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Chapter 1

Introduction

The process of earthquake occurrences can be represented with several analytical models (Votsi et al., [1]). Some
of them are based on empirical observations of preliminary events, others on physical modelling of the earthquake
process and some on statistical analysis of patterns of seismicity.

In this thesis we present a semi-Markov model and a homogeneous Markov model in continuous-time to analyse the
process of earthquake occurrences. For the semi-Markov model, we estimate the semi-Markov kernel, Markov re-
newal functions, transitions probabilities and distributions of sojourn time for every state through a non-parametric
method. We apply our model to a dataset of the Northern Aegean Sea region in Greece.

We will examine the expected number of earthquake occurrences and the rate of occurrences of earthquakes, which
we will define in the thesis. We formulate 95% confidence intervals for these quantities. Our semi-Markov model
will be compared with the homogeneous Markov model based on the hazard rate function of the semi-Markov
process. We discuss which model is potentially a better fit to the dataset.

In the last part of the this thesis, we look at an additional dataset of the Northern Aegean Sea region and look at
the effect of covariates on the semi-Markov model. In particular, we want investigate the influence of the location
where the earthquakes occurred.

1.1 Motivation

We can apply the theory of Markov processes in various fields, because the Markov property is very intuitive: if
we know the past and present of a system, then the future development of the system is only determined by its
present state (Barbu & Limnios, [11]). So the history of the system does not play a role in its future development.
We also call this the memoryless property.

However, the Markov property has its limitations. It enforces restrictions on the distribution of the sojourn time
in a state, which is exponentially distributed in the continuous case. This is a disadvantage when we apply Markov
processes in real-life applications.

Therefore, we can introduce the semi-Markov process. This process allows us to have arbitrary distributed sojourn
time in any state and still provides the Markov property, but in a more flexible way. The memoryless property
does not act on the calender time in this case, but on the sojourn time in the state.

Because of the above reasoning, it is convenient to apply the semi-Markov model to the analysis of the process
of earthquake occurrences. From historical information, we know when certain earthquakes occurred and for how
long there was no seismic activity.
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1.2 Summary

Here we give an overview of the subjects that are covered in the chapters of this thesis.

In chapter 2 we introduce definitions about Markov chains in discrete-time and continuous-time. The Markov
renewal processes with corresponding renewal kernels are discussed and eventually we define what a semi-Markov
process is. This chapter is based on (Ross, [3]) chapters 4, 6 and 7, ([4]) and (Grabski, [5]).

Chapter 3 presents further definitions related to the semi-Markov process. We introduce empirical estimators for
some of the quantities that are defined. Also we look at the asymptotic behaviour of the empirical estimators. We
follow (Votsi et al., [1]), which is the main article this thesis is based on. This chapter is further based on (Ouhbi
& Limnios, [2]), (Grabski, [5]), (Limnios & Oprişan, [7]) chapter 4 and (Limnios & Ouhbi, [8]).

In chapter 4 an introduction of the homogeneous Markov model is given. We discuss the properties of this model
with respect to the rate of occurrences of failures. This chapter is based on (Ouhbi & Limnios, [2]) and (Grabski, [5]).

We apply the two models to the dataset of the Northern Aegean Sea region in chapter 5, which we use from (Votsi
et al., [1]). We define three states of earthquakes. We look at the hazard rate function of the semi-Markov process,
which will be an important quantity if we want to compare the homogeneous Markov model and the semi-Markov
model. The R package SemiMarkov (Listwon & Saint-Pierre, [12]) is used to determine the hazard rate functions
in a parametric way. Furthermore, we discuss the expected number of earthquake occurrences from any state to the
state with magnitude M ≥ 6.1 and show how to determine the rate of occurrences of earthquakes with M ≥ 6.1.
This chapter is based on (Votsi et al., [1]), (Limnios & Oprişan, [7]) chapter 5 and (Listwon & Saint-Pierre, [12]).

In chapter 6 we compare the homogeneous Markov model and the semi-Markov model based on the hazard rate
function of the semi-Markov process. We compute the semi-Markov kernels and look at the Wald test to draw
conclusions about the fit of both models. Parametric and non-parametric estimators will also be discussed. This
last subject is based on (Rice, [6]).

We apply the semi-Markov model to a new dataset in chapter 7, which we use from (Votsi et al., [1]). This dataset
consists of two states of earthquakes. A covariate is added to the dataset, namely the location of the earthquake.
The Northern Aegean Sea region is divided into four sub areas. We use the R package SemiMarkov (Listwon &
Saint-Pierre, [12]) again to determine the hazard rate functions of the semi-Markov process and look at the Wald
test to derive the consequences of the addition of covariates.

Chapter 8 concludes this thesis about the semi-Markov model and its application to the estimation of earthquakes
occurrences. In the appendix we find the proofs of certain theses used in the previous chapters and tables and figures.

We mention that in this thesis we will not go into detail about measure theoretic definitions. For the one who is
interested in these subjects, see (Cohn, [13]).
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Chapter 2

Preliminaries

In this section we introduce some definitions which we will apply in the following sections. We discuss Markov
chains, Markov renewal processes and eventually semi-Markov processes.

Definition 2.0.1 (Ross, [3]) (Stochastic process, state space). A stochastic process {X(t), t ∈ T} is a collection
of random variables. The index X(t) denotes the state of the process at time t and T the index set of the process.
When T is countable, the stochastic process is said to be a discrete-time process. When T is an interval, the
stochastic process is said to be a continuous-time process. The set I of all possible values that the random variable
X(t) can assume, is called the state space of the stochastic process.

Definition 2.0.2 (Ross, [3]) (Discrete-time Markov chain). Let {Xn, n = 0, 1, 2, . . . } be a stochastic process that
takes on a countable number of possible values in a set I. A discrete-time Markov chain is a stochastic process
where the conditional distribution of a future state Xn+1 given the past states X0, X1, . . . , Xn−1 and the present
state Xn, is independent of the past states and only depends on the present state. The process satisfies the property

P(Xn+1 = j | Xn = i,Xn−1 = in−1, . . . , X1 = i1, X0 = i0) = P(Xn+1 = j | Xn = i), (2.0.1)

for all n ≥ 0 and i0, . . . , in−1, i, j ∈ I.

If we have a discrete-time Markov chain and in addition it holds true that the right-hand side of (2.0.1) is inde-
pendent of the time n, then the discrete-time Markov chain is said to have stationary or homogeneous transition
probabilities. It follows that there exists a fixed probability pij that, when the process starts in state i, it will be
next in state j. For the probabilities pij , it holds true that

(i) pij ≥ 0, for all i, j ∈ I.

(ii)
∑∞
j=0 pij = 1 for all i = 0, 1, 2, . . .

Example 2.0.1 (Ross, [3]) A common example for which we can use Markov chains is predicting the weather.
Suppose the probability that it rains tomorrow depends only on whether or not it rains today and does not depend
on the past weather conditions. We assume that if it rains today, the probability that it rains tomorrow is equal
to α. If it does not rain today, the probability that it will rain tomorrow is equal to β. We say that the process is
in state 0 if it will rain tomorrow and the process is in state 1 if it does not rain tomorrow. Then the transition
probabilities are given by the matrix

P =

(
α 1− α
β 1− β

)
. (2.0.2)

Definition 2.0.3 (Ross, [3]) (Continuous-time Markov chain). Let {X(t), t ≥ 0} be a continuous-time stochastic
process which takes on values in the set I of non-negative integers. A continuous-time Markov chain is a stochastic
process with the property that the conditional distribution of the future X(t+ s) given the present X(s) and the
past X(u), 0 ≤ u < s, depends only on the present and is independent of the past. The process satisfies

P (X(t+ s) = j | X(s) = i,X(u) = x(u), 0 ≤ u < s) = P (X(t+ s) = j | X(s) = i) , (2.0.3)

for all s, t ≥ 0 and non-negative integers i, j, x(u) ∈ I with 0 ≤ u < s.
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If we have a continuous-time Markov chain and in addition it holds true that the right-hand side of (2.0.3) is
independent of the time s, then the continuous-time Markov chain is said to have stationary or homogeneous
transition probabilities.

Definition 2.0.4 (Ross, [3]) A Markov chain is said to be irreducible, if all states commute with each other. In
other words, two states i and j are accessible to each other for all i, j ∈ I.

Definition 2.0.5 (Ross, [3]) We call a stochastic process {N(t), t ≥ 0} a counting process, if N(t) represents the
number of events that occurred up to time t.

A counting process N(t) must satisfy the following properties:

(i) N(t) ≥ 0.

(ii) N(t) ∈ Z.

(iii) If s < t, then N(s) < N(t).

(iv) For s < t, N(t)−N(s) is equal to the number of events that occurred during the interval (s, t].

Definition 2.0.6 (Ross, [3]) (Renewal process). Let {N(t), t ≥ 0} be a counting process and let Xn be the
time between the (n − 1)th event and the nth event of the process with n ≥ 1. If the sequence {X1, X2, . . . } is
independent and identically distributed, then we call the counting process N(t) a renewal process.

Definition 2.0.7 (Ross, [3], [4]) (Markov renewal process). Let E be the state space. A Markov renewal process
is a bivariate stochastic process (Jn, Sn), where Jn are the values of the state space E in the Markov chain and Sn
are the jump times. We define Xn := Sn − Sn−1 to be the sojourn time in the state. The process has to satisfy
the following properties

P (Jn+1 = j,Xn ≤ t | (J0, S0), (J1, S1), . . . , (Jn = i, Sn)) = P (Jn+1 = j,Xn ≤ t | Jn = i) , (2.0.4)

P (J0 = i,X0 = 0) = P (J0 = i), (2.0.5)

for all n ≥ 0 and t ≥ 0 and i, j ∈ E.

Definition 2.0.8 (Grabski, [5]) (Renewal matrix, renewal kernel). Let E be the state space and consider the
Markov renewal process (Jn, Sn) as in definition 2.0.7. The matrix defined as

Q(t) = {Qij(t) : i, j ∈ E}, (2.0.6)

Qij(t) := P (Jn+1 = j,Xn ≤ t | Jn = i) , (2.0.7)

is called a renewal matrix. We identify the renewal matrix Q(t) as the renewal kernel.

The Markov renewal matrix Q(t) satisfies the following conditions:

(i) For all t ≥ 0 and i, j ∈ E, it holds true that Qij(t) ≥ 0.

(ii) The functions Qij(t) are right-continuous.

(iii) For all i, j ∈ E, it holds true that Qij(0) = 0 and Qij(t) ≤ 1 for all t ≥ 0.

(iv) For all i ∈ E, it holds that limt→∞
∑
j∈E Qij(t) = 1.

Definition 2.0.9 ([4]) (Semi-Markov process). Consider a Markov renewal process (Jn, Sn) as in definition 2.0.7.
Define the stochastic process Zt := Jn for t ∈ [Sn, Sn+1). Then Zt is called a semi-Markov process.

The main difference between a Markov renewal process and a semi-Markov process is that we define the Markov
renewal process as a two-tuple of states and times ([4]). The semi-Markov process is the process that evolves over
time and all realisations of the process have a defined state for any given time. We can read the semi-Markov
process as follows. Suppose that a process can be in one of N states. Each time it enters a state i, it stays there
for a random amount of time, and then it makes a transition from state i to state j with transition probability pij .

If the amount of time spend in state i before it makes a transition to state j is constant, then the semi-Markov
process is just a Markov chain. However, the amount of time spend in the states before transition can also depend
on a distribution. We consider the following lemma about this concept.
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Lemma 2.0.1 (Grabski, [5]) A homogeneous Markov process {X(t), t ≥ 0} with discrete state space E and right-
continuous trajectories keeping constant values on half open intervals, given by the transition rate matrix Λ = (λij)
for i, j ∈ E with 0 < −λii = λi <∞, is a semi-Markov process with kernel Q(t) = {Qij(t) : i, j ∈ E}, where

Qij(t) = pij
(
1− e−λit

)
for t ≥ 0, (2.0.8)

pij =
λij
λi

for i 6= j, (2.0.9)

pii = 0. (2.0.10)

Proof. See for example (Grabski, [5]), theorem 1. �
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Chapter 3

Semi-Markov model

This chapter presents the definitions of the semi-Markov model. First, we summarize the definitions for the semi-
Markov process which we will apply in the rest of the thesis. After that we introduce empirical estimators for
the quantities of a finite state space semi-Markov process. We discuss the asymptotic behaviour of the empirical
estimators for some of the quantities.

