

leads to algorithmic complexities of O(Nk2) and O(Nk) for calculating
∑

i π
3
m(xi)π

3
m(xi)

T

and
∑

i π
3
m(xi)yi respectively. Inverting the square k × k matrix

∑
i π

3
m(xi)π

3
m(xi)

T has
a complexity of O(kω) and multiplying this matrix with

∑
i π

3
m(xi)yi has a complexity of

O(Nk2). Finally, we multiply π3
m(x) and cmin to obtain f̃ , an operation with algorith-

mic complexity of O(k2). From this we see that the exact complexity of the Least Squares
method varies depending on the size of N , k and ω and we have proven the theorem.

If we assume that all matrix calculations are done naively, we can now say that the com-
plexity of the Least Squares method is O(k3) if N < k. However, as we know there is no
solution to the algorithm if N < k, so the complexity is always O(Nk2) if the calculations
are done naively.

2.2 Weighted Least Squares

2.2.1 Method

The Weighted Least Squares method works similar to the Least Squares method, in that it
seeks to minimise the error at each point xi in the least-squares sense, but it adds a weighting
function dependent on the distance of each point to a certain pivot-point x̂. This leads to
the following definition:
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Definition 2.8. The approximation f̃ produced by the Weighted Least Squares method is
the f̃ ∈ Π3

m so that the error EWLS(f̃) =
∑

0<i≤N ||f̃(xi) − yi||2θ(||x̂ − xi||) is lesser than

or equal to EWLS(h) for any other function h ∈ Π3
m, where θ is a chosen weighting function.

The approximation f̃ is again found by minimising the error function, which leads to the
following equation:

f̃ = argmin
h∈Π3

m

∑
0<i≤N

||h(xi)− yi||2θ(||x̂− xi||) (2.13)

As we can see, this does not have to produce an accurate result, especially if just a single pivot
point x̂ is chosen at random for the entire function. This method is therefore a local method.
It can however be extended to a global method [12, 10]. If n fixed points x̂j with 0 < j ≤ n
are chosen, we can construct a global approximation over the entire domain R3, by ensuring
that each point within the domain Ω ⊆ R3 is covered by one of the local approximations.
If we define θi as the weight function chosen to calculate the WLS approximation around
pivot-point x̂i (meaning that θi(x) = θ(||x− x̂i||)), then the condition that

Ω =
⋃
j

supp(θj)

will lead to a global approximation. The weighting of these local approximations can be
done properly by construction a partition of unity from the θi [12]. This leads to

φj(x) =
θj(x)∑k=n
k=1 θk(x)

(2.14)

so that
∑

i φi = 1 over the entire domain Ω ⊆ R3 of the original function f .

Similar to Least Squares, if we define f̃j as the local approximation corresponding to pivot-
point x̂j , we can say that f̃j = π3

m(x)·cmin(x̂j). The coefficients cmin(x̂j) are now weighted
by their distance to x̂j and therefore a function of x̂j . If we take the partial derivatives of
EWLS (from equation 2.13) with respect to the unknown coefficients cmin(x̂j), we find that∑

i

θ(||x̂j − xi||)2π3
m(xi)[π

3
m(xi)

Tcmin(x̂j)− yi] =

2
∑
i

θ(||x̂j − xi||)π3
m(xi)π

3
m(xi)

Tcmin(x̂j)− θ(||x̂j − xi||)π3
m(xi)yi = 0.

(2.15)

From this we obtain∑
i

θ(||x̂j − xi||)π3
m(xi)π

3
m(xi)

Tcmin(x̂j) = θ(||x̂j − xi||)π3
m(xi)yi. (2.16)

Similar to 2.5, we then get an expression for cmin(x̂j):

cmin(x̂j) = [
∑
i

θ(||x̂j − xi||)π3
m(xi)π

3
m(xi)

T ]−1
∑
i

θ(||x̂j − xi||)π3
m(xi)yi. (2.17)

If we use the notation used in equation 2.6 and define a new matrix

Θ(x̂j) =

θ(||x̂j − x1||) . . . 0
...

. . . . . .
0 . . . θ(||x̂j − xN ||)

 ,

we can also simplify equation 2.17. This gives us

cmin(x̂j) = [ATΘ(x̂j)A]−1(ATΘ(x̂j)y) (2.18)
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This provides us with a way to calculate each local set of coefficients cmin(x̂j). To then
compute the global function f̃ , we combine 2.17 and the weighting function in 2.14 to find
that

f̃(x) =
∑
j

φj(x)π3
m(x)Tcmin(x̂j)

=
∑
j

φj(x)π3
m(x)T ([ATΘ(x̂j)A]−1(ATΘ(x̂j)y)).

(2.19)

Just as with Least Squares, we now have an expression that can be calculated numerically
and provides an approximation f̃ . Notice that the method can only produce a result if k
or more unique input points contribute to each local set of coefficients cmin(x̂j), as we are
again solving a linear system. This means, if all input points are unique, that for each x̂j , N
minus the amount of weighting functions θ(||x̂j−xi||) that are equal to zero (for 0 < i ≤ N)
needs to be greater than or equal to k.

Example 2.9. To demonstrate Weighted Least Squares, we will look at the same problem
as in example 2.5. We take the input points as pivot points with x̂i = xi for 0 < i ≤ 3 and a
simple weighting function such as the Wendland function [14]: θ(d) = (1− d/h)4(4d/h+ 1).
This function is well-defined when d ∈ [0, h], so it is good if h is bigger than the biggest
distance between a pivot point and a sample point. We therefore take h = 4. This gives us
θ(d) = (1− d/4)4(d+ 1), from which we can calculate that

Θ(x̂1) =

1 0 0
0 81/128 0
0 0 3/16

 ,Θ(x̂2) =

81/128 0 0
0 1 0
0 0 81/128

 ,Θ(x̂3) =

3/16 0 0
0 81/128 0
0 0 1

 .

Using equation 2.17 and the matrices A and AT we calculated in 2.5, we find that

cmin(x̂1) =

233/128 −13/16 19/16
−13/16 19/16 −13/16
19/16 −13/16 19/16

−1  1 81/128 3/16
−1 0 3/16
1 0 3/16

1
0
1

 =

0
0
1

 .

Similarly we can calculate that

cmin(x̂2) = cmin(x̂3) =

0
0
1

 .

Using 2.14 we know that
∑

i φi(x) = 1 for any x and so we know that
∑

i φi(x)π1
2(x)Tcmin(x̂i) =

x2, as

π1
2(x)T

0
0
1

 = x2.

Normally we would calculate each φi individually, but this tends to get complicated quickly
and is not necessary for this example, as we already see that we get the correct approximation.

Example 2.10. In figure 2.2.1 we can see how the final result of the Weighted Least Squares
method is a weighting of the functions that are created per pivot point using the coefficients
cmin(x̂i). It is very visible that each of these functions is only a locally weighted approxi-
mation. The figure shows that as input points get further away from the pivot point, they
contribute less to the local function. This is why the local function for the middle pivot point
is so similar to the final approximation.

10



Figure 2.1: A set of equidistant points on the domain [−2, 2] sampled from the function
f(x) = |x| is shown in both figures. The bottom figure shows the Weighted Least Squares
interpolation of order 2 of these input points, with a Wendland function using h = 4, using
the input points as pivot points. The top left figure plots the weighting function θj(x) for each
pivot point. The top right figure shows the individual functions generated by multiplying
the coefficient vector of each pivot point with the polynomial basis vector.
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2.2.2 Stability

As we did with the Least Squares method, we will now look at the behaviour of the Weighted
Least Squares approximation as the scalar values are slightly adjusted. We will show that
the error is again linear with respect to the adjusted input of the scalar values. We will then
look at the relative error of each coefficient vector belonging to a pivot point to determine
the stability of the approximation.