3.1 Definition of semi-Markov process

We will follow the definitions of Votsi et al., [1]. Consider a Markov-renewal process (Jn, Sn) defined on a complete
probability space and with state space E = {1, 2, . . . , s}. It holds true that Jn are the values of the state space
E in the Markov chain and Sn are the jump times for n ≥ 0. We assume that Sn take values in [0,∞). Define
Xn := Sn − Sn−1 to be the sojourn time in the state and we assume that X0 = S0 = 0. We let Zt := JN(t) for
t ≥ 0 be the semi-Markov process where N(t) is the counting process of the semi-Markov process up to time t.
It holds true that N(t) := max{n ≥ 0 : Sn ≤ t}. In figure 3.1.1 (Barbu & Limnios, [11]) we see an example of a
sample path of the semi-Markov chain.

The semi-Markov process depends on its initial law, which we assume is equal to πi = P(J0 = i), and on its
semi-Markov kernel

Qij(t) := P (Jn+1 = j,Xn+1 ≤ t | J0, J1, . . . , Jn = i,X1, X2, . . . , Xn)

= P (Jn+1 = j,Xn+1 ≤ t | Jn = i) , (3.1.1)

for all t ≥ 0 and i, j ∈ E. We consider that Qii(t) 6= 0 for all i ∈ E.

Figure 3.1.1: Sample path of the semi-Markov chain. (Barbu & Limnios, [11])
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The probabilities

pij := lim
t→∞

Qij(t) = Qij(∞)

= P (Jn+1 = j | Jn = i) (3.1.2)

are the transition probabilities from state i to state j of the embedded Markov chain {Jn, n = 0, 1, 2, . . . }. We
assume that the transition probabilities do not depend on the time n.

We define

Fij(t) := P (Xn+1 ≤ t | Jn = i, Jn+1 = j) (3.1.3)

to be the distribution function associated with the sojourn time in state i, before going to state j. From this
definition we can derive the following result. The proof is given in the appendix.

Theorem 3.1.1 (Grabski, [5]) It holds true that

Fij(t) =
Qij(t)

pij
, (3.1.4)

for all t ≥ 0 and i, j ∈ E.

Proof. See appendix A.1. �

The distribution function of the sojourn time, also called the waiting time, in state i is equal to

Hi(t) := P (Xn+1 ≤ t | Jn = i)

=
∑
j∈E

Qij(t). (3.1.5)

Because the semi-Markov process is connected to (Jn, Sn) through Zt = JN(t) for t ≥ 0, where N(t) is the counting
process of the semi-Markov process up to time t, we define the transition function Pij(t) of the process {Zt, t ≥ 0}
as (Ouhbi & Limnios, [2])

Pij(t) := P (Zt = j | Z0 = i)

= P
(
JN(t) = j | J0 = i

)
, (3.1.6)

for all i, j ∈ E. Then the unconditional semi-Markov state probability is equal to

Pj(t) := P (Zt = j) = P
(
JN(t) = j

)
=

s∑
i=1

P
(
JN(t) = j | J0 = i

)
P(J0 = i)

=

s∑
i=1

πiPij(t), (3.1.7)

where πi := P (J0 = i) is the initial distribution of the Markov renewal process.

Let T ≥ 0 be a fixed time and t ≥ 0 a specific time in the process. We define T as the end time of the process,
where it holds true that T > t for all t.

We denote Ni(T ) to be the number of visits of {Jn, n = 0, 1, 2, . . . } to state i up to time T , and Nij(T ) to be the
number of transitions from state i to state j up to time T . So

Ni(T ) :=

N(t)∑
n=1

1{Jn=i} =

∞∑
n=1

1{Jn=i,Sn≤T}, (3.1.8)

Nij(T ) :=

N(t)∑
n=1

1{Jn−1=i,Jn=j} =

∞∑
n=1

1{Jn−1=i,Jn=j,Sn≤T}, (3.1.9)
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where 1A is the indicator function. The function 1A is defined as

1A :=

{
1 if A,

0 otherwise.

Lastly, we want to define the quantity Q
(n)
ij (t) := P(Jn = j, Sn ≤ t | J0 = i), which is called the n-fold convolution

of the semi-Markov kernel Qij(t) for t ≥ 0. This is the probability that, starting from state i, the semi-Markov
chain will make its nth transition at time t to state j. Therefore, we need the following definition.

Definition 3.1.1 (Votsi et al., [1]) (Stieltjes convolution). Let φ(i, t) for t ≥ 0 and i ∈ E be a real valued
measurable function and Q be a semi-Markov kernel. Then the Stieltjes convolution of φ by Q is defined as

Q ∗ φ(i, t) :=
∑
k∈E

∫ t

0

Qik(ds)φ(k, t− s). (3.1.10)

We obtain the following recursive formula for Q
(n)
ij (t):

Q
(n)
ij (t) :=


∑
k∈E

∫ t

0

Qik(ds)Q
(n−1)
kj (t− s) if n ≥ 2,

Qij(t) if n = 1,

δij1{t≥0} if n = 0,

(3.1.11)

where δij is Kronecker’s delta symbol.

3.2 Empirical estimators

In this section we introduce the empirical estimators for some of the quantities we discussed previously. We mention
that we can use the below empirical estimators, because later in chapter 5 and chapter 7, we are working with
finite datasets. We discuss the asymptotic behaviour for some of the empirical estimators as well.

Let T be the end time of the process. For the semi-Markov kernel Qij(t) we have the following empirical estimator

Q̂ij(t, T ) :=
1

Ni(T )

N(t)∑
n=1

1{Jn−1=i,Jn=j,Xn≤t}. (3.2.1)

Because Fij(t) = Qij(t)/pij , in a similar way we obtain that F̂ij(t, T ) = Q̂ij(t, T )/p̂ij(T ) with

F̂ij(t, T ) :=
1

Nij(T )

N(t)∑
n=1

1{Jn−1=i,Jn=j,Xn≤t}, (3.2.2)

p̂ij(T ) :=
Nij(T )

Ni(T )
. (3.2.3)

The quantities F̂ij(t, T ) and p̂ij(T ) are respectively the empirical estimators for the conditional transition functions
and the transition probabilities. We see that for p̂ij we divide the number of transitions from state i to state j by
the (total) number of visits to state i.

We want to show that the empirical estimator Q̂ij(t, T ) of the semi-Markov kernel is strongly consistent and
asymptotically normal. Therefore, we need the following definition and theses.

Definition 3.2.1 ([10]) Let Xi, i = 1, . . . , n, be an independent and identically distributed sequence of random
variables with distribution function F on R. Then the empirical distribution function is defined by

F̂n(x) :=
1

n

n∑
i=1

1{Xi≤x}. (3.2.4)
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Theorem 3.2.1 ([10]) (Glivenko-Cantelli theorem) Let Xi, i = 1, . . . , n, be an independent and identically dis-
tributed sequence of random variables with distribution function F on R. Then,

sup
x∈R

∣∣∣F̂n(x)− F (x)
∣∣∣→ 0 (a.s.) (3.2.5)

as n→∞.

Proof. See for example ([10]), theorem 1.1. �

Theorem 3.2.2 (Barbu & Limnios, [11]) The empirical estimator p̂ij(T ) of pij for all i, j ∈ E is strongly consistent,
i.e.

p̂ij(T )→ pij (a.s.) (3.2.6)

as T →∞.

We note that the empirical estimator F̂ij(t, T ) of the distribution function satisfies theorem 3.2.1, because it
meets the definition of the empirical distribution function. Now, we give the properties of the empirical estimator
Q̂ij(t, T ). The proof of theorem 3.2.3 is given in the appendix.

Theorem 3.2.3 (Limnios & Oprişan, [7]) The empirical estimator Q̂ij(t, T ) of Qij(t) for all i, j ∈ E is strongly
consistent, i.e.

max
i,j∈E

sup
t∈[0,T )

∣∣∣Q̂ij(t, T )−Qij(t)
∣∣∣→ 0 (a.s.) (3.2.7)

as T →∞.

Proof. See appendix A.2. �

Theorem 3.2.4 (Limnios & Oprişan, [7]) The empirical estimator Q̂ij(t, T ) is asymptotically normal, i.e. for fixed
t > 0

√
T
∣∣∣Q̂ij(t, T )−Qij(t)

∣∣∣ d−→ N(0, σ2
ij) (3.2.8)

as T →∞. It holds true that

σ2
ij = µiiQij(t) (1−Qij(t)) , (3.2.9)

where µii is the mean time between two visits to state i.

Proof. See for example (Limnios & Oprişan, [7]), theorem 4.26. �

3.2.1 Hazard rate function

For all i, j ∈ E we define the hazard rate function of transition distributions between states, λij(t) for t ≥ 0, of the
semi-Markov kernel by (Limnios & Ouhbi, [8])

λij(t) :=


qij(t)

1−Hi(t)
if pij > 0 and Hi(t) < 1,

0 otherwise.

(3.2.10)

It holds true that qij(t) is the derivative of the (i, j)th element of the semi-Markov kernel Q(t). We assume that
this derivative exists for all i, j ∈ E. We define the cumulative hazard rate function from state i to state j at
time t by Λij(t) :=

∫ t
0
λij(s) ds. The total cumulative hazard rate function of state i at time t is defined as

Λi(t) =
∑
j∈E Λij(t). It holds true that

Qij(t) =

∫ t

0

e−Λi(s)λij(s) ds. (3.2.11)
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The empirical estimator of the hazard rate function of the semi-Markov process is equal to

λ̂ij(t, T ) :=


q̂ij(t, T )

1− Ĥi(t, T )
if p̂ij(T ) > 0 and Ĥi(t, T ) < 1,

0 otherwise,

(3.2.12)

where p̂ij(T ) is the empirical estimator for the transition probabilities. Furthermore, Ĥi(t, T ) is the empirical
estimator of the distribution function of the sojourn time in state i, which is defined as

Ĥi(t, T ) :=
∑
j∈E

Q̂ij(t, T ), (3.2.13)

where Q̂ij(t, T ) is the empirical estimator of the semi-Markov kernels. The empirical estimator of the derivative
function q̂ij(t, T ) of the semi-Markov kernel is (Ouhbi & Limnios, [2])

q̂ij(t, T ) :=
Q̂ij(t+ ∆, T )− Q̂ij(t, T )

∆
. (3.2.14)

It holds true that ∆ = T−α for 0 < α < 1.

3.2.2 Markov renewal matrix

We consider the following counting function of the renewal process (Jn, Sn) (Limnios & Oprişan, [7])

Nj(t) :=

∞∑
n=0

1{Jn=j,Sn≤t}. (3.2.15)

This is the total number of visits to state j up to time t. It holds true that, for any t ≥ 0, N(t) =
∑
j∈E Nj(t).

The Markov renewal matrix Ψ(t) = (ψij(t)) is defined as

ψij(t) := Ei[Nj(t)] = E(Nj(t) | J0 = i) (3.2.16)

=

∞∑
n=0

P(Jn = j, Sn ≤ t | J0 = i) =

∞∑
n=0

Q
(n)
ij (t), (3.2.17)

for t ≥ 0 and i, j ∈ E. Here, ψij(t) = Ei[Nj(t)] is the expected number of visits from state i to state j up to time
t. As an estimator for the (i, j)th element of the matrix Ψ(t), we use the empirical estimator

ψ̂ij(t, T ) :=

∞∑
n=0

Q̂
(n)
ij (t, T ), (3.2.18)

where Q̂
(n)
ij (t, T ) is the n-fold convolution of Q̂ij(t, T ) which we defined in section 3.1.

For the empirical estimator Q̂
(n)
ij (t, T ) of the n-fold convolution of the semi-Markov kernel, the following theorem

holds true. The proof is given in the appendix.

Theorem 3.2.5 (Barbu & Limnious, [11]) The empirical estimator Q̂
(n)
ij (t, T ) of Q

(n)
ij (t) for all i, j ∈ E is strongly

consistent, i.e. for any fixed n ∈ N

max
i,j∈E

max
t∈[0,T ]

∣∣∣Q̂(n)
ij (t, T )−Q(n)

ij (t)
∣∣∣→ 0 (a.s.) (3.2.19)

as T →∞.

Proof. See appendix A.3. �

Let us define the finite Markov renewal matrix as

ψ
(k)
ij (t) :=

k∑
n=0

Q
(n)
ij (t), (3.2.20)

11



where Q
(n)
ij (t) is the n-fold convolution of the semi-Markov kernel. The corresponding empirical estimator is

ψ̂
(k)
ij (t, T ) :=

k∑
n=0

Q̂
(n)
ij (t, T ). (3.2.21)

Then the following theorem about the finite Markov renewal matrix holds true. The proof is given in the appendix.

Theorem 3.2.6 (Barbu & Limnious, [11]) The empirical estimator ψ̂
(k)
ij (t, T ) of ψ

(k)
ij (t) for all i, j ∈ E is strongly

consistent, i.e. for any fixed k ∈ N

max
i,j∈E

∣∣∣ψ̂(k)
ij (t, T )− ψ(k)

ij (t)
∣∣∣→ 0 (a.s.) (3.2.22)

as T →∞.

Proof. See appendix A.4. �

The empirical estimator ψ̂ij(t, T ) of the elements of the renewal matrix has the following two properties.

Theorem 3.2.7 (Limnios & Oprişan, [7]) The empirical estimator ψ̂ij(t, T ) of ψij(t) for all i, j ∈ E is strongly
consistent, i.e.

max
i,j∈E

sup
t∈[0,T )

∣∣∣ψ̂ij(t, T )− ψij(t)
∣∣∣→ 0 (a.s.) (3.2.23)

as T →∞.

Theorem 3.2.8 (Limnios & Oprişan, [7]) The empirical estimator ψ̂ij(t, T ) is asymptotically normal, i.e. for fixed
t > 0

√
T
∣∣∣ψ̂ij(t, T )− ψij(t)

∣∣∣ d−→ N(0, σ2
ij(t)) (3.2.24)

as T →∞. It holds true that

σ2
ij(t) =

s∑
k=1

s∑
l=1

µkk
[
(ψik ∗ ψlj)2 ∗Qkl − (ψik ∗ ψlj ∗Qkl)2

]
(t), (3.2.25)

where µkk is the mean time between two visits to state k.

Proof. See for example (Barbu & Limnios, [11]), theorem 4.5. �

From theorem 3.2.7 and theorem 3.2.8, we conclude that

P

(
|ψ̂ij(t, T )− ψij(t)|

σij(t)

)
d−→ N(0, 1), (3.2.26)

as T →∞ for all i, j ∈ E.

We can derive 100(1 − α)% confidence intervals for the (i, j)th element ψij(t) of the Markov renewal matrix for
all t ≥ 0 from the above result. Let z(α) be that number such that the area under the standard normal density
function to the right of z(α) is equal to α (Rice, [6]). With use of (3.2.26), we obtain

P

(
−z(α/2) ≤ ψ̂ij(t, T )− ψij(t)

σij(t)
≤ z(α/2)

)
≈ 1− α,

P
(
ψ̂ij(t, T )− z(α/2)σij(t) ≤ ψij(t) ≤ ψ̂ij(t, T ) + z(α/2)σij(t)

)
≈ 1− α.

This yields the 100(1− α)% confidence intervals for ψij(t) for all i, j ∈ E:[
ψ̂ij(t, T )− z(α/2)σij(t), ψ̂ij(t, T ) + z(α/2)σij(t)

]
, t ≥ 0. (3.2.27)
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3.2.3 Rate of occurrences of failures

Now we define the rate of occurrences of failures, which we denote by ro(t). Therefore, consider the state space
E. We can naturally partition E into two sets, U and D, where U is the set of working states and D is the set of
repair states. It holds true that E = U ∪D and U ∩D = ∅, where U,D 6= ∅. We let Nf (t) be the counting process
of the transitions from U to D, at time t. In other words, this is the number of failures up to time t. We define
the rate of occurrences of failures ro(t) as (Ouhbi & Limnios, [2])

ro(t) := lim
∆t→0

E [Nf (t+ ∆t)−Nf (t)]

∆t
. (3.2.28)

The rate of occurrences of failures is the probability that a failure, which is not necessarily the first, will occur in
the next time interval.

To explicitly calculate ro(t), we have to make the following assumptions:

(i) The semi-Markov kernel Q(t) is absolutely continuous with respect to the Lebesgue measure on [0,∞), and
has a derivative function q(t) = (qij(t)) for i, j ∈ E.

(ii) For all t ≥ 0, it holds true that

Ψ′(t) =

∞∑
n=0

[
Q(n)

]′
(t) <∞.

We can prove that the following theorem about the rate of occurrences of failures holds.

Theorem 3.2.9 (Ouhbi & Limnios, [2]) Under the assumptions (i) and (ii), the rate of occurrences of failures for
the semi-Markov process is given by

ro(t) =
∑
i∈U

∑
j∈D

s∑
l=1

πlψli ∗ qij(t). (3.2.29)

It holds true that πl := P (J0 = l).

Proof. See for example (Ouhbi & Limnios, [2]), theorem 1. �

The corresponding empirical estimator for the rate of occurrences of failures is

r̂o(t, T ) :=
∑
i∈U

∑
j∈D

s∑
l=1

πlψ̂li ∗ q̂ij(t, T ), (3.2.30)

where the empirical estimator of the derivative function q̂ij of the semi-Markov kernel is defined as before.

We look at the asymptotic behaviour of the empirical estimator of the rate of occurrences of failures. It can be
shown that the following theses hold true. The proof of theorem 3.2.10 is given in the appendix.

Theorem 3.2.10 (Ouhbi & Limnios, [2]) Under assumptions (i) and (ii), the empirical estimator r̂o(t, T ) of ro(t)
is strongly consistent for ro(t), i.e. for all M ∈ [0,∞) we have

sup
t∈[0,M ]

|r̂o(t, T )− ro(t)| → 0 (a.s.) (3.2.31)

as T →∞.

Proof. See appendix A.5. �

Theorem 3.2.11 (Ouhbi & Limnios, [2]) Let qij(.) be twice continuously differentiable at t for all i ∈ U and
j ∈ D. Then r̂o(t, T ) is asymptotically normal with mean ro(t) and variance

σ2 =
∑
i∈U

∑
j∈D

µii

∑s
l=1 πlψli ∗ qij(t)

T 1−α +O(T−1), (3.2.32)

where µii is the mean time between two visits to state i and πl := P (J0 = l).

Proof. See for example (Ouhbi & Limnios, [2]), theorem 3. �
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From theorem 3.2.10 and theorem 3.2.11, we conclude that

P (|r̂o(t, T )− ro(t)|) d−→ N(0, σ2), (3.2.33)

as T →∞.

We can derive the 100(1 − α)% confidence intervals for the rate of occurrences of failures ro(t) for all t ≥ 0 from
the above result. For T →∞, it holds true that

P
(
|r̂o(t, T )− ro(t)|

σ

)
d−→ N(0, 1). (3.2.34)

Let z(α) be that number such that the area under the standard normal density function to the right of z(α) is
equal to α (Rice, [6]). With use of (3.2.34), we obtain

P
(
−z(α/2) ≤ r̂o(t, T )− ro(t)

σ
≤ z(α/2)

)
≈ 1− α,

P (r̂o(t, T )− z(α/2)σ ≤ ro(t) ≤ r̂o(t, T ) + z(α/2)σ) ≈ 1− α.

This yields the 100(1− α)% confidence interval for ro(t):

[r̂o(t, T )− z(α/2)σ, r̂o(t, T ) + z(α/2)σ] , t ≥ 0. (3.2.35)
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Chapter 4

Homogeneous Markov model

In this chapter we introduce the homogeneous Markov model. We define a continuous-time Markov chain as in
chapter 2.

Definition 4.0.1 (Ross, [3]) (Continuous-time Markov chain). Let {X(t), t ≥ 0} be a continuous-time stochastic
process which takes on values in the set I of non-negative integers. A continuous-time Markov chain is a stochastic
process with the property that the conditional distribution of the future X(t+ s) given the present X(s) and the
past X(u), 0 ≤ u < s, depends only on the present and is independent of the past. The process satisfies

P (X(t+ s) = j | X(s) = i,X(u) = x(u), 0 ≤ u < s) = P (X(t+ s) = j | X(s) = i) . (4.0.1)

for all s, t ≥ 0 and non-negative integers i, j, x(u) ∈ I with 0 ≤ u < s.

If we have a continuous-time stochastic process {X(t), t ≥ 0} and in addition

P (X(t+ s) = j | X(s) = i) (4.0.2)

is independent of the time s, then the continuous-time Markov chain is said to have homogeneous transition prob-
abilities.

We want to compare the semi-Markov model with the homogeneous Markov model in chapter 6. Therefore, we
consider the definition of the semi-Markov kernel for a homogeneous Markov process, which we have already seen
in lemma 2.0.1. We mention it here again.

Lemma 4.0.1 (Grabski, [5]) A homogeneous Markov process {X(t), t ≥ 0} with discrete state space E and right-
continuous trajectories keeping constant values on half open intervals, given by the transition rate matrix Λ = (λij)
for i, j ∈ E with 0 < −λii = λi <∞, is a semi-Markov process with kernel Q(t) = {Qij(t) : i, j ∈ E}, where

Qij(t) = pij
(
1− e−λit

)
for t ≥ 0, (4.0.3)

pij =
λij
λi

for i 6= j, (4.0.4)

pii = 0. (4.0.5)

With use of lemma 4.0.1, we obtain the following theorem about the rate of occurrences of failures in case of the
homogeneous Markov model. The proof is given in the appendix.

Theorem 4.0.1 (Ouhbi & Limnios, [2]) When we have a homogeneous Markov process as in lemma 4.0.1, it holds
true that

ro(t) =
∑
i∈U

∑
j∈D

Pi(t)λij , (4.0.6)

where λij is the (i, j)th entry of the generating matrix of the Markov process.

Proof. See appendix A.6. �
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Chapter 5

Application to dataset

In this chapter we apply the two models from chapter 3 and chapter 4 to a dataset of the region of the Northern
Aegean Sea in Greece. Many researches are interested in this region and its surrounding, because of the high
seismic activity (Votsi et al., [1]). The area has experienced several destructive earthquakes, which is known from
both instrumental data and historical information.

The Northern Aegean Sea region experienced a decent number of strong earthquakes (M ≥ 6.4), along with a
decent amount of moderate events (M ≥ 5.5) since 1953. We consider all earthquakes since 1953 with M ≥ 5.5,
which are given in table B.0.1 (Votsi et al., [1]) in the appendix.

Our dataset consist events of magnitude M ≥ 5.5 that occurred during the period 1953 to 2007. We mention that
after shocks of the earthquakes were removed from the dataset. We define three states of earthquakes corresponding
to the magnitudes:

State 1: [5.5, 5.6].

State 2: [5.7, 6.0].

State 3: [6.1, 7.2].

These intervals are defined to specify the discrete states of the system. We derive that the state space is equal to
the set E = {1, 2, 3}.

For this application of the semi-Markov model to the region of the Northern Aegean Sea in Greece, we are most
interested in the earthquakes of the third state. That is why, in the upcoming sections, we will determine the
expected number of earthquake occurrences from any state to the third state and the rate of occurrences of earth-
quakes with M ≥ 6.1.

Considering the dataset, we ordered table B.0.1 (Votsi et al., [1]) on date and time of occurrence. The magnitude
M and state is mentioned as well, which are the most important part for us.

Let t = 0 be the time we observed the first earthquake. This earthquake took place at May 2, 1953. We note that
it is unknown how long the first earthquake was in its state. We set the end time T later than the last earthquake
we observed. The last earthquake we observed was at November 9, 2007. So we set T = 55 years.

In the upcoming sections we apply the dataset to the semi-Markov model in continuous-time. The number of
observed transitions in the dataset from any state i to any state j for i, j ∈ E are presented as elements in the
matrix N . The elements of this matrix are the values Nij(T ) for all i, j ∈ E.

N =

6 6 3
5 2 2
4 1 3

 (5.0.1)

We read the matrix N as follows: four times there was a transition from state 3 to state 1. From the matrix N we
can conclude that the embedded Markov chain {Jn, n = 0, 1, 2, . . . } is irreducible, because we can make a transition
from state i to state j for all i, j ∈ E.
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1 2 3

0.4000

0.2000

0.5556

0.2222

0.5000

0.1250

0.4000 0.2222 0.3750

Figure 5.0.1: Transitions from state i to state j with transition probabilities, for all i, j ∈ E.

The values Ni(T ) for i ∈ E are equal to

N1(T ) = 15, N2(T ) = 9, N3(T ) = 8. (5.0.2)

We remember that the empirical estimator of the transition probabilities from any state i to any state j for i, j ∈ E
of the embedded Markov chain are defined as

p̂ij(T ) =
Nij(T )

Ni(T )
. (5.0.3)

The estimations of the transition probabilities from any state i to any state j are presented as elements in the
matrix P̂ = (p̂ij).

P̂ =

0.4000 0.4000 0.2000
0.5556 0.2222 0.2222
0.5000 0.1250 0.3750

 (5.0.4)

We read the matrix P̂ as follows: the probability that there is a transition from state 3 to state 1 is equal to 0.5000.
The transitions from state i to state j with the corresponding transition probabilities are shown in figure 5.0.1 for
all transitions from state i to state j, i, j ∈ E.