To examine the stability, let us again observe the behaviour of this approximation on in-
put points {xi} and slightly adjusted scalar values {yi + δi}. First we find a new coefficient
vector for each pivot point x̂j :

c∗min(x̂j) = [ATΘ(x̂j)A]−1(ATΘ(x̂j)(y + δ))

= [ATΘ(x̂j)A]−1(ATΘ(x̂j)yT +ATΘ(x̂j)δ)

= [ATΘ(x̂j)A]−1(ATΘ(x̂j)y) + [ATΘ(x̂j)A]−1(ATΘ(x̂j)δ)

= cmin(x̂j) + [ATΘ(x̂j)A]−1(ATΘ(x̂j)δ).

(2.20)

We then find that the new approximation f̃∗ is given by

f̃∗(x) =
∑
j

φj(x)[π3
m(x)]T (cmin(x̂j) + [ATΘ(x̂j)A]−1(ATΘ(x̂j)δ))

=
∑
j

φj(x)[π3
m(x)]Tcmin(x̂j) +

∑
j

φj(x)[π3
m(x)]T ([ATΘ(x̂j)A]−1(ATΘ(x̂j)δ))

= f̃(x) +
∑
j

φj(x)[π3
m(x)]T ([ATΘ(x̂j)A]−1(ATΘ(x̂j)δ)).

(2.21)

As seen before with Least Squares, the Weighted Least Squares approximation is linear in
its error, meaning that the difference between the initial approximation and the new ap-
proximation |f̃(x)− f̃∗(x)| is equal to a Weighted Least Squares approximation at the same
points {xi} with the adjustment values as the scalar values {δi}Ni=1.

To determine the stability, we use the stability of the coefficient vectors by examining the
relative error of each coefficient vector. For a random 0 < j ≤ N , we have

||cmin(x̂j)− c∗min(x̂j)||
||cmin(x̂j)||

=
||[ATΘ(x̂j)A]−1(ATΘ(x̂j)δ)||

||cmin(x̂j)||
. (2.22)

We know from the definition of Weighted Least Squares that

cmin(x̂j) = argmin
c∈Rk

||Θ(x̂j)Ac−Θ(x̂j)y||2,

where y is the vector composed of the values yi. This gives us that ATΘ(x̂j)Acmin(x̂j) =
ATΘ(x̂j)y. From this we see that ||ATΘ(x̂j)y|| = ||ATΘ(x̂j)Acmin(x̂j)|| ≤ ||ATΘ(x̂j)A|| ·
||cmin(x̂j)|| and this gives us a result similar to 2.10:

||cmin(x̂j)|| ≥
||ATΘ(x̂j)y||
||ATΘ(x̂j)A||

. (2.23)

If we now combine equation 2.22 with this result, we see that

||cmin(x̂j)− c∗min(x̂j)||
||cmin(x̂j)||

≤
||ATΘ(x̂j)A|| · ||[ATΘ(x̂j)A]−1(ATΘ(x̂j)δ)||

||ATy||
≤
||(ATΘ(x̂j)δ)||
||ATΘ(x̂j)y||

≤
||(ATΘ(x̂j))

−1|| · ||ATΘ(x̂j)|| · ||δ||
||(ATΘ(x̂j))−1ATΘ(x̂j)y||

≤ κ(ATΘ(x̂j))
||y − (y + δ)||

||y||
.

(2.24)
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The stability of the coefficient vector is dependent on κ(ATΘ(x̂j)) = κ(Θ(x̂j)A). This
immediately reveals the probable benefit of using Weighted Least Squares over Least Squares.
Notice that κ(Θ(x̂j)A) = ||Θ(x̂j)A|| · ||(Θ(x̂j)A)−1||. We know that a weighting function θ
is generally chosen so that |θ(d)| ≤ 1 for any d. Therefore, if we look at either the 1-norm
or 2-norm of matrices, we know that ||Θ(x̂j)||1 is equal to the maximum absolute column
sum of Θ(x̂j), which is therefore equal to 1 and because ||Θ(x̂j)||2 is equal to the maximum
absolute row sum of Θ(x̂j), it is also equal to 1. We therefore get both

κ(Θ(x̂j)A) ≤ ||Θ(x̂j)||1 · ||A||1 · ||(Θ(x̂j)A)−1||1 ≤ ||A||1 · ||(Θ(x̂j)A)−1||1

and
κ(Θ(x̂j)A) ≤ ||Θ(x̂j)||2 · ||A||2 · ||(Θ(x̂j)A)−1||2 ≤ ||A||2 · ||(Θ(x̂j)A)−1||2.

If we then find that ||(Θ(x̂j)A)−1||1 ≤ ||A−1||1 or ||(Θ(x̂j)A)−1||2 ≤ ||A−1||2, we have that
κ(A) ≤ κ(Θ(x̂j)A) under the 1-norm or 2-norm respectively. This means that the Weighted
Least Squares method has the potential to have more stable coefficients than the Least
Squares method, dependent on θ and the different pivot points {x̂j}nj=1.

Finally, as we saw in equation 2.19, all coefficient vectors are combined with the polynomial
base to create a polynomial per pivot point. As with Least Squares, the general stability
of polynomials will have an influence on the stability of the approximation due to this step.
After this, all the polynomials per pivot point are combined by averaging them using the
φj(x) functions from equation 2.14. This means that if some of the pivot point polynomials
have instabilities, the averaging will help even out these instabilities.

2.2.3 Complexity

To determine the complexity of Weighted Least Squares, we first examine equation 2.17
to find the algorithmic complexity of calculating cmin(x̂j) for one single pivot-point x̂j .
As we can see, the equation is similar to 2.5, but we can see that calculating θ(||x̂j −
xi||)π3

m(xi)π
3
m(xi)

T has an algorithmic complexion of O(k3). From this we can conclude
that the complexity of the calculation of

∑
i θ(||x̂j − xi||)π3

m(xi)π
3
m(xi)

T is O(Nk3). As
other operations such as the inversion or the multiplication of the results of both sums in
equation 2.17 have the same complexity as in 2.5 and calculating

∑
i θ(||x̂j − xi||)π3

m(xi)yi
has a complexity of O(Nk2), we see that the complexity of calculating cmin(x̂j) is of the
order O(Nk3). This is already a lot larger than the calculation of cmin in the Least Squares
method.

Theorem 2.11. The complexity of the global Weighted Least Squares algorithm is O(nNk3).

We know this because we have to calculate φj(x)cmin(x̂j) for each 0 < j ≤ n, meaning that
we have to perform the calculation as seen in 2.17 n times. The size of n depends on the
points that are chosen as pivots. This shows that it might be necessary, before starting the
actual approximation, to invest resources in pre-computing an efficient partition of unity of
the domain with well-chosen pivot points to speed up computation for the Weighted Least
Squares method.

2.3 Moving Least Squares

2.3.1 Method

Finally, the Moving Least Squares method is very similar to the Weighted Least Squares
method, but instead of taking one fixed pivot-point within R3, the method moves this point
continuously through R3. This means that for each point, an approximation pivoted around
this point is calculated individually. This leads to the following definition:
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Definition 2.12. The approximation f̃ produced by the Moving Least Squares method is the
f̃ ∈ Π3

m so that f̃(x) = f̃x(x) and the error EMLS(f̃x) =
∑

0<i≤N ||f̃x(xi)−yi||2θ(||x−xi||)
is lesser or equal than EMLS(h) for any other function h ∈ Π3

m, where θ is a chosen weighting
function.