With use of the definition for Q̂ij(t, T ), we can estimate the semi-Markov kernels for transitions from state i to
state j. We remember that

Q̂ij(t, T ) :=
1

Ni(T )

N(t)∑
n=1

1{Jn−1=i,Jn=j,Xn≤t}. (5.0.5)

The semi-Markov kernels are shown in figure 5.0.2 for all transitions from state i to state j, i, j ∈ E and t ≥ 0.
The sojourn time is measured in years.

The empirical estimators for conditional transition functions F̂ij(t, T ), associated with the sojourn time in each
state before transition, are shown in figure 5.0.3 for all transitions from state i to state j, i, j ∈ E and t ≥ 0. We
measured the sojourn time in years. The conditional transition functions are defined as

F̂ij(t, T ) :=
1

Nij(T )

N(t)∑
n=1

1{Jn−1=i,Jn=j,Xn≤t}. (5.0.6)

Because F̂ij(t, T ) = Q̂ij(t, T )/p̂ij(T ), note that figure 5.0.3 is just a rescaling of figure 5.0.2.
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Figure 5.0.2: Empirical estimators for semi-Markov kernels, Q̂ij(t, T ) for all transitions from state i to state j,
i, j ∈ E.

Figure 5.0.3: Empirical estimators for conditional transition functions, F̂ij(t, T ) for all transitions from state i to
state j, i, j ∈ E.
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5.1 Hazard rate function

If we want to compare the two models that we apply to the dataset of table B.0.1 (Votsi et al., [1]), an important
quantity to look at is the hazard rate function of the semi-Markov process λij(t) for all i, j ∈ E and t ≥ 0.

For the semi-Markov model, we can estimate this function using the empirical estimator

λ̂ij(t, T ) =
q̂ij(t, T )

1− Ĥi(t, T )
, (5.1.1)

for i, j ∈ E and t ≥ 0.

With use of the R package SemiMarkov (Listwon & Saint-Pierre, [12]) we are able to find the estimated hazard
rate functions of the semi-Markov process for all the transitions from state i to state j, i 6= j ∈ E. We cannot
derive the hazard rate functions of the semi-Markov process for the transitions from state i to itself, because by
definition of the semi-Markov model the waiting times must be known. If these kind of transitions are observed in
the package, the transition is combined with the next transition such that we obtain a transition from state i to
state j for i 6= j ∈ E.

For the case i = j, we define the hazard rate function as follows

λ̂ii(t, T ) = −
∑
j 6=i

λ̂ij(t, T ). (5.1.2)

The R package SemiMarkov uses the parametric maximum likelihood estimation. We remark that the semi-
Markov model we discussed in the previous chapters is non-parametric. We will explain the difference between
parametric and non-parametric estimators in the next chapter, when we compare the two models with each other.

5.1.1 Homogeneous Markov model

First, we derive the hazard rate function of the semi-Markov process for the homogeneous Markov model. We
changed the original dataset from table B.0.1 (Votsi et al., [1]) to meet the requirements to apply for the package,
which we call it markov1. We measure the time t in years. From lemma 4.0.1 we know that a semi-Markov process
is a homogeneous Markov process if and only if the sojourn time is exponentially distributed. Therefore, we choose
the exponential distribution E for the sojourn time. We fit the data with use of the function semiMarkov(.).
Figure 5.1.1 shows the performed steps in Rstudio.

In figure 5.1.2, we see the estimates of parameters of the waiting time distributions, the standard deviations, the
confidence intervals and the Wald test statistics. In the following matrix Σ = (σij) we give the values for the
parameters of the exponential distribution for all i 6= j ∈ E:

Σ =

 − 1.535 2.386
5.538 − 1.384
1.598 1.302 −

 . (5.1.3)

With use of the R package SemiMarkov we can determine two hazard rate functions, namely the hazard rate
function of the waiting time αij(t) and the hazard rate function of the semi-Markov process λij(t). First, we give
the hazard rate function of the waiting time and after that the hazard rate function of the semi-Markov process.

When we choose an exponential distribution for the sojourn time, the hazard rate functions of the waiting time
with scale parameter σij are defined as (Listwon & Saint-Pierre, [12])

αij(t) =
1

σij
, (5.1.4)

for all i, j ∈ E and t ≥ 0. Then we obtain the following estimated hazard rate functions of the waiting time αij(t)
for the homogeneous Markov model for all i 6= j ∈ E:

α12(t) = 0.6515, α13(t) = 0.4191,

α21(t) = 0.1806, α23(t) = 0.7225,

α31(t) = 0.6258, α32(t) = 0.7680.
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The plots of the hazard rate functions of the waiting time are shown in figure B.0.1 in the appendix.

When we choose an exponential distribution for the sojourn time, the density functions of the sojourn time with
scale parameter σij are defined as

fij(t) =
1

σij
e−t/σij , (5.1.5)

for all i, j ∈ E and t ≥ 0. We obtain the following estimated density functions fij(t) in case of the homogeneous
Markov model for all i 6= j ∈ E:

f12(t) = 0.6515e−0.6515t, f13(t) = 0.4191e−0.4191t,

f21(t) = 0.1806e−0.1806t, f23(t) = 0.7225e−0.7225t,

f31(t) = 0.6258e−0.6258t, f32(t) = 0.7680e−0.7680t.

The probability distribution functions of the sojourn time with scale parameter σij are defined as

Fij(t) = 1− e−t/σij , (5.1.6)

for all i, j ∈ E and t ≥ 0. The estimated probability distribution functions of the sojourn time for all i 6= j ∈ E are

F12(t) = 1− e−0.6515t, F13(t) = 1− e−0.4191t,

F21(t) = 1− e−0.1806t, F23(t) = 1− e−0.7225t,

F31(t) = 1− e−0.6258t, F32(t) = 1− e−0.7680t.

We know from the beginning of this chapter that the transition probability matrix is given by

P̂ =

0.4000 0.4000 0.2000
0.5556 0.2222 0.2222
0.5000 0.1250 0.3750

 . (5.1.7)

Define Gi(t) = 1−Hi(t) =
∑
j∈E pij(1−Fij(t)) as the survival function of the sojourn time in state i. Here, Fij(t)

is the probability distribution function of the sojourn time and pij the transition probability of the embedded
Markov chain. For the derivative of the semi-Markov kernel, we know that qij(t) = pijfij(t). With use of this
information, we can determine the hazard rate function of the semi-Markov process λij(t).

If we plug the expressions for the density functions of the sojourn time, the probability distribution functions of
the sojourn time and the transition probabilities in case of the homogeneous Markov model into the hazard rate
function of the semi-Markov process

λij(t) =
qij(t)

1− Ĥi(t)
=

pijfij(t)∑
j∈E pij(1− Fij(t))

, (5.1.8)

we obtain the estimated hazard rate functions of the semi-Markov process for all i 6= j ∈ E. It holds true that
λij(t) = −

∑
j 6=i λij(t) for all i ∈ E.

The plots of the hazard rate functions of the semi-Markov process are shown in figure B.0.2 in the appendix.
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5.1.2 Semi-Markov model

For the semi-Markov model we use the same dataset as before, and call it semimarkov1. We measure the time t
in years. Because we want an estimator for the semi-Markov process, we choose the (non-Markov) Weibull distri-
bution W for the sojourn time for all transitions except for the transition from state 3 to state 2.1 Here, we choose
the exponential distribution. We fit the data with use of the function semiMarkov(.) as before. Figure 5.1.3 shows
the performed steps in Rstudio.

From figure 5.1.4, we can derive the estimates of parameters of the waiting time distributions, the standard
deviations, the confidence intervals and the Wald test statistics. In the following two matrices Σ = (σij) and
V = (νij) we give the values for the parameters of the Weibull and exponential distribution for all i 6= j ∈ E:

Σ =

 − 1.493 2.398
5.381 − 1.152
1.461 1.311 −

 , V =

 − 1.061 1.854
1.263 − 0.495
2.083 − −

 . (5.1.9)

As we said before, we can determine two hazard rate functions, one for the waiting time αij(t) and one for the
semi-Markov process λij(t). First, we give the hazard rate function of the waiting time and then the hazard rate
function of the semi-Markov process.

When we choose a Weibull distribution for the sojourn time, the hazard rate functions of the waiting time with
scale parameter σij and shape parameter νij are defined as (Listwon & Saint-Pierre, [12])

αij(t) =
νij
σij

(
t

σij

)νij−1

, (5.1.10)

for all i, j ∈ E and t ≥ 0. Then we obtain the estimated hazard rate functions λij(t) for the semi-Markov process

α12(t) = 0.7106(0.6698t)0.061, α13(t) = 0.7731(0.4170t)0.854,

α21(t) = 0.2347(0.1858t)0.263, α23(t) = 0.4297(0.8681t)−0.505,

α31(t) = 1.4257(0.6845t)1.083, α32(t) = 0.7628.

The plots of the hazard rate functions of the waiting time are shown in figure B.0.3 in the appendix.

When we choose a Weibull distribution for the sojourn time, the density functions of the sojourn time with scale
parameter σij and shape parameter νij are defined as

fij(t) =
νij
σij

(
t

σij

)νij−1

e−(t/σij)
νij
, (5.1.11)

for all i, j ∈ E and t ≥ 0. We obtain the following estimated density functions fij(t) in case of the semi-Markov
model for all i 6= j ∈ E:

f12(t) = 0.7106(0.6698t)0.061e−(0.6698t)1.061 , f13(t) = 0.7731(0.4170t)0.854e−(0.4170t)1.854 ,

f21(t) = 0.2347(0.1858t)0.263e−(0.1858t)1.263 , f23(t) = 0.4297(0.8681t)−0.505e−(0.8681t)0.495 ,

f31(t) = 1.4257(0.6845t)1.083e−(0.6845t)2.083 , f32(t) = 0.7628e−0.7628t.

The probability distributions of the sojourn time with scale parameter σij and shape parameter νij are defined as

Fij(t) = 1− e−(t/σij)
νij
, (5.1.12)

for all i, j ∈ E and t ≥ 0. The estimated probability distribution functions of the sojourn time for all i 6= j ∈ E are

F12(t) = 1− e−(0.6698t)1.061 , F13(t) = 1− e−(0.4170t)1.854 ,

F12(t) = 1− e−(0.1858t)1.263 , F13(t) = 1− e−(0.8681t)0.495 ,

F12(t) = 1− e−(0.6845t)2.083 , F13(t) = 1− e−0.7628t.

1If we choose the Weibull distribution for the transition from state 3 to state 2, we get an infinite estimator for the both hazard
rate functions. Maybe, this is due to the fact we have only one observation of a transition from state 3 to state 2. Therefore, we choose
to distribute the sojourn time exponentially in this case.
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As before, the transition probability matrix is given by

P̂ =

0.4000 0.4000 0.2000
0.5556 0.2222 0.2222
0.5000 0.1250 0.3750

 . (5.1.13)

If we plug the expressions for the density functions of the sojourn time, the probability distribution functions of
the sojourn time and the transition probabilities in case of the semi-Markov model into the hazard rate function
of the semi-Markov process

λij(t) =
qij(t)

1− Ĥi(t)
=

pijfij(t)∑
j∈E pij(1− Fij(t))

, (5.1.14)

we obtain the estimated hazard rate function of the semi-Markov process for all i 6= j ∈ E. It holds true that
λij(t) = −

∑
j 6=i λij(t) for all i ∈ E.

The plots of the hazard rate functions of the semi-Markov process are shown in figure B.0.4 in the appendix.
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Figure 5.1.1: The setting of the hazard rate function in case of the homogeneous Markov model.

Figure 5.1.2: Estimates of parameters of the waiting time distribution in case of the homogeneous Markov model.

Figure 5.1.3: The setting of the hazard rate function in case of the semi-Markov model.

Figure 5.1.4: Estimates of parameters of the waiting time distribution in case of the semi-Markov model.
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5.2 Expected number of earthquake occurrences

In this section, we derive 95% confidence intervals for the expected number of earthquake occurrences. Therefore,
we need the Markov renewal matrix Ψ(t) we introduced in section 3.2, because the renewal process is determined
by this matrix. The entries of the renewal matrix are defined as follows

ψij(t) =

∞∑
n=0

Q
(n)
ij (t). (5.2.1)

To determine these quantities, we need the n-fold convolution of the semi-Markov kernel Qij(t). As we see in
figure 5.0.2, in our case the semi-Markov kernels are step functions. We will derive how we can compute the n-fold
convolution of the semi-Markov kernel when these function are step functions (Limnios & Oprişan, [7]).

Let us consider a partition of the time interval [0, t], so {0 = t0 < t1 < · · · < tn = t}. We define the step function

Q̃ij(.) for 0 ≤ u < t as follows

Q̃ij(u) :=

n−1∑
r=0

Qij(tr)1{tr≤u<tr+1}. (5.2.2)

Then the following theorem for step functions Q̃ij(.) holds true. The proof is given in the appendix.