Instead of constructing a global Weighted Least Squares method through a partition of unity,
the Moving least Squares method provides a global method by continuously approximating
over the entire domain R3 - that is, with each point within it as a pivot point.
We can now use 2.17 to calculate cmin(x) for each x ∈ R3 continuously to extract each
local function f̃x(x) = π3

m(x) · cmin(x). As before, we now have a way to calculate the
approximation f̃ , this time using Moving Least Squares. Again, each function f̃x needs to
have k or more unique input points contributing to its coefficients for the method to produce
a result.

Example 2.13. If we look at the problem described in examples 2.5 and 2.9 the difference
between Moving Least Squares and the previous methods becomes clear. In previous meth-
ods, we could calculate an elementary expression for the approximation f̃(x). With MLS
however, the approximation is always dependent on the point that we are sampling. To keep
this example simple we therefore choose a point in the approximation that we would like to
sample, say x = 1

2 and calculate f̃(1
2) = f̃ 1

2
(1

2). We use the same weighting function as we

used with example 2.9, so

Θ(
1

2
) =

3125
8192 0 0
0 7203

8192 0
0 0 7203

8192


which gives us

cmin(
1

2
) =

a+ 2b b− a a+ b
b− a a+ b b− a
a+ b b− a a+ b

−1  a b b
−a 0 b
a 0 b

1
0
1

 =

0
0
1

 ,

where a = 3125
8192 and b = 7203

8192 . We know that f̃(1
2) = f̃ 1

2
(x) = π1

2(x) · cmin(x) = x2, so

f̃(1
2) = (1

2)2. We again find a precise approximation.

2.3.2 Stability

Just as with the two earlier methods, we will observe the behaviour of the Moving Least
Squares approximation as the scalar values are adjusted. The error is linear in the adjusted
scalar input, as before, which we will show. Finally, we will look at the relative error of the
coefficient vector at each point to get an idea of the stability of the Moving Least Squares
approximation.

We will again look at the approximation on input points {xi} and slightly adjusted scalar
values {yi + δi}. As the calculation of the coefficient vector is exactly the calculation of the
coefficient vector for a pivot point in the Weighted Least Squares method, we can use 2.20
to find that

c∗min(x) = cmin(x) + [ATΘ(x)A]−1(ATΘ(x)δ).

Because we know that f̃(x)∗ = π3
m(x) · c∗min(x), similar to Least Squares, we find that

f̃(x)∗ = π3
m(x) · (cmin(x) + [ATΘ(x)A]−1(ATΘ(x)δ))

= π3
m(x) · cmin(x) + π3

m(x) · ([ATΘ(x)A]−1(ATΘ(x)δ))

= f̃(x) + π3
m(x) · ([ATΘ(x)A]−1(ATΘ(x)δ)),

(2.25)
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which means that, as we have seen with the Least Squares and Weighted Least Squares
methods, Moving Least Squares is linear in its error. The difference between the original
approximation and the shifted approximation |f̃(x)∗ − f̃(x)| is a Moving Least Squares ap-
proximation on the same points {xi}, with scalar values {δi}Ni=1.

We can examine the stability of the coefficient vector by using equation 2.24, as we know
that the coefficient vector is calculated in the same manner as a coefficient vector for a pivot
point in Weighted Least Squares. This means that

||cmin(x)− c∗min(x)||
||cmin(x)||

≤ κ(Θ(x)A)
||y − (y + δ)||

||y||
. (2.26)

Notice that similar to what we saw with Weighted Least Squares, the Moving Least Squares
coefficient vectors have the potential to be more stable than the Least Squares coefficient vec-
tor. Furthermore, the coefficient vectors will have a stability equal to those in the Weighted
Least Squares method. If it is later shown that the Moving Least Squares method is more
stable than the Weighted Least Squares method, it must be a result of the fact that Moving
Least Squares generates a coefficient vector for each input x instead of for a limited set of
pivot points.

As before, the analysis above is only an analysis of the stability of the coefficients and
not of the entire approximation. This can, just as we have seen with Least Squares, give an
indication of the stability of the approximation, but it is not the exact stability as there is
still the general stability of polynomials that will have an influence on the stability of the
approximation.

2.3.3 Complexity

Finally, we examine the algorithmic complexity of the Moving Least Squares method.

Theorem 2.14. The complexity of the Moving Least Squares algorithm is dependent on the
amount of times that f̃(x) is sampled at a certain point x. Calculating one of these samples
has a complexity of O(Nk3).

As Moving Least Squares works continuously over the entire domain of the function, the
complexity of this method depends heavily on its implementation. We know from the com-
plexity of Weighted Least Sqaures that calculating the function at one point, f̃x(x), has a
complexity of O(Nk3), the same as the complexity of the calculation in 2.17. The amount
of times that we sample one of these functions in one point is, unlike in the situation of
Weighted Least Squares, not certain as we cannot calculate f̃x(x) for every single point x of
a continuous domain.
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Chapter 3

Applications in Three-Dimensional
Modelling

In this chapter we will explain how the Least Squares, Weighted Least Squares and Moving
Least Squares methods can be used for solving practical problems. We will do this by
explaining two implementations of the methods in the three-dimensional modelling field:
point cloud and polygon soup reconstruction.

3.1 Point Cloud Reconstruction

Many problems in three-dimensional modelling involve computing a model from a set of
known points, which is known as a point cloud. These points are often acquired by measuring
a real world object, with some examples being a statue or an artwork, a human body or an
anatomical part, or even a landscape. Reconstructing a point cloud into a three-dimensional
model is called surface reconstruction.

3.1.1 Approximation

Cuomo et al. describe a four step algorithm for reconstructing a surface [2]. If we have the
set of N surface points {xi}Ni=1 and their respective normals {ni}Ni=1 (which we can compute
if they are not known), we can first construct a so-called extended data set. This set of
points consists of the original point set {xi} together with two sets of off-surface points
{xi + δni}Ni=1 and {xi − δni}Ni=1 which can be generated by picking a small surface offset
δ > 0. This extended point set is necessary for the second step. We can now define a function
f : Ω→ R on the domain of our model Ω ⊂ R3 which we define as follows:

f(x) =


1 if x is outside of our model.

-1 if x is inside of our model.
0 if x is on the surface of our model.

.

We can now generate the accompanying scalar values for all the points in our extended data
set: all original points all have a scalar value of 0, the positive off-surface points have scalar
values of 1 and the negative off-surface points have scalar values of −1. The second step of
the algorithm is approximating the function f using the points and their scalar values. If we
approximate this function, we can then find the reconstruction by looking at the isosurface on
which our approximation is equal to zero. This is where either the Least Squares, Weighted
Least Squares or Moving Least Squares method can be used to generate an approximation
of f , which we will call f̃ .
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3.1.2 Sampling

The third step is the evaluation of f̃ to examine where the isosurface of f̃ = 0 lies. This is
often done along a grid-like domain to create a mesh of the surface compatible with three-
dimensional rendering software. An efficient algorithm that can triangulate the surface is the
marching cubes algorithm [9]. This algorithm samples the function along a three-dimensional
grid composed of cubes; by calculating how the surface intersects each cube the algorithm can
triangulate the part of the surface within that cube. This process will transform the entire
surface to a geometrical representation. Modern software tools such as skimage provide an
efficient implementation of this algorithm that also returns topologically sound meshes [8].
A benefit of using marching cubes algorithms is that the number of samples that is needed
to provide a mesh of a certain resolution is known beforehand. This means that we can use
the theoretical complexity of the Moving Least Squares methods to estimate the complexity
of reconstructing a surface, as the complexity of using these methods is dependent on the
amount of samples and we now know how many samples will be calculated.

The fourth and final step is rendering the surface. This can be done in any three-dimensional
rendering software as all implementations of the marching cubes algorithm return a triangu-
lated mesh of the reconstructed surface.

3.2 Polygon Soup Reconstruction

Another example of scattered data from which a mesh can be reconstructed is polygon soup.
Instead of a set of points, we have a set of polygons. This data can be obtained from
other polygonal meshes, which might be too detailed or not topologically closed. Therefore,
reconstructing scattered polygon soup can have many uses. C. Shen, J. F. O’Brian and J.
R. Shewchuk provide a way to rewrite Least Squares based methods so that the input is a
set of polygons with their respective scalar values instead of a set of points [11]. Equation
2.5 is rewritten so that for a set of polygons {Ωi}Ni=1 we have

cmin = [
∑
i

Ai]
−1

∑
i

ai, (3.1)

where

Ai =

∫
Ωi

π3
m(x)π3

m(x)Tdx (3.2)

and

ai =

∫
Ωi

π3
m(x)yidx. (3.3)

This way we assign an infinite set of points to each polygon on which we can apply the Least
Squares method. This can be applied in the same manner to equation 2.19 for Weighted
Least Squares by defining the new variables as follows:

Ai =

∫
Ωi

θ(||x− x̂j ||)π3
m(x)π3

m(x)Tdx, (3.4)

ai =

∫
Ωi

θ(||x− x̂j ||)π3
m(x)yidx. (3.5)

These equations can then be extended to Moving Least Squares in the same way that Moving
Least Squares extends Weighted Least Squares when interpolating a point set. The methods
can be extended to add normal constraints. Similar to point cloud surface reconstruction,
we can then produce an approximation function f̃ which can be sampled with a method that
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provides a topologically sound mesh such as the marching cubes algorithm. This makes it
possible to transform polygon soup into a topologically correct geometric representation of
the original model.
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Chapter 4

Numerical Experiments

In this chapter we will show implementations of the Least Squares, Weighted Least Squares
and Moving Least Squares methods. Using these we will conduct several numerical exper-
iments to verify the theoretical results that were obtained with respect to the accuracy,
stability and complexity of each individual method in chapter 2. We will also use these re-
sults to further compare the methods when they are used in practice. Finally, we will conduct
an experiment where each method will be used to reconstruct a point cloud as described in
section 3.1. The results of this experiment can then be combined with both the theoretical
assumptions and the results of earlier experiments to determine the quality of each method
when applied on such a real-world three-dimensional modelling problem.

4.1 Implementation

In this section we will show and explain our implementation of each method in Python. Each
method has been implemented both in a one-dimensional space and in three-dimensional
space, with small differences between these two implementations. The full implementation
together with the code for all further experiments in this thesis, can be found at https:

//github.com/desparito/comparing-ls-methods.

4.1.1 Least Squares

We shall now look at the implementation of Least Squares in one-dimension. Notice that in
the Python listings, the Numpy package is shorted to np.

Listing 4.1: The one-dimensional Least Squares algorithm.

1 def least_squares_R(points, values, m):

2 temp = lambda x : [x ** i for i in range(m + 1)]

3 pi_t = lambda x : np.array([temp(x)])

4 pi = lambda x : np.transpose(pi_t(x))

5 k = len(temp(0))

6

7 leftsum = np.zeros((k,k))

8 rightsum = np.zeros((k, 1))

9 for i in range(len(points)):

10 leftsum += np.matmul(pi(points[i]), pi_t(points[i]))

11 rightsum += pi(points[i])*values[i]

12 cmin = np.matmul(np.linalg.inv(leftsum), rightsum)

13 return np.vectorize(lambda x : np.dot(pi(x).flatten(), cmin.flatten()))

We see in the first line that the function takes three inputs: points, which is an array of
scalars of length N , representing the one-dimensional points {xi}; values, which is an array
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of length N , representing the respective scalar values {yi}; and m, which is the dimension of
the polynomial space as given in definition 2.1.

Lines 3 until 6 construct the vector π1
m(x), its transpose and its length k. This is simple in

one dimension, as π1
m(x) = [1, x1, . . . , xm]T . Lines 8 until 13 then calculate cmin according

to equation 2.5, with leftsum representing the left sum in this equation and rightsum rep-
resenting the right. The leftsum is then inverted and multiplied with rightsum to acquire
cmin. In line 14 the final step is performed: f̃(x) = π1

m(x) · cmin.

Listing 4.2: The three-dimensional Least Squares algorithm.

1 def least_squares_R3(points, values, m):

2 vectors = []

3 for i in range(m + 1):

4 vectors += [[i - q - p, q, p] for p in range(i + 1) for q in range(i + 1)

if i - q - p >= 0]

5

6 temp = lambda x, y, z : [(x**i)*(y**j)*(z**k) for [i,j,k] in vectors]

7 pi_t = lambda x, y, z : np.array([temp(x,y,z)])

8 pi = lambda x, y, z : np.transpose(pi_t(x,y,z))

9 k = len(vectors)

10

11 leftsum = np.zeros((k,k))

12 rightsum = np.zeros((k, 1))

13 for i in range(len(points)):

14 leftsum += np.matmul(pi(points[i][0], points[i][1], points[i][2]),

pi_t(points[i][0], points[i][1], points[i][2]))

15 rightsum += pi(points[i][0], points[i][1], points[i][2])*values[i]

16 cmin = np.matmul(np.linalg.inv(leftsum), rightsum)

17 return np.vectorize(lambda x, y, z : np.dot(pi(x,y,z).flatten(),

cmin.flatten()))

As we can see, the three-dimensional algorithm is quite similar. It has the same input
(points, values and m), except for the fact that an element of points is now a three-
dimensional array. In lines 2 to 9 we now compute π3

m(x), its transpose and its length k.
This is more complicated than in one dimension, something which we have seen with example
2.4. In lines 11 to 16 we again compute leftsum and rightsum as the left and right sum as
seen in 2.5. Finally in line 17 we again use the dot product of π3

m(x) and cmin to find f̃(x).

4.1.2 Weighted Least Squares

We can now look at the one-dimensional implementation of Weighted Least Squares and see
some similarities.

Listing 4.3: The one-dimensional Weighted Least Squares algorithm.

1 def weighted_least_squares_R(points, values, m, theta):

2 temp = lambda x : [x ** i for i in range(m + 1)]

3 k = len(temp(0))

4 pi_t = lambda x : np.array([temp(x)])

5 pi = lambda x : np.transpose(pi_t(x))

6

7 relative_theta = lambda x, j : theta(np.abs(x - points[j]))

8 relative_theta_sum = lambda x : sum([relative_theta(x, j) for j in

range(len(points))])

9

10 def cmin(x):
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11 leftsum = np.zeros((k,k))

12 rightsum = np.zeros((k, 1))

13 for i in range(len(points)):

14 leftsum += theta(np.abs(x - points[i]))*np.matmul(pi(points[i]),

pi_t(points[i]))

15 rightsum += theta(np.abs(x - points[i]))*pi(points[i])*values[i]

16 return np.matmul(np.linalg.inv(leftsum), rightsum)

17

18 return np.vectorize(lambda x : sum(psi(x, j)*np.dot(pi(x).flatten(),

cmin(points[j]).flatten()) for j in range(len(points))))

Weighted Least Squares has the same parameters as Least Squares, with theta as an ex-
tra parameter, which represents the weighting function; a lambda function can be given to
the method to weigh the distances from each pivot point. Notice that both in our one-
dimensional and three-dimensional implementation we have chosen the sampling points {xi}
as our pivot points for our numerical experiments.