Theorem 5.2.1 (Limnios & Oprişan, [7]) By the recursive formula for the Stieltjes convolution, the n-fold convo-

lution of Q̃ij(.) for a fixed time t, is equal to

Q̃
(n)
ij (t) =

∑
kn−1∈E

· · ·
∑
k1∈E

∑
rn−1

· · ·
∑
r1

Q̃ik1(t− trn−1 − · · · − tr1)

n−1∏
s=1

∆Q̃ks,ks+1(trs), (5.2.3)

where ∆Q̃kj(tn) := Q̃kj(tn)− Q̃kj(tn−1) and kn = j and

k1 ∈ E, . . . , kn−1 ∈ E,
rn−1 : 0 < trn−1 ≤ t,

rn−2 : 0 < trn−2 ≤ t− trn−1 ,

...

r1 : 0 < tr1 ≤ t− trn−1 − · · · − tr2 .

Proof. See appendix A.7. �

Now, we look at our dataset again. We are interested in the expected number of earthquake occurrence from any
state i to the third state. This, because earthquakes of M ≥ 6.1 are the most disastrous ones. The quantity of our
interest is equal to

ψi3(t) =

∞∑
n=0

Q
(n)
i3 (t). (5.2.4)

The corresponding empirical estimator is

ψ̂i3(t, T ) =

∞∑
n=0

Q̂
(n)
i3 (t, T ). (5.2.5)

The 95% confidence intervals for ψ̂i3(t, T ) are defined as[
ψ̂i3(t, T )− z(α/2)σi3(t), ψ̂i3(t, T ) + z(α/2)σi3(t)

]
, t ≥ 0, (5.2.6)

with

σ2
i3(t) =

3∑
k=1

3∑
l=1

µkk
[
(ψik ∗ ψl3)2 ∗Qkl − (ψik ∗ ψl3 ∗Qkl)2

]
(t). (5.2.7)

In figure 5.3.1 (Votsi et al., [1]) we find the expected number of earthquake occurrences from any state i ∈ E to

state 3 with its 95% confidence intervals. The quantity ψ̂i3(t, T ) is plotted against the time in months. We observe
that the expected number of earthquake of the third state is the largest over time, when the initial state is equal to
state 3. However, we can conclude that the expected number of earthquake occurrences do not significantly differ
from each other when we change the initial state.
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5.3 Rate of occurrences of earthquakes

We determine the rate of occurrences of earthquakes with M ≥ 6.1. This is the probability that an earthquake of
the third state, which is not necessarily the first, will occur in the next time interval. For the semi-Markov model
we assume that the assumptions for which theorem 3.2.9 is true, hold.

We remember that the state space E can be partitioned into the two sets U and D, where U is the set of working
states and D is the set of repair states. In our case, it holds true that E = {1, 2, 3}, U = {1, 2} and D = {3},
because we are interested in the transitions of earthquakes from state 1 and state 2 to state 3. It is trivial that U
and D form a partition of E.

It follows that the rate of occurrences of earthquakes of state 3 is equal to

ro(t) =
∑

i∈{1,2}

3∑
l=1

πlψli ∗ qi3(t). (5.3.1)

The corresponding empirical estimator is equal to

r̂o(t, T ) =
∑

i∈{1,2}

3∑
l=1

πlψ̂li ∗ q̂i3(t, T ). (5.3.2)

In the section 3.2 we derived the 100(1− α)% confidence intervals for r̂o(t) in general. In this particular case, the
95% confidence intervals for the rate of occurrences of earthquakes with M ≥ 6.1 are defined as

[r̂o(t, T )− 1.96σ, r̂o(t, T ) + 1.96σ] , t ≥ 0, (5.3.3)

with

σ2 =
∑

i∈{1,2}

µii

∑3
l=1 πlψli ∗ qi3(t)

T 1−α +O(T−1). (5.3.4)

In figure 5.3.2 (Votsi et al., [1]) the rate of occurrences of earthquakes with M ≥ 6.1 with its 95% confidence
intervals is shown. The quantity r̂o(t, T ) is plotted against the time in months. We conclude that the rate increases
as time goes by.
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Figure 5.3.1: The 95% confidence intervals of the expected number of earthquake occurrences from any state i ∈ E
to state 3, ψ̂i3(t, T ) for all i ∈ E. (Votsi et al., [1])

Figure 5.3.2: Rate of occurrences of earthquakes of state 3 (M ≥ 6.1), r̂o(t, T ). (Votsi et al., [1])
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Chapter 6

Comparison

In this chapter we make a comparison between the homogeneous Markov model and the semi-Markov model. We
compute the semi-Markov kernels with use of sojourn time distributions and look at the Wald test for the hazard
rate function of the semi-Markov process. We will also discuss parametric and non-parametric estimators.

We note that the main difference between the homogeneous Markov model and the semi-Markov model is that the
homogeneous Markov model depends on the calendar time and the semi-Markov model depends on the sojourn
time in the state. So we can also ask ourselves how well we can compare the two models with each other based on
this fact.

6.1 Semi-Markov kernels

We determine the semi-Markov kernels for both the homogeneous Markov model and the semi-Markov model. It
holds true that the semi-Markov kernels are defined as

Qij(t) = pijFij(t), (6.1.1)

for all i, j ∈ E and t ≥ 0. Here, pij are the transition probabilities of the embedded Markov chain and Fij(t) are
the probability distribution functions of the sojourn time.

In case of the homogeneous Markov model, we choose the exponential distribution as the sojourn time distribution.
In this case, the probability distribution functions of the sojourn time are defined as

Fij(t) = 1− e−(t/σij) (6.1.2)

for all i, j ∈ E and t ≥ 0. Here, σij is the scale parameter of the distribution.

For the semi-Markov model, we choose the Weibull distribution as the sojourn time distribution. In this case, the
probability distribution functions of the sojourn time are defined as

Fij(t) = 1− e−(t/σij)
νij
, (6.1.3)

for all i, j ∈ E and t ≥ 0. Here, σij is the scale parameter and νij is the shape parameter of the distribution.

From chapter 5 that the transition probability matrix is equal to

P̂ =

0.4000 0.4000 0.2000
0.5556 0.2222 0.2222
0.5000 0.1250 0.3750

 . (6.1.4)

In the following matrix we find the parameters σij of the exponential distribution functions for the homogeneous
Markov model.

Σ =

 − 1.535 2.386
5.538 − 1.384
1.598 1.302 −

 (6.1.5)
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Then for all i 6= j ∈ E, the probability distribution functions of the sojourn time for the homogeneous Markov
model are equal to

F12(t) = 1− e−0.6515t, F13(t) = 1− e−0.4191t,

F21(t) = 1− e−0.1806t, F23(t) = 1− e−0.7225t,

F31(t) = 1− e−0.6258t, F32(t) = 1− e−0.7680t.

We obtain the following semi-Markov kernels for the homogeneous Markov model with i 6= j ∈ E:

Q12(t) = 0.4000
(
1− e−0.6515t

)
, Q13(t) = 0.2000

(
1− e−0.4191t

)
,

Q21(t) = 0.5556
(
1− e−0.1806t

)
, Q23(t) = 0.2222

(
1− e−0.7225t

)
,

Q31(t) = 0.5000
(
1− e−0.6258t

)
, Q32(t) = 0.1250

(
1− e−0.7680t

)
.

We define Qii(t) = 0 for all i ∈ E and t ≥ 0, because we have no information about the sojourn time distributions
of the transitions from state i to itself.

In figure B.0.5 in the appendix, the plots of the semi-Markov kernels are shown for the homogeneous Markov model
for all transitions from state i to state j, i 6= j ∈ E.

For the semi-Markov model, in the following matrices we find the parameters σij and νij of the exponential and
Weibull distribution functions.1

Σ =

 − 1.493 2.398
5.381 − 1.152
1.461 1.311 −

 , V =

 − 1.061 1.854
1.263 − 0.495
2.083 − −

 (6.1.6)

The distribution functions of the sojourn time for the semi-Markov model, for all i 6= j ∈ E, are equal to

F12(t) = 1− e−(0.6698t)1.061 , F13(t) = 1− e−(0.4170t)1.854 ,

F12(t) = 1− e−(0.1858t)1.263 , F13(t) = 1− e−(0.8681t)0.495 ,

F12(t) = 1− e−(0.6845t)2.083 , F13(t) = 1− e−0.7628t.

Then, for the semi-Markov model, we obtain the following semi-Markov kernels for i 6= j ∈ E:

Q12(t) = 0.4000
(

1− e−(0.6698t)1.061
)
, Q13(t) = 0.2000

(
1− e−(0.4170t)1.854

)
,

Q21(t) = 0.5556
(

1− e−(0.1858t)1.263
)
, Q23(t) = 0.2222

(
1− e−(0.8681t)0.495

)
,

Q31(t) = 0.5000
(

1− e−(0.6845t)2.083
)
, Q32(t) = 0.1250

(
1− e−0.7628t

)
.

We define Qii(t) = 0 for all i ∈ E and t ≥ 0, because we have no information about the sojourn time distributions
of the transitions from state i to itself.

In figure B.0.6 in the appendix, the plots of the semi-Markov kernels are shown for the semi-Markov model for all
transitions from state i to state j, i 6= j ∈ E.

1We note that the exponential distribution for the sojourn time distribution is chosen for the transition from state 3 to state 2.
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6.2 Wald test and p-value

For each of the parameters of the hazard rate functions of the semi-Markov process, the R package SemiMarkov
performed the Wald test. The Wald test gives us the relevance of the given distribution. In our case we test the
distribution parameters σij for i, j ∈ E for the exponential distribution and σij , νij for i, j ∈ E for the Weibull
distribution. We have the following hypothesis test for the scale parameter σij (Listwon & Saint-Pierre, [12]):{

H0 : σij = 1,

H1 : σij 6= 1.
(6.2.1)

Similarly, we have the hypothesis test for the shape parameter νij :{
H0 : νij = 1,

H1 : νij 6= 1.
(6.2.2)

The p-value illustrates when we can reject the null-hypothesis H0. It is defined to be the smallest significance level
at which the null hypothesis is rejected (Rice, [6]). If p ≤ 0.05, we reject the null-hypothesis H0. If p > 0.05, we
fail to reject H0.

First we look at the homogeneous Markov model. Here, we choose the exponential distribution for the sojourn
time of the process. In figure 6.2.1 the results of the Wald test are shown.

Figure 6.2.1: Wald test p-values for the homogeneous Markov model.

We derive that for all σij , i 6= j ∈ E, we fail to reject the null-hypothesis. For the semi-Markov model the results
of the Wald test are shown in figure 6.2.2. We remember that for the transitions from state 3 to state 2 we chose
an exponential distribution for the sojourn time instead of the Weibull distribution. So we exclude this transition
from our conclusions.

Figure 6.2.2: Wald test p-values for the semi-Markov model.

In this case we only reject the null-hypothesis for the scale parameter σ12 which is associated with the transition
from state 2 to state 1. In the other case we fail to reject the null-hypothesis for σij and νij . We observe that ν12

and ν21 do not significantly differ from the value 1. For these transitions we can use the exponential distribution
instead of the Weibull distribution.

We conclude that for some of the hazard rate functions of the semi-Markov process λij(t) for i, j ∈ E the homoge-
neous Markov model maybe a better fit. For the rest of the hazard rate functions of the semi-Markov process, we
cannot conclude a preference for a certain model based on the p-values of the Wald test.
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6.3 Parametric and non-parametric estimators

As we promised in section 5.1, we will discuss the difference between parametric and non-parametric estimators
in this section (Rice, [6]). Suppose that we want to fit a probability law into the given data. Then usually we
have to estimate certain parameters associated with the probability law. Based on some scientific theory, one may
suggest the form of a probability distribution and the parameters that are of interest to the scientific investiga-
tion. If we assume that the given data follows this probability law, then we use parametric estimation. It holds
true that non-parametric methods of estimation do not assume that the given data follows a particular distribution.

We have used the parametric method to estimate the hazard rate functions of the semi-Markov process in the last
chapter. We assumed that the sojourn time in the states of the process were exponentially distributed or Weibull
distributed. The empirical estimators we defined in section 3.2 are non-parametric.
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Chapter 7

Application to dataset with sub areas

In this chapter we apply the semi-Markov model to a new dataset of the region of the Northern Aegean Sea in
Greece. This time, we are interested in the addition of covariates to the semi-Markov model. A covariate is an
independent observed variable that can have an influence to the accuracy of a model and its results. In our case,
we want to examine the influence of the location where earthquakes took place on the semi-Markov model.