Lines 2 to 5 are the same as in listing 4.1, as the calculation of the polynomial basis vector
does not change. In lines 7 to 8 we calculate what is needed for φj(x), the partition of unity
which we saw in 2.14. In lines 10 until 16 we calculate a cmin(x̂j) dependent on pivot point
x̂j , given as parameter x. We again use a variable leftsum and a variable rightsum, this
time to represent the left and right sums in equation 2.17. Finally, in line 18, we implement
equation 2.19 to sum the local weighted functions and provide a global approximation. Notice
that we do not directly calculate each φj but that we instead take the factor of 1∑k=n

k=1 θk(x)
out

of the sum, which saves a lot of calculation time for each time we sample the approximation.

Listing 4.4: The three-dimensional Weighted Least Squares algorithm.

1 def weighted_least_squares_R3(points, values, m, theta):

2 vectors = []

3 for i in range(m + 1):

4 vectors += [[i - q - p, q, p] for p in range(i + 1) for q in range(i + 1)

if i - q - p >= 0]

5

6 temp = lambda x, y, z : [(x**i)*(y**j)*(z**k) for [i,j,k] in vectors]

7 k = len(vectors)

8 pi_t = lambda x, y, z : np.array([temp(x,y,z)])

9 pi = lambda x, y, z : np.transpose(pi_t(x,y,z))

10

11 #Pre-calculate static values outside of the main cmin calculation:

12 pi_pi_t_at_point = [None] * len(points)

13 pi_values_at_point = [None] * len(points)

14 for i in range(len(points)):

15 pi_at_point = pi(points[i][0], points[i][1], points[i][2])

16 pi_pi_t_at_point[i] = np.matmul(pi_at_point, pi_t(points[i][0],

points[i][1], points[i][2]))

17 pi_values_at_point[i] = pi_at_point*values[i]

18

19 norm = lambda x, y, z : np.sqrt(x**2 + y**2 + z**2)

20

21 relative_theta = lambda x, y, z, j : theta(norm(x - points[j][0], y -

points[j][1], z - points[j][2]))

22 relative_theta_sum = lambda x, y, z : sum([relative_theta(x, y, z, j) for j

in range(len(points))])

23

24 def cmin(x, y, z):

25 leftsum = np.zeros((k,k))
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26 rightsum = np.zeros((k, 1))

27 for i in range(len(points)):

28 weight = theta(norm(x - points[i][0], y - points[i][1], z -

points[i][2]))

29 leftsum += weight*pi_pi_t_at_point[i]

30 rightsum += weight*pi_values_at_point[i]

31 return np.matmul(np.linalg.inv(leftsum), rightsum)

32

33 #Precaculate the cmin for each (pivot) point:

34 cmin_at_point = [None] * len(points)

35 for i in range(len(points)):

36 cmin_at_point[i] = cmin(points[i][0],points[i][1],points[i][2])

37

38 def result(x,y,z):

39 local_pi = pi(x,y,z).flatten()

40 return (sum([relative_theta(x,y,z,j)*np.dot(local_pi,

cmin_at_point[j].flatten()) for j in

range(len(points))]))/relative_theta_sum(x,y,z)

41 return np.vectorize(result)

The three-dimensional calculation extends the one-dimensional calculation very similarly to
how listing 4.1 extends listing 4.2. There are two sections that are interesting however; those
in lines 11 until 17 and 33 to 36. Here we respectively pre-calculate the values of π3

m(xi),
π3
m(xi)π

3
m(xi)

T ,π3
m(xi)yi and the cmin(xi) for each sample point from 0 < i ≤ N and

store the values in memory. This saves us quite a lot of computation time. In the final
three lines we also pre-calculate and store π3

m(x) when using it in the final sum instead of
calculating it j times. This speeds up the method in three dimensions as calculating π3

m(x)
becomes more computationally expensive than in one dimension.

4.1.3 Moving Least Squares

The one-dimensional implementation of Moving Least Squares looks like a combination of
listings 4.1 and 4.3. It calculates the cmin(x) for a certain point x similar to how the cmin
vector would be calculated for a pivot point in Weighted Least Squares, but in line 15 the
final dot product is calculated as described in section 2.3.1.

Listing 4.5: The one-dimensional Moving Least Squares algorithm.

1 def moving_least_squares_R(points, values, m, theta):

2 temp = lambda x : [x ** i for i in range(m + 1)]

3 k = len(temp(0))

4 pi_t = lambda x : np.array([temp(x)])

5 pi = lambda x : np.transpose(pi_t(x))

6

7 def cmin(x):

8 leftsum = np.zeros((k,k))

9 rightsum = np.zeros((k, 1))

10 for i in range(len(points)):

11 leftsum += theta(np.abs(x - points[i]))*np.matmul(pi(points[i]),

pi_t(points[i]))

12 rightsum += theta(np.abs(x - points[i]))*pi(points[i])*values[i]

13 return np.matmul(np.linalg.inv(leftsum), rightsum)

14

15 return np.vectorize(lambda x : np.dot(pi(x).flatten(), cmin(x).flatten()))
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Listing 4.6: The three-dimensional Moving Least Squares algorithm.

1 def moving_least_squares_R3(points, values, m, theta):

2 vectors = []

3 for i in range(m + 1):

4 vectors += [[i - q - p, q, p] for p in range(i + 1) for q in range(i + 1)

if i - q - p >= 0]

5

6 temp = lambda x, y, z : [(x**i)*(y**j)*(z**k) for [i,j,k] in vectors]

7 k = len(vectors)

8 pi_t = lambda x, y, z : np.array([temp(x,y,z)])

9 pi = lambda x, y, z : np.transpose(pi_t(x,y,z))

10

11 #Pre-calculate static values outside of the main cmin calculation:

12 pi_pi_t_at_point = [None] * len(points)

13 pi_values_at_point = [None] * len(points)

14 for i in range(len(points)):

15 pi_at_point = pi(points[i][0], points[i][1], points[i][2])

16 pi_pi_t_at_point[i] = np.matmul(pi_at_point, pi_t(points[i][0],

points[i][1], points[i][2]))

17 pi_values_at_point[i] = pi_at_point*values[i]

18

19 norm = lambda x, y, z : np.sqrt(x**2 + y**2 + z**2)

20

21 def cmin(x, y, z):

22 leftsum = np.zeros((k,k))

23 rightsum = np.zeros((k, 1))

24 for i in range(len(points)):

25 weight = theta(norm(x - points[i][0], y - points[i][1], z -

points[i][2]))

26 leftsum += weight*pi_pi_t_at_point[i]

27 rightsum += weight*pi_values_at_point[i]

28 return np.matmul(np.linalg.inv(leftsum), rightsum)

29

30 return np.vectorize(lambda x, y, z : np.dot(pi(x,y,z).flatten(),

cmin(x,y,z).flatten()))

Finally, the three-dimensional Moving Least Squares algorithm extends this to three dimen-
sions. We see that it also pre-calculates the same values that were pre-calculated in listing
4.4 to lower the total computation time. Just as in the one-dimensional algorithm, the final
step in line 30 completes the Moving Least Squares approach.

4.2 Examples of Approximation

To see what type of functions are interesting to look into in terms of stability, it is impor-
tant that it is known what functions produce interesting and accurate approximations when
approximated by the three methods. We also need a grasp of the behaviour of the different
methods to choose the correct parameters when later comparing the stability of the meth-
ods, because some of these parameters might influence the results. We will therefore use this
section to look at a few examples and explore a few different interesting approximations that
show the general behaviour of the methods.

Example 4.1. If we approximate polynomial functions f(x) = 10−5x6 and f(x) = 10−5x7

on the domain [−10, 10] by sampling ten points evenly across this domain and providing these
points with their scalar values to the methods, we see in figure 4.1 that all three methods
converge to a near-perfect approximation. We numerically approach the maximal error on
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Figure 4.1: The maximal error (sampled across 1000 points) of the the approximation of two
functions (left: f(x) = 10−5x6 and right: f(x) = 10−5x7) on the domain [−10, 10] produced
by LS (blue), WLS (green) and MLS (red) as the order of the polynomial space increases.
WLS and MLS use the Wendland function as the weighting function with h = 20.

the domain max
x∈[−10,10]

|f(x)− f̃(x)| by sampling 1000 points for x ∈ [−10, 10] and taking the

maximal error.

What example 4.1 shows us can be extrapolated to all polynomials; generally a polynomial
of order n can be approximated almost perfectly by each method if the method uses a poly-
nomial space of order n, sometimes even with as little samples as in example 4.1. Figure 4.1
also nicely shows that the error of a Weighted Least Squares approximation is generally lower
than that of a Least Squares approximation and that the error of a Moving Least Squares
approximation is generally even lower than that of a Weighted Least Squares approxima-
tion. This is expected, as we know from theory that each method should improve upon the
previous.

Example 4.2. If we look at the first-order approximations of all methods as described in
example 4.1, we can plot them against the original functions on the domain to compare the
accuracy of each method. The result of this is shown in figure 4.2. Notice that a benefit of
Moving and Weighted Least Squares over normal Least Squares is that a first-order Least
Squares approximation is globally first order, whereas a first-order Weighted or Moving Least
Squares approximation is only locally first-order and can therefore take on a higher order
globally.

Example 4.2 can also be generalised to higher order approximations; we see that the global
order of the approximation that Least Squares produces is limited by the order of the polyno-
mial space. The Weighted and Moving Least Squares methods solve this issue by combining
many local polynomials, either centred around the pivot points for WLS or around the points
where the function is sampled for MLS.

Example 4.3. Another interesting example involves Runge’s phenomenon. If we generate a
standard polynomial interpolation of order n of the Runge function, f(x) = 1

1+25x2
, through

n + 1 equispaced points on the domain [−1, 1], the error will increase as n increases. The
interpolated function will oscillate when close to x = −1 and x = 1 and as the degree of
the polynomial interpolation increases, the error may diverge to infinity [4]. With the Least
Squares based methods however, the approximations stay well-conditioned as long as the
order of the approximation is less than 2

√
n [3]. In figure 4.3 we see that if we break this rule

with n = 10 and take an approximation of order 8, it starts to present the same problems
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Figure 4.2: The first-order approximations of LS (blue), WLS (green) and MLS (red) of two
functions (left: f(x) = 10−5x6 and right: f(x) = 10−5x7), compared to the original functions
(black) on the domain [−10, 10]. WLS and MLS use the Wendland function as the weighting
function with h = 20. The input points and their scalar values are represented by the blue
dots. (The graph is sampled at 1000 points.)

as the polynomial interpolation. The approximation with order 6 is therefore better in this
situation. We can also see that we can even slightly improve the interpolation by adding an
extra input point at x = 0 to better represent the original function.

Example 4.3 shows us two final things to take into consideration when comparing the different
approximation methods. The first is that there might be an inclination to think that using a
higher order polynomial space produces approximations that are more accurate. This is true
for some functions, as we saw in example 4.1 that polynomial functions have near-perfect
approximations for any of the three methods when using an approximation with a polynomial
space of the same order. But the Runge function shows that there are also functions where
Least Squares based methods have a benefit over simple polynomial interpolation methods,
as the order of the polynomial space is a choice and a more beneficial order can be chosen if
the function calls for such a thing. When comparing the three methods, we should choose a
function that has a relatively simple behaviour when increasing the order of the polynomial
space, so that effects similar to Runge’s phenomenon do not influence the results. The second
consideration is that we choose a function that is well-represented when taking an equilateral
set of input points over the domain. As we saw in 4.3, the equilateral distribution of points
on the Runge function does not work very well, as we tend to miss the peak at x = 0. We
would like to avoid this in the function that is approximated when comparing the methods,
as this may also influence the results.

4.3 Stability

In this section we will examine the accuracy and usability of the theoretical bound on the
stability calculated in chapter 2. The result is that in practice this bound is generally not
an accurate bound: it is way higher than the actual relative error will be when shifting the
scalar values. Because of this result, we experiment in this section to find out what the
stability will be in practical situations. We will see that generally the Weighted and Moving
Least Squares methods seem to be more stable than the Least Squares method and we will
examine some special cases to get a better overview of how the stability behaves under dif-
ferent circumstances.
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Figure 4.3: The approximations of LS (blue), WLS (green) and MLS (red) of the Runge
function, compared to the original function (black) on the domain [−1, 1]. The top-left graph
shows the eighth-order approximations, the top-right shows the sixth-order approximations.
Both these graphs have ten equilateral input points. The bottom graph shows the sixth-
order approximations with an extra input point at x = 0. WLS and MLS use the Wendland
function as the weighting function with h = 2. The input points and their scalars are
represented by the blue dots. (The graph is sampled at 1000 points.)
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Figure 4.4: The average relative error (sampled over 1000 points) between a correct approx-
imation and an approximation skewed by δi = aiyi (with ai chosen randomly with a uniform
distribution on the domain [−1, 1]) as the order of the polynomial space m with ten evenly
sampled points on the domain [0, 10] or [−1, 1] for the bottom left graph is increased, for LS
(blue), WLS (green) and MLS (red). Weighting is done using the Wendland function with
h = 10 or h = 2 for the bottom left graph. From left to right, top to bottom the functions
approximated are f(x) = 10−5x6+1, f(x) = 10−5x7+1, f(x) = 1

25x2+1
and f(x) = |x−5|+1.

In figure 4.4 we look at the stability of several functions when increasing the order of the poly-
nomial space used. For the top two graphs, we used two functions based on the polynomial
functions examined in example 4.1, but slightly adjusted so that f(x) 6= 0, which is easier for
calculating the relative error. As we know for these experiments that δi = aiyi with ai chosen
randomly from a uniform distribution on [−1, 1], we know that ||y−(y+δ)||

||y|| ≤ 1. The results
show that the relative errors between the skewed and original approximation are not too far
from 1 except for some outliers, so the methods are generally quite stable. Even in the bot-
tom two figures there is a low relative error, despite the fact that the functions used for these
figures are more difficult to approximate than the polynomial functions in the top two figures.

If we look at the difference between the methods, it seems that the Weighted and Moving
Least Squares methods seem to be more stable in most situations. As said before there do
seem to be outliers, such as in the top-right figure where the Least Squares approximation
peaks and in the bottom-left figure where the Weighted Least Squares method has a high
peak and the Moving Least Squares method also has two relatively high peaks. This shows
that the stability of each method heavily depends on the circumstances and that unexpected
instabilities might occur. It is therefore difficult to say whether or not the Moving Least
Squares method is more stable than the Weighted Least Squares method, as the difference in
relative error is less clear than the difference between these methods and the Least Squares
method.

Finally, if we take the sine function, we see another interesting result. In figure 4.5 we
see that the stability decreases heavily as the order of the polynomial space increases past
four. This means that for some functions there may be a point where taking an order that
is too high may damage the quality of the approximation, something that was also shown
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Figure 4.5: The average relative error (sampled over 1000 points) between a correct approx-
imation and an approximation skewed by δi = aiyi (with each ai chosen randomly with a
uniform distribution on the domain [−1, 1]) as the order of the polynomial space m with
ten evenly sampled points on the domain [0, 2π] is increased, for LS (blue), WLS (green)
and MLS (red). Weighting is done using the Wendland function with h = 2π. The function
approximated is f(x) = sin(x) + 1.

in the previous section. This is not a strange result, as higher order approximations are
intuitively less stable than lower order approximations; a linear line will for example shift
less when changing the scalar values of the points that it interpolates than a polynomial
of a higher order. Interestingly, this effect is not visible with the stability of the Runge
function, whereas in the previous section this effect did occur on the error of the Runge
function. It is clear that this effect can get very large, as the highest peak in relative er-
ror in the figure is around 180 times larger than the lowest relative error of the same method.