We use the dataset given in table B.0.2 (Votsi et al., [1]), see the appendix. This time, the after shocks of the
earthquakes are not filtered out of the dataset. It consists of 67 earthquakes of magnitude M ≥ 5.2 that occurred
since 1964. We define two states of earthquakes corresponding to the magnitude:

State 1: [5.2, 5.5].

State 2: [5.6, 7.2].

We derive that the state space is equal to the set E = {1, 2}.

The covariate that we add to the model is the location where the earthquakes occurred, as we said before. We
divided the Northern Aegean region into four sub areas, which are shown in figure B.0.7 (Votsi et al., [1]). For
each earthquake that occurred, we denoted the date and time of occurrence and also the magnitude M , state and
sub area.

We let t = 0 be the time that we observed the first earthquake. This earthquake took place at February 23, 1964.
It is unknown how long the first earthquake was in its state. We set the end time T later than the last earthquake
we observed, which was at December 21, 2006. So we set T = 33 years.

Now we are going to apply the dataset to the semi-Markov model in continuous-time. The number of observed
transitions in the dataset from any state i to any state j are presented as elements in the matrix N . The elements
of this matrix are the values Nij(T ) for all i, j ∈ E.

N =

(
31 13
13 9

)
(7.0.1)

The values Ni(T ) for i ∈ E are equal to

N1(T ) = 44, N2(T ) = 22. (7.0.2)

In the following matrix P̂ = (p̂ij) the estimations of the transition probabilities are presented as elements.

P̂ =

(
0.7045 0.2955
0.5909 0.4091

)
(7.0.3)

In figure 7.0.1 the transitions from state i to state j with the corresponding transition probabilities are shown for
all i, j ∈ E.
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1 2

0.2955

0.5909

0.7045 0.4091

Figure 7.0.1: Transitions from state i to state j with transition probabilities, for all i, j ∈ E.

7.1 Hazard rate function

We examine the influence of covariates on the semi-Markov model, with use of the hazard rate function of the
semi-Markov process. We remember that we can estimate the hazard rate function of the semi-Markov process
with the following empirical estimator

λ̂ij(t, T ) =


q̂ij(t, T )

1− Ĥi(t, T )
if i 6= j,

−
∑
j 6=i

λ̂ij(t, T ) if i = j.
(7.1.1)

With use of the R package SemiMarkov (Listwon & Saint-Pierre, [12]) we estimate the hazard rate functions of
the semi-Markov process for all transitions from state i to state j, i 6= j ∈ E. We cannot derive the hazard rate
functions for the transition from state i to itself, because by definition of the semi-Markov model the waiting times
must be known. If these kind of transitions are observed in the package, the transition is combined with the next
transition such that we obtain a transition from state i to state j for i 6= j ∈ E.

We determine the hazard rate functions of the semi-Markov process. We used the data from table B.0.2 (Votsi et
al., [1]) and called it semimarkov2. We choose the Weibull distribution W for the sojourn time for all transitions.
For the covariate, we choose the sub areas from the dataset which column is called subareas. We fit the data with
use of the function semiMarkov(.). Figure 7.1.1 shows the performed steps in Rstudio.

In figure 7.1.2, we find the estimates of parameters of the waiting time distributions, the standard deviations, the
confidence intervals and the Wald test statistics. In the following two matrices Σ = (σij) and V = (νij) we give
the values for the parameters of the Weibull distribution for all i 6= j ∈ E:

Σ =

(
− 4.772

8.028 −

)
, V =

(
− 0.494

0.259 −

)
. (7.1.2)

The R package SemiMarkov can determine two hazard rate functions, namely the hazard rate function of the
waiting time αij(t) and the hazard rate function of the semi-Markov process λij(t). First, we give the hazard rate
function of the waiting time and after that the hazard rate function of the semi-Markov process.

In the case that the sojourn time is Weibull distributed with scale parameter σij and shape parameter νij , the
hazard rate functions of the waiting time are defined as (Listwon & Saint-Pierre, [12])

αij(t) =
νij
σij

(
t

σij

)νij−1

, (7.1.3)

for all i, j ∈ E and t ≥ 0.

The estimated hazard rate functions of the waiting time αij(t) without covariates for all i 6= j ∈ E are equal to

α12(t) = 0.1035(0.2096t)−0.506, α21(t) = 0.0323(0.1246t)−0.741.

The density functions of the sojourn time with scale parameter σij and shape parameter νij are defined as

fij(t) =
νij
σij

(
t

σij

)νij−1

e−(t/σij)
νij
, (7.1.4)

for all i, j ∈ E and t ≥ 0. We obtain the following estimated density functions fij(t) for all i 6= j ∈ E:

f12(t) = 0.1035(0.2096t)−0.506e−(0.2096t)0.494 , f21(t) = 0.0323(0.1246t)−0.741e−(0.1246t)0.259 .
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The probability distribution of the sojourn time with scale parameter σij and shape parameter νij are defined as

Fij(t) = 1− e−(t/σij)
νij
, (7.1.5)

for all i, j ∈ E and t ≥ 0. The estimated probability distribution functions of the sojourn time for all i 6= j ∈ E are

F12(t) = 1− e−(0.2096t)0.494 , F21(t) = 1− e−(0.1246t)0.259 .

We know from the beginning of this chapter that the transition probability matrix is given by

P̂ =

(
0.7045 0.2955
0.5909 0.4091

)
. (7.1.6)

Define Gi(t) = 1−Hi(t) =
∑
j∈E pij(1−Fij(t)) as the survival function of the sojourn time in state i. Here, Fij(t)

is the probability distribution function of the sojourn time and pij the transition probability of the embedded
Markov chain. For the derivative of the semi-Markov kernel, we know that qij(t) = pijfij(t). With use of this
information, we can determine the hazard rate function of the semi-Markov process λij(t).

If we plug the expressions for the density functions of the sojourn time, the probability distribution functions of
the sojourn time and the transition probabilities into the hazard rate function of the semi-Markov process

λij(t) =
qij(t)

1− Ĥi(t)
=

pijfij(t)∑
j∈E pij(1− Fij(t))

, (7.1.7)

we obtain the estimated hazard rate functions of the semi-Markov process for all i 6= j ∈ E. It holds true that
λij(t) = −

∑
j 6=i λij(t) for all i ∈ E.

We can study the influence of covariates on the sojourn time distributions of the semi-Markov process with use of
a Cox proportional regression model (Listwon & Saint-Pierre, [12]). Let Zij be a vector of explanatory variables
and βij a vector of regression parameters associated with the transition from state i to state j. Then the hazard
rate is defined as

αij(t | Zij) = αij(t)e
βTijZij , (7.1.8)

for all t ≥ 0 and i 6= j ∈ E. The regression coefficients can be interpreted in terms of relative risk. It holds true
that αij(t) is the baseline hazard as defined in (7.1.3).

We look back at the hazard rate function of the waiting time. Now, we add the covariate subareas to the model.
Let x be a explanatory variable and βij the regression parameter associated with the transition from state i to
state j. Then the hazard rate functions of the waiting time are defined as

αij(t | x) = αij(t)e
βijx. (7.1.9)

The explanatory variable x takes on the values of the defined sub areas, so x ∈ {1, 2, 3, 4}. From figure 7.1.2, we
derive that

β12 = 0.4500, β21 = 0.2962. (7.1.10)

Then the estimated hazard rate functions of the waiting time αij(t | x) with the covariate subareas are equal to

α12(t | x) = 0.1035(0.2096t)−0.506e0.4500x,

α21(t | x) = 0.0323(0.1246t)−0.741e0.2962x,

with x ∈ {1, 2, 3, 4}.

The plots of the hazard functions of the waiting time with and without the covariate are shown in figure B.0.8 in
the appendix.

For the hazard rate functions of the semi-Markov process, according to the Cox proportional model, it holds true
that the functions with the covariate subareas for all t ≥ 0 and i 6= j ∈ E are defined as

λij(t | x) = λij(t)e
βijx, (7.1.11)

33



where x is the explanatory variable and βij the regression parameter associated with the transition from state i
to state j. Because we defined four sub areas, it holds true that x ∈ {1, 2, 3, 4}. With use of the hazard rate
functions of the semi-Markov process defined in (7.1.7) and the regression parameters from (7.1.10), we can obtain
the hazard rate functions of the semi-Markov process with covariates.

The plots of the hazard rate functions of the semi-Markov process with and without the covariate are shown in
figure B.0.9 in the appendix. We see that for all values of the covariate, sub areas 1 to 4, the hazard rate functions
of the semi-Markov process for all transitions from state i to state j, i 6= j ∈ E, are not significantly different.
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Figure 7.1.1: The setting of the hazard rate function.

Figure 7.1.2: Estimates of parameters of the waiting time distribution.
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7.2 Semi-Markov kernels

We determine the semi-Markov kernels for the semi-Markov process. Because we do not have a definition about
the influence of covariates on the semi-Markov kernel, we will only compute the semi-Markov kernels without
covariates. It holds true that the semi-Markov kernels are defined as

Qij(t) = pijFij(t), (7.2.1)

for all i, j ∈ E and t ≥ 0. Here, pij are the transition probabilities of the embedded Markov chain and Fij(t) are
the probabilities distribution functions of the sojourn time.

For the semi-Markov model, we choose the Weibull distribution as the sojourn time distribution. In this case, the
probability distribution functions of the sojourn time are defined as

Fij(t) = 1− e−(t/σij)
νij
, (7.2.2)

for all i, j ∈ E and t ≥ 0. Here, σij is the scale parameter and νij is the shape parameter of the distribution.

In the beginning of this chapter, we obtained the following transition probability matrix

P̂ =

(
0.7045 0.2955
0.5909 0.4091

)
. (7.2.3)

In the following two matrices we find the parameters σij and νij of the Weibull distribution functions.

Σ =

(
− 4.772

8.028 −

)
, V =

(
− 0.494

0.259 −

)
(7.2.4)

Then for all i 6= j ∈ E, the probability distribution functions of the sojourn time are equal to

F12(t) = 1− e−(0.2096t)0.494 , F21(t) = 1− e−(0.1246t)0.259 .

Because the transition probabilities from state i to state j for all i 6= j ∈ E are equal to 1, we obtain the following
semi-Markov kernels for i 6= j ∈ E:

Q12(t) = 0.2955
(

1− e−(0.2096t)0.494
)
, Q21(t) = 0.5909

(
1− e−(0.1246t)0.259

)
.

We define Qii(t) = 0 for all i ∈ E and t ≥ 0, because we have no information about the sojourn time distributions
of the transitions from state i to itself.

In figure B.0.10 the plots of the semi-Markov kernels are shown for all transitions from state i to state j, i 6= j ∈ E.

7.3 Wald test and p-value

For each of the parameters of the hazard rate functions of the semi-Markov process, the R package SemiMarkov
performed the Wald test. We test the distribution parameters σij , νij for i, j ∈ E for the Weibull distribution. We
have the following hypothesis test for the scale parameter σij :{

H0 : σij = 1,

H1 : σij 6= 1.
(7.3.1)

Similarly, we have the hypothesis test for the shape parameter νij :{
H0 : νij = 1,

H1 : νij 6= 1.
(7.3.2)

The p-value illustrates when we can reject the null-hypothesis H0. It is defined to be the smallest significance level
at which the null hypothesis is rejected (Rice, [6]). If p ≤ 0.05, we reject the null-hypothesis H0. If p > 0.05, we
fail to reject H0.
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For the covariates in the model, the R package SemiMarkov performs a Wald test as well. The Wald test examines
if the addition of a covariate is an extension to the semi-Markov model. The hypothesis test for the regression
coefficient βij is equal to (Listwon & Saint-Pierre, [12]){

H0 : βij = 0,

H1 : βij 6= 0.
(7.3.3)

In figure 7.3.1 the results of the Wald test are shown.

Figure 7.3.1: Wald test p-values for the semi-Markov model with covariates.

We derive that for all σij , i 6= j ∈ E, we fail to reject the null-hypothesis. However for all νij , i 6= j ∈ E, we do
reject the null hypothesis. From this we can conclude that we cannot choose an exponential distribution for the
sojourn time instead of the Weibull distribution. So the semi-Markov model is a good fit in this case.

Now, we look at the p-values of the regression parameters βij associated with the transition from state i to state
j for all i 6= j ∈ E. We can read that for all βij , we reject the null-hypothesis. We conclude that the covariate
subareas is an extension to the semi-Markov model which leads to a better fit according to the Wald test.
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Chapter 8

Conclusions

As we mentioned before, the process of earthquake occurrences can be represented with several statistical models.
We can achieve forecasting results with use of the semi-Markov model in the high seismically active region of the
Northern Aegean Sea in Greece.