The mostly good stabilities seen in 4.4 are a result that is a lot more positive than what
was found theoretically. Looking at example 4.4 shows that the theoretical upper bound
on the conditioning of the matrix A is a lot worse than the conditioning of the final result
in practice. This means that in theory the relative error can get fairly big, which is what
happens when increasing the order above m = 4 with the sine function, but in practice we
often find that the approximations are all quite well-conditioned.

Example 4.4. Imagine that we try to approximate the function f(x) = sin(x) + 1 on the
domain [0, 2π]. We sample ten points from the original function, giving us the point set
{xi}10

i=1 with xi = (i − 1)2π
9 with scalar values {yi}10

i=1 with yi = sin(xi) + 1. If we linearly
approximate this function, meaning that m = 1, we have

A =

1 x1
...

...
1 x10

 .

Numerical approximation using Singular Value Decomposition gives us κ(A) ≈ 7.26. If we
use the Wendland function for weighting with h = 2π, the same numerical approximation
gives us κ(Θ(x1)A) ≈ 2.35, κ(Θ(x10)A) ≈ 41.21 and if we numerically approximate a few
more points we also see that κ(Θ(x)A) < κ(Θ(y)A) if x < y.

In figure 4.6 we take the functions we have examined in figures 4.4, but we look at how the
stability varies when the amount of input points is changed. We start at an amount of four
points so that the matrix is not singular. In this figure the stability grows as the bar of each
method gets smaller compared to the black bar; we have to compare to the black bar as we
cannot compare the individual bars of each method because of the randomness involved in
choosing each δ vector. Generally, the stability seems to improve as the amount of points
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Figure 4.6: The average relative error (sampled over 1000 points) between a correct approx-
imation and an approximation skewed by δi = aiyi (with ai chosen randomly with a uniform
distribution on the domain [−1, 1] and all ai re-chosen for each amount of points) with a
polynomial order of m = 3 as the amount of equidistant points sampled on the domain [0, 10]
or [−1, 1] for the bottom left graph is increased, for LS (blue), WLS (green) and MLS (red).
The average over all i of the relative error between yi and δi + yi is shown in black. Weight-
ing is done using the Wendland function with h = 10 and h = 2 for the second-row left
graph. From left to right, top to bottom the functions approximated are f(x) = 10−5x6 + 1,
f(x) = 10−5x7 + 1, f(x) = 1

25x2+1
and f(x) = |x− 5|+ 1.
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increases, which is a logical result; a larger set of input points means that a big fluctuation
of a single scalar value has a smaller impact on the approximation as a whole. There are of
course a few outliers within the data, just as in figure 4.4 and 4.5, which is to be expected
considering the randomness involved in this experiment.

It is very difficult to compare the three methods in stability using figure 4.6. All three
seem to preform better than the other two in different situations; in the top-left graph Least
Squares seems to be the least stable method, whereas it is clearly the most stable in the
bottom-left graph. This leads us to conclude that the amount of different parameters makes
it quite difficult to accurately compare the stability of these methods in practice: all three
might have parameters under which they have an optimal stability, such as a specific set of
input points and a certain weighting function.

To conclude this section, we discovered that the methods are all three quite well condi-
tioned, both when using a small amount of input points and a small order for the polynomial
space. We also found that there might be big differences in the stability of each method
given different circumstances under which it is tested. This makes it difficult to state which
method objectively has the best stability. Fortunately, the theoretical bound we found earlier
seems too high to accurately predict the stability of the approximations, as both κ(A) and
κ(AΘ(x)) for any x seem to grow too large in most realistic situations.

4.4 Complexity

In this section we examine the speed of each algorithm in practice under different conditions
to see if the complexity of our implementation of the methods is in line with the theoretical
complexities seen in chapter 2. The result is that the theoretical complexity and the speed
of the algorithms in practice seem to mostly match each other for all three methods, with
some changes in the implementation even improving the speed.

In figure 4.7 we can view how the speed of each algorithm in three dimensions scales against
the amount of input points. The function and the domain were chosen to be relatively simple
to calculate and so that it is easily verifiable if the approximations are relatively accurate.
According to the complexity we found in section 2.1.3, the approximation speed should scale
linearly as N increases, which is what happens in the figure. Notice that the slope is not
very steep, especially when compared to the increase in computation time in the other two
graphs. The greatest increase is in the approximation time. This is logical if we remember
our implementation: computing the cmin vector is done when approximating and scales
more heavily with N than calculating the dot product of π3

3(x) and cmin, which is what is
done for each sample point.

If we look at the results in figure 4.7 for WLS, we see that it is a lot less fast than LS.
The theoretical complexity calculated earlier was O(nNk2), which is equal to O(N2k2) as
N = n in this situation. It is difficult to see if the computational time of WLS has a linear
or quadratic increase as N grows. If we assume that the increase is quadratic, we can clearly
state that as the amount of input points gets very large, it becomes beneficial to choose less
points as pivot points, so that the complexity decreases to O(nNk2). Notice that almost all
of the computation time comes from sampling. This is interesting, because it means that
the computation of all the coefficient vectors is a lot faster than the final weighting of each
coefficient vector with the φ functions. This means that it might be beneficial to choose
less pivot points and more simple weighting functions so that the calculation of each φj(x)
becomes faster.
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Finally, looking at the results for MLS in figure 4.7, we find that MLS is slightly slower
than the WLS method. However, comparing these methods in speed through this figure is
unreliable as the load of the machine that the calculations were performed on differs and
performing certain tasks may be slightly faster or slower because of this. The result that is
seen in the figure is what we would expect from the theoretical stability: if we look at what
we stated in sector 2.3.3, the computation time should increase linearly as N increases. This
is what is visible in the figure. Almost all of the time is spent in the sampling phase, which
is logical: In our implementation generating the approximation has a small pre-calculation
cost, but the bulk of the computation happens during the sampling, as seen in the first sector
of this chapter.

In figure 4.8, we examine what happens to the speed of the different methods as the or-
der of the polynomial space is increased. It shows that the speed of the Least Squares
algorithm increases at around the rate found when calculating the theoretical complexity.
When we look at the Weighted Least Squares method, it seems that the order seems to have
a linear influence on the speed. This does not coincide with our theoretical results, but it can
be easily explained when looking at the implementation of the algorithm. As we explained
earlier in this chapter, both our implementation of Weighted and Moving Least Squares pre-
calculate the values of π3

m(xi), π
3
m(xi)π

3
m(xi)

T and π3
m(xi)yi for each sample point from

0 < i ≤ N . From what we saw in sections 2.2.3 and 2.3.3, these calculations contributed a
factor of around k2 to the algorithmic complexity of our algorithm. By moving these calcu-
lations to the beginning of the algorithm and storing them in memory when sampling, the
theory is that the algorithmic complexity should drop to around O(nNk) for Weighted Least
Squares and to O(Nk) for a single sample in Moving Least Squares. In practice, this seems
to be true for Weighted Least Squares. It is not true for Moving Least Squares, as we can see
from the figure that its complexity still seems to be equal to our found theoretical complexity
of O(Nk3) per sampled point. We could also add such a pre-calculation to the Least Squares
algorithm, but we chose not to, as Least Squares is already relatively fast when compared to
the other two methods and is therefore less in need of such an improvement.