In this thesis we explained the semi-Markov model. We defined empirical estimators of important quantities to the
semi-Markov model and proved some theses about the asymptotic behaviour of these quantities. We estimated the
relevant quantities to the semi-Markov model, such as the semi-Markov kernels and the distribution functions as-
sociated with the sojourn time. Furthermore, we have shown how to determine the expected number of earthquake
occurrences and the rate of occurrences of earthquakes with M ≥ 6.1. We computed the transition probabilities of
the embedded Markov chain as well.

We determined the hazard rate functions of the semi-Markov process in a parametric way and compared the semi-
Markov model with the homogeneous Markov model. We concluded that it is difficult to derive a preference for a
certain model based on the Wald test.

Lastly, we applied the semi-Markov model to a new dataset of the Northern Aegean Sea region to derive the
consequence of adding covariates. We derived that according to the Wald test, the addition of sub areas is an
extension to the model.
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Appendix A

Proofs

In this chapter we give proofs of some theses that we introduced in this thesis.

A.1 Theorem 3.1.1

Proof. (Grabski, [5]) From the definition of conditional probabilities, it follows that

Fij(t) = P (Xn+1 ≤ t | Jn = i, Jn+1 = j)

=
P (Xn+1 ≤ t, Jn = i, Jn+1 = j)

P (Jn = i, Jn+1 = j)

=
P (Xn+1 ≤ t, Jn = i, Jn+1 = j)

P (Jn = i)
· P (Jn = i)

P (Jn = i, Jn+1 = j)

=
P (Jn+1 = j,Xn+1 ≤ t | Jn = i)

P (Jn+1 = j | Jn = i)

=
Qij(t)

pij
.

�
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A.2 Theorem 3.2.3

Proof. (Limnios & Oprişan, [7]) It holds true that Qij(t) = Fij(t)pij and therefore Q̂ij(t, T ) = F̂ij(t, T )p̂ij(T ) as
well. Then it follows that

max
i,j∈E

sup
t∈[0,T )

∣∣∣Q̂ij(t, T )−Qij(t)
∣∣∣ = max

i,j∈E
sup

t∈[0,T )

∣∣∣F̂ij(t, T )p̂ij(T )− Fij(t)pij
∣∣∣

= max
i,j∈E

sup
t∈[0,T )

∣∣∣F̂ij(t, T )p̂ij(T )− F̂ij(t, T )pij + F̂ij(t, T )pij − Fij(t)pij
∣∣∣

≤ max
i,j∈E

sup
t∈[0,T )

∣∣∣F̂ij(t, T )p̂ij(T )− F̂ij(t, T )pij

∣∣∣+ max
i,j∈E

sup
t∈[0,T )

∣∣∣F̂ij(t, T )pij − Fij(t)pij
∣∣∣

= max
i,j∈E

sup
t∈[0,T )

∣∣∣F̂ij(t, T ) (p̂ij(T )− pij)
∣∣∣+ max

i,j∈E
sup

t∈[0,T )

∣∣∣(F̂ij(t, T )− Fij(t)
)
pij

∣∣∣
= max
i,j∈E

sup
t∈[0,T )

|p̂ij(T )− pij | F̂ij(t, T ) + max
i,j∈E

sup
t∈[0,T )

∣∣∣F̂ij(t, T )− Fij(t)
∣∣∣ pij .

By theorem 3.2.2, the first term converges to 0 (a.s.). By theorem 3.2.1 (Glivenko-Cantelli theorem), the second
converges to 0 (a.s.) as well. �
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A.3 Theorem 3.2.5

Proof. (Barbu & Limnios, [11]) By induction. For the case n = 1, the result follows from theorem 3.2.3.

Assume that it holds true for n = m. So

max
i,j∈E

max
t∈[0,T ]

∣∣∣Q̂(m)
ij (t, T )−Q(m)

ij (t)
∣∣∣→ 0 (a.s.)

as T →∞.

Now, let n = m+ 1. It follows that

max
i,j∈E

max
t∈[0,T ]

∣∣∣Q̂(m+1)
ij (t, T )−Q(m+1)

ij (t)
∣∣∣ = max

i,j∈E
max
t∈[0,T ]

∣∣∣∣∣∑
k∈E

Q̂ik(t, T ) ∗ Q̂(m)
kj (t, T )−

∑
k∈E

Qik(t) ∗Q(m)
ik (t)

∣∣∣∣∣
= max
i,j∈E

max
t∈[0,T ]

∣∣∣∣∣∑
k∈E

Q̂ik(t, T ) ∗ Q̂(m)
kj (t, T )−Qik(t) ∗Q(m)

ik (t)

∣∣∣∣∣
≤ max
i,j∈E

max
t∈[0,T ]

∑
k∈E

∣∣∣Q̂ik(t, T ) ∗ Q̂(m)
kj (t, T )−Qik(t) ∗Q(m)

ik (t)
∣∣∣

= max
i,j∈E

max
t∈[0,T ]

∑
k∈E

∣∣∣Q̂ik(t, T ) ∗ Q̂(m)
kj (t, T )−Qik(t) ∗ Q̂(m)

kj (t, T )

+Qik(t) ∗ Q̂(m)
kj (t, T )−Qik(t) ∗Q(m)

ik (t)
∣∣∣

= max
i,j∈E

max
t∈[0,T ]

∑
k∈E

∣∣∣Q̂ik(t, T ) ∗ Q̂(m)
kj (t, T )−Qik(t) ∗ Q̂(m)

kj (t, T )

+Qik(t) ∗ Q̂(m)
kj (t, T )−Qik(t) ∗Q(m)

ik (t)
∣∣∣

≤ max
i,j∈E

max
t∈[0,T ]

∑
k∈E

∣∣∣Q̂ik(t, T ) ∗ Q̂(m)
kj (t, T )−Qik(t) ∗ Q̂(m)

kj (t, T )
∣∣∣

+ max
i,j∈E

max
t∈[0,T ]

∑
k∈E

∣∣∣Qik(t) ∗ Q̂(m)
kj (t, T )−Qik(t) ∗Q(m)

ik (t)
∣∣∣

= max
i,j∈E

max
t∈[0,T ]

∑
k∈E

∣∣∣[Q̂ik(t, T )−Qik(t)
]
∗ Q̂(m)

kj (t, T )
∣∣∣

+ max
i,j∈E

max
t∈[0,T ]

∑
k∈E

∣∣∣Qik(t) ∗
[
Q̂

(m)
kj (t, T )−Q(m)

ik (t)
]∣∣∣

≤ max
i,k∈E

max
t∈[0,T ]

∣∣∣Q̂ik(t, T )−Qik(t)
∣∣∣ max
k,j∈E

max
t∈[0,T ]

∑
k∈E

Q̂
(m)
kj (t, T )

+ max
i,k∈E

max
t∈[0,T ]

∣∣∣Q̂(m)
kj (t, T )−Q(m)

ik (t)
∣∣∣ max
k,j∈E

max
t∈[0,T ]

∑
k∈E

Qik(t)

≤ s max
i,k∈E

max
t∈[0,T ]

∣∣∣Q̂ik(t, T )−Qik(t)
∣∣∣

+ max
i,k∈E

max
t∈[0,T ]

∣∣∣Q̂(m)
kj (t, T )−Q(m)

ik (t)
∣∣∣ .

The last step holds true, because E = {1, 2, . . . , s}. By theorem 3.2.3, the first converges to 0 (a.s.). By the
induction hypothesis, the second term converges to 0 (a.s.) as well. The result follows from the principle of
mathematical induction. �
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A.4 Theorem 3.2.6

Proof. (Barbu & Limnios, [11]) It holds true that

max
i,j∈E

sup
t∈[0,T )

∣∣∣ψ̂(k)
ij (t, T )− ψ(k)

ij (t)
∣∣∣ = max

i,j∈E
sup

t∈[0,T )

∣∣∣∣∣
k∑

n=0

Q̂
(n)
ij (t, T )−

k∑
n=0

Q
(n)
ij (t)

∣∣∣∣∣
= max
i,j∈E

sup
t∈[0,T )

∣∣∣∣∣
k∑

n=0

Q̂
(n)
ij (t, T )−Q(n)

ij (t)

∣∣∣∣∣
≤ max
i,j∈E

sup
t∈[0,T )

k∑
n=0

∣∣∣Q̂(n)
ij (t, T )−Q(n)

ij (t)
∣∣∣ .

By theorem 3.2.5, this converges to 0 (a.s.). �
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A.5 Theorem 3.2.10

Proof. (Ouhbi & Limnios, [2]) It holds true that

sup
t∈[0,M ]

|r̂o(t, T )− ro(t)| = sup
t∈[0,M ]

∣∣∣∣∣∣
∑
i∈U

∑
j∈D

s∑
l=1

πlψ̂li(t, T ) ∗ q̂ij(t, T )−
∑
i∈U

∑
j∈D

s∑
l=1

πlψli(t) ∗ qij(t)

∣∣∣∣∣∣
= sup
t∈[0,M ]

∣∣∣∣∣∣
∑
i∈U

∑
j∈D

s∑
l=1

πl

[
ψ̂li(t, T ) ∗ q̂ij(t, T )− ψli(t) ∗ qij(t)

]∣∣∣∣∣∣
≤ sup
t∈[0,M ]

∑
i∈U

∑
j∈D

s∑
l=1

πl

∣∣∣ψ̂li(t, T ) ∗ q̂ij(t, T )− ψli(t) ∗ qij(t)
∣∣∣

= sup
t∈[0,M ]

∑
i∈U

∑
j∈D

s∑
l=1

πl

∣∣∣ψ̂li(t, T ) ∗ q̂ij(t, T )− ψ̂li(t, T ) ∗ qij(t)

+ψ̂li(t, T ) ∗ qij(t)− ψli(t) ∗ qij(t)
∣∣∣

≤ sup
t∈[0,M ]

∑
i∈U

∑
j∈D

s∑
l=1

πl

∣∣∣ψ̂li(t, T ) ∗ q̂ij(t, T )− ψ̂li(t, T ) ∗ qij(t)
∣∣∣

+ sup
t∈[0,M ]

∑
i∈U

∑
j∈D

s∑
l=1

πl

∣∣∣ψ̂li(t, T ) ∗ qij(t)− ψli(t) ∗ qij(t)
∣∣∣

= sup
t∈[0,M ]

∑
i∈U

∑
j∈D

s∑
l=1

πl

∣∣∣ψ̂li(t, T ) ∗ [q̂ij(t, T )− qij(t)]
∣∣∣

+ sup
t∈[0,M ]

∑
i∈U

∑
j∈D

s∑
l=1

πl

∣∣∣[ψ̂li(t, T )− ψli(t)
]
∗ qij(t)

∣∣∣ .
Define ψT := supt∈[0,M ]

∑
i∈U

∑
j∈D ψ̂ij(t, T ) <∞. Then we obtain

sup
t∈[0,M ]

|r̂o(t, T )− ro(t)| ≤ sup
t∈[0,M ]

∑
i∈U

∑
j∈D

s∑
l=1

πl |q̂ij(t, T )− qij(t)| sup
t∈[0,M ]

∑
i∈U

∑
j∈D

ψ̂li(t, T )

+ sup
t∈[0,M ]

∑
i∈U

∑
j∈D

s∑
l=1

πl

∣∣∣ψ̂li(t, T )− ψli(t))
∣∣∣ sup
t∈[0,M ]

∑
i∈U

∑
j∈D

qij(t)

≤ ψT sup
t∈[0,M ]

∑
i∈U

∑
j∈D
|q̂ij(t, T )− qij(t)|

+ sup
t∈[0,M ]

∑
i∈U

∑
j∈D

s∑
l=1

πl

∣∣∣ψ̂li(t, T )− ψli(t))
∣∣∣ sup
t∈[0,M ]

∑
i∈U

∑
j∈D

qij(t).

By theorem 3.2.3, it follows that the first term converges to 0 (a.s.). By theorem 3.2.7 the second term converges
to 0 (a.s.) as well. �
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A.6 Theorem 4.0.1

Proof. (Ouhbi & Limnios, [2]) Let Λ = (λij) be the generating matrix of the Markov process. It follows from
lemma 4.0.1 that the semi-Markov kernel is equal to Qij(t) = pij

(
1− e−λit

)
, where λi = −λii and pij = λij/λi.

For the distribution function of the sojourn time in state i, it holds true that

Hi(t) =
∑
j∈E

Qij(t)

= 1− e−λit,

because
∑
j∈E pij = 1. We derive that

qij(t) = Q′ij(t)

= −pij · −λi · e−λit

= λije
−λit

= λij (1−Hi(t)) .