4.5 Three-dimensional modelling

In this section we will implement the method for point cloud reconstruction explained in
section 3.1 and see how the methods perform in this implementation. The results will help
us compare the three methods in a realistic scenario, but they will mostly illustrate that it is
very difficult to accurately compare the three models due to the large amount of parameters
involved in the process.

As original input points we have taken meshes that represent the famous Utah teapot [16].
As described in 3.1, we generate a function f and two sets of off-surface points with δ = 0.22.
This is around 1 percent of the bounding box of the model, which is described as an ideal
value for δ by Wendland [15]. By now approximating this function f with the three different
methods and then generating a new triangular mesh using the marching cubes algorithm,
we can now create three-dimensional interpolations of the original set of points. The input
points are shown in figure 4.5. Notice the small sets of three: these are the original points
in combination with their two off-surface points.

The result of interpolating the low-resolution set of points using the different methods is
shown in figure 4.9. It is immediately noticeable that the teapot is smoothed by all three
methods as small details such as the handle and the rim of the teapot are not well-represented
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Figure 4.7: The amount of time in seconds that an approximation of the three dimensional
function f(x, y, z) = cos(x) + cos(y) + cos(z) on the domain {−4 ≤ x ≤ 4,−4 ≤ y ≤ 4,−4 ≤
z ≤ 4|(x, y, z) ∈ R3} and a marching cubes sampling of the approximation takes as we
increase the amount of input points. The marching cubes sampling samples a grid of 51
by 51 by 51 equidistant points (the isosurface used is f(x, y, z) = −0.3). The order of the
polynomial space m = 3. Weighting is done using the Wendland function with h = 8. The
top-left graph shows the results of LS, those of WLS are shown in the top-right graph and
those of MLS are shown in the bottom graph.
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Figure 4.8: The amount of time in seconds that an approximation of the three dimensional
function f(x, y, z) = cos(x) + cos(y) + cos(z) on the domain {−4 ≤ x ≤ 4,−4 ≤ y ≤ 4,−4 ≤
z ≤ 4|(x, y, z) ∈ R3} and a marching cubes sampling of the approximation takes as the order
of the polynomial space increases. The marching cubes sampling samples a grid of 51 by 51
by 51 equidistant points (the isosurface used is f(x, y, z) = −0.3). The input points are a
grid of 7 by 7 by 7 equidistant points. Weighting is done using the Wendland function with
h = 8. The top-left graph shows the results of LS, those of WLS are shown in the top-right
graph and those of MLS are shown in the bottom graph.
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in the approximations. Another detail that can clearly be noticed from the figure is that all
three methods have to create a continuous approximation out of the discontinuous function
f . As f is generated from only a small amount of points, we can see that the interpolated
models have different closed surfaces than the original model, which is one closed surface.
This is why holes are found near the top and the handle in the interpolated models and why
there seems to be another surface on top of the teapot in the interpolated model generated by
the LS method. This surface is a result of the hole on top of the teapot opening up and as the
approximated function is continuous, the method extends this hole into a larger surface. This
effect is visible to a lesser extent near the handle and the spout in the MLS and WLS models.

If we compare the results in figure 4.9, it seems as if the Least Squares interpolation is
the worst and the Moving Least Squares interpolation is the best. The comparison is a lot
more complex in reality. First of all, just one weighting function has been chosen, albeit
with an informed choice of the parameter h, but a wide range of different weighting func-
tions exists, which may produce better or worse results. The Wendland function is a function
more designed for smoothing, whereas other weighting functions are better for interpolation.
These functions all have their own parameters that can be tuned. Next to this, the parame-
ter δ can be changed, which might improve the performance of one or more of the functions.
The order of the polynomial space in each approximation has been hand-picked to produce
the most beneficial result. Figure 4.11 shows how picking the order of the polynomial space
differently can affect the WLS and MLS methods so that they are outperformed by the
interpolation generated by the LS method with the same order in figure 4.9. Finally, this
experiment shows just one simple set of input points. All these factors show that there is a
large difficulty when comparing the performance of the methods and although figure 4.9 is a
good indication of the quality of each method, it does not definitively prove which method
has the best performance.
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Figure 4.9: The rendering of different approximations of the Utah Teapot model on a bounded
box domain in R3 made using a marching cubes sampling of the approximation. The march-
ing cubes sampling samples a grid of 51 by 51 by 51 equidistant points (the isosurface used
is f(x, y, z) = 0, where f is the function as described in section 3.1). Weighting is done using
the Wendland function with h = 20. The top-left graph shows the results of LS with an
polynomial space of order 5, the results of WLS are shown in the top-right graph with order
4 and those of MLS are shown in the bottom-left graph with order 4. The bottom-right
graph shows the triangulation of the input points used. (There are 137 input points, the δ
as described in section 3.1 has a value of 0.22.)
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Figure 4.10: The input points for the Utah Teapot model on a bounded box domain, after
defining the off-surface points.

Figure 4.11: The rendering of different approximations of the Utah Teapot model on a
bounded box domain in R3 made using a marching cubes sampling of the approximation. The
marching cubes sampling samples a grid of 51 by 51 by 51 equidistant points (the isosurface
used is f(x, y, z) = 0, where f is the function as described in section 3.1). Weighting is done
using the Wendland function with h = 20. The left figure shows the WLS method with a
polynomial space of order 5 and the right figure shows the MLS method with order 5. (There
are 137 input points, the δ as described in section 3.1 has a value of 0.22.)
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Chapter 5

Conclusion

All three methods have been examined in detail, by looking at their stability and complexity
in theory and comparing this with results obtained in practice. Examples have also been
shown of how the different methods can be used when working on the interpolation or re-
construction of three-dimensional models. Such a method has been implemented to observe
the behaviour of each method in a practical situation.

If we use these results to compare all three methods to each other, we can conclude that such
a comparison is a very difficult one to make. The results give a good idea of what qualities
each method has under certain circumstances, but there are still a lot of circumstances unac-
counted for. This is due to the fact that there are still a lot of variables that can be changed.
Each method produces different results when these are changed, something which we have
seen many times throughout this thesis. For example, we have only compared the stability
of the methods in practice when approximating a few one-dimensional functions, with just
a single weighting function. A more thorough analysis of the stability would examine more
functions, in different dimensions, using different weighting functions and so forth. This is
clearly out of the scope of this thesis.

Further suggested research would therefore be to perform a more in-depth comparison cen-
tred around a single attribute of the methods, such as the stability. For this thesis, we chose
to examine the methods in the context of three-dimensional modelling, but this can only give
a very wide overview. For a deeper analysis, one can compare the three methods through
their quality in a specific implementation from chapter 3, for example. This significantly
lowers the amount of different parameters involved in an experiment, which provides the
opportunity to pick more interesting parameters, e.g. a weighting function can be chosen so
that the approximation of a function is suddenly more accurate.

Comparing the methods in a very specific context with interesting parameters are eventually
how a definitive comparison between the three methods can come to light. This comparison
will most likely mean that different applications within the three-dimensional modelling field
each have a best method, with specific parameters. It is therefore also important to research
each method on its own, to examine under what circumstances it behaves the best and under
what circumstances it seems to fail. This can give good information as to which parameters
can best be used to compare the different methods in further research.

To conclude, we have shown a good overview of the properties of the methods and found
that in certain situations there is a more preferable method in terms of speed or stability. To
give a definitive answer as to which method is the best in the context of three-dimensional
modelling, more research on the behaviour of the methods in specific situations is needed.
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