We obtain

ro(t) =
∑
i∈U

∑
j∈D

λij

∫ t

0

s∑
l=1

πlψli(du) (1−Hi(t− u))

=
∑
i∈U

∑
j∈D

λijPi(t).

The last step follows from (Yeh, [9]), theorem 1. �
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A.7 Theorem 5.2.1

Proof. (Limnios & Oprişan, [7]) By induction. For n = 2, we can write the Stieltjes convolution we defined in
definition 3.1.1 as

Q̃
(2)
ij (t) = Q̃ij(t) ∗ Q̃ij(t)

=
∑
k∈E

∫ t

0

Q̃ik(ds)Q̃kj(t− s)

=
∑
k∈E

∑
{n:tn∈(0,t]}

Q̃ik(t− tn)∆Q̃kj(tn),

where ∆Q̃kj(tn) := Q̃kj(tn)− Q̃kj(tn−1).

Now, we consider the case that n = 3. Then it follows that

Q̃
(3)
ij (t) = Q̃ij(t) ∗ Q̃(2)

ij (t)

=
∑
k∈E

∫ t

0

Q̃ik(ds)Q̃
(2)
kj (t− s)

=
∑
k∈E

∫ t

0

Q̃
(2)
ik (ds)Q̃kj(t− s)

=
∑
k∈E

∑
{n:tn∈(0,t]}

Q̃
(2)
ik (t− tn)∆Q̃kj(tn).

For Q̃
(2)
ik (t− tn), we know that

Q̃
(2)
ik (t− tn) =

∑
l∈E

∑
{m:tm∈(0,t−tn]}

Q̃il(t− tn − tm)∆Q̃lk(tm).

If we plug this into our expression for the 3-fold convolution, we obtain

Q̃
(3)
ij (t) =

∑
k∈E

∑
{n:tn∈(0,t]}

Q̃
(2)
ik (t− tn)∆Q̃kj(tn)

=
∑
k∈E

∑
l∈E

∑
{n:tn∈(0,t]}

∑
{m:tm∈(0,t−tn]}

Q̃il(t− tn − tm)∆Q̃lk(tm)∆Q̃kj(tn).

Thus it holds true for n = 3.

Now, assume that the expression given in theorem 5.2.1 holds true for n = m. Then for n = m+ 1, we derive that

Q̃
(m+1)
ij (t) = Q̃ij(t) ∗ Q̃(m)

ij (t)

=
∑
km

∫ t

0

Q̃ikm(ds)Q̃
(m)
kmj

(t− s)

=
∑
km

∫ t

0

Q̃
(m)
ikm

(ds)Q̃kmj(t− s)

=
∑
km

∑
rm

Q̃
(m)
ikm

(t− trm)∆Q̃kmj(trm),

with km ∈ E and rm : 0 < trm ≤ t. From the induction hypothesis, it follows that

Q̃
(m)
ikm

(t− trm) =
∑
km−1

· · ·
∑
k1

∑
rm−1

· · ·
∑
r1

Q̃ik1(t− trm − trm−1 − · · · − tr1)

m−1∏
s=1

∆Q̃ks,ks+1(trs),
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where we used the following notation

k1 ∈ E, . . . , km−1 ∈ E,
rm−1 : 0 < trm−1

≤ t− trm ,
rm−2 : 0 < trm−2

≤ t− trm − trm−1
,

...

r1 : 0 < tr1 ≤ t− trm − trm−1
− · · · − tr2 .

If we plug this into our expression for Q̃
(m+1)
ij (t), we obtain

Q̃
(m+1)
ij (t) =

∑
km

∑
rm

Q̃
(m)
ikm

(t− trm)∆Q̃kmj(trm)

=
∑
km

∑
km−1

· · ·
∑
k1

∑
rm

∑
rm−1

· · ·
∑
r1

Q̃ik1(t− trm − trm−1
− · · · − tr1)

m−1∏
s=1

∆Q̃ks,ks+1
(trs)∆Q̃kmj(trm)

=
∑
km

∑
km−1

· · ·
∑
k1

∑
rm

∑
rm−1

· · ·
∑
r1

Q̃ik1(t− trm − trm−1 − · · · − tr1)

m∏
s=1

∆Q̃ks,ks+1(trs).

with j = km+1. By the principle of mathematical induction, the desired result follows. �
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Appendix B

Tables and figures

Table B.0.1: Earthquakes with M ≥ 5.5, 1953 to 2007. (Votsi et al., [1])

Date Time M State

02-05-1953 18:37 5.6 1
03-08-1954 18:18 5.9 2
02-06-1955 23:34 5.5 1
06-01-1956 12:15 5.5 1
16-01-1958 04:18 5.7 2
11-04-1964 16:00 5.5 1
20-04-1964 04:21 5.6 1
09-03-1965 17:57 6.1 3
28-08-1965 14:08 5.6 1
20-12-1965 00:08 5.6 1
04-03-1967 17:58 6.6 3
19-02-1968 22:45 7.1 3
10-10-1968 07:10 5.5 1
06-04-1969 03:49 5.9 2
17-03-1975 05:35 5.8 2
27-03-1975 05:15 6.6 3
11-02-1976 07:35 5.7 2
14-06-1979 11:44 5.9 2
19-12-1981 14:10 7.2 3
18-01-1982 19:27 7.0 3
06-08-1983 15:43 6.8 3
05-10-1984 20:58 5.6 1
25-03-1986 01:41 5.5 1
29-03-1986 18:36 5.8 2
24-05-1994 02:05 5.5 1
25-05-1994 02:18 5.5 1
04-05-1995 00:34 5.8 2
14-11-1997 21:38 5.6 1
26-07-2001 00:21 6.3 3
06-07-2003 19:01 5.5 1
15-06-2004 12:02 5.5 1
21-12-2006 19:30 5.7 2
09-11-2007 01:43 5.5 1
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Table B.0.2: Earthquakes with M ≥ 5.2, 1964 to 2006. (Votsi et al., [1])

Date Time M State Subarea

23-02-1964 22:41 5.4 1 3
11-04-1964 16:00 5.5 1 1
29-04-1964 04:21 5.6 2 3
29-04-1964 17:00 5.2 1 3
09-03-1965 17:57 6.1 2 3
09-03-1965 17:59 5.7 2 3
09-03-1965 18:37 5.2 1 3
09-03-1965 19:46 5.2 1 3
13-03-1965 04:08 5.3 1 3
13-03-1965 04:09 5.5 1 3
28-08-1965 12:08 5.6 2 1
20-12-1965 00:08 5.6 2 1
04-03-1967 17:58 6.6 2 2
19-02-1968 22:45 7.1 2 2
20-02-1968 02:21 5.2 1 2
10-03-1968 07:10 5.5 1 3
24-04-1968 08:18 5.5 1 2
06-04-1969 03:49 5.9 2 4
17-03-1975 05:11 5.3 1 1
17-03-1975 05:17 5.4 1 1
17-03-1975 05:35 5.8 2 1
27-03-1975 05:15 6.6 2 1
29-04-1975 02:06 5.7 2 1
14-06-1979 11:44 5.9 2 4
12-11-1980 16:04 5.3 1 3
19-12-1981 14:10 7.2 2 2
21-12-1981 14:13 5.2 1 2
27-12-1981 17:39 6.5 2 2
29-12-1981 08:00 5.4 1 2
18-01-1982 19:27 7.0 2 1
18-01-1982 19:31 5.6 2 1
10-04-1982 04:50 5.2 1 2
06-08-1983 15:43 6.8 2 1
10-10-1983 10:17 5.4 1 1
06-05-1984 09:12 5.4 1 4
29-07-1984 01:53 5.2 1 1
05-10-1984 20:58 5.6 2 2
25-03-1986 01:41 5.5 1 3
29-03-1986 18:36 5.8 2 3
03-04-1986 23:32 5.2 1 3
03-06-1986 06:16 5.3 1 3
17-06-1986 17:54 5.4 1 3
06-08-1987 06:21 5.2 1 4
08-08-1987 22:15 5.3 1 1
27-08-1987 16:46 5.2 1 3
30-05-1988 16:47 5.2 1 1
19-03-1989 05:36 5.4 1 3
05-10-1989 06:52 5.4 1 1
23-07-1992 20:12 5.4 1 1
24-05-1994 02:05 5.5 1 4
16-04-1997 13:06 5.2 1 2
14-11-1997 21:38 5.8 2 4
11-04-1998 09:29 5.2 1 1
22-08-2000 03:35 5.2 1 3
10-06-2001 13:11 5.6 2 4
26-07-2001 00:21 6.4 2 3
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Table B.0.2: Earthquakes with M ≥ 5.2, 1964 to 2006. (Votsi et al., [1])

Date Time M State Subarea

26-07-2001 00:34 5.3 1 3
26-07-2001 02:06 5.2 1 3
26-07-2001 02:09 5.3 1 3
30-07-2001 15:24 5.4 1 3
29-10-2001 20:21 5.4 1 3
06-07-2003 19:10 5.5 1 1
06-07-2003 20:10 5.2 1 1
15-06-2004 12:02 5.2 1 1
22-11-2004 19:13 5.2 1 4
24-08-2005 03:06 5.2 1 2
21-12-2006 18:30 5.3 1 3
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Figure B.0.1: Hazard rate of waiting time for the homogeneous Markov model for transitions from state i to state
j, i 6= j ∈ E.
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Figure B.0.2: Hazard rate of semi-Markov process for the homogeneous Markov model for transitions from state i
to state j, i 6= j ∈ E.
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Figure B.0.3: Hazard rate of waiting time for the semi-Markov model for transitions from state i to state j,
i 6= j ∈ E.
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Figure B.0.4: Hazard rate of semi-Markov process for the semi-Markov model for transitions from state i to state
j, i 6= j ∈ E.
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Figure B.0.5: Semi-Markov kernels for the homogeneous Markov model for all transitions from state i to state j,
i 6= j ∈ E.
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Figure B.0.6: Semi-Markov kernels for the semi-Markov model for all transitions from state i to state j, i 6= j ∈ E.
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Figure B.0.7: Map of the Northern Aegean region in Greece, showing locations of 67 earthquakes with M ≥ 5.2
since 1964. (Votsi et al., [1])
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Figure B.0.8: Hazard rate of waiting time with covariates for transitions from state i to state j, i 6= j ∈ E.
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Figure B.0.9: Hazard rate of the semi-Markov process with covariates for transitions from state i to state j,
i 6= j ∈ E.
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Figure B.0.10: Semi-Markov kernels of new dataset for all transitions from state i to state j, i 6= j ∈ E.
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[7] N. Limnios & G. Oprişan, Semi-Markov Processes and Reliability, Springer, 2001.

[8] Nikolaos Limnios & Brahim Ouhbi, Nonparametric Estimation for Semi-Markov Processes on K-Sample Paths
with Application to Reliability, (n.d.)

[9] Lam Yeh, The Rate of Occurrence of Failures, Applied Probability Trust, 1997.

[10] The Glivenko-Cantelli Theorem. Available at http://home.uchicago.edu/~amshaikh/webfiles/

glivenko-cantelli_topics.pdf. Referred at May 11, 2019.

[11] Vlad Stefan Barbu & Nikolaos Limnios, Semi-Markov Chains and Hidden Semi-Markov Models Toward Ap-
plications, 2008.

[12] Agnieszka Listwon & Philippe Saint-Pierre, SemiMarkov: An R Package for Parametric Estimation in Multi-
State Semi-Markov Models, Journal of Statistical Software, 2015.

[13] Donald L. Cohn, Measure Theory, Birkhauser Boston Inc., 2nd edition, 2013.

60

https://en.wikipedia.org/wiki/Markov_renewal_process
http://home.uchicago.edu/~amshaikh/webfiles/glivenko-cantelli_topics.pdf
http://home.uchicago.edu/~amshaikh/webfiles/glivenko-cantelli_topics.pdf

	Introduction
	Motivation
	Summary

	Preliminaries
	Semi-Markov model
	Definition of semi-Markov process
	Empirical estimators
	Hazard rate function
	Markov renewal matrix
	Rate of occurrences of failures


	Homogeneous Markov model
	Application to dataset
	Hazard rate function
	Homogeneous Markov model
	Semi-Markov model

	Expected number of earthquake occurrences
	Rate of occurrences of earthquakes

	Comparison
	Semi-Markov kernels
	Wald test and p-value
	Parametric and non-parametric estimators

	Application to dataset with sub areas
	Hazard rate function
	Semi-Markov kernels
	Wald test and p-value

	Conclusions
	Proofs
	Theorem ??
	Theorem ??
	Theorem ??
	Theorem ??
	Theorem ??
	Theorem ??
	Theorem ??

	Tables and figures
	Bibliography

